
Prototype Software for Automatic Generation
of On-line Control Programs

for Discrete Manufacturing Processes

Gregg Ekberg and Bruce H. Krogh

CMU-RI-TR-87- 3

Flexible Assembly Laboratory
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

February 1987

Copyright @ 1987 Carnegie Mellon University

This work has been supported in part by General Motors Corporation, North American Philips
Corporation, and the National Science Foundation under research grant DMC-8451493.

1

Table of Contents

1 Introduction
2 Control of an Automatic Conveyor
3 DBBUILD
4 PROGGEN

4.1 Description
4.2 Analysis

5 Additional Utilities
5.1 TIMERS
5.2 COUNTERS
5.3 EXTERNAL FUNCTIONS

6 Conclusion
I. Sensors, Actuators, Resources, and Operations for Conveyor Example
II. DBBUILD User’s Manual

11.1 Introduction
11.2 Structure

11.2.1 Operation Records
11.2.2 Resource Records
11.2.3 Actuator Records
11.2.4 Sensor Records

11.3.1 Operation Menu
11.3.2 Resource Menu
11.3.3 Actuator Menu
11.3.4 Sensor Menu

11.3 Menus

1
3
4
7
7

14
17
17
17
18
18
19
22
22
22
22
24
25
26
26
27
29
30
31

..
11

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 6:
Figure 6:
Figure 7:
Figure 8:

List of Figures

Modular paint shop conveyor system
Detail of conveyor stops and chain
Petri net model of conveyor control logic for the base-coat booth
Database structures and pointers: operation records
Database structures and pointers: resource records
Database structures and pointers: sensor records
Database structures and pointers: actuator records
PROGGEN Flow Chart

5
5
6
8
9

10 '
11
12

Abstract

This report describes prototype software for automatically generating control programs for

discrete manufacturing processes from a high-level description of the system control logic. The

control logic is synthesized from a specification of the physical resource states required for each

operation in the process. The software described in this report allows the user to specify

interactively the operation sequencing logic and the actuators and sensors for each stage of the

process. This information is then used to automatically generate code for on-line control

computers. The

methodology is illustrated for the automatic generation of instruction list (IL) code to control a

conveyor system in an existing robotic assembly plant.

-

The current implementation supports binary sensor and actuator signals.

1

1 Introduction

The writing and debugging of computer programs for sequential control accounts for a major

component of the cost in implementing automated manufacturing systems. I t is also time

consuming and expensive to modify existing control programs. This report describes prototype

software for reducing the time and cost involved in developing discrete control programs by

automatically generating executable computer code from a high-level description of the system

control logic. With this software the manufacturing engineer can specify the control logic in

terms of the physical devices and operations from which the computer generates the programs

for real-time control.

The prototype software described in this report is comprised of two programs: DBBUILD and

PROGGEN. DBBUILD (Data Base BUILDer) is an interactive program used to build and

modify a da ta base containing the system control description in terms of its physical devices and

operations. PROGGEN (PROGram GENerator), executed from within DBBUILD, generates

source code for the on-line control computer.

Normally, a skilled programmer performs the task of developing the controller program

(usually in the Ladder Diagram Language) from the system designer’s description of a discrete

manufacturing system. Several problems can arise from the transfer of information to the

programmer and the manual encoding of the system control logic. This is due to several factors,

including:

0 the designer’s description of the system can be misinterpreted;

0 the programmer’s implementation may be inflexibly structured around the specific
sensor/actuator realization, whereas the design engineer will maintain flexibility to
meet changes in the operation of the system.

0 the functional description of the system operation is not clearly reflected in the low-
level control program.

These factors make i t difficult to debug the control program or make changes in the sequencing

of operations. Future modifications may be made difficult because the programmer did not

anticipate possible changes in operation sequencing. The manufacturing engineer thinks more

about how the sequencing of operations may affect future operating conditions.

2

The objective for developing the software described in this report is to eliminate the need for

manually encoding the discrete control logic for manufacturing systems. This task is

accomplished by the computer, allowing the system designer to specify and modify the control

program using a high-level functional representation of the system. To maintain a systematic

approach of generating system control programs, the code is generated for one operation at a

time, using physical states of resources as enabling conditions. It is not necessary for the user to

specify when to enable and disable the operation actuators; this task is performed automatically

by PROGGEN.

Control of a discrete manufacturing system involves the coordination of multiple resources in a

sequence of discrete operations. The initiation of each operation depends on the states of

physical parts and devices (resources) within the system. A resource is any component within

the manufacturing system that is involved in the system’s operation: robots, fixtures, raw

materials, controllers, etc. Following the execution of an operation, the states of the resources

involved in the operation are changed; sensors are used to monitor changes the resource states.

We use Petri nets (PN) to model the discrete decision and control of a manufacturing system.

Previous research has shown that P N models are effective for modeling the evolution of the state

transitions in discrete systems [l]. PNs contain transitions, representing operations or events;

places, representing conditions or states in the process; and directed arcs connecting the places

and transitions. In the graphical representation of PNs, transitions are represented by vertical

bars and places are represented by circles. The conditions enabling an operation are the resource

states associated with the operations input transition. Upon completion of the operation the

resources will be in the states associated within the output transition.

Recently, a systematic methodology was developed for synthesizing P N models of discrete

manufacturing systems [2, 3, 41. As presented by Beck [2], systematic approaches to developing

the manufacturing system control logic can be synthesized from activity cycles for each resource.

The resource activity cycles are developed, individually and then joined at common operations to

synthesize the complete system control logic. We use this approach to define information that is

entered into the database using DBBUILD.

The report is organized as follows. In section 2 we present an example of an automated

conveyor system in an automobile paint shop which we use throughout the report to illustrate

3

the functions of DBBUILD and PROGGEN. In section 3 we describe the structure and use of

DBBUILD, and in section 4 we describe PROGGEN and discuss its performance in terms of the

generated controller code. The performance criteria is based on correctness and gains or losses in

efficiency compared to code developed manually by a programmer. In section 5 we propose

methods for incorporating additional utilities such as timers, counters, and external functions

into DBBUILD and PROGGEN. The structure of the database built by DBBUILD corresponds

to a P N model of the system. Thus, P N techniques can be applied to determine if deadlocks or

inconsistencies exist in the control logic. Current research into the application of P N theory for

automatic evaluation and diagnosis of programming errors is discussed in the concluding section.

2 Control of an Automatic Conveyor

In this section we illustrate the Petri net methodology for an automatic conveyor system at the

General Motors Truck & Bus Assembly Plant in Baltimore, MD. This example is used as an

illustration throughout the remainder of the report. The conveyor system, illustrated in figure 1,

indexes vans through a painting module consisting of a preparation booth, a base-coat booth, a

clear-coat booth, and an observation booth. The preparation booth is used for final preparation

of the vans before painting. Coats of pigment and resin are applied in the base-coat booth

followed by the application of a coat of clear resin in the clear-coat booth. (All painting is

performed by robots.) The purpose of the observation booth is to allow sufficient flash time so

that the majority of the solvents can vaporize before the vans enter an oven for baking.

The conveyor system is presently controlled by an Allen-Bradley PLG2/30. All sensor signals

(from limit switches) and actuator commands (to pushers and mechanical stops) are binary. The

controller coordinates the motion of the vans and the opening and closing of the doors between

the booths. The doors must be closed during painting and a van must not be released into the

next booth before the booth is availabel.

The conveyor chain, shown in figure 2, is a roller flight chain which allows a van to be held in

place by mechanical stops while the chain, and other vans in the system, continue to move.

Unpainted vans are held by a mechanical stop in the preparation booth and released when the

base-coat booth becomes availabel. After entering the base-coat booth the van skid moves up to

a set of grounding bars where the rear dog on the pusher catches the push plate on the skid (see

figure 2). The van is then pushed into a secured painting position on the grounding bars. Prior

4

to initiating the base-coat painting cycle the booth doors are closed and the pusher is retracted

to prevent the buildup of paint on the cylinder shaft. Following the completion of the base-coat

painting cycle, the doors are opened and the van skid is pushed off the grounding bars by the

front dog of the pusher if the clear-coat booth is availabel. This sequence of events is repeated

in the clear-coat booth. When the van moves into the observation booth, mechanical stops hold

i t in place while the solvents vaporize.

Using the P N methodology described in the introduction, a P N model of this system was

synthesized from single resource activity cycles for the van, conveyor chain, mechanical stops in

the preparation and observation booths, doors, and pushers in the base-coat and clear-coat

booths. The base-booth portion of the PN for the conveyor control logic is shown in figure 3.

Descriptions of the resource states and operations for this part of the net are given in appendix

I. The P N for the clear coat and observation booths are similar.

3 DBBUILD I

DBBUILD is an interactive program written in the C programming language and is used to

enter the system description into a da ta base. The database is comprised of four major record

types: 1) operations, containing information on input and output transitions, resource states,

and actuators, 2) resources, containing information on the resource states and the sensor data

required to define each state, 3) sensors, containing the address label of the sensor input port,

and 4) actuators, containing the address label for the actuator output port. Diagrams of the four

record types are shown in figures 4 through 7.

DBBUILD consists of procedures to create and modify these records. Each record is built using

doubly linked lists established through pointers to structures. For example, and as shown in

figure 4, within the operation structure there are pointers to the next and previous operations,

pointers to a list of the input transitions, pointers to a list of the output transitions, and

pointers to a list of the associated actuators. In turn these structures have pointers to structures

that contain information on the resource states and the actuators.

Attached to each each input and output transition of an operation are the resource states that

are required to enable the transition. While building an operation the user does not need to

specify the sensors required to define the resource state. This information can be added at some

other time as a function of the resource state.

5

Figure 1: Modular paint shop conveyor system

Figure 2: Detail of conveyor stops and chain

6

L

Figure 3: Petri net model of conveyor control logic
for the base-coat booth

7

DBBUILD protects against entering incorrect conditions for identifying a resource state by

accepting a sensor pointer only if the sensor has been entered in the da ta base. Similarly, an

actuator cannot be referenced in an operation record unless it has been entered in the actuator

database. Additionally, DBBUILD will inform the user if a state attached to an operation

transition is, or is not, present in the resource da ta base. These checks help prevent confusion

for the user and prevents errors from occurring in the controller code tha t is generated by

PROGGEN. More information on DBBUILD is provided in the User’s Manual in appendix 11.

4 PROGGEN

4.1 Description

PROGGEN is written in the C programming language and is used to generate Instruction List

(IL) code from a da ta base constructed using DBBUILD. Instruction List programs are executed

sequentially and repeatedly by a programmable logic controller to generate and maintain the

correct outputs to the system. The instructions used in this version of PROGGEN are per the

International Electrotechnical Commission SC65A/WG6 Standard for Programmable Controllers

The current version of PROGGEN supports the generation of a control program for a

simple discrete process. It does not yet support operations requiring timers, counters, arithmetic

functions, or logical comparison. Possible methods for incorporating these functions are described

in section 5.

[5].

The basic logical flow of PROGGEN is shown in Figure 8. It looks at each operation

separately, generating code to check the required resource states. Then, conditional on these

states, code is generated to enable the desired actuator outputs. Setting (latching) the resultant

resource states is based on the sensors associated with the resultant resource states, within a

transition, and is performed to maintain the system state as defined in the Petri net.

The instructions within IL are used to develop conditional branches based on the system state.

For example,

IF
AND
OR
AND
THEN

[(limit switch 1 (LSl) is activated
limit switch 2 (LS2) is not)
(limit switch 1 is activated
limit switch 3 (LS3) is activated)]
turn on solenoid 1 (Si)

8

OPERATIONS

DESCRIPTION
NO OF INPUT TRANS

OF OUTPUT TRANS PREVIOUS

POINTER TO ONE OF
'THE JWPUT OR
OUTPUT TRANSITIONS

Figure 4: Database structures and pointers: operation records

POINTER TO ASSOCIATED ACTUATORS

NEXT

DESCRI PTION DESRI PTlON
NO OF INPUT OR PCTUATOR

WINTER TO EACH
OF THE RESOURCE STATES

DESRIPTION
RESOURCE NAME

4

NEXT

4 4

PREVIOUS

DESRIPTION
RESOURCE NAME

9

OESCRl PTION
NO OF DIFFERENT

SETS OF SENSORS USED P R n I O m

RESOURCES

DESCRIPTION
NO OF SENSORS IN PREY IO 16

POINTER TO BEG1 NNI NG

NEXT
 RESOURCE NAME> RESOURCE

DESCRIPTION
NO OF STATES

I

POINTER TO LIST
OF THE REQUIRED

DESCR I PT ION
SENSOR NAME

PREVIOUS 7 . 4
Figure 5: Database structures and pointers: resource records

10

D ~ R I P T I O N
UO OF RESIURCES IN
WHICH IT IS USED

TYPE OF SENSOR PREVIOUS
WIRE NUMBER

SENSORS

Figure 6: Database structures and pointers: sensor records

11

POINTER TO BEGINNING OF
ACTUATOR LIST

NEXTACTUATOR A c
ACTUATOR NAME
OESCRI PTlON
NO OF OPERATIONS IN

WHICH IT IS USED
TYPE OF OUTPUT
WIRE NUMBER
4

PREYIOUS

Figure 7: Database structures and pointers: actuator records

12

t

1 tw) F-s)
WITH THE ‘AND’ IELSTRUCTIW

FROn NEXT PAGE

Figure 8: PROGGEN Flow Chart (Continued on next page)

13

YES

SENSORSAssocIAfED WITH THIS

RESOORES A3SOCIATED WITH THIS

Figure FLOW (continued)

14

In IL would be represented as follows:

LD LS 1
ANDN LS2
OR (LS 1
AND LS3)
ST si

To simply enable the actuator when the input resource s ta te conditions are satisfied is not

sufficient. Actuators vary in types; some are required to remain enabled for the duration of the

operation while others are required to remain enabled until another motion of the same actuator

is needed.

Enabling the actuator output for the duration of an operation is established by the fact that

the input states to the operation remain true until an output transition becomes true, as defined

by the associated resource s ta te sensors, and new states are defined.

Other types of actuators must remain rigid even after its motion is complete. For example, the

doors between the booths in the conveyor example must be held open after the door open limit

switch has been activated. This prevents the doors from drifting shut and possibly making

contact with the van, causing a paint defect. The task of maintaining the output to the specified

actuator is performed automatically by PROGGEN. If an actuator has in its description more

than one motion, PROGGEN will first reset all outputs to the actuators then set the output for

the desired motion. Therefore for the case described above, the operation tha t opens the door

will set (latch) the output to the door open solenoid. In the operation that the door is to be

closed, the output to the door open solenoid will be reset (unlatch) and the output to the door

close solenoid will be set. This method will also work for actuators with more than one motion,

not just two-way actuators.

4.2 Analysis

When sensors are not associated with a resource state, feedback words are needed to maintain

the control logic. Feedback words are words that are stored in memory and are used to

remember if a resource is in a given state. For example, the s ta te of the base booth in the

conveyor example is not explicitly defined by sensors. Therefore when its state is changed it is

set with the " S " instruction (latched) and a location within its memory structure in DBBUILD is

15

updated with i ts latched state. If an old state is still latched when a new state is to be latched,

PROGGEN will unlatch the old state and latch the new state. This operation follows from the

fact tha t a resource cannot be in more than one state at any given time.

Creating feedback words only for those states that are not defined by sensors does not provide

sufficient information on the system state to enable the proper outputs. In the current version of

PROGGEN, feedback words are created for all resource states. Storing all resource states

provides the required information for proper sequencing, but leads to inefficient IL code.

To clarify the need for the storage of all resource state information, consider operations 2 and

5 in the conveyor example (move the van into the painting position and move the van out of the

painting position). The resulting IL code for only remembering those states that are not defined

by sensors is as follows: (Note: enabling conditions are now the sensors for those resource states

that are defined by sensors:)

OPERATION 2 OPERATION 5

(*Enabling*)
LD ‘BLSI
AND BPLS 1
S BPEXT

(*Result*)
LD BLS2
AND BPLS2
R BPEXT

(*Result*)
LD BLSl
AND BPLS2
R BPEXT
S E l

(*Enabling*)
LD CBC

BPLS 1 AND
AND BLS2
S BPEXT

(*Result*)
LD BLS3
AND BPLS2
R BBF
R BPEXT
6 BBC
S CBF

(*Result*)
LD BLS2
AND BPLS2
R BPEXT
S E2

We see tha t when both BLS2 and BPLS2 are high, following completion of operation 2, E2

from operation 5 will be set, which is not what we wanted. To prevent this type of sequencing

problem all resource states, whether defined by sensors or not, are used as feedback words. This

change produces the correct code as shown below.

16

OPERATION 2

(*Enabling*)
LD vi
AND BP 1
ST BPEXI'

(*Result*>
LD v1
AND BP 1
AND BPL52
AND BLSl
R vi
R BP1
S El

(*Result*>
LD vi
AND BP 1
AND BLS2
AND BPLS2
R v1
S v2
S BP2

OPERATION 5

(*Enabling*)
LD CBC
AND BP3
AND
ST B P M T

v3

(*Result*)
LD CBC
AND BP3
AND v3
AND
AND BLS2
R CBC
R BP3
S E2

BPLS2

(*Result*>
LD CBC
AND BP3
AND v3
AND BPLS2
R CBC
R BP3
S B3C
S v4
S BP4

The inefficiency of using this method to maintain correct sequencing stems from the fact that

many times feedback words are generated which are not required to maintain correctness. For

example, the s ta te V1 (van entered base booth) is explicitly defined by BLS1. At no other time is

BLSl activated, nor will the state V1 exist if BLSl is not activated.

Using the S (set) instruction is considered poor programming style primarily because if a power

failure occurs the set or latched states will remain high, thus resetting the system logic becomes

very difficult. Also, with set instructions there is possibility of logic errors by forgetting to reset

the word; however, PROGGEN removes this problem because i t maintains the states of the

latched words.

17

5 Additional Utilities

The prototype versions of DBBUILD and PROGGEN presented in this report have been

developed to support automatic generation of controller code for systems with binary sensors and

actuators. Further work is required to implement the required software to support timers,

counters, external functions (add, subtract, logical comparison, etc.), and non-binary inputs and

outputs. Some ideas for possible implementations of these control structures are presented in

this section.

5.1 TIMERS

Timers are often used to monitor the sequencing of a system. A timer can be viewed as a

function within an operation tha t is initiated when the operation is enabled. We propose to have

operations tha t can be specified as timed operations for which DBBUILD will prompt the user

for the prese t timer duration. During controller code compilation PROGGEN will allocate a

timer to tha t operation internally and will attach to the variable state TIMER the address of the

timer completed s ta tus word (bit 15 of the timer address (51). The use of the variable TIMER

allows the user to specify those output transitions that are dependent on the timer. If the

operation reaches an acceptable output transition the timer is automatically reset.

5.2 COUNTERS

Counters are often required to remember how many times an operation has been executed and

based on the accumulated value of the counter, initiate another operation. For example, in an

automated paint shop the paint gun requires cleaning if the same color has been used N times (If

a different color is used a purge operation is performed which includes cleaning the gun). We

therefore want to count the number of consecutive times the same color has been used. It is

proposed to view the counter as a type of actuator. The counter name would act as the label to

the counter address within the controller code. The state of the counter is then defined by two

associated feedback words representing counting and finished states. These states can be defined

by the counter address bits 16 and 15 respectively (51. To allow the user to use the counter

feedback words in other operations we define feedback words label. cnt and label. done as
follows:

for countervalue < N 1abel.cnt = 1; 1abel.done = 0
for countervalue = N 1abel.cnt = 0; 1abel.done = 1
for countervalue > N reset countervalue; countervalue = 1;

18

where label is the counter name as defined by the system designer. For example,

samecolor. cnt would be the variable attached to bit 16 of the samecolor counter.

5.3 EXTERNAL FUNCTIONS

External functions are required to perform a series of operations tha t do not belong at the level

of the system state description. For example, comparing the value of a sensor to some set point.

I t is proposed to have the user define an external function label in the associated actuator list in

an operation and it will remain his responsibility to generate code for tha t label. Simple routines

are easy to write in the Structured Text Language [5] and are easily accessible by the Instruction

List code using the JMP instruction. All variables will be the same names as those used in the

system description level.

6 Conclusion

This report presents some initial work in the area of automatic programming of programmable

controllers from high level descriptions. The software developed illustrates the ability to

interpret a da ta base tha t contains the system operation information, and from it generate

executable controller code.

Additional work is required in the area of simulation and analysis of the generated control

logic. The da ta base generated by DBBUILD is structured identically to the information

contained within a P N model of the system. This structure allows existing Petri net theories to

be used to determine if deadlocks are present. The program that performs the net analysis may

be a simulation program tha t can simulate the nets operation given an initial marking, or

placing of the tokens.

Ultimately to allow the generated code to be used in a production environment, an interface

such as Ladder Diagram needs to be presented to the technician for use in on-line debugging of

the system. One of the purposes of the IEC Language Specification is to provide consistency

between controller codes. This consistency should allow the development of linking programs

tha t can change the controller code from IL to Structured Function Chart [5] to executable code,

etc, and back again.

19

I. Sensors, Actuators, Resources, and Operations
for Conveyor Example

The following two lists show the sensors and actuators used in the conveyor example:

SENSORS:

PLSl
BLSl
BLSS
BLS3
CLSl

BPLSl
BPLS2

BLDO
BRDO
BLDC
BRDC

ACTUATORS:

PBSD
PBSU
BPEX
BPRET
RBDO
LBDO
RBDC
LBDC

PREP BOOTH LIMIT SWITCH 1
BASE BOOTH LIMIT SWITCH 1
BASE BOOTH LIMIT SWITCH 2
BASE BOOTH L M T SWITCH 3
CLEAR BOOTH LIMIT SWITCH 1

BASE PUSHER LIMIT SWITCH 1
BASE PUSHER LIMIT SWITCH 2

BASE LEFT DOOR OPEN LIMIT SWITCH
BASE RIGHT DOOR OPEN LIMIT SWITCH
BASE LEFT DOOR CLOSED LIMIT SWITCH
BASE RIGHT DOOR CLOSED L M T SWITCH

PREP BOOTH STOP DOWN
PREP BOOTH STOP UP
BASE PUSHER EXTEND
BASE PUSHER RETRACT
RIGHT BASE DOOR OPEN
LEFT BASE DOOR OPEN
RIGHT BASE DOOR OPEN
LEFT BASE DOOR CLOSE

The following lists provide a brief description of the resource states and operations modeled by

the P N in figure 3.

VAN RESOURCE CYCLE: SENSORS REQUIRED:

VO = Van at prep booth stop.
V1 = Van arrived in base booth.
V2 = Van in base booth painting position.
V3 = Base coat applied to van.
V4 = Van at base booth doors.
V5 = Van arrived in clear booth.
VE1= Failed to move into paint position
VE2= Failed to move off grounding bars

PLSl
BLSl
BLS2
NONE
BLSS
CLSl
BPLS2 and BLSl
BPLS2 and BLS2

20

BASE BOOTH PUSHER RESOURCE CYCLE:

BP1 =Base pusher retracted and waiting for van to
arrive

BP2 =Base pusher extended with van in the back dog
(thus the van is in the painting position).

BP3 =Base pusher retracted while the van is in the
painting position.

BP4 =Base pusher extended with van in the front dog
(thus the van is pushed past the painting position).

BASE BOOTH DOORS RESOURCE CYCLE:

BDOl = Opened for van to pass through
BD02 = Base doors open and van passed
BDCl = Base doors closed for painting
BDC2 = Base doors closed, painting complete
BDOE = Error base door open (the doors did not open)
BDCE = Error base doors close (the doors did not close)

BASE BOOTH RESOURCE CYCLE:

BBF = Base booth clear (empty) and waiting
for the next van.

CONVEYOR RESOURCE CYCLE:

SENSORS REQUIRED:

BPLSl
BPLS2

BPLS 1

BPLS2

SENSORS REQUIRED:

BLDO and BRDO
BLDO, BRDO, CLSl
BLDC and BRDC
BLDC and BRDC
BLS3 and NOT BLDO
BLS2 and NOT BLDC

and NOT BRDC

SENSORS REQUIRED:

NONE

SENSORS REQUIRED:

CS = Conveyor stopped. NONE

21

OPERATIONS: ACTUATORS REQUIRED

OP1 =Drop stop in prep booth and allow van to move into
base booth.

OP2 =Put van into base booth painting position by extending
base pusher.

OP3 =Retract base pusher.
OP4 =Apply base coat to van.
OP5 =Extend base pusher to push van past painting position.
OP6 =Open base booth doors.
OP7 =Retract base pusher to accept new van arriving in base

OP8 =Stop conveyor to prevent van from hitting base doors.
OPS=Move van from base doors to clear booth pusher.
OPlO=Close base booth doors.

booth.

PBSD

BPEXT

BPRET
NONE
BPRET
RBDO and LBDO
BPRET

NONE
NONE
RBDC and LBDC

OPEl=Manual reset of base pusher and van in paint position
OPEB=Manual reset of base pusher and van off grounding bars
OPE3=Manually open of base doors and restart conveyor.
OPE4=Manually close base doors

NONE
NONE
NONE

22

II. DBBUILD User's Manual

II.1 Introduction

DBBUILD an interactive program used to obtain and store information concerning a discrete

manufacturing system' . The structure of DBBUILD emulates a Petri net model to simplify

analysis of the system logic using existing Petri net theories. The purpose of this appendix is to

familiarize the user with DBBUILD's structures and menues. DBBUILD prompts the user for all

information that is required and therefore an experienced programmer would feel quite

comfortable using DBBUILD without first reading this manual. However, DBBUILD will query

for information that may seem irrelevant; this manual tries to explain the need for these queries.

II.2 Structure

The da ta base is comprised of four major record types: 1. operations, containing information

on input and output transitions, resource states, and actuators; 2. resources, containing

information on the resource states and the sensors data required to define each state; 3. sensors,

containing the address label of the sensor input port; and 4. actuators, containing the address

label for the actuator output port. Schematics of the records are shown in figures 4 through 7.

The topics discussed in this part of the manual are for use by those who have an understanding

of a structured language. Comprehension of the material is not required to use DBBUILD.

II.2.1 Operation Records

The following is the top level structure in the operation record:

typedef s t r u c t opera t ion type <
char name [NAME SIZE] ; operat ion name defined by use r
char desc [DESC-SIZE1 - ; operat ion desc r ip t ion
i n t num i n op; holds t h e number of inpu t t r a n s i t i o n s

numout op; holds t h e number of output t r a n s i t i o n s i n t
i n t num assoc act; holds number of assoc ia ted ac tua to r s
s t ruc t op eFat i o n t yp e *next ;
s t r u c t op e r a t ion-t - ype *prev;

- -

s t r u c t i n op *in o p g t r ; po in t e r t o l i s t of inpu t t r a n s i t i o n s - -
s t r u c t o u t op *out-opgtr ; po in t e r t o l i s t of output t r a n s i t i o n s -

'The authors would like to thank Wayne Figurelle for developing the C code for DBBUILD.

23

struct act - list *assoc - actgtr; pointer to list of actuators
affected by the operation

The following structure contains information on the associated actuators

typedef struct act-list <
char name CNAME-SIZE1 ; structure name defined by DBBUILD
char desc [DESC SIZE]; not used
char act name [EAME SIZE]; name of the actuator
char ass& op name TNAME SIZE]; not used
char

defined by user
struct act list *next ;
s truc t ac t-1 - is t *prev;

act - c&d-[COND - SIZET; the condition of the actuator

The following structure holds information on the input transitions

typedef struct in - op C

num - - - in op k;

char name [NAME SIZE]; DBBUILD name of the transition
char desc [DESC-SIZE] ; not used
int

etruct in op *next ;
B truc t i n o p - *prev;

number of resource states aSSOClated
with the transition

struct in op AND *in-op-ANDjtr; points to a list of the resource - -
states associated with the transition

The following structure holds information on the output transitions:

typedef struct out op C
char name TNAME SIZE] ;
char deSC CDESC-SIZE] ;
int num out - - 0 p - m ;
s truc t ou t o p *next;
s truc t ou t o p - *prev;

struct out op AND - -
The following structure holds the input transition’s resource states;

typedef struct in op AND C
char name- [NAME SIZE] ; structure name defined by DBBUILD
char desc [DESC-SIZE1 ; not used
char res name [iAME SIZE]; the resource name
char state name [N& SIZE]; the resource state name
struct in 0 p - m *next ;
s t ru c t in-op-rn - - *prev;

-

24

The following structure holds the output transition's resource states:

typedef struct out - - op AND i
char name [NAME SIZE];
char desc CDESC-SIZE1 ;
char res name ChMl-SIZEl ;
char state name [NAME-SIZE];
struct out 0; AND *next ;
s truc t ou t 0 p - m - - *prev;

lI.2.2 Resource Records

The following is the resource record and its components:

Typedef struct resource-type i
Char name [NAME SIZE] ; Name of the resource
Char desc [DESC-SIZE] ;
struct resourc; type *next;
Struct resource-type - *prev;
int num - state;

Description of the resource

Holds the number of different
states the resource has

Struct state type *stategtr; Points to the resource state -
structure

The following structure contains information on the resource states:

Typedef struct state type <
Char name[NAME SIZE]-
Char de 8 c [DESCIS IZEI
Char latched

Struct state type *next
Struct statetype - *prev
Int num OR -

struct OR - type *ORgtr

The resource state structure
Name of the state
Description of the state
Used for generating the XL
code

Number of sensors used to
determine the state

Points to the series of
sensors used to define state

The following structure contains the name of the series of sensors
used to define a specified resource state:

Typedef struct OR-type
Char name [NAME SIZE]
Char desc CDESCISIZEI
Struct OR type *next
Struct ORtype *prev
Int num GD -

DBBUILD structure name
not used

Number of sensors in series

25

S t r u c t AND type *ANDgtr Po in te r t o t h e sensors i n the
s e r i e s

The fol lowing s t r u c t u r e conta ins the sensor names f o r a spec i f i ed s e r i e s

Typedef s t r u c t AND type
C h a r name [NAME-SIZE1
C h a r deSC [DESC SIZE] no t used
S t r u c t AND t ype *next
S t r u c t m - t y p e *prev
Char sensor name [NAME SIZE]
Char sensor-cond - [CONDSIZEI -
Char assoc - - res nameCNAME - SIZE]

DBBUILD s t r u c t u r e name

Sensor name
The s t a t e of t h e sensor -
a c t i v a t e d h o t ac t iva t ed
no t used

II.2.3 Actuator Records

The actuator record is defined as follows:

Typedef s t r u c t ac tua to r
Char name [NAME SIZE]
Char desc CDESC-SIZE]
S t r u c t motion - s t r u c t

I n t wire num
S t r u c t az tua to r *next
S t r u c t a c t u a t o r *prev
I n t num assoc op - -
S t r u c t assoc op -

The fol lowing s t r u c t u r e holds
t h e a c t u a t o r i s used:

Typedef s t r u c t assoc op -
Char name [NAME SIZE]
Char de sc [DESC-S IZE]
Char op nameCNk SIZE]
Char act - l i s t [NAME- - SIZE]

Actuator s t r u c t u r e
Name of t h e ac tua to r
Actuate s desc r ip t i o n
Indica tes d i f f e r e n t ac tua tor /
mot ion s
Actual wire number

Number of opera t ion i n which
ac tua to r is used
Poin ts t o an operat ion

information on t h e operat ions i n which

Name of t h e operat ion
N o t used

S t r u c t assoc op *next
S t r u c t assoc-oD *Drev

26

II.2.4 Sensor Records

The sensor record is as follows:

Typedef struct sensor type
Char name [NAME-SIZE] sensor name
Int wire num
Char des; [DESC - SIZE] description of the sensor (optional)
Int cond condition the sensor will be In when

Struct sensor type *next
s truc t s ensor-t yp e *pr ev
Int num - assoc-res -
Struct assoc - res

actuate d

Number of resources for
which this sensor is used

*assoc - resgtr Pointer to aSSOClated resources

The following structure contains information on resource states
in which the sensor is used:

Typedef struct assoc res
Char name [NAME SIZE]-
Char de sc [DESCSIZE]
Char res name [hMl-SIZEl
Char state name [NAME SIZE]
struct ass& res *ne%
Struct assoc-res - *prev

DBBUILD structure name
not Used
Resource name
State name

II.3 Menus

The menus used to prompt the user use terms used to describe elements of Petri nets. Most

menu options are self explanatory; however, those options that are not will have a brief

explanation following the menu listing.

The top level menu, and therefore the first one you see, allows you to choose which record you

want to investigate. This menu is as follows:

S = For sensor data type
R = For resource data type
0 = For operation data type
A = For actuator data type
Q = To quit this program

Which type do you want to alter or look at?

27

II.3.1 Operation Menu

If at the top level you decide to look at operations, the following menu will appear:

I-INSERT new operation
D-DELETE an operation
F-FIND an operation or some i n f o about an operation
A-INSERT a6soc. actuator for t h i s operation
P-INSERT an out op cond OR header for t h i s operation
C-INSERT an out op cond AND header for t h i s operation
0-INSERT an i n op cond OR header for t h i s operation
H-INSERT an i n op cond AND header for t h i s operation
L-LIST a l l of the names present
Q-Quit, and look at another data base
? - L i s t a l l of the commands avai label

"P" will generate the structure for an output transition and name that transition

TRANS-(n); where n is a number DBBUILD maintains. Once the transition has been named;

DBBUILD will ask if there are any resource states that you want to attach to this transition.

Upon entering a s ta te DBBUILD will generate a structure to hold the s ta te name. DBBUILD

will name this structure STATE-(n) much in the same way it names the transitions.

"C" can be used to add additional resource states to an existing output transition. DBBUILD

will first ask for th output transition name (TRANS-1, TRANS-2, etc.) and then allow you

to enter a resource state.

"0" and "H" perform the same as "P" and "C" respectively, but are used for input

transitions rather than output transitions.

NOTE 1:

The words "OR" and "AND" used in the menus refer to transitions and resource states

associated with that operation respectively. OR is used for transitions because they represent

the different enabling or resulting sets of resource states. AND is used for resource states within

a transition because all of the resource states must be satisfied for that transition to be enabled.

NOTE 2:

The labels TRANS-(n) and STATE-(n) are used by DBBUILD to search through the record.

28

See struct in - op-OR and struct in - op-AND in section 3 of this manual for more

information.

*IF" will cause DBBUILD to prompt the user for an operation name and will then display the

next menu containing new options.

D-To see t h e desc r ip t ion of t he opera t ion
A-To l ist a l l of t h e ossoc. a c t u a t o r s w i t h t h i s opera t ion
F-To f i n d i n f o about ossoc. ac tua to r s w i t h t h i s opera t ion
0-To l ist a l l of t h e o u t ops assoc. w i t h t h i s opera t ion
N-To g e t i n f o about t h e o u t ope assoc. w i t h t h i s opera t ion
I-To l i s t a l l of t h e i n ops assoc. w i t h t h i s opera t ion
G-To l i s t a l l about t h e i n ops assoc. w i t h t h i s opera t ion
Q-To q u i t looking a t t h i s operat ion
?-To see t hese Commands

"0" will list the names of this operations output transistions (TRANS-1, TRANS-2, etc.).

"N" will cause DBBUILD to ask for the output transition name and then present the resource

states associated with tha t transition.

"I" and "G" will perform the same tasks as "0" and "N" respectively except they are used

for input transitions.

The following menus are presented when the "Nu and "G" options are chosen from the

previous menu:

D-To see t he desc r ip t ion of t he o u t - op
L-To l i s t a11 of t h e ANDs present
R-To see t h e resource name and t h e s t a t e name of an AM)
Q-You are done looking a t t h i s o u t - op
?-To see t hese commands

D-To see t h e desc r ip t ion of t he in-op
L-To l i s t a l l of t h e ANDs present
€2-To see t h e resource name and the s t a t e name of t h e AND

?-To see these Commands
Q-You a r e done looking a t t h i s

The following menu is presented when the "F" option is used in the previous menu:

D-To see t h e deSCriptiOn of t he assoc act
C-To see the condi t ion t h e sensor w i l i be i n a f t e r t he op

29

L-to list all info about the assoc. actuator fo r this op
Q-You are done lookinga t this assoc - act
?to see these commands

II.3.2 Resource Menu

If from the top level you decide to work on the resource record, the following menu will be

presented:

I-INSERT new resource
D-DELETE a resource
F-FIND a resource or some info about a resource
L-LIST the name and descriptions of the resources present
6-Insert a STATE to a resource
E-ELIMINATE a state from a resource
0-ADD a new SERIES of SENSORS to a given state
A-ADD a SENSOR to a given series of a given state
T-TRASH (delete) a SERIES of SENSORS from a given state
W-Delete a SENSOR to a given series of a given state
Q-Quit, and look at another data base
?-List all of the commands availabel

NOTE:

As a resource cycles (or is cycled) through the systems operations, its state will change. These

states may or may not be defined by sensors, and in addition some states may be defined by

more than one set of sensors. For example, some arbitrary state may be defined by sensors 1

and 2 or by sensors 3 and 4. DBBUILD's terms for these sets of sensors is SERIES; i.e. sensors

1 and 2 would be listed in SERIES-1 and sensors 3 and 4 would be listed in SERIES-2.

DBBUILD uses the word SERIES-(n) to label the structure that contains the pointer to each of

the sensors. Additionally DBBUILD uses

SENSOR-(n) as the name of the structure that holds the actual sensor name. See struct

AND-type in section 3 of this manual.

See struct OR-type in section 3 of this manual.

If the "F" option was chosen to find information about a resource, the following menu will

appear:

D-To see the description of the state
S-To get info about a particular state
L-to list all of the states assoc. with this resource
Q-To QUIT looking at this resource
?-to see these commands

30

If at this level "S" is requested the following menu will appear:

D-To see t h e desc r ip t ion of t he s t a t e

0-To see i n f o about a p a r t i c u l a r SERIES
Q-You a r e done looking a t t h i s s t a t e
?-To see these commands

L-To l i s t t h e SERIES of SENSORS assoc w i t h t h i s s t a t e

If the "0" option is chosen the following menu will appear:

L-To l i s t SENSORS assoc w i t h t h i s SERIES
S-To l i s t a l l of t h e sensor names under t h i s SERIES

A-To see i n f o about a p a r t i c u l a r assoc ia ted sensor
Q-You a r e done looking a t t h i s SERIES
?-To see these commands

and t h e i r condi t ions

If at this level the "A" option is used DBBUILD will ask for the sensor name, SENSOR - 1,

SENSORS, etc. This version of DBBUILD does not contain additional information on sensors

beyond what the "S" option provides.

II.3.3 Actuator Menu

If at the top level you requested to enter the actuator record the following menu would appear:

I INSERT new ac tua to r
D~DELETE an ac tua to r
F-FIND an ac tua to r or some i n f o about an ac tua to r
L-LIST all of t h e names p resen t
Q-Quit , and look a t another data base
? - L i s t a l l of t h e Commands ava i l abe l

The find command invokes the following menu:

D-To see t h e desc r ip t ion of t h e ac tua to r
S-Get I n f o about a p a r t i c u l a r assoc op
M-to l i s t a l l of t h e motions t h i s ac tua to r has
L-To l ist a l l of t h e assoc op w i t h t h i s ac tua to r
Q-To QUIT looking a t t h i s ac tua to r
?-to see these COnIUiandS

31

II.3.4 Sensor Menu

If at the top level you entered the sensor record, the following menu would appear:

I-INSERT new sensor
D-DELETE a sensor
F-FIND a sensor
L-LIST all of the sensors present
W-Change the WIRE number assoc with a sensor
Q-To quit and look at another data base
?-List all of the comands availabel

The find option will cause the following menu to appear:

D-To see DESCRIPTION of the sensor
L-To LIST all of the states that this sensor is used to define
W-To see the WIRE number of this sensor
Q-When you are done looking at this particular sensor
?-List these commands

32

References

1. J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ., 1981.

C.L. Beck, “Modeling and Simulation of Flexible Control Structures for Automated
Manufacturing Systems”, Tech. report, Robotics Institute, Carnegie Mellon University,
1985.

2.

3. C.L. Beck and B.H. Krogh, “Models for Simulation and Discrete Control of
Manufacturing Systems”, IEEE International Con fetence on Robotics and Automation,
San Francisco, April 1986.

B.H. Krogh and C.L. Beck, “Synthesis of Place/Transitions Nets for Simulation and
Control of Manufacturing Systems”, 4th IFAC/IFRS Symposium Large Scale Systems,
International Federation of Automatic Control, Zurich, August 1986.

International Electrotechnical Commission, Standard for Rogrammable Controllers,
Part 8: Rogramming Languages, 1982, Technical Committee 65: Industrial Process
Measurement and Control

4.

5.

