
FYSA120

C++ Numerical Programming

Vesa Apaja

November 23, 2015

1

Contents

1 Course itinerary 6
1.1 A Brief History of C++ . 7
1.2 Future of C++ . 8
1.3 How transferable is C++? . 9
1.4 About this document . 10
1.5 Why C++, why not Java, fortran, Lisp, Haskell, ... French ? . 11
1.6 Easy tasks . 13
1.7 C++ in the Net . 14
1.8 C++ in Matlab or Octave . 14
1.9 C or C++ in Python 3 . 14

2 (A really) Brief introduction to C++ 15
2.1 Meaning of #include <iostream> . 16
2.2 Scope . 20
2.3 Simple file operations . 21

3 Class 22

4 Member function with const or noexcept after it 23

5 Code rotting and [[deprecated]] functions 23
5.1 Delegating a Constructor (read on spare time) . 30
5.2 Own data structures: pairs of numbers . 31

6 Templates - generic instructions and algorithms 33

7 C++ libraries 35
7.1 C++ Template libraries – just a list . 35
7.2 C++ Standard Library . 36

2

8 C++ reference variables 38
8.1 Why would a reference be safer than a pointer? . 39
8.2 Can a reference be unsafe? . 42
8.3 lvalue and rvalue, and rvalue references . 44
8.4 The strange T&& and the perfect forwarding problem . 45
8.5 The restrict keyword in C (read on spare time) . 48

9 C++ Standard Library: A closer look 50
9.1 std::vector container . 50

9.1.1 Iterators . 51
9.1.2 Storing objects into std::vector . 53

9.2 Moving, not copying . 55
9.3 std::valarray class . 58
9.4 typedef and using: give a good name to your data type . 59
9.5 Stream iterators (read on spare time) . 61
9.6 C++ Standard Library: algorithms and utilities . 62

9.6.1 std::min element, max element, find , sort, reverse . 63
9.6.2 std::swap is a template . 66

9.7 Header guards and namespace encapsulation . 72
9.8 std::complex: complex numbers and arithmetics . 78

10 Function overloading, optional arguments and default arguments 79

11 Operator overloading – all for readability 82

12 C++ Standard Library: More algorithms 88
12.1 std::for each . 88
12.2 When to use std::for each ? . 89
12.3 std::for each in detail . 91
12.4 std::generate algorithm . 93
12.5 C++ Standard Library algorithms – take care of copies . 94
12.6 C++ Standard Library algorithms – stateful objects and std::ref . 95

3

13 A few things that can potentially speed up your code 96
13.1 noexcept: no-throw quarantee . 96
13.2 constexpr: Compile time constant expressions . 96
13.3 Function objects (functors) . 99
13.4 Four ways to pass a function to a function . 102
13.5 Cache data . 104
13.6 Use emplace back instead of push back . 104
13.7 If available, use the methods of containers rather than algorithms . 107
13.8 Expression templates . 108

14 The best random number generator 111

15 C++11 generation of (pseudo)random numbers 112
15.1 std::bind to simplify usage . 114

16 Boost library 118
16.1 Boost: ordinary differential equations (ODE) . 119

17 Formatted output 123
17.1 Formatted output using #include <iomanip> . 123
17.2 printf, type safety and variadic functions and templates . 125

18 Linear algebra – which library to use? 127
18.1 Armadillo examples . 129
18.2 Blaze example . 132

19 Calling C or fortran from C++ 134

20 Fixed-size arrays in C++: plain array and std::array: 136

21 Exception handling with throw and catch 138

4

22 Gnu Scientific Library (GSL) 140
22.1 GSL: statistics . 141
22.2 GSL: Fast Fourier Transform (FFT) . 143

22.2.1 Passing a pointer to complex data . 145
22.3 GSL: differential equations . 150
22.4 GSL: interpolation . 158
22.5 GSL: Monte Carlo integration . 163

23 Physics example: Spin-1/2 Heisenberg chain 169
23.1 Add numbers to file names . 174

24 Lambda functions/expressions 175

25 openmp parallel programming 180

26 Tips and tricks 184

27 Some more C++ in the net 186

28 Farewell words for C++ numerical programmers 187

5

1 Course itinerary

• 8 Lectures
- lecturer Vesa Apaja (YN212, Nanoscience Center 2nd floor)

• 4 Demos and 2 groups: Group 1 starts on Nov. 5, Group 2 starts on Nov. 3.
- held in Physics Dep. Computer class FL349
- Demos are supervised by Sampsa Kiiskinen

• warm-up demo 1 solved during exercise

• Requirements: At least half of the exercises of the demos 2,3,4,5, and 6, plus one programming task - No exam.

• You may use
- a machine of your choice; you need a fairly recent C++ compiler, GSL, and armadillo libraries.
- the Physics Department server calc.phys.jyu.fi. Log in using your JYUNET login name and password.
In calc window, type

module add gcc

This loads a recent version of gcc along with the C++ compiler g++. The system compiler is outdated, thanks
to the concervative (”dino-age is safer”) package policy of RHEL.

6

1.1 A Brief History of C++

• 70’s and 80’s:
- FORTRAN-77 annoyed users with its fixed-size tables
- Pascal became popular, Borland introduced a fast compiler
- Dennis Ritchie creates C language with dynamic tables

• From 1979 on: Bjarne Stroustrup creates C++ as a sort of ”improved C” – but is it? The jury is still out.
(The name ”C++ was coined in 1983)

• Characteristic to C++:
- strong typing of variables (supposedly) reduces programming mistakes
- Object-oriented programming possible, though not forced
data belonging together is collected together to an ”object”, that can be moved around as one big chunk.
- Compiled language, for speed.

• Early 90’s: No standard, compiler manufacturers make their own decisions

• 1998 : Horray! - C++ Standard!
-An extensive standard library

• 2011 : C++11 Standard (working name was C++0x)
- Easier ways to do very common tasks
- C++ manuals written before about 2010 are better left to collect dust

C++ is a multi-purpose language and was never intended to specialize on numerics. You may also come across
the fact that old languages have the burden of legacy code. Backwards compatibility and committee decision making
tends to make old languages contain everything but the kitchen sink. Maybe we, the numerical people, would actually
need that sink!

7

1.2 Future of C++

This timeline is given by the ISO C++ committee-
TS stands for ”Technical Specification”; TR for ”Technical Report”:

8

https://isocpp.org/std/status

1.3 How transferable is C++?

We’d better first settle what is meant with transferability. Do we transfer source code or binary? Java is well known
for its tranferability, thanks to a clever combination of a programming language and the Java Virtual Machine JVM.
C++ is ”just” a programming language. The questions one should ask is how much work do you have to do to make
a program 10 years from now. It’s fairly common that people in science write the same task already a third time.
Example: The first version was in fortran, then in C++, and now in Python, planning to write it in Haskell. Getting
any faster? No, but the structure is nice and the user interface is cute! More modular and easier to expand? You
hope! Why does one reprogram? It has to do with sociology, some programming languages are more fashionable.

9

1.4 About this document

The author is not a C++ guru – and never will become one :/

I see programming languages as tools that help me understand Nature, just like mathematics. Programming and
mathematics deserve to be disciplines for their own sake, but I have no desire of becoming a car manufacturer or
repairman, I just want to drive.

I spend some time in introducing you some C++11 features, it’s a whole lot different to what old C++ used to
be. As s general goal, I try to avoid pointers (at least naked pointers) and use references. C does not use references,
so I may talk about pointers as well. Just because you may one day find yourselves on the drivers seat of a car with
manual transmission. GSL is written in C, so that is at least one point where pointers are needed. Usually I put my
faith in libraries, acknowledging they are also written by humans.

Specifically, I hope this course

(i) gives you self-confidence to write your own C++ program that solves a numerical task using a chosen library

(ii) helps you read C++ programs and sometimes even understand how they function
– on a good day even C programs may look familiar

It’s easier to make a working code faster than to make a fast code to work.

A code, optimized for speed, can be a very unfriendly beast to debug. Most codes have portions that need not to
be fast at all.

The English in these lecture notes is not perfect, but I remind you how Yoda, the Lucasfilm trademark character,
the master of The Force, after over 874 years says ”Your father he is, but defeat him you must”.

1

1This is BTW called OSV or Object-Subject-Verb word order. C++ you learn!

10

1.5 Why C++, why not Java, fortran, Lisp, Haskell, ... French ?

Depends on what you want to do. Maybe French is the best language if you want to read old mathematical manuscripts
or write poems. The learning curve in C++ is steep, and it was designed to do all but numerics! Fortran was designed
for numerics, making it more compact. We would probably never have heard about Linus Torwalds had he written
the linux operating system in fortran. Relax, if you know C++ you can more easily learn Java and fortran (I’m
not talking about the ancient FORTRAN 77, phew, but fortran 2008 (fortran 2015 coming)). They all have similar
structures like classes. This excludes functional languages, such as Haskell, because their way of thinking is quite
different from the imperative languages C or C++. To mention a few differences, Java has no operator overloading2,
appreciated by numerical programmers. Speed is crucial, C++ programs can challenge and sometimes beat fortran.
I suspect that a lousy fortran programmer can write faster code than a lousy C++ programmer. Speed comparisions
age quickly, but you get hints of the situation 3.

If you plan to run the program a few times, pay attention to time spent on programming.
If you plan to run the program hundreds or millions of times, pay attention to time spent by the program.

Numerics is the latter. It’s number crunching, squeezing the last drops of the computer juice.

2http://javarevisited.blogspot.fi/2011/08/why-java-does-not-support-operator.html
3 2009: http://engineering.linkedin.com/49/linkedin-coding-competitions-graph-coloring-haskell-c-and-java

11

http://javarevisited.blogspot.fi/2011/08/why-java-does-not-support-operator.html
http://engineering.linkedin.com/49/linkedin-coding-competitions-graph-coloring-haskell-c-and-java

12

1.6 Easy tasks

Python + Numpy + Scipy is often an unbeat-
able combination

Eigenvalues and eigenvectors of a random 5x5
matrix:

import numpy as np

import scipy.linalg as la

A = np.random.randint(0, 10, 25).reshape(5, 5)

print("matrix A = \n",A)

e_vals, e_vecs = la.eig(A)

print ("eigenvalues = ",e_vals)

how-can-scipy-be-fast-if-it-is-written-in-an-
interpreted-language-like-python

13

http://www.scipy.org/scipylib/faq.html#how-can-scipy-be-fast-if-it-is-written-in-an-interpreted-language-like-python
http://www.scipy.org/scipylib/faq.html#how-can-scipy-be-fast-if-it-is-written-in-an-interpreted-language-like-python

1.7 C++ in the Net

• www.ohjelmointiputka.net/oppaat.php (in Finnish)
(”mureakuha” is out of action, competition killed it)

• www.cplusplus.com

• www.greenteapress.com/thinkcpp/ (Book, 2012)

Don’t read old books; Anything written before 2011 should be taken with a grain of salt.
It’s futile to force any ”good” outlook for C++ programs, just be systematic with your style. When to use capital
letters and when to use underscores is up to you. Think carefully what to put in header files, I’ll speak up my opinion
later. About style and good C++ practices, I recommend Bjarne Stroustrup’s home page www.stroustrup.com. After
all, he created the language.

1.8 C++ in Matlab or Octave

You can call a compiled C or C++ programs from Matlab using MEX files (Matlab executable files). Matlab can
access C/C++ library routines and may work through a numerical bottleneck faster. See instructions in write-cc-
mex-files.html.

Octave is a free Matlab-lookalike, with an almost identical syntax but different internals. Octave has interface to
several languages, including C++. The compiled files used in Octave are called oct-files, see instruction in oct-files.

1.9 C or C++ in Python 3

Extending Python 3 with C++
Cython
ctypes

14

http://www.ohjelmointiputka.net/oppaat.php
http://www.cplusplus.com
http://www.greenteapress.com/thinkcpp/
http://www.stroustrup.com
http://www.mathworks.se/help/matlab/write-cc-mex-files.html
http://www.mathworks.se/help/matlab/write-cc-mex-files.html
https://www.gnu.org/software/octave/doc/interpreter/Oct_002dFiles.html#Oct_002dFiles
https://docs.python.org/3/extending/extending.html
http://cython.org/
https://docs.python.org/3/library/ctypes.html

2 (A really) Brief introduction to C++

A list of some basic elements is in C++-sheet.pdf.

Example 1: (basic/main1.cpp) Main program

#include <iostream> // here cout is defined

using namespace std ; // all names (like cout) come from this list

int main ()
{ // ALL BEGINS

int i , j ; // integers i and j

i=5; // set values to i and j

j=20;
int k=i+j ; // define k on the fly

cout<<"k="<<k<<endl ; // output to screen

} // ALL ENDS

Story:
include <iostream> Take Standard Input / Output Streams Library

Header that defines the standard input/output stream objects
using namespace std; unless told otherwise, the keyword is defined in std namespace
main() parenthesis indicate, that the main program is a function (and can have arguments)
int main() it returns an integer

The function main() can end with
return 0;

or
return (0);

so that the function main() gives out the integer 0. out where? Hmm, to the operating system. Safe to leave out
entirely.

15

2.1 Meaning of #include <iostream>

The line #include <iostream> tells the compiler, that the code has something defined in the header iostream,
which is part of the C++ standard library. 4.

Two ways to include headers:

#include<iostream> // part of standard library

#include "myheader.h" // a home-made header

The difference is the header search path, the latter uses the current path first, after that the include path. To see

what headers were included, try g++ -M code.cpp and to include a path g++ -Imypath code.cpp .

You get pretty far with these headers:

• #include <iostream>: input and output
cout, cin, cerr, clog - here c means ”console”, which means ”screen”.

• #include <iomanip>: formatted output; if you like printf() forget this.

• #include <cmath> (C++) or #include math.h (C or C++) : mathematical functions
sin, cos, log, sqrt, pow... x2 is coded pow(x,2)

• #include <complex>: complex numbers

• #include <fstream>: file handling (also ofstream, ifstream,...)

• #include <string> : character strings

• #include <random> : (pseudo)random numbers

• #include <functional> : function objects

4Take a peek at what headers exist and what’s in them : www.cplusplus.com/reference

16

\relax $\@@underline {\hbox {h}}\mathsurround \z@ $\relax ttp://www.cplusplus.com/reference/

Function styles

double f (double x) {
. . .

}

tai

double f (double x)
{

. . .
}

if it’s short,

double f (double x) { . . . }

I’ll be using double precision real numbers a lot, as they are accurate enough for most needs.
Here the function f returns a number of type double, the argument x is also a double.

17

Example 2: (basic/fun before.cpp) Function defined before main()

#include <iostream>
#include <cmath>
using namespace std ;
double f (double x) {

return sin (x) ∗cos (x∗x) ;
}
int main ()
{

double x , y ;
x=2.333;
y=f (x) ;
cout<<"f("<<x<<")="<<y<<endl ;
return 0 ;

}

f(2.333)=0.482627

The compiler knows all it needs to know about the function f() when it’s met in main().

18

Example 3: (basic/fun after.cpp) Function defined after main()

#include <iostream>
#include <cmath>
using namespace std ;
double f (double) ;
int main ()
{

double x , y ;
x=2.333;
y=f (x) ;
cout<<"f("<<x<<")="<<y<<endl ;
return 0 ;

}
double f (double x)
{

return sin (x) ∗cos (x∗x) ;
}

When the compiler meets f() inside main(), it wants to know what it takes as arguments and what it returns.
Therefore you need to provide it with a sneak peak

double f (double) ;

called prototype or function declaration; You have to give the prototype also if the function is defined in another
file. Failing to declare a function results the error message fun after.cpp:9: error: ’f’ was not declared

in this scope. Here we encounter the concept of scope.
C++11 standard made an addition, the return type of a function can be declared like this:

auto f (double) −> double ; // trailing return type

Pretty useless in this example. If you, however, think of how the return types of class methods become clear only
after going through all the types of the arguments, you may appreciate how this helps the compiler. There is another
use of ->: foo->bar means (*foo).bar.

19

2.2 Scope

The scope tells the range of visibility. Which parts of the program is an object defined, and also who may know the
thing even exists5. The basic ideas are global objects, visible everywhere, and local objects, visible in a limited scope.
The scope limits are curly brackets, boundaries of a block:

double z ; // I’m visible to anyone - mess me up at will

int main ()
{
double x ; // I’m visible between {...}

. . .
}
double function f (double k)
{

double x ; // I’m not the same x as in main()!

z=10; // but I’m the one and only z

{

A local loop variable exist only in the loop

. . .
unsigned j = 5 ;
for (unsigned i=0;i<10;++i) {if (i==j) break ;}
cout<<"i=j when i="<<i<<endl ; // WON’T WORK

When the program leaves the loop, the variable i ceases to exist. The last line is not allowed.

5Sounds modern, invented in the 50’s.

20

2.3 Simple file operations

C++ idea: create a stream, either for writing (ofstream) or for reading (ifstream)

o as out, i as in and f as file.

To a stream we stuff things using the operator << and read with the operator >>.
The console output cout console input cin work like streams.

Example 4: (basic/fileio.cpp) write to a file

#include <iostream>
#include <fstream>
using namespace std ;
int main () {

ofstream myfile ("output") ;
myfile << "Text to file output"<<endl ;
myfile . close () ;
return 0 ;

}

This declared and opened a stream in the one line with ofstream

ofstream myfile ("output") ;

The file output contains now the text ”Text to file output” and

myfile . close () ; // myfile’s close; there may be many other close() functions

closes the file. The object myfile of the class ofstream has a method (member function) close.

21

3 Class

Say you want an object to be the state of the system. The state holds as variables the number of microstates N ,
their occupations n1, n2, ..., nN , and the energy of the state E (and things you didn’t come to think of at this stage).
In addition, the value of E should be set only by the method comp energy(). A collection like this can be stored as
a class). A class is a collection of data and methods to manipulate the data.

A class is just an abstract type, a bit like int only tells what an integer is. You need an object, a manifestation
of the class. A class Bird may have an object crow, which tells the compiler that ”a crow is a bird”.

The method comp energy() is conveniently a class method, a member function.
Rough outlook:

class ClassName{
// here private things

public :
// here public things

// and member functions , used to manipulate and show contents of private date

} ; // this line may already contain objects of this class

One possible class describing the state of the system (just a draft, improve it later)

class SystemState{
double E ;

public :
void comp_energy () ; // compute energy

double energy () const {return E ; } ; // read energy

} state1 , state2 ;

This defines the class and immediately constructs two objects state1 and state2. You can do this later as well,
SystemState state1;

22

4 Member function with const or noexcept after it

C++11 has several ”compiler directives”, that facilitate code optimization.

Class MyClass {
: :

public :
void member1 () const ; // does not change any data member of the class (except

mutable)

void member2 () noexcept ; // does not throw any exceptions

void memder3 () const noexcept ; // does neither throw nor change any data member

(unless mutable)

: : :
}

throw refers to a mechanism used to make exceptions, errors or warnings; More about this in chapter 21 for
”throw-catch”. noexcept can potentially lead to faster code, see chapter ?? In short, if a function cannot fail use
noexcept. In numerics you seldom want failing functions.

5 Code rotting and [[deprecated]] functions

You want to replace an old function with a better one, but don’t want to upset your boss by making his legacy code
fail to compile. Use C++14 deprecated:

// C++14

[[deprecated]] void foo (int) ;

You can add a message, too: [[deprecated(’’Sorry Boss, newfoo replaces foo’’)]]

A call to foo causes g++ to emit
warning: ’void foo(int)’ is deprecated: Sorry Boss, newfoo replaces foo [-Wdeprecated-declarations]

and a C++11 compiler emits the do-not-quite-understand message
warning: ’deprecated’ attribute directive ignored [-Wattributes]

23

To work, the class SystemState still needs the definition of the method comp energy(). If it’s short, it can be
defined in situ, on the spot in side the class (as we did for energy()), but you are free to define it later:

// member function of class SystemState

void SystemState : : comp_energy () {
E=3.12515e−10; // just anything for testing

}

The variable E used byt the method is exactly the same E as in the object, not just any double E ! Now the energy
of the state can be computed and read,

int main ()
{

state1 . comp_energy () ; // compute state1’s energy

cout<<state1 . energy ()<<endl ; // print state1’s energy

return 0 ;
}

This introduced one benefit of a class, data encapsulation, which means that data can be protected from
inadvertent changes or hackers. Just make it private and give only carefully chosen methods the permit to touch
the data. Secondly, upon improving the code you can improve the methods without disrupting the workings of the
rest of the code.

A class has properties that can be inherited, meaning another class can inherit the properties and methods of
a parent class. Smart base classes can be inherited and you can recycle code. In the C++ language itself a lot of
things are inherited, for example ofstream header file inherits this chain of mre general purpose headers:

ios base← ios← ostream← ofstream

On the bottom there is a general-purpose class ios base.
The next example – sorry that this has nothing to do with numerics – makes a class Car and an object cadillac.

24

Example 5: (basic/car.cpp) Car class

// How to create a Car class with member function get_color()

#include <iostream>
using namespace std ;
class Car

{
string color ; // private member

public :
string get_color () const {return color ; } ;
Car (string col) {color=col ;} // constructor

˜Car () {cout<<"Car demolished\n" ;} // destructor

} ;

int main ()
{

Car cadillac ("black_and_white") ; // create a Car with a color

Car ferrari ("red") ;
cout<<"cadillac is " ;
cout<<cadillac . get_color ()<<endl ; // get cadillac’s color

cout<<"ferrari is " ;
cout<<ferrari . get_color ()<<endl ;
Car buick (cadillac) ; // copy cadillac to buick: all properties

cout<<"buick is " ;
cout<<buick . get_color ()<<endl ;

}

25

cadillac is black_and_white

ferrari is red

buick is black_and_white

Car demolished

Car demolished

Car demolished

color on luokan Car jäsen; se ei ole public, joten se on private.
get color() on ainoa toimiva menetelmä lukea auton väri

cout<<buick . color<<endl ;

tuottaa kääntäjän virheilmoituksen
car.cpp:5:10: error: ’std::string Car::color’ is private

26

Notice, how the class Car has a function with the very same name as the class itself:
Car()

is a class constructor, used to create an object (a Car) and to give it some properties. This constructor is used if and
only if the color is given in parenthesis. The compiler looks how we try to create a Car and find a match from the
list of possible ways to constructor a Car.

Object is a manifestation of a class, a thing that has all the properties defined in the class:

Car lada ("black") ; // Car is a class, lada is an object

Meaning ”lada is a Car and it’s black”. When the compiler comes to this line, it fetches a constructor in the class
Car answering the needs, a function that looks like this:

Car (string)

Such a function exists, so the compiler will create a black lada. It may become as a surprise, that constructor of a
colourless Car fails:

Car volvo ;

fails, because Car has no constructor

Car ()

By the way, this would be the so-called default constructor, one made by the compiler if no other constructor is
specified – after all, a class must have some constructor to be useful at all. The only thing a default constructor does,
is to reserve some space for an object, nothing else. C++ language specifies that

If you give a constructor for a class, the default constructor vanishes

This is exactly what happened in the example; a colourless Car construction was not there.
Objects can be copied,

Car buick (cadillac) ;

27

and buick picks the colour from the cadillac.
Wait a moment, what function did the copying? It was the copy constructor, provided by the compiler automati-
cally.

28

As you guessed, there is a method called destructor, which deletes an object. It has the strange tilde sign,

˜Car () {cout<<"Car demolished\n" ;}

Compilers create this automatically, then it’s called a default destructor. You can also provide one yourself, and
include a clear message when an object is destroyed.

To summarize, a class has a set of building methods:
(add the prefix ”default” if you let the compiler create a method)

constructor how an object is created, when or if created
copy constructor how an object is copied (resulting two similar objects with different name)
copy assignment (=) makes a copy from right to left
move constructor tells how the information of an object is transfered to another

the object essentially pilfers (steals) the resources of the other object, leaving it in default state
move assignment pilfer the resources on the right and gives them to the left
destructor tells how an object should be destroyed

C++11 has a rule of five, saying that if you need to write your own destructor, chances are your class is so
wierd that you need to provide all five:

destructor
copy constructor
move constructor
copy assignment operator
move assignment operator

because none of the default version generated by the compiler meet the needs of your class.

5The example used a clumsy constructor, a better way would have been to use an initialization list.

29

5.1 Delegating a Constructor (read on spare time)

C++11 introduced a way to delegate a constructor. The idea is to let, for example, a constructor without any
arguments to delegate the construction to another constructor with with a single argument by telling what a default
argument is. The points is to avoid copying the same piece of code over and over again in all constructors.

Here is a bit artificial example, this doesn’t save much code:

// C++98

class Sum

{
public :

Sum () : a1 (0) , a2 (0) {s=a1+a2 ;}
Sum (int i) : a1 (i) , a1 (0) {s=a1+a2 ;}
Sum (int i , int j) : a1 (i) , a2 (j) {s=a1+a2 ;}

private :
int a1 , a2 , s ;

} ;

// C++11

class Sum

{
public :

Sum () : Sum (0) {}
Sum (int i) : Sum (i , 0) {}
Sum (int i , int j) : a1 (i) , a2 (j) {s=a1+a2 ;}

private :
int a1 , a2 , s ;

} ;

In the C++11 code the object mysum, to be created without an argument, Sum mysum(), is delegated to Sum(0),
who delegates it to Sum(0,0).

This example used the initialization list:

Sum (int i , int j) : a1 (i) , a2 (j) { . . . }

which means that the value of i is given to a1 and the value of j is given to a2.

30

5.2 Own data structures: pairs of numbers

Warning The example below is BAD, no need to re-invent the wheel.
Example 6: (numerics/class pairs of numbers.cpp) A class for pairs of numbers

#include <iostream>
#include <cmath>
using namespace std ;
// Class for pairs of numbers

class TwoDouble{
public :

double x , y ;
} ;
double distance (const TwoDouble &, const TwoDouble &) ;
int main ()
{

TwoDouble point1 , point2 ;
point1 . x = 1 . 0 ; // Class data member x can be accessed directly: It was public

point1 . y = 2 . 0 ; point2 . x = −2.0; point2 . y = 1 . 0 ;
cout<<"distance="<<distance (point1 , point2)<<endl ;
return 0 ;

}
// distance between two points (x,y)

double distance (const TwoDouble & c1 , const TwoDouble & c2) {
return (sqrt (pow (c1 . x−c2 . x , 2) + pow (c1 . y−c2 . y , 2))) ;

}

Notice how the name chosen for the function, distance(), is conveniently descriptive, but potentially dangerous!
The namespace std is used in it’s entirety, and who knows if there already is a function called distance() doing a
completely wrong thing! Actually, C++98 does have std::distance() for iterators. Please check out the example
class pairs of numbers2.cpp to see how to use a common name like distance() safely. We’ll come to name
conflicts later in this course.

31

The previous example about pairs of numbers obviously works, but it is a very common structure. And
common structure are found in C++ Standard Library). If you ever need a pair of – well, practically anything –
use the standard structure std::pair<type1,type2>.

Example 7: (numerics/pairs of anything.cpp) std::pair and std::make pair

// using std::pair to make pairs of almost anything

#include<iostream>
#include<vector>
int main ()
{

std : : pair<int , int> iipair ;
iipair= std : : make_pair (10 ,12) ;
std : : cout<<iipair . first<<" "<<iipair . second<<std : : endl ;

std : : pair<int , double> idpair (1 , 120 . 324) ;
std : : cout<<idpair . first<<" "<<idpair . second<<std : : endl ;

// vector of pairs (int,vector)

std : : vector< std : : pair<int , std : : vector<double>> > ivpairs ;
std : : vector<double> v { 1 0 . 1 , 2 0 . 2 , 3 0 . 3 , 4 0 . 4 } ; // testing vector

for (int i=0; i<10;++i) ivpairs . push_back (std : : make_pair (i , v)) ;
for (auto i : ivpairs) {

std : : cout<<"i="<<i . first<<" vector=" ;
for (auto j : i . second) std : : cout<<j<<" " ;
std : : cout<<std : : endl ;

}
}

std::tuple is a generalization of std::pair to more than two things of any type.

32

http://www.cplusplus.com/reference/tuple/tuple/

6 Templates - generic instructions and algorithms

A template is a generic model how things fed to the model should be handled. Templates are advertised as one of
the best things C++ has to offer – as always some disagree. You’ll benefit from them even though you have no idea
how to write ones yourself, because most C++ libraries use templates to achieve excellent performance
and multi-purpose applicability.

A template is an abstract model of what to do

std::sort is a template to sort arguments – many kinds of arguments, not just numbers
std::pair is a template to combine two things – many kinds of things
std::swap is in a template to swap two things – many kinds of things

For example std::vector<int> x tells the compiler ”find a model for a vector in the std library and implement –
”instantiate” – it using int as data type and call it x”. The angular bracket is for template arguments.

Basic templates are simple. Suppose you have a function that is written for double’s,

void f (double x)
{

cout<<"argument is "<<x<<"\n" ;
// do something more

}

but you know it should work the same way also for int’s and string’s, then options are to overload f (more on
overloading functions in chapter 10) and manually write the three functions double f(double x), int f(int x)

and string f(string x) – much typing – or make a template:

template <typename T>
void f (T x)
{

cout<<"argument is "<<x<<"\n" ;
// do something more

}

33

Even this simple template is not omnipotent, there are lots of type T objects that cannot be printed by std::cout,
and those give a long compiler error message.

For a more serious example, see basic/simple template.cpp and basic/static assert.cpp. The latter shows
how to check types in compile time, to catch attempts to use a wrong template by mistake.

Skip the rest, unless you are familiar with templates or curious.
Take a peek at the series of articles An-Idiots-Guide-to-Cplusplus-Templates.

Still curious? See what strange things can be done at Type-Rich-Style-for-Cplusplus. The original source is
Bjarne Stroustrup’s Youtube lecture. It tells the story about C++11 code like this:

int main () {
Speed spd = 1m /1 .2 s ;
Acceleration acc = 8m /3 .3 s2 ;

}

Own types Speed and Acceleration are defined simply with typedef or using (see 9.4). This we know. But the
units! Stroustrup claims, that the template implementation of the unit system is so clever, that the compiler can do
type checking and find programming mistakes that show as unit mismatch. Moreover, the compiled code has only
the double’s but no units around after compilation. No speed penalty! Anyone who, after lengthy calculations on
paper, has got the final result energy = 234.4 kg6/m values greatly automated unit checking.

34

http://www.codeproject.com/Articles/257589/An-Idiots-Guide-to-Cplusplus-Templates-Part-1
http://www.codeproject.com/Articles/723900/Type-Rich-Style-for-Cplusplus

7 C++ libraries

7.1 C++ Template libraries – just a list

Standard Template Library
Boost C++ Libraries
STLSoft C++ Libraries
Electronic Arts Standard Template Library
Adobe Source Libraries
Intel Threading Building Blocks
C++ Templated Image Processing Library
Database Template Library
Windows Template Library
Armadillo C++ Library (linear algebra)
Eigen Library (linear algebra)
Matrix Template Library
Loki (C++)
Native Template Library
PoCo C++ Libraries
CGAL
Blitz++
Fastflow
View Template Library
STXXL : Standard Template Library for Extra Large Data Sets

35

7.2 C++ Standard Library

C++ Standard Library comes with all C++ compiler suites. What, then is the Standard Template Library (STL)
many people talk about? I rise my hands here. I’ve figured out this much: The STL existed before the Stan-
dard Library, and parts of it seem to be now in the Standard Library. People talk about STL and mean the
Standard Library and also talk about the Standard Library when they mean STL. As an end user of the C++
products, I couldn’t care less, and have taken the pragmatic approach to accept it’s a library that comes with
the compiler suite. I call thme both as the C++ Standard Library. Period. On late hours I simply think that

STL means Standard Template Library (official)
STL means STandard Library (inofficial, my own idea to save my boiling brain)

The Standard Library contains also the C Standard Library, so you are able to use some C features as well. But
not all of C, notably C++ programmers avoid naked pointers to the extreme, and they are never really needed in
C++. Some parts are templates (multi-purpose models), such as

• containers are collections of objects
vector, stack, deque, list, map, ...

• iterators are for going through elements of containers
begin(), end()

vector<> v;

v.end()v.begin()

v.begin() points to the begin of the container v
v.end() points to one step past the end of the container v.

Why one step past the end? It was chosen like that because of cleaner loops:

for (auto it=v . begin () ; it<v . end ()) { . . . }

• algorithms are frequently needed ways to process data
sort, find, min element, max element, reverse ...

36

Example 8: (basic/std swap.cpp) Swap two numbers using std::swap

#include <iostream>
#include <u t i l i t y >
int main ()
{

using namespace std ;
double a = 5 ;
double b = 10 ;
cout <<"before "<< a<<" "<<b<<endl ;
swap (a , b) ;
cout <<"after "<< a<<" "<<b<<endl ;
return 0 ;

}

before 5 10

after 10 5

Someone familiar with C might be concerned about what values a and b have after the call to swap. How are the
arguments passed to the function and what comes back?

37

8 C++ reference variables

Three ways to pass data to functions:

• Pass by value

void dothis (int) ; // function prototype

. . .
c=15;
dothis (c) ; // work with number 15, not with c; cannot change contents of c

• (C++) Pass by reference

void dothat (int &) ; // function prototype

. . .
c=15;
dothat (c) ; // work with c, can change contents of c

• Pass a pointer

void doodd (int ∗) ; // function prototype

. . .
c=15;
doodd(&c) ; // works with the pointer to c; can change c at will

Importrant: by looking at just the function call, there is no way to tell if the argument is passed-by-value or passed-
by-reference! Only the function prototype (declaration) reveals which it is. The problem is, that the prototype can
be on line 3467 in the header file myheader for this job.hpp. In practise you end up guessing whether a function can
change the contents of variable c: dothis(c) doesn’t, but dothat(c) does!

38

8.1 Why would a reference be safer than a pointer?

Imagine that the memory of a computer is a stack of drawers.
A pointer int ∗c means roughty ”the integer c is in the upmost drawer” – or actually just ”upmost drawer, take c
from there”!. Such pointers may be doing funny mistakes:

• The upmost drawer may have a wrong number or not an integer but a mouse trap (real number)

• The upmost drawer can be bottomless (contain a pointer to the drawer below)

• The freaking drawer doesn’t even exist (pointer to outside computer memory space ?)

A programmer is let to do all this without the compiler ever noticing any bad deeds. Running the program gives odd
results. I once wrote a program that was supposed to do a simple calculation - result was something like ”Full moon
tonite”.

C++ reference to variable c, int& c, is like a cord or a thin rope tied to the integer c. There is no place for mistake,
the end of the cord always has c, because there is no way to detach the cord and tie it to anything else. A C++
reference cannot be detached from its variable.

c

int& c

39

Amuse yourself with these almost relevant examples:

Pass by value (C or C++):
Write the numbers 5 and 10 on a piece of paper, show it to you college and tell him/her to copy the numbers to
his/her own piece of paper in reverse order. Swap failed: your paper still holds 5 and 10, not 10 and 5

Pass by reference (C++):
Write the numbers 5 and 10 on a piece of paper, hand it to you college without letting go of the paper. Tell him/her
to swap the numbers on your paper, then pull the piece of paper back. Swap achieved! Robustness: Your college
immediately sees if your hand is empty or there are no numbers on the paper.

Pass by pointer (C tai C++):
Write the numbers 5 and 10 on a piece of paper and tell your college the paper is in a specific drawer. Tell him/her
to swap the numbers written on the paper and to put it back to the drawer, Swap achieved! Robustness: your college
picks a wrong piece of paper from the drawer and wonders why you want to swap two telephone numbers.

40

Remarks:

1) If you have many colleges and/or 10000 numbers, copying them around may take a lot of time and paper.

Prefer passing references, it’s fast and economical.

2) For the swap to function properly, you can’t pass numbers 5 and 10 by value; that is, copies of the values.
Two working ways:

• C++ style: swap handles references function call: swap(a,b); (Ineffective code, does copying)

void swap (int& a , int& b) {
int c ;
c=a ; a=b ; b=c ;

}

• C style: swap handles pointers function call: swap(&a,&b);

void swap (int∗ a , int∗ b) {
int c ;
c=∗a ; ∗a=∗b ; ∗b=c ;

}

One benefit of passing by value is that the original value is safe, only a copy is sent out. In C++ you can give the
reference const attribute, to protect it from changes. Caveat: some libraries seem to ignore this attribute. You can
never be absolutely sure :(A malicious software package can also pretend it’s using input by value only, but snatch
the reference instead and change your input data! The function calls look the same. Not that I know of any such
packages.

41

8.2 Can a reference be unsafe?

Alas, a reference is not completely safe, ”it’s still possible to shoot yourself in the leg”. A dangling reference is
one way to (mis)use an address of an object after the object has ceased to exist.

Example 9: (basic/dangling reference.cpp) A dangling reference.

// Unsafe code example

// run with valgrind -q a.out

#include<iostream>
int & get_number ()
{

int n1 = 100 ;
int & r_n1 = n1 ;
return r_n1 ;

}
int main ()
{

int number = get_number () ;
std : : cout<<"number is "<<number<<"\n" ;

}

n1

r_n1 = int& n1 r_n1

back in main():inside get_number():

Think where the reference r n1 is referring to. The line

int & r_n1 = n1 ;

tells r n1 is a reference to an integer, which is n1. Nothing wrong with that, but n1 is a local variable, so it’s no
longer alive after you exit the function get number(). After returning to main(), the reference r n1 points to where
n1 used to be! What makes dangling references perilous, is that sometimes the reference happens to dangle over
the right spot.

42

Example 10: (basic/dangling reference3.cpp) A dangling reference that the g++ compiler will notice

// Unsafe code example

// g++ warns at complile time

#include<iostream>
int & get_number ()
{

int n1 = 100 ;
return n1 ;

}
int main ()
{

int number = get_number () ;
std : : cout<<"number is "<<number<<"\n" ;

}

You don’t necessarily need a function call to get a dangling reference. Example basic/dangling reference2.cpp

shows what happens if you store the reference to a vector element and then resize the vector. There is no guarantee
the stored reference is pointing to a valid location any more.

valgrind a.out often detects such memory problems.

My own valgrind user manual: ”Any message from valgrind -q a.out means your code has a bug.”

43

8.3 lvalue and rvalue, and rvalue references

C++11 has actually five kinds of references, and I introduce two them so that you can read C++11 code :

• lvalue reference
Marked with a single ambersand &, for example int & a . All references I’ve been using so far.

• rvalue reference
Marked with a double ambersand &&, for example T&&. But wait, not all &&’s are rvalue references, read the
next chapter.

There is also xvalue, glvalue and prvalue. I’m cutting corners, so for deeper understanding read, for example,
c11-tutorial-explaining-the-ever-elusive-lvalues-and-rvalues by Danny Kalev.

Two things you need to consider: can the thing be moved and does it have an identity.
Expressions, program statements that have a value, have long or short lifetimes. The long-living expressions have an
identity, so that you can call them, the short-living expressions die soon and have no identity.

An lvalue is a non-movable expression or one with identity. It lives long or cannot be moved.
An rvalue is a movable expression or one without identity. It may be about to die, such as a temporarya.

aEvaluating x=(a*c)+b the compiler can create a temporary to store the result of a*c: that’s an rvalue.

Simplified rule: lvalue is a variable, rvalue is a temp.

With an rvalue reference you can prolong the rvalue’s lifetime. For example,

int && temporarily_rich () { return 5000 ; } // number 5000 is an rvalue: no identity

temporarily poor&& =std : : move (temporarily_rich) ;
std : : cout<<poor<<std : : endl ;

44

http://blog.smartbear.com/development/c11-tutorial-explaining-the-ever-elusive-lvalues-and-rvalues/

8.4 The strange T&& and the perfect forwarding problem

This line of thinking is not my idea, it’s been frequently used in teaching C++11 by the smart ones, like Scott Meyers
and Eli Bendersky. I give here a try.

The task: Write a wrapper function wrapper(x,y,z) that perfectly forwards – here was the keyword – all
arguments to function f(x,y,z). Simple, ha? It’s just a simple template:

// try one

template <typename T1 , typename T1 , typename T3>
void wrapper (T1 x , T2 y , T3 y) {

f (x , y , z) ; :
}

Then you realize that this will always call f by value, so the arguments x,y,z are copied over. This is no good if you
can have declared f(int & x, int & y, int & z). Clever you, you rewrite this version:

// try two

template <typename T1 , typename T1 , typename T3>
void wrapper (T1& x , T2& y , T3& y) {

f (x , y , z) ; :
}

Then you realize that this won’t do if you can call f with rvalues (things that are movable or have no identity), like
f(1.0,3.0);. The compiler complains about an invalid initialization of non-const reference from an rvalue. It cannot
make a reference required by ”T1& x” that points to number 1.0, because the number has no identity to refer to.

You could cure the problem by adding a const to an argument. To any argument, because f could have argument
types f(1.0,int& y, int& z) or f(int& x,3.0, int& z) or ... !

45

At this stage you smell something burning. You would have to write overloaded wrapper functions for all possible
combinations, in this case

wrapper (T1& x , T2& y , T3& z)
wrapper (const T1& x , T2& y , T3& z)
wrapper (T1& x , const T2& y , T3& z)
wrapper (T1& x , T2& y , const T3& z)
wrapper (const T1& x , const T2& y , T3& z)
wrapper (const T1& x , T2& y , const T3& z)
wrapper (T1& x , const T2& y , const T3& z)
wrapper (const T1& x , const T2& y , const T3& z)

This gets impossible with increasing number of arguments, for n arguments you would need 2n overloads. And it
only gets worse once you add the possibility of rvalue references. We could want f(int x, int& y, int&& z), so
to perfectly forward the int&& you would need more overloads.

C++11 solves this task with the type cast std::forward:

// solution

template <typename T1 , typename T2 , typename T3>
void wrapper (T1&& x , T2&& y , T3&& z) {

f (std : : forward<T1>(x) , std : : forward<T2>(y) , std : : forward<T2>(z)) ;
}

46

As Scott Myers says, std::move moves nothing and std::forward forwards nothing. They do a type cast.
std::move is a single-minded-Robin-Hood cast:

poor = std : : move (rich) ; //rich becomes an rvalue

// ’’movable’’, property ready to be stolen.

// std::move does this always.

poor = std : : move (another_poor) ; // really *always* , a single-minded cast

How did std::forward do the wrapper task? First, T&& is not always an rvalue reference. There are cases where
one, instead, does type deduction. This recycling of && is widely considered unfortunate, but live with it. Scott
Meyers calls T&& a universal reference, some call it forwarding reference. To make sense out of a thing like & && (an
rvalue reference to a reference?) one has a rule:

Reference Collapsing rule: & always wins.
T is T

T& is T&

T&& & is T&

T& && is T&

T&& && is T&&

These rules seem odd, but they work. Return to the wrapper task and see how the argument types are cast:

wrapper (1 . 0 , int& y , int&& z) ;
// will call

f (std : : forward<int &&>(1.0) , std : : forward<int& &&>(y) , std : : forward<int && &&>(z)) ;
// will reference -collapse to

f (int&&, int& y , int&& z) ; // rvalue reference , reference , rvalue reference

This is the way we wanted f’s arguments to be. Task accomplished.

47

8.5 The restrict keyword in C (read on spare time)

You probably encounter this subjet in C coded scientific programs.
Wikipedia:

In C or C++, as mandated by the strict aliasing rule, pointer arguments in a function are assumed to not
alias if they point to fundamentally different types, except for char* and void*, which may alias to any
other type. Some compilers allow the strict aliasing rule to be turned off, so that any pointer argument
may alias any other pointer arguments. In this case, the compiler must assume that any accesses through
these pointers can alias. This can prevent some optimizations from being made.

In C99, the restrict keyword was added, which specifies that a pointer argument does not alias any other
pointer argument.

In Fortran, procedure arguments and other variables may not alias each other (unless they are pointers
or have the target attribute), and the compiler assumes they do not. This enables excellent optimization,
and is one major reason for Fortran’s reputation as a fast language. (Note that aliasing may still occur
within a Fortran function. For instance, if A is an array and i and j are indices which happen to have
the same value, then A[i] and A[j] are two different names for the same memory location. Fortunately,
since the base array must have the same name, index analysis can be done to determine cases where A[i]
and A[j] cannot alias.)

In pure functional languages, function arguments may usually alias each other, but all pointers are
read-only. Thus, no alias analysis needs to be done.

In short: If you use pointers and you are sure two pointers never ever point to the same data, you can let compiler
generate much faster C-code by using the restrict keyword.

48

http://en.wikipedia.org/wiki/Pointer_aliasing

Example: pointers p and q point to integers,

int∗ p ;
int∗ q ;

and will be pointing to elements of a table of integers like this:

*p
*(q−1)

p q

*(q−3) *(q−2) *q *(q+1) *(q+2)

*(p+1) *(p+3)*(p+2) *(p+4) *(p+5)

If the code can have the situation, where, for example, the numbers *(p+2) and *(q-1) happen to be exactly the
same element, you have aliasing: Two pointers point to the same data. In other words, you had two different names
for the same thing.
If you are absolutely sure this can never happen during the lifetime of pointers p and q, let the compiler know.
”I solemnly swear, not to write a line of code where a pointer points to the same object as p”:

int ∗restrict p ;

This is something the compiler can’t deduce by itself, it has to trust your word for it . If you lie, the code may run,
but the results are arbitrary.

In C, use the restrict keyword often, but with caution

Further information: demystifying the restrict keyword

49

http://cellperformance.beyond3d.com/articles/2006/05/demystifying-the-restrict-keyword.html

9 C++ Standard Library: A closer look

9.1 std::vector container

std::vector containers are flexible and minimize the risks of dynamic memory allocations. But they are not vectors.

Example 11: (basic/vector.cpp) Create an empty container and push a few elements to it.

// Create empty vector container and push data in

#include <iostream>
#include <vector>
#include <cmath>
using namespace std ;
int main ()
{

vector<double> x ;
for (unsigned i=0;i<6;i++){

x . push_back (pow (i , 2)) ; // push i^2 to vector x

cout<<"i="<<i<<" x="<<x [i] ;
cout<<" size of x="<<x . size ()<<endl ;

}
cout<<"final size ="<<x . size ()<<"\n" ;
cout<<"final capacity ="<<x . capacity ()<<"\n" ;

return 0 ;
}

final size =6 size of the container increased automatically

final capacity =8 more space reserved than needed, just in case you extend the vector

50

9.1.1 Iterators

Iterators are things pointing to elements of a container. A bit like custom-made pointers.

Example 12: (basic/vector2.cpp) Print all elements of a std::vector using iterator

// print all but 2 elements of a vector container using iterator (it)

#include <iostream>
#include <vector>
#include <cmath>
using namespace std ;
int main ()
{

vector<double> x ;
// push i^2

for (unsigned i=0;i<6;i++) x . push_back (pow (i , 2)) ;
// use iterator to print all but the two last elements (!)

for (auto it=x . begin () ; it !=x . end () − 2 ; ++it) {
cout<<∗it<<’ ’ ;

}
cout<<endl ;
// To print *all* elements , use the range-for loop

for (auto elem : x) cout<<elem<<’ ’ ;
cout<<endl ;
return 0 ;

}
// output:

// 0 1 4 9

// 0 1 4 9 16 25

51

The keyword auto it is a message to the compiler: ”figure out yourself the type of it, you can”.

I recommend C++11 auto type; let the compiler figure out the type.

In the example auto spared you from typing the ugly type

vector<double> : : iterator it ; // type of an iterator

One way to fill a std::vector is std::fill; it’s very fast if you need to reset an existing std::vector 6,

std : : vector<double> y (5) ;
std : : fill (y . begin () , y . end () , 1 . 0) ; // math: y=(1.0,1.0,1.0,1.0,1.0)

std : : fill (y . begin () +1,y . end () −2 ,2.0) ; // math: y=(1.0,2.0,2.0,1.0,1.0)

To create a std::vector and set values the cleanest ways are

std : : vector<double> y (5 , 1 . 0) ; // math: y=(1.0,1.0,1.0,1.0,1.0)

std : : vector<double> y { 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 } // C++11 universal initialization

C++11 lets you initialize almost anything with the universal initialization {}.
C++11 has also a range-for or range-based-for loop:

std : : vector<double> y (100) ;
for (auto & elem : y) {elem=1.0} ; // notice the & : use reference to elements!

The loop goes goes through all elements of y without you worrying about how many there are.

Be careful with the ambersand &:

for (auto elem : y) {elem=1.0} ; // this does nothing at all!

for (auto elem : y) {cout<< elem<<" " ; } ; // this works (but doesn’t try to change y)

6 Can you do algebra with the length of a std::vector ?
x.resize(0) sets the length to zero, so x.size() is 0. Ok, but x.size()-1 is 18446744073709551615, not -1 !
Lengths are unsigned integers and can’t store negative numbers.

52

9.1.2 Storing objects into std::vector

If you know C++ well, check out numerics/better vector of class objects.cpp.
Example 13: (numerics/vector of class objects.cpp) std::vector storing objects

// g++ -std=c++11 vector_of_class_objects.cpp

#include <iostream>
#include <vector>
#include <cmath>
using namespace std ;
class WaveFunction{
public :

double energy ;
vector<double> density ;

} ;
int main ()
{

vector<WaveFunction> basis ; // a vector of WaveFunctions

WaveFunction wf ;
for (int i=0;i<10;++i) { // make a 10 wavefunction basis

wf . energy = i∗i ;
for (int j=0;j<5;++j) wf . density . push_back (sqrt (j) ∗i) ;
basis . push_back (wf) ;
wf . density . clear () ; // REMEMBER THIS or wf.density keeps growing

}
// output just for testing

for (auto wf : basis) { // wf goes through elements of basis

cout<<" energy = "<<wf . energy<<endl ;
cout<<"density = " ;
for (auto den : wf . density) cout<<den<<" " ; // den goes through a density in wf

cout<<endl ;
}

53

}

As you see, you can fill a std::vector with almost any type of data. Here the container contains object of the
self-made type WaveFunction (blue boxes), and a number (energy) and a yet a std::vector (density).

density

energy

density

energy

density

energy

density

energy

basis

...

These are exactly the same thing:

class WaveFunction{
public : // class: all is private by default

double energy ;
vector<double> density ;

} ;

struct WaveFunction{
double energy ; // struct: all is public by default

vector<double> density ;
} ;

54

9.2 Moving, not copying

You may have noticed that moving objects instead of copying them is a big thing in C++11. Moving is a Robin
Hood operation,

poor=std : : move (rich) ;

pilfers rich from it’s resources and hands them to poor. Way more effective than copying money or gold!
The std::move(rich) does not actually move rich, it makes it movable. Many times the compiler cannot tell

whether an object is movable, so with std::move you can tell that an object has resources that can be pilfered. In
other words, std::move is for turning lvalues to rvalues (see section 8.3) so that you can call the move constructor.
The move constructor is the ”Robin Hood code”.

A move constructor and a move assignment look like this:

X : : X (X&& other) ; // C++11 move constructor

X& X : : operator=(X&& other) ; // C++11 move assignment operator

You can be even more dramatic. If objects of a class should never be copied, you can forbid copying by deleting
the copy constructor and the copy assignment (only in C++11):

class T {
// ...

T (const T&) = delete ; // forbid copying

T& operator=(const T&) = delete ;
} ;

The next lengthy example tries to elucidate situations when an object is copied and when moved. For transparency,
the copy and move constructors as well as the copy and move assignments print out a message so you can see which
is invoked.

55

Example 14: (advanced move constructor.cpp) Copying or moving

#include <iostream>
#include <vector>

class T{
public :

int count ;
std : : vector<double> x ;
T () = default ; // constructor

T (int count_ , std : : vector<double> x_) : count{count_ } ,x{x_} {} // constructor

˜T () noexcept = default ; // destructor

// copy assignment

auto operator=(T& rhs) & −> T&
{

x=rhs . x ;
count=rhs . count ;
std : : cout << "-- copy assignment called --\n" ;

}
// copy constructor

T (const T& rhs) : x (rhs . x) , count (rhs . count)
{

std : : cout << "-- copy constructor called --\n" ;
}
// move assignment

auto operator=(T&& rhs) & noexcept −> T&
{

x=std : : move (rhs . x) ;
count=std : : move (rhs . count) ;
rhs . count = 0 ;
rhs . x={}; //resizes x to 0 length

56

std : : cout << "-- move assignment called --\n" ;
}
//move constructor

T (T&& rhs) noexcept : x (std : : move (rhs . x)) , count (std : : move (rhs . count))
{

std : : cout << "-- move constructor called --\n" ;
}

} ;

int main ()
{

T x1 {3 ,{1 ,2 , 2}} ;
std : : cout<<"T x2 = x1:\n" ;
T x2 ;
x2 = x1 ;
std : : cout<<"T x3(x1)\n" ;
T x3 (x1) ; // same as T x3=x1

std : : cout<<"T x4 = std::move(x1)\n" ;
T x4 ;
x4 = std : : move (x1) ;
std : : cout<<"T x5(std::move(x2))\n" ;
T x5 (std : : move (x2)) ;

}

57

9.3 std::valarray class

As you may have noticed, std::vector is far from ideal for numerics – you can hardly think of anything more
horrendous! std::vector is not a mathematical vector, it’s a list that can expand and shrink.

This led one to introduce to C++ the class std::valarray (not a container!). Recent compilers should produce
as fast code with std::valarray as with std::vector , because the use the very efficient expression template
technique. The closest relative to std::valarray is in the Boost library,

std::valarray ≈ boost::ublas::vector

To be honest, std::valarray is not popular among C++ programmers and some recommend to stay away from
it.

58

9.4 typedef and using: give a good name to your data type

IMHO the lack of built-in numerical data structures, such as vectors and matrices, prevents C++ to be a perfect
language for numerics. I face a dilemma: How to code vectors and matrices? A few options:

1 Should I stick to std::valarray or std::vector and live with the deficiences? In a small project, that needs
to be more portable than numerically less ambitious: Yes. In a serious numerical project: No, go to option 3.

2 Should I write a class for a vector myself?

Never write your own classes for vectors or matrices.

You may see C++ numerics cources in the web and books telling you how to make a matrix class. Don’t, you’ll
make mistakes, waste your time and get a slow program. Sure, these are deceivingly simple tasks at a first
glance, but once you hit the speed bumps you can hear your tailpipe clank to the floor. Go to option 3.

3 Should I use a ”vector” or ”matrix” from an external (external to C++ standard) library?

YES. But not directly, utilize typedef or using

This has the problem of being not part of the standard (Ha!), so the whole library may cease to conform with
the standard in the future. The developers retire, or, more probably, someone writes a better and faster library
and your vocal colleges push you to using that instead.

There is a way to overcome these difficulties. It’s not a cure, but a workaround.

59

With typedef or using you can give a name to your own data structure
Write the code so that the decision about a data type is in one place, in case you change your mind.

typedef existing type new type name;

Example:

typedef double v_data ; // call double by the name v_data

typedef std : : vector<v_data> stl_vector ; // vector of v_data is called stl_vector

typedef std : : vector<stl_vector > stl_matrix ; // vector of vectors is a matrix

If you change your mind and want to store integers to stl vector and stl matrix, just change the first line to
typedef int v data ;

Another way to do the same:

using new type name=existing type;

using v_data=double ; // call double by the name v_data

using stl_vector=std : : vector<v_data>; // vector of v_data is called stl_vector

using stl_matrix=std : : vector<stl_vector>; // vector of vectors is a matrix

Example: you find that using library smack (fictitious), that has a nice smack::vector , you could build upon
this alias

using my_vector=smack : : vector ;

If you decide to replace smack::vector with a close relatives from library crunge, you edit these lines and not
touching code using my vector. Be cautious, crunge::vector and smack::vector may be incompatible and support
different operations. Rather than inventing a name my vector, it’s better to use your own namespace my and hide
the definitions there. Then my::vector is the thing to use. We’ll come to this later.

60

9.5 Stream iterators (read on spare time)

Stream is an object representing an I/O (input/output) channel. Streams are considered one of the best qualities of
C++ by C++ programmers (and one of the worst by C programmers). A stream iterator is something that goes
through a stream. So a stream iterator is a boat. 7

Think of the following task: Write a program that reads an arbitrary string of characters from the keyboard.
Sounds simple, but in many programming languages this is very lengthy to do safely. Remember, user may hit any
key and and keep on hitting for a month. Below is a C++ suggestion.

Example 15: (advanced/streamiter1.cpp) Read character to a std::vector

#include <iostream>
#include <vector>
#include <algor ithm>
#include < i t e r a t o r>
using namespace std ;
int main ()
{

vector<string> s ;
// input from standard input (cin)

copy (istream_iterator<string>(cin) , //from

istream_iterator<string>() , //end

back_inserter (s)) ; //to

// output to standard output (cout)

copy (s . begin () ,s . end () , // from

ostream_iterator<string>(cout , " ")) ; // to

cout<<endl ;
}

Use the keyboard to give characters and press ctrl-d when you are done. Here std::copy is an algorithm and
I’m going to tell more about them next.

7istream = stream in, ostream= stream out

61

9.6 C++ Standard Library: algorithms and utilities

The C++ Standard Library has many useful methods, search algorithms, sorting algorithms etc. As soon as you
know what you need, visit the pages

www.cplusplus.com/reference/algorithm
www.cplusplus.com/reference/utility

Examples:
If v and w are std::vector containers, and it is an iterator of that container type, then

it = std::max element(v.begin(),v.end())

returns the iterator it pointing to the largest element: the largest element is *it.

std::sort(v.begin(),v.end())

sorts the container

std::swap(v,w)

swaps the contents of containers v and w. C++11 has this in the header <utility>.

62

http://www.cplusplus.com/reference/algorithm
http://www.cplusplus.com/reference/utility

9.6.1 std::min element, max element, find , sort, reverse

Example 16: (numerics/algo minmax.cpp) C++ Standard Library algorithms: minimum, maximum and search of an element

// Finding elements from a vector container

#include <iostream>
#include <vector>
#include <algor ithm>
#include < i t e r a t o r>

using namespace std ;

// utility to print out a vector

template<typename T>
void vector_out (const vector<T> v)
{

for (auto x : v) cout<<x<<" " ;
cout<<endl ;

}

int main ()
{

vector<double> v { 1 . 4 , 1 . 6 , 0 . 2 , 1 . 8 , 0 . 1 , 1 . 5 } ; // or do many push_back’s

cout<<"original vector"<<endl ;
vector_out (v) ;

auto it = min_element (v . begin () ,v . end ()) ; // vector<double >::iterator it;

cout<<"minimum element = "<<∗it<<endl ;
it = max_element (v . begin () ,v . end ()) ;
cout<<"maximum element = "<<∗it<<endl ;

63

//find element with some value

it = find (v . begin () ,v . end () , 0 . 2) ;
if (it==v . end ())

cout<<"failed to find value"<<endl ;
else {

cout<<"found value "<<∗it<<endl ;
// reverse some elements

cout<<"reverse starting from "<<∗it<<endl ;
reverse (it , v . end ()) ;
vector_out (v) ;

}
cout<<"sorting..."<<endl ;
sort (v . begin () ,v . end ()) ;
vector_out (v) ;
return 0 ;

}

64

Iterators may look a bit messy, but they are easily hidden from view. Especially, if all you want is the number where
the iterator points at.

Example 17: (numerics/easyusemin.cpp) C++ Standard Library algorithms: another version of minimum search

// Finding min element; trying to simplify usage

#include <iostream>
#include <vector>
#include <algor ithm>
#include < i t e r a t o r>

namespace my // create my own namespace

{
double min_element (const std : : vector<double> & v) {

// no explicit iterator! We need only *(iterator)

return ∗(std : : min_element (v . begin () ,v . end ())) ;
}

}
// calling routine is clean and simple:

int main ()
{

std : : vector<double> v { 1 . 7 , 1 . 3 , 2 . 8 , 4 . 1 } ;
std : : cout<<"minimum element = "<<my : : min_element (v)<<std : : endl ;
return 0 ;

}

minimum element = 1.3

Be cautious when coding specialized versions of C++ Standard Library algorithms. Here I used the namespace my

to protect the home made function min element. This is necessary, because somebody else may use that simple,
descriptive name and once you incorporate his/her program to your you end up with a name conflict.

65

9.6.2 std::swap is a template

Previously given swap using reference variables is for swapping one type of things only. What if we want to swap two
real numbers or two other type of variables? Terribly boring to write each variable type it’s own version of swap.

Write a template. Actually it’s been done already, std::swap(a,b) looks like this. Like many standard library
codes, this too were refurnished in C++11. The user sees only the improved performance.

Example 18: (advanced/swap template.cpp) std::swap template

template <class T> void swap (T& a , T& b)
{

T c (std : : move (a)) ; a=std : : move (b) ; b=std : : move (c) ;
}
template <class T , size_t N> void swap (T &a [N] , T &b [N])
{

for (size_t i = 0 ; i<N ; ++i) swap (a [i] , b [i]) ;
// C++98 version was

//{

// T c(a); a=b; b=c;

//}

template this is a template
class T means T is a class; no need to know what class!
void swap means swap returns nothing

no point writing
result = swap(a,b); // nonsense

T c(std::move(a)) create class T object c and move the contents of a to object c
std::move make sure you use the correct move function from the std namespace
std::move(a) fix a to a movable object (one whose contents can be stolen).

What can be swapped with this template:
(C++11)”Type T shall be move-constructible and move-assignable (or have swap defined for it)” 8

8C++11 replaced copy (T c(a)) for move (T c(std::move(a))): search the net for ”C++ move semantics”.

66

Many C++ Standard Library algorithms are compact and efficient. Take for example this one:
(this page has only utility functions)

Example 19: (numerics/algo permutations.cpp) : C++ Standard Library permutation algorithm

// Finding permutations

// using C++ Standard Library algorithm next_permutation

//

#include <iostream>
#include <vector>
#include <algor ithm>
#include < i t e r a t o r>

using namespace std ;

// utility to print out a vector

template<typename T>
void vector_out (const vector<T> v)
{

for (auto x : v) cout<<x<<" " ;
cout<<endl ;

}

int factorial (const int n) {
int fact = 1 ;
if (n <= 1)

return 1 ;
else

fact = n ∗ factorial (n − 1) ; // recursion

return fact ;
}

67

int main () {
const int N=5;
vector<int> state ;
for (int i=0;i<N;++i) state . push_back (i) ;
sort (state . begin () , state . end ()) ; // make sure next_permutation starts ok

int i = 1 ;
do {

cout<<"state # "<<i<<" is " ;
vector_out (state) ;
++i ;

} while (next_permutation (state . begin () , state . end ())) ;
cout<<"N! = "<< factorial (N)<<endl ;
return 0 ;

}

state # 1 is 0 1 2 3 4

state # 2 is 0 1 2 4 3

state # 3 is 0 1 3 2 4

There are N ! permutations, computed for checking in the recursive function factorial() 9. Now

next_permutation (state . begin () , state . end ())

does all the work, all else is supporting code. It generates the next permutation of elements and returns true, until
it no longer finds a new permutation and returns false. The loop

do {
. . .
} while (next_permutation (state . begin () , state . end ())

goes on until the test while (true) changes to while (false).

9A recursive function calls itself; The implementation is poor, there is no test that the result fits an int.

68

Physics example:
Generate all many-body states with a fixed number of fermions.
Each spin state can hold 0 or 1 fermions (Pauli rule). If you have 4 spin states and 2 fermions, you can have states
occupied as (0011),(0101),(0110),(1001),(1010),(1100) in total 6 different many-body states.

Example 20: (numerics/algo fermion states.cpp) Fermion states by permutation

// Finding fermion basis states

// using C++ Standard Library algorithm next_permutation

#include <iostream>
#include <vector>
#include <algor ithm>
#include < i t e r a t o r>
#include <map>

using namespace std ;

void vector_out (vector<int> v)
{

copy (v . begin () ,v . end () , // from

ostream_iterator<int>(cout , " ")) ; // to

cout<<endl ;
}

int main () {
const int N=6; // single-fermion states

const int Nfermions=3; // number of fermions

cout<<"All "<<Nfermions<<"-fermion states for N="<<N<<endl ;
vector<int> state ;
for (int i=0;i<N;++i) {

if (i<Nfermions) {

69

state . push_back (1) ;
}
else {

state . push_back (0) ;
}

}
sort (state . begin () , state . end ()) ;
int i = 1 ;
do {

cout<<"state # "<<i<<" is " ;
vector_out (state) ;
++i ;

} while (next_permutation (state . begin () , state . end ())) ;
cout<<"found "<<i−1<<" fermion states\n" ;
return 0 ;

}

70

All 3-fermion states for N=6

state # 1 is 0 0 0 1 1 1

state # 2 is 0 0 1 0 1 1

state # 3 is 0 0 1 1 0 1

...

state # 18 is 1 1 0 0 1 0

state # 19 is 1 1 0 1 0 0

state # 20 is 1 1 1 0 0 0

found 20 fermion states

What would for example 110010 stand for? Electrons can have spin up (↑) or down (↓), so the states could be coded
as occupations of up-down pairs:

110010 would mean ↑↓ 00 ↑ 0,
meaning the 1st one-body state has up and down electrons, the 2nd is empty, and the 3rd has a spin-up electron.
Each state has only zeroes and ones, so it would be very economical to encode them in binary.

71

9.7 Header guards and namespace encapsulation

This section demonstrates how to write a function for home-made statistics, with C++ Standard Library algorithms
and without. This is just for demonstration, there are much better statistical library routines than this. Here we
push numbers to a std::vector and compute the statistical mean and standard deviation of the data in the function
get stats(). Let’s start with a header. Headers are for the compiler, with some information to you; Java doesn’t
need them.

Example 21: (numerics/mystatistics1.hpp) First attempt as a header for get stats()

#ifndef MYSTATISTICS HPP
#define MYSTATISTICS HPP
#include <vector>
void get_stats (const std : : vector<double> &, double & , double &) ;
#endif

The preprosessor directives

#ifndef MYSTATISTICS HPP
#define MYSTATISTICS HPP
. . .
#endif

make up a header guard. They make sure this piece of code is not processed more than once. To use this header,
stored in the file numerics/mystatistics.hpp, put in the beginning of the program the line

#include "mystatistics.hpp"

This line may well be in many program units, hence the header guard: ifndef stands for ”if not defined”. If
MYSTATISTICS HPP is not defined, define MYSTATISTICS HPP and process the rest. The next time the compiler tries
to # include mystatistics.hpp it already has the code processed and does nothing.

The file suffix .hpp is one way to tell that this is a header file, not to be processed unless include’d. In C one has
the suffix .h, and it will also do in C++. In C++ the common practise is to put to headers only function
declarations.

72

What if get stats() is part of a huge pile of code, where another get stats() happens to exist, with the same
type of arguments? You get an ambiquity error also called name collision. Let’s use namespace encapsulation.
Define our own namespace, where get stats() lives, so that we can be sure which of the many get stats() should
be invoked.

Example 22: (numerics/mystatistics.hpp) A better get stats() header

#ifndef MYSTATISTICS HPP
#define MYSTATISTICS HPP
#include <vector>

namespace mystat

{
void get_stats (const std : : vector<double> &, double & , double &) ;

}

#endif

A remark about style and good habits: refrain from taking the whole std namespace unnecessarily,

using namespace std ; // don’t do this

namespace mystat

{
. . .
}

This is impolite, because if you ever give this header to a college to be used in his/her code, the poor fellow gets
the whole std namespace, wanted or not. This easily leads to to name collisions, if the college was not carefully
protecting his/her cute and short function names, such as get().

Namespace encapsulation saves the day, mystat::get() is always recognizable as a mystat function and myclasses::vector

is your vector, not std::vector .
The next task is to code the function itself. I present here two styles, the first utilizes std algorithms, the other

plain C++11 loops.

73

The principle of get stats that uses std algorithms:

The algorithm std::accumulate computes the sum of elements (unless told to do something else). The
container std::vector has has method size(), which gives the number of elements. For standard
deviation we compute how much elements differ from the average using the algorithm std::transform.
There is also std::bind2nd, which is left for the reader. It’s there because std::transform can do only
operations for one or two elements, so the problem of feeding in the average as well is solved using a
lambda function (old days one used std::bind2nd, but it’s deprecated).

If you at this point feel exhausted, don’t be alarmed. I feel the same!

74

Example 23: (numerics/mystatistics.cpp) get stats() using std algorithms

// Computes average and standard deviation

// for data stored in std::vector

#include <vector>
#include <algor ithm>
#include <numeric>
#include <f unc t i ona l>
#include <cmath>

namespace mystat

{
void get_stats (const std : : vector<double> & x , double & average , double & sigma)
{

// average = sum_i=1^N x_i /N

//

// sum_i=1^N (x_i-<x>)^2 (x-<x>).(x-<x>)

// sigma = sqrt(--------------------) = sqrt(---------------)

// N-1 N-1

using namespace std ;
int N = x . size () ;
average = accumulate (x . begin () ,x . end () , 0 . 0) /N ; // sum up values

vector<double> xx (x) ; // xx = x-<x>; subtract average from all elements

// deprecated in C++11:

// transform(x.begin(),x.end(),xx.begin(),bind2nd(minus<double >(),average));

// C++11 version using a lambda function

transform (x . begin () ,x . end () , xx . begin () , [average] (const double & elem) {return
elem−average ; }) ;

sigma = sqrt (inner_product (xx . begin () , xx . end () , xx . begin () , 0 . 0) /(N−1)) ;
}

}

75

Example 24: (numerics/mystatistics c++11.cpp) get stats using plain C++11

// C++11 version

// Computes average and standard deviation

// for data stored in std::vector

#include <vector>
#include <cmath>

namespace mystat_C11

{
void get_stats (const std : : vector<double> & x , double & average , double & sigma)
{

// average = sum_i=1^N x_i /N

//

// sum_i=1^N (x_i-<x>)^2

// sigma = sqrt(--------------------)

// N-1

int N = x . size () ;
average=0; sigma = 0 ;
for (auto x_i : x) {average += x_i ;}
average /= N ;
for (auto x_i : x) {sigma += pow (x_i−average , 2) ;}
sigma = sqrt (sigma /(N−1)) ;

}
}

I used the namespace mystatC11 to tell from the previous srd version. The header in file mystatistics c++11.hpp

has the same namespace.
You may disagree, but to me this version is much easier to grasp that the C++ Standard Library version. The

code and the math formulas are more easily compared. The range-for loop is neat and safe.
For completeness, I present the main program to test both variants.

76

Example 25: (main mystatistics.cpp) Main program to test mystatistics.cpp and mystatistics c++11.cpp

// compile: g++ -std=c++11 main_mystatistics.cpp mystatistics_c++11.cpp

// mystatistics.cpp utility.cpp

#include <iostream>
#include <vector>
#include "mystatistics.hpp"

#include "mystatistics_c++11.hpp"

#include "utility.hpp"

int main ()
{

using namespace std ;
vector<double> x { 5 . 5 , 6 . 3 , 5 . 6 , 8 . 1 , 9 . 7 , 1 0 . 0 } ;
double ave1 , ave2 , sigma1 , sigma2 ;

cout<<"x = \n" ;
myutil : : vector_out (x) ;
cout<<"std algoritm version: vs. C++11 version:"<<endl ;
mystat : : get_stats (x , ave1 , sigma1) ; // std version

mystat_C11 : : get_stats (x , ave2 , sigma2) ; // C++11 version

cout<<" average = "<<ave1<<" vs. "<<ave2<<endl ;
cout<<"standard deviation = "<<sigma1<<" vs. "<<sigma2<<endl ;

}
//std algoritm version: vs. C++11 version:

// average = 7.53333 vs. 7.53333

//standard deviation = 2.02452 vs. 2.02452

77

9.8 std::complex: complex numbers and arithmetics

All common complex operations (multiplication (*), division (/), addition (+), real part (real()) etc. are there already.

Example 26: (numerics/complex ex.cpp) Basic operations with complex numbers

#include <iostream>
#include <complex>
int main ()
{

using namespace std ;
complex<double> c1 , c2 ;
c1 = complex<double > (1 . 5 , 2 . 2) ;
c2 = complex<double > (1 . 0 , 3 . 3) ;
cout<<"c1="<<c1<<endl ;
cout<<"c2="<<c2<<endl ;
// real(c2) or c2.real()

cout<<"real(c2)="<<real (c2)<<endl ;
cout<<"imag(c2)="<<imag (c2)<<endl ;
cout<<"c1+c2="<<c1+c2<<endl ;
cout<<"c1*c2="<<c1∗c2<<endl ;
cout<<"conj(c1)="<<conj (c1)<<endl ;
cout<<"c1/c2="<<c1/c2<<endl ;
return 0 ;

}

In math, the multiplication of complex numbers is

x = a+ i b y = c+ i d

xy = ac− bd+ i(ad+ bc) .

So how does the compiler know that if x and y are type std::complex, then x*y means this operation? It’s called
operator overloading, but let’s first take a look at the simpler function overloading.

78

10 Function overloading, optional arguments and default arguments

Function overloading in C++ means you can assign different, but related tasks under one function name. This is
nothing new, in math the exponent of a real number x is exp(x) and the exponent of a complex number c is exp(c).
Even exp(M) of matrix M is under the same name exp().

C has no function overloading, only math functions have been overloaded. Designers of C++ have apparently a
different opinion of good practise.

The compiler has to distinguish which task you want the function to perform: It does this by means of the types
and number of arguments – a bit like in math.

Moreover, function overloading makes two things possible:

• Optional arguments are ones you don’t always have to give.
For example, estimate(x) may do a slightly different calculation than estimate(x,a). No need to call them
estimate1(x) and estimate2(x,a).

• Default arguments: unless given, the argument has its default value.
Imagine the boredom and messy program if you always have to call the function
myfun(x,y,alpha,beta,gamma);

with all five arguments even though you know you in most cases have alpha=1;beta=5;gamma=14.5;. In C++
you can set these values as defaults, and call the function simply
myfun(x,y);

Important difference:

- Optional arguments are used in the function only if they are present.
Their presence or absence causes different code to be executed

- Default arguments are always used in the function and they must have some values, default or given.

Don’t overdo function overloading.
There’s no real benefit in calling two functions by the same name if their tasks have nothing in common.

79

Example 27: (basic/function overload.cpp) Function arguments a and b are optional

// Function integ() can do two different things, depending on arguments

#include <iostream>
using namespace std ;

double integ (void) {
cout << "no args to integ, integrating from 0 to 1"<<endl ;
return (1 . 0) ; // just test

}

double integ (double & a , double & b) {
cout << "two args to integ, integrating from "<<a<<" to "<<b<<endl ;
return (2 . 0) ; // just test

}

int main () {
double a=5,b=10;
integ () ;
integ (a , b) ;
return 0 ;

}

no args to integ, integrating from 0 to 1

two args to integ, integrating from 5 to 10

80

Example 28: (basic/function overload2.cpp) Functions second argument is by default 1.0

// Function fun has a default value 1.0 for the second parameter b

#include <iostream>
using namespace std ;
double fun (double a , double b= 1 . 0) ; //IMPORTANT LINE

int main () {
double a=5,b=10;
fun (a) ;
fun (a , b) ;
return 0 ;

}
double fun (double a , double b) {

if (b==1) {
cout <<"a="<< a<<" default case b=1"<<endl ;

}
else {

cout <<"a="<< a<<" not default case, b="<<b<<endl ;
}
return (1 . 0) ; // just test

}

a=5 default case b=1

a=5 not default case, b=10

Default value is given only in the function declaration. This can make the default value hard to find! 10

10 Technically, it’s possible to set default values in function definition, but I strongly advice you not to. You code will not be.

81

11 Operator overloading – all for readability

In section 9.8 we learned, that the complex number multiplication is done correctly by the * operator. The way this
was achieved is operator overloading: an operator can be told to do a slightly different operation depending on
the data type.

Operator overloading can greatly improve code readability

Operator overloading is something you don’t have to learn to do, but you will appreciate it if someone has done a
good job overloading operators. As an example, without overloading, adding two complex numbers c1 and c2 would
read something like this:

c3 = add (c1 , c2) ;

With overloaded + operation it reads

c3 = c1 + c2 ;

The compiler does change the + to function call, but it’s out of sight. The code is readable and just like math.

If you overload an operator, make sure it works as expected

This is related to

The law of least astonishment : The program should behave in a way that least astonishes the user. 11

11Steve Oualline, How Not To Program in C++.

82

Here is a story of a code that didn’t obey the law of least astonishment :

I was surfing the net one day for examples on how operators can be overloaded, and came across with
one that overloaded the + operator for complex numbers. Upon testing, I found that the sum c3 = c1

+ c2 really is computed correctly. I thought the implementation was ok and used it in my code. Then I
was astonished to get wrong results! No, not because c3 was computed wrong, no-hou. It was because I
didn’t come to think that the operation c3 = c1 + c2 was changing also the value of c1! It did, and in
the code that followed c1 had a wrong value.

A classic piece of bad code is this attempt to use a macro for squaring:

// BAD CODE, *Never* use #define, this is just for educational purposes

#define SQUARE(x) ((x) ∗(x))
int a=2;
int b=SQUARE (a++); // you would think this squares 2 and *then* increments it by one

// No. The result is (2)*(3)=6. Astonishing!

83

There are some rules and limitations to operator overloading:

• Think of operators as functions with one or two arguments. They are called unary and binary operators. If
your operation needs two arguments, take one existing binary operator and overload that.

• You can’t invent new operators
(”my clever new operator” is no good)
Only some of the existing ones can be overloaded:

+ - * / % ^ & | ~ !

= < > += -= *= /= %= ^= &=

|= << >> <<= >>= == != <= >= &&

|| ++ -- , -> [] () new delete

• The order of execution prevails (∗ is executed before +)

You may find tempting to overload an operator to compute powers. Especially since the math form xy and the
function call pow(x,y) look so very different. Resist the temptation and use pow or you’ll be astonished.

84

Curiosity:
In case you are interested, fortran has operator overloading, too. Funnily, in C++ you can’t invent your own operators,
in fortran you can overload existing ones if you apply it to your own data type, but if you apply it to an existing
data type you must invent a new operator :) So working on 2D tables double A(:,:),B(:,:), where the data type
exists, you must invent an operator, such as .x. (the strange colours come from C++ settings):

! fortran

interface operator (. x .)
module procedure multMatrix

end interface operator (. x .)
. . .
function multMatrix (lhs , rhs) result (res)

and use it as D=A.x.B.x.C. It’s also simple to create you own matrix type and overload * ,

! fortran

type matrix

double , pointer : : data (: , :)
end type Matrix

interface operator (∗)
module procedure multMatrix

end interface operator (∗)
. . .
function multMatrix (lhs , rhs) result (res)

and write D=A*B*C. but then you have to dig the data from the objects (in fortran it’s done A%data).

85

Example 29: (advanced/myclass overload.cpp) operator << overloaded to print self-made class objects

// How to teach << to print a self-made class object

#include <iostream>
#include <vector>
#include < i t e r a t o r>
#include <iomanip>
#include <fstream>
class MyClass

{
double a , b ;
std : : vector<double> v ;

public :
// universal initialization

MyClass (double a_ , double b_ , std : : vector<double> v_) : a{a_ } ,b{b_ } ,v{v_}{}
// overload << and tell it how to print MyClass objects

// define << as friend to let it access private data

friend std : : ostream& operator <<(std : : ostream& os , const MyClass& obj) ;
} ;

std : : ostream& operator<<(std : : ostream & os , const MyClass& obj)
{

using namespace std ;
os<<fixed<<setprecision (8) ; // some I/O manipulation

os<<"a="<<obj . a<<" b="<<obj . b<<endl ;
os<<"v=" ;
for (auto ele : obj . v) os<<ele<<" " ;
return os ;

}
//continues

86

int main ()
{

using namespace std ;
MyClass testclass { 2 . 2 , 3 . 1 , { 1 . 0 , 2 . 0 , 3 . 0 } } ; // C++11 universal initialization

cout<<testclass<<endl ; // uses overloaded <<

ofstream out ("MyClass.out") ;
out<<testclass<<endl ; // same output to file

}
// on screen and in file "MyClass.out":

// a=2.20000000 b=3.10000000

// v=1.00000000 2.00000000 3.00000000

The overloaded operator << can also write to a file

Without overloading, cout<<testclass cannot work. As s reward, we have a clean output of objects of a self-
made class without a visible call to a function. This may sound a small achievement, but in numerics you learn to
appreciate clean formulas. Assume you have a matrix A, vectors a, b and c, and hte job is to compute c = Ab + a.
With overloading, this will at best look likes

c=A∗b+a ;

which is easier to decipher than a nested function call,

c=vec_add (matrix_multiply (A , b) ,a) ;

Now that you asked, the overloaded operator << is compiled with this logic:
Operation cout<<testclass means ”find from the class of the object cout (that’ll be ostream) the
method << and call it with arguments (cout,testclass)”. This translates to something not completely
unlike ”(ostream.<<)(cout,testclass)”. Next, the compiler searches the methods (ostream.<<) to
find a function, whose arguments are (ostream&, MyClass&) or without the ambersand &. It can find
one, as a method with the friend attribute, the one we just wrote.

87

12 C++ Standard Library: More algorithms

12.1 std::for each

The algorithm std::for each performs a given operation to all elements. As arguments you give the beginning, the
end and what to do.

Example 30: (numerics/vector print foreach.cpp) std::for each and printing (some) elements of a std::vector

#include <iostream>
#include <vector>
#include <algor ithm>
using namespace std ;
void doubleout (double y) { cout << " " << y ; }
int main () {

vector<double> x { 1 . 1 , 2 . 2 , 3 . 3 } ;
cout << "x vector: \n" ;
// for_each (x.begin(), x.end(), doubleout);

for_each (x . begin () , x . begin () +2, doubleout) ;
cout<<endl ;
return 0 ;

}

This applies doubleout() to all elements. In general, the applied function can be anything, as long it’s declared
anything(double x), i.e., it must eat doubles.

88

12.2 When to use std::for each ?

Now you may wonder what more std::for each has to offer than the range-for loops in C++11. After all, you can
print all elements of a container more neatly with a range-for loop:

Example 31: (numerics/vector print range for.cpp) Range-for loop and printing all elements of a std::vector

#include <iostream>
#include <vector>
using namespace std ;
void doubleout (double y) { cout << " " << y ; }
int main () {

vector<double> x { 1 . 1 , 2 . 2 , 3 . 3 } ;
cout << "x vector: \n" ;
for (auto elem : x) doubleout (elem) ;
cout<<endl ;
return 0 ;

}

This is just as good as the std::for each example, and compiles faster!

89

This is where for each shines:

• Access only part of the elements

for_each (x . begin () ,x . begin () +2,doubleout ()) ; // output two values from the

beginning

• Access all elements or some elements and use anything a class can contain

Example 32: (numerics/for each limited.sum.cpp) std::for each can do things range-for loops can’t

#include <iostream>
#include <vector>
#include <algor ithm>

struct LimitedSum {
void operator () (int i) { if (i > 1) sum += i ;}
int sum {0} ;

} ;

int main () {
std : : vector<int> x {1 , 2 , 3 , 4} ;
LimitedSum lim = std : : for_each (x . begin () , x . end () , LimitedSum ()) ;
std : : cout << "Limited sum = " << lim . sum << "\n" ;

}

Notice how we access the member of the class LimitedSum after a call to std::for each: The return value
of for each is the very same class object that the function object in the argument is. Function object are
discussed more in chapter 13.3

Without storing the return value we had no access to the data member sum. See the details on the next page.

90

12.3 std::for each in detail

One way std::for each can be implemented is this:
Example 33: (advanced/foreach template.cpp)

// std::for_each works essentially like this

template<class Iter , class Func>
Func for_each (Iter first , Iter last , Func f)
{

while (first !=last) {
f (∗ first) ;
++first ;

}
return f ; // C++11: return move(f);

}

The third argument f can be a class – as long as f(*first) is defined! This hints that the name of a class can
sometimes be used the same way as a function; they are called function objects or functors.

for each argument third is class Func f, and the return value is the same f

The ”pass-by-value feature”
Notice also how the third argument is passed by value, as class Func. This means the argument object Func has
a one-way ticket, it does not return as an argument. But the function does return it as a return value. So in as
argument, out as a return value. Example: If you send in a function object and change something in that object, you
have to use the return value object. The example numerics/foreach functor2.cpp shows the principle, it computes
the cosines of elements (done by the function object) and collect their sum as a data member in the object.

The gcc version 4.9.1 has the file .../include/c++/4.9.1/parallel/for each.h. Here the ”parallel” gives away
that for each can be parallelized: All elements are pushed separately though the same function, so why not do it in
parallel.

91

The page Draft of Technical Specifaction tells just how draft the parallel part is still in 2015:

This kind of put me off and I had to go for coffee.

92

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4407.html

12.4 std::generate algorithm

One way to generate values to a container.

Example 34: (numerics/generate random vector.cpp) Fill a std::vector with random numbers

#include<iostream>
#include <algor ithm>
#include <vector>
using namespace std ;
double double_random () {

// poor random numbers 0...1

return rand () ∗1 .0/ RAND_MAX ; // avoid int/int !

}
int main () {

vector<double> v (20) ;
// fill vector with random numbers

generate (v . begin () , v . end () , double_random) ;
// output

for (unsigned i=0; i<v . size () ; ++i) {
cout<<i<<" "<<v [i]<<endl ;

}
}

The next chapter takes a look at why generate may be dangerous for random number generation.

93

12.5 C++ Standard Library algorithms – take care of copies

As the previous example showed, std::generate is a nice way to fill a container with random numbers. There is a
potential risk, however. The functioning of std::generate is equivalent to this:

template <class ForwardIterator , class Generator>
void generate (ForwardIterator first , ForwardIterator last , Generator gen)

{
while (first != last) ∗first++ = gen () ;

}

The third argument is Generator gen, and Generator is a class. The generator is passed by value, so a copy
of gen is used. The compiler creates a copy of gen using the copy constructor of the class Generator.

std::generate may copy the third argument. std::for each may copy of the third argument.

⇒ The random number generator is copied, too.
Why not copy a random number generator (rng)? A rng is just another program. Given a seed, it can produce

a nearly random number sequence. The sequence depends only on the seed, the algorithm is deterministic and the
same seed gives exactly the same number sequence. That’s why it’s often called a pseudo random number generator.
If you copy the rng, you have two identical ”number mills”. If you compare the two number sequences they produce,
you find that within each sequence the numbers are (almost) random, but the numbers in the two sequences are badly
correlated. Turning the crank of two similar mills in a simulation code can give you exciting, but wrong, results. 12

Every generator, that is not giving a constant output, must have a state. In other words, a generator that can
give non-constant output has to remember where it is. A clock that cannot keep track of time is a stopped clock.
Copying a stateful generator has to be done with care.

12Ah. why not give the generator a new seed and get a new random sequence, different from the other? That way you would
have several number mills with different seeds. Bad idea. The rng algorithms have been tested to produce a number sequence
random only in relation to numbers within the same sequence. The basic problem is that the seeds that determine the sequences
are not random. Ok, why not run one mill with a ”mother seed” to give you seeds for many rng’s? That too, has not been
tested to give sufficiently random results. Algorithmic generation of (pseudo) random numbers is a tricky thing.

94

12.6 C++ Standard Library algorithms – stateful objects and std::ref

Algorithms std::for each() and std::generate() are not useless in context of stateful objects. There is a simple

remedy to the copy problem: For stateful objects, use a reference wrapper

std : : vector v (100) ;
std : : generate (v . begin () , v . end () , std : : ref (gen)) ; // gen is stateful object

std::ref is a helper function to generate a std::reference wrapper, meaning (see std::ref or std::reference wrapper)
std::ref(10) is std::reference wrapper<int>

Example 35: (numerics/generate id vector.cpp) Fill a std::vector with unique id numbers from an id generator.

#include<iostream>
#include<algor ithm>
#include<f unc t i ona l>
#include<vector>
using namespace std ;
class IdGen{

int id ; // object’s state

public :
IdGen () : id (0) {cout<<"constructed an IdGen\n" ; } ; // constructor

int operator () (void) {return (id++);} // functor

}idgen ;
int main () {

vector<int> v (20) ,w (20) ;
generate (v . begin () , v . end () , std : : ref (idgen)) ; // try these *without* std::ref

generate (w . begin () , w . end () , std : : ref (idgen)) ;
std : : cout<<"v = \n" ;
for (auto x : v) cout<<x<<" " ; cout<<"\n" ;
std : : cout<<"w = \n" ;
for (auto x : w) cout<<x<<" " ; cout<<"\n" ;

}

95

http://en.cppreference.com/w/cpp/utility/functional/ref
http://en.cppreference.com/w/cpp/utility/functional/reference_wrapper

13 A few things that can potentially speed up your code

You may be interested to check out Wiki: C++ Performance improving features. If you are a good programmer, find
out what ”Move Semantics” and ”Perfect Forwarding” mean in C++, and dive into the pool of ”Smart Pointers”.
Read books and postings by Scott Meyers!

13.1 noexcept: no-throw quarantee

Recommendation: Use frequently in numerical code
If your function never throws an exception, the keyword noexcept may let the compiler to optimize your code

more. 13 If it does throw, your code will terminate - Ha, you lied! Still, noexcept is one of the very latest features
of C++, so don’t believe just any blog posts, just give it a try. Usage:

void myfunction () noexcept

{
//...

}

13.2 constexpr: Compile time constant expressions

Recommendation: Use frequently in numerical code
Not quaranteed to give any speedup, but an interesting concept. Computation of factorials recursively can be

traditionally done like this:

// Common way to compute a factorial

int factorial (const int n) {
int fact = 1 ;
if (n <= 1)

return 1 ;

13We return to throw-catch in chapter 21.

96

http://en.wikibooks.org/wiki/Optimizing_C++/Writing_efficient_code/Performance_improving_features
http://www.aristeia.com

else

fact = n∗factorial (n − 1) ; // recursion

return fact ;
}

C++11 is able to perform tasks during compilation, coded as template metaprogramming or with constexpr.

long int constexpr factorial (int n)
{

return n > 0 ? n ∗ factorial (n − 1) : 1 ; // one return statement is allowed

}
int main ()
{

constexpr long int fact13=factorial (13) ; // 13! is computed in compile time

. . .
}

If you look at the assembly code after compilation (g++ -S code.cpp and look at code.s) you see that indeed fact13
is set equal to 6227020800.

constexpr means that everything the expression may be known at compile time.
If all is known, everything is done in compile time. If not, the function is treated as a normal function, evaluated in
run time.

It a win-win situation! Although compilation takes longer. Numerical constants are, by definition, already
constant expressions, so no need to replace const’s with constexpr’s there.

Extra information:
const means that, once initialized, the value cannot be changed. constexpr is more than const, it’s a constant
expression. Functions declared constexpr can compute the allocator template parameter of e.g. std::list<>
(see stackoverflow:difference-between-constexpr-and-const).

If you know C++ metaprogramming and Haskell, you might be interested to read
What Does Haskell Have to Do with C++?

97

http://stackoverflow.com/questions/14116003/difference-between-constexpr-and-const
http://bartoszmilewski.com/2009/10/21/what-does-haskell-have-to-do-with-c/

For curiosity, the same task with template metaprogramming:

// Template metaprogram

#include<iostream> // just for testing

template<int N>
struct Factorial {

static const long int value = N ∗ Factorial<N−1>::value ;
} ;
template<>
struct Factorial<1> {

static const long int value =1;
} ;
int main ()
{

const long int fact13 = Factorial<13>::value ;
std : : cout<<fact13<<std : : endl ;

}

The number 13 is fed to Factorial as a template parameter: Factorial<13>. The compiler instantiates the
template Factorial<13>, which tells to instantiate the template Factorial<12> and so on, until Factorial<1> is
instantiated. At this points the compiler notices that there is a template specialization corresponding to argument
<1>, and the recursive instantiation ends. Compilers can’t handle very deep recursive instantiation, and builtin
integer data type can’t hold large factorials anyhow.

98

13.3 Function objects (functors)

Recommendation: Use frequently in numerical code
Function objects, or functors for short, are rather popular in numerics. You can define a function in a class

that is not a method (member function). This function is called when the class name is used as a function name.
Don’t be put off, this is actually very simple.
Example 36: (numerics/functor.cpp) A function object to compute sin(x), cos(x) and tan(x)

// Function object - functor

#include <iostream>
#include <cmath>
class TrigFuns{
public :

double operator () (double x) {
std : : cout<<"x="<<x<<std : : endl ;
std : : cout<<"sin(x) cos(x) tan(x)\n" ;
std : : cout<<sin (x)<<" "<<cos (x)<<" "<<tan (x)<<std : : endl ;

}
} ;
int main ()
{

TrigFuns comp ;
comp (1 0 . 0) ;
return 0 ;

}

Here comp is an object, but used as if it were a function – hence it’s a function object.

99

Why use a function object? Why not an ordinary function?

1) Function objects are not passed as pointers, so the compiler can easily inline it (insert to its place). As you
saw in exerc.1.pdf, one way to send a function to a function is as a function pointer:

void apply (double (∗g) (double) , double x) {std : : cout<<g (x)<<std : : endl ;}

but it’s also simple to wrap the function in a class and make it a function object,

#include <iostream>
#include <cmath>
class Func{
public :

double operator () (double x) { return sin (x) ;}
} ;
void apply (Func g , double x) {std : : cout<<g (x)<<std : : endl ;}

int main ()
{

Func f ;
apply (f , 1 0 . 0) ;
return 0 ;

}

2) A class can contain data members, such as counters, accessible only to class methods. A function object can
easily perform complicated tasks. For example, a function object can compute the cosine of all input and,
simultaneously, compute the sum of these cosines – this is done in numerics/forarch functor2.cpp.

100

Example 37: (numerics/foreach functor.cpp) A function object used with std::for each

#include <iostream>
#include <vector>
#include <algor ithm>
#include <cmath>
using namespace std ;

class TakeCos{
public :

void operator () (double& x) { x=cos (x) ; } // function object

} ;

int main () {
vector<double> x { 1 . 1 , 2 . 2 , 3 . 3 } ;
cout << "vector x : " ;
for (auto e : x) cout<<e<<" " ;
cout<<endl ;
for_each (x . begin () , x . end () , TakeCos ()) ;
cout << "vector cos(x) : " ;
for (auto e : x) cout<<e<<" " ;
cout<<endl ;
return 0 ;

}

If the task is this simple, or it’s supposedly used only here, it’s more convenient to use a lambda function, introduced
later in chapter 24. One example of a lambda function was already in numerics/mystatistics.cpp.

101

13.4 Four ways to pass a function to a function

1) One way is to pass a function pointer:

double f (double x) {return 1 .0 + exp (10 . 0∗ x) ;} // sample integrand

double integrate (double (∗f) (double) , double a , double b)
{
// integrate function f(x) from a to b

}
// use like

integrate (f , 1 . 0 , 2 . 0) ; // integrate f(x)

2) Wrap the function in a class and make it a function object. Write integrate as a template.

class MyFunc{
public :

double operator () (double x) {return 1 .0 + exp (10 . 0∗ x) ; } ; //

define a function object

} ;
template<class T>
double integrate (T f , double a , double b) {

. . . use function f () as usual . . .
}
// use like

integrate (Myfunc () , 1 . 0 , 2 . 0) ; // integrate MyFunc class function object

Notice how this code does not have any explicit MyFunc class objects. The compiler instantiates the template
integrate, with typename T for MyFunc, and replaces the function f() with MyFunc::operator() as an inline
function). This makes the code very fast!

102

3) C++11: Pass the function as a function object of the class template std::function

Recommended method

double f (double x) {return 1 .0 + exp (10 . 0∗ x) ;} // sample integrand

double integrate (const std : : function<double (double)> &f , double a ,
double b) { // integrate function f(x) from a to b}

// use like

integrate (f , 1 . 0 , 2 . 0) ; // integrate f(x)

If the function has been declared earlier, you can let the compiler deduce the types (now double(double))

double integrate (const std : : function<decltype (f)> &f , double a , double b)

4) Pass the function pointer as a template parameter:

double f (double x) {return 1 .0 + exp (10 . 0∗ x) ;} // sample integrand

template<double Tfunc (double)>
double integrate (double a , double b) {
. . . use function Tfunc () as usual . . .
}

// use like

integrate<f>(1 .0 , 2 . 0) ; // integrate function f

Examples of each style is in the file numerics/function to function speed test.cpp. The speed depends on
whether the compiler inlines a function pointer; recent ones do. IMHO, methods 2 and 3 looks best and conform
with the C++ general goal to ”avoid naked pointers”.

103

13.5 Cache data

Don’t recompute the same data over and over again. Use cached values.

13.6 Use emplace back instead of push back

Recommendation: Use always if available
emplace back will contruct the value at the end of the std::vector, while push back will contruct it someplace

else and move it to the vector. The latter simply has to be slower.
Example 38: (numerics/emplace vector.cpp) How emplace back beats push back in speed.

#include <iostream>
#include <cmath>
#include <vector>
#include <chrono>

using namespace std ;
using namespace std : : chrono ;

struct MyThing

{
int idat ;
std : : vector<double> x ;
MyThing (int idat_ , vector<double> x_) noexcept : idat{idat_ } ,x{x_}{}

} ;

104

int main ()
{

const int N=1000000;
vector<MyThing> v ;
auto t0 = high_resolution_clock : : now () ;

for (auto i=0;i<N;++i)
{

v . push_back (MyThing (i , vector<double > { 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 })) ;
}

auto t1 = high_resolution_clock : : now () ;
auto d = duration_cast<milliseconds>(t1−t0) ;
cout <<"vector push_back took: "<<d . count () << " ms\n" ;

v . clear () ; // remove reservations in the container

t0 = high_resolution_clock : : now () ;
for (auto i=0;i<N;++i)
{

v . emplace_back (i , vector<double > { 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 }) ;
}

t1 = high_resolution_clock : : now () ;
d = duration_cast<milliseconds>(t1−t0) ;
cout <<"vector emplace_back took: "<<d . count () << " ms\n" ;

}

105

emplace back can also call the constructor with parameters needed in contructing! You don’t even consruct
the value of the std::vector element, you just tell how it should be made.

Example 39: (numerics/emplace parameter arguments.cpp) emplace back can construct with parameters.

//

// emplace_back with parameter arguments

//

#include <iostream>
#include <cmath>
#include <vector>

using namespace std ;

struct MyObj{
double value ;
MyObj (const double & par , double angle) noexcept : value{par∗sin (angle) } {}

} ;

int main ()
{

const int N=1000000;
const double par=3.866;
vector<MyObj> v ;
for (auto i=0;i<N;++i)
{

v . emplace_back (par , i∗M_PI/N) ; // not emplacing an object, but forwarding

parameters to constructor

}
cout<<"first 10 values:\n" ;
for (auto it=v . begin () ; it<v . begin () +10;++it) cout<<(∗it) . value<<" " ;
cout<<"\n" ;

}

106

13.7 If available, use the methods of containers rather than algorithms

The general idea is that a container-specific algorithm can take advantage of the container properties and gain speed.
Sometimes generic algorithms are not available at all; the list container has no random access iterator, so std::sort

can’t work. Instead, there is a sort method in list:

. . .
std : : list<int> mylist ;
// fill mylist

mylist . sort () ; // calls the sort member function

. . .

107

13.8 Expression templates

This chapter gives you an idea how complicated it is to master C++ and why I never can. What I hope you to learn
from all of this is use good libraries. What do expression templates do faster than a for–loop? If you ever find
out, please tell me. If you have no desire to become a C++ guru, skip this chapter and do something useful.

All this said, here goes:

The basic idea behind expression templates is to use operator overloading to build parse trees

Expression templates were used by Todd Veldhuizen in his matrix library Blitz++ in mid 90’s, ever since applied in
practically all numerical C++ libraries (see Todd Veldhuizen: ”Techniques for Scientific C++”). 14 Early expression
templates were only able to cure one bad C++ side effect, namely that one should not create temporaries in every
corner. 15 But this only taught C++ behave reasonably. Since then we have learned quite a bit and realized that
avoiding temporaries is not the only essence in speed.

Where did the ”avoid temporaries” goal come about? C++ has this wonderful thing called operator overloading.
The problem is that if you apply is straightforwardly, the compiler easily creates temporaries. Consider how the
addition operator can be translated to function calls:

D = A+B+C means add (A , B)+C , so set temporary M=add (A , B) , finally set D = add (M , C)

If A,B,C and D fill the fast cache memory, then the intermediate result M ”drops” something out of cache to slow
RAM – 10x slower or more. Another example is adding three vectors, and using only one component,

D [0] = (A+B+C) [0] ;

You can easily expand this the most effective way,

D [0] = A [0]+B [0]+C [0] ;

but a compiler can be so stupid that it adds up the whole million element vector A+B+C, puts it to D and only then
looks for D[0]!

14Blitz++ still works behind scenes: Last time I looked, Scipy (Scientific Python) module used parts of the Blitz++ library.
15Valarray tries to avoid intermediates (temporaries) using ”proxy” objects. Most libraries prefer the expression template

technique due to its generality.

108

Continue reading if you the previous discussion didn’t drop out of your cache.
Think how templates can help to avoid temporaries. If a compiler meets a line of code it can’t immediately recognize,
it starts looking for a suitable template (”model”). Finding one, it instantiates the template, i.e. brings it alive.
This template can itself instantiate other templates and so on. Apart from instantiating another template, a template
can instantiate another copy of itself (recursive template). This recursion is in the heart of many expression templates.
For identification, templates have template parameters, which tell exactly what kind of model to instantiate: 16

template <parameters>
blaablaa () { . . . }

Letting templates instantiate new templates lets one express the addition of objects as a tree:

A B C

The vertices could represent + operators. Let A,B,C,D be class Array objects (just some class, data could be in
a std::vector). Then the tree could be

Array A , B , C , D ;
D = A + B + C ;
first + should translate as expression X<Array , plus , Array>() + C ;
second + should translate as expression X<X<Array , plus , Array>,plus , Array>() ;

Here X is a vertex for objects ”left” and ”right” the operator ”plus” in between. The code advanced/recursive template.cpp

shows how such a tree structure X<X<Array,plus,Array>,plus,Array> is created. The example advanced/expression template.cpp

computes the sum of std::vector ’s using expression templates.

16Excuse me for mixing template arguments and template parameters, I honestly don’t know their difference.

109

What do we gain?

Expression templates can delay the evaluation until the ”=” sign is reached (lazy evaluation)

The compiler goes through the whole tree at compilation time, instantiating vertices X, as many as needed. Reaching
the end it knows exactly what is needed (such as only D[0]).

The idea is that operations return expressions, not results.

Expressions are something that can be further manipulated during compilation.
Compiling the code with a recursive template essentially generates changes to the code, or ”the code changes

itself”. This is the essence of template metaprogramming: templates can generate new code during program
compilation. Alas, compilation takes longer.

16Also ”template template arguments” exist. IBM explains, on their linux compiler pages
http://publib.boulder.ibm.com/infocenter/lnxpcomp/v8v101/index.jsp?topic=%2Fcom.ibm.xlcpp8l.doc%2Flanguage%2Fref%2Ftemplate_arguments.htm

rather aptly, I should say:

A template argument for a template template parameter is the name of a class template.

110

http://publib.boulder.ibm.com/infocenter/lnxpcomp/v8v101/index.jsp?topic=%2Fcom.ibm.xlcpp8l.doc%2Flanguage%2Fref%2Ftemplate_arguments.htm

14 The best random number generator

If only the best is good enough:

Delivers a very random number in every nanosecond. This was needed in a quantum entanglements experiment
at Delft (More in einstein-god-dice)

111

http://phys.org/news/2015-10-historic-delft-einstein-god-dice.html

15 C++11 generation of (pseudo)random numbers

A random number generator is a program, that, given a seed (say 23525176471263), produces a sequence of numbers
that appears random. It’s like a number mill: In goes the seed and out comes flour of random numbers. Always the
same output.

Stages to invoke C++11 random number generation:

1) Include the headers

#include <random>
#include <functional> // if you use std::function

2) Choose the type of random number algorithm

std : : mt19937 gener ; // Mersenne twister

Here gener is my name for the generator; only this appears in the code and changing this single line I can
change to another generator (linear congruential engine, subtract with carry engine),

std : : linear_congruential_engine gener ;

3) Choose from available distributions
uniform real distribution (parameters start and end) normal distribution (parameters meand value and
variance).
Uniform distribution unif dist U[0,1) is created like this:

std : : uniform_real_distribution<double> unif_dist (0 , 1) ;

and a normal distribution like this (the name normal dist is my own):

std : : normal_distribution<double> normal_dist (0 , 1) ;

112

4) Give the generator a seed only once
(suffix u means unsigned)

gener . seed (4835267u) ; // same sequence every time you run the code

or pick the seed from system clock

gener . seed (static_cast<uint_fast32_t> (std : : time (0)) ; // at least 32 bits

// different sequence every time you run the code (if time(0) changed)

or rely on std::ramdom device

gener . seed (std : : random_device {} ()) ;

This is not without problems, see a discussion in cpps-random device.html

5) EITHER (i) bind the generator and the distribution together:

auto normal_random = std : : bind (normal_dist , gener) ; // do this once

// here "auto" is actually static std::function <double(void)>

and use the combination like this:

double random = normal_random () ;

OR (ii) get the random number directly from a call to distribution(generator) :

double random = normal_dist (gener) ;

Here the random number is random.

113

http://www.pcg-random.org/posts/cpps-random_device.html

15.1 std::bind to simplify usage

Before continuing with random numbers, lets look what auto normal random = std::bind(normal dist, gener)

did: It created a function normal random() that means ”call normal dist with argument gener”.
Example 40: (basic/bind example.cpp) std::bind is versatile

// How to use bind to

// a) change the order of arguments

// b) turn a 3 argument function to a 2 argument function

//

#include<iostream>
#include <f unc t i ona l>
void f (const double & x , const double & y , const double & z)
{

std : : cout<<"called f with arguments "<<x<<" "<<y<<" "<<z<<std : : endl ;
}
int main ()
{

using namespace std : : placeholders ; // for _1, _2

f (1 . 1 , 2 . 2 , 3 . 3) ;
// a) change the order of arguments with bind:

auto invf=std : : bind (f , _3 , _2 , _1) ; // bind return type is std::function

invf (1 . 1 , 2 . 2 , 3 . 3) ;
// b) create a two-argument function from f

auto g=std : : bind (f , _1 , _2 , 3 33 . 3) ; // bind 3rd argument to fixed value 333.3

g (1 0 . 1 , 2 0 . 2) ;
}

114

The next examples are a set of easy-to-use helper functions to initialize a generator and get uniform distribution
(unirand()), normal distribution (gaussrand and gaussrand2()) or exponentially distributed (exprand()) random
numbers.
The goal here was to hide all inconveniences to the header numerics/random.hpp:

#include "random.hpp"

. . .
double random = gaussrand () // clean and simple

The header is by no means perfect, especially the initialization is clumsy.
esl
Example 41: (numerics/random.cpp) C++11 random number generation

// std::mt19937 random number generator

// uses std::function and std::bind

#include <iostream>
#include <random>
#include <ctime>
#include <fstream>
#include <f unc t i ona l>
using namespace std ;
std : : mt19937 gener ; // define generator

void initrng (void) {
static bool first = true ;
if (first) {

auto seed = static_cast<uint_fast32_t> (std : : time (0)) ;
cout<<" seed = "<<seed<<endl ;
gener . seed (seed) ;
first = false ;

}
}
double unirand (void) {

static bool first = true ;

115

static function<double ()> rnd ;
if (first) {

initrng () ;
uniform_real_distribution<double> unif_dist (0 , 1) ;
rnd = bind (unif_dist , gener) ;
first = false ;

}
return rnd () ;

}

double gaussrand (void) {
static bool first = true ;
static function<double ()> rnd ;
if (first) {

initrng () ;
normal_distribution<double> norm_dist (0 , 1) ;
rnd = bind (norm_dist , gener) ;
first = false ;

}
return rnd () ;

}
double gaussrand2 (void) { // warning: does not initialize generator

static normal_distribution<double> norm_dist (0 , 1) ;
return (norm_dist (gener)) ;

}
double exprand (void) {

static bool first = true ;
static function<double ()> rnd ;
if (first) {

initrng () ;
exponential_distribution<double> expo ;

116

rnd = bind (expo , gener) ;
first = false ;

}
return rnd () ;

}

117

16 Boost library

Boost library has served as a test bench for ideas, that may be included in a future C++ standard. C++11 took
many of its new features from Boost. It offers many extensions to the C++ standard library: algorithms, special
functions, differential equation solvers and many more.

The documentation is
http://www.boost.org/doc/libs/

and a very interesting math part is in
http://www.boost.org/doc/libs/?view=category_Math

The examples are thorough, e.g. how to use your own vector type in a equation is shown here. As long as your data
structure conforms with a standard or a Boost container you can just throw it into Boost. Especially the library
odeint for solving ordinary differential equations is comprehensive.

Boost is in most parts a header-only library. In linux, this means you just copy it to, say, directory /home/myusername/boost 1 59 0.
The example program chaotic system.cpp resides in /home/myusername/boost 1 59 0/libs/numeric/odeint/examples/,
and it can be translated like this (bash):

mkdir tmp
cd tmp
export BOOSTDIR=/home/myusername/boost 1 59 0/
ln -s $BOOSTDIR/libs/numeric/odeint/examples/chaotic system.cpp .
ln -s $BOOSTDIR/libs/numeric/odeint/examples/gram schmidt.hpp .
g++ -std=c++11 -O3 -I$BOOSTDIR chaotic system.cpp

Of course, installing Boost to your include path makes life simple – if you have enough admin rights.

Boost examples in calc.phys.jyu.fi:
module add gcc
g++ -I/usr/local/boost 1 59 0 /usr/local/boost 1 59 0/libs/numeric/odeint/examples/solar system.cpp
a.out > solar system.dat
and in gnuplot
p ’solar system.dat’ u 2:4 w l,” u 5:7 w l,” u 8:10 w l,” u 11:13 w l,” u 14:16 w l,” u 17:19 w l

118

http://www.boost.org
http://www.boost.org/doc/libs/
http://www.boost.org/doc/libs/?view=category_Math
http://www.boost.org/doc/libs/1_59_0/libs/numeric/odeint/examples/my_vector.cpp
http://www.boost.org/doc/libs/1_59_0/libs/numeric/odeint/doc/html/index.html

16.1 Boost: ordinary differential equations (ODE)

If your equation is nth order (second order or higher) you first separate it to n coupled first order differential equations
(details in 22.3). Then use your great mathematical intuition and tell if the solution has kinks or is otherwise badly
behaving. Choose the integration algorithm, the ”stepper”, that solves the next point.

Fixed-step-size routines: Simple and fast, accuracy of the solution is your responsibility.
Adaptive-step-size routines: Try to reach an accuracy goal (absolute and relative error limit).

Boost has a seasoned library for solving ODE’S, as does GSL. Boost calls the current values the ”state”, which
contains {x(t), x′(t), ...}. Hence the type state type.

Example 42: (numerics/boost ode simple.cpp) Fixed step-size solution using boost::numeric::odeint

#include <iostream>
#include <boost /numeric / ode int . hpp>
#include <fstream>
using namespace std ;

using state_type = std : : vector<double> ;
using stepper_type = boost : : numeric : : odeint : : runge_kutta4<state_type> ;

/* Solves x’’(t) = -x(t) - gam*x’(t), split to coupled

x’(t) = y(t)

y’(t) = -x(t) - gam*y(t)

notation: x(t)=x[0], y(t)=x[1], x’(t) = dxdt[0], y’(t) = dxdt[1]

*/

void harmonic_oscillator (const state_type &x , state_type &dxdt , const double /*t*/)
{

const double gam=0.15;
dxdt [0] = x [1] ;
dxdt [1] = −x [0] − gam∗x [1] ;

}

119

int main ()
{

stepper_type stepper ;
state_type x ={1.0 ,2 .0} ; // initial values, x(0) = 1, x’(0) = 2

// integrate all the way to final time:

//integrate_const(stepper , harmonic_oscillator , x , 0.0 , 100.0 , 0.01);

//cout<<"final point "<<x<<endl;

// use method do_step to follow the solution step by step

ofstream out ("ode.dat") ;
const double dt = 0 . 0 1 ;
for (double t=0.0 ; t<100.0 ; t+= dt)
{

stepper . do_step (harmonic_oscillator , x , t , dt) ;
cout<<t<<" "<<x [0]<<" "<<x [1]<<endl ;
out<<t<<" "<<x [0]<<" "<<x [1]<<endl ;

}
out . close () ;

}

120

Example 43: (numerics/boost ode adaptive.cpp) Adaptive step-size solution using boost::numeric::odeint

// solve y’(t) = -t*y , condition y(0) = -2

// Adaptive integration using Boost::numeric::odeint

// compile :

// g++ --std=c++11 boost_ode_simple.cpp

#include <iostream>
#include <iomanip>
#include <vector>
#include <boost /numeric / ode int . hpp>

using state_type= std : : vector<double>;
using stepper_type= boost : : numeric : : odeint : : runge_kutta_cash_karp54<state_type>;

namespace my{
using namespace std ;
void system (const state_type& y , state_type& dydt , const double t)
{

dydt [0] = −t∗y [0] ;
}
void output (double t , double y , double exact) {

cout<<fixed<<setprecision (16) ;
static bool first=true ;
if (first) {

cout<<setw (20)<<"t"<<setw (20)<<"Boost solution" ;
cout<<setw (20)<<"exact solution"<<setw (20)<<"error\n" ;
first = false ;

}
cout<<setw (20)<<t<<setw (20)<<y<<setw (20)<<exact<<setw (20)<<y−exact<<endl ;

}
}

121

int main ()
{

using namespace std ;
const double e_abs=1e−15,e_rel=1e−15; // absolute and relative error goal

auto stepper = boost : : numeric : : odeint : : make_controlled<stepper_type>(e_abs , e_rel)
;

state_type y ={−2.0} ; //condition y(0)=-2 gives y(t) = -2.0*exp(-0.5*t*t)

const int n=50; // solve 50 points

const double t1 = 0 . 0 , t2=10.0;
const double dt = (t2−t1) /(n−1) ;

for (int i = 0 ; i<n ; ++i)
{

auto t = t1+i∗dt ;
auto exact = −2.0∗exp (−0.5∗t∗t) ;
my : : output (t , y [0] , exact) ;
auto steps =integrate_adaptive (stepper , my : : system , y , t , t+dt , 0 . 0 1) ;
// cout<<"steps "<<steps<<endl; // how many sub-division steps were needed

}
}

Such a simple my::system begs to be replaced with a lambda expression:

auto steps =integrate_adaptive (stepper ,
[] (const state_type& y , state_type& dydt , const double t)
{dydt [0] = −t∗y [0] ; }
, y , t , t+dt , 0 . 0 1) ;

This same ODE will be solved using GSL in chapter 22.3.

122

17 Formatted output

It’s important to keep numerical output readable. The following example is mixing columns pretty badly:

x y z

1.542234 12.4234 0.1213

13.0 4.234 1.00

and this is easily the default outcome. Another thing to remember is that the method may limit the accuracy of the
result, not the number of stored and filed decimals. It’s up to you not to publish 6 decimals if the method is reliable
only up to 2 decimals.

17.1 Formatted output using #include <iomanip>

The next shows how a std::cout object eats output manipulations: width of the field (10), the output form (fixed),
and the number of decimals (6):

cout<<fixed<<setprecision (6) ; // 6 decimals

cout<<setw (10)<<"x"<<setw (10)<<"y"<<setw (10)<<"z"<<endl ; //field width is 10

cout<<setw (10)<<x<<setw (10)<<y<<setw (10)<<z<<endl ;

This is awful, but at least the same formatting works also with writing to a file; it’s a stream just as cout.

ofstream output ("data.out") ;
output<<fixed<<setprecision (6) ;
output<<setw (10)<<x<<setw (10)<<y<<setw (10)<<z<<"\n" ;

data.out:

1.542234 12.423400 0.121300

13.000000 4.234000 1.000000

123

See numerics/output formatting.cpp for more examples. Beware, that after formatting some setting are still
on (fixed), while some are immediately forgotten (setw)!
C has the famous printf function, which is quite readable, but not considered a good C++ practise. I suggest that
if you are already good with printf use it. 17

17Pros of a stream object is type safety, the compiler can (always?) tell if a data type cannot be sensibly dealt with, and
flexibility, it works the same way on screen and on file.

124

17.2 printf, type safety and variadic functions and templates

There are several attempts to code a type-safe printf in C++, for example by Andrei Alexandrescu (see type-safe
printf discussion). Boost has worked on the issue quiet a while, see on choices to be made in printf.

I suggest that as soon as you define a class, think of how the objects should be printed. Write a member function
to do that, or overload << to do the job. The former way looks like this:

class Thing{
mytype data ; // some data type, can be self-defined as here

public :
print () { . . some code . . } // how to print data

} ;
int main ()
{

Thing blob{ . . input data . . } ; // create and initialize a Thing

blob . print () ; // output the Thing

}

You can improve this example easily to use arbitrary stream for output and hide the formatting to the member
function. Same for reading, as blob.read().

By the way, printf is an example of a function, that can have a variable number of arguments, this is known as

variadic function

C++11 introduced a template, that can have any number of template arguments,

variadic template
template <typename ...Ts>

Here the ... is literally in the code, it’s known as the ellipsis.

This can be quite handy and I’m just learning to appreciate it. It’s also template meta-programming and that
makes us all feel groovy. Note: The C++ Standard Library has already a nice variadic template, std::tuple.

125

http://stackoverflow.com/questions/17671772/c11-variadic-printf-performance
http://stackoverflow.com/questions/17671772/c11-variadic-printf-performance
http://www.boost.org/doc/libs/1_59_0/libs/format/doc/choices.html

Example 44: (advanced/variadic template.cpp) Variadic template to sum squares of numbers.

// Any number of arguments to sum_of_squares()

#include <iostream>
#include <cmath>
using std : : cout ;
using std : : pow ;

double sum_of_squares () {return 0 ; }// end of recursion

template <typename T , typename . . . Ts>
double sum_of_squares (T first , Ts . . . rest) // double output to be sure

{
// pow takes a double or float as base, int base will be implicitly converted

return pow (first , 2) + sum_of_squares (rest . . .) ; // recursive

}
int main ()
{

cout<<sum_of_squares (1 , 2)<<"\n" ;
cout<<sum_of_squares (1 , 2 , 3 , 4 , 5)<<"\n" ;
cout<<sum_of_squares (1 . 1 , 2 . 2 , 3 . 3)<<"\n" ;
cout<<sum_of_squares (1 , 2 . 1 , 3 . 1)<<"\n" ;

}
// In the coming standard C++1y (g++ -std=c++1y) you could write

// auto sum_of_squares(T first, Ts ... rest)

For more examples, see http://en.wikipedia.org/wiki/Variadic template, which contains also an example of how
one could improve printf in C++11. Don’t worry about runtime speed

C++ variadic templates are expanded at compile time. 18

18In C, variadic functions are resolved at run time, so there is a speed penalty.

126

http://en.wikipedia.org/wiki/Variadic_template

18 Linear algebra – which library to use?

THE answer is LAPACK and BLAS, written in fortran and available in www.netlib.org. Processor manufacturers
have their optimized versions (ACML,MKL) and an independent, freely distributed automatically optimized ATLAS.
C versions (CLAPACK, CBLAS) are heavily used in GSL19. GSL, the Gnu Scientific Library, offers an extensive
package of C-numerics.

There are optimized LAPACK and BLAS libraries by Intel (MKL) and AMD (ACML). To be able to use them
you have to

• learn how to call fortran subroutines from C++ (tricky business)

• find a third party wrapper, C++ code that calls fortran or the C versions of the libraries.

Calling old fortran-77 (FORTRAN) library routines is pretty safe, but calling, for example, new fortran-95 parts
of the MKL library has spawned a warning:

Caution
Avoid calling BLAS 95/LAPACK 95 from C/C++. Such calls require skills in manipulating the descriptor
of a deferred-shape array, which is the Fortran 90 type. Moreover, BLAS95/LAPACK95 routines contain
links to a Fortran RTL.

19The netlib versio of CLAPACK was ”f2c’d”, translated from fortran to C. I find this approach and buying with photocopied
money more than a bit troublesome. Why not use the real thing?

127

http://www.netlib.org
http://software.intel.com/sites/products/documentation/hpc/mkl/mkl_userguide_lnx/GUID-ABCC618B-43C4-4DCD-ADA2-6F061B5116CD.htm

A C++ programmer would prefer a package written in C++. There was once LAPACK++, but the project
faded away around year 2000. It was superseced by TNT (Template Numerical Toolkit), which too looks pale. Boost
is very much alive, but mostly not numerics stuff. The Boost collection boost::ublas is outdated, limited and the
interface is too far from math notation (only my personal opinion).

Here is an incomplete list of projects providing well-coded C++ algorithms:

• OpenBlas and GotoBlas2 (original code by Kazushige Goto) is optimized to processor architectures (Ne-
halem, Sandy Bridge, Haswell, AMD Bulldozer, Piledriver etc.)

• Armadillo (NICTA (Australia),) 2014-10-30 Version 4.500 (Singapore Sling)
can utilize MKL and OpenBlas, to mention a few.

• MTL4 (Simunova, a small c++ software company in Dresden) (speed tests)

• IT++(Sweden; version 4.2.0 came out 2010 – long break –version 4.3.1 came out 6.7.2013)

• Blaze 20.6.2014 version 2.1
A project initiated by Klaus Iglberger, main developers in Erlangen, Germany.
A link to a fine article on Smart Expression Templates.

• Trilinos (Sandia) A huge collection of methods; actively maintained, version 11.12.1 Oct. 24th 2014.

• Eigen Eigenvalue problem specialist – version 3.2.2 came out 4.8.2014

• IETL (The Iterative Eigensolver Template Library) is another eigenvalue specialist. Uses Boost, LAPACK,
BLAS, ATLAS and possibly Blitz++. The web page was updated 2004, so I wonder if there is any development..

Armadillo, MTL4 and Blaze have a simple interface, close to Matlab/Octave. They use generic programming and
boldly apply the expression template technique to optimize e.g. matrix and vector operations. In this group Blaze is
a newcomer – and blazingly fast! It works parallel in shared memory machines, such as your laptop.

Header-only libraries only need to be copied to your machine.
Include the library path in compilation is all you need to do.

128

http://math.nist.gov/lapack++/
http://math.nist.gov/tnt/
http://xianyi.github.io/OpenBLAS/
http://www.tacc.utexas.edu/tacc-projects/gotoblas2
http://arma.sourceforge.net/
www.mtl4.org
http://www.simunova.com/node/185
http://sourceforge.net/projects/itpp/files/itpp/
http://code.google.com/p/blaze-lib/
http://arxiv.org/pdf/1104.1729.pdf
http://trilinos.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.comp-phys.org/software/ietl/

18.1 Armadillo examples

Example 45: (numerics/arma matrix multi.cpp) Armadillo: Matrix product (source: Armadillo web page)

#include <iostream>
#include <armadi l lo>

using namespace std ;
using namespace arma ;

int main ()
{

mat A = randu<mat>(4 ,5) ; // mat is double

mat B = randu<mat>(4 ,5) ;

cout << "A*trans(B) =" << endl ;
cout << A∗trans (B) << endl ;

return 0 ;
}

This calls internally a CBLAS routine, since the attempt to compile as
g++ arma matrix multi.cpp

gives the error message (among a plethora of other lines)
undefined reference to ‘cblas dgemm‘.

Here ”dgemm” stands for a LAPACK/BLAS subroutine name meaning ”double general matrix matrix”. You get
CBLAS as part of GSL or OpenBlas or ATLAS:

g++ -std=c++11 arma matrix multi.cpp `gsl-config –libs`

g++ -std=c++11 arma matrix multi.cpp -lopenblas g++ -std=c++11 arma matrix multi.cpp -L/usr/lib64/atlas/ -lcblas

129

Example 46: (numerics/arma eigenvalues.cpp) Armadillo: Eigenvalues of a symmetric matrix

#include <iostream>
#include <iomanip>
#include <armadi l lo>
using namespace std ;
using namespace arma ;
int main () {

mat A = randu<mat>(5 ,5) ;
vec eigval ;
mat eigvec ;
A = A+trans (A) ; // a way to make a symmetric matrix

cout<< "A= \n"<<A<<endl ; ;

eig_sym (eigval , eigvec , A) ; // this does all work

vec x (eigval) ;
for (unsigned i=0;i<A . n_rows ; i++){

cout<<i<<"th eigenvalue = "<<eigval (i)<<endl ;
x = eigvec . col (i) ; //x(j) = eigvec(j,i);

cout<<" x = "<<trans (x) ;
x = A∗x/eigval (i) ;
cout<<"check: Ax/lambda = "<<trans (x)<<endl ;

}
return 0 ;

}

Armadillo calls the LAPACK routine dsyev (”double symmetric eigenvalue”), so link, e.g., with -llapack.

130

One possible output:

A=

1.6804 0.5919 1.2605 1.7146 0.9279

0.5919 0.6704 1.3971 0.9135 0.7969

1.2605 1.3971 0.7296 1.2307 1.0895

1.7146 0.9135 1.2307 0.2832 1.4111

0.9279 0.7969 1.0895 1.4111 0.3134

0th eigenvalue = -1.30315

x = -0.3020 -0.1113 0.0491 0.8003 -0.5035

check: Ax/lambda = -0.3020 -0.1113 0.0491 0.8003 -0.5035

1th eigenvalue = -0.803214

x = 0.1275 0.5699 -0.7894 0.1882 0.0197

check: Ax/lambda = 0.1275 0.5699 -0.7894 0.1882 0.0197

2th eigenvalue = -0.281196

x = 0.3701 0.3639 0.2307 -0.3048 -0.7645

check: Ax/lambda = 0.3701 0.3639 0.2307 -0.3048 -0.7645

...

131

18.2 Blaze example

Example 47: (numerics/blaze1.cpp) Blaze: Simple vector and matrix operations (source: Blaze web page)

// https://code.google.com/p/blaze-lib/wiki/Getting_Started

// "An Example Involving Matrices"

// added main()

#include <b laze /Math . h>

using namespace blaze ;

int main ()
{

// Instantiating a dynamic 3D column vector

DynamicVector<int> x (3UL) ;
x [0] = 4 ;
x [1] = −1;
x [2] = 3 ;

// Instantiating a dynamic 2x3 row-major matrix, preinitialized with 0. Via the

function call

// operator three values of the matrix are explicitly set to get the matrix

// (1 0 4)

// (0 -2 0)

DynamicMatrix<int> A (2UL , 3UL , 0) ;
A (0 , 0) = 1 ;
A (0 , 2) = 4 ;
A (1 , 1) = −2;

// Performing a dense matrix/dense vector multiplication

DynamicVector<int> y = A ∗ x ;

132

// Printing the resulting vector

std : : cout << "y =\n" << y << "\n" ;

// Instantiating a static column-major matrix. The matrix is directly initialized

as

// (3 -1)

// (0 2)

// (-1 0)

StaticMatrix<int , 3 UL , 2 UL , columnMajor> B (3 , 0 , −1, −1, 2 , 0) ;

// Performing a dense matrix/dense matrix multiplication

DynamicMatrix<int> C = A ∗ B ;

// Printing the resulting matrix

std : : cout << "C =\n" << C << "\n" ;
}

g++ -std=c++11 -Ipath to blaze blaze1.cpp

calc:
module add gcc

g++ -std=c++11 -I/usr/local/blaze blaze1.cpp

133

19 Calling C or fortran from C++

Here are some principles about mixing fortran, C and C++.
Example 48: Fortran subroutine dgemm is part of BLAS, it computes the matrix-matrix product.

SUBROUTINE DGEMM (TRANSA , TRANSB , M , N , K , ALPHA , A , LDA ,
B , LDB , BETA , C , LDC)

DOUBLE PRECISION ALPHA , BETA
INTEGER K , LDA , LDB , LDC , M , N
CHARACTER TRANSA , TRANSB
DOUBLE PRECISION A (LDA , ∗) ,B (LDB , ∗) ,C (LDC , ∗)

Declaration in C++:

extern "C"

{
void dgemm_ (char∗ transa , char∗ transb , int∗ m ,

int∗ n , int∗ k , double∗ alpha ,
double∗ a , int∗ lda , double∗ b ,
int∗ ldb , double∗ beta , double∗ c , int∗ ldc) ;

}

• extern ”C”
means ”compile C style”.
It tells the C++ compiler to forget about function overloading and identify the function by its name only , just
like in C,

• The compiled fortran subroutine is in object code file dgemm.o or inside a library with an unerscore: dgemm()

is shown as dgemm ().

• fortran is always ”pass by reference”, so all arguments have to be pointers. Here double* a points to the start
of a double array.

134

As if this were not enough, there is one more problem: matrix storage in fortran (and in Matlab) is column
major, but in C/C++ row major. Below is a figure about the two storage habits.

math notation:

(
1 2 3 4
5 6 7 8

)
fortran/Matlab row major : 1 5 2 6 3 7 4 8

C/C++ column major : 1 2 3 4 5 6 7 8 .

Both are natural, but moving between languages you have to change indexing before and after a call to dgemm. For
square matrices this means transpose. If you have defined a static array in C-style like this

const int n=100;
double a [n] [n] ;

the fortran call must include const int* n .

Finally, by default indices begin from 0 (C/C++) or from 1 (fortran)
fortran : 1 → N, meaning V(1),V(2)...,V(N)

C++ : 0 →(N-1), meaning V(0),V(1)...,V(N-1)

135

20 Fixed-size arrays in C++: plain array and std::array:

Two different things that can be called ”arrays”.

• Plain, C-style array. A static array is made like this:

double array1 [1 0] ; // memory allocation for 10 elements

int array_int []={3 , 6 , 12} ; // memory allocation and fill with values

Dynamic arrays are created with keywords new and deleted with delete. I’m not telling you how to use plain
arrays, because they don’t conform with C++ containers and their memory management is manual labour.
Deleting a two-dimensional, dynamic array array2 is not simply delete[][] array2. Below are two examples.

Example 49: (basic/array to function.cpp) Passing an C array to function in C++ style

#include <iostream>
using namespace std ;
void f (int d [] , const int sized) { // C++ style

// empty [] tells compiler d is an array

// d is passed by reference!

// You are dealing with the original array, not with it’s copy.

for (int i=0;i<sized;++i) cout<<i<<" "<<d [i]<<endl ;
}
int main () {

int j []={2 , 4 , 5} ;
f (j , 3) ;
return 0 ;

}

136

Example 50: (basic/array to function.cpp) Passing an C array to function in C style

#include <iostream>
using namespace std ;
void f (int ∗d , const int sized) { // C-style, think of d as a pointer

for (int i=0;i<sized;++i) cout<<i<<" "<<d [i]<<endl ;
}
int main () {

int j []={2 , 4 , 5} ;
f (j , 3) ;
return 0 ;

}

• There is one more data type suitable for numerical data in C++, std::array. It’s a container, for start. From
cppreference, std::array can be initialized like this:

std : : array<int , 3> a1{ {1 ,2 ,3} } ; // double-braces required

std : : array<int , 3> a2 = {1 , 2 , 3} ; // except after =

std : : array<std : : string , 2> a3 = { {std : : string ("a") , "b"} } ;

Notice how std::array type and dimension is defined as template parameters! Since it’s a container, it has
many built-in methods just like std::vector has.

Fixed size makes compile time checks possible, since C++11 also template arguments can be checked. For that
C++ has std::static assert (see basic/static assert.cpp). std::static assert can greatly benefit
code development, by letting you know if you, by mistake, contradict your own ideas.

137

http://en.cppreference.com/w/cpp/container/array

21 Exception handling with throw and catch

The C++ Standard Library has a class dedicated to exception handling, std::exception. One part of it is
runtime error. One way to make your own error handling process is to inherit the class,

class MyException : public std : : exception{
. . .
}

and add a new property.
In numerics exceptions are often simple, I’m using this handling:

try{
my_function () ;

}
catch (char const∗ e) {

cerr << e << endl ;
return 1 ;

}

ja funktiossa on rivi

void my_function (void) {
{

. . .
if (test) throw "test failed" ;
. . .

}

Error happens if test is true, and the exception with message ”test failed” is thrown and we leave the function.
Later the exception is caught with catch 20

20The function my function() throws and exception and wishes some exception handling routine will take care of it properly.

138

If throw is executed, the function execution terminates; it’s still more gentle than halting the program execution.
Any code after throw is not executed and essentially the function does not return at all (so no need to have a return

in a function that only throws).
In the example the message is output to stream std::cerr, similar to std::cout, but specialized for error

outputs. This makes it possible to separate error output from normal output. In bash, typing

a.out 2> program.err

causes normal std::cout output to screen and std::cerr output to go to file program.err. There is also std::clog

for log outputs.

139

22 Gnu Scientific Library (GSL)

GSL in wikipedia

GSL is free and written in C. For C++ users the linkage is made easy,

The library header files automatically define functions to have extern ”C” linkage when included in C++
programs. This allows the functions to be called directly from C++.

Example 51: (numerics/gsl bessel.cpp) Bessel function J0
Compilation g++ gsl bessel.cpp -lgsl -lgslcblas or g++ gsl bessel.cpp `gsl-config --libs`

(try gsl-config --libs in linux)

#include <iostream>
#include <iomanip>
#include <g s l / g s l s f b e s s e l . h>
using namespace std ;
int main (void) {

double x = 5 . 0 ;
double y = gsl_sf_bessel_J0 (x) ;
printf ("J0(%g) = %.18f\n" , x , y) ;
// or using iomanip:

//cout<<fixed<<setprecision(18);

//std::cout<<"J0("<<x<<") = "<<y<<endl;

return 0 ;
}
// J0(5) = -0.177596771314338264

140

http://en.wikipedia.org/wiki/GNU_Scientific_Library

22.1 GSL: statistics

141

Example 52: (numerics/gsl statistics.cpp) Arithmetic mean and standard deviation

#include <iostream>
#include <vector>
#include <g s l / g s l s t a t i s t i c s . h>
using namespace std ;
int main (void) {

// using plain array

double data [5] = {17 .2 , 18 . 1 , 16 . 5 , 18 . 3 , 1 2 . 6} ;
double mean , variance ;
mean = gsl_stats_mean (data , 1 , 5) ;
variance = gsl_stats_variance (data , 1 , 5) ;
cout<<" mean = "<<mean<<endl ;
cout<<" variance = "<<variance<<endl ;
// using std::vector

vector<double> v = {17 .2 , 18 . 1 , 16 . 5 , 18 . 3 , 1 2 . 6} ;
mean = gsl_stats_mean(&v [0] , 1 , 5) ;
variance = gsl_stats_variance(&v [0] , 1 , 5) ;
cout<<" mean = "<<mean<<endl ;
cout<<" variance = "<<variance<<endl ;
}

Passing a std::vector as a pointer &v[0] is not pretty, but does the job. All that the GSL function needs is the
start address and the length of the data; elements of a std::vector are stored in consecutive memory slots.

142

22.2 GSL: Fast Fourier Transform (FFT)

I want to transform complex data with length 2N , N ∈ Z>0, like this:

fft (data , direction) // direction = 1 forward, -1 backward

Here direction is 1 for a Fourier transform and -1 for an inverse transform. Notice that I want to keep this syntax
no matter what library does the FFT. The decision to use GSL’s FFT is made in a #include, which loads the header
given below.

The variable type of data is flexible, and the template works at least for std::vector , std::array (fixed size,
not plain array), std::valarray, armadillo vector, and Blaze vector. Armadillo vectors needs some special care.
The compiler option -DARMA chooses the first option in

#ifdef ARMA
// Armadillo data has no method size, use n_elem

n = data . n_elem ;
#else

n = data . size () ;
#endif

This solves the problem of missing size() method, but it’s a hacky solution.

143

Example 53: (gsl fft.hpp) A possible GSL FFT header

#ifndef GSL FFT HPP
#define GSL FFT HPP
#include <g s l / g s l e r r n o . h>
#include <g s l / g s l f f t c o m p l e x . h>

namespace my_GSL_FFT

{
template <typename T>
int fft (T& data , int direction) {

int status ;
const size_t stride=1;
size_t n ;

#ifdef ARMA
// Armadillo data has no method size(), use n_elem

n = data . n_elem ;
#else

n = data . size () ;
#endif

double∗ pdata = reinterpret_cast<double∗> (&data [0]) ;
if (direction>0){

status = gsl_fft_complex_radix2_forward (pdata , stride , n) ;
}
else {

status = gsl_fft_complex_radix2_backward (pdata , stride , n) ;
}
if (status !=GSL_SUCCESS) return 1 ;
return 0 ;

}
}
#endif

144

22.2.1 Passing a pointer to complex data

C++11 complains if you try to take the address of a complex number like this:

double∗ pdata = &data [0] . real () ; // may not compile

Here data[0].real() is an rvalue, a temporary whose life is about to end (see chapter 8.3). It does not have an
identity that lives long enough to be used. The first complex element does have an identity, an lvalue, so I tell
the compiler to use that and pretend it’s pointing to a double using reinterpret cast. The type change done by
reinterpret cast is in your responsibility, it basically tells the compiler ”trust me, I know what I’m doing”.

double∗ pdata = reinterpret_cast<double∗> (&data [0]) ;

Armadillo vector does not conform with a standard container, specifically it has no size() method. The least I
want is to add a third argument to the clean call fft(data,direction) to tell the data size! I have chosen to use
the preprocessor and
#define ARMA

if I’m using Armadillo vectors. Test code numerics/gsl fft arma main.cpp is shown below, one using std::vector

is in numerics/gsl fft main.cpp.

145

Example 54: (numerics/gsl fft arma main.cpp) FFT test using Armadillo; modified from GSL manual C version.

// Compile: (the ‘ below is printed wrong in latex)

// g++ -std=c++11 gsl_fft_arma_main.cpp ‘gsl-config --libs‘

#include <iostream>
#include <cmath>
#include <complex>
#include <fstream>
#define ARMA
#include "gsl_fft.hpp"

#include <iomanip>
#include <armadi l lo>

using namespace std ;
using namespace arma ;
using my_GSL_FFT : : fft ;
// short name for data type

using vectype=Col<complex<double>>;

// overload << to print complex numbers in vectype as I like them here

std : : ostream& operator<<(std : : ostream & os , const vectype & v)
{

using namespace std ;
os<<scientific<<setprecision (8) ; // some I/O manipulation

int i=0;
for (auto x : v) {os<<setw (5)<<i++<<" "<<setw (20)<<x . real ()<<" "<<setw (20)<<x . imag ()

<<endl ; }
return os ;

}

146

int main (void) {
const int n=128;
const int n1= 10 ; // Keep less than n

vectype data (n) ;
ofstream myfile ("result") ;
//

// Symmetric pulse: 1111111111100...001111111111

// 11 ones 10 ones

data . ones () ;
for (int i=n1+1;i<n−n1;++i) data (i) =0.0 ;

cout<<"before fft :\n" ;
cout<<data ;
myfile<<data ;
myfile<<endl ;
// ----------------------

// forward FFT

int status = fft (data , 1) ;
// ----------------------

if (status !=0){
cout << "fft fails\n" ;
return 1 ;

}
cout<<"after forward fft (divided by sqrt(n)) :\n" ;
data /= sqrt (n) ;
cout<<data ;
myfile<<data ;

// ----------------------

147

// backward FFT

status = fft (data ,−1) ;
// ----------------------

if (status !=0){
cout << "fft fails\n" ;
return 1 ;

}

cout<<"after backward fft (divided by sqrt(n)) :\n" ;
data /= sqrt (n) ;
cout<<data ;
myfile<<data ;
myfile . close () ;
return 0 ;

}

148

Result:

−0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120

original pulse
Fourier transformed pulse

The data is represented, as usual in FFT, in wrap-around order. You can easily write utilities to do the wrapping
from ”natural order” and unwrapping to natural order – move data or use an index table.

149

22.3 GSL: differential equations

Let’s solve a simple equation, one that we can solve analytically,

y′(t) = −ty , y(0) = −1 , exact solution y(t) = −2e−t
2/2 .

Example 55: (numerics/gsl ode simple.cpp)

// solve y’(t) = -t*y , condition y(0) = -2

// g++ -std=c++11 gsl_ode_simple.cpp ‘gsl-config --libs‘

#include <iostream>
#include <iomanip>
#include <cmath>
#include <vector>
#include <g s l / g s l m a t r i x . h>
#include <g s l / g s l o d e i v 2 . h>
using namespace std ;
int func (double t , const double y [] , double f [] , void ∗params) {

f [0] = −t∗y [0] ; // y[0] = y, f[0] = y’ = dy/dt = -t*y

return GSL_SUCCESS ;
}
void output (double t , double y , double exact) {

cout<<fixed<<setprecision (16) ;
static bool first=true ;
if (first) {

cout<<setw (20)<<"t"<<setw (20)<<"gsl solution" ;
cout<<setw (20)<<"exact solution"<<setw (20)<<"error\n" ;
first = false ;

}
cout<<setw (20)<<t<<setw (20)<<y<<setw (20)<<exact<<setw (20)<<y−exact<<endl ;

}

150

int main ()
{

double exact ;
const int n=50; // # of points

double t0 = 0 . 0 , t1 = 1 0 . 0 ; // time start and end

double dt=(t1−t0) /(n−1) ; // time step

double y [1] = { −2.0} ; // initial value; table with one entry

gsl_odeiv2_system sys = {func , nullptr , 1 , nullptr } ; // not using a Jacobian

auto driver = gsl_odeiv2_driver_alloc_y_new (&sys , gsl_odeiv2_step_rk8pd , 1e−13, 1
e−13, 0 . 0) ;

output (t0 , y [0] , y [0]) ;
for (int i = 0 ; i<n ; ++i) {

auto t = t0+i∗dt ; // begin of t interval

if (gsl_odeiv2_driver_apply (driver , &t , t+dt , y) != GSL_SUCCESS)
{

cout<<"FAILED near "<<t<<endl ; return 1 ;
}

exact = −2.0∗exp (−0.5∗t∗t) ;
output (t , y [0] , exact) ;

}
gsl_odeiv2_driver_free (driver) ;
return 0 ;

}

151

The next one is more involved, it’s directly from the GSL manual. The 2nd order, nonlinear Van Der Pol oscillator
equation is

x′′(t) + µx′(t)(x(t)2 − 1) + x(t) = 0 .

The numerical solver is for 1st order equations, so we split this 2nd order equation to two coupled 1st order equations.
Define a new variable y,

x′(t) = y(t)

y′(t) = −x(t)− µy(t)(x(t)2 − 1)

An n:th order differential equation is solved as n coupled 1st order differential equations

The code solves two unknown functions {x(t), y(t)} point by point, starting from initial values at t = 0. Once a
point {x(t), y(t)} has been solved, the derivatives in that point can be computed and the next point {x(t+dt), y(t+dt)}
can be solved, and so on.

The Van Der Pol oscillator position x(t) can have very sharp turns for some values of µ. Near sharp turns we
apply adaptive stepsize: In order to maintain numerical accuracy, the algorithm takes shorter steps in t. 21

21If this is neglected, the solution goes astray after every steep turn. It will follow a solution curve, but not the one we started
with, until after the next turn it picks yet another new curve. Since the numerical accuracy is limited anyhow, you can be sure
this happens sooner or later in t.

152

The biggest challenge is bookkeeping. We have (i) the math on paper, (ii) 1st order differential equation notation
in GSL and (iii) the notation in GSL solver. The GSL manual uses this general notation:

dyi(t)

dt
= fi(t, y1(t), ..., , yn(t)) , i = 1...n .

Don’t spend too much time studying this, but tabulated, the three notations are related like this:
A B C

x(t) y1(t) y[0]
y(t) y2(t) y[1]

x′(t) = y(t) dy1(t)
dt = f1(t, y1(t), y2(t)) f [0]

y′(t) = −x(t)− µy(t)(x(t)2 − 1) dy2(t)
dt = f2(t, y1(t), y2(t)) f [1]

∂x′(t)
∂x(t) = 0 ∂f1(t,y1(t),y2(t))

∂y1(t)
m[0, 0]

∂x′(t)
∂y(t) = 1 ∂f1(t,y1(t),y2(t))

∂y2(t)
m[0, 1]

∂y′(t)
∂x(t) = −1− 2µxy ∂f2(t,y1(t),y2(t))

∂y1(t)
m[1, 0]

∂y′(t)
∂y(t) = −µ(x2 − 1) ∂f2(t,y1(t),y2(t))

∂y1(t)
m[1, 1]

x′′(t) df1(t,y1(t),y2(t))
dt dfdt[0]

y′′(t) df2(t,y1(t),y2(t))
dt dfdt[1]

153

Implementation:

• The function func()(4 top rows of the table) computes {x′(t), y′(t)} from known values {x(t), y(t)}. The results
are stored to table f, elements {f[0],f[1]}.

• The function jac() (4 bottom rows of the table) hold the Jacobi matrix. This information is used only in higher
order solvers – the more knowledge, the less function evaluations. A twist to bookkeeping: jac() is supposed
to fill a 1-dimensional table dfdy, where the Jacobi matrix is stored as m[i, j] = dfdy[i + dimensio ∗ j]. Hence
the odd calls to gsl matrix *. If you find this hard to follow, fill dfdy as you please. A plain for loop is not
a bad idea.

Example 56: (gsl func jac.h)

int func (double t , const double y [] , double f [] , void ∗params) {
double mu = ∗(double ∗) params ;
f [0] = y [1] ;
f [1] = −y [0] − mu∗y [1] ∗ (y [0] ∗ y [0] − 1) ;
return GSL_SUCCESS ;

}
int jac (double t , const double y [] , double ∗dfdy , double dfdt [] , void ∗params) {

double mu = ∗(double ∗) params ;
gsl_matrix_view dfdy_mat

= gsl_matrix_view_array (dfdy , 2 , 2) ;
gsl_matrix ∗ m = &dfdy_mat . matrix ;
gsl_matrix_set (m , 0 , 0 , 0 . 0) ;
gsl_matrix_set (m , 0 , 1 , 1 . 0) ;
gsl_matrix_set (m , 1 , 0 , −2.0∗mu∗y [0] ∗ y [1] − 1 . 0) ;
gsl_matrix_set (m , 1 , 1 , −mu ∗(y [0] ∗ y [0] − 1 . 0)) ;
dfdt [0] = 0 . 0 ;
dfdt [1] = 0 . 0 ;
return GSL_SUCCESS ;

}

154

GSL has driver functions in the header gsl odeiv2.h, which are much easier to use than the basic functions
in the header gsl odeiv.h. Whichever, some preparatory steps need to be done.

• Choose the integration algorithm, that is, how the next point {x(t+dt), y(t+dt)} is computed. Plenty of choice
for this stepper here: rk2, rk4, rkck, rk8pd, rk2imp, rk4imp, bsimp, rk1imp, msadams and msbdf.

• Choose the control criterion, that is, when are shorter steps needed. For example absolute error 10−6, relative
error 0

• GSL wants all information about the problem at hand in one data structure of type gsl odeiv2 system:

gsl_odeiv2_system sys = {func , jac , 2 , &mu} ;

This collects information about the functions, their derivatives, Jacobi matrix, order and the parameter(s).
Any number of parameters are passed as a pointer
void * params.
This naked pointer doesn’t let the compiler check your data properly, so better be careful.

A GSL driver function is set up 22

auto solver =
gsl_odeiv2_driver_alloc_y_new (&sys , gsl_odeiv2_step_rk8pd , 1e−6, 1e−6, 0 . 0) ;

and it’s called later like this

int status = gsl_odeiv2_driver_apply (solver , &t , ti , y) ;

Passed values are the algorithm solver, start point t, end point ti and initial values y. The solution at time ti is
in the return value of y.

22There are four drivers to choose from.

155

http://www.gnu.org/software/gsl/manual/html_node/Driver.html

Set initial values and find the solution between t=0...100.
Example 57: (numerics/gsl ode part.cpp)

#include <s t d i o . h>
#include <g s l / g s l e r r n o . h>
#include <g s l / g s l m a t r i x . h>
#include <g s l / g s l o d e i v 2 . h>
#include "gsl_func_jac.h"

int main (void) {
double mu = 10 ;
gsl_odeiv2_system sys = {func , jac , 2 , &mu } ;
auto solver = gsl_odeiv2_driver_alloc_y_new (

&sys , gsl_odeiv2_step_rk8pd , 1e−6, 1e−6, 0 . 0) ;
int i ;
double t = 0 . 0 , t1 = 1 0 0 . 0 ;
double y [2] = { 1 . 0 , 0 . 0 } ;
for (i = 1 ; i <= 100 ; i++) {

double ti = i ∗ t1 / 1 0 0 . 0 ;
int status = gsl_odeiv2_driver_apply (solver , &t , ti , y) ;
if (status != GSL_SUCCESS) {

printf ("error, return value=%d\n" , status) ;
break ;

}
// C printf is here a lot shorter than C++ iomanip would be

printf ("%.5e %.5e %.5e\n" , t , y [0] , y [1]) ;
}
gsl_odeiv2_driver_free (solver) ;
return 0 ;

}

156

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

Van Der Pol oscillator with µ = 10. The line is just a linear interpolation between solved points.

157

22.4 GSL: interpolation

It’s convenient to hide the GSL-specific parts to a header. I chose to use std::vector for data. The example
recognizes two spline types, not very ambitious :ˆ)

• “cspline” (natural cubic spline)
Changes in one point causes non-local changes to the spline → unstable
”Natural” refers to setting end point derivatives to zero.

• ”akima” or ”Akima” (natural Akima spline)
Changes in one point causes only local changes to the spline → stable

Steps:

1) Reserve space for accelerator (speeds up searches)

auto accel = gsl_interp_accel_alloc () ;

2) Reserve space for interpolation

gsl_spline spline = gsl_spline_alloc (gsl_interp_cspline , . . .) ;

3) Initialize the interpolation with known points (x, y) (now in a std::vector):

gsl_spline_init (spline ,&x [0] ,& y [0] , x . size ()) ;

4) Compute the interpolated y values to yy (iterator posy) at points xx (iterator posx)

∗posy++ = gsl_spline_eval (spline , ∗posx , acc) ;

If needed, the 1st and 2nd derivative could be computed:

. . . = gsl_spline_eval_deriv (. . .) ;

. . . = gsl_spline_eval_deriv2 (. . .) ;

158

Example 58: (numerics/gsl spline.hpp)

// wrapper to GSL spline

// spline type "cspline" is natural cubic spline

// spline type "akima" or "Akima" is natural Akima spline

#ifndef GSL SPLINE HPP
#define GSL SPLINE HPP
#include <iostream>
#include <c s t r i n g>
#include <vector>
#include <g s l / g s l e r r n o . h>
#include <g s l / g s l s p l i n e . h>

namespace my

{
using namespace std ;
using vec= vector<double>;

void spline (const vec& x , const vec& y , vec& xx , vec& yy , const string& type) {
auto acc = gsl_interp_accel_alloc () ;
gsl_spline∗ spline ;
int choose=0;
if (type . compare ("akima")==0 | | type . compare ("Akima")==0) choose=1;
switch (choose) {
case 0 :

spline = gsl_spline_alloc (gsl_interp_cspline , x . size ()) ;
break ;

case 1 :
spline = gsl_spline_alloc (gsl_interp_akima , x . size ()) ;
break ;

}
gsl_spline_init (spline , &x [0] , &y [0] , x . size ()) ;

159

auto posy = yy . begin () ;
for (auto posx = xx . begin () ; posx != xx . end () ; ++posx) {
∗posy++= gsl_spline_eval (spline , ∗posx , acc) ;

}
gsl_spline_free (spline) ;
gsl_interp_accel_free (acc) ;

}
}
#endif

Example 59: (numerics/gsl spline.cpp) Test code for GSL spline header

// spline test g++ -std=c++11 gsl_spline.cpp ‘gsl-config --libs‘

#include <iostream>
#include <iomanip>
#include <vector>
#include <algor ithm>
// home made call to GSL spline

#include "gsl_spline.hpp"

using namespace std ;
typedef vector<double> vec ;

void output (const vec& x , const vec y)
{

cout<<fixed<<setprecision (8) ;
for (auto i=0;i<x . size () ;++i)

cout<<x [i]<<" "<<y [i]<<endl ;
cout<<"\n\n\n" ;

}

int main () {
vec x (10) ,y (10) ; // known points (x,y)

160

double t ;
t=−5.0;
for (unsigned i=0;i<x . size () ;++i) { // you could use std::generate

x [i] = t ;
y [i] = 10.0−t∗t ;
t += 1 . 0 ;

}
y [4] += 1 0 . 0 ; // lift one point up to demonstrate locality/nonlocality

output (x , y) ;

// interpolated points xx

vec xx (100) ,yy (100) ;
double dx = (x [x . size ()−1]−x [0]) /(xx . size ()−1) ;
for (unsigned i=0;i<xx . size () ;++i) { xx [i] = x [0]+i∗dx ;}

// interpolate using natural cubic spline

my : : spline (x , y , xx , yy , "cspline") ;
output (xx , yy) ;

// interpolate using natural Akima spline

my : : spline (x , y , xx , yy , "Akima") ;
output (xx , yy) ;
return 0 ;

}
// a.out>tt

// gnuplot

// p ’tt’ i 0 w p pt 7 ps 1.5 t’known points’,’’ i 1 w lp pt 8 t’cubic’,’’ i 2 w lp

pt 12 t’akima’

161

-15

-10

-5

 0

 5

 10

 15

 20

-5 -4 -3 -2 -1 0 1 2 3 4

known points
cubic

akima

162

22.5 GSL: Monte Carlo integration

Let’s compute an N dimensional integral over a hypercube,∫ b1

a1

dx1

∫ b2

a2

dx2...

∫ bN

aN

dxN f(x1, x2...xN) .

GSL offers three ways (see Wikipedia Monte Carlo sampling)

1) Plain - sample random points inside thye hyper cube; a very crude method

2) MISER - (Press & Farrar) stratified sampling algorithm; sample points from areas that give largest error

3) VEGAS - (Lepage) combines both stratified sampling and importance sampling (sample points from areas that
affect the result the most)

The example code evaluates the integral

1

π3

∫ π

0
dx

∫ π

0
dy

∫ π

0
dz

1

1− cos(x) cos(y) cos(z)
= 1.39320392... .

Prerequisites:

• Random number generator

• Integrand:

Data Type: gsl_monte_function

This data type defines a general function

with parameters for Monte Carlo integration.

double (* f) (double * x, size_t dim, void * params)

this function should return the value f(x,params)

for the argument x and parameters params,

where x is an array of size dim giving

163

http://en.wikipedia.org/wiki/Monte_Carlo_integration

the coordinates of the point where the function is to be evaluated.

size_t dim the number of dimensions for x.

void * params a pointer to the parameters of the function.

The integrand is passed as a function pointer. ROOT (CERN C++ package) includes, among plenty of other
things, Monte Carlo integration and a wrapper to pass a function object to GSL.

164

http://project-mathlibs.web.cern.ch/project-mathlibs/sw/5_19_02/html/index.html

Example 60: (numerics/gsl monte.carlo.cpp)
(see http://www.gnu.org/software/gsl/manual/html_node/Monte-Carlo-Examples.html)

// g++ -std=c++11 -Wall gsl_monte.carlo.cpp ‘gsl-config --libs‘

#include <iostream>
#include <iomanip>
#include <s t r i ng>

#include <g s l / gs l math . h>
#include <g s l / gs l monte . h>
#include <g s l / g s l m on t e p l a i n . h>
#include <g s l / gs l monte mise r . h>
#include <g s l / gs l monte vegas . h>

using namespace std ;

double func (double ∗x , size_t dim , void ∗params) ;
void display_results (string title , double result , double error) ;

int main ()
{

const size_t dim=3;
double result , error ;
string method ;
gsl_rng ∗r ;
gsl_monte_function G = { &func , dim , 0 } ;
double a [dim] = { 0 , 0 , 0 } ;
double b [dim] = { M_PI , M_PI , M_PI } ;
size_t calls = 500000;
// random number generator

gsl_rng_env_setup () ;
r = gsl_rng_alloc (gsl_rng_default) ;

165

http://www.gnu.org/software/gsl/manual/html_node/Monte-Carlo-Examples.html

{
method="plain" ;
auto s = gsl_monte_plain_alloc (dim) ;
gsl_monte_plain_integrate (&G , a , b , dim , calls , r , s ,

&result , &error) ;
gsl_monte_plain_free (s) ;
display_results (method , result , error) ;

}

{
method="MISER" ;
auto s = gsl_monte_miser_alloc (dim) ;
gsl_monte_miser_integrate (&G , a , b , dim , calls , r , s ,

&result , &error) ;
gsl_monte_miser_free (s) ;
display_results (method , result , error) ;

}

{
method="VEGAS warmup" ;
auto s = gsl_monte_vegas_alloc (dim) ;
// warmup

gsl_monte_vegas_integrate (&G , a , b , dim , 10000 , r , s ,
&result , &error) ;

display_results (method , result , error) ;

166

method="VEGAS" ;
do

{
gsl_monte_vegas_integrate (&G , a , b , dim , calls /5 , r , s ,

&result , &error) ;
display_results (method , result , error) ;
method = "VEGAS continue" ;

}
while (fabs (gsl_monte_vegas_chisq (s) −1.0) > 0 . 5) ;

gsl_monte_vegas_free (s) ;
}
return 0 ;

}
double func (double ∗x , size_t dim , void ∗params)
{

static const double A = 1.0 / (M_PI ∗ M_PI ∗ M_PI) ;
return A / (1 . 0 − cos (x [0]) ∗ cos (x [1]) ∗ cos (x [2])) ;

}
void display_results (string title , double result , double error)
{

const double exact = 1.3932039296856768591842462603255;
cout<<setiosflags (ios : : fixed) ;
cout<<setfill (’=’)<<setw (50)<<"="<<endl ;
cout<<"Method : "<<title<<endl ;
cout<<setfill (’=’)<<setw (50)<<"="<<endl ;
cout . precision (8) ;
cout<<"result = "<<result<<" +/- "<<error<<endl ;
cout<<" exact = "<<exact<<endl ;
cout<<"|diff| = "<<fabs (result−exact)<<endl ;

}

167

Output:

==

Method : plain

==

result = 1.41220870 +/- 0.01343586

exact = 1.39320393

|diff| = 0.01900477

==

Method : MISER

==

result = 1.39132158 +/- 0.00346056

exact = 1.39320393

|diff| = 0.00188235

==

Method : VEGAS warmup

==

result = 1.39267259 +/- 0.00341041

exact = 1.39320393

|diff| = 0.00053134

==

Method : VEGAS

==

result = 1.39328139 +/- 0.00036248

exact = 1.39320393

|diff| = 0.00007746

168

23 Physics example: Spin-1/2 Heisenberg chain

The Hamiltonian of a spin-1/2 chain has spin-spin interactions of two nearest neighbour spins,

Ĥ = J

N∑
i=1

Si · Si+1 = J

N∑
i=1

[Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1]

= J

N∑
i=1

[
1

2
(S+
i S
−
i+1 + S−i S

+
i+1) + Szi S

z
i+1] .

Here operators Sx and Sy, the operators measuring spin x and y components, respectively, were combined to rising
and lowering, a.k.a ladder, operators S± = Sx ± iSy. The basis states used here are |s,m〉, which are the eigenstates
of S2 (spin squared),

S2|s,m〉 = s(s+ 1)|s,m〉
and the eigenstates of Sz

Sz|s,m〉 = m|s,m〉 .
Units are chosen so that ~ ≡ 1. Rising and lowerin spin z component works like this:

S±|s,m〉 =
√
s(s+ 1)−m(m± 1)|s,m± 1〉

Sz|s,m〉 = m|s,m〉

The Heisenberg chain has spin 1/2 and the states are

|1
2
,
1

2
〉 = | ↑〉

|1
2
,−1

2
〉 = | ↓〉 .

The only difference is in the spin z component (m), so we keep track on that only. The system state is a chain of
spin up and down values. The ladder operators change the state,

S+| ↑〉 = 0; S+| ↓〉 = | ↑〉
S−| ↑〉 = | ↓〉; S−| ↓〉 = 0 .

169

Obviously there are 2N possible spin combinations for a chain N spins long. These can be economically coded in
binary,

| ↓, ↓, ..., ↓, ↓〉 = |00...00〉 = |0〉
| ↓, ↓, ..., ↓, ↑〉 = |00...01〉 = |1〉
| ↓, ↓, ..., ↑, ↓〉 = |00...10〉 = |2〉
| ↓, ↓, ..., ↑, ↑〉 = |00...11〉 = |3〉
...

| ↑, ↑, ..., ↑, ↑〉 = |11...11〉 = |2N − 1〉

Next write the Hamiltonian in the basis of these states as a matrix. The matrix elements between states a and b are

Hab ≡ 〈a|Ĥ|b〉, a, b = 0...2N − 1 .

We impose periodic boundary conditions and tie the chain to a loop, so that if i = N , then j = i+ 1 = 1. This can
be done neatly using the modulo operation, j = mod(i+ 1, N) or in C++ j=(i+1)%N.

170

The Hamiltonian matrix has plenty of zeros. The non-zero elements Hab are only the following:

1) Term 〈a|Szi Szj |b〉 : states must be the same, a = b.
Thus Hab = Haa and this happens in four cases:

case 1: Haa = 〈...0i...0j ...|Szi Szj |...0i...0j ...〉 = (−1

2
)(−1

2
) =

1

4

case 2: Haa = 〈...0i...1j ...|Szi Szj |...0i...1j ...〉 = (−1

2
)(

1

2
) = −1

4

case 3: Haa = 〈...1i...0j ...|Szi Szj |...1i...0j ...〉 = (
1

2
)(−1

2
) = −1

4

case 4: Haa = 〈...1i...1j ...|Szi Szj |...1i...1j ...〉 = (−1

2
)(−1

2
) =

1

4

2) Term 〈a|12(S+
i S
−
j)|b〉: The only non-zero element from this term is

case 5: Hab = 〈...1i...0j ...|
1

2
(S+
i S
−
j)|...0i...1j ...〉 =

1

2
.

3) Term 〈a|12(S−i S
+
j)|b〉: The only non-zero element from this term is

case 6: Hab = 〈...0i...1j ...|
1

2
(S−i S

+
j)|...1i...0j ...〉 =

1

2
.

Now we are ready to compute!

171

Algoritm:
Go through all states a.
Cases 1 and 4: Set Haa = 1

4 if b = a and the bits i and j in states a and b are equal
Cases 2 and 3: Set Haa = −1

4 if the bits i and j are not equal in states a and b
Cases 5 and 6: Set Hab = 1

2 , if flipping spins i and j in state a gives state b Pseudocode

Code: A. Sandvik (Boston University).

H=0 // set all elements of H to zero

do a=0...2^N-1 // N-body states a

do i=0...N // spin i

j = (i+1)%N // j=i+1 periodic boundary conditions (if i=N, j=1)

if (a[i]=a[j])

H(a,a)=1/4

else

H(a,a)=-1/4

b=flip(a,i,j) // flip bits i ja j in a to get state b

H(a,b)= 1/2

end if

end do

end do

The Hamiltonian matrix is large, full diagonalization may be slow, but a few lowest eigenvalues can be found effectively
using, e.g., the Lanczos algorithm (for example IETL has one).

172

The C++ Standard Library has a convenient container for binary data, std::bitset. Next choose a C++ matrix
representation, such as Boost Hermitian matrix: 23

typedef ublas : : hermitian_matrix<cmplx , ublas : : lower> Matrix ;

void FillHermitianMatrix (Matrix& H) {
std : : bitset<std : : numeric_limits<int> : : digits> abit ;
std : : bitset<std : : numeric_limits<int> : : digits> bbit ;
int i , j , a , b ;
int NN=H . size1 () ;
int N=log2 (NN) ;
H . clear () ; // zero H , only Boost

for (a=0; a<NN ; ++a) {
abit = std : : bitset<std : : numeric_limits<int> : : digits>(a) ;
for (i=0; i<N ; ++i) {

j = (i+1)%N ; // periodic boundary conditions

if (abit [i] == abit [j]) { // or: if(((a & 1<<i)>>i) == ((a & 1<<j)>>j)) {

H (a , a) += 0.25 ; // only Boost

}
else{

H (a , a) −= 0 . 2 5 ;
bbit = abit ; // or: b = a^(1 << i | 1 << j);

bbit . flip (i) ;
bbit . flip (j) ;
b = static_cast<int>(bbit . to_ulong ()) ;
H (a , b) = 0 . 5 ;

}
}

}
}

23The ”or:” comments show how to do it using bitwise operators – funny, effective and unreadable for non-experts.

173

23.1 Add numbers to file names

Sometimes it’s convenient to have file names contain numerical parameters. One option is to use stringstream

objects, see basic/stringstream ex.cpp. It’s not convenient, because one has to dig a ”C string” out of the
stringstream object s using s.srt().c str() 24 An easier way is shown below.

Example 61: (basic/string to filename.cpp) Open files res , suffix is a real number.

// Principle: how to get a computed number to a file name

#include <iostream>
#include <fstream>
#include <math . h>
#include <s t r i ng>
using namespace std ;
int main ()
{

const string str = "res_" ;
for (unsigned i=1;i<5;i++){

ofstream out (str+to_string (cos (i))) ;
out . close () ;

}
}
/* opened files

res_0.540302

res_ -0.416147

res_ -0.989992

res_ -0.653644

*/

24A valid file name has to end with null character (”\0”) like a character string in C.

174

24 Lambda functions/expressions

I have already mentioned lambda functions or expressions in a few examples. They are nice. They are fast. A lambda
function is compiled to a function object and easily inlined. Boost has it’s own lambda’s, parts of the ideas came to
be in C++11.

Usage: Define a ”temporary” function on the spot, exactly where it’s used. It can remain unnamed.
Bonus: No class needed to get a function object. The lambda remains local and you can’t misuse it elsewhere.

The brackets [] in a lambda are for capturing things from outside. Here is a list of what is captured and how:

[] capture nothing

[x, &y] capture x by value, y by reference

[&] capture all external variables by reference

[=] capture all external variables by value

[&, x] capture x by value, all else by reference

[=, &x] capture x by reference, all else by value

Example 62: (advanced/autolambda.cpp) A locally applied function func

//g++ -std=c++11 autolambda.cpp

#include <iostream>
using namespace std ;

int main ()
{

auto func = [] () { cout << "Hello world\n" ; } ;
func () ;

}

175

Example 63: (advanced/lambda1.cpp) Output a container and the cubes of the elements

#include <iostream>
#include <vector>
#include <algor ithm>
#include <cmath>

using namespace std ;

int main ()
{

vector<int> v {11 ,22 ,33} ;
for_each (v . begin () ,v . end () , [] (int n) {cout << n<<" "<<pow (n , 3) <<endl ; }) ;

}

11 1331

22 10648

33 35937

Note: int n is passed by value.

176

Example 64: (advanced/lambda2.cpp)

#include <iostream>
#include <vector>
#include <algor ithm>
#include <cmath>
#include <complex>
using namespace std ;
int main ()
{

typedef complex<double> cmplx ;
vector<cmplx> v={cmplx (11 ,12) , cmplx (22 ,21) , cmplx (33 ,32) } ;
for (auto x : v) cout<<x<<" " ;
cout<<" original data"<<endl ;
// take complex conjugate of elements

for_each (v . begin () ,v . end () , [] (cmplx& c) {c = conj (c) ; }) ;
for (auto x : v) cout<<x<<" " ;
cout<<" complex conjugate"<<endl ;

}

Tulostus:

(11,12) (22,21) (33,32)

(11,-12) (22,-21) (33,-32)

Note: The elements are passed by reference to complex conjugation.

177

Example 65: (advanced/lambda4.cpp) Calculate the product of std::vector elements.

#include <iostream>
#include <vector>
#include <algor ithm>
int main ()
{

using namespace std ;
vector<double> v { 1 . 0 , 2 . 0 , 3 . 0 } ;
double prod=1.0;
for_each (v . begin () ,v . end () , [&prod] (double x) { prod ∗= x ; }) ;
cout <<"product = "<< prod << endl ;

}

product = 6

Note: prod is captured by reference.

178

Example 66: (advanced/lambda5.cpp) Chop all elements below some limit to zero.

#include <iostream>
#include <vector>
#include <algor ithm>
using namespace std ;
typedef vector<double> vec ;

void rand_vector (vec& v) {
generate (v . begin () ,v . end () , [] () {return rand () / ((double) RAND_MAX) ; }) ;

}

int vector_chop (vec& v , const double lim) {
int count = 0 ;
for_each (v . begin () ,v . end () , [&count , lim] (double& x) {if (x<lim) {x=0.0; count++;}}) ;
return count ;

}

int main ()
{

vec v (7) ;
rand_vector (v) ;
for (auto x : v) cout<<x<<"\n" ;
const double limit=0.4;
cout<<"chopped "<<vector_chop (v , limit)<<" values below "<<limit<<endl ;
for (auto x : v) cout<<x<<"\n" ;

}

179

25 openmp parallel programming

Your computer most probably has multiple cores or threads. openmp offers an easy way to parallelize loops, see, for
example, http://bisqwit.iki.fi/story/howto/openmp/

Example 67: (numerics/openmp ex.cpp) Openmp parallel loop; too small a task to get any speed-up, though.

// g++ -std=c++11 -pipe -O3 -march=native -fopenmp -mfpmath=sse -msse2 openmp_ex.cpp

#include <iostream>
#include <cmath>
#include <vector>
int main ()
{

using namespace std ;
vector<double> tab (200) ;
const int N=tab . size () ;

#pragma omp p a r a l l e l for

for (int i=0; i<N ; ++i) // threads have their own private i

{
tab [i] = sin (2∗ M_PI∗i/N) ;
//cout<<i<<endl; // will produce mess, but shows parallelism

}
//cout<<endl;

for (auto t : tab) cout<<t<<" " ;
cout<<endl ;

}

The preprosessor directive #pragma omp parallel for tells what to parallelize.

180

http://bisqwit.iki.fi/story/howto/openmp/

You need to read more from a better source, but here are some other pragmas:

#pragma omp p a r a l l e l // Somewhere later comes a parallel computation

#pragma omp p a r a l l e l num threads (3) // parallel over 3 threads

#pragma omp for // following for-loop is parallel

#pragma omp for private (k) // each thread has it’s own copy of k

#pragma omp for shared (m) // all threads use the same m

#pragma omp for ordered schedu le (dynamic) // parts of for must happen in due order

#pragma omp ordered // following statement must be done in ordered fashion

A loop variable, such as i in the previous example, is automatically ”private”, meaning each thread get its own value
of i from the openmp scheduler. The scheduler decides who computes what.

In linux, the number of thread is set to four usign environment variables:

setenv OMP NUM THREADS 4 (csh or tcsh shell)
export OMP NUM THREADS=4 (bash shell)

These are for run-time only, you can change these as needed without re-compiling the code.

> export OMP_NUM_THREADS=2

> a.out

> export OMP_NUM_THREADS=16

> a.out

runs a.out first using two threads (cores) and then using 16 cores.
The function omp set num threads(16) does the same, overriding OMP NUM THREADS. See the next example.

OMP NUM THREADS and omp set num threads() are only suggested maximum number of threads.

181

Example 68: (numerics/openmp reduction.cpp) for-loop reduction with timing.

#include<iostream>
#include<vector>
#include<cmath>
#include<fstream>
#include <omp . h>
#include <chrono>
using namespace std ;
using namespace std : : chrono ;
int main ()
{

const int n=100000000;
ofstream fileout ("timing") ;
double time , reftime ;
for (int nc=1; nc !=5; nc++) {

omp_set_num_threads (nc) ; // override OMP_NUM_THREADS

double sum=0;
auto t0 = high_resolution_clock : : now () ;

#pragma omp p a r a l l e l for r educt ion (+:sum)
for (int i = 0 ; i < n ; i++) sum+=1/cos (i) ; //thread sums put together in the end

auto t1 = high_resolution_clock : : now () ;
auto d = duration_cast<milliseconds>(t1−t0) ;
time = d . count () /10 00 . 0 ;
cout<<"sum = "<<sum<<" cores "<<nc<<" timing "<<time<<" s"<<endl ;
if (nc==1) reftime = time ;
fileout<<nc<<" "<<time<<" "<<reftime/time<<endl ;

}
fileout . close () ;

}

182

numerics/openmp reduction.cpp: Timings on AMD FX-8350 Bulldozer eight-core processor.

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 3 4 5 6 7 8

S
p

e
e
d

u
p

Number of cores

timing
ideal linear speedup

cores time (seconds) speed-up factor
1 4.336 1
2 2.135 2.0309
3 1.451 2.9882
4 1.085 3.9963
5 0.908 4.7753
6 0.760 5.7052
7 0.665 6.5203
8 0.583 7.4373

The apparent super-optimal speed-up for two cores is due to inaccurate one-core timing used as a reference.

OpenMP has some overhead, don’t expect speed-ups for short tasks.

183

26 Tips and tricks

Here ::: means ”some lines of code”. The triple dot ”...” has a C++ meaning, it’s an ”ellipsis” :)

• How to pause execution:

cout<<"PRESS ENTER TO CONTINUE\n" ;
cin . ignore () ;

• Infinite loops can be typed as while(true) {:::}, or more to the point, as

#define ever (; ;)
: : :
for ever

{
// break to get out

: : :
}

I heartily recommend stackoverflow.com discussions. ⇐ This is THE tip!
As what comes to having fun with C++, this one is absolutely priceless:
what-is-the-worst-real-world-macros-pre-processor-abuse-youve-ever-com .

• (Linux) Long compiler messages can be piped to more (or less); Notice the ”&” after the pipe character

g++ -std=c++11 program.cpp |& more

• (Linux) It’s tedious to type g++ -std=c++11 ... all the time. Write a makefile, use an IDE, or set an alias,
alias g++=’g++ -std=c++11’ (bash, put this line to $HOME/.bashrc and type ”. $HOME/.bashrc”)
alias g++ ’g++ -std=c++11’ (csh or tcsh, put this line to ${HOME}/.cshrc and type ”source ${HOME}/.cshrc)
and you only need g++ program.cpp

184

http://stackoverflow.com/questions/652788/what-is-the-worst-real-world-macros-pre-processor-abuse-youve-ever-com

• std::numeric limits (from <limits>) tells what traits a type has – hence they are ”type traits” For example,
std::numeric limits<int>::max() gives 2147483647. If you have in mind a class that can use an optimized
algorithm and another related one that cannot, you can give the objects a trait. Based on that trait, the code
can automatically decide if the optimized or the default algoritm is applied. See advanced/traits.cpp.

185

27 Some more C++ in the net

• Genetic algorithms are used for optimization
Genetic-Algorithm-Library

• Bartlomiej Filipek gives examples how to use the standard algorithms instead of raw loops:
Top-Beautiful-Cplusplus-std-Algorithms-Examples

186

http://www.codeproject.com/Articles/26203/Genetic-Algorithm-Library
http://www.codeproject.com/Articles/854127/Top-Beautiful-Cplusplus-std-Algorithms-Examples

28 Farewell words for C++ numerical programmers

• Prefer C++ Standard Library containers over dynamic arrays. Don’t transform one to another.

• For math matrices and vectors, use Armadillo, MTL4, Blaze ..., don’t code them yourself.

• Use C++ Standard Library algoritms, not loops

• Forget type safety, it’s the least of C++ numerics problems.

• Move, don’t copy. For random number generators, use std::ref() in std::generate.

• Pass functions as function objects, lambda functions or use std::function. Avoid pointers to functions.

• Keep the ”daily stuff”, the interface code, clean. Hide ugly details (library calls) to headers.

fft (data , 1 , n) ; // overloaded fft(), library call in a header

gsl_fft_complex_radix2_forward (data , 1 , n) ; // Same job. This is why I don’t use C

• Use namespace protection for you own functions: my::get data()

• Templates are you friends.

• Use operator overloading to make cleaner code. Test all aspects.

outfile << myobject ; // overloaded <<, more readable than a function call

A = (B+M) ∗c ; // overloaded * and +, B,M complex matrices ,c real.

A = multiply_complexmat_realvec (sum_complexmat_complexmat (B , M) ,c) ; //C? Oh no!

• Make data types short and descriptive with typedef or using.

using my_cvec = lib1 : : part3 : : section4 : : vector<complex<double>> ;

• A fast algorithm in a slow computer computes faster than a slow algorithm in a fast computer.

Those are my principles, and if you don’t like them... well, I have others.
Groucho Marx

187

	Course itinerary
	A Brief History of C++
	Future of C++
	How transferable is C++?
	About this document
	Why C++, why not Java, fortran, Lisp, Haskell, ... French ?
	Easy tasks
	C++ in the Net
	C++ in Matlab or Octave
	C or C++ in Python 3

	(A really) Brief introduction to C++
	Meaning of #include <iostream>
	Scope
	Simple file operations

	Class
	Member function with const or noexcept after it
	Code rotting and [[deprecated]] functions
	Delegating a Constructor (read on spare time)
	Own data structures: pairs of numbers

	Templates - generic instructions and algorithms
	C++ libraries
	C++ Template libraries – just a list
	C++ Standard Library

	C++ reference variables
	Why would a reference be safer than a pointer?
	Can a reference be unsafe?
	lvalue and rvalue, and rvalue references
	The strange T&& and the perfect forwarding problem
	The restrict keyword in C (read on spare time)

	C++ Standard Library: A closer look
	std::vector container
	Iterators
	Storing objects into std::vector

	Moving, not copying
	std::valarray class
	typedef and using: give a good name to your data type
	Stream iterators (read on spare time)
	C++ Standard Library: algorithms and utilities
	std::min_element, max_element, find , sort, reverse
	std::swap is a template

	Header guards and namespace encapsulation
	std::complex: complex numbers and arithmetics

	Function overloading, optional arguments and default arguments
	Operator overloading – all for readability
	C++ Standard Library: More algorithms
	std::for_each
	When to use std::for_each ?
	std::for_each in detail
	std::generate algorithm
	C++ Standard Library algorithms – take care of copies
	C++ Standard Library algorithms – stateful objects and std::ref

	A few things that can potentially speed up your code
	noexcept: no-throw quarantee
	constexpr: Compile time constant expressions
	Function objects (functors)
	Four ways to pass a function to a function
	Cache data
	Use emplace_back instead of push_back
	If available, use the methods of containers rather than algorithms
	Expression templates

	The best random number generator
	C++11 generation of (pseudo)random numbers
	std::bind to simplify usage

	Boost library
	Boost: ordinary differential equations (ODE)

	Formatted output
	Formatted output using #include <iomanip>
	printf, type safety and variadic functions and templates

	Linear algebra – which library to use?
	Armadillo examples
	Blaze example

	Calling C or fortran from C++
	Fixed-size arrays in C++: plain array and std::array:
	Exception handling with throw and catch
	Gnu Scientific Library (GSL)
	GSL: statistics
	GSL: Fast Fourier Transform (FFT)
	Passing a pointer to complex data

	GSL: differential equations
	GSL: interpolation
	GSL: Monte Carlo integration

	Physics example: Spin-1/2 Heisenberg chain
	Add numbers to file names

	Lambda functions/expressions
	openmp parallel programming
	Tips and tricks
	Some more C++ in the net
	Farewell words for C++ numerical programmers

