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1.  DISCONTINUOUS FIXITIES – INTRODUCTION 
 
This manual presents a computer program, DISCO, for the linear analysis of structures that may con-
tain discontinuous fixities. These are fixities showing different linear behavior in various load ranges, 
e.g. tension-free supports of foundation grids, compression-free stays of cable-stayed bridges etc. The 
load-displacement diagrams of structures containing such fixities are polygonal lines rather than curves, 
which distinguishes them from non-linear structures – although some authors consider this property as a 
form of non-linearity. The program presented here has successfully been used in many projects of the 
author's engineering practice. 
 
Although polygonal (or ‘piecewise-smooth’) behavior of structures is considered sometimes, e.g. Bathe 
[1], to be a form of non-linearity, there are authors, e.g. Szilard [2], who do not share this view. It will 
not be adapted in this manual either. Without entering into broad discussion on this matter, a strict dis-
tinction will be made between both terms. Let us consider a beam laid on some supports and loaded by 
its own weight q, a variable force P and a constant axial force T, as shown in Fig. 1. The beam supports 
are not fixed against vertical tension. This simple model can in principle be analyzed in 4 different ways 
which are shown underneath in a matrix form, see Fig. 1. 
 

 
 

Fig. 1.  Convention of (non)linearity and (dis)continuity assumed in this manual 
 
Observe that the division into continuous and discontinuous behavior runs across the one into linear and 
non-linear one. The criterion is here a presence or an absence of slope discontinuities in the behavior 
functions of the structure, not a linear or non-linear character of these functions. Strictly speaking, the 
terms “continuous” and “discontinuous” are not quite correct here in the mathematical sense, as the 
functions δ(P) remain continuous in all the four cases. They are only not smooth in the right half of the 
matrix. These terms are, however, correct with respect to the first derivates (slopes) of these functions; 
and – above all – correct in the physical sense. Loosing contact with beam supports introduces material 
discontinuities in the system. In this – physical – sense we shall use these terms here.  
 



 4

In the considered example the continuous approach (both: linear and nonlinear) gives a tensile reaction 
on the third support, which is obviously an error. Moreover, there is another, quite principal argument 
in favor of discontinuous approach: Nature behaves in fact non-linear in a majority of problems. For no 
other reason than our own convenience, we often approximate it by using linear or piecewise linear ap-
proach. The family of problems dealt with by DISCO represents a rather exceptional, opposite case: 
Here the nature itself behaves piecewise linear (polygonal). There is no need to approximate it – it can 
be modeled the way it behaves. In mathematical sense, polygon angles are slope discontinuities. There-
fore, we will refer to them as “discontinuities”. In engineering, it is quite usual to refer in such a way to 
sudden, sharp changes in structure properties, without explicit mentioning the word ‘slope’, see e.g. dis-
cussions on joints in shells of revolution by Roark [3] or by Bull [4]. In this sense one can distinguish 
various types of discontinuities (or: discontinuous fixities): 
 
• external:  e.g. discontinuous support conditions; 
• internal:  e.g. ties or unfixed contacts between elements; 
• mechanical:  caused by geometry or mechanical properties; 
• physical:  caused by material properties, e.g. plastic hinges; 
• fractural:  irreversible, caused by breakage, etc. 
 

The DISCO algorithm presents a solution for structures with external discontinuities. An extension for 
internal discontinuities and some other problems is possible and will briefly be discussed later on. 
 
Engineering practice proves that a great majority of discontinuities occur at transition points between 
negative and positive fixities of diverse degrees of freedom (DOF's). For clarity reasons this analysis is 
limited to such cases. It is, however, a minor problem to program the levels of discontinuity as input 
data, so that other than zero transition points can be defined. Such modification requires no further 
changes to the presented algorithm. 
 
In Fig. 2 a number of polygonally linear problems have schematically been shown. Cases a until f repre-
sent discontinuous fixities of reaction forces in various directions; cases g and h are examples of discon-
tinuous moment fixities. A short description follows below. 
 
 a. Suspensions of pipelines, tie-rod fixities of expansion joints; 
 b. Rails, crane driveways with limited tension fixities; 
 c. Cable stayed bridges, bustle pipes of steel works blast furnaces; 
 d. Cable stayed masts, towers, halls etc.; 
 e. Support rings e.g. of vertical pressure vessels, free laid foundation grids; 
 f. Concentrated loads on refractory lined oven shells, traffic tunnels etc.; 
 g. Single-sided moment fixities of columns and beams, torsion fixity of a blade; 
 h. Examples of discontinuous moment fixity in reinforced concrete. 
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Fig. 2.  Examples of discontinuous fixity problems 
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2.  MODELING DISCONTINUOS FIXITIES 

 
Note that all discontinuous fixities can be modeled by defining a "conditional" DOF, e.g.: 
• force: tension fixed (#),  compression free (0) – or reverse; 
• moment: clockwise fixed (#),  anti-clockwise free (0) – or reverse. 

 
This also applies to DOF's that are not simply fixed or free, but that show different positive and nega-
tive fixity characteristics. The solution is then an additional, conditionally fixed element in the direction 
of the considered DOF. This method can be illustrated by the three following examples (see Fig. 3). 
 

 
Fig. 3.  Modeling different fixity characteristics 

 
In the first example a conditional spring has been used to model the elastic tension fixity of a beam sup-
port. In the second example two conditional springs represent different fixity characteristics of a column 
base. (Note that the node coordinates of these springs can in fact be identical, as long as no connection 
between them is defined.) The third example shows two ways of modeling discontinuous moment fixi-
ties. In that example, the two conditionally supported springs can optionally be fixed against displace-
ment or against rotation. 
 
This technique applies also to 3D-models where the number of conditional DOF's can be larger. The 
limitation of the algorithm is, however, that only point-wise fixities can be defined in this way. A condi-
tional line- (or surface-) support becomes released over a certain distance (or area) what makes the solu-
tion more complex. This can be solved by defining a number of conditional point-wise supports in a line 
or over a surface. Such models are in fact powerful tools in solving numerous structural contact prob-
lems1) (see e.g. Fig. 2 e and f), what has been illustrated in a practical case in section . 
 
 

                     
1) Contact problems have been studied broadly in recent years. A linear incremental approach to such problems 
has e.g. been presented by Simunovic and Saigal in [5]. Other approaches can e.g. be found in the works of Re-
faat and Meguid [6] or Wang and Nakamachi [7]. 
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3.  PROPERTIES OF DISCONTINUOUS LINEAR MODELS 
 
Polygonally-linear (here called “discontinuous”) models have some special properties which distinguish 
them from conventional, smooth-linear (“continuous”) models. The most favored property is, obviously, 
that they allow for more adequate structural analyses. Having seen the examples in Fig. 2 and 3, it 
would not be wrong to say that most structures behave more or less polygonally. The fact that they are 
usually subject to ‘smooth’ modeling can be justified by limited precision requirements, narrow ranges 
of load variation, our convenience, tradition etc. 

 
The second property is a warning: Separately computed load cases 
should, as a rule, not be combined! The principle of superposition 
should be considered false in discontinuous analyses. Observe what 
happens to the beam from the beginning of this manual (Fig. 1) 
when separately computed load cases are combined (Fig. 4). The 
superposed deflected line and reactions (d) strongly differ from the 
correct ones (a) and are mutually inconsistent. 
 
In consequence, complete load combinations should each time be 
computed, rather than computing single load cases and combining 
the results. This property is important not only to the program users 
but also to the programmers. A complete discussion on this subject 
goes beyond the scope of this manual. Nevertheless, it’s significance 
must de emphasized because superposition is one of the elementary 
procedures in structural analyses. 
 
 
Fig. 4.  Superposition results in an error 
 

Let us confine the discussion to the three following recommendations: 
 
 1. The conventional programs for continuous structural analyses contain procedures to combine sin-

gle load cases in load combinations – usually with user defined combination factors. These pro-
cedures should not be programmed (neither be used) for discontinuous linear analyses. 

 2. Most existing structural analysis programs make use of two separate input files called, e.g., sys-
tem file and loading file. In discontinuous analyses - as already discussed - loadings actually co-
define the systems. For the sake of consistency they should better make part of one integral input 
file. 

 3. Several existing programs do not allow to set concentrated loads on supports in the directions of 
fixity. It is assumed that such loads are irrelevant since they pass directly to reactions causing no 
strain effect in a system. This is not necessarily true in discontinuous models. The programs for 
discontinuous analyses must enable the input of those loads. 

 
Obviously, the importance of loadings in discontinuous linear models requires more care to their input. 
One should, e.g., be cautious in using load factors, which is a common engineering practice nowadays. 
Increasing a load factor e.g. for variable loads does not necessarily lead to a safer structure. There is a 
chance that a number of nodes get released or fixed after such operation, what may not be the intention. 
 
The last property in this short overview concerns stability: Discontinuous linear models require more 
consideration to stability problems, providing in return a more reliable stability test. Models which be-
come unstable, e.g. due to single-sided support releases, cannot be computed. A program should issue a 
warning in such a case. On the other hand, properly modeled discontinuous linear structures that are 
successfully computed are also certainly stable. 
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4.  SOME THEORETICAL BACKGROUND 

 
Let’s consider a structure model meeting all Clapeyron’s conditions [8] and supported by a number of 
point-wise external fixities (of forces and/or moments). Let’s assume that some of those fixities or all of 
them are conditional (discontinuous) in the sense as discussed above. Since it is not known which single-
sided fixities will be active and bear reactions, and which will be released - there is no way to solve this 
discontinuous linear model directly. A solution must involve an iteration process eliminating released 
fixities and converging in a model with a definite, ‘smooth’ fixity system. At each step of such iteration 
an entire - let's call it after Ralston [9] - basic solution of the system must be computed. 
 
A ‘classical’ nonlinear approach to such problems, as discussed e.g. by Bathe [1] (new supports arising 
during structure deformation), considers the externally applied loads - thus also deformations, stresses 
etc. - to be a function of time. The resulting approach is an incremental step-by-step procedure using the 
solution for discrete time t to compute the solution for discrete time t + ∆t. Aside from the plea against 
nonlinear approach as such (see Introduction), there are several practical reasons why this strategy has 
been rejected here. For the space reasons, they are not discussed. Some of them (e.g. error accumula-
tion, inconvenience of time functions) will become clear further in this manual. 
 
The proposed algorithm of solution can, in the simplest terms, be described as follows: 
1) Convert the structure model in such a way that all conditional (single-sided) fixities become uncondi-

tional (double-sided). Memorize conditional fixities in the original model. 
2) Solve the converted model for the entire load combination, computing the vector of node displace-

ments D and the vector of node external reactions R. 
3) Check if every R ≠ 0 reaction occurs on the fixed side of a proper conditional DOF in the original 

model. Each time it does not; modify the converted model by releasing the particular DOF. 
4) Check if every D ≠ 0 displacement occurs on the free side of a proper conditional DOF in the origi-

nal model. Each time it does not; modify the model by fixing the particular DOF. 
5) If step 3 or 4 result in any modification, go to step 2. Otherwise the system is solved. 
 
The question concerning step 1 is why to convert the single-sided DOF’s into double-sided. In general, 
two ways can be considered to convert a discontinuous model into a continuous one2). Let us call them: 
• Stiff approach:  replace all single-sided fixities by double-sided; 
• Slack approach:  release all single-sided fixities. 
A disadvantage of the slack approach is that it may produce an unstable model during the iteration. 
This endangers the convergence. The stiff approach does not bear that risk. Another possible question is 
why to bother checking the sides of displacements in step 4. One might suppose that – since the stiff ap-
proach has been used – it is the releasing of the DOF’s that leads to the solution, not the fixing. This 
proves not to be sufficient. A DOF that has once been released may require to be fixed again in one of 
the next iteration steps. As far as this approach has been researched, there exists no convergent iteration 
that solves the problem using only irreversible DOF modifications. 
 
Naturally, it should be proved that the procedure shown above is convergent. From the engineering 
point of view, however, an instructive example is often more convincing than a strictly theoretical dis-
cussion. A simple model enabling to observe the features of the algorithm in a transparent way is a 
weightless beam on a large number of rigid, tensionless supports, loaded by a single force in the middle 
of one span. In Fig. 5 a half of such a beam has been modeled due to the system symmetry3). 
                     
2) A third, "middle way" is also thinkable if additional precautions are taken to ensure the convergence. This 
might lead to further perfectioning of the algorithm. It has not been investigated so far. 

3) This example requires an exceptionally large number of iterations. This and the problem triviality are chosen 
deliberately to picture some features of the procedure. It must not be seen as a sign of its small efficiency. 
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Fig. 5.  Iteration steps for a beam on tensionless supports – example 

 

 
Fig. 6.  Strain energy of reactions in the 12 iteration steps 

(Energy level 0 equals here in fact 16.7 Nm, see calculations in the text) 
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As known, the solution of such a system is a free-supported one-span beam. The way, in which the al-
gorithm described above comes to this solution, has been shown in steps 0 through 12. Note that each 
step results in eliminating (sometimes also in adding) of a number of supports from which at least (here 
always) one is eliminated definitely. That one support has each time been marked black in the drawing. 
Note also that the supports guaranteeing the stability of the system (here just one) are not eliminated at 
any step. These two features of the algorithm have been confirmed in a large number of tests on differ-
ent systems. They are sufficient to make the procedure convergent. 
 
We shall now follow the changes of strain energy “bound” by reactions in this iteration process. It is 
convenient to do it in reverse order, in which we expect this energy to grow. Let‘s consider two 
neighboring iteration steps i and i-1; and sign by j the joint (node) numbers of the beam. From the recip-
rocal theorem of Betti-Maxwell [8] we have: 
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By proper modification of this equation we can obtain a double formula for work Li→ i-1 required to 
bring the beam from the deformation state in step i back to the step i-1: 
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Since there are many reactions Rj and just one force Pj in our example, the easiest way to obtain strain 
energy variation is through the second of these two equations. Starting from step 12, where the com-
puted deflection under force P was δ = 3.33 mm, we obtain: 
 
 step 12,  δ = 3.33 mm: 33

2
1

12 107.161033.310 −− ×=×××=L  kNm, 

 step 11,  δ = 3.05 mm: ( ) 33
2
1

1112 104.11005,333,310 −−
→ ×=×−××=L  kNm, 

     ( ) 33
11 101.18104.17.16 −− ×=×+=L  kNm, 

 . . .     . . . 
 step   0,  δ = 1.75 mm: ( ) 33

2
1

01 101.21075.117.210 −−
→ ×=×−××=L  kNm, 

     ( ) 33
0 106.24101.25.22 −− ×=×+=L  kNm. 

 
The strain energy variation calculated in this way has been shown in a diagram in Fig. 6. There are 
some interesting features to be observed in Fig. 5 and 6, namely: 
 
• One can see that the elimination of the released DOF’s takes place in a quite regular, ‘frontal’ man-

ner bearing, in this respect, some resemblances to other known elimination processes, e.g. to the 
Gauss elimination. 

• The DOF fixity, which becomes definitely eliminated, is here always the one, which “binds” the big-
gest strain energy. In more complex systems this will apply to certain groups of DOF’s rather than 
the single DOF’s; which can make it less visible. 

• We see that the total number of fixed DOF’s does not always become smaller at every step. Neither 
the total strain energy of these DOF’s does always become smaller. See, e.g., the transition from step 
7 to step 8. Yet, this does not endanger the convergence. 
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• The variation of the total strain energy of the fixed DOF’s can globally be approximated by a con-
cave curve (arc convex downward). The energy losses in the first iteration steps are usually the big-
gest. This favorable property will still be discussed. 

• The approximation by a concave curve shows here an interesting irregularity, which can – for the 
present – be called an energy wave. This has not been studied any further. It has, however, been ob-
served that this phenomenon becomes less visible in models on elastic instead of rigid supports. This 
leads to some analogies with damping. 

 
Finally, let’s observe that a nonlinear approach using time functions would be useless for this problem. 
Time is irrelevant since any force P acting downwards gives basically the same solution (P directed up-
wards gives instability). For the same reason also the term polygonal approach may be controversial 
for this load case. Yet, since weightless beams are quite exceptional, we shall drop that detail. 
 
 
 

5.  CODING DISCONTINOUS FIXITIES 
 
Since every step of the iteration computes an entire basic solution of the system, the method can be con-
siderably time-consuming. Therefore, it is advisable to use a quick, simple procedure for the basic solu-
tion, even at the cost of diversity of modeling features4). The algorithm of the DISCO program has been 
developed for PC applications. The program itself [10] - uses a basic solution where the following limi-
tations and other assumptions have been applied: 
 
• Structure model consists of straight, one-dimensional elements (members). Shells, plates etc. can not 

be modeled directly and must be simulated using members. 
 

• All structure elements have default rigid or pinned nodes (joints) between each other, depended on 
the type of the structure: Trusses are assumed to have pinned joints, all other structures are assumed 
to have rigid joints. Modeling a hinge, a slide joint etc. in a structure of default rigid joints (e.g., a 
frame) can be done using simulation members. 

 
• User can choose between the following 12 types of structures5): 
   1  Continuous beam;      2  Discontinuous beam; 
   3  Continuous plane truss;     4  Discontinuous plane truss; 
   5  Continuous grid;      6  Discontinuous grid; 
   7  Continuous plane frame;     8  Discontinuous plane frame; 
   9  Continuous space truss;   10  Discontinuous space truss; 
 11  Continuous space frame;   12  Discontinuous space frame. 
 
• Loadings can be concentrated (forces and/or moments in joints) or distributed over an entire member 

length. All loads are stored in the same data files as the system data. Joint loads in externally fixed 
directions are acceptable. 

 
• Every joint can, in principle, be loaded by a pointed load (force or moment) in any direction, but – on 

the other hand – to input such a load one must first define there a joint. Also every member can carry 
a distributed load in any direction, but is assumed to be equally distributed over the entire member 

                     
4) The discussed software was originally developed in the 1980’s, when memory consumption and computation 
time were of more significance than they are today. 

5) For continuous models similar divisions have been used in some early structural analysis programs, e.g. 
STRESS [11], ICES STRUNDL [12]. Such approach leads to a quick, memory saving basic solution. 
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length. To input an unequally distributed load or a load covering a part of a member length, one 
must first divide the member into sectors by defining more joints. 

 
• The result of the basic solution is a vector D of all joint displacements; and a vector R of all joint re-

actions. Both vectors are appropriate to the structure type and related to the global orthogonal XYZ 
axes. The form of both vectors is the same. The displacements D are: 

• in beams:  displacements DY,   rotation angles AZ; 
• in plane trusses: displacements DX, DY; 
• in grids:   displacements DZ,   rotation angles AX, AY; 
• in plane frames: displacements DX, DY,  rotation angles AZ; 
• in space trusses: displacements DX, DY, DZ; 
• in space frames: displacements DX, DY, DZ,  rotation angles AX, AY, AZ. 

 In the vector R of reactions, the forces R come in place of displacements D, and the moments M 
come in place of rotation angles A. All indices remain the same. 

 
• Joint external fixities (supports) are identified by joint types. Every combination of joint fixed and 

free DOF's has a unique (within the structure type) joint type number. This applies to continuous as 
well as discontinuous structures. In the latter, the number of combinations is much larger. 

 
Coding joint types is one of the crucial points of the entire algorithm. Note that each single DOF can be: 
 
 If  continuous:  If  discontinuous: 
 1. free;   1. free on positive and on negative side; 
 2. fixed.   2. free on positive, fixed on negative side; 
     3. fixed on positive, free on negative side; 
     4. fixed on positive and on negative side. 
 
Since the number ND of joint DOF's varies from 2 for beams to 6 for space frames, the number NT of 
possible joint fixity combinations (= joint types) will vary still stronger. This has been shown in Table 
1: 
 
 

Table 1. Numbers of joint types in different types of structures 
 

  No. (ND) of 
 DOF's 

 No. (NT) of joint types 
Continuous              Discontinuous 

 Beam  2  22 =  4  42 =   16 
 Plane truss  2  22 =  4  42 =   16 
 Grid  3  23 =  8  43 =   64 
 Plane frame  3  23 =  8  43 =   64 
 Space truss  3  23 =  8  43 =   64 
 Space frame  6  26 = 64  46 = 4096 

 
 
Let's assume that type no. 1 represents a joint with all DOF's free, i.e. no external fixities; and type no. 
NT represents a joint with all DOF's fixed. The procedure described below shows the way to determine 
any joint type from the range [1..NT]6): 
                     
6) The Pascal notation for ranges is used in this manual. A notation [a..b] means here (a ÷ b) or a till b, in-
cluded. The DISCO software has been developed by the author in Turbo Pascal® of Borland International Inc.  
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 1. Make a table for the type of structure under consideration, with in the headline all DOF's as listed 

earlier in this section. The tables for discontinuous structures should have double ("positive" and 
"negative") columns under each DOF. In the most complex case of a space frame, the headlines of 
such tables should be similar to the ones shown in Table 2. 

 
 

Table 2. Examples of joint type determination in 3D-frames 
 
 - Continuous space frame: 

 Joint 
 no. 

DX 
 25 

DY 
24 

DZ 
23 

AX 
22 

AY 
21 

AZ 
20 

 
 

 Type 
 no. 

   26   #   #   # +1=    22 

   58  #  #  #    +1=    57 

  134  #  #  #  #  #  # +1=    64 
 
 - Discontinuous space frame: 
 

 Joint 
 no. 

-  DX  + 
211   210 

 -  DY + 
 29     28 

 -  DZ + 
 27     26 

 -  AX + 
 25     24 

 -  AY + 
 23     22 

 -  AZ + 
 21     20 

 
 

 Type 
 no. 

   25  #  #  #  #  #  #    #    +1=  4041 

  129   #   #   #       +1=  1345 

  138  #  #  #  #  #  #  #  #  #  #  #  # +1=  4096 
 
 
 2. Assign to each column an integer value varying... 
 •  for continuous models:  •  for discontinuous models: 
     from 12 −DN  down to 02 ,     from 122 −DN  down to 02 , 
 as shown for space frames (ND = 6) in the table headlines above (Table 2). 
 
 3. List all the fixed joints (supports) of the considered model in the left column; and check the cells 

representing joint fixities e.g. by #. The sums of values assigned to the checked cells, increased by 
1, represent the joint types7). 

 
It is not difficult to see resemblances to the binary system in this coding. An advantage of such coding in 
computer programming is that it enables the use of very quick, bit-level operations for all the transitions 
from discontinuous to continuous fixities (joint types), and for all the modifications of joint types in the 
iteration process8). The details of this will be discussed in the next section. 
 
 
 
                     
7) In a computer program this procedure can e.g. be realized by using overlay windows. Checking ‘fixed’ cells can 
then take place by a mouse click. 

8) In the past the binary code was used much wider to program the analyses of complex structural problems. An 
impressing example of such notation can e.g. be found in [13]. This is, obviously, not the case here any more. 

X 

Y Z 
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6.  PROGRAMMING APPROACH 
 
6.1 Program environment 
 
In order to minimize the computation time, it is important to choose an optimal program environment. It 
is, e.g., not advisable to incorporate time consuming operations on files (opening, reading, writing etc.) 
in the iteration process. On the other hand, it is certainly advisable to use, e.g., band matrix optimiza-
tion9). Fig. 7 presents a flow chart of a software environment, as programmed in DISCO, incorporating 
the algorithm for discontinuous analysis. Flow charts of the actual algorithm will be shown later on. 
 

The notation used in this flow chart may require 
an explanation: 
• N and M are total numbers of, respectively, 

joints and members. 
• NC, ND, NS and NQ are integer constants de-

pending on structure type TS and helping to 
format proper matrices. They represent the 
characteristic numbers of, respectively: joint 
coordinates, joint DOF's (equal to possible 
concentrated loads), member sectional stiff-
nesses and member distributed loads. These 
constants are given in Table 3. 

 
 
Table 3. Matrix formatting constants depending 
 on structure types 
 

TS Structures NC ND NS NQ 

1,   7 Beams 1 2 1 1 
2,   8 Plane trusses 2 2 1 0 
3,   9 Grids 2 3 2 1 
4, 10 Plane frames 2 3 2 2 
5, 11 Space trusses 3 3 1 0 
6, 12 Space frames 3 6 4 3 

 
 
 
Fig. 7. DISCO – general flow chart 
 
 
 

Table 3 helps also to understand why a division into structure types has been used in DISCO. Modern 
FEM programs offer a number of element types to be used in a model rather than conforming the model 
to one element type. However, in iterative algorithms where the entire basic solution must be computed 
a number of times, it is preferable to use simple models. In particular, the low numbers of DOF's ND 
and sectional stiffnesses NS in models simpler that 3D-frames speed the computing considerably up. It 

                     
9) Band matrix optimization falls beside the scope of this manual. DISCO uses an own, simple optimization 
method. A good introduction to more complex, so-called fractorization methods can e.g. be found in [9].   
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also keeps the band matrix [14], [15] narrow, limitting  the memory consumption. Further, the following 
features should be observed in the flow chart in Fig. 6: 
 
• The entire input data for each run (loading case) is contained in one input file. No division into, e.g., 

system and loading files has been made. According to the discussion in section 3, no procedures 
combining single loading cases into complex, superposed cases have been programmed. 

 
• In the input data, the loadings have the same status as the so-called system data. Vector Fi[ND] of 

joint i concentrated loads comes in fact right behind the vector of joint coordinates Ci[NC]. Vector 
Qj[NQ] of member j distributed loads follows the vector of member stiffnesses Sj[NS]. 

 
• In case of odd type number TS (see structure types earlier in this manual), the structure is continuous 

and there is no need for iteration. The first approach leads directly to the solution. In case of even TS 
, the structure is discontinuous. It is first converted into a continuous structure. After the band ma-
trix optimization, it undergoes an iteration process with joint type modifications at every step, con-
verging in a solution that meets all discontinuous fixity conditions. 

 
• The iteration process is memory- and time-saving. Note that no operations on files are involved. The 

vector of joint reactions Ri[ND], which rules the process along with joint displacements Di[ND], be-
comes only computed for the joints of types TC,i > 1; and always to the same memory space. 

 
• Compared to “continuous programs”, the flow chart in Fig. 7 contains only two really new blocks, 

marked unconditional conversion and conditional modification. These blocks represent the essence 
of the algorithm and will be discussed further in this section. 

 
• With the exception of discontinuous analysis, this approach does not differ much from some early 

programs for skeletal structures, e.g. STRESS [11]. However, it is a minor problem to adapt it to a 
more complex FEM environment.  

 
The block unconditional conversion converts all discontinuous joint types TD[N] into continuous ones 
TC[N]10). As result the structure model becomes in fact Continuous. The vector of discontinuous joint 
types TD[N] remains in memory for the boundary tests at each step of the iteration. 
 
These tests are performed in the block conditional modification. The tested objects are vectors of joint 
reactions Ri[ND] and displacements Di[ND]. In general, the procedure investigates whether reactions 
have only been computed on the fixed sides, and displacements on the free sides of single-sided sup-
ports. Each time the answer is "no" a proper DOF gets released, respectively fixed for the next iteration 
step. 
 
 
6.2 Unconditional conversion 
 
Unconditional conversion defines the initial model for the iteration. All discontinuous joint types TD,i are 
replaced by continuous types TC,i in such a way that fixity on any side (+ or -) of a considered DOF 
qualifies this DOF as fixed. This procedure is shown in a flow chart in Fig. 8. It does not make part of 
the iteration process and is only executed once at the beginning of the program. Nevertheless an effort 
has been done to minimize the computation. One of the measures applied is the introduction of a logical 
variable Fix which provides exits from different loops as soon as their tasks are completed. 
                     
10) Converting into continuous types means here converting into type coding of a continuous model, using the 
stiff approach. E.g., the type number of an entirely fixed (i.e. in fact continuous) joint of a discontinuous space 
frame changes from TD,i = 4096 into TC,i = 64, see examples in section 5. 
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Below are some other features of the flow 
chart in Fig. 8. The comments concerning 
programming approach apply largely to 
the next flow chart in this manual as well: 
 
• In order to speed up the computing, 

binary operations are used, given here 
in the Turbo Pascal® notation. Two 
of them may require an explanation: 
• i shl j   shifts the value of i by j bits 

to the left; 
• i shr j   shifts the value of i by j 

bits to the right. 
 
• The conversion is only activated for 

joint types TD,i > 1. Logical, because if 
TD,i = 1 then TC,i = 1. All entirely free 
joints (usually a majority in structure 
models) are in this way skipped, what 
fastens the procedure. 

 
• The integer variables i, u, v, g, h and j 

are counters. Here are their ranges, in 
case the bit-level code presents some 
survey problems: i[1..N], u[1..2ND], 
v[1..ND], g[1..NT] (binary i.e. 1, 2, 4, 
8, etc.), h[1..g], j[1..NT/2u]. 

 
 
 
 
Fig. 8. Flow chart of DISCO 
 unconditional conversion 
 

 
• The counters u and v match discontinuous fixities (negative, positive or both) of joint DOF's with 

appropriate continuous ones. In simple terms: Each time u “spots” a fixity in a joint type number 
TD,i, v increases the appropriate continuous type number TC,i by: 

vN D −2    or binary:   1shl )( vN D − . 
 
• The counter g is actually a function of u: 

12 −= ug    or binary:   1=g shl ),1( −u  
  and represents the column values in tables of discontinuous joint type numbers (see section 4). 
   
• The counters h and j help u to find whether there is a fixity in these columns. This is the case when: 

1
2 1, +−= − jhNT u

T
iD    or binary:   TiD NT (, = shr 1*))1( +−− jhu . 
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6.3 Conditional modification 
 
Conditional modification is the most essential procedure of the algorithm. It modifies joint i fixities, i.e. 
the continuous type numbers TC,i, to meet the discontinuous fixity conditions of that joint. In accordance 
with the strategy presented in section 4, the modification takes place in the two following cases: 
 
1. When the basic solution produces a reaction Ri,v ≠ 0 on a free side of a single-sided fixity in the 

DOF v[1..ND]. That DOF becomes then modified from fixed in into free. 
2. When the basic solution produces a displacement Di,v ≠ 0 on a fixed side of a single-sided fixity in 

the DOF v[1..ND]. That DOF becomes then modified from free into fixed. 
 
Since both cases involve testing of equalities to zero, there may arise numerical accuracy problems. The 
nature and the size of such problems depend on a number of factors, e.g.: 
• complexity of structure models; 
• presence of so-called ill-conditioned areas in these models; 
• precision of floating point variables and operations, etc. 
These problems are common in computer programming and do not need to be discussed here. DISCO 
makes use of two boundary ‘considered-to-be-zero’ values which proved to produce satisfactory results 
in PC-programming, assuming no very disproportional force or length units are used in the input data. 
These values11) are: ε1 = 10-6 and ε2 = 10-8. 
 
ε1 is used in zero-testing of both: displacements and reactions. The boundaries are: 
 Di,v <  ε1   is considered to be:  Di,v = 0; 
 Ri,v <  1000 ε1  is considered to be:  Ri,v = 0. 
 
ε2 is used to test numerical stability of the solution. When the solution is numerically stable, the prod-
ucts Di,v* Ri,v must equal 0. If this is not the case, the DOF v fixity of a particular joint i must not un-
dergo modification in order to preserve convergence. The boundaries used in DISCO are: 
 Di,v* Ri,v  <  ε2 → DOF v of joint i stable, modification possible; 
 Di,v* Ri,v  ≥  ε2 → DOF v of joint i instable, no subject to modification. 
 
Fig. 9 presents a flow chart of the conditional modification, as programmed in DISCO. Here are some 
additional comments on this flow chart: 
 
• In addition to the notation as discussed by flow charts in Fig. 7 and 8, the use of a logical Pascal 

function Ord(expr.) may require an explanation: 
• If the expression expr. making the argument of Ord is true, then Ord returns 1; 
• If the expression expr. is false, then Ord returns 0. 

 
• Just as the unconditional conversion, the conditional modification becomes only activated for joint 

types TC,i > 1. This speeds the computing considerably up. 
 
• The integer variables u, v, g, h and j are counters; w is a sign switch. The ranges of these variables 

are as follows: u[1..2ND], v[1..ND], g[1..NT] (binary i.e. 1, 2, 4, 8, etc.), h[1..g], j[1..NT/2u], w[-
1,+1]. With the exception of w, the same notation is used here as in the flow chart of unconditional 
conversion. 

                     
11) In exceptional cases, these values may require to be tuned up. For more output stability, variable ‘consid-
ered-to-be-zeros’ can also be used, e.g.  belonging to the input data or resulting from the analysis of numerical 
input. This has not been programmed but it may be considered in prosperous versions of DISCO. 
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• Fixity detection in the columns of 
joint type definition (see examples 
in section 5) takes place in the same 
way as in unconditional conversion. 
The initial model contains a fixity 
in a column u if: 

1
2 1, +−= − jhNT u

T
iD ,   or binary:   

TiD NT (, = shr 1*))1( +−− jhu . 
 

• If the computed displacement and 
reaction show no numerical insta-
bility, i.e. if one of the two can be 
considered 0, the appropriate DOF 
v fixity may undergo modification. 
 

• The algorithm checks first positive, 
and then negative side of DOF v. 
The switch is controlled by a sign 
switch w. The check and the modi-
fication take place in one operation, 
thanks to the use of a logical func-
tion Ord(expr.), see the two main 
blocks middle in the flow chart. The 
upper block is activated when there 
is a fixity on the positive side of 
DOF v; the lower block - when the 
negative side of DOF v is fixed. 

 
 
Fig. 9. Flow chart of DISCO 
 conditional modification 
 

• Observe that the entire procedure is ruled by the output of current iteration steps. The continuous 
joint type numbers TC,i become increased, respectively decreased, without checking up if they do not 
already contain the fixity or the freedom of DOF v. Such programming can only be successful if all 
possible output combinations are controlled, including numerical instabilities. This is indeed the 
strategy in DISCO. 

 
• Both main operation blocks contain an exit option for numerical instabilities. These are not the same 

form of instabilities as the one handled by the condition Di,v* Ri,v  < ε2. Basically, two forms of 
numerical instability can be distinguished in the program: 

• Inaccuracy problems: Caused usually by too complex modeling and relatively low variable 
and/or operation precision. To recognize, e.g., by unstable zero’s in the output. This form is 
primarily handled by the ε1-conditions. 

• Out of range problems: Caused usually by so-called ill-conditioned features. To recognize by 
the output of high real numbers, usually a number of ranges higher than the input values. This 
form is primarily handled by the ε2-condition. 

 
• The modification results in fixing or releasing the DOF v, depending on the computed displacement 

Di,v and reaction Ri,v. If the use of the Ord-function presents some survey inconveniences, a simpler 
notation in Table 4 can be helpful: 
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Table 4. Action of two main operation blocks in Fig. 8 

 
The upper block:    The lower block: 

 Ri,v ≤ 1000 ε1 Ri,v > 1000 ε1   Ri,v ≥ -1000 ε1 Ri,v < -1000 ε1 
D

i,v
 ≤

 ε
1 Positive side 

loaded, correct. 
No change. 

Releasing v. 
TC,i decreases  

by vN D −2  

 

D
i,v

 ≥
 - ε

1 Negative side 
loaded, correct. 

No change. 

Releasing v. 
TC,i decreases  

by vN D −2  

D
i,v

 >
 ε

1 Fixing v. TC,i in-
creases by 

vN D −2  

Numerical in- 
stability, exit. 
No change. 

 

D
i,v

 <
 - ε

1 Fixing v. TC,i 
increases by 

vN D −2  

Numerical in-
stability, exit. 
No change. 

 
• There is one more special case covered by the ε-conditions. It arises when both: displacement Di,v 

and reaction Ri,v are equal to 0, i.e. when DOF v of joint i is not effected by load in any sense. It can 
appear e.g. when there is another sufficiently fixed joint between i and the load, when the entire sys-
tem is not loaded in direction v, or when the strains in this direction are in internal equilibrium in the 
vicinity of i. Also in such case no fixity modification is performed. 

 
 
 

7.  POSSIBLE EXTENSIONS OF THE ALGORITHM 
 
In the form presented in this manual, the DISCO algorithm proved to give sufficient support in numer-
ous polygonally linear (discontinuous) problems in the recent 16 years of the author’s engineering prac-
tice. Nevertheless, there are problems which can possibly be better approached in another way, or which 
might require some extensions to the algorithm. A good reason to consider such extensions is that the 
algorithm proves to be relatively high performing. 
 
One of the sources of this performance - use of the fast, binary arithmetic - has already been discussed. 
Another one is a simultaneous approach strategy - analyzing the whole set of system discontinuities at 
a time. The practice shows that the number of iteration steps does not grow with the number of discon-
tinuities (with exception of some trivial cases as the beam in section 4), but usually becomes stabilized 
at a certain level. This is a very favorable feature. An algorithm using a kind of successive approach, 
i.e. solving the discontinuities successively, would require more iteration steps for complex discontinu-
ous systems12). This difference is visualized in Fig. 10. 
 
Another source of high performance is the stability of solutions. Note that the entire iteration process is 
ruled by logical algebra; no numerical values are passed from one iteration step to the next one. In con-
sequence, there is no danger of error accumulation. This advantage will not be found in diverse non-
linear programs which are often used to approximate discontinuous behavior. 

                     
12) This comparison has not been studied further but a certain analogy can be drawn to the performance of itera-
tive (Jacobi, Gauss-Seidler [14], [15]) and direct (Gauss) solutions of simultaneous equation systems. The first 
ones perform better by large, complex systems. 
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Below is a brief discussion on extension- 
and modification ideas which can still be 
considered. These ideas have not yet been 
tested in a computer program. The dis-
cussion is therefore somewhat specula-
tive. Nevertheless, it might be helpful to 
prospective programmers: 
 
 
Fig. 10. Number of iterations in two 
 strategies of the analysis 
 
 

 
• Extension for internal discontinuities: 
Member begin- and end joints can be given joint type numbers in the similar way as for the external dis-
continuities. Then the two programming strategies can be considered: 
1. Expanding unconditional conversion and conditional modification in such a way that all (internal 

and external) fixities are handled at a time. This leads to a single level iteration, probably the fastest. 
Additional convergence precautions may then be needed. 

2. Dividing the procedure: Each step of ‘external’ fixity iteration contains then an entire ‘internal’ fixity 
iteration. Such a double level iteration is probably slower but better convergent. 

Naturally, in internal fixity modifications the global joint displacements should be used as boundary val-
ues, not zeros. This presents some problems since these displacements may as well be effected by dis-
continuously connected members. The iteration will probably require a deeper joint analysis then pre-
sented in this manual13). 
 
• Discontinuous edge- or surface supports: 
In order to simulate a linear or surface discontinuous support, the user has to input a large number of 
pointed discontinuities. This can, obviously, be avoided by defining special contact interfaces, modules 
etc., allowing to input entire contact edges or surfaces as single items. Such procedures are known e.g. 
to generate complex finite element types14), and do not need to be discussed here. This extension seems 
to be convenient for large FEM programs, running on networks with powerful central units. DISCO has 
been programmed for a small stand alone PC with a limited operation memory (the used Turbo Pascal 
version can not address more than 64 kB), therefore it made little sense to extend it in that way. 
 
• Mutually related discontinuities: 
In section 4, four fixity conditions of a discontinuous DOF are distinguished. This covers most forth-
coming problems. There are cases, however, where fixity of a single DOF depends on a fixity of another 
DOF rather than on a sign of displacement in the same DOF. In the sample problem presented further in 
this manual, it would probably be more convenient to relate the fixity of rotation angle AZ to the fixity of 
displacement DX. Such relations can be realized e.g. by adding another joint type number - this time for 
mutually related discontinuities - to the current one; and expanding the conditional modification. For 
mutually related discontinuities the type numbers > TD can possibly be used. Since such discontinuities 
are seldom, a proper detection could be performed prior to entering the expanded routines. 

                     
13) A quite deep analysis, based however on a different, incremental search algorithm, has been presented in 
[22]. 

14) Special types of complex elements, which are in fact used nowadays to simulate contact problems, are 
boundary elements [23]. In particular the hybrid methods combining finite- and boundary element approach 
[24], [25] have been successful in this field. 
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• Other than zero discontinuity levels: 
As already mentioned, it is a minor problem to install other than zero discontinuity levels. Instead of (or 
next to) detecting positive and negative displacements and reactions, the algorithm would distinguish be-
tween the values below and above certain levels, which should then be specified in the input data. Also 
this possibility will not be used often in structural engineering, but it can be helpful e.g. in simulations 
of plastic hinges, supports on buoyancy tanks etc. It can not be used for modeling fracture problems 
(e.g. cracks), as the algorithm handles only polygonal behavior, where there is just one function value 
for each argument. In fracture problems more values are possible for a single argument. 
 
• Fracture discontinuities: 
The above does not necessarily mean that no routines of the algorithm can be adapted in fractural dis-
continuity analyses. Especially interesting for this purpose can be: 
1. The binary technique of coding joint types (the number of types might be larger); 
2. The so-called stiff approach (see section 4) and the unconditional conversion; 
3. Conditional modification in an internal iteration within a load step. 
In general, it looks promising to use the discussed routines within the user defined load steps in fracture 
analyses. As the algorithm does not contribute to error accumulation, this will probably lead to ‘fine 
tuning’ of load step results. The error accumulation effect can in this way be limited to inaccuracies at 
transition points between the load steps.  
 
• Non-linear polygonal problems: 
In non-linear polygonal analyses (see discussion on terminology at the beginning of this paper) a strat-
egy opposite to the one mentioned above seems more promising: Use the non-linear routines within the 
algorithm iteration steps. Such approach would possibly lead to a very accurate, multi-purpose struc-
tural analysis programming. However, the following two problems should be taken into consideration: 
1. The non-linear procedures must then be highly accurate as well. Their error should in principle not 

exceed the boundaries set by the ε-conditions, see section 6.3. 
2. In case of large displacements, some extra precautions may be necessary to ensure convergence. 

Convergence problems are, however, not new in non-linear analysis. 
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8.  DELIVERY CONDITIONS, HARDWARE REQUIREMENTS 
 
DISCO has been developed by the author with no contribution of any third parties of persons. The au-
thor does not intend to register this software or to take any other steps to protect his rights and/or dis-
tribute his product commercially. As this software has been enclosed to the doctor’s thesis submitted at 
the Civil and Environmental Engineering Department of the Gdansk University of Technology (further 
called ”the University”), the University owns now its copy rights. As such, the University may take 
steps to protect these right, and/or impose any distribution or other restrictions according to its policy. 
 
Although utmost care was taken to debug this software, nor the author neither the University can be 
held responsible for any consequences of its applications. In particular, users are warned that unprofes-
sional modifications of the included Pascal and text files (e.g. intended to adapt third party lay-outs) 
may cause the damage of the software. 
 
The software is delivered in a set containing: 
• this manual; 
• one 3½” diskette named ‘DISCO’ and containing: 

• system files in directories DISCO and DANCE; 
• data files in directories CBE, DBE, CPT, DPT, CGR, DGR, CPF, DPF, CST, DST, CSF, 

DSF. 
 
As the first software versions were developed in the late 1980’s, the hardware requirements are quite 
mild in relation to the current standards. What the user needs, is only: 
• PC running under any version of MS Windows or MS DOS; 
• hard disk in drive C:\ with about 1 MB memory space for the DISCO system files; 
• graphical card “on board” enabling the emulation of one of the following cards: CGA, MCGA, 

EGA,VGA or Hercules; 
• diskette drive, USB port or any other data storage device – as long as it is configured to be A:\. 
The delivered software version can not address a data storage port other than A:\. It is also not tailored 
for running in a network system, although it can be adapted to that by a skilled professional. 
 
 

9.  PROGRAM INSTALLATION 
 
To install the DISCO software on your PC, please do the following: 
 
1. Make a back-up copy of your original DISCO diskette. 
2. Take a new diskette, a USB memory key or any other data storage medium assigned to drive A:\, 

and copy all data file directories (CBE through DSF) into it. Label it, e.g., “DISCO data”15). 
 
For operation under MS Windows: 
3. Insert your DISCO diskette into a disk drive of your PC. Get its directory on the screen. 
4. Use MS Windows Explorer to copy the entire directories (names and contents) DISCO and 

DANCE into drive C:\ (Attention: Not into C:\Programs or any other directory on drive C:\). 
5. Click on C:\DISCO and get its directory on the screen. 
6. Link (shortcut) the DISCO.EXE file to your MS Windows desktop 

(Attention: Not the DISCO files with other extensions, e.g. PAS, BAK). 
7. Link (shortcut) the DANCE.BAT file (MS DOS batch file) to your MS Windows desktop 

(Attention: Not the DANCE files with other extensions, e.g. EXE, PAS, BAK, TXT). 
8. Get your desktop screen, insert the DISCO data disk in drive A:\, click on DISCO and … Voila! 
                     
15) Further in this manual, we shall talk about “data disk” and “drive A:\” only. However, it refers also to, e.g., 
“USB data key ” and “port A:\” if this is the configuration of your computer.    
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For operation under MS DOS: 
3. Insert your DISCO diskette into a disk drive of your PC. Get the prompt C:\. 
4. Copy the entire directories (names and contents) DISCO and DANCE into drive C:\, e.g. using the 

DOS Xcopy /s command (Attention: Not into any other directory on drive C:\). 
5. Log into the DISCO directory , e.g. by typing CD \DISCO and pressing <Enter>. 
6. Insert the DISCO data disk in drive A:\, type DISCO, press <Enter> and … Voila! 
 
Your DISCO system is operational now and you can – in principle – start processing the example data 
files on your data disk and computing their solutions You can also input and compute your own data 
files. It is advisable, however, to read the rest of this manual first. In particular, deleting the supplied 
data files or modifying them through the DISCO dialogue may result in a loss of valuable examples.  
 
 

10.  STRUCTURE MODELING 
 
10.1. General assumptions 
 
As discussed in section 5, DISCO performs structural analyses for structure models of twelve different 
types. Therefore, you should first choose the type which suits your problem the best. Keep in mind that 
the higher your structure type number will be, the more complex and memory consuming computation it 
will require. In extreme cases, i.e. by very large space frame models, the program may even run out of 
memory. Special program architecture and the use of a band matrix optimization take care that this does 
not happen soon. Exact limits can not be given, but space frames up to about 150 nodes (joints) and 200 
members should, in general, successfully be computed. For other types of structures, these limits usu-
ally exceed 800. The only programmed limitation is no more than 999 joints and 999 members.  
 
There are six basic types of structures to be chosen from (Fig. 11), divided into two groups as follows: 
 
   1  Continuous beam;      2  Discontinuous beam; 
   3  Continuous plane truss;     4  Discontinuous plane truss; 
   5  Continuous grid;      6  Discontinuous grid; 
   7  Continuous plane frame;     8  Discontinuous plane frame; 
   9  Continuous space truss;   10  Discontinuous space truss; 
 11  Continuous space frame;   12  Discontinuous space frame. 
 

 
Fig. 11. Six basic types of structures – examples 
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The structure geometry must be input in a global right-handed (Cartesian) coordinate system. For the 
types 1 ÷ 8 (a ÷ d in Fig 11), the position of the global coordinate axes is partly predefined by assuming 
that the structure must lie in the global XY plane. For beams, types 1 and 2 (a in Fig. 11), the additional 
assumptions are that the global X axis coincides with the beam, the loads act in the global XY plane, 
and the joints and members are sequentially numbered in the positive direction of X. For the types 9 ÷ 
12 (e and f in Fig. 11), any position of the global coordinate system can be chosen. 
 
The difference between continuous and discontinuous structures has been discussed in section 1 of this 
manual. The terms “beam”, “plane truss”, “grid”, “plane frame”, “space truss” and “space frame” are 
widely known. To avoid confusion, however, here is how DISCO sees these types of structures:  
 
a) Beams 
Beams are linear, straight structures, supported by any number of pointed supports fixing any degree of 
freedom (DOF) or a combination of DOF’s. The DOF’s of a beam node (joint) are deflection Dy and ro-
tation angle Az . Beams can be loaded by pointed forces Fy and moments Mz , as well as by member (in 
DISCO equally) distributed loads qy . Beam members can have different sectional rigidity EIz , which is 
the only parameter determining their flexural behavior.  
 
b) Plane trusses 
Plane trusses are 2D structures built of linear, straight members with all joints (also supports) hinged. 
The DOF’s of a plane truss joint are displacements Dx and Dy . Any number of DOF fixities (supports) 
or their combinations is possible. Plane trusses can only bear pointed loads in joints. These loads are 
force components Fx and Fy . Truss members can have different sectional rigidity EAx , which is the only 
parameter determining the truss deformation. 
 
c) Grids 
Grids are 2D structures built of linear, straight members with rigid internal joints; and loaded perpen-
dicularly to the structure plane. The DOF’s of a grid joint are displacement Dz and rotation angles Ax 
and Ay . Grids can be supported by any number of joint DOF fixities or their combinations. The possible 
grid loads are joint force Fz , joint moments Mx and My , and member (in DISCO equally) distributed 
load qz . Grid members have two sectional rigidities: torsional GIx and flexural EIy . 
 
d) Plane frames 
Plane frames are 2D structures built of linear, straight members with rigid internal joints; and loaded in 
the structure plane. The DOF’s of a plane frame joint are displacements Dx and Dy and a rotation angle 
Az . Also plane frames can be supported by any number of joint DOF fixities or their combinations. The 
possible loads are joint forces Fx and Fy , joint moment Mz , and member (in DISCO equally) distributed 
loads qx and qy . Plane frame members have two sectional rigidities: axial EAx and flexural EIz . 
 
e) Space trusses 
Space trusses are 3D structures built of linear, straight members with all joints (also supports) hinged. 
The DOF’s of a space truss joint are displacements Dx , Dy and Dz . Any number of DOF fixities (sup-
ports) or their combinations is possible. Space trusses can only bear pointed loads in joints. These loads 
are force components Fx , Fy and Fz . Truss members can have different sectional rigidity EAx , which is 
the only parameter determining the truss deformation. 
 
f) Plane frames 
Space frames are 3D structures built of linear straight members with rigid internal joints. The DOF’s of 
a space frame joint are displacements Dx , Dy and Dz , and rotation angles Ax , Ay and Az . Space frames 
can be supported in any number of joint DOF fixities or their combinations. The possible loads are joint 
forces Fx , Fy and Fz , joint moments Mx , My and Mz, and member equally distributed loads qx , qy and qy . 
Space frame members have four sectional rigidities: axial EAx, torsional GIx and two flexural EIy and EIz. 
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10.2. Global and local coordinates 
 
As mentioned in section 10.1, DISCO makes use of a right-handed, orthogonal (Cartesian) coordinate 
system. This system, including the positive sign convention, is shown below (Fig. 12). In can be conven-

ient to memorize the positive rotation signs as clockwise when 
looking in the positive direction of proper axes. Memorizing the 
mutual position of the system axes is essential. Swapping two of 
them will produce a left-handed system which requires another 
interpretation than the one presented in this manual. The pro-
gram uses the system from Fig. 12 in two different manners: 
• as a global coordinate system; 
• as a local coordinate system. 
 
Fig. 12. Right-handed orthogonal coordinate system 
 

Global coordinate system is the system as allocated by the user, within the assumptions discussed in 
section 10.1. As the name says, that system shall be used for all input data and solution results that are 
globally orientated, i.e. refer to the entire model rather than a particular member. In particular, the fol-
lowing data must be input in the global coordinate system: 
• joint fixities (types); 
• joint coordinates; 
• joint loads; 
• member distributed loads. 
The program will return the following solution results in the global coordinate system: 
• joint displacements; 
• support reactions. 
 
Local coordinate system is a system associated with a particular member of the structure. Unlike the 
global system, the position of the local system is defined by the program, nor by the user. Its origin lies 

always in the beginning of the member; and the local x axis always coin-
cides with the member itself, pointing at the end of it (Fig. 13). 
 
For beams, the local system is further identical to the global one, when 
moved parallel to the beginning of the member. 
 
 
Fig. 13. Member local coordinate system 

 
For plane trusses, grids and plane frames, the local system may also rotate about the z-axis in order to 
let the x-axis match the direction of the member. The local y-axis follows this rotation and the local z-
axis remains parallel to the global Z-axis. In trusses (also space trusses), you may forget the local axes 
y and z, since truss members can only bear loads in the x-direction. The members of plane frames can 
also bear shear in the y-direction and bending moments about the z-axis. 

 
In space frames, the local axes y and z are defined as follows: 
• The y-axis is parallel to the global XY-plane. In vertical mem-

bers it is directed the same as the global Y-axis. 
• The z-axis lies in a vertical plane containing the x-axis. Its pro-

jection on the global Z-axis is never negative. 
 
Fig. 14. Local system in the posts of a football goal  
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This definition applies when the global Z-axis is vertical, which is an advised choice. A good example 
of it is the determination of local axes in the posts of a football goal, see Fig. 14. If the global Z-axis is 
not vertical, than “vertical members” should be read as members perpendicular to the global XY-plane; 
and “vertical plane” should be read as plane parallel to the global Z-axis.  
 
 
10.3. Coding discontinuous fixities 
 
As discussed in section 5, each joint of your structure has a joint type number that defines its external 
fixities. It must explicitly be included into your input data. The method to determine joint type numbers 
has globally been shown, using the most complex case – a space frame joint – as an example. Following 
are the table headlines for joint type determination in all 12 types of structures that can be computed by 
DISCO, along with some calculation examples (Tables 5):  
 

Table 5. Joint type determination in 12 types of structures 
 
 - Continuous beam: 

Joint 
no. 

DY 
21 

 AZ 
 20 

 
 

 Type 
 no. 

1  /  # +1=      2 

2  # / +1=      3 

6  /  / +1=      1 
 - Discontinuous beam: 

Joint 
no. 

 -  DY + 
 23     22 

 -  AZ + 
 21     20 

 
 

 Type 
 no. 

1  #  # # / +1= 15 

3 #  / / / +1= 9 

4  /  #  /  / +1= 5 
 - Continuous plane truss: 

Joint 
no. 

DX 
21 

 DY 
 20 

 
 

 Type 
 no. 

1  /  # +1=      2 

5  / / +1=      1 

9  #  # +1=      4 
 - Discontinuous plane truss: 

Joint 
no. 

 -  DX + 
 23     22 

 -  DY + 
 21     20 

 
 

 Type 
 no. 

1  /  / # / +1= 3 

5 #  / # # +1= 12 

9  #  #  #  # +1= 16 

1 2 3 
4 

5 
6 

X 

Y 

Z 

1 2 3 
4 

5 
6 

X 

Y 

Z 

X 

Y 

Z 1 3 
5 

2 
4 6 

7 

8 

9 

X 

Y 

Z 1 3 
5 

2 
4 

6 

7 

8 

9 
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 - Continuous grid: 

Joint 
no. 

DZ 
22 

AX 
21 

AY 
20 

 
 

Type 
no. 

1 # # # +1= 8 

7 / / / +1= 1 

13 # / / +1= 5 
 - Discontinuous grid: 

Joint 
no. 

-  DZ + 
25     24 

-  AX + 
23     22 

-  AY + 
21     20 

 
 

Type 
no. 

1 # # # # # # +1= 64 

4 / # / / # / +1= 19 

16 / # # / / / +1= 25 
 
 - Continuous plane frame: 

Joint 
no. 

DX 
22 

DY 
21 

AZ 
20 

 
 

Type 
no. 

1 / # # +1= 4 

9 / / / +1= 1 

12 # / / +1= 5 
 - Discontinuous plane frame: 

Joint 
no. 

-  DX  + 
25     24 

-  DY + 
23     22 

-  AZ + 
21     20 

 
 

Type 
no. 

1 / / # / # # +1= 12 

9 / / / / / / +1= 1 

12 / # / / # / +1= 19 
 
 - Continuous space truss: 

Joint 
no. 

DX 
22 

DY 
21 

DZ 
20 

 
 

Type 
no. 

1 # # # +1= 8 

2 # / # +1= 6 

13 / # # +1= 4 
 

X 

Y Z 

1 
2 

3 
4 

5 

6 
7 8 

9 

10 
11 12 

13 
14 

15 
16 

X 

1 

17 
Y 

Z 
2 3 

4 5 6 7 8 9 
10 11 12 13 

14 
15 

16 

18 

X 

Y Z 

1 
2 

3 
4 

5 

6 
7 8 

9 

11 12 

13 
14 

15 

16 
 

X 

1 

17 
Y 

Z 2 3 
4 5 6 7 8 9 

10 11 
12 13 

14 
15 

16 

18 

1 

3 

X 

Y 

Z 

2 

4 
7 

10 

13 

5 

6 

8 

9 

11 

12 

14 

15 



 29

 - Discontinuous space truss: 

Joint 
no. 

-  DX  + 
25     24 

-  DY + 
23     22 

-  DZ + 
21     20 

 
 

Type 
no. 

1 # / / / # / +1= 35 

2 / / # / # / +1= 11 

13 / # # # # / +1= 31 
 - Continuous space frame: 
 

Joint 
no. 

DX 
25 

DY 
24 

DZ 
23 

AX 
22 

AY 
21 

AZ 
20 

 
 

Type 
no. 

3 # # # / / / +1= 57 

4 / # # / / / +1= 25 

5 # / # / / / +1= 41 
 - Discontinuous space frame: 
 

Joint 
no. 

-  DX  + 
211   210 

-  DY + 
29     28 

-  DZ + 
27     26 

-  AX + 
25     24 

-  AY + 
23     22 

-  AZ + 
21     20 

 
 

Type 
no. 

3 # # # # # # / / / / / / +1= 4033 

4 / / # / # / / / / / / / +1= 641 

5 / # / / # / / / / / / / +1= 1153 
 
 
 
 

11.  INPUT OF DATA 
 
11.1. Data format - general 
 
Your data must be submitted in a text file (a file with extension .TXT), stored in drive A:\ on a diskette 
or other data storage medium in one of the following directories: 
 \CBE for Continuous beams;    \DBE for Discontinuous beams; 
 \CPT for Continuous plane trusses;   \DPT for Discontinuous plane trusses; 
 \CGR for Continuous grids;    \DGR for Discontinuous grids; 
 \CPF for Continuous plane frames;   \DPF for Discontinuous plane frames; 
 \CST for Continuous space trusses;   \DST for Discontinuous space trusses; 
 \CSF for Continuous space frames;   \DSF for Discontinuous space frames. 
  
The data file names have the same names as the names of the directories, followed by a sequential num-
ber from the range [1..99]. E.g., the full address of the first discontinuous grid data file will always be: 
A:\DGR\DGR1.TXT 
 
The data file consists of three parts that must be submitted, followed by one part that may be submitted 
in case you like additional details on the behavior of some members. All these parts must be separated 
from each other by a single free line. The data file parts are: 

Z 

1 2 

3 4 

5 

14 
6 7 

8 

9 

10 

12 13 11 

15 

16 17 18 

X 
Y 

1 

3 

X 

Y 

Z 

2 4 
7 

10 

13 

5 

6 

8 

9 

11 

12 

14 

15 
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• General data: 
project and/or structure name, force and length units, total numbers of joints and members16). 

• Joint data: 
per input line: joint type, joint global coordinates, joint concentrated loads. 

• Member data: 
per input line: beginning and end joint16), sectional rigidities, member distributed loads. 

• Members for extended output: 
member numbers of for detailed output of extreme deflections and bending moments. 

 
Observe that this data combines the data about structure geometry and stiffness with the data about 
structure loads. The latter not only do not make a separate ‘loading file’, but they are even given in the 
same input lines as the first. This would be surprising in computer programs performing a conventional, 
“continuous” analysis, but is a logical and deliberate step in DISCO. In discontinuous analyses, super-
position of different loading cases is – by definition – an error, because loadings co-define the systems, 
see discussion in section 3. Therefore, no provisions should be made to encourage such a superposition. 
 
 
11.2. Input in a text file 
 
The data file can be prepared in two different manners: 
• Using a text editor which can process the *.TXT files; 
• Using the DISCO own interactive input dialogue.  
 
The first way is faster and offers better review possibilities for a skilled program user. It may, however 
be less convenient for a beginner. As the only test of the data is then the program run itself, it may cost 
a number of runs before the data file is debugged. The second way is slower and offers less review pos-
sibilities, but it makes it almost impossible to produce a file resulting in a runtime error. That way will 
be  discussed in the following section. 
 
There are a number of text editors which can process *.TXT files. All computers working under the MS 
Windows operating system are, e.g., standard supplied with a WordPad editor. This editor produces and 
processes the *.TXT files. Such files are also produced by a range of old text editors running under the 
MS DOS operating system. Also the compilers of popular high-level computer languages contain edi-
tors of such files. The author, e.g., wrote his first data files in the editor of Borland’s Turbo Pascal®, 
the same compiler that was used to develop and test the actual program. 
 
Let us assign: 
 
Project = name of the project, loading case etc.  – string up to 56 characters; 
Fu  =  force units, e.g.: kN, N, T, kG, Lb  – string up to 2 characters; 
Lu  = length units, e.g.: m, cm, mm, ft, in  – string up to 2 characters; 
n  = number of joints      – positive integer < 999; 
m  = number of members     – positive integer < 999; 
i  = sequential joint number    – positive integer < n; 
j  = sequential member number   – positive integer < m; 
Ti  = type number of joint I    – positive integer, see section 10.3; 
X, Y, Z = global coordinates X, Y and Z    – real values in Lu; 
x, y, z  = local coordinates x, y and z   – real values in Lu; 
lj  = length of member j     – positive real value in Lu; 
                     
16) The number of members is superfluous for beams. In beams, this number equals the number of joints, minus 
one. The member beginning and end joints are also superfluous there, as the joints are numbered sequentially. 
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FXi, FYi, FZi = joint i concentrated force loads   – real values in Fu; 
   in global axes 
MXi, MYi, MZi   = joint i concentrated moment loads  – real values in Fu·Lu; 
   about global axes 
bj ,  ej  = beginning and end joint of member j  – positive integer < n; 
EAx,j  = section axial rigidity of member j  – positive real value in Fu; 
GIx,j  = section torsion rigidity of member j  – positive real value in Fu·Lu2; 
EIy,j  = section bending rigidity of member j  – positive real value in Fu·Lu2; 
   about the local y-axis 
EIz,j  = section bending rigidity of member j  – positive real value in Fu·Lu2; 
   about the local z-axis 
qXj, qYj, qZj = member j distributed loads in global axes – real values in Fu/Lu; 
    
With the exception of the data Project that occupies a whole input, all other data have to be sorted out 
in lines and separated from each other by one or more blanks (no commas!). Below (Tables 6 ÷ 10) are 
the data formats for the six types of structures from section 10.1. The only difference between continu-
ous and discontinuous data files (not mentioning their names) is that the continuous joint types TCi 
change into the discontinuous ones TDi , as shown in section 10.3. The data in brackets […] are optional. 
If you, e.g., only want to enter the second of them, you must – obviously – enter a zero for the first. 
 
 

Table  6. Format of data files for beams and plane trusses 
 

Beams (files CBE*.TXT and DBE*.TXT): Plane trusses (files CBE*.TXT and DBE*.TXT): 

General Example General Example 

Project 
Fu  Lu  n 

free line 
T1   X1   [FY1   MZ1] 
T2   X2   [FY2   MZ2] 
…… 
Ti    Xi    [FYi    MZi ] 
…… 
Tn   Xn   [FYn   MZn] 

free line 
EIz1   [qy1] 
EIz2   [qy2] 
…… 
EIzj    [qyj ] 
…… 
EIzm   [qym] 

free line 
[j1   j2   j3   j4 …] 
 

Beam - Figure 11a 
kN m 6 
 
2  0 
3  2 
3  6 
3 10   0  15 
3 14 
1 16 -10 
 
2E4 
2E4 -4 
2E4 
2E4 
2E4 
 
2 3 4 
 

Project 
Fu  Lu  n  m 

free line 
T1   X1   Y1   [FX1   FY1] 
T2   X2   Y2   [FX2   FY2] 
…… 
Ti    Xi   Yi   [FXi    FYi ] 
…… 
Tn   Xn   Yn   [FXn   FYn] 

free line 
b1   e1   EAx1 
b2   e2   EAx2 
…… 
bj    ej    EAxj 
…… 
bm   em   EAxm 
 
 
 

Truss - Figure 11b 
kN m 9 15 
 
2  0.0 0.0 
1  3.0 5.0 
1  6.0 0.0   0 -100 
1  9.0 5.0 
1 12.0 0.0   0 -100 
1 15.0 5.0 
1 18.0 0.0 
1 21.0 5.0  50  -50 
4 24.0 0.0 
 
 1  3 1E6 
 3  5 1E6 
 5  7 1E6 
 7  9 1E6 
 2  4 1E6 
 4  6 1E6 
 6  8 1E6 
 1  2 5E5 
 2  3 2E5 
 3  4 2E5 
 4  5 2E5 
 5  6 2E5 
 6  7 2E5 
 7  8 2E5 
 8  9 5E5 

 
 
 
 
 

X 

Y 

Z 1 3 
5 

2 
4 6 

7 

8 

9 
1 2 3 

4 
5 

6 

X 

Y 

Z 



 32

Table 7.  Format of data files for grids 
 

Grids (files CGR*.TXT and DGR*.TXT): 

General Example 

Project 
Fu  Lu  n  m 

free line 
T1   X1   Y1   [FZ1   MX1  MY1] 
T2   X2   Y2   [FZ2   MX2  MY2] 
…… 
Ti    Xi   Yi   [FZi    MXi   MYi ] 
…… 
Tn   Xn   Yn   [FZn   MXn  MYn] 

free line 
b1   e1   GIx1  EIy1   [qz1] 
b2   e2   GIx2  EIy2   [qz2] 
…… 
bj    ej    GIxj   EIyj    [qzj ] 
…… 
bm   em  GIxm  EIym  [qzj ] 

free line 
[j1   j2   j3   j4 …] 

Grid - Figure 11c 
kN m 16 24 
 
8  0  0 
1  0  3 
1  0  6 
8  0  9 
1  5  0 
1  5  3 
1  5  6   0 -50 
1  5  9 
1 10  0 
1 10  3 
1 10  6  75 
1 10  9 
5 15  0 
1 15  3 
1 15  6 
5 15  9 
 
 1  2 2E4 4E5 
 2  3 2E4 4E5 
 3  4 2E4 4E5 
 5  6 2E4 4E5 
 6  7 2E4 4E5 
 7  8 2E4 4E5 
 9 10 2E4 4E5 
10 11 2E4 4E5 
11 12 2E4 4E5 
13 14 2E4 4E5 
14 15 2E4 4E5 
15 16 2E4 4E5 
 1  5 5E4 1E6 
 2  6 5E4 1E6 
 3  7 5E4 1E6 
 4  8 5E4 1E6 
 5  9 5E4 1E6 
 6 10 5E4 1E6  20 
 7 11 5E4 1E6 
 8 12 5E4 1E6 
 9 13 5E4 1E6 
10 14 5E4 1E6 
11 15 5E4 1E6 
12 16 5E4 1E6 

 
 

Table 8.  Format of data files for plane frames 
 

Plane frames (files CPF*.TXT and DPF*.TXT): 

General Example 

Project 
Fu  Lu  n  m 

free line 

Plane frame - Figure 11d 
kN m 18 22 
 

 
Continued on the next page… 
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Table 8 continued: 
 
T1   X1   Y1   [FX1   FY1   MZ1] 
T2   X2   Y2   [FX2   FY2   MZ2] 
…… 
Ti    Xi   Yi   [FXi    FYi    MZi ] 
…… 
Tn   Xn   Yn   [FXn   FXn   MZn] 

free line 
b1   e1   EAx1  EIz1   [qX1   qY1] 
b2   e2   EAx2  EIz2   [qX2   qY2] 
…… 
bj    ej    EAxj   EIzj    [qXj    qYj ] 
…… 
bm   em  EAxm  EIzm  [qXm  qZm] 

free line 
[j1   j2   j3   j4 …] 

 4 -6.0  -0.2 
 4 -4.0  -0.2 
 4 -2.0  -0.2 
 4  2.0  -0.2 
 4  4.0  -0.2 
 4  6.0  -0.2 
 1 -6.0   0.0 
 1 -4.0   0.0 
 1 -2.0   0.0 
 1  2.0   0.0 
 1  4.0   0.0 
 5  6.0   0.0 
 1 -4.0   3.0 
 1  4.0   3.0 
 1 -3.0   6.0   0   0 -50 
 1  3.0   6.0   0   0 -50 
 1 -3.0   9.0   0 -75 
 1  3.0   9.0  20 
 
 1  7  2.0E3  1.0 
 2  8  2.0E3  1.0 
 3  9  2.0E3  1.0 
 4 10  2.0E3  1.0 
 5 11  2.0E3  1.0 
 6 12  2.0E3  1.0 
 7  8  8.0E5  6.0E4 
 8  9  8.0E5  6.0E4 
 9 10  8.0E5  6.0E4 
10 11  8.0E5  6.0E4 
11 12  8.0E5  6.0E4 
 7 13  2.0E5  5.0E3  16.0 
13 15  2.0E5  5.0E3  18.0 
15 17  2.0E5  5.0E3  20.0 
12 14  2.0E5  5.0E3 
14 16  2.0E5  5.0E3 
16 18  2.0E5  5.0E3 
 9 13  1.2E5  1.0E4 
10 14  1.2E5  1.0E4 
13 14  2.0E6  1.8E5 
15 16  2.0E6  1.8E5 
17 18  2.0E6  1.8E5 
 
12  13  14 

 
 

Table 9.  Format of data files for space trusses 
 

Space trusses (files CST*.TXT and DST*.TXT): 

General Example 

Project 
Fu  Lu  n  m 

free line 
T1   X1   Y1   Z1   [FX1   FY1   FZ1] 
T2   X2   Y2   Z2   [FX2   FY2   FZ2] 
…… 

 

Space truss – Figure 11e 
kN m 15 39 
 
8  0.0 -2.0  0.0  0   0  -40 
8  0.0  2.0  0.0  0   0 -120 
1  0.0  0.0  5.0 50 
1  4.0 -2.0  0.0  0   0  -80 
1  4.0  2.0  0.0 
1  4.0  0.0  5.0  0 -30 

 
Continued on the next page… 
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Table 9 continued: 
 
Ti    Xi   Yi   Zi    [FXi    FYi    FZi ] 
…… 
Tn   Xn   Yn   Zn   [FXn   FXn   FZn] 

free line 
b1   e1   EAx1 
b2   e2   EAx2 
…… 
bj    ej    EAxj 
…… 
bm   em  EAxm 
 

1  8.0 -2.0  0.0  0   0  -80 
1  8.0  2.0  0.0 
1  8.0  0.0  5.0  0 -30 
1 12.0 -2.0  0.0  0   0  -80 
1 12.0  2.0  0.0 
1 12.0  0.0  5.0  0 -30 
8 16.0 -2.0  0.0  0   0  -40 
8 16.0  2.0  0.0  0   0 -120 
1 16.0  0.0  5.0 50 
 
 1  4  2.0E5 
 4  7  2.0E5 
 7 10  2.0E5 
10 13  2.0E5 
 2  5  2.0E5 
 5  8  2.0E5 
 8 11  2.0E5 
11 14  2.0E5 
 3  6  4.0E5 
 6  9  4.0E5 
 9 12  4.0E5 
12 15  4.0E5 
 1  2  1.0E6 
 4  5  1.0E6 
 7  8  1.0E6 
10 11  1.0E6 
13 14  1.0E6 
 1  3  5.0E4 
 2  3  5.0E4 
 4  6  5.0E4 
 5  6  5.0E4 
 7  9  5.0E4 
 8  9  5.0E4 
10 12  5.0E4 
11 12  5.0E4 
13 15  5.0E4 
14 15  5.0E4 
 3  4  1.0E5 
 2  6  1.0E5 
 6  7  1.0E5 
 5  9  1.0E5 
 7 12  1.0E5 
 9 11  1.0E5 
10 15  1.0E5 
12 14  1.0E5 
 1  5  1.0E5 
 4  8  1.0E5 
 8 10  1.0E5 
11 13  1.0E5 

 
 
Regarding the input of real values, please observe the following: 
 
• The Anglo-Saxon notation should be used, i.e. with decimal points and not decimal commas. 
• If you use a decimal point, DISCO expects at least one digit behind it. For the notations like ‘10.’, 

an error message will be returned. 
• You can choose between the decimal (e.g. 9.81) and exponential (e.g. 0.981E1) notation by each 

individual data. Both positive and negative exponents are acceptable. 
• As the output will be returned in a decimal notation, it is advisable to choose such force and length 

units that the results will form very long numbers. E.g. for a bridge, it is better to input in the data 
kiloNewtons (kN) and meters (m) than in Newtons (N) and millimeters. 
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Table 10.  Format of data files for space frames 

 
Space frames (files CSF*.TXT and DSF*.TXT): 

General Example 

Project 
Fu  Lu  n  m 

free line 
T1   X1   Y1   Z1   [FX1   FY1   FZ1   MX1   MY1   MZ1] 
T2   X2   Y2   Z2   [FX2   FY2   FZ2   MX2   MY2   MZ2] 
…… 
Ti    Xi    Yi    Zi    [FXi    FYi    FZi    MXi    MYi    MZi ] 
…… 
Tn   Xn   Yn   Zn   [FXn    FXn   FZn   MXn   MYn   MZn] 

free line 
b1   e1    EAx1   GIx1   EIy1   EIz1   [qX1   qY1   qZ1] 
b2   e2    EAx2   GIx2   EIy2   EIz2   [qX2   qY2   qZ2] 
…… 
bj    ej     EAxj    GIxj    EIyj    EIzj    [qXj    qYj    qYj] 
…… 
bm   em   EAxm  GIxm   EIym  EIzm   [qXm  qYm  qZm] 

free line 
[j1   j2   j3   j4 …] 

Space frame - Figure 11f 
kN m 18 29 
 
57 -5.0  2.9  0.0 
 1 -5.0  0.0  0.0  100 
57 -5.0 -2.9  0.0 
25  0.0 -5.8  0.0 
41  5.0 -2.9  0.0 
41  5.0  2.9  0.0 
57  0.0  5.8  0.0 
 1 -4.5  2.6  2.0    0 -50 
 1 -4.5 -2.6  2.0    0  80 
 1 -4.0  2.3  4.0 
 1 -4.0  0.0  4.0  150   0   0 120 
 1 -4.0 -2.3  4.0 
 1  0.0 -4.6  4.0 
 1  4.0 -2.3  4.0 
 1  4.0  0.0  4.0    0   0   0 120 
 1  4.0  2.3  4.0 
 1  0.0  4.6  4.0 
 1  0.0  0.0  5.5    0   0 -60 
 
 1  2 1E5 5E3 2E4 2E4 
 2  3 1E5 5E3 2E4 2E4 
 3  4 1E5 5E3 2E4 2E4 
 4  5 1E5 5E3 2E4 2E4 
 5  6 1E5 5E3 2E4 2E4 
 6  7 1E5 5E3 2E4 2E4 
 7  1 1E5 5E3 2E4 2E4 
 1  8 5E4 2E3 8E3 8E3 
 8 10 5E4 2E3 8E3 8E3 
 3  9 5E4 2E3 8E3 8E3 
 9 12 5E4 2E3 8E3 8E3 
 4 13 5E4 2E3 8E3 8E3 
 5 14 5E4 2E3 8E3 8E3 
 6 16 5E4 2E3 8E3 8E3 
 7 17 5E4 2E3 8E3 8E3 
10 11 1E5 5E3 2E4 2E4 
11 12 1E5 5E3 2E4 2E4 
12 13 1E5 5E3 2E4 2E4   0   0 -20 
13 14 1E5 5E3 2E4 2E4 
14 15 1E5 5E3 2E4 2E4   0   0 -20 
15 16 1E5 5E3 2E4 2E4   0   0 -20 
16 17 1E5 5E3 2E4 2E4 
17 10 1E5 5E3 2E4 2E4   0   0 -20 
 
10 18 5E4 2E3 8E3 8E3 
12 18 5E4 2E3 8E3 8E3 
13 18 5E4 2E3 8E3 8E3 
14 18 5E4 2E3 8E3 8E3 
16 18 5E4 2E3 8E3 8E3 
17 18 5E4 2E3 8E3 8E3 
 
16 17 18 19 20 21 22 23 24 25 

 
 

Z 

1 2 

3 4 

5 

14 
6 7 

8 

9 

10 

12 13 11 

15 

16 17 18 

X 
Y 
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11.2. Input in a DISCO dialogue 
 
DISCO offers also an opportunity to input the data interactively, in a dialogue with the user. This op-
tion requires some more key strokes, but it may still be convenient due to the built-in data control sub-
routines which will not let any incorrect value pass through. The dialogue begins already on the pro-
gram opening screen, which looks like this: 
 
 
 Gdansk Institute of Technology - Faculty of Hydro & Environmental Engineering 
------------------------------------------------------------------------------- 
|                                  D I S C O                                  | 
| ANALYSIS OF STRUCTURES WITH CONTINUOUS AND DISCONTINUOUS SUPPORT CONDITIONS | 
------------------------------------------------------------------------------- 
R.A. Daniel                                                        Version 4/04 
 
 
DISCO computes the following types of structures: 
 
Continuously supported: 
 

Discontinuously supported: 
 

1 Continuous beam 2 Discontinuous beam 
3 Continuous plane truss 4 Discontinuous plane truss 
5 Continuous grid 6 Discontinuous grid 
7 Continuous plane frame 8 Discontinuous plane frame 
9 Continuous space truss 10 Discontinuous space truss 

11 Continuous space frame 12 Discontinuous space frame 
 
Your choice (0= Exit) : _ 
 

 
 
Make sure that the DISCO data diskette is in drive A:\ at this moment. You may now enter the type of 
structure which you want to analyze. Let us assume that it is a continuous plane frame. Type 7 and 
press [Enter]. The program response will be about as follows: 
 
 
Available data files of this type: 
 
1 Cpf1.txt: Cont. plane frame, EX1 2 Cpf2.txt: Cont. plane frame, EX2 
3 Cpf3.txt: Small offshore rig 4 Cpf4.txt: Hartelkering, stijlen 
5 Cpf5.txt: Frame – Figure 11d 6 Cpf6.txt: Free 

 
Your choice (0= Exit) : _ 
 

 
 
If you want to process (Delete, Update, Append, Model, Output or Setup for computing) an existing 
data file, you will enter its number (in this case 1..5). Take care not to do it when you intend to Input a 
new file, as it will overwrite the existing one. We now discuss an entirely new input, therefore type 6 
and press [Enter]. DISCO will then open a free file Cpf6.txt with only one processing option - Input: 
 
 
Available processing options: 
 
1 Input 

 
Your choice (0= Exit) : _ 
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Typing 1 and pressing [Enter] opens then the input dialogue, in which DISCO asks the succeeding data 
about your structure; and you enter those data from the keyboard. If the entry is incorrect, the program 
will not accept it, otherwise it will display it and ask you to confirm it by prompting ‘(Y/N)?’ behind. 
You can change it then by pressing N or go to the next data by pressing Y. For the plane frame from 
Fig. 11d, the screen will look as follows after the general data has been input:  
 
 
Input     F1= Repeat    F2= Finish    Esc= Escape    Other= Go on     Cpf6.txt 
------------------------------------------------------------------------ 
 
 
Project        : 
Force units    : 
Length units   : 
No. of joints  : 
No. of members : 

General data: 
 
 Plane frame – Figure 11d 
 kN 
 m 
 18 
 22_ 
 

 
 
Four options will appear in the top line: 
• F1 makes the program go back to the entry ‘Project’ and repeat this part of the dialogue; 
• F2 allows you to save the completed part of the input and go back to the previous screen, which 

will now show 3 processing options: Delete, Update and Append. You can then press 0 to take a 
break or use Append to resume your work,. 

• Esc will erase all new input. If you are in the Input mode, it will erase the new opened file. If you 
are in the Append or Update mode, it will only erase all additions or updates. 

• Any other key will continue the Input dialogue. 
 
Press, indeed, any other key which will bring you to the second part: the input of joint data. DISCO will 
now ask the joint type, joint coordinates and joint concentrated loads for all succeeding joints, checking 
every entry and asking you to confirm it. At the end of the first joint input, the screen will look like this: 
 
 
Input     F1= Repeat    F2= Finish    Esc= Escape    Other= Go on     Cpf6.txt 
------------------------------------------------------------------------ 
 
 

Joint data: 
Joint   1 : t =     4 

FX=     0.000 
X =    -6.000 
FY=     0.000 

Y =    -0.200 
MZ=     0.000 
 

 
 
The same four options appear now in the top line. Pressing F1 repeats the dialogue about this particular 
joint; other options work as discussed above. Press any other key to go to joint 2, then joint 3 etc. When 
all joint data has been input and you have not taken a break by pressing F2, DISCO will go to the third 
part of the Input dialogue: the member data. You will now be asked to input in succession: the member 
beginning and end joint, the axial rigidity EAx, the flexural rigidity EIz and the member distributed 
loads. At the end of the first member input, the screen will look like this:  
 
 
Input     F1= Repeat    F2= Finish    Esc= Escape    Other= Go on     Cpf6.txt 
------------------------------------------------------------------------ 
 
 

Member data: 
Member   1 : from     1  to     

7 
EAx=   2000.000 
QX =      0.000 

 
EIz=     1.000 
QY=      0.000 
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The keys F1, F2, Esc and any other allow again for, respectively, repeating the member data input, 
breaking the job, erasing the entire new input and continuing the dialogue. Press any other key to go to 
member 2, then member 3 etc. When all member data has been input and you have not taken a break by 
pressing F2, DISCO will go to the fourth and last part of the Input dialogue: the members for extended 
output. You will be asked to enter the numbers of members for which you like to receive the locations 
and values of extreme deflections and/or bending moments. Entering those members proceeds in a dia-
logue similar to what has already been discussed – and is terminated by entering 0. When this is suc-
cessfully completed, the following screen should appear: 
 
 
Input complete                                                        Cpf6.txt 
------------------------------------------------------------------------ 
Your data file : Cpf6.txt 
 
Available processing options: 
 
 1 Input  2 Delete  3 Update  4 Append  5 Model  6 Output  7 Setup 
 
Your choice (0= Exit) : _ 
 

 
 
If there are less (e.g. only the first four) processing options at the end of your input, it means that some 
incorrect data has been entered, not detected by the DISCO verifying routines. The program will usually 
help you localize it, by issuing a message like “Bad joint 15” or “Bad member 20”. Use e.g. Update to 
correct it. The use of a *.txt file editor – discussed in section 11.2 – is less convenient, because DISCO 
stores all real values in an exponential notation, 11 digits long, which is as not easy to survey as the 
decimal notation. For this reason, it is also better not to let it replace the data prepared using a text edi-
tor, unless really necessary. 
 
Having successfully completed the input, you can now view the structure model using the option Model. 
It gives a simple graphical presentation of the structure model – meant only for screen control, not for 
printing. Using the option Output will produce another data file, called ‘LastDat.txt’, decently arranged 
in tables and suitable for a hard print. This data file will be stored in the directory C:\DANCE. 
 
The option Setup computes some memory constants and performs a simple band matrix optimization, 
especially useful for large models which might otherwise cause a memory overflow. This optimization is 
an original DISCO routine. Simply speaking, it divides the band matrix into a number of dynamic sub-
matrices, most of which are narrower than the band matrix width. This saves the memory allowing to 
compute more complex models. After performing Setup, the problem is ready for actual computation, 
which is announced in the following manner: 
 
 
 
- Computing memory constants 
- Rock & Roll optimization 
- Setting up for processing 
 
DISCO set up for : Plane frame – Figure 11d 
Joints        18 
Members       22 
- matrix  1  from   1  to  18,   band width  5 
 
Run DANCE 
 
Strike any key _ 
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12.  PROGRAM OPERATION 

 
The program operation starts by choosing the structure type and submitting the input data, as discussed 
in chapter 11. Whether the input has been prepared using a text file editor or the DISCO dialogue, you 
still need to get a screen showing the seven processing options (see preceding page), run the option 
Setup and get the screen telling you to run DANCE. Pressing a key closes DISCO and brings you back 
to the operating system. In order to perform the actual computing, you can now do the following: 
• under MS Windows:  double-click on the icon DANCE; 
• under MS DOS:  make sure you have the prompt C:\DISCO\, type DANCE and press [Enter]17). 
 
DISCO will now compute the problem in a single run (for continuous structures) or an iteration process 
described in chapters 4 and 6 (for discontinuous structures). There will be a “cloud” of numbers flying” 
through your screen, impossible to follow due to the high speed. Do not pay attention to that. These 
numbers represent the band matrix structure at different steps of the Gaussian elimination and the itera-
tion process. They had been helpful during the programming, when PC’s worked much slower than 
now, but they became incommunicative later. The only reason to display them now is that they may still 
be helpful in case of program modifications or extensions in the future. At the end of this computing, 
DISCO finds the solution in terms of a displacement matrix of all joints; and stores it in on drive A:\ in 
a temporary file Temp.txt. You should then receive the following message: 
 
 
MODEL SOLVED 
 
Setting up for output: Cpf6.txt 
DISCO ready to output: Cpf6.txt 
 
Run DANCE 
 
Strike any key _ 
 

  
 
The user is asked to run DANCE again – but do not be confused, it is not the same DANCE as the one 
in section 11.2. In order to understand what happened, you should take a look at the global program 
layout shown in Fig. 15. DISCO consists actually of three main blocks, which should be run in succes-
sion and which do not communicate with each other during operation. These blocks are: 
• Input block; 
• Processing block; 
• Output block. 
Moreover, these blocks do not even exist together at the same time. The truth is that the first block 
writes the second; and the second one writes the third – after erasing itself from your computer hard 
disk. This makes it possible that the block two and three have the same names: DANCE. But still more 
important is the fact that the second, processing block is in this way freed of all the tasks that can be 
separated from solving the simultaneous equation system. Solving that system is the most memory con-
suming procedure in structural analysis programs. 
 
As the program blocks erase and write themselves in every run, they can also “tailor” themselves to the 
type of structure that is being processed. This allows for still more efficiency in memory use. However, 
such a programming method requires that a new-generated program is compiled during the actual com-
puting session. Therefore, a runtime compiler of Turbo Pascal 4.0, TPC.EXE, makes part of the pro-
gram package, which has also been shown in Fig. 15. 
                     
17) Obviously, you do not need to care about the prompt C:\DISCO if you add it to the PATH command in your 
AUTOEXEC.BAT file. 
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Fig. 15. Three main program blocks of DISCO, from left to right: Input, Processing and Output 
 
 
Let us go back to the last screen message. Pressing a key brings you back to the operating system. To 
receive and process the output, you should now do the same as before, i.e.: 
• under MS Windows: double-click on the icon DANCE; 
• under MS DOS: type DANCE on the prompt C:\DISCO\ and press [Enter].  
The third block, Output, is activated now. DISCO reads the joint displacements from the file Temp.txt, 
computes the reactions and member internal loads (“member forces”) and comes up with the message: 
 
 

Output for Plane frame – Figure 11d 
Choose output option: 
 
Complete Partial Selective Graphical Exit  

 
Your choice: _ 
 

  
The output options are discussed in the following section. 

OTHER OPTION ? 
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ARRANGEMENTS, BAND 
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13.  OUTPUT OF SOLUTION 

 
In order to save paper and spare the environment, DISCO allows you to view the solution first; and to 
present only the essential parts of it in the final output. Therefore, a number of output options have been 
programmed. Such additional facilities are possible thanks to the fact that the structure has already been 
computed and the large part of the computer memory has been freed. The first three of the output four 
main options shown in the last screen (one page back) can be delivered as screen output or as both the 
screen and the disk output. Here is that screen again after choosing, e.g., the complete output: 
 
 

Output for Plane frame – Figure 11d 
Choose output option: 
 
Complete Partial Selective Graphical Exit  

 
Your choice: C 
 
Screen        Hard disk + Screen 
 

Your choice: _ 
 

  
 
Below is a short description of the available output options. 
 
Complete: 
 
The complete output consists of the following parts: 
• Program headlines and general data (see section 11.1); 
• Displacements and rotations of all nodes (called “joints”); 
• Support reactions (i.e. reactions in all externally fixed joints); 
• Member internal loads (called “member forces”18)) at the beginning and the end of each member; 
• Bending extremes (extreme deflections and moments) in all earlier specified members. 
After choosing C for “Complete”, the computer will output these data in decent tables, easy to survey. 
Due to the problems with screen control under MS Windows by other than MS software, no data scroll 
routine has been programmed. If your output is long, you can better use the H option first and examine 
it in the hard disk file. There will still be an opportunity to shorten that file for the final presentation. 
 
Partial: 
 
This option gives you the opportunity to choose only those parts of the output that are of your particular 
interest. The format and the size of the output parts are the same as in the option “Complete”, but you 
can skip the parts of less significance. The program will ask whether a part has to be output (displayed 
in Screen mode, or also put on the disk in Hard disk + Screen mode) before processing it. It is especially 
useful for quick or limited analyses, e.g. when only the system reactions are to be considered. 
 
Selective: 
 
The “Selective” output goes further than “Partial”, allowing you to tailor the output exactly to the form 
in which want to present it. The editing takes now place not only on the level of the output parts, but 
also on the level of particular joints and members. After printing each table headline, the program will 
ask you to enter – one by one – the joint or member numbers of your interest. Every entry is followed by 

                     
18) This term, less common in Europe, is largely used in America, e.g. in the classical MIT programs [11], [12]. 
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immediate output for that joint or member. You may also enter them in your own succession or double 
the entries if you like. This option is especially useful for comparing and sorting purposes. 
 
Graphical: 
 
DISCO is not a graphically orientated program. Its graphical facilities serve only the purpose of a 
global control. Also in this case, the “Graphical” option will only prompt a view of the structure defor-
mations, enlarged for a good survey. The user can chose between: 
• Graphical view of only the deformed structure model; 
• Graphical view of in the background undeformed, and in the foreground deformed model; 
The deformed models are plotted using joint deformations only. The members connecting those joints 
are drawn as straight lines. You will, therefore, see polygonal lines instead of curves, which is an obvi-
ous simplification for all structure types except the trusses. The option “Graphical” gives only a screen 
presentation; no hard prints can be obtained. 
 
Exit: 
 
It is possible to run the Output block as many times and in as many options as one wishes. However, 
with the exception of “Graphical”, you should take care that the final output version is the last which 
has been processed – anyhow the last which has been saved on the disk. Do not run Output (e.g. to 
“check one thing still”) after you have completed the final version, because DISCO will overwrite it 
then. Press E for Exit after completing the output. This will end the session with the following message: 
 
 
Your data output file: C:\DANCE\LastDat.txt 
Your solution file:    C:\DANCE\LastSol.txt 
Thank you. 
 
Strike a key: _ 
 

 
 
Pressing any key brings you back to the operation system. You can now get the data file LastDat.txt and 
the solution file LastSol.txt from the hard disk using any word editor (e.g. WordPad – standard present 
by MS Windows); and make hard prints of those files. These prints are skipped in this manual for space 
reasons. There is, however, an input data file cpf5.txt on the attached diskette. You can run DISCO and 
process this file by yourself if you like to see the output.  
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14.  SAMPLE PROBLEM: LEAKAGE OF A LOCK GATE 

 
The complex system of water management in the Netherlands faces the designers with still higher de-
mands. One of them is the construction of locks with mitre gates which can bear water pressure from 
both sides: the pointed, so-called positive side and the concave, so-called negative side. The second load 
case is unfavorable, as water tends then to open the gate instead of - as in the first case - keeping it 
closed. Despite leakage problems the idea wins still more support since it reduces the number of neces-
sary mitre gate leaves. 
 
The most recent project where this idea has been used, is the check gates of the double lock-aqueduct 
over a motorway, Naviduct Enkhuizen. This remarkable project gives a free navigation passage between 
two large lakes, IJsselmeer and Markermeer, which originate from the damming of the ancient Dutch 
internal see, Zuiderzee, in the early 1930’s. The construction of this project was completed in 2003. The 
detailed design of the mitre gates was performed using the finite element analysis program DIANA [16], 
[17]. The contact- and the leakage problems of the gates were investigated using DISCO. Combining 
these two programs in one design proved to be successful in author’s earlier hydrotechnical projects, 
e.g. the storm surge barrier on the Hartel Canal in the harbor of Rotterdam [18], [19]. 
 
Due to the symmetry, only one of leaf of the Naviduct mitre gate had to be modeled. Since the global 
geometrical behavior was of prior interest, not the local stresses, the computer model used by DISCO 
was highly simplified (Fig. 16). It was a 3D-frame model with the main body of the leaf in one plane. 
Only the drive arm lever and the line support to the other leaf did not lay in that plane. All elements 
were linear members; all internal joints were rigid, each with 6 DOF’s.  
 
 

 
 
 
Fig. 16. Structural analysis model for one of the two gate leaves 
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When closed, the gate drive cylinders prestress the gate with a force Fy,1 ≤ 1000 kN in order to limit the 
opening which appears along the contact line under negative hydraulic load. This prestression results in 
a compression of the UHMPE19) edge lining. The resultant of the hydraulic load acts some meters lower, 
tending to open the gate. Due to the complex torsional rigidity of the gate20), it is impossible to deter-
mine the effective contact length directly as an input data. This problem has been solved using a row of 
conditional elastic supports which can only bear compression, see joints no. 41 through 60. When ten-
sion is computed, these joints become released to show the widths of a leakage gap between the two 
leaves. The gap between the bottom members and  the threshold is computed simultaneously. 
 
Table 11 presents some input excerpts for a negative water head (fall) of 1.0 m, which is a maximum 
for this lock operation. By larger falls (1.0 to 3.0 m) the navigation holds up, the negatively faced gate 
goes open and the opposite, positively faced gate bears the entire load. Yet, the negative fall of 1.0 m 
presents a more severe problem due to the leakage. 
 
For demonstration reasons, some more types of discontinuous fixities have been modeled. The second 
one concerns the fixity of a rotation angle AZ along the contact line. In the upper part, above water, the 
buffer is in fact twice as wide as underneath in order to sustain frequent prestression. When the whole 
gate deflects, the compressed contact line will have a fixed rotation about the Z-axis. Since the E-
modulus of UHMPE is low (~300÷500 N/mm2), this effect can practically be ignored, but let’s assume 
that we like to see it in the stiffer upper part only. It can be done by fixing both sides of the rotation an-
gle AZ in that part. However, just for demonstration, single-sided rotation fixities have been used: The 
upper part (first 4 supports) is fixed against the positive AZ rotation, which is expected to occur. The 
lower part (remaining 16 supports) is fixed against the negative AZ rotation, which is not expected in 
this case. Finally, there is a single-sided fixity of a vertical displacement in a pivot bearing under the ro-
tation axis (joint no. 8): downwards fixed, upwards free. A double-sided pinned support would be cor-
rect here as well since there is no doubt about the sign of the vertical support reaction. However, this is 
not always clear in more complex structures and/or load cases. 
 
 

Table 11.  Sample problem - input excerpts 
 
Joint data: 
 
Joint Type       X(m)       Y(m)       Z(m)   -DX+  -DY+  -DZ+  -AX+  -AY+  -AZ+ 
 
   1     1     -2.033      1.455      6.550   /  /  /  /  /  /  /  /  /  /  /  / 
   2  3841      0.000      0.000      7.100   #  #  #  #  /  /  /  /  /  /  /  / 
   3     1      0.000      0.000      6.550   /  /  /  /  /  /  /  /  /  /  /  / 
. . . . . . . 
   7     1      0.000      0.000      0.530   /  /  /  /  /  /  /  /  /  /  /  / 
   8  3969      0.000      0.000      0.000   #  #  #  #  #  /  /  /  /  /  /  / 
   9     1      1.101      0.366      6.550   /  /  /  /  /  /  /  /  /  /  /  / 
. . . . . . . 
  41  1026      6.657      2.181      6.850   /  #  /  /  /  /  /  /  /  /  #  # 
  42  1026      6.657      2.181      6.550   /  #  /  /  /  /  /  /  /  /  #  # 
  43  1026      6.657      2.181      6.170   /  #  /  /  /  /  /  /  /  /  #  # 
  44  1026      6.657      2.181      5.790   /  #  /  /  /  /  /  /  /  /  #  # 
  45  1027      6.657      2.181      5.410   /  #  /  /  /  /  /  /  /  /  /  / 
  46  1027      6.657      2.181      5.030   /  #  /  /  /  /  /  /  /  /  /  / 
. . . . . . . 
  58  1027      6.657      2.181      0.530   /  #  /  /  /  /  /  /  /  /  /  / 
  59  1027      6.657      2.181      0.265   /  #  /  /  /  /  /  /  /  /  /  / 
  60  1027      6.657      2.181      0.000   /  #  /  /  /  /  /  /  /  /  /  / 

                     
19) Ultra High Molecular Polyethylene. 

20) The torsional rigidity is built up by diagonals between beam rear flanges. In a plane model this can be simu-
lated e.g. using the approach presented by Kollbrunner [20] or Dąbrowski [21]. 
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Member data: 
 
Member From To         EAx(kN)       GIx(kNm²)        EIy(kNm²)        EIz(kNm²) 
 
   1     1   3    10710000.000        2536.000        43200.000       738600.000 
   2     2   3    10550000.000      158000.000     21000000.000       222200.000 
. . . . . . . 
  29     9  13     7346000.000         564.800     21000000.000       417900.000 
  30    10  14     7346000.000       56070.000     21000000.000       417900.000 
  31    13  19     7346000.000         564.800     21000000.000       417900.000 
  32    19  22     7346000.000         564.800     21000000.000       417900.000 
  33     5  15     7480000.000      157700.000     21000000.000       249100.000 
  34    15  20     7480000.000      111100.000     21000000.000       249100.000 
. . . . . . .                   
  58    21  41       25100.000         100.000         1000.000          101.100 
  59    22  42       25100.000         100.000         1000.000          101.100 
  60    23  43       25100.000         100.000         1000.000          101.100 
  61    24  44       25100.000         100.000         1000.000          101.100 
  62    25  45       13700.000         100.000         1000.000           16.400 
  63    26  46       13700.000         100.000         1000.000           16.400 
  64    27  47       13700.000         100.000         1000.000           16.400 
  65    28  48       13700.000         100.000         1000.000           16.400 
  66    29  49       13700.000         100.000         1000.000           16.400 
  67    30  50       13700.000         100.000         1000.000           16.400 
  68    31  51       13700.000         100.000         1000.000           16.400 
  69    32  52       13700.000         100.000         1000.000           16.400 
  70    33  53       13300.000         100.000         1000.000           15.900 
  71    34  54       13300.000         100.000         1000.000           15.900 
  72    35  55       13300.000         100.000         1000.000           15.900 
  73    36  56       13300.000         100.000         1000.000           15.900 
  74    37  57       13300.000         100.000         1000.000           15.900 
  75    38  58       11500.000         100.000         1000.000           13.700 
  76    39  59        9500.000         100.000         1000.000           11.500 
  77    40  60       18000.000         100.000         1000.000           21.600 
 
Joint loadings: 
 
Joint  Type     FX(kN)     FY(kN)     FZ(kN)     MX(kNm)     MY(kNm)     MZ(kNm) 
 
   1      1      0.000   1000.000      0.000       0.000       0.000       0.000 
  15      1      0.000      0.000   -220.000       0.000       0.000       0.000 
 
Member loadings: 
 
Member From To     QX(kN)     QY(kN)     QZ(kN) 
 
  33     5  15    -10.590     31.830      0.000 
  34    15  20     -5.280     15.870      0.000 
  35    20  27     -5.280     15.870      0.000 
  36     6  16    -22.950     69.000      0.000 
  37    16  32    -22.950     69.000      0.000 
  38     7  11     -4.180     12.570      0.000 
  39     8  12     -1.090      3.280      0.000 
  40    11  17    -10.880     32.710      0.000 
  41    12  18     -2.920      8.780      0.000 
  42    17  38    -15.380     46.220      0.000 
  43    18  40     -4.010     12.060      0.000 
 
Members for extended output:  42  43 
 
 
DISCO needs 5 iteration steps to solve this sample problem. The computation time on a 133 MHz Intel 
Pentium PC is about 120 sec. This time was measured in the late 1990’s. There has been much pro-
gress in microprocessor speeds since then, therefore only a fraction of this time will be required today. 
The performances of this range are typical for problems of medium until high complexity, which may be 
considered the case here due to the 41 discontinuous fixities. The solution is numerically stable, there 
are e.g. no visible inaccuracies or traceable differences between the totals of loads and reactions. The 
output excerpts interesting for this manual are presented in table 12. 
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Table 12.  Sample problem - output excerpts 

 
Joint displacements: 
 
Joint Type   DX(m/1e3)   DY(m/1e3)   DZ(m/1e3)    AX(1e-3)   AY(1e-3)   AZ(1e-3) 
 
   1     1      9.4280     14.3150      1.4698      0.9172     0.1801    -7.7712 
   2  3841      0.0000      0.0000     -0.2309      1.6380     0.1823    -4.3305 
   3     1     -0.0999      0.7688     -0.2309      0.9172     0.1801    -4.3305 
. . . . . . . 
   7     1     -0.0633      0.2379     -0.0086     -0.4589    -0.1197     2.6146 
   8  3969      0.0000      0.0000      0.0000     -0.4580    -0.1189     3.2261 
   9     1      1.0912     -2.8855     -0.1288      1.3718     0.3910    -2.5717 
. . . . . . . 
  41  1026      0.0000     -2.5662     -0.1144      3.1876     1.0380     0.0000 
  42  1026      0.0000     -1.6082     -0.1144      3.1876     1.0385     0.0000 
  43  1026      0.0000     -0.3871     -0.1164      3.2421     1.0375     0.0000 
  44  1026     -0.2303      0.8526     -0.1183      3.2739     1.0374     0.0000 
  45  1027     -0.6247      2.1921     -0.1204      3.2828     1.0383     1.7983 
  46  1027     -1.0196      3.4440     -0.1226      3.2690     1.0402     1.8612 
  47  1027     -1.4154      4.6863     -0.1249      3.2323     1.0431     1.9242 
  48  1027     -1.8118      5.9244     -0.1307      3.2659     1.0437     1.9538 
  49  1027     -2.2086      7.1722     -0.1364      3.2831     1.0443     1.9833 
  50  1027     -2.6055      8.4234     -0.1422      3.2841     1.0450     2.0128 
  51  1027     -3.0027      9.6719     -0.1479      3.2688     1.0457     2.0424 
  52  1027     -3.4002     10.9115     -0.1537      3.2372     1.0464     2.0719 
  53  1027     -3.7960     12.1157     -0.1593      3.2371     1.0904     2.1346 
  54  1027     -4.2051     13.3188     -0.1632      3.2316     1.1183     2.1972 
  55  1027     -4.6216     14.5189     -0.1656      3.2205     1.1302     2.2598 
  56  1027     -5.0395     15.7138     -0.1663      3.2038     1.1260     2.3224 
  57  1027     -5.4528     16.9015     -0.1654      3.1816     1.1057     2.3851 
  58  1027     -5.8557     18.0800     -0.1630      3.1538     1.0695     2.4477 
  59  1027     -6.1391     18.9171     -0.1644      3.1391     1.0692     2.4804 
  60  1027     -6.4224     19.7504     -0.1638      3.1256     1.0688     2.5132 
 
Support reactions: 
 
Joint Type      RX(kN)      RY(kN)      RZ(kN)     MX(kNm)    MY(kNm)    MZ(kNm) 
 
   2  3841    305.7436  -1058.9745      0.0000      0.0000    -0.0000     0.0000 
   8  3969    199.3141   -258.2148    220.0000      0.0000    -0.0000     0.0000 
  41  1026   -218.3036     -0.0000     -0.0000     -0.0000     0.0000    -1.7271 
  42  1026   -140.1272     -0.0000      0.0000     -0.0000     0.0000    -1.7623 
  43  1026    -41.1275      0.0000     -0.0000     -0.0000    -0.0000    -1.7359 
  44  1026      0.0000     -0.0000      0.0000     -0.0000     0.0000    -1.7544 
  45  1027      0.0000     -0.0000      0.0000     -0.0000    -0.0000     0.0000 
  46  1027      0.0000     -0.0000      0.0000     -0.0000    -0.0000     0.0000 
. . . . . . . 
  59  1027      0.0000     -0.0000      0.0000     -0.0000    -0.0000     0.0000 
  60  1027      0.0000     -0.0000      0.0000      0.0000    -0.0000     0.0000 
 
 
Observe that only the first 3 elastic supports (joints 41, 42, 43) remain in contact with the gate other 
leaf. These joints undergo no displacements in the X-direction, and bear compressive reactions varying 
from 218 to 41 kN. In fact, this distribution of compression has been used in dimensioning the UHMPE 
front post lining. Below that part, a gap begins to open reaching 6.4 mm (twice due to the symmetry) in 
the bottom joint no. 60. The leakage gap along the threshold is a geometrical sum of displacements DX 
and DY and reaches 20.8 mm in joint no. 60. These values have been used in designing additional soft 
gaskets to prevent excessive leakage. 
 
As foreseen, the discontinuous fixities of the rotation angle AZ along the contact line gave in its upper 
part some small reaction moments MZ and no rotations. Below that part free positive rotations and no 
moments MZ were computed. Discontinuous fixity of the DZ displacement in the pivot bearing resulted 
in no displacement and an upward reaction RZ. That reaction is exactly equal to the own weight of the 
gate reduced by the buoyancy, as input in joint 15 – which is one of the signs that a numerically stable 
solution has been computed. 
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The last part of the output covers the bending extremes for the members of the users particular interest. 
Bending extremes are the extreme bending moments and deflections in the member local coordinate sys-
tem (see section 10.2). In this case the user was particularly interested in two members: no. 42 and 43. 
Below are the bending extremes computed for those members (Table 13). For the member 42, the entire 
lines of bending moments and deflections have also been computed. This facility is only available in the 
Selective output mode, in which DISCO will ask the user to specify the number of equal steps for such 
lines. Entering 0 skips this facility for the member in question. 
 
 

Table 13.  Sample problem - bending extremes 
 
Bending extremes: 
 
Member  42        x(m)     Mz(kNm)   Dy(m/1E3)     My(kNm)   Dz(m/1E3) 
 
 Joint  17      0.0000     13.0012     10.1731     31.3101     -0.1260 
 Mz extr.       1.3698     26.5221     13.7671      7.9211     -0.1171 
 Dz extr.       0.5270     21.4035     11.5728     22.3119     -0.1377 
 Dz extr.       3.1404      3.9309     18.1855    -22.3119     -0.0538 
 Joint  38      3.3800     -2.5960     18.7718    -26.4025     -0.0560 
 
   Step  0      0.0000     13.0012     10.1731     31.3101     -0.1260 
   Step  1      0.4225     20.0556     11.2967     24.0961     -0.1372 
   Step  2      0.8450     24.5375     12.4080     16.8820     -0.1342 
   Step  3      1.2675     26.4467     13.5041      9.6679     -0.1213 
   Step  4      1.6900     25.7833     14.5839      2.4538     -0.1026 
   Step  5      2.1125     22.5474     15.6477     -4.7602     -0.0825 
   Step  6      2.5350     16.7389     16.6977    -11.9743     -0.0652 
   Step  7      2.9575      8.3578     17.7373    -19.1884     -0.0550 
   Step  8      3.3800     -2.5960     18.7718    -26.4025     -0.0560 
 
Member  43        x(m)     Mz(kNm)   Dy(m/1E3)     My(kNm)   Dz(m/1E3) 
 
 Joint  18      0.0000     23.7466     11.4167     31.1117     -0.1271 
 Mz extr.       2.1233     32.2229     17.2865     -6.3565     -0.0775 
 Dz extr.       0.4711     27.0906     12.7582     22.7987     -0.1365 
 Dz extr.       3.0551     30.5906     19.7075    -22.7987     -0.0527 
 Joint  40      3.3800     29.2540     20.5295    -28.5315     -0.0570 
 

0 = stop,  1..10 = jump 
 
 
In the program, the extreme bending moments have been computed using analytical approach, which is 
in fact quite simple. The computation of extreme deflections is, however, not simple from the program-
ming point of view. DISCO uses a modern iteration method here called ‘Illinois iteration’ [9], which is a 
modified, very fast version of a ‘classical’ regula falsi. A discussion on this matter goes, however, be-
yond the subject of the manual. 
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