Perforce 97.3
Command Line
User's Manual

Manual 97.3m1

November 25, 1997

This manual copyright 1997 PERFORCE Software.
All rights reserved.

PERFORCE software and documentation is available from
http://ww. perforce.conl. Youmay download and
use PERFORCE programs, but you may not sell or redistribute
them. You may download and print the documentation, but you
may not sell or redistribute it. You may not modify or attempt to
reverse engineer the programs.

PERFORCE programs and documents are available from our Web
siteasis. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by
PERFORCE Software.

PERFORCE Software assumes no responsibility or liability for
any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you
agree to these terms.

PERFORCE and Inter-File Branching are trademarks of
PERFORCE Software. PERFORCE software includes software
developed by the University of California, Berkeley and its
contributors.

All other brands or product names are trademarks or registered
trademarks of their respective companies or organizations.

The remainder of this columnisleft blank for your use. You may
utilize it to store such written, inscribed, drawn, painted, copied,
drafted, or duplicated material asyou seefit, or for any other use,
providing the use does not violate the laws, ordinances, statutes,
regulations, edicts, canons, or decrees of your country, state,
territory, kingdom, province, county, city, or other municipality.
PeERFORCE Software will assume no liability, responsibility, debt,
risk or other obligation for any defamatory, libelous, pejorative,
unlawful, slanderous, or otherwise illegal material appearing
below this paragraph in this column on this page.

PREFACE About This Manual

Thisisthe PERFORCE 97.3 User’s Guidet teaches the use of PERFORCE'S command-line
interface; the BRFORCE Windows GUI is not discussed. For documentation on the Win-
dows GUI interfacep4wIN, please see ow4 to PAWMN Tranglation Guide (for experi-
enced BRFORCE users) or thedwiN User’s Guidgfor the PERFORCE novice).

Although this guide can be used as a reference manual, it is primarily intended as guide/
tutorial on using PERFORCE. The full syntax of most of the PERFORCE commands is not
provided here; we suggest that you supplement use of this guide with the upcoming PER-
FORCE Command Referengar with the on-line help system. Use of this manual for oper-
ating systems other than UNIX and NT should be supplemented with the release notes for
that OS.

New 97.3 Features

The features new to PERFORCE 97.3 have been marked with changebarsin the left margin.
The release notes provide more detailed information, and are available from our web site.

Please consult the release notes before upgrading from earlier versioasrafREE to
version 97.3The journaling and checkpointing subsystems have changed; the release
notes contain safety instructions on performing the upgrade.

Margin Note Icons

This manual makes use of notes in the left margin to supply additional information. The
icons accompanying these notes have the following meanings:

95/NT Information specific to the Windows 95 or Windows NT command line.
I i A cross-reference to other material in this manual.
,Q\ A concrete example of the material discussed.

Perforce 97.3 User’s Manual 3

Chapter PREFACE : About ThisManual

A note of general interest.

T

This note is rather important!

The Example Set

We have attempted to develop a uniform example set for use with this manual. All of the
examples use the source code for El m a popular UNIX mail program. We selected the
Elm source code for a number of reasons:

» Elm is widely used, and mangRForCE users will be familiar with the program. If they
are not, they at least understand what it does.

» The source code is stored in well-organized subdirectories, which allow us to demon-
strate certain capabilities OERFORCE.

* The source code for Elm is widely available; users of this manual can download Elm
and try the examples as they're encountered.

Links to the Elm source code can be found at

http://ww. nyxa. conl el m ht m

We are using the Elm source with the kind permission of Sydney Weinstein and Bill Pem-
berton of the USENET Community Trust.

Disclaimer: To the best of our knowledge, the EIm team has never EsEdRCE
for source management. As far as we know, they never heamRedRZE until they
received our email asking for permission to use their code in our manual. No implica-
tion that the Elm team uses or endorsersrBRCE is intended; none should be inferred.

Please Give Us Feedback

We are always interested in receiving feedback on our manuals. Dodoes this guide teach
the topic well? Are there any glaring errors? Are the explanations clear, or are the exem-
plifications obfuscated by this enchiridion? Please let us know what you think; we can be

reached atanual @erforce. com

Perforce 97.3 User’s Manual 4

Table of Contents

PREFACE About ThisManual 3

New 97.3 Features 3
Margin Notelcons 3

The Example Set 4

Please Give Us Feedback 4

CHAPTER 1 Perforce Concepts 11

Perforce Architecture 12

Moving Files Between the Clients
and the Server 12

File Conflicts 13

Labeling Groups of Files 13
Branching Files 13

Job Tracking 13

Change Review and Daemons 14
Protections 14

CHAPTER 2 Connecting to the
p4d Server 15

Verifying the Connection to
the p4d Server 15

Telling p4 Wherepddis 16

CHAPTER 3 Perforce Basics:
Quick Sart 17

Underlying Concepts 17
File Configurations Used in the Examples 17

Setting Up a Client Workspace 18
Naming the Client Workspace 18

Describing the Client \Workspace
to the PERFORCE Server 18

Editing an Existing Client Specification 19
Deleting an Existing Client Specification 20

Copying Files from the Workspace
tothe Depot 20
Adding Filesto the Depot 20
Updating Depot Files 21
Deleting Files From the Depot 22
Submitting with Multiple Operations 22
Retrieving Files from the Depot
into aWorkspace 23
Reverting Filesto their
Unopened States 24

Basic Reporting Commands 24

CHAPTER 4 Perforce Basics:
The Details 26

Description of the Client Workspace 26
Wildcards 27
Wildcards and ‘p4 add’ 27
Mapping the Depot to the Client Workspace 28
Using Views 28
Wildcards in Views 29
Types of Mappings 29
Referring to Files on Command Lines 31
Local Syntax 31
Perforce Syntax 31
Providing Files as Arguments to Command3?2
Wildcards and Perforce Syntax33
Name and String Limitations 33
File Names 33
Descriptions 33
Specifying Older File Revisions 33
Using Revision Specifications without Filenames
Revision Ranges 35
File Types 35
Forms and Perforce Commands 36
General Reporting Commands 37

CHAPTER5 Perforce Basics:
Resolving File Conflicts 38

RCS Format: How Perforce Stores File Revisions 38
Only the Differences Between Revisions are Stofé
Use of ‘diff’ to Determine File Revision Differenced0

Scheduling Resolves of Conflicting Files 40
Why ‘p4 sync’ to Schedule a Resolve®
How Do | Know When a Resolve is Needed2

Performing Resolves of Conflicting Files 41
File Revisions Used and Generated by p4 resolve 41
Types of Conflicts Between File Revisions 42
How the Merge Fileis Generated 42
The ‘p4 resolve’ Options 43
Using Flags with Resolve
to Non-Interactively Accept Particular Revisiond5
Binary Files and ‘p4 resolve’ 45
Locking Filesto Minimize File Conflicts 45
Preventing Multiple Resolves with File Locking6
Resolves and Branching 46

Resolve Reporting 46

CHAPTER 6 Perforce Basics:
Miscellaneous Topics 48

Command-Line Flags
Common to All Perforce Commands 48

Working Detached 49
Finding Changed Files
with ‘p4 diff’ 50
Using ‘p4 diff’ to
Update the Depot 50
Refreshing files 50
Options in the ‘p4 client’ Form 51

Recommendations for
Organizing the Depot 51

Renaming Files 52

Reading Forms from Standard Input;
Writing Forms to Standard Outpu2

CHAPTER 7 Changelists 53

Working with the Default Changelist53
Creating Numbered Changelists Manually4
Working With Numbered Changelistss5

Automatic Creation and Renumbering of Changeli€i6
When Submit of the Default Changelist Fails,
the Changelist is Assigned a Number 56
Perforce May Renumber a Changelist upon Submission 56
Deleting Changelists 57

Changelist Reporting 57

CHAPTER 8 Labels 58

Why Not Just Use Change Numbers? 58
CreatingaLabel 58
Adding and Changing
FilesListedinalLabel 59
Previewing Labelsync's Result$61
Preventing Accidental Overwrites of
a Label's Contents 61
Retrieving a Label's Contents into a Client Workspaéé&
Deleting Labels 62
Label Reporting 62

CHAPTER 9 Branching 63

What is Branching? 63
When to Create a Branch63

Branching’s First Action:
Creating a Branch 64
Sep 1: Createthe Branch View 64
Sep 2: Include the Branched Filesin the Client View 65
Seps3 & 4:
Use ‘p4 integrate’ and ‘p4 submit’
to Create the Target Files66
Working With Branched Files 67

Branching’s Second Action:
Propagating Changes from One Codeline
to the Other 67
Propagating Changes from Branched Files
tothe Original Files 68
When the -r flag is used to propagate changes from branched donorsto
original targets, the original source files must be visible through the target
view. 69
Branching and Merging
Without a Branch View 69
Deleting Branches 69
Advanced Integration Functions69
Integrating Specific File Revisions 70
Re-Integrating and Re-Resolving Files 70
How Integrate Works 70
p4 integrate’s Definitions of yours, theirs, and basé&l
The Integration Algorithm 71
Integrate’s Actions 71
Integration Reporting 72

CHAPTER 10 Job Tracking 73

Creating and Editing Jobs 73

Linking Jobs to Changelists,

and Changing a Job’s Statug4
Automatically Performed Functions 74
Controlling Which Jobs Appear in Changelists 76
Manually Associating Jobs with Changelists 76
Arbitrarily Changing a Job's Status76

Deleting Jobs 77
Integrating to External Defect Tracking Systems 77
Job Reporting 77

CHAPTER 11 Change Review
& Other Daemons 78

Providing Change Review Parameters 78
Running the Daemon 79
How the Review Daemon Works 79

Tracking Reviewed Changelists
with Review Counters 80

A ProtectionsWarning 81
Creating Other Daemons 81
Change Review Reporting 81

CHAPTER 12 Reporting
and Data Mining 82

Files 82
File Metadata 82
Relationships Between Client and Depot Filet
File Contents 85
Changelists 87
Changelists that Meet Particular Criteria87

Files and Jobs
Affected by Changelists88

Labels 88
Branch and Integration Reporting 89
Job Reporting 90

Jobs, Fixes, and Changelist®1
Reporting for Daemons 91
System Configuration 92
Special Reporting Flags 92

Reporting with Scripting 93
Comparing the Change Content of Two File Sets 93
Changelists Submitted by Particular Users 93
Listing Subdirectories of the Depot 94

CHAPTER 13 System Administration: Installation and
Maintainance 95

Installation of pAdand p4 95

Creating a p4d Root Directory 95

Setting p4d’s Port 95

Telling p4 Where The p4d Server 196

Starting p4d: The Basics96

Logging Errors 97

Protections 97

Checkpointing, Journaling, and Recover§7
Making a Checkpoint 97

Turning Journaling On and Off 98
Recovering 98

Managing Disk Space 99
License File 99
Release and License Informatio®9

CHAPTER 14 System Administration:
Protections 100

When Should Protections Be Set200

Setting Protections with p4 proteci00
The Permission Lines’ Four Fields101
Access Levels 101
Default Protections 102
Interpreting Multiple Permission Lines103
Exclusionary Protections 103
Access Levels Required by Perforce Commands 104

How Protections are Implemented 105

CHAPTER 15 System Administration:
Superuser Commands 107

File Verification by Signature 107
File Obliteration 107

Changelist Deletion
& Description Editing 107

Distributed Depots 108
Defining New Depots 108
Accessing Files In Other Depots 109
Integrating Files From Other Depots 110
Deleting Depots 110
Depot Reporting Commands 110

APPENDIX A Environment Variables 111

APPENDIX B Glossary 116

CHAPTER 1

PERFORCE Concepts

N

You don’t need to
read this chapter if
you don’t want to.

All the material
discussed here is
also covered in the
‘how-to’ chapters,
which comprise the
rest of the manual.

This chapter is
provided as a guide
to what FERFORCE
does, without the
details of how to

do it.

PeERFORCE facilitates the sharing of files among multiple users. It is a software configura-
tion management tool, but software configuration management (SCM) is defined in many
different ways, depending on who is giving the definition. SCM has been described as
providing version control, file sharing, release management, defect tracking, build man-
agement, and a few other things. It's worth looking at exactly wiR#dRCE does and
doesn't do:

» PerRFORCE offers version control: multiple revisions of the same file are stored, and
older revisions are always accessible.

» PERFORCE provides facilities for concurrent development; multiple users can edit their
own copies of the same file.

« Some release management facilities are offemrkdRCE will track which revisions of
which files are part of a particular release.

* Bugs and system improvement requests can be tracked from entry to fix; this is known
as defect tracking.

» PERFORCE supplies some lifecycle management functionality; files can be kept in
release branches, development branches, or in any sort of needed file set.

« Change review functionality is provided bgRPORCE; this allows users to be notified
by email when particular files are changed.

« Although a build management tool is not built inERFORCE, we do offer a companion
freeware product calledJ’AM - Make(1) Redux”. JAM and BERFORCE meet at the file
system; source files managed IBRPORCE are easily built by AM

PERFORCE excels at all file management functions. AlthoughA®RCE was built to man-

age source files, it can manage any sort of on-line documents. It can be used to store revi-
sions of a manual, to manage Web pages, or to store old versions of operating system
administration files. Its branching functionality, which allows copies of files to evolve
separately from the files they were copied from, is unparalleled in the industry.eAnd P
FORCE is extremely fast.

PERFORCE Architecture

PERFORCE has a client/server architecture, in which many computers, adiksds, are
connected to one central machine, skever. Each user works on a client; at their com-
mand, files they've been editing are transferred to and from the server. The clients com-
municate with the server via TCP/IP.

Perforce 97.3 User’s Manual 12

Chapter 1 : PERFORCE Concepts

+

The PERFORCE
installation guide
can befound in
Chapter 13.

+

Basic PERFORCE
usageistaught in
Chapters 3 and 4.

+

The details of
changelistsare
discussed in
Chapter 7.

+

Resolving
file conflictsisthe

topic of Chapter 5.

The PERFORCE clients may be distributed around alocal area network, wide area network,
dialup network, or any combination of these. There can also be PERFORCE clients on the
same host as the server.

Two programs do the bulk of PERFORCE's work:

* TheP4D program is run on theERFORCE server. It manages the shared file repository,
and keeps track of users, clients, protections, and oH®eEDRCE metadata.
P4d must be run on a UNIX or Windows/NT host.

* TheP4 program is run on eacle®ORCE client. It sends the users’ requests tordte
server program for processing, and communicatespdittvia TCP/IP.

P4 client programs can be run on many platforms, including UNIX, Windows, VMS,
Macintosh, BeOS, and Next hosts.

Moving Files Between the Clients
and the Server

Users create, edit, and delete files in their own directories on the clients; these directories
are calledclient workspaces. PERFORCE commands are used to move files to and from a
shared file repository on the server known agidpet. PERFORCE users can retrieve files

from the depot into their own client workspaces, where they can be read, edited, and
resubmitted to the depot for other users to access. When evigan of a file is stored

in the depot, the old revisions are kept, and are still accessible.

Files that have been edited within a client workspace are sent to the depdtarigeist,

which is a list of files, and instructions that tell the depot what to do with those files. For
example, one file might have been changed in the client workspace, another added, and
another deleted. These file changes might be sent to the depot in a single changelist, which
is processedtomically: either all the changes are made to the depot at once, or none of
them are. This allows problem fixes that span multiple files to be updated in the depot at
exactly the same time.

Each client workspace has its oalirent view, which determines which files in the depot

can be accessed by that client workspace. One client workspace might be able to access all
the files in the depot; another client workspace might access only a single fileeRFhe P
FORCE server is responsible for tracking the state of the client workspasepHeE

knows which files a client workspace has, where they are, and which files have write per-
mission turned on.

File Conflicts

When two users edit the same file, it is possible for their changes to conflict. For example,
suppose two users copy the same file from the depot into their workspaces, and each edits
his copy of the file in different ways. The first user sends his version of the file back to the
depot; subsequently, the second user tries to do the same thirmrrtiREE were to
unquestioningly accept the second user’s file into the depot, the first user’s changes would
not be included in the latest revision of the file (known a$¢had revision).

When a file conflict is detected ERFORCE allows the user experiencing the conflict to
perform aresolve of the conflicting files. The resolve process allows the user to decide

Perforce 97.3 User’s Manual 13

Chapter 1 : PERFORCE Concepts

+

Chapter 8 discusses
labels.

+

The workings of
Inter-File
Branchingis
coveredin
Chapter 9.

+

You'll learn how to
do job tracking in
Chapter 10.

what needs to be done: should his file overwrite the other user's? Should his own file be
thrown away? Or should the two conflicting files be merged into one? At the user’s
request, BRFORCE will perform athree-way merge between the two conflicting files and

the single file that both were based on. This process genenakegedfile from the con-
flicting files: the merge file contains all the changes from both conflicting versions, and
this file can be edited and then submitted to the depot.

Labeling Groups of Files

It is often useful to mark a particular set of file revisions for later access. For examples, the
release engineers might want to keep a list of all the file revisions that comprise a particu-
lar release of their program. This list of files can be assigned a single mnemonic name,
like r el ease2. 0. 1; this name is éabel for the user-determined list of files. At any sub-
sequent time, the label can be used to copy the old file revisions into a client workspace.

Branching Files

Thus far, it has been assumed that all changes of files happen linearly. But this is not
always the case: suppose that one source file needs to evolve in two separate directions;
perhaps one set of upcoming changes will allow the program to run under VMS, and
another set will make it a Mac program. Clearly, two separately evolving copies of the
same files are necessary.

PERFORCE's Inter-File Branching™ mechanism allows any set of files to be copied within
the depot. By default, the new file set,andeline, evolves separately from the original
files, but changes in either codeline can be propagated to the other.

We're particularly proud of BRFORCE’s branching mechanism. Most SCM systems allow
some form of branching, bueRFORCE’s is particularly flexible and elegant.

Job Tracking

Job is a generic term for a plain-text description of some change that needs to be made to
the source code. A job might be a bug description, like “the system crashes when | press
return”, or it might be a system improvement request, like “please make the program run
faster.”

Whereas a job represents work that is intended to be performed, a changelist represents
work actually done. BRFORCE's job tracking mechanism allows jobs to be linked to the
changelists that implement the work requested by the job. A job can later be looked up to
determine if and when it was fixed, which file revisions implemented the fix, and who
fixed it.

PERFORCE's job tracking mechanism does not implement all functionality normally sup-
plied by full-scale defect tracking systems. Its simple functionality can be used as is, or it
can be integrated with a full-scale job tracking system with a scripting language such as
Perl.

Perforce 97.3 User’s Manual 14

Chapter 1 : PERFORCE Concepts

+

Chapter 11
discusses change
review, and contains
instructions on
creating your own
daemons.

+

PERFORCE'’S
protection
mechanism is
described in
Chapter 14.

Change Review and Daemons

PERFORCE'’s change review mechanism allows users to receive email notifying them when
particular files have been updated in the depot. The files that a particular user receives
notification on is determined by that user. Change review is implemented by an external
Perl program, odaemon, and can be recoded by a knowledgeable user, allowing change
review functionality to be customized.

Protections

PERFORCE provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protection mechanism determines exactly wERFORCE commands are
allowed to be run by any particular client.

Permissions are granted or denied based on the user's username and IP address. Since
PERFORCE usernames are easily changed, protections at the user level provide safety, not
security. Protections at the IP address level are as secure as the host itself.

Perforce 97.3 User’s Manual 15

CHAPTER 2

Connecting to the
P4D Server

+

This chapter
assumes that both
the P4D and P4
programs have been
installed by

a system
administrator.
Installation
instructions

can be found

in Chapter 13.

oA

Example:

Output from

p4 i nf o when
correctly connected
to the PAD server

PERFORCE uses a client/server architecture. Files are created and edited by users on their
own client hosts; these files are transferred to and from a shared file repository located on
a PERFORCE server. Every running PERFORCE system uses a single server and can have
many clients.

Two programs do the bulk of PERFORCE's work:
e TheP4D program is run on theERFORCE server. It manages the shared file repository,
and keeps track of users, clients, protections, and oH®eDRCE metadata.

» ThepP4 program is run on eacleRFORCE client. It sends the users’s requests tortime
server program for processing, and communicatespatidhvia TCP/IP.

Eachr4 program needs to know the address and port afdtheserver that it communi-
cates with. This address is stored inPABORT environment variable.

Verifying the Connection to
the P4D Server

A p4 client needs to know two things in order to talk tor#ie server:

« The name of the host thadD is running on
» The port thap4D is listening on.

These are set via a single environment varialpPORT. It is possible that your system
administrator has already $®tPORT; if not, you'll need to set it yourself.

To verify the connection, typ®4 i nf o at the command line. If tH&PORT environment
variable is correctly set, you'll see something like this:

User nane: edk

Client nane: eds_elm

Cient unknown.

Current directory: /usr/edk

Client address: 206.14.52.194: 3119
Server address: nargarine: 1818

Server root: /usr/local/p4root

Server version: P4D- FREEBSD (12/13/96)
Server |icense: test 10 users

Perforce 97.3 User’s Manual 16

Chapter 2 : Connecting to the p4D Server

oA

Example:

Error from

p4 info;

the P4D server
connection is
incorrectly specified

Theserver address: field showswhich P4D server has been connected to; it displays
the host and port number that PAD is listening on.

In the above example, everything is fine. If, however, you receive a variant of this mes-
sage:

Error:

Connect to server failed; check P4PORT.
TCP connect to perforce: 1666 fail ed.
perforce: host unknown.

then PAPORT has not been correctly set. If the value you see in the third line of the error
message is per f or ce: 1666 (as above), then PAPORT has not been set at al; if the value

is anything else, PAPORT has been incorrectly set. In either case, you'll need to set the
value ofP4PORT.

Telling P4 Where P4D is

Before continuing, you'll need to ask your system administrator the name of the host that
PAD is located on, and the number of the TCP/IP port it's listening on. Once you've
obtained this information, set yolR4PORT environment variable tdiost: port #,
wherehost is the name of the host theID is running on, angor t # is the port thap4d

is listening on. For example:

If the PAD host is hamed... ’ and the P4D port isnamed... ’ set PAPORT to:
3435 dogs: 3435
1818 X.com 1818

dogs
X. com

The definition ofP4PORT can be shortened#nfl is running on the same hostds. In this
case, only the4p port number need be providedré. And if PAD is running on a host
named or aliaseper f or ce, listening on port.666, the definition ofP4PORT for thep4
client can be dispensed with altogether. For example:

If the PAD host is hamed... ‘ and the P4D port is... ‘ set PAPORT to...
<same host as thet client> 9783 9783
perforce 1666 <no value needed>

When P4APORT has been set, you should re-verify the connection p4th i nf o, as
described above. Once this has been dogrrdRCE is ready to use.

Perforce 97.3 User’s Manual 17

CHAPTER 3

PERFORCE Basics:
Quick Start

+

The use of the EIm
source code set is
described in the
About Thi s
Manual chapter

(page 3).

This chapter teaches basic PERFORCE usage. You'll learn how to move files to and from
the common file repository, how to back out of these operations, and the EREIREE
reporting commands.

These concepts and commands are painted with very broad strokes in this chapter; the
details are provided in the next.

Underlying Concepts

The basic ideas behin&®ORCE are quite simple: files are created, edited, and deleted in
the user's own directories, which are calignt workspaces. PERFORCE commands are

used to move files to and from a shared file repository known adeiot PERFORCE

users can retrieve files from the depot into their own client workspaces, where they can be
read, edited, and resubmitted to the depot for other users to access. When a new revision
of a file is stored in the depot, the old revisions are kept, and are still accessible.

PERFORCE was written to be as unobtrusive as possible; very few changes to your normal
work habits are required. Files are still created in your own directories with a standard text
editor; FERFORCE commands supplement your normal work actions instead of replacing
them.

PERFORCE commands are always entered in the foghrconmand [ar gunent s] .

File Configurations Used in the Examples
This manual makes extensive use of examples based Bhrtts®murce code set. Tl m
examples used in this manual are set up as follows:

A single depot is used to store the elm files, and perhaps other projects as well. The elm
files will be shared by storing them undereamsubdirectory within the depot.

Perforce 97.3 User’s Manual 18

Chapter 3 : Perforce Basics: Quick Start

oA

Example:
Naming the
client workspace

N

Many P4 commands,
including p4
client,displaya
formfor editingina
standard text editor.
The editor that is
used is defined
through the EDI TOR
environment
variable.

Each user will store his or her client workspace Elm files in a different subdirectory. The
two users we’'ll be following most closely, Ed and Lisa, will work with their EIm files in

the following locations:

User ’ Username ’ Client Workspace Name ‘ Top of own Elm File Tree
Ed edk
Lisa li sag

eds_elm /usr/edk/ el m

lisas_ws /usr/lisag/docs

Setting Up a Client Workspace

To move files between a client workspace and the depot,BkEORCE server requires
two pieces of information:

« A name that uniquely identifies the client workspace, and
» The top-level directory of this workspace.

Naming the Client Workspace

To name your client workspace, or to use a different workspace, set the environment vari-

ableP4CLI ENT to the name of the client workspace.

Ed isworking on the code for EIl m He wants to refer to the collection of files he’s working
on by the nameds_el m In the Korn shell, he'd type

$ export PACLI ENT=eds_el m

Each operating system or shell has its own method of defining environment variables;
Appendix A describes how to create environment variables within each shell and OS.

Describing the Client Workspace

fo the PERFORCE Server

Once the client workspace has been named, it must be identified and described to the PER-
FORCE server withthep4 cli ent command. Typing p4 cl i ent brings up the client def-

inition form in a standard text editor; once the form is filled in and the editor exited, the
PeRFORCE server will be able to move files between the depot and the client workspace.

The p4 client form has a number of fields; the two most important are the Root and
Vi ew. The meanings of these fields are as follows:

Field M eaning
Root :

I dentifies the top subdirectory of the client workspace.
This should be the lowest-level directory that includes

all the files and directories that you'll be working with
in this workspace.

Describes which files and directories in the depot are
available to the client workspace, and where the files in
the depot will be located within the client workspace.

Vi ew.

Perforce 97.3 User’s Manual 19

Chapter 3 : Perforce Basics: Quick Start

&

Example:

Setting the client
root and the client
view

1]

To use PERFORCE
properly, itiscrucial
to understand how
views work. Views
areexplainedin
more detail at the
start of the next
chapter.

Ed is working with his elm files in a setting as described above. He’s set the environment
variable PACLI ENT to eds_el mi now he typeg4 client from his home directory, and
sees the following form:

Client: eds_elm
Omner: ed
Descripti on:
Created by ed.
Root: /usr/edk
Opti ons:
Vi ew:
[/ depot/. ..

nonodti me nocl obber

[leds_elm...

If he were to leave the form as is, all of the files uiider / edk would be mapped to the
depot, and they would map to the entire depot, instead of to just th@roject. He
changes the values in tReot : andvi ew. fields as follows:

Client: eds_elm

Omner: ed

Descripti on:
Created by ed.

Root: /usr/edk/elm
Opti ons: nonodti me nocl obber
Vi ew.

[/ depot/elmproj/... [/eds_elm...

This specifies thadtusr/ edk/ el mis the top level directory of Ed’s client workspace, and
that the files under this workspace directory are to be mapped to the depot’sr oj
subtree.

When Ed’s done, he quits from the editor, andpthecl i ent command completes.

The read-only d i ent: field contains the string stored in the PACLI ENT environment
variable. Descri pti on: can befilled with anything at all (up to 128 characters); this pro-

vides an arbitrary textual description of what's contained in this client workspace. The
Vi ew. describes the relationship between files in the depot and files in the client work-
space.

Creating a client specification has no immediate visible effect; no files are created when a
client specification is created or edited. The client specification simply indicates where
files will be located when subsequedtcommands are used.

Editing an Existing Client Specification

p4 client can be used at any time to change the client workspace specification. Just as
when a client specification is created, changing a specification has no immediate affect on
the locations of any files; the location of files in the depot and workspace is affected only
when the client specification is used in subsequent commands. But there is an important
distinction between changing the client's root and changing the client’'s view: if you
change the root, HRFORCE assumes that you will manually relocate the files as well. If
you change the view and then bring files into the client from the deprtpRCE will

delete and add files as necessary to make the client workspace reflect the view.

Perforce 97.3 User’s Manual 20

Chapter 3 : Perforce Basics: Quick Start

N

If you're working in
an already-
established
PERFORCE
environment, and
want to start by
retrieving already-
existing files, you
can skip to page 24
and come back to
this section later.

N

This chapter
discusses only the
def aul t

changel i st , which
is automatically
maintained by
PERFORCE.
Changelists can be
created by the user
please see Chapter

for a full discussion.

&

Deleting an Existing Client Specification

An existing client workspace specification can be deleted with p4 client -d client-

name. Deleting a client specification has no effect on any files in the client workspace or
depot; it simply removes the PAD server’s record of the mapping between the depot and the
client workspace. To delete existing files from a client workspacey4iseync #none
(described on page 35) on the filegore deleting the client specification, or use the stan-
dard local OS deletion commanalter deleting the client specification.

Copying Files from the Workspace
to the Depot

Any file in a client workspace can be added to, updated in, or deleted from the depot. This
is accomplished in two steps:

1. PERFORCE is told the new state of client workspace files with the commp#dadd
filenanes,p4 edit filenanes, orp4 delete filenanes. When these com-
mands are given, the corresponding files are listed ERBARCE changelist, which is
a list of files and operations on those files to be performed in the depot.

2. The operations are performed on the files in the changelist whed thebni t com-
mand is given.

The commandg4 add, p4 edit, andp4 del ete do not immediately add, edit, or
delete files in the depot. Instead, the affected file and the corresponding operation are
listed in thedefault changelist, and the files in the depot are affected only when this
changelist is submitted to the depot with subnit. This allows a set of files to be
updated in the depot all at once: when the changelist is submitted, either all of the files in
the changelist are affected, or none of them are.

When a file has been opened with add, p4 edit, orp4 del et e, but the correspond-
ing changelist has not yet been submitted in the depot, the file is saidgenda the cli-
ent workspace.

Adding Files to the Depot

To add a file or files to the depot, typé add fi/ enane(s).Thep4 add commands
opens the file(s) for edit and lists them in the default changelist; they won’t be added to the
depot until thep4 subnit command is given.

Ed iswriting a help manual for EIm. The files are named el m hel p. 0 through
el m hel p. 3, and they’re sitting in théoc subdirectory of his client workspace root. He
wants to add these files to the depot.

Example:
Adding files to a
changelist

$ cd ~/ el nldoc

$ p4 add el mhel p.*

/1 depot / el m proj/doc/ el mhel p. 0#1 opened for add
/1 depot /el m proj/doc/el mhel p. 1#1 - opened for add
/1 depot/ el m proj/doc/ el mhel p. 2#1 opened for add
[/ depot /el m proj/doc/ el mhel p. 3#1 - opened for add

Perforce 97.3 User’s Manual 21

Chapter 3 : Perforce Basics: Quick Start

oA

Example:
Submitting a
changelist to the
depot

5

Example:

Using multiplefile
argumentson a
single command
line.

]

If a submit fails, the
default changelist

will be assigned a
number, and you'll
need to submit that
changelist in a
slightly different way.

Please see Chapter !
for instructions on
resolving file
conflicts.

At this point, the files he wants to add to the depot have been added to his default change-
list. However, the files are not actually added to the depot until the p4 submi t command
isgiven.

Ed is ready to submit his added files to the depot. He types p4 subni t and sees the fol-
lowing formin a standard UNIX text editor:

Change: new

Client: edk

User: edk

Status: new

Descripti on:
<enter description here>

Files:
// depot /el m proj/doc/el mhel p.0 # add
// depot /el m proj/doc/el mhelp.1 # add
// depot /el m proj/doc/el mhelp.2 # add
// depot/ el m proj/doc/el mhel p.3 # add

Ed changes the contents of the Descri pti on: field to describe what these file updates
do. When he’s done, he quits from the editor; the new files are added to the depot.

The Description: field contents must be changed, or the depot update won't be
accepted. Lines can be deleted fromRhees: field; any files deleted from this list will
carry over to the next default changelist, and will appear again the nexi4inabni t

is performed.

Multiple file arguments can be provided on the command line.

Ed wantsto add all his Elm library, documentation, and header files to the depot.

$ cd ~

$ p4 add elnmlib/* elmhdrs/* el mdoc/*

[/ depot/el mproj/lib/Mkefile.SH#1 - opened for add

[/ depot/elmproj/lib/add_site.c#1 - opened for add

[/ depot/ el m proj/lib/addrnchusr.c#l - opened for add
<etc. >

...andthendoesap4 subnit.

The operating systemisri t e permission on submitted files is turned off in the client
workspace whep4 subni t is performed. This helps ensure that file editing is done with
PERFORCE's knowledge. Thew i t e permissions are turned back ongaly edi t, which

is described below.

You might have noticed in the example above that the filenames are displdyiedeas
nane#1. PERFORCE always displays filenames with#a suffix; the#n indicates that this
is then- th revision of this file. Revision numbers are always assigned sequentially.

Updating Depoft Files
To open a file foedi t, usep4 edit. This has two effects:

 The file(s) write permissions are turned on in the client workspace, and
» The file(s) to be edited are added to the default changelist.

Perforce 97.3 User’s Manual 22

Chapter 3 : Perforce Basics: Quick Start

oA

Example:
Deleting a filefrom
the depot.

oA

Example:

Adding, updating,
and deleting filesin
asinglesubni t.

Since the files must have their write permission turned back on before they can be
edited, the p4 edi t command must be given before the file is actually edited.

To save the new filerevision in the depot, use p4 subni t, as above.

Example: Ed wants to make changesto hisel m hel p. 3 file. He opens the file for edit:

$ cd ~/elm
$ p4 edit doc/el mhelp.3
/1 depot /el m proj/doc/el mhel p. 3#1 - opened for edit

... and then edits the file with any text editor. When he’s finished, he submits the file to the
depot withp4 subni t, as above.

Deleting Files From the Depot

Files are deleted from the depot similarly to the way they are added and edited: the p4
del et e command opensthefile for delete in the default changelist, and then p4 subni t
is used to delete the file from the depot. p4 del et e also deletes the file from the client
workspace; this occurs when the p4 del et e command is given. In essence,

p4 del et e replacesthe operating systemsr mor del command.

Ed's filedoc/ el m hel p. 3 is no longer needed. He deletes it from both his client work-
space and from the depot as follows:

$ cd ~el m doc
$ p4 delete elmhelp.3
[/ depot /el m proj/doc/el mhel p.3#1 - opened for delete

The file is deleted from the client workspace immediately; it is not deleted from the depot
until thep4 subnit command is given.

Once the changelist is submitted, it will appear as if the file has been deleted from the
depot; however, old file revisions are never actually removed. This makes it possible to
read older revisions of ‘deleted’ files back into the client workspace.

Submitting with Multiple Operations

Multiple files can be included in any changelist. Submitting the changelist to the depot
worksatomically: either all the files are updated in the depot, or none of them arerRin P
FORCE's terminology, this is called aatomic change transaction). Changelists can be
used to keep files together that have a common purpose.

Ed is writing the portion of Elm that is responsible for multiple folders (multiple mail-
boxes). He has a new source file sr ¢/ newrbox. ¢, and he needs to edit the header file

Perforce 97.3 User’s Manual 23

Chapter 3 : Perforce Basics: Quick Start

N

p4 sync was
named p4 get in
previous versions of
PERFORCE.

p4 get can still be
used as an alias for
p4 sync .

&

hdr s/ s_el m h and the doc/ el m+ hel p files. He adds the new file and prepares to edit
the existing files:

$ cd ~

$ p4 add el nf src/ newrbox. ¢

/1 depot / el m proj/src/ newnrbox. c#1 - opened for add
<etc. >

$ p4 edit elmhdrs/s_elmh doc/el mhelp.*

[/ depot/ el mproj/hdrs/s_el mh#l - opened for edit

/] depot/ el m proj/doc/ el mhel p. 0#1 - opened for edit

/1 depot/ el m proj/doc/ el mhel p. 1#1 - opened for edit

/1 depot/ el m proj/doc/ el mhel p. 2#2 - opened for edit

He editsthe existing files and then p4 subni t ’s the default changelist:

Change: new

Client: eds_elm

User: edk

Status: new

Descripti on:
Changes to Elm’s “multiple mailbox” functionality

Files:
//depot/elm_proj/doc/elm-help.0 # edit
/ldepot/elm_proj/doc/elm-help.1 # edit
/ldepot/elm_proj/doc/elm-help.2 # edit
/ldepot/elm_proj/hdrs/s_elm.h # edit

Example:

Retrieving filesfrom
the depot

into the

client workspace.

//depot/elm_proj/src/newmbox.c # add

All of his changes supporting multiple mailboxes are grouped together in a single change-
list; when Ed quits from the editor, either all of these files are updated in the depot, or, if
the submission fails for any reason, none of them are.

Files can be deleted from the Fi | es: field; these files are moved into the next default
changelist, and will appear again the next timep4 subni t is performed.

Retrieving Files from the Depot
into a Workspace

Files can be retrieved from the depot into a client workspace from the depot with p4
sync.

Jill has been assigned to fix bugs in Ed’s code. She creates a directory elatteds
within her own directory, and sets up a client workspace; now she wants to copy all the
existing elm files from the depot into her workspace.

$ cd ~el mws

$ p4 sync

/1 depot / el m proj/doc/ el mhel p. 0#2 - added as /usr/|isag/el mws/doc/el mhelp.0

/1 depot /el m proj/doc/ el mhel p. 1#2 - added as /usr/|isag/el mws/doc/el mhelp.1
<etc.>

Once the command completes, the most recent revisions of all the files in the depot that
are mapped through her client workspace view will be available in her workspace.

Perforce 97.3 User’s Manual 24

Chapter 3 : Perforce Basics: Quick Start

oA

Example:

Reverting a file bact
to the last synced
version.

The p4 sync command maps depot files through the client view, compares the result
against the current client contents, and then adds, updates, or deletes files in the client
workspace as needed to bring the client contentsin sync with the depot. p4 sync can take
filenames as parameters, with or without wildcards, to limit thefilesit retrieves.

p4 sync’s job is to match the state of the client workspace to that of the depot; thus, if a
file has been deleted from the depoet, sync will delete it from the client workspace.

Reverting Files to their
Unopened States
Any file opened foradd, edi t, ordel et e can be removed from its changelist with

revert. This command will revert the file in the client workspace back to its unopened
state.

Ed wants to edit a set of filesin his src directory: | eavenbox. c, linmit.c, and si g-
nal s. c. He opensthefiles for edit:

$ cd ~elnmisrc

$ p4 edit |leavenbox.c limt.c signals.c

/] depot/ el m proj/src/l eavenbox. c#2 - opened for edit
[/ depot/elmproj/src/limt.c#2 - opened for edit

[/ depot/ el m proj/src/signals.c#l - opened for edit

and then realizes that si gnal s. c isnot one of the files he will be working on, and that he
didn’t mean to open it. He can revaitgnal s. ¢ to its unopened state wipd revert :

$ p4 revert signals.c
[/ depot/el mproj/src/signals.c#l - was edit, reverted

If p4 revert isused on afilethat had been opened with p4 del et e, it will appear back
in the client workspace immediately. If p4 add was used to open the file, p4 revert
removes it from the changelist, but leaves the client workspace file intact. If the reverted
file was originaly opened with p4 edi t, the last synced version will be written back to
the client workspace, overwriting the newly-edited version of the file. In this case, you
may want to save a copy of the file before running p4 revert .

Basic Reporting Commands

PERFORCE provides some 20+ reporting commands. Each chapter in this manual ends with
a description of the reporting commands relevant to the chapter topic. All the reporting
commands are discussed in greater detail in the reporting chapter, chapter 12.

Perforce 97.3 User’s Manual 25

Chapter 3 : Perforce Basics: Quick Start

The most basic PERFORCE commands are p4 hel p and p4 i nf o.

Command

Meaning

p4 hel p commands

p4 hel p conmmand

p4 hel p usage

p4 hel p views
p4 hel p
p4 info

Lists all PERFORCE commands with a brief description of
each.

For any command provided, gives detailed help about that
command. For example, p4 hel p sync providesdetailed in-
formation about the p4 sync command.

Describes command-line flags common to all PERFORCE
commands.

Gives a discussion of PERFORCE view syntax
Describes all the arguments that can be givento p4 hel p.

Reports information about the current PERFORCE system: the
server address, client root directory, client name, user name,
PERFORCE version, and a few other tidbits.

Two other reporting commands are used quite often:

Command

M eaning

p4 have

p4 sync -n

Lists all file revisions that the PERFORCE server knows you
have in the client workspace.

Reportswhat fileswould be updated in the client workspace by
p4 sync without actually performing the sync operation.

Perforce 97.3 User’s Manual

26

CHAPTER 4 PERFORCE Basics:
The Details

The Quick Start chapter explained the basics of using PERFORCE, but discussion of the
practical details were deferred. This chapter, which supplements the Quick Sart chapter,
coversthe dry PERFORCE rules. The topics discussed include views, mapping depotsto cli-
ent workspaces, PERFORCE wildcards, rules for referring to older file revisions, file types,
and form syntax.

It is assumed that the material in the Quick Sart chapter has been read and properly
digested.

Description of the Client Workspace

A PERFORCE client workspace is a collection of source files managed by PERFORCE on a

host. Each such collection is given a name which identifies the client workspace to the
PERFORCE server. The name is by default simply the host’s name but that can be overrid-
den by the environment varial#@CLI ENT. There can be more than ornerPORCE client
workspace on a client host.

All files within a FERFORCE client workspace share a common root directory, called the
client root. In the degenerate case, the client root can be the host's root, but in practice the
client root is the lowest level directory under which the managed source files will sit.

PERFORCE manages the files in a client workspace in a few direct ways. It creates, updates,

or deletes files when the user requesRFBRCE to synchronize the client workspace with

the depot; it turns on write permission when the user requests to edit a file; and turns off

write permission and submits updated versions back to the depot when the user is finished
editing the file.

The entire BRFORCE client workspace state is tracked by tiEe#®RCE server. The server
knows what files a client workspace has, where they are, and which files have write per-
mission turned on.

PERFORCE’'S management of a client workspace requires a certain amount of cooperation
from the user. Since client files are just plain files with write permission turned off, willful
users can circumvent the system by turning on write permission, directly deleting or
renaming files, or otherwise modifying the file tree supposedly ureRsORCE'’s control.
PERFORCE counters this with two measures: firsSERPORCE has explicit commands to
verify that the client workspace state is in accord with the server’s recording of that state;

Perforce 97.3 User’s Manual 27

Chapter 4 : Perforce Basics: The Details

second, PERFORCE tries to make using PERFORCE at |east as easy as circumventing it. For
example: to make atemporary modification to afile, it is easier to use PERFORCE than it is
to copy and restore the file manually.

Files not managed by PERFORCE may also be under a client’s root, and they are largely
ignored by BRFORCE. For example, BRFORCE may manage the source files in a client
workspace, while the workspace also holds compiled objects, libraries, executables, as
well as a developer’s temporary files.

In addition to accessing the client files, tdeclient program sometimes creates temporary
files on the client host. OtherwisezH#ORCE neither creates nor uses any files on the cli-
ent host.

Wildcards

PERFORCE uses three wildcards for pattern matching. Any number and combination of
these can be used in a single string:

Wildcard Meaning

* Matches anything except slashes, matches only within a single directory.
Matches anything including slashes; matches across multiple directories

9% Used for parametric substitution in views. See page 32 for a full expla-
nation
The ..’ wildcard is passed by the4 client program to the4b server, where it is

expanded to match the corresponding files knowpdtm The* wildcard is expanded
locally by the OS shell before tt/d command is sent to the server, and the files that
match the wildcard are passed as multiple arguments ®tbemmand. To haveeR-

FORCE match the * wildcard against the contents of the depot, it must be escaped, usually
with quotes or a backslash. Most command shells don't interfere with the other two wild-
cards.

Wildcards and ‘p4 add’

There is one case in which the * ” wildcard cannot be used, and that is with gheadd
command. The.". . " wildcard is expanded by ti®lD server, and since the server doesn’t
know what files are being added (after all, they’re not in the depot yet), it can’t expand
that wildcard. The * wildcardan be used witlp4 add; in this case, it is expanded by the
local OS shell, not by thelD server.

Perforce 97.3 User’s Manual 28

Chapter 4 : Perforce Basics: The Details

95/NT

On NT, the
PERFORCE client
workspace must be
specifiedina
dlightly different
format if itisto span
multiple drives.
Please see the
release notes, which
are available at our

Web site, for details.

Mapping the Depot to the Client
Workspace

Just as a client name is nothing more than an alias for a particular directory on the client
machine, a depot name is an alias for a directory on the PERFORCE server. The relationship
between filesin the depot and files in the client workspace is described in the client view,
and itisset withthep4 cli ent command. When p4 cl i ent istyped, avariation of the
following form is displayed:

Client: eds_elm
Omner: edk
Descripti on:

Created by ed.
Root: /usr/edk/elm

Opti ons: nonodti ne nocl obber
Vi ew:
[/ depot/. .. /leds_eln...

The contents of the Vi ew. field determine where client files get stored in the depot, and
where depot files are copied to in the client.

Using Views

Views consist of multiple lines, or mappings, and each mapping has two parts. The left-
hand side specifies one or more files within the depot, and has the form

/| depot nanel fil e_specification

The right-hand side of each mapping describes one or more files within the client work-
space, and has the form

[l clientnamel file_specification

The left-hand side of a client view mapping is called the depot side; the right-hand side is
theclient side.

The default view in the example above is quite simple: it maps the entire depot to the
entire client workspace. But views can contain multiple mappings, and can be much more
complex. Any client view, no matter how elaborate, performs the same two functions:

» The client view determines which files in the depot can be seen by a client workspace.
This is determined by the sum of the depot sides of the mappings within a view. A view
might allow the client workspace to retrieve every file in the depot, or only those files
within two directories, or only a single file.

It constructs a one-to-one mapping between files in the depot and files in the client
workspace. Each mapping within a view describes a subset of the complete mapping.
The one-to-one mapping might be straightforward; for example, the client workspace
file tree might be identical to a portion of the depot's file tree. Or it can be oblique; for
example, a file might have one name in the depot and another in the client workspace, or
be moved to an entirely different directory in the client workspace. No matter how the
files are named, there is always a one-to-one mapping.

To determine the exact location of any client file on the host machine, substitute the value
of thep4 client form’s Root : field for the client name on the client side of the map-
ping. For example, if thp4 cl i ent form’s Root : field for the clienteds_el mis set td

Perforce 97.3 User’s Manual 29

Chapter 4 : Perforce Basics: The Details

usr/ edk/ el m then the file // eds_el mi doc/ el m hel p. 1 will be found on the client
hostin/ usr/ edk/ el mi doc/ el m hel p. 1.

On NT, the PERFORCE client wor kspace must be specified in a slightly different format if it
isto span multiple drives. Please see the release notes for details.

Wildcards in Views

Any wildcard used on the depot side of a mapping must be matched with an identical
wildcard in the mapping’s client side. Any string matched by the wildcard will be identical
on both sides.

In the client view

[/ depot/elmproj/... [leds_eln ...

the single mapping containsE®ORCE's “. .. " wildcard, which matches everything,
including slashes. The result is that any file in #oes_el m client workspace will be
mapped to the same location within the depelt's) pr oj file tree. For example, the file
/1 depot / el m proj / nl s/ gencat / README will be mapped to the client workspace file
/1 eds_el m nl s/ gencat / README.

Types of Mappings

By changing th&/i ewfield, it's possible to map only part of a depot to a client workspace.
It's even possible to map files within the same depot directory to different client work-
space directories, or to have files named differently in the depot and the client workspace.
This section discusseE®ORCE’'S mapping methods.

Direct Client-to-Depot Views
The default view in the form presented sy cl i ent maps the entire client workspace
tree into an identical directory tree in the depot. For example, the default view

[/depot/... [leds_eln...

indicates that any file in the directory tree under the ckest el mwill be stored in the
identical subdirectory in the depot. This view is usually considered to be overkill; most
users only need to see a subset of the files in the depot.

Mapping the Full Client to only Part of the Depot

Usually only a portion of the depot is of interest to a particular client. The left-hand side of
g theVi ewfield can be changed to point to only the portion of the depot that’s relevant.

Bettie is rewriting the documentation for Elm, which is found in the depot within its doc

Example:

Mappliong part of the subdirectory. Her client isnamed el m docs, and her client root is/ usr/ bes/ docs; she
depot typesp4 client andsetstheVi ew field asfollows:

to the client / / depot / el m proj/doc/. .. / /el mdocs/. ..

wor kspace.

Mapping Files in the Depot to

a Different Part of the Client

Views can consist of multiple mappings, which are used to map portions of the depot file
tree to different parts of the client file tree. If there is a conflict in the mappings, later map-
pings have precedence over the earlier ones.

Perforce 97.3 User’s Manual 30

Chapter 4 : Perforce Basics: The Details

&

Example:

Multiple mappings
in a single client
view.

5

Example:

Using views to
exclude files from a
client workspace

&

Example:

Files with different
names in the depot
and client
workspace

The el m proj subdirectory of the depot contains a directory called doc, which has all
the EIm documents. Included in this directory are four files named el m hel p. 0 through
el m hel p. 3. Mike wants to separate these four files from the other documentation files
in his client workspace, which iscalled m ke_el m

To do this, he creates a new directory in his client workspace called hel p; it's located at
the same level as hioc directory. The fouel m hel p files will go here; he fills in the
Vi ew field of thep4 cli ent form as follows:

[/ depot /...
/ / depot / el m proj / doc/ el m hel p. *

[1mke_eln...
/1 m ke_el nl hel p/ el m hel p. *

Any file whose name starts wighm hel p within the depot'sloc subdirectory will be
caught by the later mapping and appear in Mike's workspdes's directory; all other

files are caught by the first mapping and will appear in their normal location. Conversely,
any files beginning witlel m hel p within Mike’s client workspaceel p subdirectory

will be mapped to theéoc subdirectory of the depot.

Excluding Files and Directories from the View

Exclusionary mappingallow files and directories to be excluded from a client workspace;
this is accomplished by prefacing the mapping with aminus sign (-). Whitespace is not
allowed between the minus sign and the mapping.

Bill, whose client is nameld | | m wants to view only source code; he’s not interested in
the documentation files. His client view would look like this:

[billm.. .
/1billmdoc/...

[/ depot/elmproj/...
-/ / depot /el m proj/doc/...

Since later mappings have precedence over earlier ones, no files from the depot’s
subdirectory will ever be copied to Bill's client. Conversely, if Bill does halee asubdi-
rectory in his client, no files from that subdirectory will ever be copied to the depot.

Allowing Filenames in the Client to be Different

than Depot Filenames

Mappings can be used to make the names of files different in the client workspace than
they are in the depot.

Mike wants to store the files as above, but he wants to take thénel p. X files in the
depot and call themel pfile. Xin his client workspace. He uses the following map-

pings:

[/mke eln...
/1 mke_el nl hel p/ hel pfile.*

[/ depot/el mproj...
/1 depot /el m proj/doc/el mhelp.*

Each wildcard on the depot side of a mapping must have a corresponding wildcard on the
client side of the same mapping. The wildcards are replaced in the copied-to direction by
the substring that the wildcard represents in the copied-from direction.

There can be multiple wildcards; the n-th wildcard in the depot specification corresponds
to the n-th wildcard in the client description.

Perforce 97.3 User’s Manual 31

Chapter 4 : Perforce Basics: The Details

&

Example:
Changing string
order in client
wor kspace hames

oA

Example:

Mappings that fail.

Changing the Order of Filename Substrings
The % wildcard can be used to rearrange the order of the matched substrings.

Mike wants to change the names of any files with a dot in them within his doc subdirec-

tory in such a way that the file’s suffixes and prefixes are reversed in his client workspace.
For example, he’d like to rename tBlem cover file in the depotover . El min his cli-

ent workspace. (Mike can be a bit difficult to work with). He uses the following mappings:

[/ depot/elmproj/... /I mke_eln...
[/ depot /el m proj/doc/%. 92 /1 mke_el m doc/ 9%2. %

Two Mappings Can Conflict and Fail

It is possible for multiple mappings in a single view to lead to a situation in which the
name does not map the same way in both directions. When a file doesn’t map the same
way in both directions, the file is ignored.

Joe has constructed a view as follows:

[/ depot/elmproj/... /ljoelelnl...
/ | depot / nowher e/ * /1joelel mdoc/*

The depot file / / depot / el m proj / doc/ hel p would map to //j oe/ el ml doc/ hel p,
but the same file in the client workspace would map back to the depot via the higher-pre-
cedence second lineto / / depot / nowher e/ hel p. Because the file would be written back
to a different location in the depot than where it was read from, PERFORCE doesn’t map
this name at all.

In older versions of PERFORCE, this was often used as a trick to exclude particular files
from the client workspace. Because PERFORCE now has exclusionary mappings, this type
of mapping is no longer useful, and should be avoided.

Referring to Files on Command Lines

File names provided as arguments to PERFORCE commands can be referred in one of two
ways: by using the names of the filesin the client workspace, or by providing the names of
the files in the depot. When providing client workspace file names, the user may give the
name in either local or PERFORCE syntax.

Local Syntax

Local syntaxs simply a file's name as specified by the local shell or OS. This name may
be an absolute path, or may be specified relative to the current directory, although it can
only contain relative components at the beginning of the file name (i.e. it doesn't allow
sub/ dir/./herelfoo.c). For example, on UNIX, Ed could refer to tREADVE file at

Elm’s top level ag usr/ edk/ el m READVE, or in a number of other ways.

PERFORCE Syntax

PERFORCE provides its own filename syntax which remains the same across operating sys-
tems. Filenames specified in this way begin with two slashes and the client or depot name,

Perforce 97.3 User’s Manual 32

Chapter 4 : Perforce Basics: The Details

+

Multiple depots can
be provided within a
single FERFORCE
server. See chapter
15 for details.

&

Example:

Uses of different
syntaxes to refer to
file

]

The point of this
section is worth
repeating:any file
can be specified
within any
PERFORCE
command in client
syntax, depot
syntax, or local
syntax. The
examples in this
manual will use
these syntaxes
interchangeably.

followed by the path name of the file relative to the client or depot root directory. The
components of the path are separated by slashes.

Examples of PERFORCE Syntax

[/ depot /...
/lelmclient/docs/help.1

PERFORCE syntax is sometimes called depot syntax or client syntax, depending on whether
the file specifier refersto afilein the depot or on the client. But the syntax is the same in
either case.

The specifier / /. . . is occasionally used; it means ‘all files in all depots’.

Providing Files as Arguments to Commands

Because the client view provides a one-to-one mapping between any file in the client
workspace and any file in the depany file can be specified within any PERFORCE com+

mand in client syntax, depot syntax, or local syntax. A depot’s file specifier can be used to
refer to a file in the client, and vice-vers&RPORCE will do the necessary mapping to
determine which file is actually used.

Any filenames provided toBHRFORCE commands can be specified in any valid local syn-
tax, or in ERFORCE syntax by depot or client. If a client flename is providegRF®RCE

uses the client view to locate the corresponding file in the depot. If a depot filename is
given, the client view is used to locate the corresponding file in the client workspace.

Ed wantsto deletethe sr ¢/ | ock. c file. He can givethe p4 del et e command in a num-
ber of ways:

« While in his client root directory, he could type

p4 delete src/lock.c

« While in thesr ¢ subdirectory, he could type
p4 delete |ock.c

« While in any directory on the client host, he can type

p4 delete //eds_elnisrc/lock.c

or

p4 delete //depot/el mproj/src/lock.c

or
p4 delete /usr/edk/elmsrc/lock.c
Client names and depot names in a single PERFORCE server share the same namespace, So

PerRFORCE will never confuse a client name with a depot name. Client workspace names
and depot names can never be the same

Perforce 97.3 User’s Manual 33

Chapter 4 : Perforce Basics: The Details

Wildcards and PERFORCE Syntax
PerRFORCE wildcards may be mixed with both local or PERFORCE syntax. For example:

J* Files in the current directory starting
with J
*/ hel p All files calledhel p

in current subdirectories

All files under the current directory
and its subdirectories

Y All such files ending inc
[usr/edk/. .. All files under / usr / edk
/I weasel /... All files on clientweasel

// depot /. .. All files in the depot

Name and String Limitations

File Names

Because of PERFORCE’'S naming conventions, certain characters cannot be used in file
names. These include unprintable characters, the above wildcards, anerbrCE revi-
sion character@and#.

Descriptions

Label, branch, user, and client workspace specifications have a silent limit of 128 bytes on
descriptions. The description field of a changelist or a job can be any length.

Specifying Older File Revisions

All of the commands and examples we've seen thus far have been used to operate only on
the most recent revisions of particular files, but masgFBRCE commands can act on

older file versions. For example, if Ed tyges sync //eds_el m src/ | ock. c, the lat-

est revision, ohead revision, of | ock. c is retrieved, but older revisions can be retrieved

Perforce 97.3 User’s Manual 34

Chapter 4 : Perforce Basics: The Details

+

Change numbers
areexplained in
chapter 7.

+

Labelsare
explained in chapter
8

by tacking a revision specification onto the end of the file name. There are seven types of
revision specifications:

Revision
Specifier M eaning Examples
file#n Revision number p4 sync | ock. c#3
Refers to revision 3 of fileock. c
file@ A change number p4 sync | ock.c@26
Refers to the version ¢bck. ¢ when
changelist 126 was submitted, even if it was
not part of the change.
p4 sync //depot/... @26
Refers to the state of the entire depot at
changelist 126
file@ abel A label name p4 sync | ock. c@eta
The revision of ock. c in the label called
bet a
file@lient- A client name. The re-p4 sync | ock.c@i sag_ws
nane vision offilelast taken| thg revision of ock. ¢ last taken into cli-
m_to client workspace ot workspacei sag_ws
clientname.
fil e#none The nonexistent revi{ p4 sync | ock. c#none
ston. Says that there should be no version of
lock. c in the client workspace, even if one
exists in the depot.
fil etthead The head revision, ot p4 sync | ock. c#head
latest version, of the | gy cept for explicitly noted exceptions, this
file. is identical to referring to the file with no re-
vision specifier.
fil etthave The revision on the | p4 sync | ock. c#have

current client. This is
synonymous to

@l i ent where client
is the current client
name.

The revision of ock. ¢ found in the cur-
rent client.

In all cases, if a file doesn'’t exist at the given revision number, it will appear as if the file
doesn'’t exist at all. Thus, using a label to refer to a file that isn’t in the label is indistin-
guishable from referring to a file that doesn’t exist at all.

Perforce 97.3 User’s Manual

35

Chapter 4 : Perforce Basics: The Details

oA

Example:
Retrieving files
using revision
specifiers

]

Some OS shells will
treat the# asa
comment character
if it startsa new
word. If your shell
isone of these,
escape the # before
use.

Using Revision Specifications without Filenames

Revision specifications can be provided without file names. This limits the command’s
action to the specified revision of all files in the depot or in the client’s workspace. Thus,
#head refers to the head revisions of all files in the depot,@radbel refers to the revi-
sions of all files in the named label.

Ed wants to retrieve all the doc files into his El mdoc subdirectory, but he wants to see
only those revisions that existed at change number 30. He types

p4 sync //eds_el m doc/* @0

Later, he creates another client for a different user. The new client should have all of the
filerevisions that Ed last synced. Ed sets up the new client specification and types

p4 sync //depot//elmproj/...@ds_elm

He could have typed
p4 sync @ds_elm
and the effect would have been the same.

Another client needs all its files removed, but wants PERFORCE to know that it still con-
tains those files. Ed sets PACLI ENT to the correct clientname, and types

p4 sync #none

Revision Ranges

A few PERFORCE client commands can limit their actions to a range of revision numbers,
rather than just a single revision. A revision range is two revision specifications, separated
by a comma. If only a single revision is given where a revision range is expected, the
named revision specifies the end of the range, and the start of the range is assumed to be 1.
If no revision number or range is given where a revision range is expected, the default is
all revisions.

File Types

PERFORCE supports normal text files as well as binary, “large text” files, keyword text
files, Macintosh resource forks, and symbolic linksrR#®RCE attempts to determine the
type of the file automatically: when a file is opened with add, PERFORCE first deter-
mines if the file is a regular file or a symbolic link, and then examines the first part of the
file to determine whether is it text or binary. If any non-text characters are found, the file
is assumed to be binary; otherwise, the file is assumed to be text.

The detected file type can be overridden withadd -t t ype, where t ype is one of
bi nary, text, | text, xbi nary, xtext, ktext, kxtext, resource or synl i nk.
Descriptions of these file types are provided below.

A file's type is inherited from one revision to the next. A file can be opened with a differ-
ent type for the new revision witit edit -t type. If afile has already been opened
with p4 add orp4 edit, its type can be changed wiih reopen -t type.

Perforce 97.3 User’s Manual 36

Chapter 4 : Perforce Basics: The Details

+

RCSformat and whetherfull file or delta storage is used. When delta storage is used, file merges and file
delta storage are compares can be performed. Files that are stored in their full form can’'t be merged or
described in detail compared.
at the start of the
next chapter. The FERFORCE file types are:
Storage
Keyword Description Comments Type
t ext Text file Treated as text on the client delta
Xt ext Executable text Like at ext file, but execute permissiopdel t a
file is set on the client file.
bi nary Non-text file Accessed as binary files on the client| f ul |
file
xbi nary Executable bi- | Like abi nary file, but execute permist f ul |
nary file sion is set on the client file. file
| t ext Long text file | This type should be used for generatediul |
text files, such as PostScript files. file
sym i nk Symbolic link | UNIX clients access these as symbol|del t a
links; non-UNIX clients treat them as
(small)t ext files
kt ext Text file with | Any inclusion of the literal stringl d$ | del ta
keyword ex- | within the file will be expanded to reflect
pansion. the depot file name and revision number.
kxt ext Executable text Like akt ext file, but execute permis- | del t a
file with key- | sion is set on the client file
word expansior
resour ce Macintosh re- | Please see the Macintosh client releaséul |
source fork notes akht t p: / / www. per - file
force. coni perforce/ doc/ nac-
not es. t xt >

PERFORCE must sometimes store the complete version of every file in the depot, but most
often it stores only the changes in the file since the previous revision. Thisis called delta
storage, and PERFORCE uses RCS format to store its deltas. The file’s type determines

To find the type of an existing file, use th¢ opened reporting command.

Forms and PERFORCE Commands

Certain BRRFORCE commands, such @& cli ent andp4 subnit, present a form to the
user to be filled in with values. This form is displayed in the editor defined in the environ-
ment variableEDl TOR. When the user changes the form and exits the editor, the form is
parsed by BRFORCE, checked for errors, and used to complete the command operation. If
there are errors,HRFORCE gives an error message and you must try again.

The rules of form syntax are simple: keywords must be against the left margin and end

with a colon, and values must either be on the same line as the keyword or indented by a
tabstop on the lines below the keyword. Only the keywords already present on the form

are recognized. Some keywords, such asthent : field in thep4 client form, take

Perforce 97.3 User’s Manual 37

Chapter 4 : Perforce Basics: The Details

asingle value; other fields, such as Descri pti on: , take a block of text; and others, like
Vi ew. , takealist of lines.

Certain fields, likeCl i ent: inp4 client, can't have their values changed; others, like
Descri ption: in p4 subnit, must have their values changed. If you don't change a
field that needs to be changed, or vice-versa, the worst that will happen is that you'll get
an error. We've done our best to make these cases as self-evident as possible; when in
doubt, use4 hel p command.

General Reporting Commands

Many reporting commands have specialized functions, and these are discussed in later
chapters. The following reporting commands give the most generally useful information.;
all these commands can take file name arguments, with or without wildcards, to limit
reporting to specific files. Without the file arguments, the reports are generated for all
files.

These reports always generate information on depot fibediles within the client work-
space. As with any otheeRFORCE command, when a client file is provided on the com-

mand line, BRFORCE maps it to the proper depot file.

Command M eaning

p4 filelog Generates a report on each revision of the file(s), in reverse
chronological order.

p4 files Lists file name, latest revision number, file type, and other in-
formation about the named file(s).

p4 sync -n Tells you whap4 sync would do, without doing it.

p4 have Lists all the revisions of the named files within the client that

were last gotten from the depot. Without any files specifier, it
lists all the files in the depot that the client has.

p4 opened Reports on all files in the depot that are currently open for edit,
add, delete, branch, or integrate within the client workspace.

p4 print Lists the contents of the named file(s) to standard input.

p4 where For each file in the client, show the location of the correspond-

ing file within the depot.

Revision specifiers can be used with all of these reporting commands, for example

p4 files @/ ientnane

can be used to report on all the files in the depot that are currently found ircicbett
name.

Chapter 12, the reporting chapter, contains a more detailed discussion of each of these
commands.

Perforce 97.3 User’s Manual 38

CHAPTER 5 PERFORCE Basics:
Resolving File Conflicts

File conflicts can occur when two users edit and submit two versions of the same file.
Conflicts can occur in a number of ways, but the situation is usualy a variant of the fol-
lowing:

Ed opensfilef oo for edit;

Lisa opens the samefile in her client for edit;

Ed and Lisa both edit their client workspace versions of f 0o;

Ed submits a changelist containing f oo, and the submit succeeds;
Lisa submits a changelist with her version of f oo; her submit fails.

If PERFORCE were to accept Lisa’s version into the depot, the head revision would contain
none of Ed’s changes. Instead, the changelist is rejectedrasal\&@ must be performed.

The resolve process allows a choice to be made: Lisa’s version can be submitted in place
of Ed’s, Lisa’s version can be dumped in favor of Ed’s,ERFBRCE-generated merged
version of both revisions can be submitted, or ttRFBRCE-generated merged file can be
edited and then submitted.

Resolving a file conflict is a two-step process: first the resohaehieduled, then the
resolve isperformed. A resolve is automatically scheduled when a submit of a changelist
fails because of a file conflict; the same resolve can be scheduled manually, without sub-
mitting, by syncing the head revision of a file over an opened revision within the client
workspace. Resolves are always performed pithr esol ve.

PERFORCE also provides facilities for locking files when they are edited. This can elimi-
nate file conflicts entirely.

RCS Format: How PERFORCE Stores File
Revisions

PERFORCE uses RCS format to store its text file revisions; binary file revisions are always
saved in full. If you already understand what this means, you can skip to the next section
of this chapter; the remainder of this section explains how RCS format works.

Perforce 97.3 User’s Manual 39

Chapter 5 : Perforce Basics: Resolving File Conflicts

Only the Differences Between Revisions are Stored

A single file might have hundreds, even thousands, of revisions. Every revision of a par-
ticular file must be retrievable, and if each revision was stored in full, disk space problems
could occur: one thousand 10KB files, each with a hundred revisions, would use a
gigabyte of disk space. The scheme used by most SCM systems, including PERFORCE, is
to save only the latest revision of each file, and then store the differences between each file
revision and the one previous.

As an example, suppose that a PERFORCE depot has three revisions of file f oo. The head
revision (f oo#3) lookslike this:

foo#3:

Thisisatest

of the
emergency
broadcast system

Revision two might be stored as a symbolic version of the following:

foo#2:
line 3 was “urgent”

And revision 1 would be a representation of this:

foo#1:
line 4 was “system”

From these partia file descriptions, any file revision can be reconstructed. The recon-
structed f oo#1 would read

This is a test
of the

urgent
system

The RCS (Revision Control System) algorithm, developed by Walter Tichy, uses anotation
for implementing this system that requires very little storage space and is quite fast. In
RCS terminology, it is said that the full text of the head revisions are stored, along with the
reverse deltas of each previous revision.

It isinteresting to note that the full text of the first revision could be stored, with the deltas
leading forward through the revision history of the file, but RCS has chosen the other path:
the full text of the head revision of each file is stored, with the deltas leading backwards to
thefirst revision. Thisis because the head revision is accessed much more frequently than
previous file revisions; if the head revision of afile had to be calculated from the deltas
each time it was accessed, any SCM utilizing RCS format would run much more slowly.

Perforce 97.3 User’s Manual 40

Chapter 5 : Perforce Basics: Resolving File Conflicts

5

Example:
Scheduling
resolves
withp4 sync

Use of “diff’ to Determine File Revision Differences

RCS utilizes the ‘GNUIi f f ' program to determine the differences between two versions
of the same filep4D contains its owliff routine which is used byERFORCE servers to
determine file differences when storing deltas. BecasredRCE's diff always determines

file deltas by comparing chunks of text between newline characters, it is by default only
used with text files. If a file is binary, each revision is usually stored in full, but binary files
can be checked in as text files, insuring that only the deltas are stored.

Scheduling Resolves of Conflicting Files

Whenever a file revision is to be submitted that is not an edit of the file’s current head
revision, there will be a file conflict, and this conflict must be resolved.

In slightly more technical terms: we’ll call the file revision that was read into a client
workspace thévase file revision. If the base file revision for a particular file in a client
workspace is not the same as the head revision of the same file in the degobteanust

be performed before the new file revision can be accepted into the depot.

Before resolves can be performed with r esol ve, they must be scheduled; this can be
done withp4 sync, An alternative is to submit a changelist that contains the newly con-
flicting files; if a resolve is necessary, the submit will fail, and the resolve will be sched-
uled automatically.

Why ‘p4 sync’ to Schedule a Resolve?

Remember that the job p## sync is to project the state of the depot onto the client.
Thus, wherp4 sync is performed on a particular file:

« If the file does not exist in the client, or it is found in the client but is unopened, it is cop-
ied from the depot to the client.

« If the file has been deleted from the depot, it is deleted from the client.

« If the file has been opened in the client with edi t , the BERFORCE server can’t sim-
ply copy the file onto the client: any changes that had been made to the current revision
of the file in the client would be overwritten. Insteadesalve is scheduled between the
file revision in the depot, the file on the client, and the base file revision (the revision
that was last read into the client).

Ed ismaking a series of changesto the *. gui de filesinthe elmdoc subdirectory. He has
retrieved the / / depot / el m proj / doc/ *. gui de files into his client and has opened
thefileswith p4 edit. Heeditsthefiles, but before he has a chance to submit them, Lisa

submits new versions of some of the same files to the depot. The versions Ed has been edit-

ing are no longer the head revisions; resolves must be scheduled and performed for each

of the conflicting files before Ed’'s edits can be accepted. Ed schedules the resolves with
p4 sync //edk/doc/*. gui de. Since these files are already open in the clieag-P
FORCE doesn't replace the client files; insteadsRPORCE schedules resolves between the
client files and the head revisions in the depot.

Alternatively, Ed could have submitted thalepot / el m proj / doc/ *. gui de files in a
changelist; the file conflicts would cause ti#e subni t to fail, and the resolves would be
scheduled as part of the submission failure.

Perforce 97.3 User’s Manual 41

Chapter 5 : Perforce Basics: Resolving File Conflicts

+

Please see
Chapter 7 for a
discussion of
numbered
changelists.

How Do I Know When a Resolve is Needed?

p4 submit will fail if it determines that any of the files in the submitted changelist need
to be resolved, and the error message will include the names of the files that need resolu-
tion. If the changelist provided to p4 subnit was the default changelist, it will be
assigned a number, and this number must be used in all future references to the changelist.

Another way of determining whether aresolveis neededisto runp4 sync -n file-
nanes before performing the submit, using the filesin the changelist as argumentsto the
command. If file conflict resolutions are necessary, p4 sync -n will report them. The
only advantage of this scheme over viewing the submit error is that the default changelist
will not be assigned a number.

Performing Resolves of Conflicting Files

File conflicts are fixed with p4 resolve [filenanes]. Each file provided as an
argument to p4 r esol ve isprocessed separately. p4 resol ve startswith three revisions
of the same file and generates a fourth version; the user can accept any of these revisions
in place of the current client file, and can edit the generated version before accepting it.
The new revisions must then be submitted with p4 subni t.

p4 resol ve isinteractive; aseries of options are displayed for the user to respond to. The
dialog looks something like this:

/usr/edk/ el m doc/ answer.1 - nerging //depot/el mproj/doc/answer. 1#5
Di ff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [e]:

The remainder of this section explains what this means, and how to use this dialog.

File Revisions Used and Generated by ‘p4 resolve’

p4 resolve [filenames] starts with three revisions of the same file, generates a
new version that merges elements of al three revisions, allows the user to edit the new
file, and writes the new file (or any of the original three revisions) to the client. The file

revisionsused by p4 resol ve are these:

yours The newly-edited revision of thefilein theclient workspace. Thisfile
is overwritten by result once the resolve process is compl ete.

theirs Therevision in the depot that the client revision conflicts with. Usu-
ally, thisisthe head revision, but p4 sync can be used to schedulea
resolve with any revision between the head revision and base.

base Thefilerevision in the depot that yours was edited from. Note that
base and theirs are different revisions; if they were the same, there
would be no reason to perform aresolve.

Perforce 97.3 User’s Manual 42

Chapter 5 : Perforce Basics: Resolving File Conflicts

+

Discussion of
resolving branched
filesbeginson
page 47.

ner ge File variation generated byeRFORCE from theirs, yours, andbase.

resul t The file resulting from the resolve processult is written to the cli-
ent workspace, overwritingpurs, and must subsequently be submit-
ted by the user. The instructions given by the user during the resolve
process determine exactly what is contained in this file. The user can
simply acceptheirs, yours, or merge as the result, or can edierge
to have more control over the result.

The remainder of this chapter will use the terms t hei r s, your s, base, ner ge, and
resul t to refer to the corresponding file revisions. The definitions given above are
somewhat different when resolve is used to integrate branched files.

Types of Conflicts Between File Revisions

The di ff program that underlies the PERFORCE resolve mechanism determines differ-
ences between file revisions on a line-by-line basis. Once these differences are found, they
are grouped into chunks: for example, three new lines that are adjacent to each other are
grouped into a single chunk. Your s and t hei r s are both generated by a series of edits
to base; for each set of linesin your s, t hei r s, and base, p4 resol ve asksthefol-
lowing questions:

« Is this line set the same your s, t hei r s, andbase?

« Is this line set the samefirei r s andbase, but different inyour s?

Is this line set the same ylour s andbase, but different int hei r s?

Is this line set the same your s andt hei r s, but different inbase?

Is this line set different in all three files?

Any line sets that are the same in all three files don’t need to be resolved. The number of
line sets that answer the other four questions are reportedl bgsol ve in this form:

2 yours + 3 theirs + 1 both + 5 conflicting

In this case, two line sets are identicat imei r s andbase but are different iryour s;
three line sets are identical yjour s andbase but are different it hei r s; one line set
was changed identically izjwours and t hei rs; and five line sets are different in
yours, t hei rs, andbase.

How the Merge File is Generated

p4 resol ve generates a preliminary version of ther ge file, which can be accepted as

is, edited and then accepted, or rejected. A simple algorithm is followed to generate this
file: any changes found iypour s, t hei r s, or bothyour s andt hei r s are applied to

the base file and written to therer ge file; and any conflicting changes will appear in

the merge file in the following format:

>>>> ORI G NAL VERSI ON foo#n
(text fromthe original version)
==== THEI R VERSI ON foo#m

(text fromtheir file)

==== YOUR VERSI ON f o0

(text fromyour file)
<<

Perforce 97.3 User’s Manual 43

Chapter 5 : Perforce Basics: Resolving File Conflicts

N

Thener ge fileis
generated by P4D’s
internaldiff routine.
But the differences
displayed byly, dt ,
dm andd are
generated by diff
internal to ther4
client program, and
this diff can be
overridden by
specifying an
externaldiff in the
PADI FF
environment
variable.

Thus, editing the PERFORCE-generated merge file is often as simple as opening the merge
file, searching for the difference marker>>' |, and editing that portion of the text. How-

ever, this is not always the case; it's often useful (and necessary) to examine the changes
made tof hei r s to make sure they're compatible with other changes that you made. This

can be facilitated by calling4 resol ve with the-v flag; p4 resol ve -v tells BER-

FORCE to generate difference markers for all changes made in either file being resolved,

instead of only for changes that are in conflict betweendties andtheirs files.

The ‘p4 resolve’ Options

Thep4 resol ve command offers the following options:

Option | Short Meaning What it Does

e edit merged Edit the preliminary merge file generateddwr P
FORCE

ey edit yours Edit the revision of the file currently in the client

et edit theirs Edit the revision in the depot that the client revision
conflicts with (usually the head revision). This edit
is read-only.

dy diff yours Diff line sets fromyour s that conflict withbase

dt diff theirs Diff line sets fromt hei r s that conflict withbase

dm diff merge Diff line sets fromrer ge that conflict withbase

d diff Diff line sets fromner ge that conflict withyours

m merge Invoke the command

MERGE base theirs yours merge

To use this option, you must set the environment
variable MERGE to the name of a third-party pro-
gram that merges the first three files and writes the
fourth as a result.

? help Display help fop4 resol ve

s skip Don't perform the resolve right now.

ay accept yours Acceptour s into the client workspace as the re-
solved revision, ignoring changes that may have
been made i hei rs.

at accept theirs Accepthei r s into the client workspace as the re-
solved revision. The revision that was in the client
workspace is trashed.

am accept merge Accepterged into the client workspace as the re-
solved revision. The version originally in the client
workspace is trashed.

a accept Keep BRFORCE'S recommended result. Depending

on the circumstances, this will be eitharur s,
t hei rs, orner ge.

Perforce 97.3 User’s Manual

Chapter 5 : Perforce Basics: Resolving File Conflicts

Only a few of these options are visible on the command line, but all options are aways
accessible and can be viewed by choosing hel p.

The command line has the following format:
Accept(a) Edit(e) Diff(d) Merge (m Skip(s) Help(?) [anf:

PerRFORCE’s recommended choice is displayed in brackets at the end of the command line.
Pressing et ur n or choosingAccept will perform the recommended choice. The recom-
mended command is chosen BRFORCE by the following algorithm: if there were no
changes tyour s, accept hei r s. If there were no changestdiei r s, acceplours.

Otherwise, accepter ge.
Q In the last example, Ed scheduled the doc/ *. gui de files for resolve. This was necessary
Example: because both he and Lisa had been editing the same files; Lisa had already submitted ver -
Resolving sions, and Ed needs to reconcile his changes with Lisa’s. To perform the resolves, he types
file Conflicts p4 resol ve //depot/el mproj/doc/*.gui de, and sees the following:

/usr/edk/ el m doc/ Ali as. guide - nerging //depot/el mproj/doc/Alias.gui de#5
Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m Skip(s) Help(?) [e]:

This is the resolve dialog faloc/ Al i as. gui de, the first of the foudoc/ *. gui de files.

Ed sees that he's made four changes to the base file that don't conflict with any of Lisa’s
changes; he also notes that Lisa has made two changes that he’s unaware of. ide types
(for “di splay theirs”) to view Lisa's changes; he looks them over and sees that
they're fine. Of most concern to him, of course, is the one conflicting change. He types
to edit the BRFORCE-generated merge file and searches for the difference markes™ .

The following text is displayed:

Intuitive Systens
Mountain View, California
>>>> ORI G NAL VERSI ON
==== THElI R VERSI ON

98992

==== YOUR VERSI ON

98993

<KL

He and Lisa have both tried to add a zip code to an address in the file; Ed had typed it
wrong. He changes this portion of the file so it reads as follows:

Intuitive Systens
Mountain View, California
98992

The merge file is now acceptable to him: he’s viewed Lisa’'s changes, seen that they're
compatible with his own, and the only line conflict has been resolved. He quits from the
editor and typesn the edited merge file is written to the client, and the resolve process
continues on the nerbc/ *. gui de file.

When a version of the file is accepted onto the client, the previous client file is overwrit-
ten, and the new client file must still be submitted to the depot. Note that it is possible for
another user to have submitted yet another revision of the same file to the depot between
thetime p4 resol ve completes and the time p4 subni t is performed; in this case, it

Perforce 97.3 User’s Manual 45

Chapter 5 : Perforce Basics: Resolving File Conflicts

would be necessary to perform another resolve. This can be prevented by locking the file
4 before performing the resolve.
File locking is
described in Using Flags with Resolve
“Locking Files to to Non-Interactively Accept Particular Revisions

Minimize File
Conflicts”, later in

) Five optional p4 resol ve flags tell the command to work non-interactively; when these
this chapter.

flags are used, particular revisions of the conflicting files will be automatically accepted.

-ay Automatically accept your s.

- at Automatically accept t hei r s. Usethis option with caution; thefilere-
vision in the client workspace will be overwritten with no chance of re-
covery.

-am Automatically accept the PERFORCE-recommended file revision

(yours,theirs,ormer ge) if there are no conflicting line sets. If there
are conflicts, skip the resolve for thisfile.

- af Accept the PERFORCE-recommended file revision, no matter what. If
this option is used, the resulting file in the client should be edited to re-
move any difference markers.

- as if theirsisidentical to base accept yours
if yoursisidentical to base accept theirs;
otherwise skip thisfile.

g Ed has been editing the doc/ *. gui de files, and knows that some of them will require
Example: resolving. He types p4 sync doc/ *. gui de; all of these files that conflict with filesin
Automatically the depot are scheduled for resolve. He then types p4 r esol ve - ani the merge files for
accepting particular all scheduled resolves are generated, and those merge files that contain no line set con-
revisions of flicts are written to his client workspace. He’'ll still need to manually resolve all the other
conflicting files conflicting files, but the amount of work he needs to do is substantially reduced.

Binary Files and ‘p4 resolve’

If any of the three file revisions participating in the merge are binary instead of text, a

three-way merge is not possible. Instead, p4 resol ve performs a two-way merge: the
two conflicting file versions are presented, and you can edit and choose between them.

Locking Files to Minimize File Conflicts

Once open, afile can belocked with p4 | ock so that only the user who locked the file can
submit the next revision of that file to the depot. Once the file is submitted, it is automati-
cally unlocked. Locked files can also be unlocked manually by the locking user with p4
unl ock.

The clear benefit of p4 | ock isthat once afileislocked, the user who locked it will expe-
rience no further conflicts on that file, and will not need to resolve the file. But this comes
at aprice: other users will not be able to submit the file until the file is unlocked, and will
have to do their own resolves once they submit their revision. Under mostcircumstances,

Perforce 97.3 User’s Manual 46

Chapter 5 : Perforce Basics: Resolving File Conflicts

a user who locks a file is essentially saying to other users “I don’t want to deal with any
resolvesyou do them.” But there is an exception to this rule.

Preventing Multiple Resolves with File Locking

Without file locking, there is no guarantee that the resolve process will ever end. The fol-
lowing scenario demonstrates the problem:

Ed opens filg oo for edit;

Lisa opens the same file in her client for edit;

Ed and Lisa both edit their client workspace versiorfeoof

Ed submits a changelist containing that file, and his submit succeeds;

Lisa submits a changelist with her version of the file; her submit
fails because of file conflicts with the new depoét®;

Lisa starts a resolve;

Ed edits and submits a new version of the same file;

Lisa finishes the resolve and attempts to submit; the submit fails and must now
be merged with Ed’s latest file.

<etc...>

File locking can be used in conjunction with resolves to avoid this sort of headache. The
sequence would be implemented as follows: before scheduling a resolve, lock the file.
Then sync the file, resolve the file, and submit the file. New versions can’t be submitted
by other users until the resolved file is either submitted or unlocked.

Resolves and Branching

Files in separate codelines can be integrated pvithr esol ve; discussion of resolving
branched files begins in tigranching chapter on page 68

Resolve Reporting

Four reporting commands are related to file conflict resolupigndi ff, p4 di ff2, p4
sync -n, andp4 resol ved.

Perforce 97.3 User’s Manual 47

Chapter 5 : Perforce Basics: Resolving File Conflicts

Command Meaning
p4 diff Runs adiff program between the file revision currently in
[filenanes] the client and the revision that was last gotten from the

depot. If thefileis not open for edit in the client, the two
file revisions should beidentical, so p4 di f f will fail.
Comparison of the revisions can be forced with

p4 diff -f,evenwhenthefileintheclientisnot open
for edit.

Althoughp4 di ff runsadiff routineinterna to P4, this
routine can be overridden by specifying an external diffin
the PADI FF environment variable.

p4 diff2 Runs P4D’s diff subroutine on any twoERFORCE depot
filel filez files. The specified files can be any two file revisions,
even revisions of entirely different files.

The diff routine used by4d cannot be overridden.

p4 sync Reports what the result of runnipg sync would be,
-n [filenanes] without actually performing theync. This is useful to
see which files have conflicts and need to be resolved.
p4 resol ved Reports which files have been resolved but not yet sub-
mitted.

Chapter 12 has alonger description of each of these commands; p4 hel p provides acom-
plete listing of the many flags for these reporting commands.

Perforce 97.3 User’s Manual 48

CHAPTER 6

PERFORCE Basics:

Miscellaneous Topics

The manual thus far has provided an introduction to the basic functionality provided by
PERFORCE, and subseguent chapters cover the more advanced features. In between are a
host of other, smaller facilities; this chapter covers these topics. Included here isinforma-
tion on the following:

e Command-line flags common to alkFFORCE commands;

« How to work on files while not connected to ERPORCE server;
» Refreshing the client workspace;
« Additionalp4 cli ent options;

* Renaming files;

 Flags that allow form data to be read from a file;
« Recommendations for organization of files within the depot.

Command-Line Flags
Common to All PERFORCE Commands

Five flags are available for use with alEHRORCE commands. These flags are given
between the system commapdl and the command argument takenpdy These flags

are:

Flag

M eaning

Example

-c clientnane

-d directory

-p

server _addr

Runs the command on the
specified client. Overrides thg
P4CLI ENT environment vari-
able.

Specifies the current directory
overriding the environment
variablePWD.

Gives thep4d server’s listen-
ing address, overriding
P4PORT.

p4 -c joe edit //depot/foo

* Opens filef oo for editing under
client workspace oe.

p4 -d ~elmsrc edit foo
bar

Opens filef oo andbar for edit;
these files are found relative to
~el m src.

p4 -p mama: 1818 clients

Reports a list of clients on the serv-
er on hostranse, port1818.

Perforce 97.3 User’s Manual

49

Chapter 6 : Perforce Basics: Miscellaneous Topics

N

Itis perfectly safeto
usep4 edit onany
file; this command
givesthelocal file
wri t e permissions,
but does not
otherwise alter it.

Flag M eaning Example

-u username Specifies a BRFORCE user, p4 -u bill user
overriding thePAUSER, USER, | presents thp4 user form to edit
andUSERNAME environment | gpaification for usetsi | 1 .

variables.
Only those commands that the

specified user has permissions on
may be run.

-x filenane Instructsp4 to read argumentg,See Wor ki ng Det ached section,
one per line, from the named below
file.

All PERFORCE commands can take these flags, even commands for which thisflag usageis
clearly useless; e.g. p4 -u bill -d /usr/joe hel p.Other flags are available aswell;
these additional flags are command dependent. Please use p4 hel p commandnane to
find the flags available to each command.

Working Detached

Under normal circumstances, users work in their client workspace with a functioning net-

work connection to a PERFORCE server. As they edit files, they are supposed to announce

their intentions to the server with p4 edi t, and the server responds by noting the edit in

the depot’'s metadata, and by unlocking the file in the client workspace. However, it is not
always possible for a network connection to be present; a method is needed for users to
work entirely detached from the server

The scheme is as follows:

» The user works on files without givingeRFORCE commands; instead, OS commands
are given that manually change the permissions on files, and then these files are edited
or deleted.

« If the files were not edited within the client workspace, they should be copied to the cli-
ent workspace when the network connection is reestablished.

e Thep4 diff reporting program is used to find all files in the workspace that have
changed without BRFORCE's knowledge. Output from this command is used to bring
the depot in sync with the client workspace

Finding Changed Files

with ‘p4 diff’

Thep4 diff reporting command is used to compare a file in the client workspace with
the corresponding file in the depot. Its behavior can be modified with two flags:

p4 diff Variation Meaning

p4 diff -se Tells the names of unopened files that are present on the cli-
ent, but whose contents are different than the files last taken
by the client withp4 sync. These files are candidates fiar

edit.

p4 diff -sd Reports the names of unopened files missing from the client.
These files are candidates for del et e.

Perforce 97.3 User’s Manual 50

Chapter 6 : Perforce Basics: Miscellaneous Topics

N

p4 sync -f is
similar to p4
refresh,a
command found in
previous versions of
PERFORCE. Whereas
p4 refresh only
copied unopened
files from the depot
that PERFORCE
thinks you already
have, p4 sync -f
copies any
unopened files from
the depot to the
client workspace.

p4 refresh will
gtill runinthis
version of
PERFORCE, but will
disappear in some
future version.

Using ‘p4 diff’ to
Update the Depot

Thep4 diff variations described above can be used in combination with the - x flag to
bring the state of the depot in sync with the changes made to the client workspace.

To open changed files for edit after working detached, use

p4 diff -se > CHANGED FI LES
p4 -x CHANGED FI LES edit

To delete files from the depot that were removed from the client workspace, use

p4 diff -sd > DEL_FILES
p4 -x DEL_FILES delete

As aways, these edi t and del et e requests are stored in a changelist, which is not pro-
cessed until the p4 submni t command is given.

Refreshing files

The process of syncing a depot with aformerly-detached client workspace has a converse:
it is possible for PERFORCE to become confused about the contents of a client workspace
through the accidental use of UNIX commands. For example, suppose that you accidently
delete a client workspace file viathe UNIX r mcommand, and that the file is one that you
wanted to keep. Even after a submit, p4 have will still list the file as being present in the
workspace.

Just as the process described above will bring the depot in sync with the client workspace,
p4 sync -f files canbeused to bring the client workspace in sync with the files the
depot thinks you have. This command is mostly a recovery tool for bringing the client
workspace back into sync with the depot after accidentally removing or damaging files
managed by PERFORCE.

Options in the ‘p4 client’ Form

The form brought up by p4 cl i ent hasanopti on field, which takes two values:

Client: eds_elm
Omner: ed
Descripti on:
Created by ed.
Root: /usr/edk/elm
Opti ons: nonodti me nocl obber
Vi ew.

[/ depot/elmproj/...

/leds_eln...

The modt i me’ option controls the modification times of client files when gotten from the
depot withp4 sync orp4 revert. Setting this value toodt i me leaves the modifica-
tion times of files in the client as the times these files were submitted to the depot. If this

Perforce 97.3 User’s Manual 51

Chapter 6 : Perforce Basics: Miscellaneous Topics

option is left as the default, nonodt i e, the modification date is set to the time the file
was copied into the client.

The ‘cl obber’ option, which can be set to obber or nocl obber, controls howp4

sync behaves while retrieving files from the depot that already exist in the client. The
default,nocl obber, tellsp4 sync to avoid clobbering client files that aren’t open in
PERFORCE but have otherwise been made writable by the uset.dbber is selected,
these files will be overwritten.

Recommendations for
Organizing the Depot

The default view brought up hy4 cli ent maps the entire depot to the entire client
workspace. If the client workspace is naneeld_el m the default view would look like
this:

[/depot/... //leds_eln...

This is the easiest mapping, and can be used for the most sieRslerEE depots, but
mapping the entire depot to the workspace can lead to problems later on. Suppose your
server currently stores files for only one project, but another project is added later: every-
one who has a client workspace mapped as above will wind up receiving all the files from
both projects into their workspaces. Additionally, the default view does not facilitate
branch creation.

The safest way to organize the depot, even from the start, is to create one subdirectory per
project within the depot. For example, if your company is working on three projects, code-
namedf oo, bar, andzeus, three subtrees might be created within the dépatepot /

f oo, // depot/ bar, and/ / depot / zeus. If Joe is working on th&oo project, his map-

ping might look like this:

/1 depot/fool . .. /ljoel...

And Sarah, who's working on thear andzeus projects, might set up her client work-
space as:

r L
|| /I depot/bar/. .. [l sarah/bar/. ..
/| depot/ zeus/ . .. /| sarah/ zeus/ . ..
The depot isdivided
into subdirectories This sort of organization can be extended on the fly to as many projects and branches as
gmp|y by setti ng up are needed.
the proper mappings
within the client Another way of solving the same problem would be to have#RedRCE system admin-
views. istrator create one depot for each project or branch. Please see Chapter 15, page 109, for
details.

Perforce 97.3 User’s Manual 52

Chapter 6 : Perforce Basics: Miscellaneous Topics

Renaming Files

Although PERFORCE doesn’t have aenane command, a file can be renamed by using

p4 i nt egr at e to copy the file from one location in the depot to another, deleting the file
from the original location, and then submitting the changelist that includes the integrate
and the delete. The process is as follows:

p4 integrate fromfiles to_files
p4 delete fromfiles
p4 submt

The from file will be moved to the directory and renamed according tdatHfde speci-
fier. For example, ifrom fileisd1/ f oo andto_fileisd2/ bar, thenf oo will be moved to

the d1 directory, and will be renamedlar. The from_file and to_file specifiers may
4 include wildcards, as long as they are matched on both sigRrOHEE wri t e access is
PERFORCE access needed on all the specified files.
levels are explained
in chapter 14.

Reading Forms from Standard Input;
Writing Forms to Standard Output

Any commands that require the user to fill in a form, such ap4helient andp4
submi t commands, can read the form from standard input withitHlag. An example is

p4 client -i < filenane

wherefilename contains the field names and values expected by the form. Similarly, the
- o flag can be used to write a form specification to standard output.

The commands that display forms and can therefore use these flags are:

p4 branch p4 change
p4 client p4 job
p4 | abel p4 protect
p4 submit p4 user

Perforce 97.3 User’s Manual 53

CHAPTER 7 Cha“geliSts

A PERFORCE changdlist isalist of files, their revision numbers, and operations to be per-
formed on these files. Commands such as p4 add filenames and p4 edit filenames
include the affected files in a changelist; the depot is not actually altered until the change-
list is submitted with p4 submit.

When a changelist is submitted to the depot, the depot is updated atomically: either all of
the files in the changelist are updated in the depot, or none of them are. This grouping of
files as a single unit guarantees that code alterations spanning multiple files will update in
the depot simultaneoudly. To reflect the atomic nature of changelist submissions, submis-
sion of achangelist is sometimes called an atomic change transaction.

PERFORCE attempts to make changelist usage as transparent as possible: in the normal
case, PERFORCE commands such asp4 edi t add the affected files to a default changelist
(called, appropriately enough, the default changelist), and p4 subnit sends the default
changelist to the server for processing. However, there are two sets of circumstances that
would require the user to understand and manipulate non-default changelists:

« Sometimes a user wants to split files into separate groups for submission. For example,
suppose a user is fixing two bugs, each of which spans a separate set of files. Rather
than submit the fixes to both bugs in a single changelist, the user might elect to create
one changelist for the files that fix the first bug, and another changelist for the files that
fix the second bug. Each changelist would be submitted to the depot via segarate
submit’s.

« Under certain circumstances, th¥ subnit command can fail. For example, if one
user has a file locked and another user submits a changelist that contains that file, the
submit will fail. When a submit of the default changelist fails, the changelist is assigned
a number, is no longer the default changelist, and must be referred to by its number.

In the above circumstances, the user must understand how to worknumitiered
changelists.

Working with the Default Changelist

A changelist is a list of files, revision numbers of those files, and operations to be per-
formed on those files. For example, a single changelist might contain the following:

Perforce 97.3 User’s Manual 54

Chapter 7 : Changelists

[

The material in this
subsection has
already been
presented in slightly
different formin
earlier chapters. It
is presented again
here to provide a
complete discussion
of changelists.

+

A PERFORCE
superuser may
changethe
description of a
changelist, and in
some cases may
delete changelists
entirely. Please see

revision 3 edit
revision 2 del et e

/ doc/ el mhel p. 1
/utils/elmalias.c

Each of the filesin the changelist are said to be open within the client workspace: the first
of the files above was opened for edit with p4 edi t, and the second was opened for dele-
tion with p4 del et e. The files in the changelist are updated within the depot with p4
submi t , which sends the changelist to the server; the server processes the files contained
in the changelist and alters the depot accordingly.

The commands that add or remove files from changelists are:

p4 add p4 del ete
p4 edit p4 integrate
p4 reopen p4 revert

By default, these commands, and p4 submi t, act on the default changelist; for example,
if auser typesp4 add fil enane, thisfileisadded to the default changelist. When a user
types p4 subni t, the default changelist is submitted.

When p4 subnit istyped, a change form is displayed that contains the files in the
default changelist. Any file can be deleted from thislist; when afileis deleted, it is moved
to the next default changelist, and will appear again the next time p4 subni t istyped. A
changelist must contain a user-entered description, which should describe the nature of the
changes being made.

p4 subnit can take an optional, single file pattern as an argument. In this case, only
those files in the default change that match the file pattern will be included in the submit-
ted changelist. Since the p4d server program must receive thisfile pattern as asingle argu-
ment, make sure to escape the * wildcard if it isused.

When the user quits from the p4 subni t editor, the changelist is submitted to the server
and the server attempts to update the files in the depot. If there are no problems, the
changelist is assigned a sequential number, and its status changes from new or pendi ng to
submi tt ed. Once a changelist has been submitted, it becomes a permanent part of the
depot's metadata, and is unchangeable excepERSORCE superusers.

Creating Numbered Changelists
Manually

A user can create a changelist in advance of submissiopavitthange. This command

page 108 for details. brings up the same form seen durpyg subni t . All files in the default changelist are

moved to this new changelist; when the user quits from the form, the changelist is
assigned the next changelist number in sequence, and this changelist must be subsequently
referred to by this change number. Files can be deleted from the changelist by editing the
form; files deleted from this changelist are moved to the next default changelist. The status
for a changelist created by this methodeadi ng until the form is submitted.

Any client file may be included in only one pending changelist.

Perforce 97.3 User’s Manual 55

Chapter 7 : Changelists

Working With Numbered Changelists

Commands such asp4 edit fil ename, which by default adds the files to the default
changelist, can be used to append afile to a pending numbered changelist with the

- ¢ changenum flag. For example, to edit afile and submit it in change number 4, use
p4 edit -c 4 filenane.

Files can be moved from one changelist to another with p4 reopen -c¢ changenum
fil enanes, where changenumis the number of the moving-to changelist. If files are

being moved to the default changelist, usep4 reopen -c default filenanes.
g Ed isworking on two bug fixes simultaneously. One of the bugs involves mail filtering and
Example: requires updates of filesin the filter subdirectory; the other problemisin the elmaliasing

Working with system, and requires an update of util s/ el malias. c. Ed wants to update each bug
multiple changelists separately in the depot; this will allow himto refer to one bug fix by one change number
and the other bug fix by another change number. He's already started fixing both bugs,
and has opened some of the affected files for edit. He typesange, and sees

Change: new
Client: eds_elm
User: edk
Status: new
Descripti on:
<enter description here>

Files:
//depot/elmproj/filter/filter.c # edit
//depot/elmproj/filter/lock.c # edit
//depot/elmproj/utils/elmlias.c # edit

Ed wants to use this changelist to submit only the fix to the filter problems. He changes the
form, deleting the last file revision from the file list; when he’s done, the form looks like
this:

Change: new
Client: eds_elm

User: edk

Status: new

Descripti on:
Fi xes filtering problens

Files:
//depot/elmproj/filter/filter.c # edit
//depot/elmproj/filter/lock.c # edit

When he quits from the editor, he’s told
Change 29 created with 2 open file(s).

The file that he removed from the list,i | s/ el mal i as. c, is now found in the default
changelist. He could include that file in another numbered changelist, but decides to leave
it where it is.

He fixes both bugs at his leisure. He realizes that the filter problem will require updates to
another file:fi | t er/ | ock. c. He opens this file for edit witht edit -c¢ 29 filter/
| ock. c; opening the file with thec 29 flag puts the file in changelist 29, which he cre-

Perforce 97.3 User’s Manual 56

Chapter 7 : Changelists

ated above. (If the file had already been open for edit in the default changelist, he could
have moved it to changelist 29 with p4 reopen -c¢ 29 filter/l ock. c).

Ed finishes fixing the aliasing bug; since the affected files are in the default changelist, he
submits the changelist with a straightforward p4 subni t. He'll finish fixing the filtering
bug later.

Automatic Creation and Renumbering of
Changelists

When Submit of the Default Changelist Fails,
the Changelist is Assigned a Number

Submits of changelists will occasionally fail. This can happen for a number of reasons:

« Afile in the changelist has been locked by another usemdithock;
» The client workspace no longer contains a file included in the changelist;
» There is a server error, such as not enough disk space; or

« The user was not editing the head revision of a particular file. The following sequence
shows an example of how this can occur:

User A typesp4 edit //depot/foo;
User B typesp4 edit //depot/foo;
User B submits her default changelist;
User A submits his default changelist.

User A’s submit is rejected, since the file revisiofi@d that he edited is no longer the
head revision of that file.

If any file in a changelist is rejected for any reason, the entire changelist is backed out, and
none of the files in the changelist are updated in the depot. If the submitted changelist was
the default changelist, ERFORCE assigns the changelist the next change number in
sequence, and this change number must be used from this point on to refer to the change-
list.

+

If the submit failed because the client-owned revision of the file is not the head revision, a

C_hapter > merge must be performed before the changelist will be accepted.
discusses the
merge/resolve
process. PERFORCE May Renumber a Changelist upon Submission
The change numbers of submitted changelists always reflect the order in which the
% changelists were submitted. Thus, when a changelist is submitted, it may be renumbered.
Ed has finished fixing the filtering bug that he’s been using changadigor. Since he
Example: created that changelist, he’s since submitted another changelist (clsajgand two
Automatic other users have submitted changelists. Ed submits cleangéh p4 subnit -c 29,
renumbering of and is told
changelists

Change 29 renamed change 33 and subm tted.

Perforce 97.3 User’s Manual 57

Chapter 7 : Changelists

Deleting Changelists

To remove a pending changelist that has no files or jobs associated with it, use p4
change -d changenum Pending changelists that contain open files or jobs must have
the files and jobs removed from them before they can be deleted: use p4 r eopen to move
files to another changelist, p4 revert to remove files from the changelist (and revert
them back to their old versions), or p4 fi x -d toremove jobs from the changelist.

Changelists that have already been submitted can never be deleted.

Changelist Reporting

The two reporting commands associated with changelists are p4 changes and p4
descri be. The former is used to view lists of changelists with short descriptions; the lat-
ter prints verbose information for a single changelist.

Command M eaning

p4 changes Displaysalist of all pending and submitted
changelists, one line per changelist, and an abbre-
viated description.

p4 changes -m nunthanges | Limitsthe number of changelists reported on to
the last numchanges changelists.

p4 changes -s status Limit thelist to those changelists with a particul ar
status; for example,

p4 changes -s subnittedwill list only al-
ready-submitted changelists.

p4 describe changenum Displays full information about a single change-
list; if the changelist has already been submitted,
the report will include alist of affected files and
the diffs of thesefiles. The - s flag can be used to
exclude the diffs of thefiles.

Perforce 97.3 User’s Manual 58

CHAPTER 8

Labels

A PerrFORCE label is simply a user-determined list of files and revisions. The label can
later be used to reproduce the state of these files within a client workspace.

Labels provide a method of haming important combinations of file revisions for later ref-
erence. For example, the file revisions that comprise a particular release of your software
might be given the label r el ease2. 0. 1. At alater time, all the filesin that label can be
retrieved into a client workspace with a single command.

Create alabel when:

» You want to keep track of all the file revisions contained in a particular release of the
software;

» There exists a particular set of file revisions that you want to give to other users; or

« You have a set of file revisions that you want to branch from, but you don’t want to per-
form the branch yet. In this case, you would create a label for the file revisions that will
form the base of the branch.

Why Not Just Use Change Numbers?

Labels share certain important characteristics with change numbers: both refer to particu-
lar file sets, and both act as handles to refer to all the files in the set. But labels have four
important advantages over change numbers:

« the file revisions referenced by a particular label can come from different changelists;

« a change number refers to the state of all the files in the depot at the time the changelist
was submitted; a label can refer to any arbitrary set of files and revisions;

« the files and revisions referenced by a label can be arbitrarily changed at any point in the
label’s existence; and

« changelists are always referred to IBrRFRCE-assigned numbers; labels are named by
the user.

Creating a Label

Labels are created wiit¥ | abel [abel nane.; this command brings up a form similar
to thep4 client form. Like clients, labels have associated views; the label view limits

Perforce 97.3 User’s Manual 59

Chapter 8: Labels

which files can be referenced by the label. Once the label has been created, the
p4 | abel sync command is used to load the label with file references.

Label names share the same namespace as clients, branches, and depots; thus, a label

name can't be the same as any existing client, branch, or depot name.
g Ed has finished the first version of filtering in em; he wants to create a label that refer-
Example: ences only thosefilesinthefi | t er and hdr s subdirectories. He wants to name the label

Creating a label filters.1; hetypesp4 |abel filters. 1 andfillsintheresulting form asfollows:

Label: filters.1

Owner: edk

Descripti on:
Created by edk.

Opti ons: unl ocked

Vi ew:
//depot/elmproj/filter/...
// depot /el mproj/hdrs/...

When he quits from the editor, the label is created.

Before following this example further, it's worth stopping for a moment to examine
exactly what has and hasn’'t been accomplished. So far, a label fddllegr s. 1 has
been created. It can contain files only from the deptis proj filter andhdrs subdi-
rectories. But the labdli | ters. 1 is empty; it contains no file references. It will be
loaded with its file references witi# | abel sync.

TheVi ew: field is used to limit the files that are included in the label. These files must be
specified by their location in the depot; this view differs from other views in that only the
depot side of the view is specified. Thecked / unl ocked option in theOpt i ons: field

can prevenp4 | abel sync from overwriting previously synced labels (this is described
further in ‘Preventing Accidental Overwrites of a Label's Conténtspage 62).

Adding and Changing
Files Listed in a Label

Once a label has been created, references to files can be included in the label with the
| abel sync command. The syntax fbabel sync is

| p4 | abel sync [-a -d -n] -| [abelnane [filenane...]

The rules followed by abel sync to include files in a label are as follows:

1. Allfiles listed in a label must be contained in the label view specified ip4heabel
form. Any files or directories that are not mapped through the label view are ignored
by abel sync. All the following rules assume this, without further mention.

2. Whenl abel sync is used to include a particular file in a label's file list, the file is
added to the label if it is not already included in the label. If a different revision of the
file is already included in the label's file list, it is replaced with the newly-specified
revision. Only one revision of any file is ever included in a label's file list.

3. If | abel sync is called with no filename arguments, as in

p4 | abel sync -1 [abel nane

Perforce 97.3 User’s Manual 60

Chapter 8: Labels

then al the files mapped by the label view will be listed in the label. The revisions added
to the label will be those last synced into the client; these revisions can be seen in the p4
have list. Caling | abel sync this way will replace all existing file references with the

new ones.

g Ed has created a label called fi | ters. 1 as specified above; now he wants to load the
Example: filters. 1 label withthe proper file revisions. He types

S_torlng . p4 | abel sync -| filters.1

file references in a

label with and sees the following:

p4 | abel sync

[/ depot/elmproj/filter/Makefile. SH#20 - added
/'l depot/elmproj/filter/actions.c#25 - added
<etc.>

The file revisions added to the label are those contained in the intersection of the label
view and the current client have list.

4. If p4 1abel sync is called with filename arguments, and the arguments contain no
revision specifications, the head revisions of these files are included in the label’s file

list.
g After performing the above | abel sync command, Ed finds that the file filter/fil -
Example: ter.c isbuggy. He fixes it, submits the new version, and wants to replace the old revi-
Changing sion of this file in the label filters.1 with the new revison. From the filter
file references in a subdirectory, he types
label with p4 | abel sync -I filters.1 doc/filter.c

p4 | abel sync
and sees

[/ depot/elmproj/filter/filter.c#15 - updated

Thehead revisionof fi | t er. c replacesthe revision that had been previously included in
thelabel.

5. If I abel sync is called with flename arguments that contain revision specifications,
Q these file revisions are included in the label’s file list.

Ed realizesthat theversionof fi | t er/ audi t . c containedin hislabel fi | ters. 1isnot
Example: the version he wants to include in the label; he’d prefer to include revigiarf that file.
Including a different From the main EIlm directory, he types
file revision in a
label

p4 | abel sync -I filters.1 filter/audit.c#12

and sees

/depot/elmproj/filter/audit.c#12 - updated

This revision ofwudi t . c replaces the revision that had been previously included in the
label.

Perforce 97.3 User’s Manual 61

Chapter 8: Labels

Previewing Labelsync’s Results

The results of p4 | abel sync can be previewed with p4 | abel sync -n. Thisliststhe
files that would be added, deleted, or replaced in the label without actually performing the
operation.

Preventing Accidental Overwrites of
a Label’s Contents

Since p4 | abel sync with no file arguments overwrites all the files that are listed in the
label, it is possible to accidently lose the information that a label is meant to contain. To
prevent this, call p4 |abel [abel nane and set the value of the Opti ons: field to
| ocked. It will beimpossibleto call p4 | abel sync on that label until the label is subse-
quently unlocked.

Retrieving a Label’s Contents into a
Client Workspace

Toretrieve all the fileslisted in alabel into a client workspace, use

p4 sync files@ abel nane. This command will match the state of the client work-

space to the state of the label, rather than simply adding the files to the client workspace.

Thus, files in the client workspace that aren’t in the label may be deleted from the client

workspace.
Q Lisa wants to retrieve all the files listed in Ed'sl t ers. 1 label into her client work-
Example: space. She can type
Retrieving files into
a client workspace
from a label or even

p4 sync //depot/... @ abel nane

p4 sync @ abel nane

But she’s interested in seeing only the header files from that label; she types

p4 sync //depot/elmproj/hdrs/*@ilters.1

and sees

/1 depot/el m proj/hdrs/curses. h#1 - added as /usr/lisag/el m hdrs/curses.h

// depot/el m proj/hdrs/defs. h#1 - added as /usr/lisag/el m hdrs/defs.h

/1 depot/el m proj/hdrs/test.h#3 - deleted as /usr/lisag/elmhdrs/test.h
<etc>

All the files in the subdirectottydr s that are within the intersection of Edf$lters. 1

label and Lisa’s client view are retrieved into her workspace. But there is another effect as
well: files that are not in the intersection of the label's contents Ahdepot /

el m proj / hdrs/* are deleted from her workspace.

If p4 sync @ abel nane is caled with no file parameters, al filesin the client that are
not in the label will be deleted from the client. If this command is called with file argu-
ments, asin p4 sync fil es@ abel nane, then the client workspace at the intersection

Perforce 97.3 User’s Manual 62

Chapter 8: Labels

of the depot, the client workspace view, and the file parameters will be updated to match
the contents of the depot at that intersection.

Deleting Labels

A label can be deleted in its entirety with

p4 | abel -d [abel nane

Files can be deleted from labels with

p4 | abel sync -d -1 [abel name fil epatterns

A variant of thisis

p4 | abel sync -d -1 [abel nanme

This command deletes all the files from the label’s file list, but leaves the empty label in
the system.

Label Reporting

The commands that output reports on labels are:

Command Description
p4 | abels Report the names, dates, and descriptions of all labels known
to the server
p4 files Lists all files and revisions contained in the given label.
@ abel nane
p4 sync -n Shows whap4 sync would do when retrieving files from a
@ abel nane particular label into your client workspace, without actually

performing the sync.

Perforce 97.3 User’s Manual 63

CHAPTER 9

Branching

PERFORCE's Inter-File Branching™ mechanism allows any set of files to be copied within
the depot. By default, the new file set (mdeline) evolves separately from the original
files, but changes in either codeline can be propagated to the other with thet e-

gr at e command.

What is Branching?

Branching is a method of keeping in sync two or more sets of similar, but not identical,
files. Most software configuration management systems have some form of branching; we
believe that BRFORCE'S mechanism is unique in that it mimics the style in which users
create their own file copies when no branching mechanism is available.

Suppose for a moment that you're writing a program and are not using an SCM system.
You're ready to release your program: what would you do with your code? Chances are
that you'd copy all your files to a new location. One of your file sets would become your
release codeline, and bug fixes to the release would be made to that file set; your other
files would become your development file set, and new functionality to the code would be
added to these files.

What would you do when you find a bug that's shared by both file sets? You'd fix it in one
file set, and then copy the edits that you made into the other file set.

The only difference between this homegrown method of branching errbHZE's
branching methodology is thatRFoRCE manages the file copying and edit propagation
for you. In PERFORCE's terminology, copying the files is calledabking a branch; each file
set is known as eodeling, and copying an edit from one file set to the other is catlee
gration. The entire process is callbchnching.

When to Create a Branch

Create a branch whenever two sets of code have different rules governing when code
should be submitted, or whenever a set of files needs to evolve along different paths. For
example:

* The members of the development group want to submit code to the depot whenever their
code changes, whether or not it compiles; but the release engineers don’t want code to

Perforce 97.3 User’s Manual 64

Chapter 9: Branching

N

In previous versions
of PERFORCE, it was
necessary to
perform the fifth
step: retrieval of the
new codeline files
into the client

wor kspace with p4
sync. Thisstepis
no longer
necessary; p4

i nt egrat e now
copies thefilesinto
the client workspace
for you. To disable
this automatic file
copying, use p4
integrate -v;if
you do this, you'll
need to perform a
sync after the
submit.

be submitted until it's been debugged, verified, and signed off on. They would branch
the release codeline from the development codeline; when the development codeline is
ready, it would be integrated into the release codeline. Patches and bug fixes would be
made in the release code; later, these changes could be integrated into the development
code.

A company is writing a driver for a new multi-platform printer. They've written a UNIX
device driver; they're now going to begin work on a Macintosh driver, using the UNIX
code as their starting point. They create a branch from the existing UNIX code; they
now have two copies of the same code, and these codelines can evolve separately. If
bugs are found in either codeline, bug fixes can be propagated from one codeline to the
other with thePERFORCE i nt egr at e command.

At PERFORCE, we use branching to manage our releases. Development always proceeds
in files located within' / depot / mai n/ . .. When a new release is ready, it's branched
into another codeline, for example, the code for this release was copied from
//depot/main/... into//depot/97.3/... Bug fixes that affect both codelines

will be made withir/ / depot / mai n/ . . ., and later integrated into the other codeline.

Development of release8. 1 will proceed in//depot/main/..., when the new
release is ready, it will be branched intalepot / 98. 1/ . . . , and the process will con-
tinue like this for all BRFORCE releases.

Branching’s First Action:
Creating a Branch

As described above, two separate actions comprise branching: first, a branch is created
(e.g., files are copied); second, edits are copied from one codeline to the other as needed.
This section describes the first of these actions.

The steps to creating a branched codeline are:

1.

5.

Create the new branch view witid branch branchnane. Use the view in the
resulting form to indicate which files are to be included in the branch, and where the
branched codeline will be stored within the depot’s file tree.

Make sure that the new files and directories are included puthe i ent view of the
client workspace that will hold the new files.

Usep4 integrate to open the new files for branching. The new files are listed in a
changelist; the associated operatiobrianch.

Usep4 subnit to submit the changelist to theARORCE server. This creates the new
files in the depot.

I s § | he el —

The following example demonstrates each of these steps.

Step 1: Create the Branch View

The first step is to create the branch view. Creating a branch view does four things:

1.
2.
3.

Assigns the branched codeline a name;
Describes which files will be copied from;
For each original file, describes where the new copy will be stored within the depot;

Perforce 97.3 User’s Manual 65

Chapter 9: Branching

4. Maintains a mapping between each original and branch file, so that changes to one can

g be easily propagated to the other.

A version of EImisready for release, and a potential problem is foreseen: the developers
Example: will be submitting code to the depot for the next version of Elm, but the release engineers
Creating a branch will be submitting fixes to the released version. The two policies are clearly incompatible;

so a branched codeline, with duplicate Elm files, needs to be created. Kurt, one of the
release engineers, is assigned to create the branch for the rel ease engineers.

The original code is stored in the depot under itsel m proj subtree; Kurt decides to call
the branch el mr1, and will store the branched codeline in the depot under an
el m rel easel subdirectory. He types

p4 branch elmr1l

and sees the following:

Branch: elmrl
Dat e: 05/ 25/ 1997 17:43:28
Owner: kurtv
Descripti on:

Created by kurtv.
Vi ew.

//depot/... [/depot/...

The default Vi ew above would map the entire depot to itself in a branch, which is useless.
The Vi ewneeds to map the original codeline’s files on the left to branch files on the right;
Kurt changes th#i ewfield as follows:

Branch: elmrl
Dat e: 05/ 25/ 1997 17:43:28
Omner: kurtv
Descripti on:
Created by kurtv.
Vi ew.
//depot/elmproj/... //depot/el mreleasell...

This maps all the files in the depo€sm proj file tree to a new depot file tree called
el m rel easel. All files from the source subtree will eventually be copied to the branch
subtree; these files will be the contents of the branch.

Kurt quits the editor; the branch is created.

The p4 branch command does not copy files into the branch; it simply specifies which
origina file will correspond to which branched file.

Exclusionary mappings may be used within a branch view.

Step 2: Include the Branched Files in the Client View

In order to work with branched files, the branched files must be accessible through the cli-
ent view.

Perforce 97.3 User’s Manual 66

Chapter 9: Branching

&

Kurt will be working with the branched files. Hisclientiskurtv_cl i ; hetypesp4 cli -
ent , and adds a lineto his client view:

Example:
Including
branched files
in a client view

5

Example:

Usingi ntegrate
to create
branched files

Cient: kurtv_cli
Dat e: 05/ 25/ 1997 18: 34:58
Omner: kurtv
Descripti on:
Created by kurtv.
Root : /usr/kurtv
Vi ew:
// depot/el mrel easel/. .. [lkurtv_cli/elmrd/...

There might be other mappings within the client view; the only crucial factor is that the
files in the depot’'s elm branch directory be mapped to some location in Kurt's client
workspace. The mapping shown here accomplishes this.

Steps 3 & 4:
Use ‘p4 integrate’ and ‘p4 submit’
fo Create the Target Files

To create the new branch files, use p4 i nt egr at e followed by p4 subni t . When the

branch files don't yet exist in the depiont egr at e creates the branched files in the client
workspace and tells the server that the branch files are to be copied from the original files
described in the branch mapping. Thet egrate command, likeadd, edit, and

del et e, does not actually affect the depot immediately; instead, it adds the affected files
to a changelist, which must be submitted with subni t. This keeps thént egrat e
operation atomic: either all the named files are affected at once, or none of them are.

The basic syntax of thHent egr at e command is

p4 integrate -b branchname [fil epatterns]

If the filepatterns are left off, all the files in the branch are affected. When included, the
filepatterns must describe the new files, not the original files, and these files must be visi-
ble through the client view.

Kurt has created the branch el m r 1 as above, and he’s ready to create the branched cop-
ies in the depot. He typed integrate -b el mr1, and sees

/1 depot/ el m rel easel/ Changes#1 - branch/sync from//depot/el mproj/Changes#6
/1 depot /el m rel easel/ NOTI CE#1 - branch/sync from//depot/el m proj/NOTI CE#23
<etc. >

The branched files have been created in his client workspace, and instructions to branch
these files have been added to his default changelist. Hep®pgsbni t , and sees

Change: new
Client: kurtv_elm

User: kurtv

Status: new

Descripti on:
<enter description here>

Files:
/ / depot / el m r el easel/ Changes # branch
// depot/ el m rel easel/ Configure # branch

<etc.>

Perforce 97.3 User’s Manual 67

Chapter 9: Branching

+

Discussion of
file conflict
resolution

begins on page 39.

5

Example:
Propagating
original codeline
changes to the
branched codeline

He changes the description and quits the editor; the branched files are created within the
depot and are copied into the client workspace.

If Kurt wanted the files to be created in the depot but not synced to the client workspace,
he could have used the -v flag with the i nt egr at e command. If he did this, the files
would later need to be copied to the client workspace with p4 sync.

Editing Newly Branched Files

By default, a file that has been newly created in a client workspace by p4 integrate
cannot be edited before its first submission. To make a newly-branched file available for
editing before submission, simply p4 edi t thefile.

Working With Branched Files

Once a branch has been created and the files have been copied into the branched codeline
with p4 i nt egr at e, the branched files are treated exactly like non-branched files, with
the normal use of sync, edit, del ete, submi t, etc. Evolution of both codelines pro-
ceeds separately; additional PERFORCE commands are used only when changes to one
codeline need to be propagated to the other.

Branching’s Second Action:
Propagating Changes from One Codeline
to the Other

It is worth repeating that two separate actions comprise branching: first, one set of filesis

copied from one location in the depot to another location, and second, changes made to

one codeline can be copied to the branched codeline as needed. The steps needed to
accomplish the first action have been described above; now we’ll discuss how to accom-
plish the second action.

Edits to a file in either codeline can be propagated to the corresponding file in the other
codeline with the esol ve command. Only one additional step needs to be performed:
before resolving, thént egr at e command is used to schedule the merge between the
original files and the branched files. In its normal use with brancheddilesnt egr at e

takes the fornp4 i ntegrate -b branchname fi/es, where the specifiefiles are the
branched files rather than the original files.

A bug has been fixed in the original codeline’s/ el m ¢ file. Kurt wants to propagate
the same bug fix to the branched codeline he’s been working on. He types

p4 integrate -b elmrl ~kurtv/ielmrl/src/elmc

and sees

| //depot/el mrel easel/src/elmc#l - integrate from//depot/el mproj/src/elmc#9

Perforce 97.3 User’s Manual 68

Chapter 9: Branching

+

Protections are
discussed in
Chapter 9.

A

Example:
Propagating
branched codeline
changes to the
original codeline

The file has been scheduled for resolve. He types p4 resol ve, and the standard merge
dialog appears on his screen.

lusr/kurtvielmrl/src/elmc - merging //depot/el mproj/src/el mc#2
Diff chunks: O yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m Skip(s) Help(?) [at]:

He resolves the conflict with the standard use of p4 r esol ve. When he’s done, the result
file overwrites the file in his branched client, and it still must be submitted to the depot.

In PERFORCE terminology, changes are always propagated from donorfilesto targetfiles.
In the above example, the original codeline provided the donor files and the target files
were located in the branched codeline, but changes can be propagated in the other direc-
tion as well.

There is one fundamental difference between resolving conflicts in two revisions of the

same file, and resolving conflicts between the same file in two different codelines. The
difference is that PERFORCE will detect conflicts between two revisions of the same file

and then schedule aresolve, but there are alwaysdifferences between two versions of the

same file in two different codelines, and these differences usually don’t need to be
resolved. You must tellHRFORCE that text in one file needs to be propagated to its branch
with p4 integrate. If the codelines evolve separately, and changes never need to be
propagated, you'll never need to integrate or resolve the files in the two codelines.

p4 i nt egr at e only acts on files that are the intersection of target files in the branch view
and the client view. If file patterns are given on the command ilimeggr at e further

limits its actions to files matching the patterns. The donor files supplied as arguments to
i nt egr at e need not be in the client view.

To run thep4 integrate commandwite access is needed on the target files, and
r ead access is required on the donor files.

Propagating Changes from Branched Files
fo the Original Files

A change can be propagated in the reverse direction, from branched files to the original
files, by supplying ther flag top4 integrate. In this case, the names of the original
files are provided as argumentspto i ntegrate -r.

Ed wants to integrate a change in Kurt's brancked/ screen. ¢ file to Ed’s original
version of the same file. He typpgd integrate -r -b elmrl //depot/

el m proj/src/screen. c; and thenp4 resol ve. The change in the branched file is
propagated to his source file.

Perforce 97.3 User’s Manual 69

Chapter 9: Branching

When the - r flagis used to propagate changes from branched donorsto origina targets,
the original source files must be visible through the target view.

Branching and Merging
Without a Branch View

Thus far, we have been describing the two actions that comprise branching: copying a set
of filesfrom one location in the depot to another, and propagating edits of one of the code-
lines to the other codeline. It is possible to use p4 i nt egr at e to perform both of these
steps without ever having created a branch view. This is accomplished by calling p4
i nt egr at e with two file arguments and without the - b br anch flag, asin

p4 integrate donor_file target_file

When p4 i nt egrat e is called this way, it will perform the integration between the two

named files. The first file argument provides the donor; the second provides the target.

The donor file must already exist; the target file needn’t. There are three possible combi-
nations of donor and target:

» The target file doesnt exidi this case, the target file is opened for br anch, and PER-
FORCE will track the integration history between the two files. Subsequent merges of the
two files will treat this donor revision as base

« The target file exists, and was originally branched from the donor file with p4i nt e-
grat e. In this case, a three-way merge is scheduled between the target and the donor.

» The target file exists, but was not branched from the donor. Since these two file revi-
sions did not begin their lives at a common, older file revision, there can bes®
file, sop4 resol ve can't do a three-way merge. In this cgsg, r esol ve will do a
two-way merge, in whichyour s is also used agase. In a two-way merge, all changes
appear as hei r s, and there can be no conflicts.

Deleting Branches

To delete a branch, use
p4 branch -d branchnane
Deleting a branch deletes only the branch view description, making the branch inaccessi-

ble from any subsequept i nt egr at e commands. If the files in the branched codeline
are to be removed, they must be deleted pdtidel et e.

Advanced Integration Functions

PERFORCE'’s branching mechanism also allows integration of specific file revisions, the re-
integration and re-resolving of already integrated code, and merging of two files that were
previously not related.

Perforce 97.3 User’s Manual 70

Chapter 9: Branching

oA

Example:
Integrating
Soecific

File Revisions

N

In previous versions
of PERFORCE, re-
resolution of files
was accomplished
with p4

rer esol ve, which
has now been
replaced by p4
resolve -f.

Integrating Specific File Revisions

By default, the i nt egr at e command will integrate into the target all the revisions of the
donor since the last donor revision that i nt egr at e was performed on. A revision range
can be specified when integrating; this prevents unwanted revisions from having to be
manually deleted from the merge while editing. In this case, the revision used as base is
the first revision below the specified revision range.

The syntax hereisalittle strange: although the file provided as an argument to p4 i nt e-
gr at e isthetarget, the file revision specifier is applied to the donor.

Ed has made two bug fixes to his file src/init.c, and Kurt wants to integrate the

change into his branched version, which is called newi ni t. c. Unfortunately, init.c

has gone through 20 revisions, and Kurt doesn’t want to have to delete all the extra code
from all 20 revisions while resolving.

Kurt knows that the bug fixes he wants were made to file revisions submitted in changelist
30. From the directory of hisewi ni t . ¢ file in his branched workspace, he types

p4 integrate -b elmrl src/new nit.c@O0, @0

The target file is given as an argument, but the file revisions are applied to the donor.
When Kurt rung4 resol ve, only the revision of Ed’s file that was submitted in change-
list 30 is scheduled for resolve, that is, Kurt only sees the changes that Ed made to
i ni t.c in changelist 30. The file revision that was present in the depot at changelist 29 is
used adase.

Re-Integrating and Re-Resolving Files

Once a particular revision of a donor file has been integrated into a particular target, that
particular revision is usually skipped in subsegquent integrations with the same target. If all
the revisions of a donor have been integrated into a particular target, p4 i nt egr at e will
give the error message Al | revisions al ready i ntegrated. But integration of a
particular donor can be forced, even though integration has already been performed, by
providing the- f flagtop4 integrate.

Similarly, atarget file that has been resolved but not yet submitted can be re-resolved by
providing the - f flagtop4 resol ve, which forces re-resolution of already resolved files.
When this flag is used, the original client target file will already have been replaced with
the result file of the original resolve process; thus, when re-resolving, your s will already
be the new client file, the result of the original resolve.

How Integrate Works

The preceding material in this chapter was written from a user’s perspective. This section
makes another pass at the same material, this time describing the mechanism behind the
integration process.

Perforce 97.3 User’s Manual 71

Chapter 9: Branching

p4 integrate’s Definitions of yours, theirs, and base

4 Thevauesof your s, t hei r s, and base in athree-way merge are quite different when
yours,theirs, propagating changes between two codelines:

and base arefirst

discussed on yours Thefilethat changes are being propagated to (also known asthet ar -
page 42. get file). Thisfileisin the client workspace, and it is overwritten by

the result once the resolve process is complete.

Inaforwardintegrate, thisisafileinthe branched codeline. When the
-r flag hasbeen providedtoi nt egr at e, thisisafilein the original
codeline.

theirs Thefilerevision that changes are being read from (also known asthe
donor file). Thisfile revision comes from the depot, and is un-
changed by the resolve process.

Inaforwardintegrate, thisisafilerevisionfromtheoriginal codeline.
When the - r flag has been providedtoi nt egr at e, thisisafilein
the branched codeline.

base The last integrated revision of the donor file. When a new branch is
created andi nt egr at e isused to create the branched copy of thefile
in the depot, the newly-branched copy is base.

The Integration Algorithm

p4 i ntegr at e performsthe following steps:

1. It appliesthe branch view to any target files provided on the command line to produce
alist of donor/target file pairs. If no files are provided on the command line, alist of all
donor/target file pairs is generated. It notes individually each revision of each donor
file that isto be integrated.

2. It discards any donor/target pairs for which the donor file revisions have been inte-
grated in previous changes. Each revision of each file that has been integrated is
remembered individually, in order to avoid making the user merge changes more than
once.

3. It discards any donor/target pairs whose donor file revisions have integrations pending
in filesthat are already opened in the client.

4. All remaining donor/target pairs will be integrated. The target file is opened on the cli-
ent for the appropriate action (see below), and merging is scheduled.

Integrate’s Actions

The integrate command will take one of three actions, depending on particular characteris-
tics of the donor and target files:

Action Meaning

br anch If the target file does not exigt, it is opened for br anch. Thebr anch
actionisavariant of add, but PERFORCE keeps arecord of which do-
nor file the target file was branched from. This allows three-way
merges to be performed between subseguent donor and target revi-
sions with the original donor file revision as base.

Perforce 97.3 User’s Manual 72

Chapter 9: Branching

integrate If both the donor and target files exist, the target is opened for inte-

gration, which isavariant of edi t . Before a user can submit afile
that has been opened for integration, the donor and target must be
merged with p4 resol ve.

del ete When the target file exists but no corresponding donor fileis mapped

through the branch view, the target is marked for deletion. Thisis
consistent withi nt egr at e’s semantics: it attempts to make the tar-
get tree reflect the donor tree.

When the - r flag is not provided to p4 i nt egr at e, the original codeline provides the
donor files, and the branched codeline provides the targets. When the - r flag is given, the
branched codeline is the donor, and the original files are the targets.

Integration Reporting

The branching-related reporting commands are:

Command

Function

p4 integrate
-n [filepatterns]

p4 resol ve
-n [filepatterns]

p4 resol ved

p4 integrated
[filepatterns]

p4 branches

p4 filelog
[filepatterns]

Reports what nt egr at e would do without actually do-
ing it. Any of the usual parameters tat egr at e can be
specified as well.

Reports files that have been scheduled for resolya by

i nt egr at e, but that have not yet been resolved. Reports
whatp4 r esol ve would do without actually doing it.
Any of the usual parametersrtesol ve can be provided

as well.

Lists those files that have been resolved, but have not yet
been submitted.

Describes all integrated and submitted files that match
the filepattern arguments.

Display a list of all branches known to the system.

Describes the revision history of the named files. For
each revision of the named files, the following is report-
ed:

» change number;

« operation (edit, add, delete, branch, integrate)
« client name;

* user name; and

* description.

If the operation wabr anch ori nt egr at e, the names
and revisions of the corresponding branch files are re-
ported as well.

There is an ordering to the first four of these commands: the first is performed before
i nt egr at e; the second is done after i nt egr at e and before r esol ve; the third is given
after resol ve but before submi t, and the fourth is performed after submi t . The fifth
command provides a complete history of any file, and isincredibly useful.

Perforce 97.3 User’s Manual

73

CHAPTER 10

Job Tracking

+

Daemons
are described
in Chapter 11.

oA

Example:
Creating a Job

A job isawritten description of some modification to be made to a source code set. A job
might be a bug description, like “the system crashes when | pgessn”, or it might be
a system improvement request, like “please make the program run faster.”

Whereas a job represents work that is intended, a changelist represents work actually
done. BRFORCE's job tracking mechanism allows jobs to be linked to the changelists that
implement the work requested by the job. A job can later be looked up to determine if and
when it was fixed, which file revisions implemented the fix, and who fixed it. A job linked

to a particular changelist is marked as completed when the changelist is submitted.

Jobs perform no functions internally t@RRORCE; rather, they are provided as a method

of keeping track of what changes to the source are needed, which user is responsible for
implementing the job, and which file revisions contain the implementation of the job.
Since jobs do nothing more than provide this information to the user, the job reporting
facilities are particularly important.

The job facilities in BRFORCE do not provide a full-scale job tracking system. They can
be used as is, or integrated with another system via a daemon.

Creating and Editing Jobs
Jobs are created with the j ob command.
Sarah, who shares the same PERFORCE server as Ed, has found a bug in Elm’s filtering

code. Ed is fixing code, so Sarah creates a new jobpaithob and fills in the resulting
form as follows:

Job: new

User: edk
Status: new
Descripti on:

Filters on the “Reply-To:” field
don’t work.

Perforce 97.3 User’s Manual 74

Chapter 10 : Job Tracking

She has changed User : from her username to edk. Ed will see this job the next time he
views any pending changelist with p4 submit or p4 change.

Thep4 j ob form’s fields are:

Field Name Description Default

Job The name of the job. Whitespace is not new
allowed in the name.

User The user whom the job is assigned to, usuall\PERFORCE user-
the username of the person assigned to fix| name of the per-
this particular problem. son creating the

job.

St at us open, cl osed, suspended, ornew. new; changes to
An open job is one that has been created bjieren after job.
has not yet been fixed. clreatlgn form is
A cl osed job is one that has been complete jClosea.

A suspended job is an open job that is not
currently being worked on.

Newjobs exist only while the change creation
form is open.

Description | Arbitrary text assigned by the user. Usually atext thatmust be
written description of the problem that is changed
meant to be fixed.

If p4 j ob is called with no parameters, a new job is created. The name that appears on the
form isnew, but this can be changed by the user to any desired string. JHdhdield is

left asnew, or is blank, BRFORCE will assign the job the nanmj@bN, whereNis a sequen-
tially-assigned six-digit number.

Existing jobs can be edited wifi4 j ob j obnane. The owner and description can be
changed arbitrarily; the status can be changed to any of the three valid statuspaiyes
cl osed, orsuspended. If p4 job jobnane is called with a non-existing jobname, a
new job is created.

Linking Jobs to Changelists,
and Changing a Job’s Status

Automatically Performed Functions

By default, all open jobs owned by a particular user will appear ireaHd®Ce change-

lists subsequently created by that user. A job is automatically closed when one of its asso-
ciated changelists is successfully submitted. Jobs can be disassociated from changelists by
deleting the job from the changelist’s change form, and any job of any status may be
added to a changelist.

Perforce 97.3 User’s Manual 75

Chapter 10 : Job Tracking

&

Ed is unaware of the job that Sarah has assigned to him. He is currently working on an
unrelated problem; hetypesp4 subnit and seesthe following:

Example:

Including and
excluding jobs from
changelists

Change: new
Cient: edk
User: edk
Status: new
Descripti on:
Updating “File” files
Jobs:
job000125 # Filters on the “Reply-To”
field d

Files:
/ldepot/srcffile.c # edit
/ldepot/src/file_util.c # edit
/ldepot/src/fileio.c # edit

Since this job is unrelated to the work he’s been doing, and since it hasn’t been fixed, he
deletes it from the form and then quits from the editor. The changelist is submitted; the job
is not associated with it.

Ed uses the reporting commands to read the details about the job. He fixes this problem,
and a number of other filtering bugs; when he next tpgesubni t, he sees

Change: new
Client: edk
User: rlo
Status: new
Description:
Fixes a number of filter problems

Jobs:

job000125 # Filters on the “Reply-To” field d

Files: //depot/filter/actions.c # edit
/ldepot/filter/audit.c # edit
/ldepot/filter/filter.c # edit

Since the job is fixed in this changelist, Ed leaves the job on the form. When he quits from
the editor, the job is marked as closed, and will not appear in any subsequent changelists
unless it is reopened.

Perforce 97.3 User’s Manual 76

Chapter 10 : Job Tracking

Controlling Which Jobs Appear in Changelists

The types of jobs that appear in new changelists created by a particular user can be con-
trolled through the p4 user form. This form’sJobVi ewfield allows one of three values:

Value of JobVi ewfield Description

M ne When a new changelist is created, automatically in-
clude all open jobs owned by the invoking user in the
changelist form. This setting abbVi ewis the de-

fault.
None Don'tinclude any jobs on new changelist forms.
All Include all open jobs owned by all users in all new

changelists forms.

In all three cases, any unwanted job may be deleted from the form before leaving the edi-
tor, and additional jobs can be added.

Manually Associating Jobs with Changelists

p4 fix -c changenum j obnanme can be used to link any job, whetlwen, cl osed,

or suspended, to any BRFORCE changelist, whether pending or submitted. If the job is
open but the changelist has already been submitted, the job is closed. If the job has been
closed but the changelist is pending, the job is reopened. Otherwise, the job keeps its cur-

rent status.
Q Sarah has submitted a job called opt i ons- bug to Ed. Unbeknownst to Sarah, the bug
Example: reported by the job was fixed in Ed’s previously submitted changsligd links the job
Usingp4 fi x to the previously submitted changelist with fi x -c 18 options-bug. Since the
to attach a job changelist has already been submitted, the job’s status is changedsted.
to a changelist

It is never necessary to use p4 fi x to link an open job to a changelist newly created by
the owner of the job, since this is done automatically. However, p4 fi x can be used to
link a changelist to ajob owned by another user.

Arbitrarily Changing a Job’s Status
We've already seen two ways of changing a job’s status:

1. Ajob is automatically closed when an associated changelist is submitted.

2. p4 fix will change the status of an open jobctmsed if the associated changelist
has already been submitted, and will change the status of a closedj@ntahen
the job is linked to a pending changelist.

The status of any job can also be changed by bringing up the job definition forpdwith
job jobnane, and then changing the status to one of the three allowed values. This is
theonly way of changing a job’s statussaspended.

Perforce 97.3 User’s Manual 77

Chapter 10 : Job Tracking

Deleting Jobs

A job that has been linked to a changelist can be unlinked from that changelist with p4
fix -d -c changenum j obnane. Jobs can be deleted entirely withp4 job -d j ob-
nane. .

Integrating to External Defect Tracking
Systems
The PERFORCE job reporting functionality can be used to integrate jobs into external pro-

grams, such as defect tracking systems, via daemons. Please see the next chapter for more
information on daemons.

Job Reporting

The commands that generate reports on jobs are:

Command Description

p4 j obs Generates areport of all jobs on the server. Printsthejob name,
[-1] date modified, owner, status, and the first 32 characters of the
[-s statusval] | description for each job.

file... - .

[fite...] p4 jobs -1 outputsthe full description of each job.
p4 j obs -s statusval canbeusedtolimitthereporttoonly
those jobs with a particular status value.
If any file names are provided on the command line with
p4 jobs files,thereport will belimited to jobslinked to
those changelists that affected files that match the fil epatterns.

p4 fixes Lists each job along with the change numbers they've been
[-] jobNanme | |linked to.
E f(/:/ Zhange;#] p4 fixes -j jobnane provides information only for change-

lists linked to that particular job.

p4 fixes -c changenumlists only those jobs associated with
the given change number.

Any file arguments that are provided will limit the listing to
changelists that affect those files.

Perforce 97.3 User’s Manual 78

CHAPTER 11 Cha“ge Review
& Other Daemons

PERFORCE's change review functionality allows users to be notified via email whenever
files that they're interested in have been updated in the depot. Since change review is pro-
vided via a backgroundeRL script, ordaemon, this functionality can be modified. Other
daemons can be created to perform entirely different functions.

The primary focus of this chapter is on using the change review daemon; a secondary
thread discusses how to create your own daemons. This “daemon creation” topic discusses
how a daemon might be created that integrates BREARCE job tracking facilities to an
external defect tracking system.

Providing Change Review Parameters

Any user wishing to receive email notification of changed files must provide two pieces of
information to the BRFORCE server: her email address, and a list of the files and directo-
ries that she wants to track @obscribe to). This information is provided via tipg user

form.
g Sarah wants to be notified whenever any of the Elm README or document files are
Example: changed. Shetypesp4 user andfillsin the resulting formwith her email address and file
Providing review list:
change review
parameters with User: sar ahm
p4 user Emai | : sarahm@l nco. com

Updat e: 04/29/1997 11:52:08
Access: 04/29/1997 11:52:08
Ful | Nane: Sar ah MaclLonnogan
Revi ews:

/ / depot / doc/ . ..

/| depot . ../ READMVE

Once the review daemon is running, she’ll be notified by email whenever any of the files in
herRevi ew: list are changed. This includes &EADME files, and all files in theloc sub-
directory.

Notification is sent whenever a changelist is submitted by any user that edits, deletes, or
addsfiles that match the p4 user form Revi ews: specification.

Perforce 97.3 User’s Manual 79

Chapter 11 : Change Review & Other Daemons

+

For more
information on
PAPORT, see
Chapter 11 or
Appendix A.

+

Thisprotection level
isdescribedin
Chapter 14.

Running the Daemon

Change review is implemented via a PERL script, perfrevi ew. perl, which can be
downloaded from

http://ww. perforce. coni perforce/l oadsupp. ht m

This review daemon must be run under PERL 4 or higher; SENDMAIL is also required. It's
usually run from the4b server account, in the same directory aseineserver, although
it can be installed anywhere. Once it's been installed, do the following:

1. Edit the script and follow the instructions at the top. You may need to change the val-
ues of certain values in the script, including the locations of the Bnd &NDMAIL
executables.

2. Make sure that the environment variaBPORT is set the proper port so the review
daemon can communicate with the p4 server.

3. Runperfreview perl inthe background, with
perfreview perl &

4. Make sure that the review daemon is running as a user with review or superuser access.
If protections are in their default non-enabled state, the review daemon will automati-
cally have review access.

The script can be modified to provide any desired functionality. For example, you may
want to change the text of the outgoing message, or you might change the script to write
change reviews to files instead of sending email.

How the Review Daemon Works

The review daemon is quite simple. Every time a changelist is submitted teRFGREE

depot, email is sent to every user who has subscribed to review any files that are contained
in that changelist. (Unlike other job review systems that you may be familiar with, the
PERFORCE system doesn'’t require the email recipient to respond; the email message is sent
for notification purposes only).

The daemon is implemented as follows:

1. The FERFORCE depot is polled for submitted, unreviewed changelists with the com-
mandp4 revi ew,

2. p4 revi ews is used to generate a list of reviewers for each of these changelists;

3. SENDMAIL is used to email the4 descri be changelist description to each reviewer;

4. The first three steps are repeated every sixty seconds; this value can be changed when
the review daemon is installed.

The commands used in steps 2 anch3, revi ews andp4 descri be, are straightfor-
ward reporting commands. The revi ewcommand used in step 1 is rather unusual. All
these commands are described below.

Perforce 97.3 User’s Manual 80

Chapter 11 : Change Review & Other Daemons

A

The review counter
namesj our nal ,

j ob, and change
are used internally
by PERFORCE; use
of any of these
three names as
review counters
could corrupt the
PERFORCE
database!

+

Access levelsare
covered in
Chapter 14.

Tracking Reviewed Changelists
with Review Counters

The review daemon needs to keep track of which changelists have aready had their
descriptions emailed to reviewers; in general, most PERFORCE daemons will need to keep
track of which changelists have already been processed. The p4 r evi ewcommand exists
to facilitate this process; it was written solely to support daemon creation and is not likely
to be run by an end user.

Every line of output produced by p4 revi ew hasthe following form:
Change changenum user <enail_addr> (Ful | _Nane)

For example:
Change 6 edk <edk@l nto.con> (Ed Kuepper)

When used with no parameters, p4 revi ewwill output one line for every changelist that
has ever been submitted. With the addition of review counter arguments, p4 revi ew can
limit its output to only those changelists not already reported. A review counter issimply a
named counter; each review counter can separately track which changelists have and
haven't yet been reviewed.

Review counters are used in two variantpofr evi ew:

p4 review
-t count er nane
-c changenum

Tellsp4 revi ewthat all changelists between 1 and
changenumhave already been reviewed by the review
counter namedount er nane.

p4 review
-t count ernane

Reports only those changelists not already reported by re-
view countercount er nane.

Review counters work by storing one counter per review counter inetkrRCE data-

base. The first variant gf4 revi ew above sets a counter value for a particular review
counter; the second variant gets the change information for all changelists numbered
above that counter. The review daemon’s review counter is cadleicew; the daemon
usesp4 review -t revi ewto get a list of all unreviewed changelists, and uses

p4 review -t review -c | ast changenumto store the highest numbered reviewed
change number in the database under the mawieew.

PERFORCE can store any number of review counters; each counter is identified by a unique
name, which can be up to ten characters long and cannot contain whitespace.

The perfrevi ew. perl daemon’s review counter is namedvi ew; if you're using
perfrevi ew perl and are writing your own daemon, don't name the review counter
revi ew.

Change Review and Protections

The change review daemon runs at the access level of the user who invokes it (typically
r oot), not at the access level of the user receiving email. Thus, if the daemon is edited to
perform additional functionality, it should not mail out the contents of files unless it is safe
for all users to see those files, since a user needs ostyaccess in order to invoke the

p4 user command to subscribe to particular files.

Perforce 97.3 User’s Manual 81

Chapter 11 : Change Review & Other Daemons

Creating Other Daemons

To create another daemon, use per f revi ew. per| as a starting point and change it as
needed. One such daemon might upload PERFORCE job information into an external bug
tracking system after changelist submission. It would use the p4 r evi ew command with
a new review counter to list new changelists, and use p4 fi xes to get the list of jobs
fixed by the newly submitted changelists. Thisinformation might then be fed to the exter-
nal system, notifying it that certain jobs have been compl eted.

If you do write a daemon of your own, and would like to share it with other users, please
let usknow about it at i nf o@er f or ce. com

Change Review Reporting

The change review daemon uses two reporting commands that have not yet been dis-
cussed; an additional reporting command describes the counters tracked by the p4D

server:

Command Meaning

p4 reviews Providesalist of all userswho have subscribed to review any
[-c changenum] | files,
[files...]

To seealist of reviewers for the files affected by a particular
changelist, usep4 reviews -c¢ changenum

p4 reviews files canalsobeusedtoreportthereviewers
of only those files that are provided as arguments.

p4 users Describe the users currently known to the 4D server. The
report includes user names, their email addresses, their full
names, and the last time they logged in.

p4 counters Provides a list of counters known to the current PAD server,
along with their values.

Perforce 97.3 User’s Manual 82

ciererz REpPOrting
and Data Mining

PERFORCE's reporting commands supply information on all data stored within the depot.
There are many reporting commands; in fact, there are almost as many reporting com-
mands as there are action commands. These commands have been discussed throughout
the manual; this chapter presents the same commands and provides additional information
for each command. Tables in each section contain answers to questions of théderm “

do | find information about...?"

Many of the reporting commands have numerous options; discussion of all options for
each command is beyond the scope of this manual. For a full description of any particular
command, please consult therFORCE Command Reference, or typep4 hel p conmand

at the command line.

One previously mentioned note on syntax is worth repeating herdilespgc argument
in PERFORCE commands, as in
p4 files filespec
will match any file pattern that is supplied in local syntax, depot syntax, or client syntax,

with any FERFORCE wildcards. Brackets arourfidespec means that the file specification is
optional.

Files

The commands that report on files fall into two categories: those that give information
about filecontents, (e.g.p4 print, p4 diff), and those that supply information on file
metadata, the data that describe a file with no reference to contentgé.d.i | es, p4

filel og). The first set of reporting commands discussed in this section describes file
metadata; the second set describes file contents.

File Metadata

Basic File Information

To view information about single revisions of one or more filespdsei | es. This com-

mand provides the locations of the files within the depot, the actiddsddi t , del et e,

etc.) on those files at the specified revisions, the changelists the specified file revisions
were submitted in, and the files’ types. The output has this appearance:

[/ depot / READVE#5 - edit change 6 (text)

Perforce 97.3 User’s Manual 83

Chapter 12 : Reporting and Data Mining

p4 fil es requiresone or more filespec arguments. Filespec arguments can, as aways, be
provided in PERFORCE or local syntax, but the output will always report the corresponding
files within the depot. If no revision number is provided, the head revision will be used.

Unlike most other commands, p4 fi | es will describe deleted revisions, instead of sup-
pressing information about deleted files.

To View File Metadata for ... Use This Command:

...al filesin the depot, whether or not visible p4 files //depot/
through your client view

.al thefiles currently in your client workspace | p4 files @ ¢/ i ent nane

...dl thefilesin the depot that are mapped p4 files // cl i ent nanel...
through your current client workspace view

...aparticular set of filesin the current working | p4 files filespec
directory

...aparticular fileat a particular revision number | p4 files fil espec#revi son#

..al filesat change n, whether or not thefile |pdfiles@ n
was actually included in change n

...aparticular file within a particular label p4 files fil espec@ abel nane

File Revision History

The revision history of afile is provided by p4 fil el og. One or more file arguments
must be provided, and since the point of p4 filel og isto list information about each
revision of particular files, file arguments to this command may not contain a revision
specification.

The output of p4 fil el og hasthisform:

#3 change 23 edit on 1997/09/26 by edk@loc ' Updated hel’
#2 change 9 edit on 1997/09/24 by |isag@rc ' Made chang’
... #1 change 3 add on 1997/09/24 by edk@doc 'Added the f'

For each file that matches the filespec argument, the complete list of file revisionsis pre-
sented, along with the number of the changelist that the revision was submitted in, the date
of submission, the user who submitted the revision, and the first few characters of the
changelist description. With the -1 flag, the entire description of each changelist is
printed:

... #3 change 23 edit on 1997/09/26 by edk@doc
Updated help files to reflect changes
in filtering system & other subsystems

<etc. >
To See File Revision Information... Use This Command:
...including revisions of specific files, with ashort de- | p4 filelog filespec

scription of each changelist the file was submitted in
...with the full description of each changelist p4 filelog -l filespec

Perforce 97.3 User’s Manual 84

Chapter 12 : Reporting and Data Mining

Opened Files

To see which files are currently opened within a client workspace, use p4 opened. For
each opened file within the client workspace that matches a filepattern argument, p4
opened will print aline like the following:

[/ depot/ el m proj/ README - edit default change (text)
Each opened file is described by its depot name and location, the operation that the file is

opened for (add, edi t, del et e, branch, or i nt egr at e), which changelist the file is
included in, and the file’s type.

To See... Use ThisCommand:
...a listing of all opened files in the current workspacgp4 opened

...a list of all opened files in all client workspaces p4 opened -a
...whether or not a specific file is opened by you p4 opened filespec

...whether or not a specific file is opened by anyone | p4 opened -a filespec

Relationships Between Client and Depoft Files

It is often useful to know how the client and depot are related at a particular moment in
time. Perhaps you simply want to know where a particular client file is mapped to within
the depot, or you may want to know whether or not the head revision of a particular depot
file has been copied to the client. The commands that express the relationship between cli-
ent and depot files a@t where, p4 have, andp4 sync -n. The first of these com-
mandsp4 wher e, is used to determine where client files would be mapped through the
client view into the depot, and vice-vergd. have tells you which depot files and revi-

sions are available within your client workspace, pdsync - n describes which files

would be read into your client workspace the next time you perfqrn sync.

All these commands can be used with or without filespec argunpéntsync - n is the
only command in this set that allows revision specifications on the filespec arguments.
The output op4 wher e looks like this:

/1 depot /el m proj/doc/ Ref. guide: //edk/doc/Ref. guide

p4 have’s output has this form:

/I depot / doc/ Ref . gui de#3 - /ul/rl o/ edk/ el m doc/ Ref . gui de

andp4 sync -n provides output like:

/ / depot / doc/ Ref . gui de#3 - updating /usr/edk/ el nl doc/ Ref. gui de

To See... Use This Command:

...which revisions of which files you have inp4 have
the client workspace

...which revision of a particular file is in youm4 have fi/espec
client workspace

...where a particular file in the client work-| p4 where filespec
space maps to in the depot

Perforce 97.3 User’s Manual 85

Chapter 12 : Reporting and Data Mining

To See... Use This Command:
...where a particular filein the depot mapsto | p4 where //depot/.../filespec
in the workspace

...whichfileswould besyncedintoyour client | p4 sync -n
workspace from the depot when you do the
next sync

File Contents

Contents of a Single Revision

The contents of any file revision within the depot can be viewed with p4 print. This
command simply prints the contents of the file to standard output, or to the specified out-
put file, along with a one-line banner that describes the file. The banner can be removed
by passing the - q flagto p4 pri nt . When printed, the banner has this format:

/1 depot / el m proj / README#23 - edit change 50 (text)
p4 print takes a mandatory file argument, which can include a revision specification;

The file will be printed at the specified revision; if no revision is specified, the head revi-
sion will be printed.

To Seethe Contents of Files... Use This Command:

...at the current head revision p4 print filespec

...without the one-line file header. p4 print -q filespec

...at aparticular change number p4 print filespec@hangenum

File Content Comparisons

A client workspace file can be compared to any revision of the same file within in the
depot with p4 di f f. This command takes afilespec argument; if no revision specification
is supplied, the workspace file is compared against the revision last read into the work-
space.

Thep4 di ff command has many options available; only afew are described in the table
below. For more details, please consult the PERFORCE Command Reference.

Whereas p4 diff compares a client workspace file against depot file revisions, p4
di f f 2 can be used to compare any two revisions of afile. It can even be used to compare
revisions of different files. p4 di f f 2 takestwo file arguments; wildcards are allowed, but
any wildcards in the first file argument must be matched with a corresponding wildcard in
the second. This makes it possible to compare entire trees of files.

There are many more flagsto p4 di ff then are described below. For afull listing, please
type p4 help diff at the command line, or consult the PERFORCE Command Reference.

To Seethe Differ ences between... Use This Command:

..anopenfilewithintheclientworkspaceand | p4 diff file
the revision last taken into the workspace

...any filewithinthe client workspaceand the | p4 diff -f file
revision last taken into the workspace

Perforce 97.3 User’s Manual 86

Chapter 12 : Reporting and Data Mining

To Seethe Differences between... Use This Command:

...a file within the client workspace and the p4 diff fi/e#head
same file’s current head revision

...a file within the client workspace and a spe4 diff fi/le#revnunber
cific revision of the same file within the degot

...then-th and head revisions of a particularp4 diff2 filespec filespec#n
file
...all files at changelist and the same files atp4 diff2 filespec@ filespec@n
changelism

...all files within two branched codelines |p4 diff2
/| depot / codel i nel/. ..
/| depot / codel i ne2/ . ..

...afile within the client workspace and the|rp4 diff -dc file
vision last taken into the workspace, pass|ng
the context diff flag to the underlying diff.

The last exampl e above bears further explanation; to understand how this works, it is nec-
essary to discuss how PERFORCE implements and calls underlying diff routines.

PERFORCE uses two separate diffs. oneis built into the P4D server, and the other is used by
the P4 client. Both diffs contain identical, proprietary code, but are used by separate sets of
commands. The client diff isused by p4 di ff and p4 resol ve, and the server diff is
used by p4 descri be, p4 diff2,andp4 submit.

PERFORCE's built-in diff routine allows threed<flag> flags:- du, - dc, and- dn; bothp4
di ff andp4 diff2 allow any of these flags to be specified. These flags behave identi-
cally to the corresponding flags in the standard UMK

Although the server must always USERPORCE's internaldiff routine, the clientliff can
be set to any externdiff program by pointing the P{FF environment variable to the
full path name of the desired executable. Any flags used by the exddfrealin be passed
to it with p4 di ff’'s - d flag. Flags are passed to the underhdif§according to the fol-
lowing rules:

« If the character immediately following the is not a single quote, then all the charac-
ters between thed and whitespace are prepended with a dash and sent to the underlying
diff;

« If the character immediately following thel is a single quote, then all the characters
between the opening quote and the closing quote are prepended with a dash and sent to
the underlyingdiff.

The following examples demonstrate the use of these rules in practice.

If you want to passthefollowing flagtoan | Then call p4 di ff thisway:
external client diff program:

“u p4 diff -du
--brief p4 diff -d-brief
-C 25 p4 diff -d'C 25’

Perforce 97.3 User’s Manual 87

Chapter 12 : Reporting and Data Mining

+

A Korn shell script
that implements this
report is described
in “Reporting with
Scripting” on

page 94.

N

Very few PERFORCE
commands allow
revision ranges to
be appended to file
specifications. For
detailson revision
ranges, please see
page 36.

Changelists

Two separate commands are used to describe changelists. The first, p4 changes, lists
changelists that meet particular criteria, without describing the files or jobs that make up
the changelist. The second command, p4 descri be, lists the files and jobs affected by a
single changelist. These commands are described below.

Changelists that Meet Particular Criteria

To view alist of changelists that meet certain criteria, such as changelists with a certain
status, or changelists that affect a particular file, use p4 changes. The output looks like
the following:

Change 36 on 1997/09/29 by edk@ds_el m’' Changed filtering mne’
Change 35 on 1997/09/29 by edk@eds_elm 'Misc bug fixes: fixe’
Change 34 on 1997/09/29 by lisag@lisa 'Added new header inf'

By default, p4 changes displays an aggregate report containing one line for every
changelist known to the system, but command line flags and arguments can be used to
limit the changelists displayed to those of aparticular status, or those affecting a particular

file, or the last n changelists. Currently, the output can't be restricted to changelists sub-
mitted by particular users, although simple shell or Perl scripts can be written to imple-

ment this.

To Seealist of Changelists...

...with the first 31 characters of the changelipt changes
descriptions

Use This Command:

...with the complete description of each | p4 changes -|
changelist

...including only the lagt changelists p4 changes -mn

...with a particular statugpéndi ng orsub- | p4 changes -s status
mtted)

...limited to those that affect particular files p4 changes fi/espec

...limited to those that affect particular files,p4 changes -i fil espec
but including changelists that affect files
which were later integrated with the named
files

...limited to changelists that affect particulap4 changes fi/l espec#m #n
files, including only those changelists be-
tween revisionsn andn of these files

...limited to those that affect particular files|gi4 changes fi/espec@ abl, @ ab2
each files revisions between labkibl and
lab2

Perforce 97.3 User’s Manual 88

Chapter 12 : Reporting and Data Mining

+

Additional
commands that
report on jobs and
changelistsare
described in the job
reporting section of
this chapter

(page 91).

Files and Jobs
Affected by Changelists

To view alist of files and jobs affected by a particular changelist, along with the diffs of
the new file revisions and the previous revisions, use p4 descri be. Itsoutput looks like

this:

Made grammmati cal

Jobs fixed ...

Affected files ...

Di fferences ...

53c53
< The second way,

> The second way,

.<etc.>

Change 43 by lisag@arhol s on 1997/08/29 13:41: 07

changes to basic El mdocunentation

j ob000001 fixed on 1997/09/29 by edk@dk
Fix grammar in main Elmhelp file

// depot/doc/ el m 1#2 edit

==== [/ depot/doc/el m 1#2 (text) ====

used nost commonly when transnmitting

whi ch is conmonly used when transmitting

This output is quite lengthy; a shortened form that eliminates the file diffs can be gener-

ated with p4 descri be -s changenum

To See:

Use This Command:

...alist of al files submitted and jobs fixed
by a particular changelist, displaying the
diffsbetween thefilerevisions submitted in
that changelist and the previous revisions

...alist of al files submitted and jobs fixed
by a particular changelist, without the file
diffs

..alist of all files and jobs affected by a
particular changelist, while passing the
context diff flag to the underlying diff pro-
gram

...the state of particular files at a particular
changelist, whether or not these files were
affected by the changelist

p4 descri be changenum

p4 describe -s changenum

p4 describe -dc changenum

p4 files @hangenum fil espec

Labels

Reporting on labels is accomplished with a very small set of commands. The only com-
mand that reports only on labels, p4 | abel s, printsits output in the following format:

Perforce 97.3 User’s Manual

89

Chapter 12 : Reporting and Data Mining

Label rel easel.3 1997/5/18 ' Created by edk’
Label lisas_tenp 1997/10/03 'Created by |isag’
. <etc.>

The other label reporting commands are variations of commands we've seen eatrlier.

To See: Use This Command:

...a list of all labels, the dates they were create@4 | abel s
and the name of the user who created them

...a list of files that have been included in a partigd files @ abel name
ular label withp4 | abel sync

...whatp4 sync would do when retrieving files| p4 sync -n @ abel nane
from a particular label into your client workspace

Branch and Integration Reporting

The plural form command of branchy br anches, lists the different branches in the
system, along with their owners, dates created, and descriptions. Separate commands are
used to list files within a branched codeline, to describe which files have been integrated,
and to perform other branch-related reporting. The table below describes the most com-

monly used commands for branch- and integration- related reporting.

To See: Use This Command:

...a list of all branches known to the4 br anches
system

...alist of all files in a particular | pa files filespec?
branched codeline

...what a particulap4 integrate |p4 integrate [args] -n [filespec]
variation would do, without actually
doing the integrate.

...what a particulap4 resol ve p4 resolve [args] -n [fil espec]
variation would do, without actually
doing the resolve.

...a list of files that have been re- | p4 resol ved [filespec]
solved but have not yet been submit-
ted

Perforce 97.3 User’s Manual 20

Chapter 12 : Reporting and Data Mining

To See: Use This Command:

...alist of integrated, submitted files | p4 integrated fil espec
that match the filespec arguments

...adescription of the revision histo- | p4 filelog [filespec]
ry of the named files, including the
following for each file revision:

e change number;

» operation4dd, edi t, del et e,
branch, ori nt egr at e)

* client name;
¢ user name; and
 description.

a. Inthis case, the filespec should be presented in depot syntax, and should represent the
branched codeline. For example, if acodeline had been branchedto// depot/r22/. .., thena
list of all filesin the branched codeline would be obtained with p4 files //depot/r22/. ..

Job Reporting

Job reporting is accomplished with two commands. Thefirst, p4 j obs, reportson all jobs
known to the system; the second command, p4 fi xes, reports only on those jobs that
have been attached to changelists. Both these commands have numerous options.

Basic Job Information

To see alist of al jobs known to the system, use p4 j obs. Options to this command can
be used to specify criteriafor describing only particular types of jobs; for example, the - s
flag will limit the report to jobs of aparticular status. p4 j obs produces output similar to
the following:

j 0b000302 on 1997/08/ 13 by saram *open* ' FROM headers no’
filter_bug on 1997/08/23 by edk 'Can’t read filters w'

Its output includes the jobs name, date entered, job owner, and the first 32 characters of
the job description. The job status is included if the job is open or suspended; closed jobs
areindicated by the absence of job status from the report.

All jobs known to the system are displayed unless command-line options are supplied.
These options are described in the table below.

ToSeealist of Jobs: ’ Use ThisCommand:
...including all jobs known to the server p4 j obs

...including the full texts of the job descriptions p4 jobs -I
...of a particular statusijen, cl osed, orsuspended) | p4 jobs -s status

Perforce 97.3 User’s Manual 91

Chapter 12 : Reporting and Data Mining

To SeealList of Jobs: Use This Command:
...that have been fixed by changelists that contain spe- | p4 j obs fil espec
cificfiles

...that have been fixed by changelists that contain spe- | p4 jobs -i filespec
cific files, including changelists that contain files that
were later integrated into the specified files.

Jobs, Fixes, and Changelists

Any jobs that have been linked to a changelist with p4 change, p4 subnit,orp4 fix
is said to be fixed, and can be reported with p4 fi xes. The output of p4 fi x looks like
this:

j 0b000302 fixed by change 634 on 1997/09/01 by edk@ds_nach
filter_bug fixed by change 540 on 1997/ 10/ 22 by edk@ds_nach

A number of options allow the reporting of only those changes that fix a particular job, or
jobs fixed by a particular changelist, or jobs fixed by changelists that are linked to particu-
lar files.

A fixed job is not the same as a closed job, since open jobs can be linked to pending
changelists, and pendi ng jobs can be reopened even after the associated changelist has

been submitted. To list jobs with a particular status, use p4 j obs.

To Seealisting of... Use This Command:

...al fixesfor al jobs p4 fixes

...l changdlists linked to a particular job p4 fixes -j jobnanme
...all jobslinked to a particular changelist p4 fixes -c changenum

...all jobsfixed by changeliststhat contain particular | p4 fixes filespec
files
...al jobsfixed by changeliststhat contain particular | p4 fixes -i filespec

files, including changelists that contain files that
were later integrated with the specified files

Reporting for Daemons

The PERFORCE change review mechanism uses the following reporting commands. Any of
these commands might also be used with user-created daemons. For further information
on daemons, please see chapter 11, and consult the source code of the PERFORCE Change

Review daemon.

Tolist... Use This Command:

...the names of all counter variables currently | p4 counters
used by your PERFORCE system

...thenumbers of all changeliststhat havenot | p4 review -t count er nane
yet been reported by a particular counter vari-
able

Perforce 97.3 User’s Manual 92

Chapter 12 : Reporting and Data Mining

Tolist... Use This Command:

...all users who have subscribed to review| p4 reviews filespec
particular files

...all users who have subscribed to read ang4 revi ews -c changenum
files in a particular changelist

...a particular user’'s email address p4 users usernane

System Configuration

Three commands report on the PERFORCE system configuration. One command reports on
all PERFORCE users; another prints data describing all PERFORCE client workspaces, and a
third reports on PERFORCE depots.

p4 users generatesits data asfollows:

edk <edk@ds_ws> (Ed Kuepper) accessed 1997/07/ 13
lisag <lisa@isas_ws> (Lisa Germano) accessed 1997/07/ 14

Each line includes a username, an email address, the user’s “real” name, and the date that
PERFORCE was last accessed by that user.

To report on client workspaces, yse cli ents:

Client eds_elm 1997/09/12 root /usr/edk 'Ed’s EIm workspace'
Client lisa_doc 1997/09/13 root /usr/lisag ‘Created by lisag.'

Each line includes the client name, the date the client was last updated, the client root, and
the description of the client.

Depots can be reported with p4 depots . All depots known to the system are reported on;
the described fields include the depot's name, its creation date, its Itypel (or
r enot e), its IP address (if remote), the mapping to the local depot, and the system admin-

istrator’s description of the depot.

Toview: Use This Command:
...user information for all ERFORCE users p4 users

...user information for only certain users p4 users usernane
...brief descriptions of all client workspaces p4 clients

...a list of all defined depots p4 depots

Special Reporting Flags

Two special flags, -0 and -n, can be used with certain action commands to change their
behavior from action to reporting.

The - o flag is available with most of theERFORCE commands that normally bring up
forms for editing. This flag tells these commands to write the form information to standard
output, instead of bringing the definition into the user’s editor.

Perforce 97.3 User’s Manual 93

Chapter 12 : Reporting and Data Mining

The - o flag is supported by the following commands:

p4 branch p4 client p4 | abel
p4 change p4 job p4 user

The - n flag prevents commands from doing their job. Instead, the commands will simply
tell you what they would ordinarily do.

The - n flag can be used with the following commands:

p4 integrate p4 resol ve
p4 | abel sync p4 sync

Reporting with Scripting

Although PERFORCE'’s reporting commands are sufficient for most needs, there may be
times when you want to view data in a format trefHBRCE doesn't directly support. In

these situations, the reporting commands can be used in combination with scripts to print
only the data that you want to see. Three examples are provided here.

Comparing the Change Content of Two File Sets

To compare the “change content” of two sets of files, it is necessali{f them exter-
nally. To do this, rup4 changes twice, once on each set of files, and then use any exter-
nal diff routine to compare them.

In the following exampleyri n represents the main codeline, an@. 4 is a codeline that
was originally branched frommai n:

p4 changes //depot/main/... > changes-in-main
p4 changes //depot/r98.4 ... > changes-in-r98.4
di ff changes-in-main changes-in-r98.4

This could be used to uncover which changes have been magie tthat haven't been
integrated back intoai n.

Changelists Submitted by Particular Users

Thep4 changes command does not have a flag that allows only those changes submitted
by particular users to be viewed, but this can be accomplished by grepping the output of
p4 changes. For example, in the Korn shell, create an executable file with these con-
tents:

p4 changes | grep '.* by '$1' @

When this script is called with a username as an argument, only those changes created by
that user will be printed.

Perforce 97.3 User’s Manual 94

Chapter 12 : Reporting and Data Mining

Listing Subdirectories of the Depot

Although all filesin the depot can be listed with p4 fi | es, there is no option for report-
ing only the names of subdirectories within the depot. However, this can be accomplished
with the following Perl script, which takes file argumentsin either PERFORCE or local syn-
tax:

open(P4,"p4 files " . join(’ ",@GARGY) . " |");
whi | e(<P4>) {
S@(.*)/["M]*# *$@1@
if(lexists $d{$_}) {
print;
$d{ $_} =42;
}
}

These scripting examples are, of course, hon-exhaustive. Use scripts whenever you want
to generate reports that can’t be created through existRepRCE commands.

Perforce 97.3 User’s Manual 95

System Administration:

CHAPTER 13

Installation of P4D and P4
NT/95 PERFORCE operation requires two executables. p4D, the server, and P4, the client. If you
Installation of haven't already downloaded these, they may be retrieved ffitonp: / / www. per -
PERFORCE 0N force. confperforce/load. htm .
Windows machines
is handled by the The P4 program typically resides fusr /| ocal / bi n, andpP4D is usually located i

installer. If you're
using FERFORCE on
Windows, you can
skip to the
protections and
journaling sections,
both of which start
on page 98.

usr/ | ocal / bi n orin its own root directory (see below), although they can be installed
anywhere. The4 program can be installed on any server that has TCP/IP access to the
PAD host. To limit access to tirdD server files, it is recommended tirdb be owned and

run by aPERFORCE user account.

Only a few steps need to be performed befdrandr4D can be run: a root directory for
theP4D files is created, a TCP/IP port is providedbdd, andr4 is provided the name of
theP4D host and number of thelD port. These steps are described in the following sec-
tions.

Creating a P4D Root Directory

PAD stores all of its data in files and subdirectories of its own root directory, which can
reside anywhere on the server system. This directory can be named anything at all, and the
only necessary permissions are read and write for the user whardtar&ncer4D will

store all submitted files in this directory, the size of the directory can eventually become
quite large. Disk space management is described on page 100.

The environment variable4ROOT should be set to point to this directory. Alternatively,
the-r flag can be provided whewD is started (see below). Thé clients never directly
use this directory, so they don’t need to know the valuRA&OO0T .

Setting P4D’s Port

PAD andP4 communicate via TCP/IP. WhedD starts, it will, by default, listen on port
1666. Ther4 client will, by default, assume that 4D server is located on hoger -
f or ce, listening on port 1666.

Perforce 97.3 User’s Manual 96

Chapter 13 : System Administration: Installation and M aintenance

If P4D isto listen on a different port, the port can be specified with the - p flag when start-
ing PAD (example: p4d -p 1818), or the port can be set with the PAPORT environment
variable. Chances are that your PAD host is not named per f or ce, but you can simplify life
somewhat for your P4 users by setting per f or ce as an alias to the true host name in the
host’'s/ et ¢/ host s file, or by doing so via Sun’s NIS or Internet DNS.

Telling P4 Where The P4D Server Is

TheP4 client program needs to know on which TCP/IP poretmeserver program is lis-
tening.P4 can be told which host and port t#® server program is listening on by setting
eachr4 user'sP4PORT environment variable thost: port# , wherehost is the name of the
host that4D is running on, angort# is the port thae4b is listening on.

Examples:
If PAPORT is... Then...
dogs: 3435 P4 will communicate with the4p server on host dogs
listening at port 3435.
X.com 1818 P4 will communicate with theedD server on host

x.com listening on port 1818.

The definition ofP4PORT can be shortened # is running on the same hostr®. In
this case, only the4b port number need be providedré. If PAD is running on a host
named or aliasegler f or ce, listening on porL666, the definition ofP4PORT for thep4
client can be dispensed with altogether.

» Examples:
If PAPORT is... Then...
3435 P4 will communicate with the4b server on its local
host listening at port 3435.
<not set> P4 will communicate with the4b server on the host

named or aliasegler f or ce listening on port 1666.

Starting P4D: The Basics

After PAD’s PAPORT andP4ROOT environment variables have been séb, can be run in
the background with the command

p4d &

P4PORT can be overridden by startirgd with the- p flag, andP4ROOT will be ignored
if the- r flag is provided. The startup command would then have this form:

p4d -r /usr/local/p4files -p 1818 &

Although this command is sufficient to redp, other flags, which control such things as
error logging, checkpointing, and journaling, can and should be provided. These flags are
discussed in the next two sections.

Perforce 97.3 User’s Manual 97

Chapter 13 : System Administration: Installation and M aintenance

A

Checkpointing and
journaling archive
only the database
files, notthefilesin
the depot
directories! Back
up the depot files
with the standard
OS backup
commands after
checkpointing; this
isbecause the static
checkpoint can be
dumped and
restored
consistently, while
the dynamic
database files may
change during the
course of backing
up and may be
inconsistent.

Logging Errors

The P4D program tries to ensure that all error messages reach the user, but if an error
occurs and the client program disconnects before the error is sent, PAD logs the error to its
error output. The error output file can be specified with the - L flag to p4D, or can be
defined in the environment variable PALOG. If no error output file is defined, errors are
dumped to the PAD program’s standard error.

Protections

By default, everyPERFORCE user is a@PERFORCE superuser, and can run aByRFORCE
command on any file. These default access levels are changed easily with phe-
t ect command; the administrator who instdfsrRFORCE should runp4 pr ot ect soon
after installingr4 andr4p. Access levels are described in detail in the next chapter.

Checkpointing, Journaling, and
Recovery

Two sets of files in thedp root directory are sufficient to recover the compige server
data:

» P4D stores its metadata in the top level of its root directory; all of these files are binary,
and begin with db. ".

« Files submitted by4 clients are stored iPdD subdirectories that have the same names
as the depots. By default, there is only one of these subdirectories; its rmpets

PAD provides checkpointing and journaling facilities for recovery of the metadata database
files. A checkpoint is just a snapshot or copy of the database files at a particular moment in
time, and a journal is a log that records updates since that snapshot. If the database files
become corrupted, or if there’s a disk crash, you can recover the files by reloading the
checkpoint and applying the changes stored in the journal. Both the checkpoint and jour-
nal are text files, and have the same format.

Because the data stored in fPERFORCE database is irreplaceable, journaling and check-
pointing should be performed early and regularly.

Making a Checkpoint

You can create a checkpoint by invoking Bde program with the j ¢ flag:

% p4d -r root -jc

This can be run while thedb server is running. To make the checkpoit locks the

entire database and then dumps the database contents to a fileatené&goi nt . X,
wherex is a sequence number. Before unlocking the databéseopies and then trun-
cates the journal file if it exists. This action guarantees that the last checkpoint combined
with the current journal always reflects the database.

A different checkpoint file can be specified by typing a filename afterjtleflag:

Perforce 97.3 User’s Manual 98

Chapter 13 : System Administration: Installation and M aintenance

% p4d -r root -jc /disk2/perfback/ckp

A checkpoint file may be compressed, archived, or moved onto another disk. At that time
or shortly thereafter, the files in the depot subdirectories should be archived as well. When
recovering, the checkpoint must be no newer than the files in the depots.

The checkpoint file is often much smaller than the original database, and can be made
smaller still by compressing it. The journal file, on the other hand, can grow quite large; it
is truncated whenever a checkpoint is made, but the older journal is backed up and saved.
The older journa files can then be moved to external media, freeing up more space
locally.

Since checkpoints are readable only by the server version that created them, a new check-
point should be taken every time the P4D server is upgraded.

Regular checkpointing isimportant if journaling is turned on, to keep the journal from get-
ting too long. Making a checkpoint just before dumping the file system is simply good
practice.

Turning Journaling On and Off

By default, the journal iswritten to the file journal in the P4D root directory. The name and
location of this file can be changed by specifying the name of the journal file in the envi-
ronment variable P4JOURNAL, or by providing a- J filename flag to P4D. In either case,
the journal file name can be provided as an absolute path, or as a path relative to the P4D
server root.

To create ajournal, do one of the following:

« Create an empty journal file in the server root, then sart
» Set tha?4JOURNAL environment variable to point to any file, then skdd; or
« Startr4D with the- J filename flags.

Be sure to create a new checkpoint with plae -j ¢ flag immediately after taking a
checkpoint, since a journal without a checkpoint is useless. Since there is no sure protec-
tion against disk crashes, the journal file andrdte root directory should be located on
different disks.

To disable journaling, remove the existing default journal file (if it exists), unset the envi-
ronment variablé4J OQURNAL, and type the4b command again without the) flag.

Recovering

If the database files become corrupted or lost, either because of disk errors, errors in the
PAD program itself, or a disk crash, the files can be recreated with your stored checkpoint
and journal. To do this, kibk4D, remove the databasedfy. ") files, and then invoke the

PAD program with the j r flag:

% rmroot/db.*
% p4d -jr checkpoint_file journal file

After recovering the database you will need to restore the depot files with the UNIX
restore command to ensure that they are as new as the database.

Perforce 97.3 User’s Manual 99

Chapter 13 : System Administration: Installation and M aintenance

Managing Disk Space

All of PAD’s stored source files reside in subdirectories oftreroot, as do its database

files, and by default the checkpoints and journals. The stored source file depots are grow-
only, and this can clearly present disk space problems on high use systems. The following
approaches may be used to remedy this:

Store the journal file on a separate disk, usind®?thBEOURNAL environment variable or
the- J flag top4d.

Checkpoint on a daily basis to keep the journal file short.
Compress checkpoints after they are made.

Use the j ¢ checkpointfile option with thep4D command to write the checkpoint to a
different disk. Or use the default checkpoint files, but backup your checkpoints and then
delete them from the root directory. They aren’t needed unless you are recovering.

[UNIX only] If necessary, all or part of the depot subdirectories may be relocated to
other disks, using symbolic links from the depot trees. This should be done while the
PAD server is not running.

The database files can become internally bloated, due to the nature of the implementa-
tion of their access methods. They can sometimes be compressed by recreating them
from a checkpoint: take a checkpoint, delete the database files, then recover. This should
only be done if the database files are more than about 10 times the size of the checkpoint
in total.

License File

PERFORCE servers are licensed according to how many users they will support. This
licensing information lives in a file called license in tde root directory. It is a plain text

file supplied by BRFORCE Software. Without this license file, timdD server will limit

itself to two users and two client workspaces.

The current licensing information can be viewed by involpAgl - V from the server
root directory.

When the server is running, the license information can also be viewep4witmf o.

Release and License Information

The P4 client andP4D server programs will display their version and license information
with the- V flag. Thep4 i nf o command will attempt to connect to the server and display
its license information (among other things). Version information can also be gleaned
from P4 orp4d executables with the UNI¥hat (1) command.

Perforce 97.3 User’s Manual 100

CHAPTER 14 sy5tem Administration:
Protections

PERFORCE provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protections determines which PERFORCE commands can be run, on which
files, by whom, and from which host. Since any user can change their PERFORCE username
with PAUSER, user level protections provide safety, not security. At the host level, protec-
tions are as secure as the host itself.

Protections are set with the p4 pr ot ect command.

When Should Protections Be Set?

Before p4 prot ect isrun, every PERFORCE user is a superuser, and can access and
change anything in the depot. The first time pr ot ect isinvoked, a protections table is
created that gives the invoking user superuser access from all hosts, and lowers everyone
else’s access level t@ i t e permission on all files from all hosts. Therefque ot ect
should be run as the concluding step of all nemrFBRCE installations; the superuser can
change the access levels as needed at any time.

The RERFORCE protections are stored in tlod. pr ot ect file in the server root direc-
tory; if p4 prot ect is first run by an unauthorized user, the depot can be brought back
to its unprotected state by removing this file.

Setting Protections with p4 protect

Thep4 protect form contains a single field with multiple lines. Each line specifies a
particular permission; the contents look something like this:

% Prot ecti ons:

Sample r ead emly * [/ depot/elmproj/...
protectionstable wite * 195.3.21. * /...
wite j oe * -1
wite l'isag * -/ /depot /...
wite lisag * /I depot / doc/ . ..
super edk * ...

(The four fields may not line up vertically on your screen; they are aligned here for ease of
reading).

Perforce 97.3 User’s Manual 101

Chapter 14 : System Administration: Protections

The Permission Lines’ Four Fields

Each line specifies a particular permission; each permission is aways described by four
fields. The meanings of these four fields are:

Field Meaning

Access Which access level isbeing granted: | i st,read, open,wite,
Level super, orrevi ew. These are described below.

User The user whose protection level is being defined. Thisfield can contain

the * wildcard: ** by itself would grant this protection to everyone;
“*e’ would grant this protection to everyone whose username endswith
an‘e’ .

Since PERFORCE usernames can be changed by setting PAUSER this
field provides safety, not security.

Host The TCP/IP address of the host being granted access. This must be pro-
vided as the numeric address of the host in dotted quad notation (e.g.
206.14.52.194).

This field may contain theé™ wildcard. A*" by itself meansthat this
protection is being granted for all hosts. The wildcard can be used asin

any string, s0127.30.41.* would define access to any subnet
within 127.30.41 , and *3* would refer to any IP address with a
‘3 init.

Since the client’s IP address is provided by IP itself, this field provides
as much security as is provided by the network.

Files The files in the depot that permission is being granted on.
‘... means all filesin all depots.

Access Levels
The access level is described by the first field; the six accesslevels are:

AccessLevel Meaning

list Permission is granted to run PERFORCE commands that display data
about files, (e.g. p4 filelog) . No permission is granted to view or
change the contents of the files.

read The user(s) can run those PERFORCE commands that are needed to read

files, such as p4 client and p4 sync .Theread permissionin-
cludeslist access.

open Grants permission to read files from the depot into the client workspace,
and gives permission to open and edit those files. This permission does
not allow the user to write the files back to the depot. open issimilar to
wri t e, except that with open permission, users are not allowed to run
p4 submit orp4 | ock.

The open permission includesr ead and | i st access.

wite Permission is granted to run those commands that edit, delete, or add
files. Write permission includesread , list, and open access.

This permission allows use of all PERFORCE commands except pro-
tect ,depot , obliterate , and verify

Perforce 97.3 User’s Manual 102

Chapter 14 : System Administration: Protections

AccessLevel Meaning

revi ew A special permission granted to review daemons. It includes and
r ead access, plus use of thd r evi ewcommand. It is needeamhly
by review daemons.

super For FERFORCE superusers; grants permission to run aiF®RCE com-
mands. Providewr i t e andr evi ewaccess plus the added ability to
edit protections, create depots, obliterate files, and verify files.

Each PERFORCE command is associated with a particular minimum access level; for exam-
ple, to run p4 sync on a particular file, the user must have been granted at least r ead
access on that file. The access level required to run a particular command can usually be
reasoned from knowledge of what the command does; for example, it is somewhat obvi-
ousthat p4 print wouldrequirer ead access. A full list of the minimum access levels
required to run each PERFORCE command is provided on page 105.

Which Users Should Receive Which Permissions?

The simplest method of granting permissionsisto givewr i t e permission to all users who
don’t need to manage theR*ORCE system, and giveuper access to those who do. But
there are times when this simple solution isn’t sufficient.

Read access to particular files should be granted to users who don'’t ever need to edit those
files. For example, an engineer might havét e permissions for source files, but have

only r ead access to the documentation; managers might be grantedeaniyaccess to

all files.

Becausepen access allows local editing of files, but doesn’t allow these files to be writ-

ten to the depofppen access is usually granted only in unusual circumstances. Choose
open access ovelr i t e access when users will be testing their changes locally, but when
these changes should not be seen by other users. For example, bug testers may want to
change code in order to test theories as to why particular bugs occur, but these changes
would be for their own use, and would not be written to the depot. Or, a codeline might be
frozen, with local changes submitted to the depot only after careful review by the develop-
ment team. In this casepen access would be granted until the code changes have been
approved; at that time, the protection level would be upgraded tce.

Default Protections

Whenp4 prot ect is first run, two permissions are set by default. The default protec-
tions form looks like this:

Prot ecti ons:
wite * * /...
super edk * ...

This indicates thatr i t e access is granted to all users, on all hosts, to all files. Addition-
ally, the user who first invokes4 pr ot ect (in this caseedk) is granted superuser
privileges.

Perforce 97.3 User’s Manual 103

Chapter 14 : System Administration: Protections

oA

Example:
How protections
work.

Interpreting Multiple Permission Lines

The access rights granted to any user are defined by the union of mappings in the pr o-
t ecti on linesthat match her user name and client IP address. (This behavior is dightly
different when exclusionary protections are provided; thisis described in the next section).

Lisa, whose PERFORCE username is | i sag, is using a client with the IP address
195. 42. 39. 17. The protections file reads as follows:

Prot ecti ons:
read * 195.42.39.17 //...
wite lisag 195.42.39. 17 /| depot /el m proj/doc/. ..
read lisag * /...
super edk * /...

The union of the first three permissions apply to Lisa. Her usernameisl i sag, and she’s
currently using a client workspace on the host specified in lines 1 and 2. Thus, she can
write files located in the depottsoc subdirectory, but can only read other files. Lisa tries

the following:

She typep4 edit //lisag/doc/el mhel p. 1, and is successful.

She typep4 edit //1isag/ READ. ME, and is told that she doesn't have the proper
permission. She is trying to write a file that she only haad access to. She typpg
sync //1isag/ READ. ME, and this command succeeds; ongad access is needed,
and this is granted to her on line 1.

Lisa later switches to another machine with IP addre8S. 42. 39. 13. She typep4
edit //lisag/doc/el mhelp.1, and the command fails; when she’s using this
host, only the third permission applies to her, and she only has read privileges.

Exclusionary Protections

A user can be denied access from particular files by prefacing the fourth field in a permis-
sion linewithaminussign (-). Thisisuseful for giving most users access to a particular
set of files, while denying access to the same filesto only afew users.

To use exclusionary mappings properly, it is necessary to understand some peculiarities
associated with them:

< When an exclusionary protection is included in the protections table, the order of the
protections is relevant: the exclusionary protection is used to remove any matching pro-
tectionsabove it in the table.

* No matter what access level is provided in an exclusionary proteafli@tcess levels
for the matching files and IP addresses are denied. The access levels provided in exclu-
sionary protections are irrelevant.

The reasons for this seemingly strange behavior are described in the Begti®notec-
tions are Implemented on page 106.

Perforce 97.3 User’s Manual 104

Chapter 14 : System Administration: Protections

&

Example:
Exclusionary
protections

Ed hasused p4 pr ot ect to set up protections as follows:

Prot ecti ons:

r ead emly *
wite * *
super j oe *
Iist lisag *
wite lisag *

//depot/elmproj/..

...
-
-l

/ / depot /el m proj/doc/..

The second permission seemingly grants wri t e access to all users to all files in all
depots, but thisis overruled by later exclusionary protections for certain users:

« The third permission denies Joe permission to access any file from any host. No subse-
qguent lines grant Joe any further permissions; thus, Joe has been effectively locked out

of PERFORCE.

» The fourth permission denies Lisa all access to all files on all hosts, but the fifth permis-
sion gives her backri t e access on all files within a specific directory. If the fourth
and fifth lines were switched, Lisa would be unable to run @arydRceE command

Access Levels Required by PERFORCE

Commands

The following table lists the minimumaccess level required to run each command. For
example, since p4 add requires at least open access, p4 add can berunif open,wite

or super protections are granted.

Command
add
branch 2
branches
change
change -f
changes 2
client
clients @
del ete
depot 2
depots 2
descri be
describe -s
diff

diff2

edit

files
filelog

fix @

Access Level
open
open
Iist
open
super
list
Iist
list
open
super
Iist
read
Iist
read
read
open
list
list
open

Command
jobs 2
| abel 2

| abels 2

| abel sync
| ock
obliterate
open
opened
print
protect 2
refresh
reopen
reresol ve
resol ve
resol ved
revert
review 2

a

revi ews

subm t

Access Level
Iist
open
Iist
open
wite
super
open
list
read
super
read
open
open
open
open
open
revi ew
list
wite

Perforce 97.3 User’s Manual

105

Chapter 14 : System Administration: Protections

Command Access Level Command Access Level
fixes @ list sync read

have list unl ock open

hel p none user 2 list

info none users 2 list
integrate b open verify revi ew

i nt egrated list where 2 none

job 2 open

a. This command doesn't operate on specific files. Thus, permission is granted to run these com-
mands if the user has the specified access to at least one file in the depot.

b. Torunp4 i ntegr at e, the user needspen access on the target files anglad access on
the donor files.

Those commands that list files, suichasp4 descri be, will only list those filesto which
theuser hasat least | i st access.

How Protections are Implemented

This section describes the algorithm that PERFORCE follows to implement its protection
scheme. Protections can be used properly without reading this section; the material hereis
provided to explain some of the more eccentric behavior described above.

Users’ access to files is determined by the following steps:

e The command is looked up in the command access level table shown on page 105 to
determine theminimum access level needed to run that command. In our exapaple,
print is the command, and the minimum access level required to run that command is
read.

» PERFORCE makes the first of two passes through the protections table. Both passes move
up the protections table, bottom to top, looking for the first relevant line. The first pass
is used to determine whether or not the user is allowed to know whether or not the file
exists, and this search simply looks for the first line encountered that matches the user
name, host IP address, and file argument. If the first matching line found is an inclusion-
ary protection, then the user has permission to list the file, arREDRCE proceeds to
the second pass. If the first mapping found is an exclusionary mapping , or if the top of
the protections table is reached without a matching protection being found, then the user
has no permission to even list the file, and will receive a messagé like not on
client.

» As an example, suppose that our protections table is set as follows:

wite * * /...
read edk * -1
read edk * [/ depot/elmproj/...

If Ed runsp4 print //depot/foo, PERFORCE examines the protections table bottom

to top, and first encounters the last line. The files specified there don’t match the file that
Ed wants to print, so this line is irrelevant. The second-to-last line is examined next; this
line matches Ed’s user name, his IP address, and the file he wants to print; since this line
is an exclusionary mapping, Ed isn't allowed to even list the file.

Perforce 97.3 User’s Manual 106

Chapter 14 : System Administration: Protections

« If the first pass is successful, a second pass is made at the protections table, again read-
ing bottom to top; this pass is the same as the first, except that access level is now taken
into account. If an inclusionary protection line is the first line encountered that matches
the user name, IP address, file argument, and has an access level greater than or equal to
the access level required by the given command, then the user is given permission to run
the command. If an exclusionary mapping is the first line encountered that matches
according to the above criteria, or if the top of the protections table is reached without
finding a matching protection, then the user has no permission to run the command, and
will receive the messagéu don’t have permission for this operation.

Perforce 97.3 User’s Manual 107

CHAPTER 15 sy5tem Administration:
Superuser Commands

Three PERFORCE commands can be used only by users with PERFORCE superuser privi-
leges. These commands allow the superuser to verify files using 128-bit signatures,
remove all traces of file from the depot, create multiple depots on the local server, or pro-
vide read access to files on other servers.

File Verification by Signature

Thep4d verify filenanes command can be used to generate 128-bit signatures of
each revision of the named files. A list of signatures generated by p4 veri fy can later
be used to confirm proper recovery in case of a crash: if the signatures of the recovered
files match the previously saved signatures, the files were recovered accurately.

For more information about the MD5 algorithm, which is used to generate the file signa-
tures, please see<ht t p: / / backupvaul t . cont nd5. ht n».

File Obliteration

The depot is always growing. Obviously, this is not aways desirable: a branch might be
performed incorrectly, creating hundreds of unneeded files; or perhaps there are simply a

lot of old files around that are no longer being used. p4 del et e won't help, since this
command marks the file as deleted in its head revision, but leaves the old revisions intact.

p4 obliterate fil enane can be used by superusers to remove all traces of a file
from a depot, making the file indistinguishable from one that never existed in the first
place.p4 obliterate is so destructive, in fact, that we haven't even told you how it
really works yetp4 obliterate fil enane only reports on what iwill do; to actu-

ally destroy the files, ugg4 obliterate -y fil enane.

Changelist Deletion
& Description Editing
The-f flag can be used with4 change to change the description or username of sub-

mitted changelists. The syntaxpig change -f changenunber; this presents the stan-
dard changelist form, in which the description and/or username may be edited.

Perforce 97.3 User’s Manual 108

Chapter 15 : System Administration: Superuser Commands

The-f flag can also be used to del ete any submitted changelists that have been emptied of
fileswith p4 obliterate. Thefull syntaxisp4 change -d -f changenunber.

Distributed Depots

PerFORCE distributed depots allow the P4 client program to access files from multiple
depots. These other depots may reside within the P4D server normally accessed by the P4
client program, or they may reside within other, remote, PAD servers.

The P4 client’s localP4D server program acts as a proxy client to the remote server pro-
grams, so the client doesn’t need to know where the files are actually stored, and doesn’t
need direct access to the rem@te server programs.

The use of distributed depots on remote servers is currently limited to read-only opera-
tions; thus, &4 client program may not add, edit, delete or integrate files that reside in
depots on other servers. Depots sharing the sdmserver as the client are not subject to
this limitation.

Defining New Depots

New depots in a server namespace are defined with the conmanidpot depot -
nane. If called with the default depotnardepot , thep4 depot command will bring
up the following form:

Depot Nane: depot
Type: | ocal
Addr ess: subdir
Map: depot /. ..

Whenp4 depot depot is called, the form is filled in with values representing the state
of the default depot. Its name, of coursedépot . It resides in the loca#4D server
namespace; so its type liocal , (as opposed toenot e). The Map: field indicates
where the depot subdirectory is located relative to the root directory pdreerver pro-
gram; in this default case, the depot catleghot starts in the depot subdirectory directly
underneath the root.

Defining Local Depots

To define a new local depot (that is, a new depot in the cupdenserver program
namespacep4 depot is called with the new depot name, and only¥ae: field in
the resulting form need be changed. For example, to create a new depdia@akedith
the files stored in the locafiD server namespace in a root subdirectory cattedual ,
the commang4 depot book would be typed, and the resulting form would be filled

in as follows:
Depot Nane: book
Type: | ocal
Addr ess: subdir
Map: manual /. ..

Perforce 97.3 User’s Manual 109

Chapter 15 : System Administration: Superuser Commands

Defining Remote Depots

Defining a new depot on a remote PAD server is only slightly more complicated. The
Type: isrenot e; the server address must be provided in the Addr ess: field, and the

Map: field must be given a mapping into the remote depot namespace.
Q Lisa is working on a GUI for Elm. She and Ed are using different P4D servers; hisis on
Example: host pi ne, and it's listening on port818. Lisa wants to grab Ed’'s GUI routines for her
Defining a remote own use; she knows that Ed’s color routine files are located or4dbiserver’s single
depot depot under the subdirectogr aphi cs/ GUI . Lisa’s first step towards accessing Ed’s

files would be to create a new depot. She'll call this degpot; she'd typep4 depot
GUI and fill in the form as follows:

Depot Name: gui

Type: renote

Addr ess: pi ne: 1818

Map: / / depot / graphi cs/gui/. ..

This creates a remote depot callgdi on Lisa’'sp4D server; this depot maps to Ed’s
depot’'s namespace under gsaphi cs/ gui subdirectory.

The Mapping Field,
and What it Means

The Map: field is analogous to a client’s view, except that the view may contain multiple
mappings and thehp: field always contains a single mapping. This single mapping for-
mat changes depending on whether or not the depot being defined is local or remote:

« If a local depot is being defined, the mapping should contain a subdirectory relative to
the file space of the4b server root directory. For examplgy aphi cs/ gui /. ..
maps to thgr aphi cs/ gui subdirectory of the4d server root.

« If a remote depot is being defined, the mapping should contain a subdirectory relative to
the remote depot namespace. For examplelepot / graphi ¢/ gui /... would
map to thegr aphi ¢/ gui subdirectory of the remote server depot nanhelot .

Note that the mapping subdirectory must always contains. the™wildcard on its right
side.

Naming Depots

Depot names share the same namespace as branches, clients, and labels. For example,
/I f oo refers unambiguously to either the depob, the clientf oo, the brancH oo, or
the labelf 0o.

Accessing Files In Other Depots

Files from any remote or local depot known to the defaldtserver can be accessed sim-
ply by using the depot's name wherever the default depot damet is usually used.
This means that any defined depot name can be used in the following ways:

» As part of anyp4 command that takes depot syntax. For example, the following com-
mand will retrieve all files in the subdirectdirpo of depotbar :

p4 sync //bar/fool...

Perforce 97.3 User’s Manual 110

Chapter 15 : System Administration: Superuser Commands

* On the left-hand side of any client view. For example, ifthelient form is filled in as
follows on client spice, any files from the local degepot will be mapped to
[usr/jakel/ src/local, and any files from the remote depato will be mapped
to /usr/jake/src/renote.

Client: spice

Descri ption:

Created by Jake.

Root : [usr/jakel/src

Vi ew:
//depot/... [/spicellocal/l...
//fool... [/spicelrenotel...

« On the left-hand side of any branch or label view, in the same way the mapping has been
provided in the above client view.

There is one, rather large, exception to these rules: although files from other local depots
can be used in any operation, files from remote depots can be used only in read-only oper-
ations. Thus, no files can ever be used#asubni t to a remote depot.

Additionally, files from remote depots cant be usedpAd filelog or p4
descri be, even though these operations are read-only.

Integrating Files From Other Depofts

A branch view may contain remote files in its mappings, so that files can be branched and
later integrated from a remote depot into the local one. This works much as local branch-
ing and integration do, with two exceptions:

1. When remote files are integrated for the first time (i.e. they don't exist locally), they are
opened fori mport rather thanbranch. The difference betweennport and
br anch is only that, upon submission, the remote files are copied locally. Normally,
br anch performs a “lazy copy”, referring to the source file/revision until a new revi-
sion is submitted. nport copies the contents of the source file/revision to the local
target.

2. Since it is not possible to make remote files the targets of integration, integrations are
one-way only, from remote to local.

Deleting Depots
Depots may be deleted wigid - d depotname.

Depot Reporting Commands

All depots known to the curreptid server can be listed with tipgd depot s command.

Perforce 97.3 User’s Manual 111

APPENDIX A

Environment Variables

Each operating system and shell uses its own syntax for setting environment variables.
This table shows how each OS and shell would set the PACLIENT environment variable.

0S & Shdll

Environment Variable Example

UNIX: ksh, sh, bash
UNIX: csh

VMS

Mac MPW
Windows 95/NT

export PACLI ENT=val ue

setenv PACLI ENT val ue

def/j PACLI ENT "val ue"

set -e P4CLI ENT val ue

Environment variables can be set with
set PACLI ENT=val ue,

but if registry variables are set, they will
override the environment variable values.
The registry variables can be set in the
user-specific part of the registry through
the P4 client program with

p4 set P4VAR=val ue
and can be set in the system registry with
p4 set -s P4VAR=val ue

The use of registry variablesisrecom-
mended.

The two tables on the next four pages describe the environment variables used by Per-
FORCE. The most important of the variables are described in the first table; the second
table describes the more esoteric variables.

Perforce 97.3 User’s Manual

112

Chapter APPENDIX A : Environment Variables

TABLE 1. Basic PERFORCE Environment Variables (page 1 of 2)

Environment P4CLI ENT P4J OURNAL PALOG
Variable

Description Name of client workspace Database journal file File to write errorsto

Command-Line -C -J -L
Alternative

Used by p4? Yes No No
Used by p4d? No Yes Yes
Examples eds_elm journal | og

manual / di sk2/ perf/journal / di sk2/ perf/l og
Valueif not UNIX: P4RQOOT/ j our nal standard error
Explicitly Set name of P4 host

NT:

value of

COMPUTERNAME

environment variable

Fileis specified relative to Fileis specified relative to
PAD server root, or asan ab- PAD server root, or as an
solute path. absol ute path.

Setting this variable, or
using the command-line
alternative, enables
journaling.

Perforce 97.3 User’s Manual 113

Chapter APPENDIX A : Environment Variables

TABLE 2. Basic PERFORCE Environment Variables (page 2 of 2)

Environment
Variable

Description

Command-Line
Alternative

Used by p4?

Used by p4D?

Examples

Valueif not
Explicitly Set

P4ROOT

P4USER

For P4D server,

Directory in which

PERFORCE client

port # to listen on. PAD storesitsfiles username
For P4 client, and subdirectories

PAD host and its port

-p -r -u
Yes No Yes
Yes Yes No
PAD server example: lusr/lcl/ edk
1515 par oot lisag
P4 client example:

squi d: 1666

it.com 1308

For P4D server: <none> UNIX:

1666

For P4 client:
perforce: 1666

the value of the
USER environment
variable

NT:

the value of the
USERNANE envi-
ronment variable

Format onP4 clientishost : port #, or
port # by itself if the P4 client and the
PAD server run on the same host.

To usethedefault value with P4D, define
per f or ce asan aliasto the host in

/ et ¢/ host s, or use the domain name
Services.

Port numbers must be in the range
1024 - 31767.

Create this directo-
ry before starting
PAD.

Only the account
running P4D needs
read/write permis-
sionsin thisdirec-
tory.

By default, the PER-
FORCE usernameis
the same as the OS
username, but this
can be set to any
other PERFORCE Us-
er.

Perforce 97.3 User’s Manual

114

Chapter APPENDIX A : Environment Variables

TABLE 3. Esoteric PERFORCE Environment Variables (page 1 of 2)

Environment
Variable

Description

Command-Line
Alternative

Used by p4?

Used by p4D?

Examples

Valueif not
Explicitly Set

P4DI FF

P4EDI TOR

PAMERGE

Name and location of the
‘diff’ program used byp4
resol ve andp4 diff.

Editor used by4 com-
mands, likep4 client,
that bring up forms

MERGE program used by
p4 resol ve's merge
command

Yes Yes Yes

No No No

diff Vi Prescient Software’s
diff -b emacs Mer geRi ght

wi ndi f f Si npl eText

UNIX: If EDITOR environment If MERGE environment vari-

If DIFF is set, then value of
DIFF; otherwisepP4's in-
terna diff

NT:

If DIFF is set, then value of
DIFF; elseif SHELL set,
diff ; otherwise,
p4diff.exe

variableis set, its value;
otherwise:

UNIX: vi

NT: if SHELLisset, vi ;
otherwise, notepad

VMS: if POSIX$SHELLIs
set, vi ; otherwise, edit

Mac:

if EDITOR_SIGNATURE
isset, theprogram with that

four-character creator; oth-

erwise, SimpleText

ableis set, its value; other-
wise, nothing.

ThisEV can contain flagsto
diff, such as diff -u

p4 describe
p4 diff2 ,and
p4 submit usethe diff

built into P4D; this cannot be
changed.

This program is used only
by p4 resolve ’s merge
command. It takes four ar-
guments, representing
base, theirs, yours, and the
resultingmergefile. Please
see page 43 for more de-
tails.

Perforce 97.3 User’s Manual

115

Chapter APPENDIX A : Environment Variables

TABLE 4. Esoteric PERFORCE Environment Variables (page 2 of 2)

Environment
Variable

Description

Command-Line
Alternative

Used by p4?

Used by p4D?

Examples

Valueif not
Explicitly Set

P4APAGER

T™MP, TEMP

Program used to page out-
put fromp4 resol ve's
diff.

The working directory
whenpP4 commands are
run.

Directory in which tempo-
rary files are written

-d
Yes Yes Yes
No No No
nor e / ul/ doug/ prog /tmp
If PAGER environment UNIX: UNIX:
variable is set, then the val- Value of PWD as set by /[t

ue of PAGER; otherwise,
none.

shell; if not set by shell,
get wd() is used.

VMS, NT,

Mac/MPW:

Actual current working di-
rectory

VMS, Mac/MPW, NT:
on client: current directory;
on server: P4AROOT

Used only by
p4 resol ve.

If this variable is not set,
the output op4 re-

sol ve’s diff will not be
paged.

If the TEMP environment
variable is set, this is used

otherwise, ifTMP is set,
this is used;

otherwise, defaults to the
values above.

Perforce 97.3 User’s Manual

116

APPENDIX B

Glossary

access level

add
atomic

atomic change
transaction

base
binary file
branch
branch form

branch view

build
management

change

changelist

changelist form

A permission given to a user controlling which PERFORCE commands can be used.
Access levels are assigned with p4 pr ot ect . Thefive accesslevelsarel i st
read,wite,revi ew, andsuper.

An operation that takes afilein the client workspace and adds it asanew fileto the
depot.

Grouping a number of operations together such that either all of them occur, or
none of them do. See atomic change transaction.

Grouping anumber of files and operations together in asingle changelist, such that
when the changelist is submitted, either all the files are updated in the depot, or
none of them are.

Thefile revision that two newer, conflicting file revisions were commonly based
on.

A non-ascii file. Whether afileisbinary or ascii isdetermined by the Clibrary call
i sascii (). Binary files are dways stored in the depot in full.

Creating acopy of afileor filesin the depot so that the new file set can evolve sep-
arately from the original files. See Inter-File Branching.

The form displayed when the p4 br anch command is given.

The view that specifies how files are mapped from the original codelineto the
branched codeline. The mappings within abranch map fileswithin the depot to the
copied files within the depot. Branch views are edited in the branch form.

A tool that manages the process of turning source code into product. PERFORCE
does not have a build tool, built in, but PERFORCE Software offers a companion
freeware build tool called “Jam” atwww. per f or ce. conp.

1. An edit of afile.
2. In previous versions of HRFORCE, this term was used as a synonym for
changelist.

A list of files, revision numbers of those files, and operations to be performed on
these files. The commangd add, p4 edit,p4 del ete, andp4 inte-

gr at e all include files in a particular changelist, which is sent to the depot atom-
ically whenp4 subni t is typed with no parameters.

The form brought up bg4 change, and byp4 submni t when submitting the
default change.

Perforce 97.3 User’s Manual

117

Chapter APPENDIX B : Glossary

changelist
number

change review

checkpoint

client

client form

client name

client root

client side

client view

client
workspace

codeline

command line

conflict
counter

daemon

database

default
changelist

default
depot

The number that a particular changelist is known by. The default changelist is as-
signed a number if a submit of the default changelist fails. Changelist numbers al-
ways increase in sequence.

The process of sending email to users when files that they are interested in have
changed within the depot.

A copy of the underlying server metadata at one moment in time. This is one half
of the journaling process.

A computer running p4; acomputer storing aclient workspace. All PERFORCE work
isdone by userson client machines. A single PERFORCE system can have many cli-
ents, which al talk to asingle server via TCP/IP.

The form brought up by thep4 cl i ent command to define a client workspace.

A name that uniquely identifies the current client workspace. It is set through the
P4ACLI ENT environment variable, or on the command-line with the - ¢ flag.

Theroot directory of aclient workspace; the lowest level directory under which the
managed files sit. Theclient root isset inthe Root : field of the client form. If the
client nameispr oj 1,andtheclientrootis/ usr/j oe/ proj ect 1, thenthefile
/I proj 1/ docs/ read. e isactually located on the client machine under
/usr/joelprojectl/ docs/read. nme.

The right-hand side of a mapping within a client view. Expresses where the corre-
sponding depot files are found within a client workspace.

A set of mappings that express which files from the depot can be accessed from a
particular client workspace, and where in the client workspace the depot files are
mapped to. Client views are defined inthe Vi ew: field of the form brought up by
p4 client.

A local copy of some or all of thefiles stored in the depot. These files are managed
by PERFORCE; users may work on PERFORCE files only within a client workspace.
Client workspaces are defined withthe p4 cl i ent command.

A set of filesthat evolve collectively. One codeline can be branched from another,
allowing both sets of files to evolve separately from the other.

The interface that this PERFORCE manual describes. If you're looking at this glos-

sary entry because you don’t know what a command line is, and you're expecting

to use a GUI, you're in the wrong manual.
Seefile conflict.
A variable tracked and set py revi ew. Used internally by BRFORCE to track

which changelists have and haven't been reviewed; users can create their own

counters for use in their own daemons.

A program running in the background on tfEeIFORCE server. BRFORCE provides
a change review daemon; users can create their own to handle other needs.

Files in a BRFORCE server used to store the server metadata.

The changelist used Ip4 add, p4 edit,p4 del ete,pd4 subnit,etc., un-
less a numbered changelist is provided to these commands witt tiag. There
is always a single default changelist in use for each client workspace.

The depot that is always available oneR#ORCE server. Its name depot .

Perforce 97.3 User’s Manual

118

Chapter APPENDIX B : Glossary

delete

delta

delta storage
depot

depot root
depot side

depot syntax

detached

difference
marker

distributed
depot

donor file

edit

environment
variable

exclusionary
mapping

exclusionary
access

fast

1. To remove a file from the client workspace and from the depot with p4
del et e followed by p4 subni t . Deleted files are not actually erased from
the depot; the head revision of the file is marked as being deleted, but older
revisions of thefile are still available.

2. Toremove an existing client, label, or branch from the PERFORCE server. This
is accomplished with the -d flag to p4 client, p4 |abel, and p4
branch.

Theline-by-line differences between onefile revision and its next (or previous) re-
vision.
See reverse delta storage.

A filerepository on the PAD server. It contains all versions of all files ever submit-
ted to the server. There can be multiple depots on a single server.

The root directory for a particular depot. For the default depot depot , the depot
root isthedepot subdirectory of the server root directory.

The left side of any client view mapping. The union of all depot sides of aclient
view specifies which files are available to the corresponding client workspace.

PERFORCE syntax, when applied to afilein the depot. A filecaled r eadne inthe
depot’'sdoc subdirectory would be referred to in depot syntak/adepot /
doc/ r eadne.

A client workspace not connected tomRFORCE server with a functioning network
connection is said to be detached. Permissions must be set on files using OS com-
mands; BRFORCE is unable to open files for you.

A named counter used Ip¢ r evi ew. Each difference marker keeps track of
which changes have already been reviewed for the counter with that name.

A depot within anothep4D server, accessed by the lopéb server acting as a
proxy client.

The file from which changes are taken when propagating changes from one code-
line to another. A donor file can come either from the branched codeline or the orig-
inal codeline; this is determined by the use of-thdlag top4 i nt egrate.

Opening a file in a client workspace wiid edi t . PERFORCE notes that the file

has been opened, adds the file revision to a changelist, and turns on write privileges
for this file within the client workspace. A file is opened for edit before it is edited
with the system editor.

A variable set in the operating system’s command shetkdRCE utilizes envi-
ronment variables that are passed topthecl i ent or P4D server.

A view mapping that excludes depot files from a client workspace. Exclusionary
mappings begin with a minus sign. For example, to allow a client workspace to ac-
cess all the files in the depot except for the file calksdk et , the view might look

like this:

/1 depot /. ..
-/ / depot / secret

[la client/...
/la_client/secret

A permission that denies access on the specified files. For example, the fol-
lowing permission denies Bat i t e permissions on all files in the directory

secret:
wite edk * -/ / depot/secret

See [BRFORCE.

Perforce 97.3 User’s Manual

119

Chapter APPENDIX B : Glossary

file
file conflict

file pattern
file reference

file repository

file revision

file tree
file type

fix

form

full-file
storage

get

GNU

have list

head revision

integrate

integration
record

Inaclient workspace, f i | e hasthe usual meaning. A filein the depot consists of
the head revision of the file, and every revision of the samefile.

A state in which the version of afilein the client workspace is not an edit of the
head revision in the depot at submit time.

An argument on aP4 command line specifying files using wildcards.

A filerevision specification, like foo#3. Used specifically when storing pointersto
filesinlists such asalabel. The label contains file references, not the contents of
the files themselves.

The master copy of all files; shared by all users. In PERFORCE, thisis called the de-
pot.

A specific version of afilewithin the depot. Each revision is assigned anumber, in
sequence. Any revision can be accessed in the depot by its revision number, like
f oo#3.

All the subdirectories and files under a given root directory.

An attribute that determines how aparticular fileis handled by PERFORCE. Thetwo
basic PERFORCE filetypesaret ext and bi nary, but there are quite a few sub-
types.

A job that has been linked to a changelist withp4 fi x, p4 subnit, or p4
change. Under most circumstances, afixed job has a status of cl osed, but thisis
not always true: when an open job islinked to a pending changelist, it is still open,
and closed, fixed jobs can always be reopened or suspended.

Screens brought up by certain PERFORCE commands containing elements whose
value needs to be changed. The form is displayed in an external editor; the editor
used is defined by the environment variable PAEDI T.

The commands that bring up formsarep4 change, p4 client,p4 depot,
p4 job,p4 | abel ,p4 user,and sometimesp4 subnit.

The method by which PERFORCE stores file revisions of binary files within the de-
pot: every filerevision is stored in full. Contrast this with reverse delta storage,
which is used for text files.

Formerly used to describe the process accomplished by p4 get , which has been
renamed p4 sync. Thep4 get command can still be used as a synonym for p4
sync. Seesync.

Software provided by the Free Software Foundation. Most GNU softwareissystem
level software such as enhanced versions of standard UNIX utilities and language
compilers.

GNU standsfor "GNU'’s not UNIX".

Thelist of file revisions that the PERFORCE server believes are currently in the cli-
ent workspace. Generated by p4 have.

The most recent revision of afile within the depot. Since file revisions are num-
bered sequentialy, this will also be the highest-numbered revision of thefile. To
refer to the head revision of filef 0o, usef oo#head.

To propagate changes from one codeline to another.

The data structure by which PERFORCE keeps track of integrated files. It tracks
which revisions of which donor files were integrated into which target files.

Perforce 97.3 User’s Manual

120

Chapter APPENDIX B : Glossary

Inter-File
Branching

job
job tracking
journal

journaling

label

label view

license

list access

local depot

local syntax

lock

log

mapping

merge

PERFORCE's branching mechanism. It differs from the branching mechanism used
by most SCM systems, allowing arbitrary copies of files to be stored anywhere in
the depot, and allowing these files to evolve separately. Additionally, changes
made to any file can be propagated to the corresponding file in any branch.

A generic term for a defect report, system improvement request, or change order.
An arbitrary textual description of some change intended to be made to the system.

PERFORCE’S mechanism for keeping track of jobs. It is implementeg¥diaj ob
andp4 fix.

A file containing a record of every change made to #ReEGRCE server's metadata
since the time of the last checkpoint. One half of the journaling process.

Keeping track of every change made to theAPRCE server’'s metadata since one
particular moment in time. Requires a checkpoint file and a journal file. Only the
server's metadata is journaled; external processes need to be run to backup the de-
pot’s file revisions.

A user-configurable list of file revisions. Used to save “important” file configura-
tions for later use. Any file included in a label can be referred to with the revision
specifier@ abel nane; e.g. f oo@ el ease3. 0. 1.

The view that defines which files in the depot are stored in a particular label. This
can be edited in the form brought upfy | abel . The left-hand side of each
mapping represents a subtree of the depot’s file tree; the right side represents the
files’ corresponding location within the label.

PERFORCE'S mechanism to ensure that our software is run on each site only by the
number of users that have been paid for. Two users may be run oBrREIREE
server without a license or any form of payment. For more information on licens-
ing, please send email tmf o@er f or ce. com

A protections level giving the user permission to run reporting commands, such as
p4 cli ent, that give access to metadata. A user with only list access to a partic-
ular file can’t run any commands that would allow them to read or write the con-
tents of the file.

Any depot located on the currer#HPORCE server. By default, only one such depot
is constructed; others may be defined with depot .

The native name of a file on the client host, as would be used by other commands
in that operating system. For example, fit®o in joe’s home directory in UNIX
local syntax would bej oe/ f 0o, or/ usr/j oe/ f 00, etc.

Locking a file withp4 | ock ensures that no other clients will be able to submit
the same file until the file is unlocked by the locking client. Files are automatically
locked when submission starts, and unlocked when submission ends; they can be
manually unlocked witip4 unl ock.

Error output from the4d server. By default, this is written to standard error; a spe-
cific file can be set in thB4LOG environment variable, or with the flag tor4D.

A single line in a view, consisting of a left side and a right side that specify the cor-
respondences between files in the depot and files in a client, label, or branch.

(See alsalient view, branch view, label view).

To combine the contents of two conflicting file revisions into a single file. This is
accomplished witlp4 resol ve.

Perforce 97.3 User’s Manual

121

Chapter APPENDIX B : Glossary

merge file

metadata

modtime

namespace

network con-
nection

nonexistent
revision

numbered
changelist

open

owner

P4

P4D

pending
change

PERFORCE
PERFORCE server
PERFORCE syn-

tax

Perl

permission

A filerevision generated by PERFORCE from two conflicting filerevisions. Thisfile
can be edited by the user during thep4 r esol ve process, producing aresult ac-
ceptable to the user.

The data stored by the server that describes the filesin the depot, the current state
of client workspaces, protections, users, clients, labels, and branches. It includesall
the data stored in the server except for the actual contents of thefiles.

The modification time of afilethat has been read from the depot into a client work-
space. By default, the modtimeisthe timethat the file was last written to the depot;
this can be changed in the P4 client form to be the time that the fileis read into the
client workspace.

The pool of legal namesfor clients, branches, depots, and |abels. Clients, branches,
depots, and labels all share the same namespace; therefore a client cannot have the
same name as any branch, depot, or label.

A TCP/IP connection between a PERFORCE client and PERFORCE server. Generally,
users are expected to work within afunctioning network connection; they can still
edit client files without a network connection by following the instructions for
working detached.

A specidl filerevision; acompletely empty revision of any file. Useful only to re-
move afile from the client workspace while leaving it intact in the depot: use
p4 sync foo#none.

A changelist that has been created by PERFORCE but that has not yet been submit-
ted. A humbered changelist can be created manually, with p4 change -c,oris
created automatically by PERFORCE when asubmit of the default change hasfailed.
Onceachangelist has been assigned anumber, it must bereferred to by that number
in all subsequent commands, e.g. p4 subnit -c 31.

A filein aclient workspace that has been included on a changelist with p4 add,
p4 del et e,or p4 edit.Thefileissaidto be openwithin the client workspace.

The PERFORCE user who created a particular client, branch, or label. This can be
changed through the form brought up by p4 cl i ent, p4 branch, or
p4 | abel .

The program invoked by usersfrom aclient to run all PERFORCE commands. It talks
viaTCP/IPto the PERFORCE server, mediating theinteraction between the managed
filesin the client workspace and the master repository and metadata on the server
host.

The program on the PERFORCE server that manages the depot and the metadata. It
waits on a TCP/IP port for a connection from the client program.

An existing changelist that has not yet been submitted. These can be created man-
ually withp4 change - ¢, and areautomatically created when submission of the
default change fails.

The fast Software Configuration Management system.
See server.

A syntax for referring to files that remains invariant across operating systems. It
consists of two slashes, followed by the depot or client name, followed by a slash,
and then the name of the file specified relative to the depot or client root.

A scripting language available for most operating systems. Useful for creating pro-
grams that utilize PERFORCE commands, such as the change review daemon.

See access.

Perforce 97.3 User’s Manual

122

Chapter APPENDIX B : Glossary

port

project
propagate
protections
pure

integration
RCS format

read access

refresh
remote depot

renumber

reresolve

resolve

resource fork

reverse delta
storage

revert

review access

review daemon

A TCP/IPlogical channel. Since every application on a host listensto a different
port, the ports are used to funnel messages to the correct application. The P4D serv-
er program listens on the port assigned by PAPORT.

Generic term for some set of files kept by PERFORCE. One server might be storing
source files for multiple projects.

To copy changesin onefileto abranched copy of the samefile, leaving the rest of
the branch file intact.

The complete set of permissions as stored in the server’s protections table.

An integration in which changes to the target file incorporates only revisions from
a single source file.

Revision Control System algorithm and data structure for storing file revisions.
Uses reverse delta encoding for file storage. This is the method userFOREE.
See alsaoeverse delta encoding.

A protections level giving the user permission to run commands, syh as
sync, that allow them to read the contents BRFORCE files stored in the depot.
Read access includes list access.

To copy the contents of an unopened file from the depot into the client workspace.

A depot located on a server other than the currertd®RCE server defined under
PAPORT. BRFORCE superusers can make these depots accessible to the current
server’s clients for read-only access.

PERFORCE may renumber a changelist when it is submitted. Since change numbers
are allocated sequentially, a change might have one number when it is created, and
another when it is submitted.

To run the resolve process a second time. This can be done only between the time
a file is resolved and the time it is submitted

The process by which an integration is finalized by the user. The resolve process,
run byp4 resol ve, allows the user to decide whether to keep the integrated file,
edit it, or accept some other revision of the file in place of the integrated revision.

One fork of a Macintosh file. TheeRFORCE file type isr esour ce.

The method by whichERFORCE stores file revisions of text files within the depot.
Rather than store every file revision in fulkRRORCE stores only the deltas from
each revision to the one previous, storing the full text of only the head revision.

To throw away a file in the client workspace, replacing it with the revision in the
depot that was being edited. Files that were openechwithdd are left in the cli-

ent workspace; they are simply removed from the corresponding changelist. Re-
verting files can only be done before the files have been submitted.

A special protections level given to the review daemon, or to any daemon created
by a user. Itincludes read and list accesses, plus permission topdnitke/i ew
command.

Any daemon process written that usestier evi ewcommand. See alsbange
review.

Perforce 97.3 User’s Manual

123

Chapter APPENDIX B : Glossary

review marker

revision

revision number

revision range

revision
specification

root

SCM
Sendmail

server
server root

Software
Configuration
Management
status
submit

subscribe

superuser

Any named counter used by p4 r evi ew. Counter values are stored as PERFORCE
metadata, so their value remains the same from execution to execution of p4 r e-
vi ew. Each review marker hasits own name, hence its own value. The value of
any counter can be accessed and set at any time. Review markers are commonly
used to track which changelists have been processed by a particular daemon, but
other uses are possible.

A specific version of afile within the depot.

A number indicating which revision of the fileis being referred to. Revision num-
bers start at 1, and increase sequentially. To refer to aparticular revision of afile,
append the pound sign and the revision number to the name of thefile; e.g., the
tenth revision of filef oo would be referredto as f 00#10.

The revision specification foo#10 is actually the same as the revision range speci-
fication foo#1,#10, sincerevision ten of the file encompasses all the changes made
in the file from revision 1 to revision 10.

A range of revision numbers for a specified file, specified as the low and high end
of the range. For example, f 0o#5, 7 would access the fifth through seventh revi-
sions of filef 0o.

Only afew commands allow revision ranges to be specified. The only non-report-
ing command that allows arevision rangeisp4 i nt egr at e.

A suffix to filenames that specify a particular revision of that file. Revision speci-
fiers can refer to files by revision number, change number, label name or client
name.

A top level directory under which all accessible files are found. See client root,
server root, depot root.

Commonly used abbreviation for Software Configuration Management.

A UNIX mail transfer agent that, like a post office, collects mail and figures out
how to move it further along. Used by the PERFORCE change review daemon.

The PERFORCE depot and metadata on a central UNIX or NT host. All the client
workspaces in a PERFORCE system access the same server.

The directory in which the server program stores its metadata and al the shared
files. The directory is set viathe PAROOT environment variable.

A category of software whose definition changes from manufacturer to manufac-
turer. PERFORCE is a Software Configuration Management system. Functions com-
monly said to comprise SCM systemsare version control, concurrent devel opment,
release management, build management, and change review.

For achangelist, avaluethat indicateswhether the changelistisnew, pendi ng or
submi t t ed. For ajob, an indicator of whether thejobisopen, cl osed, or
suspended.

To send a pending changelist to the server for processing. The files referenced by
the changelist are locked, the corresponding operations are performed, and then the
files are unlocked.

To register to receive email whenever changelists are submitted that affect partic-
ular files. Filesare subscribed to viathep4 user form; the changereview daemon
watches the depot and sends email when the specified files have been affected.

A PERFORCE user with superuser permissions.

Perforce 97.3 User’s Manual

124

Chapter APPENDIX B : Glossary

superuser A protections level that gives the user permission to run every PERFORCE com-

access mand, including thosethat set protections, obliteratefiles, verify fileswithan MD5
signature, and set up connections to remote depots.

sync To copy afilerevision (or set of filerevisions) from the depot to aclient workspace.

target file

Thisisaccomplished with thep4 sync command.

When integrating changes between a branched codeline and the original codeline,
the target file is the file that receives the changes from the donor file. Either the
branched file or the original file can be the target; thisis determined by the use or
non-use of the- r flagwhen calling p4 i nt egrate.

TCP/IP A networking protocol; the protocol of the Internet.

text file Thebasic PERFORCE filetype. Text filescan be stored using reverse deltaencoding,
saving space on the server.

theirs When resolving afile conflict, the theirsfileistherevision in the depot that the cli-
ent file conflicts with. Thisis usually the head revision.
When working with branched files, theirsis the donor file.

three-way A merge between yours, theirs, and base. When athree-way merge is schedule by

merge PERFORCE, it is because yours and theirs are both revisions of acommon basefile,

tip revision
two-way merge

theirs has been submitted to the depot, and the unconditional acceptance of yours
would lose all the changesto theirs.

A term sometimes used by other SCM systemsin place of head revision.

Thetype of merge performed when adonor fileisbeing integrated into atarget file
that was branched from a different file. In this case, thereis no base file, so atwo-
way mergeis performed, in which your file is used as the base of the merge. In a

two-way merge, all changes appear astheirs, and there can be no conflicts.

user Anidentifier that informs PERFORCE who is running the P4 commands. By defaullt,
thisis the same as the system username, but the environment variable PAUSER
overrides this, allowing any user to impersonate any other.

version Thetracking of each revision and variant of every file managed by an SCM system

control

view A description of the relationship between filesin the depot and a client workspace,
label, or branch. The view determines which files from the depot are included in
the mapping, and the names by which the mapped files are known. Seeclient view,
label view, branch view.

wildcard A special character that is not interpreted literally, but is used to match other char-
actersin strings. PERFORCE wildcards are*’, which matches anything except a
slash; ! . . ’, which matches any string including slashes, &at,'which is used
for parametric substitution in views.

workspace Seeclient workspace.

write access A protections level that gives the user permission to run commands, suth as
subni t andp4 edi t, that allow him to alter the contents of files in the depot.

Write access includeassad andl i st accesses.

yours When resolving a file conflict, thgoursfile is the edited version within the client

workspace. In an integration of a branched fiteirs is thetarget file.

Perforce 97.3 User’s Manual 125

| d contrasted to labels 58

n eX change review 14, 78
and protections 81

changelists 12, 20, 53-57

and branches 65
and integration 65
automatic renumbering of 41
commands affecting 54

creating 54
creation 54
2%2\??534 creation of 56
default 53
#head 34 deleting 56
#l abel 34 deleting jobs from 57
#none 34 describing 88
$1d$ failure of submission and 56
RCS keyword 36 listing 87
%l 27 listing files in 57
* 27 moving files between 57
. 27 numbered 54
>>>> 42 pending 54
@lient 34 removing files from 57
@ abel 34 renumbering of 56
reporting 57
A checkpointing 97
access levels 101 client form
adding files 20 fields of 18
agorithm client root 28
of integration 71 client view 12, 28
architecture, of PERFORCE 12 and branched files 65
atomic 12,53 usage 28
atomic change transaction 22, 53 client workspaces 12
automatic changelist renumbering 56 defined 17, 26-27
defining 18
B deleting 20
base 41, 71 effects of editing specification 28
binary files 35, 36 listing 92
branch views 64 ‘naming 18
and exclusionary mapping 65 client, specifying 48
exclusionary mapping and 65 client/server 12
branches client/server architecture 15
creating 63, 64 clients
listing 89 detached 49
naming 64 clobber 51
branching 13, 63-72 closed status, of jobs 74
and reporting 72 closing files 24
and re-resolving 70 codeline 63
donor files and 68 codelines 13
integration and 65 evolution of 67
re-integration and 70 command arguments
surprise by-product of 70 syntax of 32 _
target files and 68 command arguments, from files 49
browser 3 Command Reference 3
bug descriptions command-line flags 48
tracking of 13 commands
build management 11 and required access levels 104
format for 17
C concurrent development 11

connecting to server 15
contacting BRFORCE 4
counters 80

- ¢ changenumflag 55
change numbers

listing 91 environment variables

cross-platform devel opment P4ACLI ENT 18, 19, 26, 48
with branching 63 P4DI FF 43
PAEDI TOR 18, 36
D PAMERCE 43
daemons 14 PAPORT 15, 48, 79
creating 81 PAUSER 49
reporting commands for 91 PWD 48
defect tracking 11 USER 49
defect tracking systems, integrating with 77 USERNAME 49
deleted filerevisions 83 error
deleting files 22 from incorrect connection to server 16
deletion error logging 97
of changelists 56 example set 4
of client workspace specifications 20 exclusionary mappings
of jobs 77 and protections 103
of jobs from changelists 57
of labels 62 F
delta storage 36, 38 file conflicts 38-47
depot locking files to minimize 45
adding filesto 20 reasons for 38
deleting filesfrom 22 types of 42
mapping to client workspace 28 file names
subdirectorieswithin 94 limitations on 33
updating filesin 21 syntax for 31
depots file permissions 21
defining new 108 file type
deleting 110 inheritance of 35
distributed 108 file types 35
listing 92 changing 35
multiple 108 determining 36
organization of 51 files
reporting 110 closing 24
Description field 19 comparing contents 85
Descriptions conflicts in 13
limitationson 33 copying, as branches 63
development vs. release code 63 deleting from labels 62
diff 40 depot’s storage of 38
and flags 86 getting 23
overriding client’'s 47 modification times of 51
Perforce’s internal 86 moving between changelists 57
setting client program 86 obliterating 107
use of in Perforce 85 permissions 12
diff chunks 41 reintegration of 70
DIFF environment variable 43 relationship between client and depot 84
difference marker 42 removing from changelist 57
difference markers 43 renaming 52
directory, specifying 48 reproducing state of 58
disk space management 99 re-resolving of 70
distributed depots 108 reverting 24
integrating files from 110 revision history 83
donor files 68 revisions 12
reversing sense with target 68 storage of 36
viewing 85
E forced integration 70
editing files 21 form
EDITOR environment variable 18, 36 editing 18
Edits 67 forms 36
Elm, use of in examples 4 and syntax 36
email, automatically sent 78 full-file storage 36

email, reaching Perforce by 4

G when to use 58

GNU diff 40 labelsync 59
GUI 3 and filename arguments 59, 60
large text files 35
H licensing 99
head revision 13 lifecycle management 11
help, online 25 list access level 101
host name 15 local depots 108
locking
| of labels 59, 61
icons, in margin notes 3 locking files 45 _
installation, of p4 and p4d 95 to minimize file conflicts 46
integration Itext files 36
algorithm for 71
and changelists 65 M
and revision ranges 70 Macintosh resource forks 35
atomicity of 65 manual
forcing 70 bugs and 4
of unrelated files 70 manual, authors of
reporting 89 Robert Orenstein, Philboyd Studge
reversing sense of 68 mapping depots to client workspaces 28
integration to external defect tracking systems 77 mappings
intended work 73 and depots 109
Inter-File Branching 13. See branching changing string order 30
conflicting 31
J defined 28
Jam - Make(1) Redux 11 exclusionary 30
job fix reporting 91 types of 29
job reporting 90 W|IQCards in 29
jobtracking 13, 73 margin note icons 3
jobs 13,73 MD5 algorithm 107
automatic naming of 74 MERGE environment variable 43
creation of 73 merge file_ 41
deleting from changelist 57 generation of 42
listing 90 merge scheduling 67
reporting 77 merge.See resolve
status 74 merging
jollity and mirth 2 three-way 13
journaling 97 metadata 15
and protections 100
K modification times of files 51

modtime 51

Keyword exparsion 36 moving files between changelists 57

keyword text files 35

ktext files 36
kxtext files 36 N
-nflag 92
L namespaces
is ifi of labels 59
:ﬁ: \r,?e/\':soggoec'f'er ol naming the p4d host 16
labels 13, 58-62 noclobber 51

adding files to 59 nomodtime 51

changing files within 59

contrasted to change numbers 58 0

creating 58 -0 flag 92

deleting 62 older revisions 33

deleting files from 62 one-to-one mapping
locking 59, 61 between depot and client 28
name limitations of 59 open 20

preventing accidental overwrite 61 definition of 20

reporting 62, 88 open status, of jobs 74

opening files. See editing files

options, p4 client 51
organization of depot 51
OSfile permissions 21

P

p4 12,15
installation 95

p4 client options 51

p4 commands
add 20, 27, 35, 54
branch 52,64
branches 89
change 52,54-57, 74
changes 57,87
client 18-20, 28-29, 36, 51-52
clients 92
counters 91
del ete 20, 22,50,54
depots 92,110
descri be 57,79, 88
di ff 47,49-50, 85, 86
di ff2 47,85, 86
edi t 20- 21, 35, 40, 50, 54-56
filelog 37,83 9
files 37,62, 82-83, 88, 89
fix 57,76-77
fixes 77,81, 90-91
get 23
have 25, 37, 50, 60, 84
hel p 25,49
info 25
i ntegrate 52,66-72, 89
i ntegrated 90
j ob 52,73-77
j obs 77,90-91
| abel 52,58-62
| abel s 62, 88, 89
| abel sync 59- 62
| ock 45,56
obliterate 107
opened 36-37, 84
print 37,85
prot ect 52,100-106
refresh 24,50
renane 52
reopen 54,55, 57
reresol ve 70
resol ve 38-46, 67-71, 89
resol ved 47,72, 89
revert 24,51, 54,57
revi ew 79, 80, 81, 91
revi ews 79,81, 92
subm t 20-22, 36, 41, 44, 52-54, 65, 74, 75
sync 23-24, 33-37, 40-41, 47, 50-51, 61-62, 64,

67, 84, 85

unl ock 45
user 52,78, 81
users 81,92
verify 107
where 37,84, 85

P4CLI ENT environment variable 18, 19, 26, 48

p4d 12,15
and journaling 97
error logging 97
installation 95
root directory of 95
starting 96
P4PORT environment variable 15, 16, 48, 79, 95,
96
PAROQT environment variable 95
PAUSER environment variable 49
pending changdlists 54
perfreview perl 79
Perl, and PERFORCE 79, 81
permissions. See protections
platforms supported 12
port 15
port, specifying 48
printing files 85
protection mechanism 14
protections 100
and exclusionary mappings 103
and superusers 102
commands affected by 104
levels needed for integration 68
protections form 100
PWD environment variable 48

R
RCSformat 38
RCSkeyword expansion 36
read access level 101
reference manua, command-line 3
refreshing files 50
release management 11
releases
labeling 58, 62
renaming files 52
renumbering changelists 56
reporting 82-?7?
and changelists 57, 87
and daemons 91
and labels 62
basic 24, 37
branches 89
client workspaces 92
depots 92
file contents 85
file metadata 82
file revision comparisons 85
file revision history 83
fixes 91
integration 72, 89
jobs 77,90
labels 88
of branches 72
of depots 110
of system configuration 92
opened files 84
PERFORCE users 92
resolves 46
resolve

non-interactive 45
of binary files 45
reporting 46
scheduling 40
resolvedialog 41, 42
options 43
resource forks 35
result file 41
retrieving files 23
retrieving label contents 61
reverse delta storage 38
reverting files 24
review access level 102
review daemon 79
review functionality 11
review markers 80
revision history 83
revision numbers 21
revision ranges 35
and integration 70
revision specifications 33
without filenames 35
revisions
head 13
of files 12
root directory 95
root. See client root, depot root

S
scheduling

of merges 67
scheduling of resolves and merges 40
scheduling resolves 40
SCM. See software configuration management
scripts,sample 93
server

connectingto 15

starting 96
shared file repository. See depot
signatures of files 107
software configuration management 11
standard input 52
standard output 52
status

of jobs 74, 76
storage of files 38
subdirectories of depot 94
submission

failure of 56
subscribing to files 78
super access level 102
superuser commands 107
superusers

and protections 102
suspended status, of jobs 74
symlink files 36
synbolic links 35
sync

use of inresolving 40
syntax

client 31

depot 31
local 31
perforce 31
system improvement request 13

T
target files 68
reversing sense with donor 68
TCP/IP 95
temporary files 27
text files 36
theirs
and integration 71
theirs 41, 71
three-way merge 13
tracking viewed changes 80
types, of files. Seefile types

U
unlocking files 45
unopened files,bringing into client workspace 50
updating files 21
user cooperation with Perforce 26
USER environment variable 49
user, specifying 49
USERNANME environment variable 49
users
listing 92

\%
version control 11
version information 99
viewing files 85
views

and branching 64

and labels 59

client 19

usage 28

W
wildcards 27
and p4 add 27
inviews 29
usage 33
work
intended 13
work, intended 73
workspace. See client workspace
write access level 101

X

xbinary files 36
xtext files 36

Y
yoursfile 41
and integrate 71

	PREFACE About This Manual
	New 97.3 Features
	Margin Note Icons
	The Example Set
	Please Give Us Feedback

	CHAPTER 1 Perforce Concepts
	Perforce Architecture
	Moving Files Between the Clients and the Server
	File Conflicts
	Labeling Groups of Files
	Branching Files
	Job Tracking
	Change Review and Daemons
	Protections

	CHAPTER 2 Connecting to the p4d Server
	Verifying the Connection to the p4d Server
	Telling p4 Where p4d is

	CHAPTER 3 Perforce Basics: Quick Start
	Underlying Concepts
	File Configurations Used in the Examples

	Setting Up a Client Workspace
	Naming the Client Workspace
	Describing the Client Workspace to the Perforce Server
	Editing an Existing Client Specification
	Deleting an Existing Client Specification

	Copying Files from the Workspace to the Depot
	Adding Files to the Depot
	Updating Depot Files
	Deleting Files From the Depot
	Submitting with Multiple Operations

	Retrieving Files from the Depot into a Workspace
	Reverting Files to their Unopened States
	Basic Reporting Commands

	CHAPTER 4 Perforce Basics: The Details
	Description of the Client Workspace
	Wildcards
	Wildcards and ‘p4 add’

	Mapping the Depot to the Client Workspace
	Using Views
	Wildcards in Views
	Types of Mappings

	Referring to Files on Command Lines
	Local Syntax
	Perforce Syntax
	Providing Files as Arguments to Commands
	Wildcards and Perforce Syntax

	Name and String Limitations
	File Names
	Descriptions

	Specifying Older File Revisions
	Using Revision Specifications without Filenames

	Revision Ranges
	File Types
	Forms and Perforce Commands
	General Reporting Commands

	CHAPTER 5 Perforce Basics: Resolving File Conflicts
	RCS Format: How Perforce Stores File Revisions
	Only the Differences Between Revisions are Stored
	Use of ‘diff’ to Determine File Revision Differences

	Scheduling Resolves of Conflicting Files
	Why ‘p4 sync’ to Schedule a Resolve?
	How Do I Know When a Resolve is Needed?

	Performing Resolves of Conflicting Files
	File Revisions Used and Generated by ‘p4 resolve’
	Types of Conflicts Between File Revisions
	How the Merge File is Generated
	The ‘p4 resolve’ Options
	Using Flags with Resolve to Non-Interactively Accept Particular Revisions
	Binary Files and ‘p4 resolve’

	Locking Files to Minimize File Conflicts
	Preventing Multiple Resolves with File Locking

	Resolves and Branching
	Resolve Reporting

	CHAPTER 6 Perforce Basics: Miscellaneous Topics
	Command-Line Flags Common to All Perforce Commands
	Working Detached
	Finding Changed Files with ‘p4 diff’
	Using ‘p4 diff’ to Update the Depot

	Refreshing files
	Options in the ‘p4 client’ Form
	Recommendations for Organizing the Depot
	Renaming Files
	Reading Forms from Standard Input; Writing Forms to Standard Output

	CHAPTER 7 Changelists
	Working with the Default Changelist
	Creating Numbered Changelists Manually
	Working With Numbered Changelists
	Automatic Creation and Renumbering of Changelists
	When Submit of the Default Changelist Fails, the Changelist is Assigned a Number
	Perforce May Renumber a Changelist upon Submission

	Deleting Changelists
	Changelist Reporting

	CHAPTER 8 Labels
	Why Not Just Use Change Numbers?
	Creating a Label
	Adding and Changing Files Listed in a Label
	Previewing Labelsync’s Results

	Preventing Accidental Overwrites of a Label’s Contents
	Retrieving a Label’s Contents into a Client Workspace
	Deleting Labels
	Label Reporting

	CHAPTER 9 Branching
	What is Branching?
	When to Create a Branch
	Branching’s First Action: Creating a Branch
	Step 1: Create the Branch View
	Step 2: Include the Branched Files in the Client View
	Steps 3 & 4: Use ‘p4 integrate’ and ‘p4 submit’ to Create the Target Files

	Working With Branched Files
	Branching’s Second Action: Propagating Changes from One Codeline to the Other
	Propagating Changes from Branched Files to the Original Files
	When the -r flag is used to propagate changes from branched donors to original targets, the origi...

	Branching and Merging Without a Branch View
	Deleting Branches
	Advanced Integration Functions
	Integrating Specific File Revisions
	Re-Integrating and Re-Resolving Files

	How Integrate Works
	p4 integrate’s Definitions of yours, theirs, and base
	The Integration Algorithm
	Integrate’s Actions

	Integration Reporting

	CHAPTER 10 Job Tracking
	Creating and Editing Jobs
	Linking Jobs to Changelists, and Changing a Job’s Status
	Automatically Performed Functions
	Controlling Which Jobs Appear in Changelists
	Manually Associating Jobs with Changelists
	Arbitrarily Changing a Job’s Status

	Deleting Jobs
	Integrating to External Defect Tracking Systems
	Job Reporting

	CHAPTER 11 Change Review & Other Daemons
	Providing Change Review Parameters
	Running the Daemon
	How the Review Daemon Works
	Tracking Reviewed Changelists with Review Counters
	Change Review and Protections

	Creating Other Daemons
	Change Review Reporting

	CHAPTER 12 Reporting and Data Mining
	Files
	File Metadata
	Relationships Between Client and Depot Files
	File Contents

	Changelists
	Changelists that Meet Particular Criteria
	Files and Jobs Affected by Changelists

	Labels
	Branch and Integration Reporting
	Job Reporting
	Jobs, Fixes, and Changelists

	Reporting for Daemons
	System Configuration
	Special Reporting Flags
	Reporting with Scripting
	Comparing the Change Content of Two File Sets
	Changelists Submitted by Particular Users
	Listing Subdirectories of the Depot

	CHAPTER 13 System Administration: Installation and Maintenance
	Installation of p4d and p4
	Creating a p4d Root Directory
	Setting p4d’s Port
	Telling p4 Where The p4d Server Is
	Starting p4d: The Basics
	Logging Errors
	Protections
	Checkpointing, Journaling, and Recovery
	Making a Checkpoint
	Turning Journaling On and Off
	Recovering

	Managing Disk Space
	License File
	Release and License Information

	CHAPTER 14 System Administration: Protections
	When Should Protections Be Set?
	Setting Protections with p4 protect
	The Permission Lines’ Four Fields
	Access Levels
	Default Protections
	Interpreting Multiple Permission Lines
	Exclusionary Protections

	Access Levels Required by Perforce Commands
	How Protections are Implemented

	CHAPTER 15 System Administration: Superuser Commands
	File Verification by Signature
	File Obliteration
	Changelist Deletion & Description Editing
	Distributed Depots
	Defining New Depots
	Accessing Files In Other Depots
	Integrating Files From Other Depots
	Deleting Depots
	Depot Reporting Commands

	APPENDIX A Environment Variables
	APPENDIX B Glossary

