
Perforce 97.3
Command Line
User’s Manual

Manual 97.3m1

November 25, 1997

This manual copyright 1997 PERFORCE Software.
All rights reserved.

PERFORCE software and documentation is available from
http://www.perforce.com/. You may download and
use PERFORCE programs, but you may not sell or redistribute
them. You may download and print the documentation, but you
may not sell or redistribute it. You may not modify or attempt to
reverse engineer the programs.

PERFORCE programs and documents are available from our Web
site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by
PERFORCE Software.

PERFORCE Software assumes no responsibility or liability for
any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you
agree to these terms.

PERFORCE and Inter-File Branching are trademarks of
PERFORCE Software. PERFORCE software includes software
developed by the University of California, Berkeley and its
contributors.

All other brands or product names are trademarks or registered
trademarks of their respective companies or organizations.

The remainder of this column is left blank for your use. You may
utilize it to store such written, inscribed, drawn, painted, copied,
drafted, or duplicated material as you see fit, or for any other use,
providing the use does not violate the laws, ordinances, statutes,
regulations, edicts, canons, or decrees of your country, state,
territory, kingdom, province, county, city, or other municipality.
PERFORCE Software will assume no liability, responsibility, debt,
risk or other obligation for any defamatory, libelous, pejorative,
unlawful, slanderous, or otherwise illegal material appearing
below this paragraph in this column on this page.

PREFACE $ERXW�7KLV�0DQXDO
Perforce 97.3 User’s M

in-

���17
This is the PERFORCE 97.3 User’s Guide. It teaches the use of PERFORCE’s command-line
interface; the PERFORCE Windows GUI is not discussed. For documentation on the W
dows GUI interface, P4WIN, please see our P4 to P4WIN Translation Guide (for experi-
enced PERFORCE users) or the P4WIN User’s Guide (for the PERFORCE novice).

Although this guide can be used as a reference manual, it is primarily intended as guide/
tutorial on using PERFORCE. The full syntax of most of the PERFORCE commands is not
provided here; we suggest that you supplement use of this guide with the upcoming PER-
FORCE Command Reference, or with the on-line help system. Use of this manual for oper-
ating systems other than UNIX and NT should be supplemented with the release notes for
that OS.

1HZ������)HDWXUHV

The features new to PERFORCE 97.3 have been marked with changebars in the left margin.
The release notes provide more detailed information, and are available from our web site.

0DUJLQ�1RWH�,FRQV

This manual makes use of notes in the left margin to supply additional information. The
icons accompanying these notes have the following meanings:

Information specific to the Windows 95 or Windows NT command line.

A cross-reference to other material in this manual.

A concrete example of the material discussed.

Please consult the release notes before upgrading from earlier versions of PERFORCE to
version 97.3! The journaling and checkpointing subsystems have changed; the release
notes contain safety instructions on performing the upgrade.
anual 3

Perforce 97.3 User’s M

Chapter PREFACE : About This Manual

mon-

 Elm

em-

 teach
exem-
an be

lica-

!

A note of general interest.

This note is rather important!

7KH�([DPSOH�6HW

We have attempted to develop a uniform example set for use with this manual. All of the
examples use the source code for Elm, a popular UNIX mail program. We selected the
Elm source code for a number of reasons:

• Elm is widely used, and many PERFORCE users will be familiar with the program. If they
are not, they at least understand what it does.

• The source code is stored in well-organized subdirectories, which allow us to de
strate certain capabilities of PERFORCE.

• The source code for Elm is widely available; users of this manual can download
and try the examples as they're encountered.

Links to the Elm source code can be found at

http://www.myxa.com/elm.html

We are using the Elm source with the kind permission of Sydney Weinstein and Bill P
berton of the USENET Community Trust.

3OHDVH�*LYH�8V�)HHGEDFN

We are always interested in receiving feedback on our manuals. Dodoes this guide
the topic well? Are there any glaring errors? Are the explanations clear, or are the
plifications obfuscated by this enchiridion? Please let us know what you think; we c
reached at manual@perforce.com.

Disclaimer: To the best of our knowledge, the Elm team has never used PERFORCE

for source management. As far as we know, they never heard of PERFORCE until they
received our email asking for permission to use their code in our manual. No imp
tion that the Elm team uses or endorses PERFORCE is intended; none should be inferred.
anual 4

Table of Contents

PREFACE About This Manual 3

New 97.3 Features 3
Margin Note Icons 3
The Example Set 4
Please Give Us Feedback 4

CHAPTER 1 Perforce Concepts 11

Perforce Architecture 12
Moving Files Between the Clients
and the Server 12
File Conflicts 13
Labeling Groups of Files 13
Branching Files 13
Job Tracking 13
Change Review and Daemons 14
Protections 14

CHAPTER 2 Connecting to the
p4d Server 15

Verifying the Connection to
the p4d Server 15
Telling p4 Where p4d is 16

CHAPTER 3 Perforce Basics:
Quick Start 17

Underlying Concepts 17
File Configurations Used in the Examples 17

Setting Up a Client Workspace 18
Naming the Client Workspace 18
Describing the Client Workspace
to the PERFORCE Server 18
Editing an Existing Client Specification 19
Deleting an Existing Client Specification 20

Copying Files from the Workspace
to the Depot 20

Adding Files to the Depot 20
Updating Depot Files 21
Deleting Files From the Depot 22
Submitting with Multiple Operations 22

Retrieving Files from the Depot
into a Workspace 23
Reverting Files to their
Unopened States 24
Basic Reporting Commands 24

CHAPTER 4 Perforce Basics:
The Details 26

Description of the Client Workspace 26
Wildcards 27

Wildcards and ‘p4 add’ 27

Mapping the Depot to the Client Workspace 28
Using Views 28
Wildcards in Views 29
Types of Mappings 29

Referring to Files on Command Lines 31
Local Syntax 31
Perforce Syntax 31
Providing Files as Arguments to Commands32
Wildcards and Perforce Syntax33

Name and String Limitations 33
File Names 33
Descriptions 33

Specifying Older File Revisions 33
Using Revision Specifications without Filenames35

Revision Ranges 35
File Types 35
Forms and Perforce Commands 36
General Reporting Commands 37

CHAPTER 5 Perforce Basics:
Resolving File Conflicts 38

RCS Format: How Perforce Stores File Revisions 38
Only the Differences Between Revisions are Stored39
Use of ‘diff ’ to Determine File Revision Differences40

Scheduling Resolves of Conflicting Files 40
Why ‘p4 sync’ to Schedule a Resolve?40
How Do I Know When a Resolve is Needed?41

Performing Resolves of Conflicting Files 41
File Revisions Used and Generated by p4 resolve 41
Types of Conflicts Between File Revisions 42
How the Merge File is Generated 42
The ‘p4 resolve’ Options 43
Using Flags with Resolve
to Non-Interactively Accept Particular Revisions45
Binary Files and ‘p4 resolve’ 45

Locking Files to Minimize File Conflicts 45
Preventing Multiple Resolves with File Locking46

Resolves and Branching 46
Resolve Reporting 46

CHAPTER 6 Perforce Basics:
Miscellaneous Topics 48

Command-Line Flags
Common to All Perforce Commands 48
Working Detached 49

Finding Changed Files
with ‘p4 diff ’ 50
Using ‘p4 diff ’ to
Update the Depot 50

Refreshing files 50
Options in the ‘p4 client’ Form 51
Recommendations for
Organizing the Depot 51
Renaming Files 52
Reading Forms from Standard Input;
Writing Forms to Standard Output52

CHAPTER 7 Changelists 53

Working with the Default Changelist53
Creating Numbered Changelists Manually54
Working With Numbered Changelists55
Automatic Creation and Renumbering of Changelists56

When Submit of the Default Changelist Fails,
the Changelist is Assigned a Number 56
Perforce May Renumber a Changelist upon Submission 56

Deleting Changelists 57
Changelist Reporting 57

CHAPTER 8 Labels 58

Why Not Just Use Change Numbers? 58
Creating a Label 58
Adding and Changing
Files Listed in a Label 59

Previewing Labelsync’s Results61

Preventing Accidental Overwrites of
a Label’s Contents 61
Retrieving a Label’s Contents into a Client Workspace61
Deleting Labels 62
Label Reporting 62

CHAPTER 9 Branching 63

What is Branching? 63
When to Create a Branch63
Branching’s First Action:
Creating a Branch 64

Step 1: Create the Branch View 64
Step 2: Include the Branched Files in the Client View 65
Steps 3 & 4:
Use ‘p4 integrate’ and ‘p4 submit’
to Create the Target Files66

Working With Branched Files 67
Branching’s Second Action:
Propagating Changes from One Codeline
to the Other 67

Propagating Changes from Branched Files
to the Original Files 68
When the -r flag is used to propagate changes from branched donors to
original targets, the original source files must be visible through the target
view. 69

Branching and Merging
Without a Branch View 69
Deleting Branches 69
Advanced Integration Functions69

Integrating Specific File Revisions 70
Re-Integrating and Re-Resolving Files 70

How Integrate Works 70
p4 integrate’s Definitions of yours, theirs, and base71
The Integration Algorithm 71
Integrate’s Actions 71

Integration Reporting 72

CHAPTER 10 Job Tracking 73

Creating and Editing Jobs 73
Linking Jobs to Changelists,
and Changing a Job’s Status74

Automatically Performed Functions 74
Controlling Which Jobs Appear in Changelists 76
Manually Associating Jobs with Changelists 76
Arbitrarily Changing a Job’s Status76

Deleting Jobs 77
Integrating to External Defect Tracking Systems 77
Job Reporting 77

CHAPTER 11 Change Review
& Other Daemons 78

Providing Change Review Parameters 78
Running the Daemon 79
How the Review Daemon Works 79
Tracking Reviewed Changelists
with Review Counters 80
A Protections Warning 81
Creating Other Daemons 81
Change Review Reporting 81

CHAPTER 12 Reporting
and Data Mining 82

Files 82
File Metadata 82
Relationships Between Client and Depot Files84
File Contents 85

Changelists 87
Changelists that Meet Particular Criteria87
Files and Jobs
Affected by Changelists88

Labels 88
Branch and Integration Reporting 89
Job Reporting 90

Jobs, Fixes, and Changelists91

Reporting for Daemons 91
System Configuration 92
Special Reporting Flags 92

Reporting with Scripting 93
Comparing the Change Content of Two File Sets 93
Changelists Submitted by Particular Users 93
Listing Subdirectories of the Depot 94

CHAPTER 13 System Administration: Installation and
Maintainance 95

Installation of p4d and p4 95
Creating a p4d Root Directory 95
Setting p4d’s Port 95
Telling p4 Where The p4d Server Is96
Starting p4d: The Basics96
Logging Errors 97
Protections 97
Checkpointing, Journaling, and Recovery97

Making a Checkpoint 97
Turning Journaling On and Off 98
Recovering 98

Managing Disk Space99
License File 99
Release and License Information99

CHAPTER 14 System Administration:
Protections 100

When Should Protections Be Set?100
Setting Protections with p4 protect100

The Permission Lines’ Four Fields101
Access Levels101
Default Protections 102
Interpreting Multiple Permission Lines103
Exclusionary Protections 103

Access Levels Required by Perforce Commands 104
How Protections are Implemented 105

CHAPTER 15 System Administration:
Superuser Commands 107

File Verification by Signature 107
File Obliteration 107
Changelist Deletion
& Description Editing 107

Distributed Depots 108
Defining New Depots 108
Accessing Files In Other Depots 109
Integrating Files From Other Depots 110
Deleting Depots 110
Depot Reporting Commands 110

APPENDIX A Environment Variables 111

APPENDIX B Glossary 116

CHAPTER 1 3(5)25&(�&RQFHSWV
Perforce 97.3 User’s M

and

heir

nown

t in

re revi-
ystem
lve
P

-
 com-

You don’t need to
read this chapter if
you don’t want to.

All the material
discussed here is
also covered in the
‘how-to’ chapters,
which comprise the
rest of the manual.

This chapter is
provided as a guide
to what PERFORCE
does, without the
details of how to
do it.
PERFORCE facilitates the sharing of files among multiple users. It is a software configura-
tion management tool, but software configuration management (SCM) is defined in many
different ways, depending on who is giving the definition. SCM has been described as
providing version control, file sharing, release management, defect tracking, build man-
agement, and a few other things. It’s worth looking at exactly what PERFORCE does and
doesn’t do:

• PERFORCE offers version control: multiple revisions of the same file are stored,
older revisions are always accessible.

• PERFORCE provides facilities for concurrent development; multiple users can edit t
own copies of the same file.

• Some release management facilities are offered; PERFORCE will track which revisions of
which files are part of a particular release.

• Bugs and system improvement requests can be tracked from entry to fix; this is k
as defect tracking.

• PERFORCE supplies some lifecycle management functionality; files can be kep
release branches, development branches, or in any sort of needed file set.

• Change review functionality is provided by PERFORCE; this allows users to be notified
by email when particular files are changed.

• Although a build management tool is not built into PERFORCE, we do offer a companion
freeware product called “JAM - Make(1) Redux”. JAM and PERFORCE meet at the file
system; source files managed by PERFORCE are easily built by JAM.

PERFORCE excels at all file management functions. Although PERFORCE was built to man-
age source files, it can manage any sort of on-line documents. It can be used to sto
sions of a manual, to manage Web pages, or to store old versions of operating s
administration files. Its branching functionality, which allows copies of files to evo
separately from the files they were copied from, is unparalleled in the industry. And ER-
FORCE is extremely fast.

3(5)25&(�$UFKLWHFWXUH

PERFORCE has a client/server architecture, in which many computers, called clients, are
connected to one central machine, the server. Each user works on a client; at their com
mand, files they’ve been editing are transferred to and from the server. The clients
municate with the server via TCP/IP.
anual 12

Perforce 97.3 User’s M

Chapter 1 : PERFORCE Concepts

ry,

S,

tories
 a

, and

 For
d, and
, which
e of

pot at

t
cess all
 P

 per-

mple,
h edits
o the

would

o
ide

The PERFORCE
installation guide
can be found in
Chapter 13 .

Basic PERFORCE
usage is taught in
Chapters 3 and 4.

The details of
changelists are
discussed in
Chapter 7.

Resolving
file conflicts is the
topic of Chapter 5.
The PERFORCE clients may be distributed around a local area network, wide area network,
dialup network, or any combination of these. There can also be PERFORCE clients on the
same host as the server.

Two programs do the bulk of PERFORCE’s work:

• The P4D program is run on the PERFORCE server. It manages the shared file reposito
and keeps track of users, clients, protections, and other PERFORCE metadata.

P4d must be run on a UNIX or Windows/NT host.

• The P4 program is run on each PERFORCE client. It sends the users’ requests to the P4d
server program for processing, and communicates with P4D via TCP/IP.

P4 client programs can be run on many platforms, including UNIX, Windows, VM
Macintosh, BeOS, and Next hosts.

0RYLQJ�)LOHV�%HWZHHQ�WKH�&OLHQWV
DQG�WKH�6HUYHU

Users create, edit, and delete files in their own directories on the clients; these direc
are called client workspaces. PERFORCE commands are used to move files to and from
shared file repository on the server known as the depot. PERFORCE users can retrieve files
from the depot into their own client workspaces, where they can be read, edited
resubmitted to the depot for other users to access. When a new revision of a file is stored
in the depot, the old revisions are kept, and are still accessible.

Files that have been edited within a client workspace are sent to the depot via a changelist,
which is a list of files, and instructions that tell the depot what to do with those files.
example, one file might have been changed in the client workspace, another adde
another deleted. These file changes might be sent to the depot in a single changelist
is processed atomically: either all the changes are made to the depot at once, or non
them are. This allows problem fixes that span multiple files to be updated in the de
exactly the same time.

Each client workspace has its own client view, which determines which files in the depo
can be accessed by that client workspace. One client workspace might be able to ac
the files in the depot; another client workspace might access only a single file. TheER-
FORCE server is responsible for tracking the state of the client workspace; PERFORCE

knows which files a client workspace has, where they are, and which files have write
mission turned on.

)LOH�&RQIOLFWV

When two users edit the same file, it is possible for their changes to conflict. For exa
suppose two users copy the same file from the depot into their workspaces, and eac
his copy of the file in different ways. The first user sends his version of the file back t
depot; subsequently, the second user tries to do the same thing. If PERFORCE were to
unquestioningly accept the second user’s file into the depot, the first user’s changes
not be included in the latest revision of the file (known as the head revision).

When a file conflict is detected, PERFORCE allows the user experiencing the conflict t
perform a resolve of the conflicting files. The resolve process allows the user to dec
anual 13

Perforce 97.3 User’s M

Chapter 1 : PERFORCE Concepts

ile be
er’s

and

s, the
rticu-
ame,
-
ace.

is not
ctions;

, and
f the

in
l

w

ade to
 press
 run

resents
e

 up to
who

up-
, or it
ch as

Chapter 8 discusses
labels.

The workings of
Inter-File
Branching is
covered in
Chapter 9.

You’ll learn how to
do job tracking in
Chapter 10.
what needs to be done: should his file overwrite the other user’s? Should his own f
thrown away? Or should the two conflicting files be merged into one? At the us
request, PERFORCE will perform a three-way merge between the two conflicting files and
the single file that both were based on. This process generates a merge file from the con-
flicting files: the merge file contains all the changes from both conflicting versions,
this file can be edited and then submitted to the depot.

/DEHOLQJ�*URXSV�RI�)LOHV

It is often useful to mark a particular set of file revisions for later access. For example
release engineers might want to keep a list of all the file revisions that comprise a pa
lar release of their program. This list of files can be assigned a single mnemonic n
like release2.0.1; this name is a label for the user-determined list of files. At any sub
sequent time, the label can be used to copy the old file revisions into a client worksp

%UDQFKLQJ�)LOHV

Thus far, it has been assumed that all changes of files happen linearly. But this
always the case: suppose that one source file needs to evolve in two separate dire
perhaps one set of upcoming changes will allow the program to run under VMS
another set will make it a Mac program. Clearly, two separately evolving copies o
same files are necessary.

PERFORCE’s Inter-File Branching™ mechanism allows any set of files to be copied with
the depot. By default, the new file set, or codeline, evolves separately from the origina
files, but changes in either codeline can be propagated to the other.

We’re particularly proud of PERFORCE’s branching mechanism. Most SCM systems allo
some form of branching, but PERFORCE’s is particularly flexible and elegant.

-RE�7UDFNLQJ

Job is a generic term for a plain-text description of some change that needs to be m
the source code. A job might be a bug description, like “the system crashes when I
return”, or it might be a system improvement request, like “please make the program
faster.”

Whereas a job represents work that is intended to be performed, a changelist rep
work actually done. PERFORCE’s job tracking mechanism allows jobs to be linked to th
changelists that implement the work requested by the job. A job can later be looked
determine if and when it was fixed, which file revisions implemented the fix, and
fixed it.

PERFORCE’s job tracking mechanism does not implement all functionality normally s
plied by full-scale defect tracking systems. Its simple functionality can be used as is
can be integrated with a full-scale job tracking system with a scripting language su
Perl.
anual 14

Perforce 97.3 User’s M

Chapter 1 : PERFORCE Concepts

en
ceives
ternal
nge

ess to

s. Since
ty, not

Chapter 11
discusses change
review, and contains
instructions on
creating your own
daemons.

PERFORCE’s
protection
mechanism is
described in
Chapter 14.
&KDQJH�5HYLHZ�DQG�'DHPRQV

PERFORCE’s change review mechanism allows users to receive email notifying them wh
particular files have been updated in the depot. The files that a particular user re
notification on is determined by that user. Change review is implemented by an ex
Perl program, or daemon, and can be recoded by a knowledgeable user, allowing cha
review functionality to be customized.

3URWHFWLRQV

PERFORCE provides a protection scheme to prevent unauthorized or inadvertent acc
the depot. The protection mechanism determines exactly which PERFORCE commands are
allowed to be run by any particular client.

Permissions are granted or denied based on the user’s username and IP addres
PERFORCE usernames are easily changed, protections at the user level provide safe
security. Protections at the IP address level are as secure as the host itself.
anual 15

CHAPTER 2 &RQQHFWLQJ�WR�WKH
3�'�6HUYHU
Perforce 97.3 User’s M

ry,This chapter
assumes that both
the P4D and P4
programs have been
installed by
a system
administrator.
Installation
instructions
can be found
in Chapter 13.

Example:
Output from
p4 info when
correctly connected
to the P4D server
PERFORCE uses a client/server architecture. Files are created and edited by users on their
own client hosts; these files are transferred to and from a shared file repository located on
a PERFORCE server. Every running PERFORCE system uses a single server and can have
many clients.

Two programs do the bulk of PERFORCE’s work:

• The P4D program is run on the PERFORCE server. It manages the shared file reposito
and keeps track of users, clients, protections, and other PERFORCE metadata.

• The P4 program is run on each PERFORCE client. It sends the users’s requests to the P4D

server program for processing, and communicates with p4d via TCP/IP.

Each P4 program needs to know the address and port of the P4D server that it communi-
cates with. This address is stored in the P4PORT environment variable.

9HULI\LQJ�WKH�&RQQHFWLRQ�WR�
WKH�3�'�6HUYHU

A p4 client needs to know two things in order to talk to the P4D server:

• The name of the host that P4D is running on

• The port that P4D is listening on.

These are set via a single environment variable, P4PORT. It is possible that your system
administrator has already set P4PORT; if not, you'll need to set it yourself.

To verify the connection, type p4 info at the command line. If the P4PORT environment
variable is correctly set, you'll see something like this:

User name: edk
Client name: eds_elm
Client unknown.
Current directory: /usr/edk
Client address: 206.14.52.194:3119
Server address: margarine:1818
Server root: /usr/local/p4root
Server version: P4D-FREEBSD (12/13/96)
Server license: test 10 users
anual 16

Perforce 97.3 User’s M

Chapter 2 : Connecting to the P4D Server

 the

t that
u’ve

Example:
Error from
p4 info;
the P4D server
connection is
incorrectly specified
The server address: field shows which P4D server has been connected to; it displays
the host and port number that P4D is listening on.

In the above example, everything is fine. If, however, you receive a variant of this mes-
sage:

then P4PORT has not been correctly set. If the value you see in the third line of the error
message is perforce:1666 (as above), then P4PORT has not been set at all; if the value
is anything else, P4PORT has been incorrectly set. In either case, you’ll need to set
value of P4PORT.

7HOOLQJ�3��:KHUH�3�'�LV

Before continuing, you’ll need to ask your system administrator the name of the hos
P4D is located on, and the number of the TCP/IP port it’s listening on. Once yo
obtained this information, set your P4PORT environment variable to host:port#,
where host is the name of the host that P4D is running on, and port# is the port that p4d
is listening on. For example:

The definition of P4PORT can be shortened if P4 is running on the same host as P4D. In this
case, only the P4D port number need be provided to P4. And if P4D is running on a host
named or aliased perforce, listening on port 1666, the definition of P4PORT for the P4
client can be dispensed with altogether. For example:

When P4PORT has been set, you should re-verify the connection with p4 info, as
described above. Once this has been done, PERFORCE is ready to use.

Error:
Connect to server failed; check P4PORT.

TCP connect to perforce:1666 failed.
 perforce: host unknown.

If the P4D host is named... and the P4D port is named... set P4PORT to:

dogs 3435 dogs:3435

x.com 1818 x.com:1818

If the P4D host is named... and the P4D port is... set P4PORT to...

<same host as the p4 client> 9783 9783

perforce 1666 <no value needed>
anual 17

CHAPTER 3 3(5)25&(�%DVLFV�
4XLFN�6WDUW
Perforce 97.3 User’s M

er; the

d in

an be
evision

rmal
d text
cing

e elm

The use of the Elm
source code set is
described in the
About This
Manual chapter
(page 3).
This chapter teaches basic PERFORCE usage. You’ll learn how to move files to and from
the common file repository, how to back out of these operations, and the basic PERFORCE

reporting commands.

These concepts and commands are painted with very broad strokes in this chapt
details are provided in the next.

8QGHUO\LQJ�&RQFHSWV

The basic ideas behind PERFORCE are quite simple: files are created, edited, and delete
the user’s own directories, which are called client workspaces. PERFORCE commands are
used to move files to and from a shared file repository known as the depot. PERFORCE

users can retrieve files from the depot into their own client workspaces, where they c
read, edited, and resubmitted to the depot for other users to access. When a new r
of a file is stored in the depot, the old revisions are kept, and are still accessible.

PERFORCE was written to be as unobtrusive as possible; very few changes to your no
work habits are required. Files are still created in your own directories with a standar
editor; PERFORCE commands supplement your normal work actions instead of repla
them.

PERFORCE commands are always entered in the form p4 command [arguments].

)LOH�&RQILJXUDWLRQV�8VHG�LQ�WKH�([DPSOHV

This manual makes extensive use of examples based on the Elm source code set. The Elm

examples used in this manual are set up as follows:

A single depot is used to store the elm files, and perhaps other projects as well. Th
files will be shared by storing them under an elm subdirectory within the depot.
anual 18

Perforce 97.3 User’s M

Chapter 3 : Perforce Basics: Quick Start

 in

t vari-

g
Example:
Naming the
client workspace

Many P4 commands,
including p4
client, display a
form for editing in a
standard text editor.
The editor that is
used is defined
through the EDITOR
environment
variable.
Each user will store his or her client workspace Elm files in a different subdirectory. The
two users we’ll be following most closely, Ed and Lisa, will work with their Elm files
the following locations:

6HWWLQJ�8S�D�&OLHQW�:RUNVSDFH

To move files between a client workspace and the depot, the PERFORCE server requires
two pieces of information:

• A name that uniquely identifies the client workspace, and

• The top-level directory of this workspace.

1DPLQJ�WKH�&OLHQW�:RUNVSDFH

To name your client workspace, or to use a different workspace, set the environmen
able P4CLIENT to the name of the client workspace.

Ed is working on the code for Elm. He wants to refer to the collection of files he’s workin
on by the name eds_elm. In the Korn shell, he’d type

Each operating system or shell has its own method of defining environment variables;
Appendix A describes how to create environment variables within each shell and OS.

'HVFULELQJ�WKH�&OLHQW�:RUNVSDFH
WR�WKH�3(5)25&(�6HUYHU

Once the client workspace has been named, it must be identified and described to the PER-
FORCE server with the p4 client command. Typing p4 client brings up the client def-
inition form in a standard text editor; once the form is filled in and the editor exited, the
PERFORCE server will be able to move files between the depot and the client workspace.

The p4 client form has a number of fields; the two most important are the Root and
View. The meanings of these fields are as follows:

User Username Client Workspace Name Top of own Elm File Tree

Ed edk eds_elm /usr/edk/elm

Lisa lisag lisas_ws /usr/lisag/docs

$ export P4CLIENT=eds_elm

Field Meaning

Root: Identifies the top subdirectory of the client workspace.
This should be the lowest-level directory that includes
all the files and directories that you’ll be working with
in this workspace.

View: Describes which files and directories in the depot are
available to the client workspace, and where the files in
the depot will be located within the client workspace.
anual 19

Perforce 97.3 User’s M

Chapter 3 : Perforce Basics: Quick Start

ment

d

 The
ork-

hen a
here

ust as
ect on
 only
ortant
you
. If

Example:
Setting the client
root and the client
view

To use PERFORCE
properly, it is crucial
to understand how
views work. Views
are explained in
more detail at the
start of the next
chapter.

!

Ed is working with his elm files in a setting as described above. He’s set the environ
variable P4CLIENT to eds_elm; now he types p4 client from his home directory, and
sees the following form:

If he were to leave the form as is, all of the files under /usr/edk would be mapped to the
depot, and they would map to the entire depot, instead of to just the elm project. He
changes the values in the Root: and View: fields as follows:

This specifies that /usr/edk/elm is the top level directory of Ed’s client workspace, an
that the files under this workspace directory are to be mapped to the depot’s elm_proj

subtree.

When Ed’s done, he quits from the editor, and the p4 client command completes.

The read-only Client: field contains the string stored in the P4CLIENT environment
variable. Description: can be filled with anything at all (up to 128 characters); this pro-
vides an arbitrary textual description of what’s contained in this client workspace.
View: describes the relationship between files in the depot and files in the client w
space.

Creating a client specification has no immediate visible effect; no files are created w
client specification is created or edited. The client specification simply indicates w
files will be located when subsequent P4 commands are used.

(GLWLQJ�DQ�([LVWLQJ�&OLHQW�6SHFLILFDWLRQ

p4 client can be used at any time to change the client workspace specification. J
when a client specification is created, changing a specification has no immediate aff
the locations of any files; the location of files in the depot and workspace is affected
when the client specification is used in subsequent commands. But there is an imp
distinction between changing the client’s root and changing the client’s view: if
change the root, PERFORCE assumes that you will manually relocate the files as well
you change the view and then bring files into the client from the depot, PERFORCE will
delete and add files as necessary to make the client workspace reflect the view.

Client: eds_elm
Owner: ed
Description:
 Created by ed.
Root: /usr/edk
Options: nomodtime noclobber
View:
 //depot/... //eds_elm/...

Client: eds_elm
Owner: ed
Description:
 Created by ed.
Root: /usr/edk/elm
Options: nomodtime noclobber
View:
 //depot/elm_proj/... //eds_elm/...
anual 20

Perforce 97.3 User’s M

Chapter 3 : Perforce Basics: Quick Start

 the

n-

. This

n are
is

iles in

to the

e

If you’re working in
an already-
established
PERFORCE
environment, and
want to start by
retrieving already-
existing files, you
can skip to page 24
and come back to
this section later.

This chapter
discusses only the
default
changelist, which
is automatically
maintained by
PERFORCE.
Changelists can be
created by the user;
please see Chapter 7
for a full discussion.

Example:
Adding files to a
changelist
'HOHWLQJ�DQ�([LVWLQJ�&OLHQW�6SHFLILFDWLRQ

An existing client workspace specification can be deleted with p4 client -d client-
name. Deleting a client specification has no effect on any files in the client workspace or
depot; it simply removes the P4D server’s record of the mapping between the depot and
client workspace. To delete existing files from a client workspace, use p4 sync #none

(described on page 35) on the files before deleting the client specification, or use the sta
dard local OS deletion commands after deleting the client specification.

&RS\LQJ�)LOHV�IURP�WKH�:RUNVSDFH�
WR�WKH�'HSRW

Any file in a client workspace can be added to, updated in, or deleted from the depot
is accomplished in two steps:

1. PERFORCE is told the new state of client workspace files with the commands p4 add

filenames, p4 edit filenames, or p4 delete filenames. When these com-
mands are given, the corresponding files are listed in a PERFORCE changelist, which is
a list of files and operations on those files to be performed in the depot.

2. The operations are performed on the files in the changelist when the p4 submit com-
mand is given.

The commands p4 add, p4 edit, and p4 delete do not immediately add, edit, or
delete files in the depot. Instead, the affected file and the corresponding operatio
listed in the default changelist, and the files in the depot are affected only when th
changelist is submitted to the depot with p4 submit. This allows a set of files to be
updated in the depot all at once: when the changelist is submitted, either all of the f
the changelist are affected, or none of them are.

When a file has been opened with p4 add, p4 edit, or p4 delete, but the correspond-
ing changelist has not yet been submitted in the depot, the file is said to be open in the cli-
ent workspace.

$GGLQJ�)LOHV�WR�WKH�'HSRW

To add a file or files to the depot, type p4 add filename(s). The p4 add commands
opens the file(s) for edit and lists them in the default changelist; they won’t be added
depot until the p4 submit command is given.

Ed is writing a help manual for Elm. The files are named elm-help.0 through
elm-help.3, and they’re sitting in the doc subdirectory of his client workspace root. H
wants to add these files to the depot.

$ cd ~/elm/doc
$ p4 add elm-help.*
//depot/elm_proj/doc/elm-help.0#1 - opened for add
//depot/elm_proj/doc/elm-help.1#1 - opened for add
//depot/elm_proj/doc/elm-help.2#1 - opened for add
//depot/elm_proj/doc/elm-help.3#1 - opened for add
anual 21

Perforce 97.3 User’s M

Chapter 3 : Perforce Basics: Quick Start

e

nt
ith

Example:
Submitting a
changelist to the
depot

Example:
Using multiple file
arguments on a
single command
line.

If a submit fails, the
default changelist
will be assigned a
number, and you’ll
need to submit that
changelist in a
slightly different way.

Please see Chapter 5
for instructions on
resolving file
conflicts.

!

At this point, the files he wants to add to the depot have been added to his default change-
list. However, the files are not actually added to the depot until the p4 submit command
is given.

Ed is ready to submit his added files to the depot. He types p4 submit and sees the fol-
lowing form in a standard UNIX text editor:

Ed changes the contents of the Description: field to describe what these file updates
do. When he’s done, he quits from the editor; the new files are added to the depot.

The Description: field contents must be changed, or the depot update won’t b
accepted. Lines can be deleted from the Files: field; any files deleted from this list will
carry over to the next default changelist, and will appear again the next time p4 submit

is performed.

Multiple file arguments can be provided on the command line.

Ed wants to add all his Elm library, documentation, and header files to the depot.

... and then does a p4 submit.

The operating system’s write permission on submitted files is turned off in the clie
workspace when p4 submit is performed. This helps ensure that file editing is done w
PERFORCE’s knowledge. The write permissions are turned back on by p4 edit, which
is described below.

You might have noticed in the example above that the filenames are displayed as file-
name#1. PERFORCE always displays filenames with a #n suffix; the #n indicates that this
is the n-th revision of this file. Revision numbers are always assigned sequentially.

8SGDWLQJ�'HSRW�)LOHV

To open a file for edit, use p4 edit. This has two effects:

• The file(s) write permissions are turned on in the client workspace, and

• The file(s) to be edited are added to the default changelist.

Change: new
Client: edk
User: edk
Status: new
Description:
 <enter description here>
Files:
 //depot/elm_proj/doc/elm-help.0 # add
 //depot/elm_proj/doc/elm-help.1 # add
 //depot/elm_proj/doc/elm-help.2 # add
 //depot/elm_proj/doc/elm-help.3 # add

$ cd ~
$ p4 add elm/lib/* elm/hdrs/* elm/doc/*
//depot/elm_proj/lib/Makefile.SH#1 - opened for add
//depot/elm_proj/lib/add_site.c#1 - opened for add
//depot/elm_proj/lib/addrmchusr.c#1 - opened for add

<etc.>

anual 22

Perforce 97.3 User’s M

Chapter 3 : Perforce Basics: Quick Start

to the

rk-

depot

epot
P

Example:
Deleting a file from
the depot.

Example:
Adding, updating,
and deleting files in
a single submit.
Since the files must have their write permission turned back on before they can be
edited, the p4 edit command must be given before the file is actually edited.

To save the new file revision in the depot, use p4 submit, as above.

Example: Ed wants to make changes to his elm-help.3 file. He opens the file for edit:

... and then edits the file with any text editor. When he’s finished, he submits the file
depot with p4 submit, as above.

'HOHWLQJ�)LOHV�)URP�WKH�'HSRW

Files are deleted from the depot similarly to the way they are added and edited: the p4
delete command opens the file for delete in the default changelist, and then p4 submit
is used to delete the file from the depot. p4 delete also deletes the file from the client
workspace; this occurs when the p4 delete command is given. In essence,
p4 delete replaces the operating systems rm or del command.

Ed’s file doc/elm-help.3 is no longer needed. He deletes it from both his client wo
space and from the depot as follows:

The file is deleted from the client workspace immediately; it is not deleted from the
until the p4 submit command is given.

Once the changelist is submitted, it will appear as if the file has been deleted from the
depot; however, old file revisions are never actually removed. This makes it possible to
read older revisions of ‘deleted’ files back into the client workspace.

6XEPLWWLQJ�ZLWK�0XOWLSOH�2SHUDWLRQV

Multiple files can be included in any changelist. Submitting the changelist to the d
works atomically: either all the files are updated in the depot, or none of them are. (In ER-
FORCE’s terminology, this is called an atomic change transaction). Changelists can be
used to keep files together that have a common purpose.

Ed is writing the portion of Elm that is responsible for multiple folders (multiple mail-
boxes). He has a new source file src/newmbox.c, and he needs to edit the header file

$ cd ~/elm
$ p4 edit doc/elm-help.3
//depot/elm_proj/doc/elm-help.3#1 - opened for edit

$ cd ~elm/doc
$ p4 delete elm-help.3
//depot/elm_proj/doc/elm-help.3#1 - opened for delete
anual 23

Perforce 97.3 User’s M

Chapter 3 : Perforce Basics: Quick Start

nge-
or, if

ll the

ot that

p4 sync was
named p4 get in
previous versions of
PERFORCE.
p4 get can still be
used as an alias for
p4 sync .

Example:
Retrieving files from
the depot
into the
client workspace.
hdrs/s_elm.h and the doc/elm-help files. He adds the new file and prepares to edit
the existing files:

He edits the existing files and then p4 submit’s the default changelist:

All of his changes supporting multiple mailboxes are grouped together in a single cha
list; when Ed quits from the editor, either all of these files are updated in the depot,
the submission fails for any reason, none of them are.

Files can be deleted from the Files: field; these files are moved into the next default
changelist, and will appear again the next time p4 submit is performed.

5HWULHYLQJ�)LOHV�IURP�WKH�'HSRW�
LQWR�D�:RUNVSDFH

Files can be retrieved from the depot into a client workspace from the depot with p4
sync.

Jill has been assigned to fix bugs in Ed’s code. She creates a directory called elm_ws

within her own directory, and sets up a client workspace; now she wants to copy a
existing elm files from the depot into her workspace.

Once the command completes, the most recent revisions of all the files in the dep
are mapped through her client workspace view will be available in her workspace.

$ cd ~
$ p4 add elm/src/newmbox.c
//depot/elm_proj/src/newmbox.c#1 - opened for add

<etc.>
$ p4 edit elm/hdrs/s_elm.h doc/elm-help.*
//depot/elm_proj/hdrs/s_elm.h#1 - opened for edit
//depot/elm_proj/doc/elm-help.0#1 - opened for edit
//depot/elm_proj/doc/elm-help.1#1 - opened for edit
//depot/elm_proj/doc/elm-help.2#2 - opened for edit

Change: new
Client: eds_elm
User: edk
Status: new
Description:
 Changes to Elm’s “multiple mailbox” functionality
Files:
 //depot/elm_proj/doc/elm-help.0 # edit
 //depot/elm_proj/doc/elm-help.1 # edit
 //depot/elm_proj/doc/elm-help.2 # edit
 //depot/elm_proj/hdrs/s_elm.h # edit
 //depot/elm_proj/src/newmbox.c # add

$ cd ~elm_ws
$ p4 sync
//depot/elm_proj/doc/elm-help.0#2 - added as /usr/lisag/elm_ws/doc/elm-help.0
//depot/elm_proj/doc/elm-help.1#2 - added as /usr/lisag/elm_ws/doc/elm-help.1

<etc.>
anual 24

Perforce 97.3 User’s M

Chapter 3 : Perforce Basics: Quick Start

, if a

ned

Example:
Reverting a file back
to the last synced
version.
The p4 sync command maps depot files through the client view, compares the result
against the current client contents, and then adds, updates, or deletes files in the client
workspace as needed to bring the client contents in sync with the depot. p4 sync can take
filenames as parameters, with or without wildcards, to limit the files it retrieves.

p4 sync’s job is to match the state of the client workspace to that of the depot; thus
file has been deleted from the depot, p4 sync will delete it from the client workspace.

5HYHUWLQJ�)LOHV�WR�WKHLU
8QRSHQHG�6WDWHV

Any file opened for add, edit, or delete can be removed from its changelist with p4

revert. This command will revert the file in the client workspace back to its unope
state.

Ed wants to edit a set of files in his src directory: leavembox.c, limit.c, and sig-
nals.c. He opens the files for edit:

and then realizes that signals.c is not one of the files he will be working on, and that he
didn’t mean to open it. He can revert signals.c to its unopened state with p4 revert:

If p4 revert is used on a file that had been opened with p4 delete, it will appear back
in the client workspace immediately. If p4 add was used to open the file, p4 revert
removes it from the changelist, but leaves the client workspace file intact. If the reverted
file was originally opened with p4 edit, the last synced version will be written back to
the client workspace, overwriting the newly-edited version of the file. In this case, you
may want to save a copy of the file before running p4 revert.

%DVLF�5HSRUWLQJ�&RPPDQGV

PERFORCE provides some 20+ reporting commands. Each chapter in this manual ends with
a description of the reporting commands relevant to the chapter topic. All the reporting
commands are discussed in greater detail in the reporting chapter, chapter 12.

$ cd ~elm/src
$ p4 edit leavembox.c limit.c signals.c
//depot/elm_proj/src/leavembox.c#2 - opened for edit
//depot/elm_proj/src/limit.c#2 - opened for edit
//depot/elm_proj/src/signals.c#1 - opened for edit

$ p4 revert signals.c
//depot/elm_proj/src/signals.c#1 - was edit, reverted
anual 25

Perforce 97.3 User’s M

Chapter 3 : Perforce Basics: Quick Start
The most basic PERFORCE commands are p4 help and p4 info.

Two other reporting commands are used quite often:

Command Meaning

p4 help commands Lists all PERFORCE commands with a brief description of
each.

p4 help command For any command provided, gives detailed help about that
command. For example, p4 help sync provides detailed in-
formation about the p4 sync command.

p4 help usage Describes command-line flags common to all PERFORCE
commands.

p4 help views Gives a discussion of PERFORCE view syntax

p4 help Describes all the arguments that can be given to p4 help.

p4 info Reports information about the current PERFORCE system: the
server address, client root directory, client name, user name,
PERFORCE version, and a few other tidbits.

Command Meaning

p4 have Lists all file revisions that the PERFORCE server knows you
have in the client workspace.

p4 sync -n Reports what files would be updated in the client workspace by
p4 sync without actually performing the sync operation.
anual 26

CHAPTER 4 3(5)25&(�%DVLFV�
7KH�'HWDLOV
Perforce 97.3 User’s M

errid-

the
ce the

ates,
h
ns off
nished

 per-

ation
llful
g or

state;
The Quick Start chapter explained the basics of using PERFORCE, but discussion of the
practical details were deferred. This chapter, which supplements the Quick Start chapter,
covers the dry PERFORCE rules. The topics discussed include views, mapping depots to cli-
ent workspaces, PERFORCE wildcards, rules for referring to older file revisions, file types,
and form syntax.

It is assumed that the material in the Quick Start chapter has been read and properly
digested.

'HVFULSWLRQ�RI�WKH�&OLHQW�:RUNVSDFH

A PERFORCE client workspace is a collection of source files managed by PERFORCE on a
host. Each such collection is given a name which identifies the client workspace to the
PERFORCE server. The name is by default simply the host’s name but that can be ov
den by the environment variable P4CLIENT. There can be more than one PERFORCE client
workspace on a client host.

All files within a PERFORCE client workspace share a common root directory, called
client root. In the degenerate case, the client root can be the host’s root, but in practi
client root is the lowest level directory under which the managed source files will sit.

PERFORCE manages the files in a client workspace in a few direct ways. It creates, upd
or deletes files when the user requests PERFORCE to synchronize the client workspace wit
the depot; it turns on write permission when the user requests to edit a file; and tur
write permission and submits updated versions back to the depot when the user is fi
editing the file.

The entire PERFORCE client workspace state is tracked by the PERFORCE server. The server
knows what files a client workspace has, where they are, and which files have write
mission turned on.

PERFORCE’s management of a client workspace requires a certain amount of cooper
from the user. Since client files are just plain files with write permission turned off, wi
users can circumvent the system by turning on write permission, directly deletin
renaming files, or otherwise modifying the file tree supposedly under PERFORCE’s control.
PERFORCE counters this with two measures: first, PERFORCE has explicit commands to
verify that the client workspace state is in accord with the server’s recording of that
anual 27

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

ely
t

es, as

ry
li-

n of

hat

sually
wild-

’t
pand
e

y.

s

-

second, PERFORCE tries to make using PERFORCE at least as easy as circumventing it. For
example: to make a temporary modification to a file, it is easier to use PERFORCE than it is
to copy and restore the file manually.

Files not managed by PERFORCE may also be under a client’s root, and they are larg
ignored by PERFORCE. For example, PERFORCE may manage the source files in a clien
workspace, while the workspace also holds compiled objects, libraries, executabl
well as a developer’s temporary files.

In addition to accessing the client files, the P4 client program sometimes creates tempora
files on the client host. Otherwise, PERFORCE neither creates nor uses any files on the c
ent host.

:LOGFDUGV

PERFORCE uses three wildcards for pattern matching. Any number and combinatio
these can be used in a single string:

The ‘...’ wildcard is passed by the P4 client program to the P4D server, where it is
expanded to match the corresponding files known to P4D. The * wildcard is expanded
locally by the OS shell before the P4 command is sent to the server, and the files t
match the wildcard are passed as multiple arguments to the P4 command. To have PER-
FORCE match the * wildcard against the contents of the depot, it must be escaped, u
with quotes or a backslash. Most command shells don’t interfere with the other two
cards.

:LOGFDUGV�DQG�¶S��DGG·

There is one case in which the “...” wildcard cannot be used, and that is with the p4 add

command. The “...” wildcard is expanded by the P4D server, and since the server doesn
know what files are being added (after all, they’re not in the depot yet), it can’t ex
that wildcard. The * wildcard can be used with p4 add; in this case, it is expanded by th
local OS shell, not by the P4D server.

Wildcard Meaning

* Matches anything except slashes, matches only within a single director

... Matches anything including slashes; matches across multiple directorie

%d Used for parametric substitution in views. See page 32 for a full expla
nation
anual 28

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

view
files

ping.
pace
; for
ce, or
 the

 value
p-

���17
On NT, the
PERFORCE client
workspace must be
specified in a
slightly different
format if it is to span
multiple drives.
Please see the
release notes, which
are available at our
Web site, for details.
0DSSLQJ�WKH�'HSRW�WR�WKH�&OLHQW�
:RUNVSDFH

Just as a client name is nothing more than an alias for a particular directory on the client
machine, a depot name is an alias for a directory on the PERFORCE server. The relationship
between files in the depot and files in the client workspace is described in the client view,
and it is set with the p4 client command. When p4 client is typed, a variation of the
following form is displayed:

The contents of the View: field determine where client files get stored in the depot, and
where depot files are copied to in the client.

8VLQJ�9LHZV

Views consist of multiple lines, or mappings, and each mapping has two parts. The left-
hand side specifies one or more files within the depot, and has the form

//depotname/file_specification

The right-hand side of each mapping describes one or more files within the client work-
space, and has the form

//clientname/file_specification

The left-hand side of a client view mapping is called the depot side; the right-hand side is
the client side.

The default view in the example above is quite simple: it maps the entire depot to the
entire client workspace. But views can contain multiple mappings, and can be much more
complex. Any client view, no matter how elaborate, performs the same two functions:

• The client view determines which files in the depot can be seen by a client workspace.
This is determined by the sum of the depot sides of the mappings within a view. A
might allow the client workspace to retrieve every file in the depot, or only those
within two directories, or only a single file.

• It constructs a one-to-one mapping between files in the depot and files in the client
workspace. Each mapping within a view describes a subset of the complete map
The one-to-one mapping might be straightforward; for example, the client works
file tree might be identical to a portion of the depot’s file tree. Or it can be oblique
example, a file might have one name in the depot and another in the client workspa
be moved to an entirely different directory in the client workspace. No matter how
files are named, there is always a one-to-one mapping.

To determine the exact location of any client file on the host machine, substitute the
of the p4 client form’s Root: field for the client name on the client side of the ma
ping. For example, if the p4 client form’s Root: field for the client eds_elm is set to /

Client: eds_elm
Owner: edk
Description:
 Created by ed.
Root: /usr/edk/elm
Options: nomodtime noclobber
View:
 //depot/... //eds_elm/...
anual 29

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

tical

,

e

ce.
ork-
pace.

e

ost

e of
.

t file
ap-

Example:
Mapping part of the
depot
to the client
workspace.
usr/edk/elm, then the file //eds_elm/doc/elm-help.1 will be found on the client
host in /usr/edk/elm/doc/elm-help.1.

On NT, the PERFORCE client workspace must be specified in a slightly different format if it
is to span multiple drives. Please see the release notes for details.

:LOGFDUGV�LQ�9LHZV

Any wildcard used on the depot side of a mapping must be matched with an identical
wildcard in the mapping’s client side. Any string matched by the wildcard will be iden
on both sides.

In the client view

//depot/elm_proj/... //eds_elm/...

the single mapping contains PERFORCE’s “...” wildcard, which matches everything
including slashes. The result is that any file in the eds_elm client workspace will be
mapped to the same location within the depot’s elm_proj file tree. For example, the file
//depot/elm_proj/nls/gencat/README will be mapped to the client workspace fil
//eds_elm/nls/gencat/README.

7\SHV�RI�0DSSLQJV

By changing the View field, it’s possible to map only part of a depot to a client workspa
It’s even possible to map files within the same depot directory to different client w
space directories, or to have files named differently in the depot and the client works
This section discusses PERFORCE’s mapping methods.

'LUHFW�&OLHQW�WR�'HSRW�9LHZV

The default view in the form presented by p4 client maps the entire client workspac
tree into an identical directory tree in the depot. For example, the default view

//depot/... //eds_elm/...

indicates that any file in the directory tree under the client eds_elm will be stored in the
identical subdirectory in the depot. This view is usually considered to be overkill; m
users only need to see a subset of the files in the depot.

0DSSLQJ�WKH�)XOO�&OLHQW�WR�RQO\�3DUW�RI�WKH�'HSRW

Usually only a portion of the depot is of interest to a particular client. The left-hand sid
the View field can be changed to point to only the portion of the depot that’s relevant

Bettie is rewriting the documentation for Elm, which is found in the depot within its doc
subdirectory. Her client is named elm_docs, and her client root is /usr/bes/docs; she
types p4 client and sets the View field as follows:

//depot/elm_proj/doc/... //elm_docs/...

0DSSLQJ�)LOHV�LQ�WKH�'HSRW�WR
D�'LIIHUHQW�3DUW�RI�WKH�&OLHQW

Views can consist of multiple mappings, which are used to map portions of the depo
tree to different parts of the client file tree. If there is a conflict in the mappings, later m
pings have precedence over the earlier ones.
anual 30

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

ely,

 in

s

p-

Example:
Multiple mappings
in a single client
view.

Example:
Using views to
exclude files from a
client workspace

Example:
Files with different
names in the depot
and client
workspace
The elm_proj subdirectory of the depot contains a directory called doc, which has all
the Elm documents. Included in this directory are four files named elm-help.0 through
elm-help.3. Mike wants to separate these four files from the other documentation files
in his client workspace, which is called mike_elm.

To do this, he creates a new directory in his client workspace called help; it’s located at
the same level as his doc directory. The four elm-help files will go here; he fills in the
View field of the p4 client form as follows:

Any file whose name starts with elm-help within the depot’s doc subdirectory will be
caught by the later mapping and appear in Mike’s workspace’s help directory; all other
files are caught by the first mapping and will appear in their normal location. Convers
any files beginning with elm-help within Mike’s client workspace help subdirectory
will be mapped to the doc subdirectory of the depot.

([FOXGLQJ�)LOHV�DQG�'LUHFWRULHV�IURP�WKH�9LHZ

Exclusionary mappings allow files and directories to be excluded from a client workspace;
this is accomplished by prefacing the mapping with a minus sign (-). Whitespace is not
allowed between the minus sign and the mapping.

Bill, whose client is named billm, wants to view only source code; he’s not interested
the documentation files. His client view would look like this:

Since later mappings have precedence over earlier ones, no files from the depot’doc

subdirectory will ever be copied to Bill’s client. Conversely, if Bill does have a doc subdi-
rectory in his client, no files from that subdirectory will ever be copied to the depot.

$OORZLQJ�)LOHQDPHV�LQ�WKH�&OLHQW�WR�EH�'LIIHUHQW
WKDQ�'HSRW�)LOHQDPHV

Mappings can be used to make the names of files different in the client workspace than
they are in the depot.

Mike wants to store the files as above, but he wants to take the elm-help.X files in the
depot and call them helpfile.X in his client workspace. He uses the following ma
pings:

Each wildcard on the depot side of a mapping must have a corresponding wildcard on the
client side of the same mapping. The wildcards are replaced in the copied-to direction by
the substring that the wildcard represents in the copied-from direction.

There can be multiple wildcards; the n-th wildcard in the depot specification corresponds
to the n-th wildcard in the client description.

//depot/... //mike_elm/...
//depot/elm_proj/doc/elm-help.* //mike_elm/help/elm-help.*

 //depot/elm_proj/... //billm/...
 -//depot/elm_proj/doc/... //billm/doc/...

 //depot/elm_proj... //mike_elm/...
 //depot/elm_proj/doc/elm-help.* //mike_elm/help/helpfile.*
anual 31

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

pace.

ings:

 same

may
it can
llow

 sys-
name,

Example:
Changing string
order in client
workspace names

Example:
Mappings that fail.
&KDQJLQJ�WKH�2UGHU�RI�)LOHQDPH�6XEVWULQJV

The %d wildcard can be used to rearrange the order of the matched substrings.

Mike wants to change the names of any files with a dot in them within his doc subdirec-
tory in such a way that the file’s suffixes and prefixes are reversed in his client works
For example, he’d like to rename the Elm.cover file in the depot cover.Elm in his cli-
ent workspace. (Mike can be a bit difficult to work with). He uses the following mapp

7ZR�0DSSLQJV�&DQ�&RQIOLFW�DQG�)DLO

It is possible for multiple mappings in a single view to lead to a situation in which the
name does not map the same way in both directions. When a file doesn’t map the
way in both directions, the file is ignored.

Joe has constructed a view as follows:

The depot file //depot/elm_proj/doc/help would map to //joe/elm/doc/help,
but the same file in the client workspace would map back to the depot via the higher-pre-
cedence second line to //depot/nowhere/help. Because the file would be written back
to a different location in the depot than where it was read from, PERFORCE doesn’t map
this name at all.

In older versions of PERFORCE, this was often used as a trick to exclude particular files
from the client workspace. Because PERFORCE now has exclusionary mappings, this type
of mapping is no longer useful, and should be avoided.

5HIHUULQJ�WR�)LOHV�RQ�&RPPDQG�/LQHV

File names provided as arguments to PERFORCE commands can be referred in one of two
ways: by using the names of the files in the client workspace, or by providing the names of
the files in the depot. When providing client workspace file names, the user may give the
name in either local or PERFORCE syntax.

/RFDO�6\QWD[

Local syntax is simply a file’s name as specified by the local shell or OS. This name
be an absolute path, or may be specified relative to the current directory, although
only contain relative components at the beginning of the file name (i.e. it doesn’t a
sub/dir/./here/foo.c). For example, on UNIX, Ed could refer to the README file at
Elm’s top level as /usr/edk/elm/README, or in a number of other ways.

3(5)25&(�6\QWD[

PERFORCE provides its own filename syntax which remains the same across operating
tems. Filenames specified in this way begin with two slashes and the client or depot

 //depot/elm_proj/... //mike_elm/...
 //depot/elm_proj/doc/%1.%2 //mike_elm/doc/%2.%1

 //depot/elm_proj/... //joe/elm/...
 //depot/nowhere/* //joe/elm/doc/*
anual 32

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

client

n-

e is
.

Multiple depots can
be provided within a
single PERFORCE
server. See chapter
15 for details.

Example:
Uses of different
syntaxes to refer to a
file

The point of this
section is worth
repeating: any file
can be specified
within any
PERFORCE
command in client
syntax, depot
syntax, or local
syntax. The
examples in this
manual will use
these syntaxes
interchangeably.

!

followed by the path name of the file relative to the client or depot root directory. The
components of the path are separated by slashes.

PERFORCE syntax is sometimes called depot syntax or client syntax, depending on whether
the file specifier refers to a file in the depot or on the client. But the syntax is the same in
either case.

The specifier //... is occasionally used; it means ‘all files in all depots’.

3URYLGLQJ�)LOHV�DV�$UJXPHQWV�WR�&RPPDQGV

Because the client view provides a one-to-one mapping between any file in the
workspace and any file in the depot, any file can be specified within any PERFORCE com-
mand in client syntax, depot syntax, or local syntax. A depot’s file specifier can be used to
refer to a file in the client, and vice-versa. PERFORCE will do the necessary mapping to
determine which file is actually used.

Any filenames provided to PERFORCE commands can be specified in any valid local sy
tax, or in PERFORCE syntax by depot or client. If a client filename is provided, PERFORCE

uses the client view to locate the corresponding file in the depot. If a depot filenam
given, the client view is used to locate the corresponding file in the client workspace

Ed wants to delete the src/lock.c file. He can give the p4 delete command in a num-
ber of ways:

• While in his client root directory, he could type

p4 delete src/lock.c

• While in the src subdirectory, he could type

p4 delete lock.c

• While in any directory on the client host, he can type

p4 delete //eds_elm/src/lock.c

or

p4 delete //depot/elm_proj/src/lock.c

or

p4 delete /usr/edk/elm/src/lock.c

Client names and depot names in a single PERFORCE server share the same namespace, so
PERFORCE will never confuse a client name with a depot name. Client workspace names
and depot names can never be the same

Examples of PERFORCE Syntax

//depot/...
//elm_client/docs/help.1
anual 33

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

 file

es on

only on

d

:LOGFDUGV�DQG�3(5)25&(�6\QWD[

PERFORCE wildcards may be mixed with both local or PERFORCE syntax. For example:

1DPH�DQG�6WULQJ�/LPLWDWLRQV

)LOH�1DPHV�

Because of PERFORCE’s naming conventions, certain characters cannot be used in
names. These include unprintable characters, the above wildcards, and the PERFORCE revi-
sion characters @ and #.

'HVFULSWLRQV

Label, branch, user, and client workspace specifications have a silent limit of 128 byt
descriptions. The description field of a changelist or a job can be any length.

6SHFLI\LQJ�2OGHU�)LOH�5HYLVLRQV

All of the commands and examples we’ve seen thus far have been used to operate
the most recent revisions of particular files, but many PERFORCE commands can act on
older file versions. For example, if Ed types p4 sync //eds_elm/src/lock.c, the lat-
est revision, or head revision, of lock.c is retrieved, but older revisions can be retrieve

J* Files in the current directory starting
with J

*/help All files called help
in current subdirectories

... All files under the current directory
and its subdirectories

.../*.c All such files ending in.c

/usr/edk/... All files under /usr/edk

//weasel/... All files on client weasel

//depot/... All files in the depot
anual 34

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

 file
stin-

s

Change numbers
are explained in
chapter 7.

Labels are
explained in chapter
8

by tacking a revision specification onto the end of the file name. There are seven types of
revision specifications:

In all cases, if a file doesn’t exist at the given revision number, it will appear as if the
doesn’t exist at all. Thus, using a label to refer to a file that isn’t in the label is indi
guishable from referring to a file that doesn’t exist at all.

Revision
Specifier Meaning Examples

file#n Revision number p4 sync lock.c#3

Refers to revision 3 of file lock.c

file@n A change number p4 sync lock.c@126

Refers to the version of lock.c when
changelist 126 was submitted, even if it wa
not part of the change.

p4 sync //depot/...@126

Refers to the state of the entire depot at
changelist 126

file@label A label name p4 sync lock.c@beta

The revision of lock.c in the label called
beta

file@client-
name

A client name. The re-
vision of file last taken
into client workspace
clientname.

p4 sync lock.c@lisag_ws

The revision of lock.c last taken into cli-
ent workspace lisag_ws

file#none The nonexistent revi-
sion.

p4 sync lock.c#none

Says that there should be no version of
lock.c in the client workspace, even if one
exists in the depot.

file#head The head revision, or
latest version, of the
file.

p4 sync lock.c#head

Except for explicitly noted exceptions, this
is identical to referring to the file with no re-
vision specifier.

file#have The revision on the
current client. This is
synonymous to
@client where client
is the current client
name.

p4 sync lock.c#have

The revision of lock.c found in the cur-
rent client.
anual 35

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

nd’s
hus,

ers,
rated
, the

 to be 1.
ault is

ext

f the
e file

fer-
d

Example:
Retrieving files
using revision
specifiers

Some OS shells will
treat the # as a
comment character
if it starts a new
word. If your shell
is one of these,
escape the # before
use.

!

8VLQJ�5HYLVLRQ�6SHFLILFDWLRQV�ZLWKRXW�)LOHQDPHV

Revision specifications can be provided without file names. This limits the comma
action to the specified revision of all files in the depot or in the client’s workspace. T
#head refers to the head revisions of all files in the depot, and @label refers to the revi-
sions of all files in the named label.

Ed wants to retrieve all the doc files into his Elm doc subdirectory, but he wants to see
only those revisions that existed at change number 30. He types

p4 sync //eds_elm/doc/*@30

Later, he creates another client for a different user. The new client should have all of the
file revisions that Ed last synced. Ed sets up the new client specification and types

p4 sync //depot//elm_proj/...@eds_elm

He could have typed

p4 sync @eds_elm

and the effect would have been the same.

Another client needs all its files removed, but wants PERFORCE to know that it still con-
tains those files. Ed sets P4CLIENT to the correct clientname, and types

p4 sync #none

5HYLVLRQ�5DQJHV

A few PERFORCE client commands can limit their actions to a range of revision numb
rather than just a single revision. A revision range is two revision specifications, sepa
by a comma. If only a single revision is given where a revision range is expected
named revision specifies the end of the range, and the start of the range is assumed
If no revision number or range is given where a revision range is expected, the def
all revisions.

)LOH�7\SHV

PERFORCE supports normal text files as well as binary, “large text” files, keyword t
files, Macintosh resource forks, and symbolic links. PERFORCE attempts to determine the
type of the file automatically: when a file is opened with p4 add, PERFORCE first deter-
mines if the file is a regular file or a symbolic link, and then examines the first part o
file to determine whether is it text or binary. If any non-text characters are found, th
is assumed to be binary; otherwise, the file is assumed to be text.

The detected file type can be overridden with p4 add -t type, where type is one of
binary, text, ltext, xbinary, xtext, ktext, kxtext, resource or symlink.
Descriptions of these file types are provided below.

A file’s type is inherited from one revision to the next. A file can be opened with a dif
ent type for the new revision with p4 edit -t type. If a file has already been opene
with p4 add or p4 edit, its type can be changed with p4 reopen -t type.
anual 36

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

nes
 file

ed or

iron-
m is
n. If

d end
d by a
 form

RCS format and
delta storage are
described in detail
at the start of the
next chapter.
PERFORCE must sometimes store the complete version of every file in the depot, but most
often it stores only the changes in the file since the previous revision. This is called delta
storage, and PERFORCE uses RCS format to store its deltas. The file’s type determi
whether full file or delta storage is used. When delta storage is used, file merges and
compares can be performed. Files that are stored in their full form can’t be merg
compared.

The PERFORCE file types are:

To find the type of an existing file, use the p4 opened reporting command.

)RUPV�DQG�3(5)25&(�&RPPDQGV

Certain PERFORCE commands, such as p4 client and p4 submit, present a form to the
user to be filled in with values. This form is displayed in the editor defined in the env
ment variable EDITOR. When the user changes the form and exits the editor, the for
parsed by PERFORCE, checked for errors, and used to complete the command operatio
there are errors, PERFORCE gives an error message and you must try again.

The rules of form syntax are simple: keywords must be against the left margin an
with a colon, and values must either be on the same line as the keyword or indente
tabstop on the lines below the keyword. Only the keywords already present on the
are recognized. Some keywords, such as the Client: field in the p4 client form, take

Keyword Description Comments
Storage
Type

text Text file Treated as text on the client delta

xtext Executable text
file

Like a text file, but execute permission
is set on the client file.

delta

binary Non-text file Accessed as binary files on the client full
file

xbinary Executable bi-
nary file

Like a binary file, but execute permis-
sion is set on the client file.

full
file

ltext Long text file This type should be used for generated
text files, such as PostScript files.

full
file

symlink Symbolic link UNIX clients access these as symbolic
links; non-UNIX clients treat them as
(small) text files

delta

ktext Text file with
keyword ex-
pansion.

Any inclusion of the literal string Id
within the file will be expanded to reflect
the depot file name and revision number.

delta

kxtext Executable text
file with key-
word expansion

Like a ktext file, but execute permis-
sion is set on the client file

delta

resource Macintosh re-
source fork

Please see the Macintosh client release
notes at <http://www.per-
force.com/perforce/doc/mac-

notes.txt>

full
file
anual 37

Perforce 97.3 User’s M

Chapter 4 : Perforce Basics: The Details

e
 a
’ll get
hen in

n later
tion.;
limit
r all

-

f these

-

t

it,
.

d-
a single value; other fields, such as Description: , take a block of text; and others, like
View: , take a list of lines.

Certain fields, like Client: in p4 client, can’t have their values changed; others, lik
Description: in p4 submit, must have their values changed. If you don’t change
field that needs to be changed, or vice-versa, the worst that will happen is that you
an error. We’ve done our best to make these cases as self-evident as possible; w
doubt, use p4 help command.

*HQHUDO�5HSRUWLQJ�&RPPDQGV

Many reporting commands have specialized functions, and these are discussed i
chapters. The following reporting commands give the most generally useful informa
all these commands can take file name arguments, with or without wildcards, to
reporting to specific files. Without the file arguments, the reports are generated fo
files.

These reports always generate information on depot files, not files within the client work-
space. As with any other PERFORCE command, when a client file is provided on the com
mand line, PERFORCE maps it to the proper depot file.

Revision specifiers can be used with all of these reporting commands, for example

p4 files @clientname

can be used to report on all the files in the depot that are currently found in client client-
name.

Chapter 12, the reporting chapter, contains a more detailed discussion of each o
commands.

Command Meaning

p4 filelog Generates a report on each revision of the file(s), in reverse
chronological order.

p4 files Lists file name, latest revision number, file type, and other in
formation about the named file(s).

p4 sync -n Tells you what p4 sync would do, without doing it.

p4 have Lists all the revisions of the named files within the client that
were last gotten from the depot. Without any files specifier, i
lists all the files in the depot that the client has.

p4 opened Reports on all files in the depot that are currently open for ed
add, delete, branch, or integrate within the client workspace

p4 print Lists the contents of the named file(s) to standard input.

p4 where For each file in the client, show the location of the correspon
ing file within the depot.
anual 38

CHAPTER 5 3(5)25&(�%DVLFV�
5HVROYLQJ�)LOH�&RQIOLFWV
Perforce 97.3 User’s M

ntain

 place

e

elist
t sub-
lient

mi-

ays
ection
File conflicts can occur when two users edit and submit two versions of the same file.
Conflicts can occur in a number of ways, but the situation is usually a variant of the fol-
lowing:

Ed opens file foo for edit;
Lisa opens the same file in her client for edit;
Ed and Lisa both edit their client workspace versions of foo;
Ed submits a changelist containing foo, and the submit succeeds;
Lisa submits a changelist with her version of foo; her submit fails.

If PERFORCE were to accept Lisa’s version into the depot, the head revision would co
none of Ed’s changes. Instead, the changelist is rejected and a resolve must be performed.
The resolve process allows a choice to be made: Lisa’s version can be submitted in
of Ed’s, Lisa’s version can be dumped in favor of Ed’s, a PERFORCE-generated merged
version of both revisions can be submitted, or the PERFORCE-generated merged file can b
edited and then submitted.

Resolving a file conflict is a two-step process: first the resolve is scheduled, then the
resolve is performed. A resolve is automatically scheduled when a submit of a chang
fails because of a file conflict; the same resolve can be scheduled manually, withou
mitting, by syncing the head revision of a file over an opened revision within the c
workspace. Resolves are always performed with p4 resolve.

PERFORCE also provides facilities for locking files when they are edited. This can eli
nate file conflicts entirely.

5&6�)RUPDW��+RZ�3(5)25&(�6WRUHV�)LOH�
5HYLVLRQV

PERFORCE uses RCS format to store its text file revisions; binary file revisions are alw
saved in full. If you already understand what this means, you can skip to the next s
of this chapter; the remainder of this section explains how RCS format works.
anual 39

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts
2QO\�WKH�'LIIHUHQFHV�%HWZHHQ�5HYLVLRQV�DUH�6WRUHG

A single file might have hundreds, even thousands, of revisions. Every revision of a par-
ticular file must be retrievable, and if each revision was stored in full, disk space problems
could occur: one thousand 10KB files, each with a hundred revisions, would use a
gigabyte of disk space. The scheme used by most SCM systems, including PERFORCE, is
to save only the latest revision of each file, and then store the differences between each file
revision and the one previous.

As an example, suppose that a PERFORCE depot has three revisions of file foo. The head
revision (foo#3) looks like this:

Revision two might be stored as a symbolic version of the following:

And revision 1 would be a representation of this:

From these partial file descriptions, any file revision can be reconstructed. The recon-
structed foo#1 would read

The RCS (Revision Control System) algorithm, developed by Walter Tichy, uses a notation
for implementing this system that requires very little storage space and is quite fast. In
RCS terminology, it is said that the full text of the head revisions are stored, along with the
reverse deltas of each previous revision.

It is interesting to note that the full text of the first revision could be stored, with the deltas
leading forward through the revision history of the file, but RCS has chosen the other path:
the full text of the head revision of each file is stored, with the deltas leading backwards to
the first revision. This is because the head revision is accessed much more frequently than
previous file revisions; if the head revision of a file had to be calculated from the deltas
each time it was accessed, any SCM utilizing RCS format would run much more slowly.

foo#3:

This is a test
of the
emergency
broadcast system

foo#2:

line 3 was “urgent”

foo#1:

line 4 was “system”

This is a test
of the
urgent
system
anual 40

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts

ns

nly
iles

head

ient
t

e
on-
ed-

nt.

cop-

vision

sion

s with

e

Example:
Scheduling
resolves
with p4 sync
8VH�RI�¶GLII·�WR�'HWHUPLQH�)LOH�5HYLVLRQ�'LIIHUHQFHV

RCS utilizes the ‘GNU diff’ program to determine the differences between two versio
of the same file; P4D contains its own diff routine which is used by PERFORCE servers to
determine file differences when storing deltas. Because PERFORCE’s diff always determines
file deltas by comparing chunks of text between newline characters, it is by default o
used with text files. If a file is binary, each revision is usually stored in full, but binary f
can be checked in as text files, insuring that only the deltas are stored.

6FKHGXOLQJ�5HVROYHV�RI�&RQIOLFWLQJ�)LOHV

Whenever a file revision is to be submitted that is not an edit of the file’s current
revision, there will be a file conflict, and this conflict must be resolved.

In slightly more technical terms: we’ll call the file revision that was read into a cl
workspace the base file revision. If the base file revision for a particular file in a clien
workspace is not the same as the head revision of the same file in the depot, a resolve must
be performed before the new file revision can be accepted into the depot.

Before resolves can be performed with p4 resolve, they must be scheduled; this can b
done with p4 sync, An alternative is to submit a changelist that contains the newly c
flicting files; if a resolve is necessary, the submit will fail, and the resolve will be sch
uled automatically.

:K\�¶S��V\QF·�WR�6FKHGXOH�D�5HVROYH"

Remember that the job of p4 sync is to project the state of the depot onto the clie
Thus, when p4 sync is performed on a particular file:

• If the file does not exist in the client, or it is found in the client but is unopened, it is
ied from the depot to the client.

• If the file has been deleted from the depot, it is deleted from the client.

• If the file has been opened in the client with p4 edit, the PERFORCE server can’t sim-
ply copy the file onto the client: any changes that had been made to the current re
of the file in the client would be overwritten. Instead, a resolve is scheduled between the
file revision in the depot, the file on the client, and the base file revision (the revi
that was last read into the client).

Ed is making a series of changes to the *.guide files in the elm doc subdirectory. He has
retrieved the //depot/elm_proj/doc/*.guide files into his client and has opened
the files with p4 edit. He edits the files, but before he has a chance to submit them, Lisa
submits new versions of some of the same files to the depot. The versions Ed has been edit-
ing are no longer the head revisions; resolves must be scheduled and performed for each
of the conflicting files before Ed’s edits can be accepted. Ed schedules the resolve
p4 sync //edk/doc/*.guide. Since these files are already open in the client, PER-
FORCE doesn’t replace the client files; instead, PERFORCE schedules resolves between th
client files and the head revisions in the depot.

Alternatively, Ed could have submitted the //depot/elm_proj/doc/*.guide files in a
changelist; the file conflicts would cause the p4 submit to fail, and the resolves would be
scheduled as part of the submission failure.
anual 41

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts

Please see
Chapter 7 for a
discussion of
numbered
changelists.
+RZ�'R�,�.QRZ�:KHQ�D�5HVROYH�LV�1HHGHG"

p4 submit will fail if it determines that any of the files in the submitted changelist need
to be resolved, and the error message will include the names of the files that need resolu-
tion. If the changelist provided to p4 submit was the default changelist, it will be
assigned a number, and this number must be used in all future references to the changelist.

Another way of determining whether a resolve is needed is to run p4 sync -n file-
names before performing the submit, using the files in the changelist as arguments to the
command. If file conflict resolutions are necessary, p4 sync -n will report them. The
only advantage of this scheme over viewing the submit error is that the default changelist
will not be assigned a number.

3HUIRUPLQJ�5HVROYHV�RI�&RQIOLFWLQJ�)LOHV

File conflicts are fixed with p4 resolve [filenames]. Each file provided as an
argument to p4 resolve is processed separately. p4 resolve starts with three revisions
of the same file and generates a fourth version; the user can accept any of these revisions
in place of the current client file, and can edit the generated version before accepting it.
The new revisions must then be submitted with p4 submit.

p4 resolve is interactive; a series of options are displayed for the user to respond to. The
dialog looks something like this:

The remainder of this section explains what this means, and how to use this dialog.

)LOH�5HYLVLRQV�8VHG�DQG�*HQHUDWHG�E\�¶S��UHVROYH·

p4 resolve [filenames] starts with three revisions of the same file, generates a
new version that merges elements of all three revisions, allows the user to edit the new
file, and writes the new file (or any of the original three revisions) to the client. The file
revisions used by p4 resolve are these:

/usr/edk/elm/doc/answer.1 - merging //depot/elm_proj/doc/answer.1#5
Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [e]:

yours The newly-edited revision of the file in the client workspace. This file
is overwritten by result once the resolve process is complete.

theirs The revision in the depot that the client revision conflicts with. Usu-
ally, this is the head revision, but p4 sync can be used to schedule a
resolve with any revision between the head revision and base.

base The file revision in the depot that yours was edited from. Note that
base and theirs are different revisions; if they were the same, there
would be no reason to perform a resolve.
anual 42

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts

ber of

s
e this

n

Discussion of
resolving branched
files begins on
page 47.
The remainder of this chapter will use the terms theirs, yours, base, merge, and
result to refer to the corresponding file revisions. The definitions given above are
somewhat different when resolve is used to integrate branched files.

7\SHV�RI�&RQIOLFWV�%HWZHHQ�)LOH�5HYLVLRQV

The diff program that underlies the PERFORCE resolve mechanism determines differ-
ences between file revisions on a line-by-line basis. Once these differences are found, they
are grouped into chunks: for example, three new lines that are adjacent to each other are
grouped into a single chunk. Yours and theirs are both generated by a series of edits
to base; for each set of lines in yours, theirs, and base, p4 resolve asks the fol-
lowing questions:

• Is this line set the same in yours, theirs, and base?

• Is this line set the same in theirs and base, but different in yours?

• Is this line set the same in yours and base, but different in theirs?

• Is this line set the same in yours and theirs, but different in base?

• Is this line set different in all three files?

Any line sets that are the same in all three files don’t need to be resolved. The num
line sets that answer the other four questions are reported by p4 resolve in this form:

2 yours + 3 theirs + 1 both + 5 conflicting

In this case, two line sets are identical in theirs and base but are different in yours;
three line sets are identical in yours and base but are different in theirs; one line set
was changed identically in yours and theirs; and five line sets are different in
yours, theirs, and base.

+RZ�WKH�0HUJH�)LOH�LV�*HQHUDWHG

p4 resolve generates a preliminary version of the merge file, which can be accepted a
is, edited and then accepted, or rejected. A simple algorithm is followed to generat
file: any changes found in yours, theirs, or both yours and theirs are applied to
the base file and written to the merge file; and any conflicting changes will appear i
the merge file in the following format:

>>>> ORIGINAL VERSION foo#n
(text from the original version)
==== THEIR VERSION foo#m
(text from their file)
==== YOUR VERSION foo
(text from your file)
<<<<

merge File variation generated by PERFORCE from theirs, yours, and base.

result The file resulting from the resolve process. result is written to the cli-
ent workspace, overwriting yours, and must subsequently be submit-
ted by the user. The instructions given by the user during the resolve
process determine exactly what is contained in this file. The user can
simply accept theirs, yours, or merge as the result, or can edit merge
to have more control over the result.
anual 43

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts

hanges
 This

lved,

n

The merge file is
generated by P4D’s
internal diff routine.
But the differences
displayed by dy, dt,
dm, and d are
generated by a diff
internal to the P4
client program, and
this diff can be
overridden by
specifying an
external diff in the
P4DIFF
environment
variable.
Thus, editing the PERFORCE-generated merge file is often as simple as opening the merge
file, searching for the difference marker ‘>>>>’ , and editing that portion of the text. How-
ever, this is not always the case; it’s often useful (and necessary) to examine the c
made to theirs to make sure they’re compatible with other changes that you made.
can be facilitated by calling p4 resolve with the -v flag; p4 resolve -v tells PER-
FORCE to generate difference markers for all changes made in either file being reso
instead of only for changes that are in conflict between the yours and theirs files.

7KH�¶S��UHVROYH·�2SWLRQV

The p4 resolve command offers the following options:

Option Short Meaning What it Does

e edit merged Edit the preliminary merge file generated by PER-
FORCE

ey edit yours Edit the revision of the file currently in the client

et edit theirs Edit the revision in the depot that the client revisio
conflicts with (usually the head revision). This edit
is read-only.

dy diff yours Diff line sets from yours that conflict with base

dt diff theirs Diff line sets from theirs that conflict with base

dm diff merge Diff line sets from merge that conflict with base

d diff Diff line sets from merge that conflict with yours

m merge Invoke the command

MERGE base theirs yours merge

To use this option, you must set the environment
variable MERGE to the name of a third-party pro-
gram that merges the first three files and writes the
fourth as a result.

? help Display help for p4 resolve

s skip Don’t perform the resolve right now.

ay accept yours Accept yours into the client workspace as the re-
solved revision, ignoring changes that may have
been made in theirs.

at accept theirs Accept theirs into the client workspace as the re-
solved revision. The revision that was in the client
workspace is trashed.

am accept merge Accept merged into the client workspace as the re-
solved revision. The version originally in the client
workspace is trashed.

a accept Keep PERFORCE’s recommended result. Depending
on the circumstances, this will be either yours,
theirs, or merge.
anual 44

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts

 line.
-

 types

isa’s
pes
hat
pes

ey’re
 the

ess

Example:
Resolving
file Conflicts
Only a few of these options are visible on the command line, but all options are always
accessible and can be viewed by choosing help.

The command line has the following format:

Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [am]:

PERFORCE’s recommended choice is displayed in brackets at the end of the command
Pressing return or choosing Accept will perform the recommended choice. The recom
mended command is chosen by PERFORCE by the following algorithm: if there were no
changes to yours, accept theirs. If there were no changes to theirs, accept yours.
Otherwise, accept merge.

In the last example, Ed scheduled the doc/*.guide files for resolve. This was necessary
because both he and Lisa had been editing the same files; Lisa had already submitted ver-
sions, and Ed needs to reconcile his changes with Lisa’s. To perform the resolves, he
p4 resolve //depot/elm_proj/doc/*.guide, and sees the following:

This is the resolve dialog for doc/Alias.guide, the first of the four doc/*.guide files.
Ed sees that he’s made four changes to the base file that don’t conflict with any of L
changes; he also notes that Lisa has made two changes that he’s unaware of. He tydt

(for “ display theirs”) to view Lisa’s changes; he looks them over and sees t
they’re fine. Of most concern to him, of course, is the one conflicting change. He tye

to edit the PERFORCE-generated merge file and searches for the difference marker ‘>>>>’ .
The following text is displayed:

He and Lisa have both tried to add a zip code to an address in the file; Ed had typed it
wrong. He changes this portion of the file so it reads as follows:

The merge file is now acceptable to him: he’s viewed Lisa’s changes, seen that th
compatible with his own, and the only line conflict has been resolved. He quits from
editor and types am; the edited merge file is written to the client, and the resolve proc
continues on the next doc/*.guide file.

When a version of the file is accepted onto the client, the previous client file is overwrit-
ten, and the new client file must still be submitted to the depot. Note that it is possible for
another user to have submitted yet another revision of the same file to the depot between
the time p4 resolve completes and the time p4 submit is performed; in this case, it

/usr/edk/elm/doc/Alias.guide - merging //depot/elm_proj/doc/Alias.guide#5
Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [e]:

Intuitive Systems
Mountain View, California
>>>> ORIGINAL VERSION
==== THEIR VERSION
98992
==== YOUR VERSION
98993
<<<<

Intuitive Systems
Mountain View, California
98992
anual 45

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts

ther

File locking is
described in
“Locking Files to
Minimize File
Conflicts”, later in
this chapter.

Example:
Automatically
accepting particular
revisions of
conflicting files
would be necessary to perform another resolve. This can be prevented by locking the file
before performing the resolve.

8VLQJ�)ODJV�ZLWK�5HVROYH�
WR�1RQ�,QWHUDFWLYHO\�$FFHSW�3DUWLFXODU�5HYLVLRQV

Five optional p4 resolve flags tell the command to work non-interactively; when these
flags are used, particular revisions of the conflicting files will be automatically accepted.

Ed has been editing the doc/*.guide files, and knows that some of them will require
resolving. He types p4 sync doc/*.guide; all of these files that conflict with files in
the depot are scheduled for resolve. He then types p4 resolve -am; the merge files for
all scheduled resolves are generated, and those merge files that contain no line set con-
flicts are written to his client workspace. He’ll still need to manually resolve all the o
conflicting files, but the amount of work he needs to do is substantially reduced.

%LQDU\�)LOHV�DQG�¶S��UHVROYH·

If any of the three file revisions participating in the merge are binary instead of text, a
three-way merge is not possible. Instead, p4 resolve performs a two-way merge: the
two conflicting file versions are presented, and you can edit and choose between them.

/RFNLQJ�)LOHV�WR�0LQLPL]H�)LOH�&RQIOLFWV

Once open, a file can be locked with p4 lock so that only the user who locked the file can
submit the next revision of that file to the depot. Once the file is submitted, it is automati-
cally unlocked. Locked files can also be unlocked manually by the locking user with p4
unlock.

The clear benefit of p4 lock is that once a file is locked, the user who locked it will expe-
rience no further conflicts on that file, and will not need to resolve the file. But this comes
at a price: other users will not be able to submit the file until the file is unlocked, and will
have to do their own resolves once they submit their revision. Under most circumstances,

-ay Automatically accept yours.

-at Automatically accept theirs. Use this option with caution; the file re-
vision in the client workspace will be overwritten with no chance of re-
covery.

-am Automatically accept the PERFORCE-recommended file revision
(yours, theirs, or merge) if there are no conflicting line sets. If there
are conflicts, skip the resolve for this file.

-af Accept the PERFORCE-recommended file revision, no matter what. If
this option is used, the resulting file in the client should be edited to re-
move any difference markers.

-as if theirs is identical to base, accept yours;
if yours is identical to base, accept theirs;
otherwise skip this file.
anual 46

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts

 any

e fol-

. The
e file.
itted
a user who locks a file is essentially saying to other users “I don’t want to deal with
resolves; you do them.” But there is an exception to this rule.

3UHYHQWLQJ�0XOWLSOH�5HVROYHV�ZLWK�)LOH�/RFNLQJ

Without file locking, there is no guarantee that the resolve process will ever end. Th
lowing scenario demonstrates the problem:

Ed opens file foo for edit;
Lisa opens the same file in her client for edit;
Ed and Lisa both edit their client workspace versions of foo;
Ed submits a changelist containing that file, and his submit succeeds;
Lisa submits a changelist with her version of the file; her submit

fails because of file conflicts with the new depot’s foo;
Lisa starts a resolve;
Ed edits and submits a new version of the same file;
Lisa finishes the resolve and attempts to submit; the submit fails and must now

be merged with Ed’s latest file.
<etc...>

File locking can be used in conjunction with resolves to avoid this sort of headache
sequence would be implemented as follows: before scheduling a resolve, lock th
Then sync the file, resolve the file, and submit the file. New versions can’t be subm
by other users until the resolved file is either submitted or unlocked.

5HVROYHV�DQG�%UDQFKLQJ

Files in separate codelines can be integrated with p4 resolve; discussion of resolving
branched files begins in the Branching chapter on page 68.

5HVROYH�5HSRUWLQJ

Four reporting commands are related to file conflict resolution: p4 diff, p4 diff2, p4
sync -n, and p4 resolved.
anual 47

Perforce 97.3 User’s M

Chapter 5 : Perforce Basics: Resolving File Conflicts

-

Chapter 12 has a longer description of each of these commands; p4 help provides a com-
plete listing of the many flags for these reporting commands.

Command Meaning

p4 diff
 [filenames]

Runs a diff program between the file revision currently in
the client and the revision that was last gotten from the
depot. If the file is not open for edit in the client, the two
file revisions should be identical, so p4 diff will fail.
Comparison of the revisions can be forced with
p4 diff -f, even when the file in the client is not open
for edit.

Although p4 diff runs a diff routine internal to P4, this
routine can be overridden by specifying an external diff in
the P4DIFF environment variable.

p4 diff2
file1 file2

Runs P4D’s diff subroutine on any two PERFORCE depot
files. The specified files can be any two file revisions,
even revisions of entirely different files.

The diff routine used by P4d cannot be overridden.

p4 sync
-n [filenames]

Reports what the result of running p4 sync would be,
without actually performing the sync. This is useful to
see which files have conflicts and need to be resolved.

p4 resolved Reports which files have been resolved but not yet sub
mitted.
anual 48

CHAPTER 6 3(5)25&(�%DVLFV�
0LVFHOODQHRXV�7RSLFV
Perforce 97.3 User’s M

n

The manual thus far has provided an introduction to the basic functionality provided by
PERFORCE, and subsequent chapters cover the more advanced features. In between are a
host of other, smaller facilities; this chapter covers these topics. Included here is informa-
tion on the following:

• Command-line flags common to all PERFORCE commands;

• How to work on files while not connected to a PERFORCE server;

• Refreshing the client workspace;

• Additional p4 client options;

• Renaming files;

• Flags that allow form data to be read from a file;

• Recommendations for organization of files within the depot.

&RPPDQG�/LQH�)ODJV
&RPPRQ�WR�$OO�3(5)25&(�&RPPDQGV

Five flags are available for use with all PERFORCE commands. These flags are give
between the system command p4 and the command argument taken by p4. These flags
are:

Flag Meaning Example

-c clientname Runs the command on the
specified client. Overrides the
P4CLIENT environment vari-
able.

p4 -c joe edit //depot/foo

Opens file foo for editing under
client workspace joe.

-d directory Specifies the current directory,
overriding the environment
variable PWD.

p4 -d ~elm/src edit foo
bar

Opens files foo and bar for edit;
these files are found relative to
~elm/src.

-p
server_addr

Gives the p4d server’s listen-
ing address, overriding
P4PORT.

p4 -p mama:1818 clients

Reports a list of clients on the serv-
er on host mama, port 1818.
anual 49

Perforce 97.3 User’s M

Chapter 6 : Perforce Basics: Miscellaneous Topics

is not
sers to

s
 edited

e cli-

ave
ng

with

cli-
en

t.

It is perfectly safe to
use p4 edit on any
file; this command
gives the local file
write permissions,
but does not
otherwise alter it.
All PERFORCE commands can take these flags, even commands for which this flag usage is
clearly useless; e.g. p4 -u bill -d /usr/joe help. Other flags are available as well;
these additional flags are command dependent. Please use p4 help commandname to
find the flags available to each command.

:RUNLQJ�'HWDFKHG

Under normal circumstances, users work in their client workspace with a functioning net-
work connection to a PERFORCE server. As they edit files, they are supposed to announce
their intentions to the server with p4 edit, and the server responds by noting the edit in
the depot’s metadata, and by unlocking the file in the client workspace. However, it
always possible for a network connection to be present; a method is needed for u
work entirely detached from the server

The scheme is as follows:

• The user works on files without giving PERFORCE commands; instead, OS command
are given that manually change the permissions on files, and then these files are
or deleted.

• If the files were not edited within the client workspace, they should be copied to th
ent workspace when the network connection is reestablished.

• The p4 diff reporting program is used to find all files in the workspace that h
changed without PERFORCE’s knowledge. Output from this command is used to bri
the depot in sync with the client workspace

)LQGLQJ�&KDQJHG�)LOHV�
ZLWK�¶S��GLII·

The p4 diff reporting command is used to compare a file in the client workspace
the corresponding file in the depot. Its behavior can be modified with two flags:

-u username Specifies a PERFORCE user,
overriding the P4USER, USER,
and USERNAME environment
variables.

p4 -u bill user

Presents the p4 user form to edit
specification for user bill.

Only those commands that the
specified user has permissions on
may be run.

-x filename Instructs p4 to read arguments,
one per line, from the named
file.

See Working Detached section,
below

p4 diff Variation Meaning

p4 diff -se Tells the names of unopened files that are present on the
ent, but whose contents are different than the files last tak
by the client with p4 sync. These files are candidates for p4

edit.

p4 diff -sd Reports the names of unopened files missing from the clien
These files are candidates for p4 delete.

Flag Meaning Example
anual 50

Perforce 97.3 User’s M

Chapter 6 : Perforce Basics: Miscellaneous Topics

he

If this

p4 sync -f is
similar to p4
refresh, a
command found in
previous versions of
PERFORCE. Whereas
p4 refresh only
copied unopened
files from the depot
that PERFORCE
thinks you already
have, p4 sync -f
copies any
unopened files from
the depot to the
client workspace.

p4 refresh will
still run in this
version of
PERFORCE, but will
disappear in some
future version.
8VLQJ�¶S��GLII·�WR
8SGDWH�WKH�'HSRW

The p4 diff variations described above can be used in combination with the -x flag to
bring the state of the depot in sync with the changes made to the client workspace.

To open changed files for edit after working detached, use

To delete files from the depot that were removed from the client workspace, use

As always, these edit and delete requests are stored in a changelist, which is not pro-
cessed until the p4 submit command is given.

5HIUHVKLQJ�ILOHV

The process of syncing a depot with a formerly-detached client workspace has a converse:
it is possible for PERFORCE to become confused about the contents of a client workspace
through the accidental use of UNIX commands. For example, suppose that you accidently
delete a client workspace file via the UNIX rm command, and that the file is one that you
wanted to keep. Even after a submit, p4 have will still list the file as being present in the
workspace.

Just as the process described above will bring the depot in sync with the client workspace,
p4 sync -f files can be used to bring the client workspace in sync with the files the
depot thinks you have. This command is mostly a recovery tool for bringing the client
workspace back into sync with the depot after accidentally removing or damaging files
managed by PERFORCE.

2SWLRQV�LQ�WKH�¶S��FOLHQW·�)RUP

The form brought up by p4 client has an option field, which takes two values:

The ‘modtime’ option controls the modification times of client files when gotten from t
depot with p4 sync or p4 revert. Setting this value to modtime leaves the modifica-
tion times of files in the client as the times these files were submitted to the depot.

p4 diff -se > CHANGED_FILES
p4 -x CHANGED_FILES edit

p4 diff -sd > DEL_FILES
p4 -x DEL_FILES delete

Client: eds_elm
Owner: ed
Description:
 Created by ed.
Root: /usr/edk/elm
Options: nomodtime noclobber
View:
 //depot/elm_proj/... //eds_elm/...
anual 51

Perforce 97.3 User’s M

Chapter 6 : Perforce Basics: Miscellaneous Topics

The
n

nt

e your
very-
 from
tate

ory per
ode-

-

hes as

109, for

The depot is divided
into subdirectories
simply by setting up
the proper mappings
within the client
views.
option is left as the default, nomodtime, the modification date is set to the time the file
was copied into the client.

The ‘clobber’ option, which can be set to clobber or noclobber, controls how p4
sync behaves while retrieving files from the depot that already exist in the client.
default, noclobber, tells p4 sync to avoid clobbering client files that aren’t open i
PERFORCE but have otherwise been made writable by the user. If clobber is selected,
these files will be overwritten.

5HFRPPHQGDWLRQV�IRU�
2UJDQL]LQJ�WKH�'HSRW�

The default view brought up by p4 client maps the entire depot to the entire clie
workspace. If the client workspace is named eds_elm, the default view would look like
this:

//depot/... //eds_elm/...

This is the easiest mapping, and can be used for the most simple PERFORCE depots, but
mapping the entire depot to the workspace can lead to problems later on. Suppos
server currently stores files for only one project, but another project is added later: e
one who has a client workspace mapped as above will wind up receiving all the files
both projects into their workspaces. Additionally, the default view does not facili
branch creation.

The safest way to organize the depot, even from the start, is to create one subdirect
project within the depot. For example, if your company is working on three projects, c
named foo, bar, and zeus, three subtrees might be created within the depot: //depot/

foo, //depot/bar, and //depot/zeus. If Joe is working on the foo project, his map-
ping might look like this:

//depot/foo/... //joe/...

And Sarah, who’s working on the bar and zeus projects, might set up her client work
space as:

//depot/bar/... //sarah/bar/...
//depot/zeus/... //sarah/zeus/...

This sort of organization can be extended on the fly to as many projects and branc
are needed.

Another way of solving the same problem would be to have the PERFORCE system admin-
istrator create one depot for each project or branch. Please see Chapter 15, page
details.
anual 52

Perforce 97.3 User’s M

Chapter 6 : Perforce Basics: Miscellaneous Topics

 file
grate

he

PERFORCE access
levels are explained
in chapter 14.
5HQDPLQJ�)LOHV

Although PERFORCE doesn’t have a rename command, a file can be renamed by using
p4 integrate to copy the file from one location in the depot to another, deleting the
from the original location, and then submitting the changelist that includes the inte
and the delete. The process is as follows:

The from_file will be moved to the directory and renamed according to the to_file speci-
fier. For example, if from_file is d1/foo and to_file is d2/bar, then foo will be moved to
the d1 directory, and will be renamed bar. The from_file and to_file specifiers may
include wildcards, as long as they are matched on both sides. PERFORCE write access is
needed on all the specified files.

5HDGLQJ�)RUPV�IURP�6WDQGDUG�,QSXW�
:ULWLQJ�)RUPV�WR�6WDQGDUG�2XWSXW

Any commands that require the user to fill in a form, such as the p4 client and p4
submit commands, can read the form from standard input with the -i flag. An example is

p4 client -i < filename

where filename contains the field names and values expected by the form. Similarly, t
-o flag can be used to write a form specification to standard output.

The commands that display forms and can therefore use these flags are:

p4 integrate from_files to_files
p4 delete from_files
p4 submit

p4 branch p4 change

p4 client p4 job

p4 label p4 protect

p4 submit p4 user
anual 53

CHAPTER 7 &KDQJHOLVWV
Perforce 97.3 User’s M

mple,
Rather
create
 that
te

e
ile, the
gned
r.

 per-
A PERFORCE changelist is a list of files, their revision numbers, and operations to be per-
formed on these files. Commands such as p4 add filenames and p4 edit filenames
include the affected files in a changelist; the depot is not actually altered until the change-
list is submitted with p4 submit.

When a changelist is submitted to the depot, the depot is updated atomically: either all of
the files in the changelist are updated in the depot, or none of them are. This grouping of
files as a single unit guarantees that code alterations spanning multiple files will update in
the depot simultaneously. To reflect the atomic nature of changelist submissions, submis-
sion of a changelist is sometimes called an atomic change transaction.

PERFORCE attempts to make changelist usage as transparent as possible: in the normal
case, PERFORCE commands such as p4 edit add the affected files to a default changelist
(called, appropriately enough, the default changelist), and p4 submit sends the default
changelist to the server for processing. However, there are two sets of circumstances that
would require the user to understand and manipulate non-default changelists:

• Sometimes a user wants to split files into separate groups for submission. For exa
suppose a user is fixing two bugs, each of which spans a separate set of files.
than submit the fixes to both bugs in a single changelist, the user might elect to
one changelist for the files that fix the first bug, and another changelist for the files
fix the second bug. Each changelist would be submitted to the depot via separap4

submit’s.

• Under certain circumstances, the p4 submit command can fail. For example, if on
user has a file locked and another user submits a changelist that contains that f
submit will fail. When a submit of the default changelist fails, the changelist is assi
a number, is no longer the default changelist, and must be referred to by its numbe

In the above circumstances, the user must understand how to work with numbered
changelists.

:RUNLQJ�ZLWK�WKH�'HIDXOW�&KDQJHOLVW

A changelist is a list of files, revision numbers of those files, and operations to be
formed on those files. For example, a single changelist might contain the following:
anual 54

Perforce 97.3 User’s M

Chapter 7 : Changelists

ist is
quently

ng the
status

The material in this
subsection has
already been
presented in slightly
different form in
earlier chapters. It
is presented again
here to provide a
complete discussion
of changelists.

A PERFORCE
superuser may
change the
description of a
changelist, and in
some cases may
delete changelists
entirely. Please see
page 108 for details.
 /doc/elm-help.1 revision 3 edit
 /utils/elmalias.c revision 2 delete

Each of the files in the changelist are said to be open within the client workspace: the first
of the files above was opened for edit with p4 edit, and the second was opened for dele-
tion with p4 delete. The files in the changelist are updated within the depot with p4
submit, which sends the changelist to the server; the server processes the files contained
in the changelist and alters the depot accordingly.

The commands that add or remove files from changelists are:

By default, these commands, and p4 submit, act on the default changelist; for example,
if a user types p4 add filename, this file is added to the default changelist. When a user
types p4 submit, the default changelist is submitted.

When p4 submit is typed, a change form is displayed that contains the files in the
default changelist. Any file can be deleted from this list; when a file is deleted, it is moved
to the next default changelist, and will appear again the next time p4 submit is typed. A
changelist must contain a user-entered description, which should describe the nature of the
changes being made.

p4 submit can take an optional, single file pattern as an argument. In this case, only
those files in the default change that match the file pattern will be included in the submit-
ted changelist. Since the p4d server program must receive this file pattern as a single argu-
ment, make sure to escape the * wildcard if it is used.

When the user quits from the p4 submit editor, the changelist is submitted to the server
and the server attempts to update the files in the depot. If there are no problems, the
changelist is assigned a sequential number, and its status changes from new or pending to
submitted. Once a changelist has been submitted, it becomes a permanent part of the
depot’s metadata, and is unchangeable except by PERFORCE superusers.

&UHDWLQJ�1XPEHUHG�&KDQJHOLVWV�
0DQXDOO\

A user can create a changelist in advance of submission with p4 change. This command
brings up the same form seen during p4 submit. All files in the default changelist are
moved to this new changelist; when the user quits from the form, the changel
assigned the next changelist number in sequence, and this changelist must be subse
referred to by this change number. Files can be deleted from the changelist by editi
form; files deleted from this changelist are moved to the next default changelist. The
for a changelist created by this method is pending until the form is submitted.

Any client file may be included in only one pending changelist.

 p4 add p4 delete

 p4 edit p4 integrate

 p4 reopen p4 revert
anual 55

Perforce 97.3 User’s M

Chapter 7 : Changelists

bugs,

es the
 like

leave

es to

-

Example:
Working with
multiple changelists
:RUNLQJ�:LWK�1XPEHUHG�&KDQJHOLVWV

Commands such as p4 edit filename, which by default adds the files to the default
changelist, can be used to append a file to a pending numbered changelist with the
-c changenum flag. For example, to edit a file and submit it in change number 4, use
p4 edit -c 4 filename.

Files can be moved from one changelist to another with p4 reopen -c changenum
filenames, where changenum is the number of the moving-to changelist. If files are
being moved to the default changelist, use p4 reopen -c default filenames.

Ed is working on two bug fixes simultaneously. One of the bugs involves mail filtering and
requires updates of files in the filter subdirectory; the other problem is in the elm aliasing
system, and requires an update of utils/elmalias.c. Ed wants to update each bug
separately in the depot; this will allow him to refer to one bug fix by one change number
and the other bug fix by another change number. He’s already started fixing both
and has opened some of the affected files for edit. He types p4 change, and sees

Ed wants to use this changelist to submit only the fix to the filter problems. He chang
form, deleting the last file revision from the file list; when he’s done, the form looks
this:

When he quits from the editor, he’s told

 Change 29 created with 2 open file(s).

The file that he removed from the list, utils/elmalias.c, is now found in the default
changelist. He could include that file in another numbered changelist, but decides to
it where it is.

He fixes both bugs at his leisure. He realizes that the filter problem will require updat
another file: filter/lock.c. He opens this file for edit with p4 edit -c 29 filter/

lock.c; opening the file with the -c 29 flag puts the file in changelist 29, which he cre

Change: new
Client: eds_elm
User: edk
Status: new
Description:
 <enter description here>
Files:
 //depot/elm_proj/filter/filter.c # edit
 //depot/elm_proj/filter/lock.c # edit
 //depot/elm_proj/utils/elmalias.c # edit

Change: new
Client: eds_elm
User: edk
Status: new
Description:
 Fixes filtering problems
Files:
 //depot/elm_proj/filter/filter.c # edit
 //depot/elm_proj/filter/lock.c # edit
anual 56

Perforce 97.3 User’s M

Chapter 7 : Changelists

ence

t, and
st was
 in
hange-

ion, a

h the
ered.

Chapter 5
discusses the
merge/resolve
process.

Example:
Automatic
renumbering of
changelists
ated above. (If the file had already been open for edit in the default changelist, he could
have moved it to changelist 29 with p4 reopen -c 29 filter/lock.c).

Ed finishes fixing the aliasing bug; since the affected files are in the default changelist, he
submits the changelist with a straightforward p4 submit. He’ll finish fixing the filtering
bug later.

$XWRPDWLF�&UHDWLRQ�DQG�5HQXPEHULQJ�RI�
&KDQJHOLVWV

:KHQ�6XEPLW�RI�WKH�'HIDXOW�&KDQJHOLVW�)DLOV�
WKH�&KDQJHOLVW�LV�$VVLJQHG�D�1XPEHU

Submits of changelists will occasionally fail. This can happen for a number of reasons:

• A file in the changelist has been locked by another user with p4 lock;

• The client workspace no longer contains a file included in the changelist;

• There is a server error, such as not enough disk space; or

• The user was not editing the head revision of a particular file. The following sequ
shows an example of how this can occur:

User A’s submit is rejected, since the file revision of foo that he edited is no longer the
head revision of that file.

If any file in a changelist is rejected for any reason, the entire changelist is backed ou
none of the files in the changelist are updated in the depot. If the submitted changeli
the default changelist, PERFORCE assigns the changelist the next change number
sequence, and this change number must be used from this point on to refer to the c
list.

If the submit failed because the client-owned revision of the file is not the head revis
merge must be performed before the changelist will be accepted.

3(5)25&(�0D\�5HQXPEHU�D�&KDQJHOLVW�XSRQ�6XEPLVVLRQ

The change numbers of submitted changelists always reflect the order in whic
changelists were submitted. Thus, when a changelist is submitted, it may be renumb

Ed has finished fixing the filtering bug that he’s been using changelist 29 for. Since he
created that changelist, he’s since submitted another changelist (change 30), and two
other users have submitted changelists. Ed submits change 29 with p4 submit -c 29,
and is told

Change 29 renamed change 33 and submitted.

User A types p4 edit //depot/foo;
User B types p4 edit //depot/foo;
User B submits her default changelist;
User A submits his default changelist.
anual 57

Perforce 97.3 User’s M

Chapter 7 : Changelists
'HOHWLQJ�&KDQJHOLVWV

To remove a pending changelist that has no files or jobs associated with it, use p4
change -d changenum. Pending changelists that contain open files or jobs must have
the files and jobs removed from them before they can be deleted: use p4 reopen to move
files to another changelist, p4 revert to remove files from the changelist (and revert
them back to their old versions), or p4 fix -d to remove jobs from the changelist.

Changelists that have already been submitted can never be deleted.

&KDQJHOLVW�5HSRUWLQJ

The two reporting commands associated with changelists are p4 changes and p4
describe. The former is used to view lists of changelists with short descriptions; the lat-
ter prints verbose information for a single changelist.

Command Meaning

p4 changes Displays a list of all pending and submitted
changelists, one line per changelist, and an abbre-
viated description.

p4 changes -m numchanges Limits the number of changelists reported on to
the last numchanges changelists.

p4 changes -s status Limit the list to those changelists with a particular
status; for example,
p4 changes -s submitted will list only al-
ready-submitted changelists.

p4 describe changenum Displays full information about a single change-
list; if the changelist has already been submitted,
the report will include a list of affected files and
the diffs of these files. The -s flag can be used to
exclude the diffs of the files.
anual 58

CHAPTER 8 /DEHOV
Perforce 97.3 User’s M

f the

r

 per-
t will

articu-
e four

sts;

ngelist

 in the

by

r
its
A PERFORCE label is simply a user-determined list of files and revisions. The label can
later be used to reproduce the state of these files within a client workspace.

Labels provide a method of naming important combinations of file revisions for later ref-
erence. For example, the file revisions that comprise a particular release of your software
might be given the label release2.0.1. At a later time, all the files in that label can be
retrieved into a client workspace with a single command.

Create a label when:

• You want to keep track of all the file revisions contained in a particular release o
software;

• There exists a particular set of file revisions that you want to give to other users; o

• You have a set of file revisions that you want to branch from, but you don’t want to
form the branch yet. In this case, you would create a label for the file revisions tha
form the base of the branch.

:K\�1RW�-XVW�8VH�&KDQJH�1XPEHUV"

Labels share certain important characteristics with change numbers: both refer to p
lar file sets, and both act as handles to refer to all the files in the set. But labels hav
important advantages over change numbers:

• the file revisions referenced by a particular label can come from different changeli

• a change number refers to the state of all the files in the depot at the time the cha
was submitted; a label can refer to any arbitrary set of files and revisions;

• the files and revisions referenced by a label can be arbitrarily changed at any point
label’s existence; and

• changelists are always referred to by PERFORCE-assigned numbers; labels are named
the user.

&UHDWLQJ�D�/DEHO

Labels are created with p4 label labelname.; this command brings up a form simila
to the p4 client form. Like clients, labels have associated views; the label view lim
anual 59

Perforce 97.3 User’s M

Chapter 8 : Labels

ine

e

t be
 the

ed

ith the

ored

is
 the
ied

Example:
Creating a label
which files can be referenced by the label. Once the label has been created, the
p4 labelsync command is used to load the label with file references.

Label names share the same namespace as clients, branches, and depots; thus, a label
name can’t be the same as any existing client, branch, or depot name.

Ed has finished the first version of filtering in elm; he wants to create a label that refer-
ences only those files in the filter and hdrs subdirectories. He wants to name the label
filters.1; he types p4 label filters.1 and fills in the resulting form as follows:

When he quits from the editor, the label is created.

Before following this example further, it’s worth stopping for a moment to exam
exactly what has and hasn’t been accomplished. So far, a label called filters.1 has
been created. It can contain files only from the depot’s elm_proj filter and hdrs subdi-
rectories. But the label filters.1 is empty; it contains no file references. It will b
loaded with its file references with p4 labelsync.

The View: field is used to limit the files that are included in the label. These files mus
specified by their location in the depot; this view differs from other views in that only
depot side of the view is specified. The locked / unlocked option in the Options: field
can prevent p4 labelsync from overwriting previously synced labels (this is describ
further in “Preventing Accidental Overwrites of a Label’s Contents” on page 62).

$GGLQJ�DQG�&KDQJLQJ�
)LOHV�/LVWHG�LQ�D�/DEHO

Once a label has been created, references to files can be included in the label w
labelsync command. The syntax for labelsync is

p4 labelsync [-a -d -n] -l labelname [filename...]

The rules followed by labelsync to include files in a label are as follows:

1. All files listed in a label must be contained in the label view specified in the p4 label

form. Any files or directories that are not mapped through the label view are ign
by labelsync. All the following rules assume this, without further mention.

2. When labelsync is used to include a particular file in a label’s file list, the file
added to the label if it is not already included in the label. If a different revision of
file is already included in the label’s file list, it is replaced with the newly-specif
revision. Only one revision of any file is ever included in a label’s file list.

3. If labelsync is called with no filename arguments, as in

p4 labelsync -l labelname

Label: filters.1
Owner: edk
Description:
 Created by edk.
Options: unlocked
View:
 //depot/elm_proj/filter/...

//depot/elm_proj/hdrs/...
anual 60

Perforce 97.3 User’s M

Chapter 8 : Labels

s file

ns,

the

Example:
Storing
file references in a
label with
p4 labelsync

Example:
Changing
file references in a
label with
p4 labelsync

Example:
Including a different
file revision in a
label
then all the files mapped by the label view will be listed in the label. The revisions added
to the label will be those last synced into the client; these revisions can be seen in the p4
have list. Calling labelsync this way will replace all existing file references with the
new ones.

Ed has created a label called filters.1 as specified above; now he wants to load the
filters.1 label with the proper file revisions. He types

p4 labelsync -l filters.1

and sees the following:

The file revisions added to the label are those contained in the intersection of the label
view and the current client have list.

4. If p4 labelsync is called with filename arguments, and the arguments contain no
revision specifications, the head revisions of these files are included in the label’
list.

After performing the above labelsync command, Ed finds that the file filter/fil-
ter.c is buggy. He fixes it, submits the new version, and wants to replace the old revi-
sion of this file in the label filters.1 with the new revision. From the filter
subdirectory, he types

p4 labelsync -l filters.1 doc/filter.c

and sees

The head revision of filter.c replaces the revision that had been previously included in
the label.

5. If labelsync is called with filename arguments that contain revision specificatio
these file revisions are included in the label’s file list.

Ed realizes that the version of filter/audit.c contained in his label filters.1 is not
the version he wants to include in the label; he’d prefer to include revision 12 of that file.
From the main Elm directory, he types

p4 labelsync -l filters.1 filter/audit.c#12

and sees

This revision of audit.c replaces the revision that had been previously included in
label.

//depot/elm_proj/filter/Makefile.SH#20 - added
//depot/elm_proj/filter/actions.c#25 - added

<etc.>

//depot/elm_proj/filter/filter.c#15 - updated

/depot/elm_proj/filter/audit.c#12 - updated
anual 61

Perforce 97.3 User’s M

Chapter 8 : Labels

lient

ct as

Example:
Retrieving files into
a client workspace
from a label
3UHYLHZLQJ�/DEHOV\QF·V�5HVXOWV

The results of p4 labelsync can be previewed with p4 labelsync -n. This lists the
files that would be added, deleted, or replaced in the label without actually performing the
operation.

3UHYHQWLQJ�$FFLGHQWDO�2YHUZULWHV�RI�
D�/DEHO·V�&RQWHQWV

Since p4 labelsync with no file arguments overwrites all the files that are listed in the
label, it is possible to accidently lose the information that a label is meant to contain. To
prevent this, call p4 label labelname and set the value of the Options: field to
locked. It will be impossible to call p4 labelsync on that label until the label is subse-
quently unlocked.

5HWULHYLQJ�D�/DEHO·V�&RQWHQWV�LQWR�D�
&OLHQW�:RUNVSDFH

To retrieve all the files listed in a label into a client workspace, use
p4 sync files@labelname. This command will match the state of the client work-
space to the state of the label, rather than simply adding the files to the client workspace.
Thus, files in the client workspace that aren’t in the label may be deleted from the c
workspace.

Lisa wants to retrieve all the files listed in Ed’s filters.1 label into her client work-
space. She can type

p4 sync //depot/...@labelname

or even

p4 sync @labelname

But she’s interested in seeing only the header files from that label; she types

p4 sync //depot/elm_proj/hdrs/*@filters.1

and sees

All the files in the subdirectory hdrs that are within the intersection of Ed’s filters.1

label and Lisa’s client view are retrieved into her workspace. But there is another effe
well: files that are not in the intersection of the label’s contents and //depot/

elm_proj/hdrs/* are deleted from her workspace.

If p4 sync @labelname is called with no file parameters, all files in the client that are
not in the label will be deleted from the client. If this command is called with file argu-
ments, as in p4 sync files@labelname, then the client workspace at the intersection

//depot/elm_proj/hdrs/curses.h#1 - added as /usr/lisag/elm/hdrs/curses.h
//depot/elm_proj/hdrs/defs.h#1 - added as /usr/lisag/elm/hdrs/defs.h
//depot/elm_proj/hdrs/test.h#3 - deleted as /usr/lisag/elm/hdrs/test.h

<etc>
anual 62

Perforce 97.3 User’s M

Chapter 8 : Labels

el in

n
of the depot, the client workspace view, and the file parameters will be updated to match
the contents of the depot at that intersection.

'HOHWLQJ�/DEHOV

A label can be deleted in its entirety with

p4 label -d labelname

Files can be deleted from labels with

p4 labelsync -d -l labelname filepatterns

A variant of this is

p4 labelsync -d -l labelname

This command deletes all the files from the label’s file list, but leaves the empty lab
the system.

/DEHO�5HSRUWLQJ

The commands that output reports on labels are:

Command Description

p4 labels Report the names, dates, and descriptions of all labels know
to the server

p4 files
@labelname

Lists all files and revisions contained in the given label.

p4 sync -n
@labelname

Shows what p4 sync would do when retrieving files from a
particular label into your client workspace, without actually
performing the sync.
anual 63

CHAPTER 9 %UDQFKLQJ
Perforce 97.3 User’s M

in
l

tical,
g; we
ers

stem.
s are

your
r other
ld be

 one

 code
s. For

r their
ode to
PERFORCE’s Inter-File Branching™ mechanism allows any set of files to be copied with
the depot. By default, the new file set (or codeline) evolves separately from the origina
files, but changes in either codeline can be propagated to the other with the p4 inte-

grate command.

:KDW�LV�%UDQFKLQJ"

Branching is a method of keeping in sync two or more sets of similar, but not iden
files. Most software configuration management systems have some form of branchin
believe that PERFORCE’s mechanism is unique in that it mimics the style in which us
create their own file copies when no branching mechanism is available.

Suppose for a moment that you’re writing a program and are not using an SCM sy
You’re ready to release your program: what would you do with your code? Chance
that you’d copy all your files to a new location. One of your file sets would become
release codeline, and bug fixes to the release would be made to that file set; you
files would become your development file set, and new functionality to the code wou
added to these files.

What would you do when you find a bug that’s shared by both file sets? You’d fix it in
file set, and then copy the edits that you made into the other file set.

The only difference between this homegrown method of branching and PERFORCE’s
branching methodology is that PERFORCE manages the file copying and edit propagation
for you. In PERFORCE’s terminology, copying the files is called making a branch; each file
set is known as a codeline, and copying an edit from one file set to the other is called inte-
gration. The entire process is called branching.

:KHQ�WR�&UHDWH�D�%UDQFK

Create a branch whenever two sets of code have different rules governing when
should be submitted, or whenever a set of files needs to evolve along different path
example:

• The members of the development group want to submit code to the depot wheneve
code changes, whether or not it compiles; but the release engineers don’t want c
anual 64

Perforce 97.3 User’s M

Chapter 9 : Branching

anch
line is
uld be
opment

IX
NIX
 they
tely. If

 to the

ceeds
ed

.

reated
eeded.

 the

n a

ot;

In previous versions
of PERFORCE, it was
necessary to
perform the fifth
step: retrieval of the
new codeline files
into the client
workspace with p4
sync. This step is
no longer
necessary; p4
integrate now
copies the files into
the client workspace
for you. To disable
this automatic file
copying, use p4
integrate -v; if
you do this, you’ll
need to perform a
sync after the
submit.
be submitted until it’s been debugged, verified, and signed off on. They would br
the release codeline from the development codeline; when the development code
ready, it would be integrated into the release codeline. Patches and bug fixes wo
made in the release code; later, these changes could be integrated into the devel
code.

• A company is writing a driver for a new multi-platform printer. They’ve written a UN
device driver; they’re now going to begin work on a Macintosh driver, using the U
code as their starting point. They create a branch from the existing UNIX code;
now have two copies of the same code, and these codelines can evolve separa
bugs are found in either codeline, bug fixes can be propagated from one codeline
other with the PERFORCE integrate command.

• At PERFORCE, we use branching to manage our releases. Development always pro
in files located within //depot/main/... When a new release is ready, it’s branch
into another codeline, for example, the code for this release was copied from
//depot/main/... into //depot/97.3/... Bug fixes that affect both codelines
will be made within //depot/main/..., and later integrated into the other codeline

Development of release 98.1 will proceed in //depot/main/..., when the new
release is ready, it will be branched into //depot/98.1/..., and the process will con-
tinue like this for all PERFORCE releases.

%UDQFKLQJ·V�)LUVW�$FWLRQ�
&UHDWLQJ�D�%UDQFK

As described above, two separate actions comprise branching: first, a branch is c
(e.g., files are copied); second, edits are copied from one codeline to the other as n
This section describes the first of these actions.

The steps to creating a branched codeline are:

1. Create the new branch view with p4 branch branchname. Use the view in the
resulting form to indicate which files are to be included in the branch, and where
branched codeline will be stored within the depot’s file tree.

2. Make sure that the new files and directories are included in the p4 client view of the
client workspace that will hold the new files.

3. Use p4 integrate to open the new files for branching. The new files are listed i
changelist; the associated operation is branch.

4. Use p4 submit to submit the changelist to the PERFORCE server. This creates the new
files in the depot.

5. Copy the new files from the depot to the client workspace with p4 sync.

The following example demonstrates each of these steps.

6WHS����&UHDWH�WKH�%UDQFK�9LHZ

The first step is to create the branch view. Creating a branch view does four things:

1. Assigns the branched codeline a name;

2. Describes which files will be copied from;

3. For each original file, describes where the new copy will be stored within the dep
anual 65

Perforce 97.3 User’s M

Chapter 9 : Branching

ght;

nch

Example:
Creating a branch
4. Maintains a mapping between each original and branch file, so that changes to one can
be easily propagated to the other.

A version of Elm is ready for release, and a potential problem is foreseen: the developers
will be submitting code to the depot for the next version of Elm, but the release engineers
will be submitting fixes to the released version. The two policies are clearly incompatible;
so a branched codeline, with duplicate Elm files, needs to be created. Kurt, one of the
release engineers, is assigned to create the branch for the release engineers.

The original code is stored in the depot under its elm_proj subtree; Kurt decides to call
the branch elm_r1, and will store the branched codeline in the depot under an
elm_release1 subdirectory. He types

p4 branch elm_r1

and sees the following:

The default View above would map the entire depot to itself in a branch, which is useless.
The View needs to map the original codeline’s files on the left to branch files on the ri
Kurt changes the View field as follows:

This maps all the files in the depot’s elm_proj file tree to a new depot file tree called
elm_release1. All files from the source subtree will eventually be copied to the bra
subtree; these files will be the contents of the branch.

Kurt quits the editor; the branch is created.

The p4 branch command does not copy files into the branch; it simply specifies which
original file will correspond to which branched file.

Exclusionary mappings may be used within a branch view.

6WHS����,QFOXGH�WKH�%UDQFKHG�)LOHV�LQ�WKH�&OLHQW�9LHZ

In order to work with branched files, the branched files must be accessible through the cli-
ent view.

Branch: elm_r1
Date: 05/25/1997 17:43:28
Owner: kurtv
Description:
 Created by kurtv.
View:
 //depot/... //depot/...

Branch: elm_r1
Date: 05/25/1997 17:43:28
Owner: kurtv
Description:
 Created by kurtv.
View:
 //depot/elm_proj/... //depot/elm_release1/...
anual 66

Perforce 97.3 User’s M

Chapter 9 : Branching

lient

t
l files

 files

.

, the
 visi-

op-

ranch

Example:
Including
branched files
in a client view

Example:
Using integrate
to create
branched files
Kurt will be working with the branched files. His client is kurtv_cli; he types p4 cli-
ent, and adds a line to his client view:

There might be other mappings within the client view; the only crucial factor is that the
files in the depot’s elm branch directory be mapped to some location in Kurt’s c
workspace. The mapping shown here accomplishes this.

6WHSV���	���
8VH�¶S��LQWHJUDWH·�DQG�¶S��VXEPLW·
WR�&UHDWH�WKH�7DUJHW�)LOHV

To create the new branch files, use p4 integrate followed by p4 submit. When the
branch files don’t yet exist in the depot, integrate creates the branched files in the clien
workspace and tells the server that the branch files are to be copied from the origina
described in the branch mapping. The integrate command, like add, edit, and
delete, does not actually affect the depot immediately; instead, it adds the affected
to a changelist, which must be submitted with p4 submit. This keeps the integrate
operation atomic: either all the named files are affected at once, or none of them are

The basic syntax of the integrate command is

p4 integrate -b branchname [filepatterns]

If the filepatterns are left off, all the files in the branch are affected. When included
filepatterns must describe the new files, not the original files, and these files must be
ble through the client view.

Kurt has created the branch elm_r1 as above, and he’s ready to create the branched c
ies in the depot. He types p4 integrate -b elm_r1, and sees

The branched files have been created in his client workspace, and instructions to b
these files have been added to his default changelist. He types p4 submit, and sees

Client: kurtv_cli
Date: 05/25/1997 18:34:58
Owner: kurtv
Description:
 Created by kurtv.
Root: /usr/kurtv
View:
 //depot/elm_release1/... //kurtv_cli/elm.r1/...

//depot/elm_release1/Changes#1 - branch/sync from //depot/elm_proj/Changes#6
//depot/elm_release1/NOTICE#1 - branch/sync from //depot/elm_proj/NOTICE#23

<etc.>

Change: new
Client: kurtv_elm
User: kurtv
Status: new
Description:
 <enter description here>
Files:
 //depot/elm_release1/Changes # branch
 //depot/elm_release1/Configure # branch

<etc.>
anual 67

Perforce 97.3 User’s M

Chapter 9 : Branching

ccom-

other
ed:
 the

Discussion of
file conflict
resolution
begins on page 39.

Example:
Propagating
original codeline
changes to the
branched codeline
He changes the description and quits the editor; the branched files are created within the
depot and are copied into the client workspace.

If Kurt wanted the files to be created in the depot but not synced to the client workspace,
he could have used the -v flag with the integrate command. If he did this, the files
would later need to be copied to the client workspace with p4 sync.

(GLWLQJ�1HZO\�%UDQFKHG�)LOHV

By default, a file that has been newly created in a client workspace by p4 integrate
cannot be edited before its first submission. To make a newly-branched file available for
editing before submission, simply p4 edit the file.

:RUNLQJ�:LWK�%UDQFKHG�)LOHV

Once a branch has been created and the files have been copied into the branched codeline
with p4 integrate, the branched files are treated exactly like non-branched files, with
the normal use of sync, edit, delete, submit, etc. Evolution of both codelines pro-
ceeds separately; additional PERFORCE commands are used only when changes to one
codeline need to be propagated to the other.

%UDQFKLQJ·V�6HFRQG�$FWLRQ�
3URSDJDWLQJ�&KDQJHV�IURP�2QH�&RGHOLQH�
WR�WKH�2WKHU

It is worth repeating that two separate actions comprise branching: first, one set of files is
copied from one location in the depot to another location, and second, changes made to
one codeline can be copied to the branched codeline as needed. The steps needed to
accomplish the first action have been described above; now we’ll discuss how to a
plish the second action.

Edits to a file in either codeline can be propagated to the corresponding file in the
codeline with the resolve command. Only one additional step needs to be perform
before resolving, the integrate command is used to schedule the merge between
original files and the branched files. In its normal use with branched files, p4 integrate

takes the form p4 integrate -b branchname files, where the specified files are the
branched files rather than the original files.

A bug has been fixed in the original codeline’s src/elm.c file. Kurt wants to propagate
the same bug fix to the branched codeline he’s been working on. He types

p4 integrate -b elm_r1 ~kurtv/elm.r1/src/elm.c

and sees

//depot/elm_release1/src/elm.c#1 - integrate from //depot/elm_proj/src/elm.c#9
anual 68

Perforce 97.3 User’s M

Chapter 9 : Branching

t
t.

o be
nch
to be

iew

nts to

nd

riginal
l

s

Protections are
discussed in
Chapter 9.

Example:
Propagating
branched codeline
changes to the
original codeline
The file has been scheduled for resolve. He types p4 resolve, and the standard merge
dialog appears on his screen.

He resolves the conflict with the standard use of p4 resolve. When he’s done, the resul
file overwrites the file in his branched client, and it still must be submitted to the depo

In PERFORCE terminology, changes are always propagated from donor files to target files.
In the above example, the original codeline provided the donor files and the target files
were located in the branched codeline, but changes can be propagated in the other direc-
tion as well.

There is one fundamental difference between resolving conflicts in two revisions of the
same file, and resolving conflicts between the same file in two different codelines. The
difference is that PERFORCE will detect conflicts between two revisions of the same file
and then schedule a resolve, but there are always differences between two versions of the
same file in two different codelines, and these differences usually don’t need t
resolved. You must tell PERFORCE that text in one file needs to be propagated to its bra
with p4 integrate. If the codelines evolve separately, and changes never need
propagated, you’ll never need to integrate or resolve the files in the two codelines.

p4 integrate only acts on files that are the intersection of target files in the branch v
and the client view. If file patterns are given on the command line, integrate further
limits its actions to files matching the patterns. The donor files supplied as argume
integrate need not be in the client view.

To run the p4 integrate command, write access is needed on the target files, a
read access is required on the donor files.

3URSDJDWLQJ�&KDQJHV�IURP�%UDQFKHG�)LOHV�
WR�WKH�2ULJLQDO�)LOHV

A change can be propagated in the reverse direction, from branched files to the o
files, by supplying the -r flag to p4 integrate. In this case, the names of the origina
files are provided as arguments to p4 integrate -r.

Ed wants to integrate a change in Kurt’s branched src/screen.c file to Ed’s original
version of the same file. He types p4 integrate -r -b elm_r1 //depot/

elm_proj/src/screen.c; and then p4 resolve. The change in the branched file i
propagated to his source file.

/usr/kurtv/elm.r1/src/elm.c - merging //depot/elm_proj/src/elm.c#2
Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:
anual 69

Perforce 97.3 User’s M

Chapter 9 : Branching

ombi-

onor.

cessi-
e

 re-
 were
When the -r flag is used to propagate changes from branched donors to original targets,
the original source files must be visible through the target view.

%UDQFKLQJ�DQG�0HUJLQJ
:LWKRXW�D�%UDQFK�9LHZ

Thus far, we have been describing the two actions that comprise branching: copying a set
of files from one location in the depot to another, and propagating edits of one of the code-
lines to the other codeline. It is possible to use p4 integrate to perform both of these
steps without ever having created a branch view. This is accomplished by calling p4
integrate with two file arguments and without the -b branch flag, as in

p4 integrate donor_file target_file

When p4 integrate is called this way, it will perform the integration between the two
named files. The first file argument provides the donor; the second provides the target.
The donor file must already exist; the target file needn’t. There are three possible c
nations of donor and target:

• The target file doesn’t exist. In this case, the target file is opened for branch, and PER-
FORCE will track the integration history between the two files. Subsequent merges of the
two files will treat this donor revision as base.

• The target file exists, and was originally branched from the donor file with p4 inte-
grate. In this case, a three-way merge is scheduled between the target and the d

• The target file exists, but was not branched from the donor. Since these two file revi-
sions did not begin their lives at a common, older file revision, there can be no base
file, so p4 resolve can’t do a three-way merge. In this case, p4 resolve will do a
two-way merge, in which yours is also used as base. In a two-way merge, all changes
appear as theirs, and there can be no conflicts.

'HOHWLQJ�%UDQFKHV

To delete a branch, use

p4 branch -d branchname

Deleting a branch deletes only the branch view description, making the branch inac
ble from any subsequent p4 integrate commands. If the files in the branched codelin
are to be removed, they must be deleted with p4 delete.

$GYDQFHG�,QWHJUDWLRQ�)XQFWLRQV

PERFORCE’s branching mechanism also allows integration of specific file revisions, the
integration and re-resolving of already integrated code, and merging of two files that
previously not related.
anual 70

Perforce 97.3 User’s M

Chapter 9 : Branching

 code

gelist

onor.
e-
de to
29 is

ection
ind the

Example:
Integrating
Specific
File Revisions

In previous versions
of PERFORCE, re-
resolution of files
was accomplished
with p4
reresolve, which
has now been
replaced by p4
resolve -f.
,QWHJUDWLQJ�6SHFLILF�)LOH�5HYLVLRQV

By default, the integrate command will integrate into the target all the revisions of the
donor since the last donor revision that integrate was performed on. A revision range
can be specified when integrating; this prevents unwanted revisions from having to be
manually deleted from the merge while editing. In this case, the revision used as base is
the first revision below the specified revision range.

The syntax here is a little strange: although the file provided as an argument to p4 inte-
grate is the target, the file revision specifier is applied to the donor.

Ed has made two bug fixes to his file src/init.c, and Kurt wants to integrate the
change into his branched version, which is called newinit.c. Unfortunately, init.c
has gone through 20 revisions, and Kurt doesn’t want to have to delete all the extra
from all 20 revisions while resolving.

Kurt knows that the bug fixes he wants were made to file revisions submitted in chan
30. From the directory of his newinit.c file in his branched workspace, he types

p4 integrate -b elm_r1 src/newinit.c@30,@30

The target file is given as an argument, but the file revisions are applied to the d
When Kurt runs p4 resolve, only the revision of Ed’s file that was submitted in chang
list 30 is scheduled for resolve, that is, Kurt only sees the changes that Ed ma
init.c in changelist 30. The file revision that was present in the depot at changelist
used as base.

5H�,QWHJUDWLQJ�DQG�5H�5HVROYLQJ�)LOHV

Once a particular revision of a donor file has been integrated into a particular target, that
particular revision is usually skipped in subsequent integrations with the same target. If all
the revisions of a donor have been integrated into a particular target, p4 integrate will
give the error message All revisions already integrated. But integration of a
particular donor can be forced, even though integration has already been performed, by
providing the -f flag to p4 integrate.

Similarly, a target file that has been resolved but not yet submitted can be re-resolved by
providing the -f flag to p4 resolve, which forces re-resolution of already resolved files.
When this flag is used, the original client target file will already have been replaced with
the result file of the original resolve process; thus, when re-resolving, yours will already
be the new client file, the result of the original resolve.

+RZ�,QWHJUDWH�:RUNV

The preceding material in this chapter was written from a user’s perspective. This s
makes another pass at the same material, this time describing the mechanism beh
integration process.
anual 71

Perforce 97.3 User’s M

Chapter 9 : Branching

yours, theirs,
and base are first
discussed on
page 42.
S��LQWHJUDWH·V�'HILQLWLRQV�RI�\RXUV��WKHLUV��DQG�EDVH

The values of yours, theirs, and base in a three-way merge are quite different when
propagating changes between two codelines:

7KH�,QWHJUDWLRQ�$OJRULWKP

p4 integrate performs the following steps:

1. It applies the branch view to any target files provided on the command line to produce
a list of donor/target file pairs. If no files are provided on the command line, a list of all
donor/target file pairs is generated. It notes individually each revision of each donor
file that is to be integrated.

2. It discards any donor/target pairs for which the donor file revisions have been inte-
grated in previous changes. Each revision of each file that has been integrated is
remembered individually, in order to avoid making the user merge changes more than
once.

3. It discards any donor/target pairs whose donor file revisions have integrations pending
in files that are already opened in the client.

4. All remaining donor/target pairs will be integrated. The target file is opened on the cli-
ent for the appropriate action (see below), and merging is scheduled.

,QWHJUDWH·V�$FWLRQV

The integrate command will take one of three actions, depending on particular characteris-
tics of the donor and target files:

yours The file that changes are being propagated to (also known as the tar-
get file). This file is in the client workspace, and it is overwritten by
the result once the resolve process is complete.

In a forward integrate, this is a file in the branched codeline. When the
-r flag has been provided to integrate, this is a file in the original
codeline.

theirs The file revision that changes are being read from (also known as the
donor file). This file revision comes from the depot, and is un-
changed by the resolve process.

In a forward integrate, this is a file revision from the original codeline.
When the -r flag has been provided to integrate, this is a file in
the branched codeline.

base The last integrated revision of the donor file. When a new branch is
created and integrate is used to create the branched copy of the file
in the depot, the newly-branched copy is base.

Action Meaning

branch If the target file does not exist, it is opened for branch. The branch
action is a variant of add, but PERFORCE keeps a record of which do-
nor file the target file was branched from. This allows three-way
merges to be performed between subsequent donor and target revi-
sions with the original donor file revision as base.
anual 72

Perforce 97.3 User’s M

Chapter 9 : Branching

s

et

-

When the -r flag is not provided to p4 integrate, the original codeline provides the
donor files, and the branched codeline provides the targets. When the -r flag is given, the
branched codeline is the donor, and the original files are the targets.

,QWHJUDWLRQ�5HSRUWLQJ

The branching-related reporting commands are:

There is an ordering to the first four of these commands: the first is performed before
integrate; the second is done after integrate and before resolve; the third is given
after resolve but before submit, and the fourth is performed after submit. The fifth
command provides a complete history of any file, and is incredibly useful.

integrate If both the donor and target files exist, the target is opened for inte-
gration, which is a variant of edit. Before a user can submit a file
that has been opened for integration, the donor and target must be
merged with p4 resolve.

delete When the target file exists but no corresponding donor file is mapped
through the branch view, the target is marked for deletion. This is
consistent with integrate’s semantics: it attempts to make the tar-
get tree reflect the donor tree.

Command Function

p4 integrate
 -n [filepatterns]

Reports what integrate would do without actually do-
ing it. Any of the usual parameters to integrate can be
specified as well.

p4 resolve
-n [filepatterns]

Reports files that have been scheduled for resolve by p4

integrate, but that have not yet been resolved. Report
what p4 resolve would do without actually doing it.
Any of the usual parameters to resolve can be provided
as well.

p4 resolved Lists those files that have been resolved, but have not y
been submitted.

p4 integrated
[filepatterns]

Describes all integrated and submitted files that match
the filepattern arguments.

p4 branches Display a list of all branches known to the system.

p4 filelog
 [filepatterns]

Describes the revision history of the named files. For
each revision of the named files, the following is report
ed:

• change number;

• operation (edit, add, delete, branch, integrate)

• client name;

• user name; and

• description.

If the operation was branch or integrate, the names
and revisions of the corresponding branch files are re-
ported as well.
anual 73

CHAPTER 10 -RE�7UDFNLQJ
Perforce 97.3 User’s M

ctually
that
if and
ed

d
ible for
job.
rting

an

g

Daemons
are described
in Chapter 11.

Example:
Creating a Job
A job is a written description of some modification to be made to a source code set. A job
might be a bug description, like “the system crashes when I press return”, or it might be
a system improvement request, like “please make the program run faster.”

Whereas a job represents work that is intended, a changelist represents work a
done. PERFORCE’s job tracking mechanism allows jobs to be linked to the changelists
implement the work requested by the job. A job can later be looked up to determine
when it was fixed, which file revisions implemented the fix, and who fixed it. A job link
to a particular changelist is marked as completed when the changelist is submitted.

Jobs perform no functions internally to PERFORCE; rather, they are provided as a metho
of keeping track of what changes to the source are needed, which user is respons
implementing the job, and which file revisions contain the implementation of the
Since jobs do nothing more than provide this information to the user, the job repo
facilities are particularly important.

The job facilities in PERFORCE do not provide a full-scale job tracking system. They c
be used as is, or integrated with another system via a daemon.

&UHDWLQJ�DQG�(GLWLQJ�-REV

Jobs are created with the p4 job command.

Sarah, who shares the same PERFORCE server as Ed, has found a bug in Elm’s filterin
code. Ed is fixing code, so Sarah creates a new job with p4 job and fills in the resulting
form as follows:

Job: new

User: edk

Status: new

Description:
 Filters on the “Reply-To:” field
 don’t work.
anual 74

Perforce 97.3 User’s M

Chapter 10 : Job Tracking

on the

e

a

 asso-
lists by
y be
She has changed User: from her username to edk. Ed will see this job the next time he
views any pending changelist with p4 submit or p4 change.

The p4 job form’s fields are:

If p4 job is called with no parameters, a new job is created. The name that appears
form is new, but this can be changed by the user to any desired string. If the Job: field is
left as new, or is blank, PERFORCE will assign the job the name jobN, where N is a sequen-
tially-assigned six-digit number.

Existing jobs can be edited with p4 job jobname. The owner and description can b
changed arbitrarily; the status can be changed to any of the three valid status valuesopen,
closed, or suspended. If p4 job jobname is called with a non-existing jobname,
new job is created.

/LQNLQJ�-REV�WR�&KDQJHOLVWV��
DQG�&KDQJLQJ�D�-RE·V�6WDWXV

$XWRPDWLFDOO\�3HUIRUPHG�)XQFWLRQV

By default, all open jobs owned by a particular user will appear in all PERFORCE change-
lists subsequently created by that user. A job is automatically closed when one of its
ciated changelists is successfully submitted. Jobs can be disassociated from change
deleting the job from the changelist ’s change form, and any job of any status ma
added to a changelist.

Field Name Description Default

Job The name of the job. Whitespace is not
allowed in the name.

new

User The user whom the job is assigned to, usually
the username of the person assigned to fix
this particular problem.

PERFORCE user-
name of the per-
son creating the
job.

Status open, closed, suspended, or new.

An open job is one that has been created but
has not yet been fixed.

A closed job is one that has been completed.

A suspended job is an open job that is not
currently being worked on.

New jobs exist only while the change creation
form is open.

new; changes to
open after job
creation form is
closed.

Description Arbitrary text assigned by the user. Usually a
written description of the problem that is
meant to be fixed.

text that must be
changed
anual 75

Perforce 97.3 User’s M

Chapter 10 : Job Tracking

d, he
e job

blem,

s from
gelists

Example:
Including and
excluding jobs from
changelists
Ed is unaware of the job that Sarah has assigned to him. He is currently working on an
unrelated problem; he types p4 submit and sees the following:

Since this job is unrelated to the work he’s been doing, and since it hasn’t been fixe
deletes it from the form and then quits from the editor. The changelist is submitted; th
is not associated with it.

Ed uses the reporting commands to read the details about the job. He fixes this pro
and a number of other filtering bugs; when he next types p4 submit, he sees

Since the job is fixed in this changelist, Ed leaves the job on the form. When he quit
the editor, the job is marked as closed, and will not appear in any subsequent chan
unless it is reopened.

Change: new
Client: edk
User: edk
Status: new
Description:
 Updating “File” files
Jobs:
 job000125 # Filters on the “Reply-To”
field d

Files:
 //depot/src/file.c # edit
 //depot/src/file_util.c # edit

//depot/src/fileio.c # edit

Change: new
Client: edk
User: rlo
Status: new
Description:
 Fixes a number of filter problems
Jobs:
 job000125 # Filters on the “Reply-To” field d

Files: //depot/filter/actions.c # edit
 //depot/filter/audit.c # edit
 //depot/filter/filter.c # edit
anual 76

Perforce 97.3 User’s M

Chapter 10 : Job Tracking

:

e edi-

 is
s been
its cur-

t

th
his is

Example:
Using p4 fix
to attach a job
to a changelist
&RQWUROOLQJ�:KLFK�-REV�$SSHDU�LQ�&KDQJHOLVWV

The types of jobs that appear in new changelists created by a particular user can be con-
trolled through the p4 user form. This form’s JobView field allows one of three values

In all three cases, any unwanted job may be deleted from the form before leaving th
tor, and additional jobs can be added.

0DQXDOO\�$VVRFLDWLQJ�-REV�ZLWK�&KDQJHOLVWV

p4 fix -c changenum jobname can be used to link any job, whether open, closed,
or suspended, to any PERFORCE changelist, whether pending or submitted. If the job
open but the changelist has already been submitted, the job is closed. If the job ha
closed but the changelist is pending, the job is reopened. Otherwise, the job keeps
rent status.

Sarah has submitted a job called options-bug to Ed. Unbeknownst to Sarah, the bug
reported by the job was fixed in Ed’s previously submitted changelist 18. Ed links the job
to the previously submitted changelist with p4 fix -c 18 options-bug. Since the
changelist has already been submitted, the job’s status is changed to closed.

 It is never necessary to use p4 fix to link an open job to a changelist newly created by
the owner of the job, since this is done automatically. However, p4 fix can be used to
link a changelist to a job owned by another user.

$UELWUDULO\�&KDQJLQJ�D�-RE·V�6WDWXV

We’ve already seen two ways of changing a job’s status:

1. A job is automatically closed when an associated changelist is submitted.

2. p4 fix will change the status of an open job to closed if the associated changelis
has already been submitted, and will change the status of a closed job to open when
the job is linked to a pending changelist.

The status of any job can also be changed by bringing up the job definition form wip4

job jobname, and then changing the status to one of the three allowed values. T
the only way of changing a job’s status to suspended.

Value of JobView field Description

Mine When a new changelist is created, automatically in-
clude all open jobs owned by the invoking user in the
changelist form. This setting of JobView is the de-
fault.

None Don’t include any jobs on new changelist forms.

All Include all open jobs owned by all users in all new
changelists forms.
anual 77

Perforce 97.3 User’s M

Chapter 10 : Job Tracking
'HOHWLQJ�-REV

A job that has been linked to a changelist can be unlinked from that changelist with p4
fix -d -c changenum jobname. Jobs can be deleted entirely with p4 job -d job-
name. .

,QWHJUDWLQJ�WR�([WHUQDO�'HIHFW�7UDFNLQJ�
6\VWHPV

The PERFORCE job reporting functionality can be used to integrate jobs into external pro-
grams, such as defect tracking systems, via daemons. Please see the next chapter for more
information on daemons.

-RE�5HSRUWLQJ

The commands that generate reports on jobs are:

Command Description

p4 jobs
[-l]
[-s statusval]
[file...]

Generates a report of all jobs on the server. Prints the job name,
date modified, owner, status, and the first 32 characters of the
description for each job.

p4 jobs -l outputs the full description of each job.

p4 jobs -s statusval can be used to limit the report to only
those jobs with a particular status value.

If any file names are provided on the command line with
p4 jobs files, the report will be limited to jobs linked to
those changelists that affected files that match the filepatterns.

p4 fixes
 [-j jobName]
 [-c change#]
 [file ...]

Lists each job along with the change numbers they’ve been
linked to.

p4 fixes -j jobname provides information only for change-
lists linked to that particular job.

p4 fixes -c changenum lists only those jobs associated with
the given change number.

Any file arguments that are provided will limit the listing to
changelists that affect those files.
anual 78

CHAPTER 11 &KDQJH�5HYLHZ
	�2WKHU�'DHPRQV
Perforce 97.3 User’s M

ver
is pro-
r

ndary
cusses

s of
cto-

iles in

Example:
Providing
change review
parameters with
p4 user
PERFORCE’s change review functionality allows users to be notified via email whene
files that they’re interested in have been updated in the depot. Since change review
vided via a background PERL script, or daemon, this functionality can be modified. Othe
daemons can be created to perform entirely different functions.

The primary focus of this chapter is on using the change review daemon; a seco
thread discusses how to create your own daemons. This “daemon creation” topic dis
how a daemon might be created that integrates the PERFORCE job tracking facilities to an
external defect tracking system.

3URYLGLQJ�&KDQJH�5HYLHZ�3DUDPHWHUV

Any user wishing to receive email notification of changed files must provide two piece
information to the PERFORCE server: her email address, and a list of the files and dire
ries that she wants to track (or subscribe to). This information is provided via the p4 user

form.

Sarah wants to be notified whenever any of the Elm README or document files are
changed. She types p4 user and fills in the resulting form with her email address and file
review list:

Once the review daemon is running, she’ll be notified by email whenever any of the f
her Review: list are changed. This includes all README files, and all files in the doc sub-
directory.

Notification is sent whenever a changelist is submitted by any user that edits, deletes, or
adds files that match the p4 user form Reviews: specification.

User: sarahm
Email: sarahm@elmco.com
Update: 04/29/1997 11:52:08
Access: 04/29/1997 11:52:08
FullName: Sarah MacLonnogan
Reviews:
 //depot/doc/...
 //depot.../README
anual 79

Perforce 97.3 User’s M

Chapter 11 : Change Review & Other Daemons

 val-

ccess.
mati-

may
 write

tained
 the
s sent

m-

r;

d when

ll

For more
information on
P4PORT, see
Chapter 11 or
Appendix A.

This protection level
is described in
Chapter 14.
5XQQLQJ�WKH�'DHPRQ�

Change review is implemented via a PERL script, perfreview.perl, which can be
downloaded from

 http://www.perforce.com/perforce/loadsupp.html

This review daemon must be run under PERL 4 or higher; SENDMAIL is also required. It’s
usually run from the P4D server account, in the same directory as the P4D server, although
it can be installed anywhere. Once it’s been installed, do the following:

1. Edit the script and follow the instructions at the top. You may need to change the
ues of certain values in the script, including the locations of the PERL and SENDMAIL

executables.

2. Make sure that the environment variable P4PORT is set the proper port so the review
daemon can communicate with the p4 server.

3. Run perfreview.perl in the background, with

 perfreview.perl &

4. Make sure that the review daemon is running as a user with review or superuser a
If protections are in their default non-enabled state, the review daemon will auto
cally have review access.

The script can be modified to provide any desired functionality. For example, you
want to change the text of the outgoing message, or you might change the script to
change reviews to files instead of sending email.

+RZ�WKH�5HYLHZ�'DHPRQ�:RUNV

The review daemon is quite simple. Every time a changelist is submitted to the PERFORCE

depot, email is sent to every user who has subscribed to review any files that are con
in that changelist. (Unlike other job review systems that you may be familiar with,
PERFORCE system doesn’t require the email recipient to respond; the email message i
for notification purposes only).

The daemon is implemented as follows:

1. The PERFORCE depot is polled for submitted, unreviewed changelists with the co
mand p4 review;

2. p4 reviews is used to generate a list of reviewers for each of these changelists;

3. SENDMAIL is used to email the p4 describe changelist description to each reviewe

4. The first three steps are repeated every sixty seconds; this value can be change
the review daemon is installed.

The commands used in steps 2 and 3, p4 reviews and p4 describe, are straightfor-
ward reporting commands. The p4 review command used in step 1 is rather unusual. A
these commands are described below.
anual 80

Perforce 97.3 User’s M

Chapter 11 : Change Review & Other Daemons

w
bered

d

ique

ter

ically
ted to
safe

-

The review counter
names journal,
job, and change
are used internally
by PERFORCE; use
of any of these
three names as
review counters
could corrupt the
PERFORCE
database!

!

Access levels are
covered in
Chapter 14.
7UDFNLQJ�5HYLHZHG�&KDQJHOLVWV�
ZLWK�5HYLHZ�&RXQWHUV

The review daemon needs to keep track of which changelists have already had their
descriptions emailed to reviewers; in general, most PERFORCE daemons will need to keep
track of which changelists have already been processed. The p4 review command exists
to facilitate this process; it was written solely to support daemon creation and is not likely
to be run by an end user.

Every line of output produced by p4 review has the following form:

Change changenum user <email_addr> (Full_Name)

For example:

Change 6 edk <edk@elmco.com> (Ed Kuepper)

When used with no parameters, p4 review will output one line for every changelist that
has ever been submitted. With the addition of review counter arguments, p4 review can
limit its output to only those changelists not already reported. A review counter is simply a
named counter; each review counter can separately track which changelists have and
haven’t yet been reviewed.

Review counters are used in two variants of p4 review:

Review counters work by storing one counter per review counter in the PERFORCE data-
base. The first variant of p4 review above sets a counter value for a particular revie
counter; the second variant gets the change information for all changelists num
above that counter. The review daemon’s review counter is called review; the daemon
uses p4 review -t review to get a list of all unreviewed changelists, and uses
p4 review -t review -c lastchangenum to store the highest numbered reviewe
change number in the database under the name review.

PERFORCE can store any number of review counters; each counter is identified by a un
name, which can be up to ten characters long and cannot contain whitespace.

The perfreview.perl daemon’s review counter is named review; if you’re using
perfreview.perl and are writing your own daemon, don’t name the review coun
review.

&KDQJH�5HYLHZ�DQG�3URWHFWLRQV

The change review daemon runs at the access level of the user who invokes it (typ
root), not at the access level of the user receiving email. Thus, if the daemon is edi
perform additional functionality, it should not mail out the contents of files unless it is
for all users to see those files, since a user needs only list access in order to invoke the
p4 user command to subscribe to particular files.

p4 review
 -t countername
 -c changenum

Tells p4 review that all changelists between 1 and
changenum have already been reviewed by the review
counter named countername.

p4 review
 -t countername

Reports only those changelists not already reported by re
view counter countername.
anual 81

Perforce 97.3 User’s M

Chapter 11 : Change Review & Other Daemons
&UHDWLQJ�2WKHU�'DHPRQV

To create another daemon, use perfreview.perl as a starting point and change it as
needed. One such daemon might upload PERFORCE job information into an external bug
tracking system after changelist submission. It would use the p4 review command with
a new review counter to list new changelists, and use p4 fixes to get the list of jobs
fixed by the newly submitted changelists. This information might then be fed to the exter-
nal system, notifying it that certain jobs have been completed.

If you do write a daemon of your own, and would like to share it with other users, please
let us know about it at info@perforce.com.

&KDQJH�5HYLHZ�5HSRUWLQJ

The change review daemon uses two reporting commands that have not yet been dis-
cussed; an additional reporting command describes the counters tracked by the P4D

server:

Command Meaning

p4 reviews
[-c changenum]
[files...]

Provides a list of all users who have subscribed to review any
files.

To see a list of reviewers for the files affected by a particular
changelist, use p4 reviews -c changenum.

p4 reviews files can also be used to report the reviewers
of only those files that are provided as arguments.

p4 users Describe the users currently known to the P4D server. The
report includes user names, their email addresses, their full
names, and the last time they logged in.

p4 counters Provides a list of counters known to the current P4D server,
along with their values.
anual 82

CHAPTER 12 5HSRUWLQJ
DQG�'DWD�0LQLQJ
Perforce 97.3 User’s M

pot.
 com-
oughout
mation
 “

s for
ticular

tax,

ation
e

s file

isions
PERFORCE’s reporting commands supply information on all data stored within the de
There are many reporting commands; in fact, there are almost as many reporting
mands as there are action commands. These commands have been discussed thr
the manual; this chapter presents the same commands and provides additional infor
for each command. Tables in each section contain answers to questions of the formHow
do I find information about...?”

Many of the reporting commands have numerous options; discussion of all option
each command is beyond the scope of this manual. For a full description of any par
command, please consult the PERFORCE Command Reference, or type p4 help command
at the command line.

One previously mentioned note on syntax is worth repeating here: any filespec argument
in PERFORCE commands, as in

p4 files filespec

will match any file pattern that is supplied in local syntax, depot syntax, or client syn
with any PERFORCE wildcards. Brackets around filespec means that the file specification is
optional.

)LOHV

The commands that report on files fall into two categories: those that give inform
about file contents, (e.g. p4 print, p4 diff), and those that supply information on fil
metadata, the data that describe a file with no reference to content (e.g. p4 files, p4
filelog). The first set of reporting commands discussed in this section describe
metadata; the second set describes file contents.

)LOH�0HWDGDWD

%DVLF�)LOH�,QIRUPDWLRQ

To view information about single revisions of one or more files, use p4 files. This com-
mand provides the locations of the files within the depot, the actions (add, edit, delete,
etc.) on those files at the specified revisions, the changelists the specified file rev
were submitted in, and the files’ types. The output has this appearance:

//depot/README#5 - edit change 6 (text)
anual 83

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining
p4 files requires one or more filespec arguments. Filespec arguments can, as always, be
provided in PERFORCE or local syntax, but the output will always report the corresponding
files within the depot. If no revision number is provided, the head revision will be used.

Unlike most other commands, p4 files will describe deleted revisions, instead of sup-
pressing information about deleted files.

)LOH�5HYLVLRQ�+LVWRU\

The revision history of a file is provided by p4 filelog. One or more file arguments
must be provided, and since the point of p4 filelog is to list information about each
revision of particular files, file arguments to this command may not contain a revision
specification.

The output of p4 filelog has this form:

... #3 change 23 edit on 1997/09/26 by edk@doc ’Updated hel’
... #2 change 9 edit on 1997/09/24 by lisag@src ’Made chang’
... #1 change 3 add on 1997/09/24 by edk@doc 'Added the f’

For each file that matches the filespec argument, the complete list of file revisions is pre-
sented, along with the number of the changelist that the revision was submitted in, the date
of submission, the user who submitted the revision, and the first few characters of the
changelist description. With the -l flag, the entire description of each changelist is
printed:

... #3 change 23 edit on 1997/09/26 by edk@doc
Updated help files to reflect changes

 in filtering system & other subsystems

... <etc.>

To View File Metadata for... Use This Command:

...all files in the depot, whether or not visible
through your client view

p4 files //depot/

..all the files currently in your client workspace p4 files @ clientname

...all the files in the depot that are mapped
through your current client workspace view

p4 files // clientname/...

...a particular set of files in the current working
directory

p4 files filespec

...a particular file at a particular revision number p4 files filespec#revison#

...all files at change n, whether or not the file
was actually included in change n

p4 files @ n

...a particular file within a particular label p4 files filespec@labelname

To See File Revision Information... Use This Command:

...including revisions of specific files, with a short de-
scription of each changelist the file was submitted in

p4 filelog filespec

...with the full description of each changelist p4 filelog -l filespec
anual 84

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining

nt in
ithin
depot
en cli-

 the

ts.
2SHQHG�)LOHV

To see which files are currently opened within a client workspace, use p4 opened. For
each opened file within the client workspace that matches a filepattern argument, p4
opened will print a line like the following:

//depot/elm_proj/README - edit default change (text)

Each opened file is described by its depot name and location, the operation that the file is
opened for (add, edit, delete, branch, or integrate), which changelist the file is
included in, and the file’s type.

5HODWLRQVKLSV�%HWZHHQ�&OLHQW�DQG�'HSRW�)LOHV

It is often useful to know how the client and depot are related at a particular mome
time. Perhaps you simply want to know where a particular client file is mapped to w
the depot, or you may want to know whether or not the head revision of a particular
file has been copied to the client. The commands that express the relationship betwe
ent and depot files are p4 where, p4 have, and p4 sync -n. The first of these com-
mands, p4 where, is used to determine where client files would be mapped through
client view into the depot, and vice-versa. p4 have tells you which depot files and revi-
sions are available within your client workspace, and p4 sync -n describes which files
would be read into your client workspace the next time you perform a p4 sync.

All these commands can be used with or without filespec arguments. p4 sync -n is the
only command in this set that allows revision specifications on the filespec argumen

The output of p4 where looks like this:

//depot/elm_proj/doc/Ref.guide: //edk/doc/Ref.guide

p4 have’s output has this form:

//depot/doc/Ref.guide#3 - /u1/rlo/edk/elm/doc/Ref.guide

and p4 sync -n provides output like:

//depot/doc/Ref.guide#3 - updating /usr/edk/elm/doc/Ref.guide

To See... Use This Command:

...a listing of all opened files in the current workspacep4 opened

...a list of all opened files in all client workspaces p4 opened -a

...whether or not a specific file is opened by you p4 opened filespec

...whether or not a specific file is opened by anyone p4 opened -a filespec

To See... Use This Command:

...which revisions of which files you have in
the client workspace

p4 have

...which revision of a particular file is in your
client workspace

p4 have filespec

...where a particular file in the client work-
space maps to in the depot

p4 where filespec
anual 85

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining
)LOH�&RQWHQWV

&RQWHQWV�RI�D�6LQJOH�5HYLVLRQ

The contents of any file revision within the depot can be viewed with p4 print. This
command simply prints the contents of the file to standard output, or to the specified out-
put file, along with a one-line banner that describes the file. The banner can be removed
by passing the -q flag to p4 print. When printed, the banner has this format:

//depot/elm_proj/README#23 - edit change 50 (text)

p4 print takes a mandatory file argument, which can include a revision specification;
The file will be printed at the specified revision; if no revision is specified, the head revi-
sion will be printed.

)LOH�&RQWHQW�&RPSDULVRQV

A client workspace file can be compared to any revision of the same file within in the
depot with p4 diff. This command takes a filespec argument; if no revision specification
is supplied, the workspace file is compared against the revision last read into the work-
space.

The p4 diff command has many options available; only a few are described in the table
below. For more details, please consult the PERFORCE Command Reference.

Whereas p4 diff compares a client workspace file against depot file revisions, p4
diff2 can be used to compare any two revisions of a file. It can even be used to compare
revisions of different files. p4 diff2 takes two file arguments; wildcards are allowed, but
any wildcards in the first file argument must be matched with a corresponding wildcard in
the second. This makes it possible to compare entire trees of files.

There are many more flags to p4 diff then are described below. For a full listing, please
type p4 help diff at the command line, or consult the PERFORCE Command Reference.

...where a particular file in the depot maps to
in the workspace

p4 where //depot/.../filespec

...which files would be synced into your client
workspace from the depot when you do the
next sync

p4 sync -n

To See the Contents of Files... Use This Command:

...at the current head revision p4 print filespec

...without the one-line file header. p4 print -q filespec

...at a particular change number p4 print filespec@changenum

To See the Differences between... Use This Command:

...an open file within the client workspace and
the revision last taken into the workspace

p4 diff file

...any file within the client workspace and the
revision last taken into the workspace

p4 diff -f file

To See... Use This Command:
anual 86

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining

nti-

c-
rlying

rs
 sent to
The last example above bears further explanation; to understand how this works, it is nec-
essary to discuss how PERFORCE implements and calls underlying diff routines.

PERFORCE uses two separate diffs: one is built into the P4D server, and the other is used by
the P4 client. Both diffs contain identical, proprietary code, but are used by separate sets of
commands. The client diff is used by p4 diff and p4 resolve, and the server diff is
used by p4 describe, p4 diff2, and p4 submit.

PERFORCE’s built-in diff routine allows three -d<flag> flags: -du, -dc, and -dn; both p4
diff and p4 diff2 allow any of these flags to be specified. These flags behave ide
cally to the corresponding flags in the standard UNIX diff.

Although the server must always use PERFORCE’s internal diff routine, the client diff can
be set to any external diff program by pointing the P4DIFF environment variable to the
full path name of the desired executable. Any flags used by the external diff can be passed
to it with p4 diff’s -d flag. Flags are passed to the underlying diff according to the fol-
lowing rules:

• If the character immediately following the -d is not a single quote, then all the chara
ters between the -d and whitespace are prepended with a dash and sent to the unde
diff;

• If the character immediately following the -d is a single quote, then all the characte
between the opening quote and the closing quote are prepended with a dash and
the underlying diff.

The following examples demonstrate the use of these rules in practice.

...a file within the client workspace and the
same file’s current head revision

p4 diff file#head

...a file within the client workspace and a spe-
cific revision of the same file within the depot

p4 diff file#revnumber

...the n-th and head revisions of a particular
file

p4 diff2 filespec filespec#n

...all files at changelist n and the same files at
changelist m

p4 diff2 filespec@n filespec@m

...all files within two branched codelines p4 diff2
//depot/codeline1/...
//depot/codeline2/...

...a file within the client workspace and the re-
vision last taken into the workspace, passing
the context diff flag to the underlying diff.

p4 diff -dc file

If you want to pass the following flag to an
external client diff program:

Then call p4 diff this way:

-u p4 diff -du

--brief p4 diff -d-brief

-C 25 p4 diff -d’C 25’

To See the Differences between... Use This Command:
anual 87

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining

sub-
ple-

A Korn shell script
that implements this
report is described
in “Reporting with
Scripting” on
page 94.

Very few PERFORCE
commands allow
revision ranges to
be appended to file
specifications. For
details on revision
ranges, please see
page 36.
&KDQJHOLVWV

Two separate commands are used to describe changelists. The first, p4 changes, lists
changelists that meet particular criteria, without describing the files or jobs that make up
the changelist. The second command, p4 describe, lists the files and jobs affected by a
single changelist. These commands are described below.

&KDQJHOLVWV�WKDW�0HHW�3DUWLFXODU�&ULWHULD

To view a list of changelists that meet certain criteria, such as changelists with a certain
status, or changelists that affect a particular file, use p4 changes. The output looks like
the following:

Change 36 on 1997/09/29 by edk@eds_elm ’Changed filtering me’
Change 35 on 1997/09/29 by edk@eds_elm 'Misc bug fixes: fixe’
Change 34 on 1997/09/29 by lisag@lisa 'Added new header inf'

By default, p4 changes displays an aggregate report containing one line for every
changelist known to the system, but command line flags and arguments can be used to
limit the changelists displayed to those of a particular status, or those affecting a particular
file, or the last n changelists. Currently, the output can’t be restricted to changelists
mitted by particular users, although simple shell or Perl scripts can be written to im
ment this.

To See a List of Changelists... Use This Command:

...with the first 31 characters of the changelist
descriptions

p4 changes

...with the complete description of each
changelist

p4 changes -l

...including only the last n changelists p4 changes -m n

...with a particular status (pending or sub-
mitted)

p4 changes -s status

...limited to those that affect particular files p4 changes filespec

...limited to those that affect particular files,
but including changelists that affect files
which were later integrated with the named
files

p4 changes -i filespec

...limited to changelists that affect particular
files, including only those changelists be-
tween revisions m and n of these files

p4 changes filespec#m,#n

...limited to those that affect particular files at
each files revisions between labels lab1 and
lab2

p4 changes filespec@lab1,@lab2
anual 88

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining

Additional
commands that
report on jobs and
changelists are
described in the job
reporting section of
this chapter
(page 91).
)LOHV�DQG�-REV
$IIHFWHG�E\�&KDQJHOLVWV

To view a list of files and jobs affected by a particular changelist, along with the diffs of
the new file revisions and the previous revisions, use p4 describe. Its output looks like
this:

This output is quite lengthy; a shortened form that eliminates the file diffs can be gener-
ated with p4 describe -s changenum.

/DEHOV

Reporting on labels is accomplished with a very small set of commands. The only com-
mand that reports only on labels, p4 labels, prints its output in the following format:

Change 43 by lisag@warhols on 1997/08/29 13:41:07

Made grammatical changes to basic Elm documentation

Jobs fixed ...

job000001 fixed on 1997/09/29 by edk@edk
Fix grammar in main Elm help file

Affected files ...
... //depot/doc/elm.1#2 edit

Differences ...

 ==== //depot/doc/elm.1#2 (text) ====
53c53
< The second way, used most commonly when transmitting

> The second way, which is commonly used when transmitting

...<etc.>

To See: Use This Command:

...a list of all files submitted and jobs fixed
by a particular changelist, displaying the
diffs between the file revisions submitted in
that changelist and the previous revisions

p4 describe changenum

...a list of all files submitted and jobs fixed
by a particular changelist, without the file
diffs

p4 describe -s changenum

...a list of all files and jobs affected by a
particular changelist, while passing the
context diff flag to the underlying diff pro-
gram

p4 describe -dc changenum

...the state of particular files at a particular
changelist, whether or not these files were
affected by the changelist

p4 files @changenum filespec
anual 89

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining

.

nds are
rated,
 com-
Label release1.3 1997/5/18 ’Created by edk’
Label lisas_temp 1997/10/03 ’Created by lisag’
...<etc.>

The other label reporting commands are variations of commands we’ve seen earlier

%UDQFK�DQG�,QWHJUDWLRQ�5HSRUWLQJ

The plural form command of branch, p4 branches, lists the different branches in the
system, along with their owners, dates created, and descriptions. Separate comma
used to list files within a branched codeline, to describe which files have been integ
and to perform other branch-related reporting. The table below describes the most
monly used commands for branch- and integration- related reporting.

To See: Use This Command:

...a list of all labels, the dates they were created,
and the name of the user who created them

p4 labels

...a list of files that have been included in a partic-
ular label with p4 labelsync

p4 files @labelname

...what p4 sync would do when retrieving files
from a particular label into your client workspace

p4 sync -n @labelname

To See: Use This Command:

...a list of all branches known to the
system

p4 branches

...a list of all files in a particular
branched codeline

p4 files filespeca

...what a particular p4 integrate
variation would do, without actually
doing the integrate.

p4 integrate [args] -n [filespec]

...what a particular p4 resolve
variation would do, without actually
doing the resolve.

p4 resolve [args] -n [filespec]

...a list of files that have been re-
solved but have not yet been submit-
ted

p4 resolved [filespec]
anual 90

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining
-RE�5HSRUWLQJ

Job reporting is accomplished with two commands. The first, p4 jobs, reports on all jobs
known to the system; the second command, p4 fixes, reports only on those jobs that
have been attached to changelists. Both these commands have numerous options.

%DVLF�-RE�,QIRUPDWLRQ

To see a list of all jobs known to the system, use p4 jobs. Options to this command can
be used to specify criteria for describing only particular types of jobs; for example, the -s
flag will limit the report to jobs of a particular status. p4 jobs produces output similar to
the following:

job000302 on 1997/08/13 by saram *open* ’FROM: headers no’
filter_bug on 1997/08/23 by edk 'Can’t read filters w'

Its output includes the jobs name, date entered, job owner, and the first 32 characters of
the job description. The job status is included if the job is open or suspended; closed jobs
are indicated by the absence of job status from the report.

All jobs known to the system are displayed unless command-line options are supplied.
These options are described in the table below.

...a list of integrated, submitted files
that match the filespec arguments

p4 integrated filespec

...a description of the revision histo-
ry of the named files, including the
following for each file revision:

• change number;

• operation (add, edit, delete,
branch, or integrate)

• client name;

• user name; and

• description.

p4 filelog [filespec]

a. In this case, the filespec should be presented in depot syntax, and should represent the
branched codeline. For example, if a codeline had been branched to //depot/r22/..., then a
list of all files in the branched codeline would be obtained with p4 files //depot/r22/...

To See a List of Jobs: Use This Command:

...including all jobs known to the server p4 jobs

...including the full texts of the job descriptions p4 jobs -l

...of a particular status (open, closed, or suspended) p4 jobs -s status

To See: Use This Command:
anual 91

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining
-REV��)L[HV��DQG�&KDQJHOLVWV

Any jobs that have been linked to a changelist with p4 change, p4 submit, or p4 fix
is said to be fixed, and can be reported with p4 fixes. The output of p4 fix looks like
this:

job000302 fixed by change 634 on 1997/09/01 by edk@eds_mach
filter_bug fixed by change 540 on 1997/10/22 by edk@eds_mach

A number of options allow the reporting of only those changes that fix a particular job, or
jobs fixed by a particular changelist, or jobs fixed by changelists that are linked to particu-
lar files.

A fixed job is not the same as a closed job, since open jobs can be linked to pending
changelists, and pending jobs can be reopened even after the associated changelist has
been submitted. To list jobs with a particular status, use p4 jobs.

5HSRUWLQJ�IRU�'DHPRQV

The PERFORCE change review mechanism uses the following reporting commands. Any of
these commands might also be used with user-created daemons. For further information
on daemons, please see chapter 11, and consult the source code of the PERFORCE Change
Review daemon.

...that have been fixed by changelists that contain spe-
cific files

p4 jobs filespec

...that have been fixed by changelists that contain spe-
cific files, including changelists that contain files that
were later integrated into the specified files.

p4 jobs -i filespec

To See a Listing of... Use This Command:

...all fixes for all jobs p4 fixes

...all changelists linked to a particular job p4 fixes -j jobname

...all jobs linked to a particular changelist p4 fixes -c changenum

...all jobs fixed by changelists that contain particular
files

p4 fixes filespec

...all jobs fixed by changelists that contain particular
files, including changelists that contain files that
were later integrated with the specified files

p4 fixes -i filespec

To list... Use This Command:

...the names of all counter variables currently
used by your PERFORCE system

p4 counters

...the numbers of all changelists that have not
yet been reported by a particular counter vari-
able

p4 review -t countername

To See a List of Jobs: Use This Command:
anual 92

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining

ate that

dmin-

e their

dard
6\VWHP�&RQILJXUDWLRQ

Three commands report on the PERFORCE system configuration. One command reports on
all PERFORCE users; another prints data describing all PERFORCE client workspaces, and a
third reports on PERFORCE depots.

p4 users generates its data as follows:

edk <edk@eds_ws> (Ed Kuepper) accessed 1997/07/13
lisag <lisa@lisas_ws> (Lisa Germano) accessed 1997/07/14

Each line includes a username, an email address, the user’s “real” name, and the d
PERFORCE was last accessed by that user.

To report on client workspaces, use p4 clients:

Client eds_elm 1997/09/12 root /usr/edk 'Ed’s Elm workspace'
Client lisa_doc 1997/09/13 root /usr/lisag 'Created by lisag.'

Each line includes the client name, the date the client was last updated, the client root, and
the description of the client.

Depots can be reported with p4 depots . All depots known to the system are reported on;
the described fields include the depot’s name, its creation date, its type (local or
remote), its IP address (if remote), the mapping to the local depot, and the system a
istrator’s description of the depot.

6SHFLDO�5HSRUWLQJ�)ODJV

Two special flags, -o and -n, can be used with certain action commands to chang
behavior from action to reporting.

The -o flag is available with most of the PERFORCE commands that normally bring up
forms for editing. This flag tells these commands to write the form information to stan
output, instead of bringing the definition into the user’s editor.

...all users who have subscribed to review
particular files

p4 reviews filespec

...all users who have subscribed to read any
files in a particular changelist

p4 reviews -c changenum

...a particular user’s email address p4 users username

To view: Use This Command:

...user information for all PERFORCE users p4 users

...user information for only certain users p4 users username

...brief descriptions of all client workspaces p4 clients

...a list of all defined depots p4 depots

To list... Use This Command:
anual 93

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining

 be

 print

ter-

itted
put of
con-

ated by
The -o flag is supported by the following commands:

The -n flag prevents commands from doing their job. Instead, the commands will simply
tell you what they would ordinarily do.

The -n flag can be used with the following commands:

5HSRUWLQJ�ZLWK�6FULSWLQJ

Although PERFORCE’s reporting commands are sufficient for most needs, there may
times when you want to view data in a format that PERFORCE doesn’t directly support. In
these situations, the reporting commands can be used in combination with scripts to
only the data that you want to see. Three examples are provided here.

&RPSDULQJ�WKH�&KDQJH�&RQWHQW�RI�7ZR�)LOH�6HWV

To compare the “change content” of two sets of files, it is necessary to diff them exter-
nally. To do this, run p4 changes twice, once on each set of files, and then use any ex
nal diff routine to compare them.

In the following example, main represents the main codeline, and r98.4 is a codeline that
was originally branched from main:

p4 changes //depot/main/... > changes-in-main
p4 changes //depot/r98.4/... > changes-in-r98.4
diff changes-in-main changes-in-r98.4

This could be used to uncover which changes have been made to r98.4 that haven’t been
integrated back into main.

&KDQJHOLVWV�6XEPLWWHG�E\�3DUWLFXODU�8VHUV

The p4 changes command does not have a flag that allows only those changes subm
by particular users to be viewed, but this can be accomplished by grepping the out
p4 changes. For example, in the Korn shell, create an executable file with these
tents:

p4 changes | grep ’.* by ’$1’@

When this script is called with a username as an argument, only those changes cre
that user will be printed.

p4 branch p4 client p4 label

p4 change p4 job p4 user

p4 integrate p4 resolve

p4 labelsync p4 sync
anual 94

Perforce 97.3 User’s M

Chapter 12 : Reporting and Data Mining
/LVWLQJ�6XEGLUHFWRULHV�RI�WKH�'HSRW

Although all files in the depot can be listed with p4 files, there is no option for report-
ing only the names of subdirectories within the depot. However, this can be accomplished
with the following Perl script, which takes file arguments in either PERFORCE or local syn-
tax:

open(P4,"p4 files " . join(’ ’,@ARGV) . " |");
while(<P4>) {

s@^(.*)/[^/]*#.*$@$1@;
if(!exists $d{$_}) {
print;
$d{$_}=42;

}
}

These scripting examples are, of course, non-exhaustive. Use scripts whenever you want
to generate reports that can’t be created through existing PERFORCE commands.
anual 95

CHAPTER 13 6\VWHP�$GPLQLVWUDWLRQ��
,QVWDOODWLRQ�DQG�
0DLQWHQDQFH
Perforce 97.3 User’s M

lled
to the

ec-

 can
nd the

ome

y,

NT/95
Installation of
PERFORCE on
Windows machines
is handled by the
installer. If you’re
using PERFORCE on
Windows, you can
skip to the
protections and
journaling sections,
both of which start
on page 98.
,QVWDOODWLRQ�RI�3�'�DQG�3�

PERFORCE operation requires two executables: P4D, the server, and P4, the client. If you
haven’t already downloaded these, they may be retrieved from http://www.per-
force.com/perforce/load.html .

The P4 program typically resides in /usr/local/bin, and P4D is usually located in /
usr/local/bin or in its own root directory (see below), although they can be insta
anywhere. The P4 program can be installed on any server that has TCP/IP access
P4D host. To limit access to the P4D server files, it is recommended that P4D be owned and
run by a PERFORCE user account.

Only a few steps need to be performed before P4 and P4D can be run: a root directory for
the P4D files is created, a TCP/IP port is provided to P4d, and P4 is provided the name of
the P4D host and number of the P4D port. These steps are described in the following s
tions.

&UHDWLQJ�D�3�'�5RRW�'LUHFWRU\

P4D stores all of its data in files and subdirectories of its own root directory, which
reside anywhere on the server system. This directory can be named anything at all, a
only necessary permissions are read and write for the user who starts P4D. Since P4D will
store all submitted files in this directory, the size of the directory can eventually bec
quite large. Disk space management is described on page 100.

The environment variable P4ROOT should be set to point to this directory. Alternativel
the -r flag can be provided when P4D is started (see below). The P4 clients never directly
use this directory, so they don’t need to know the value of P4ROOT.

6HWWLQJ�3�'·V�3RUW

P4D and P4 communicate via TCP/IP. When P4D starts, it will, by default, listen on port
1666. The P4 client will, by default, assume that its P4D server is located on host per-

force, listening on port 1666.
anual 96

Perforce 97.3 User’s M

Chapter 13 : System Administration: Installation and Maintenance

g

s
s are
If P4D is to listen on a different port, the port can be specified with the -p flag when start-
ing P4D (example: p4d -p 1818), or the port can be set with the P4PORT environment
variable. Chances are that your P4D host is not named perforce, but you can simplify life
somewhat for your P4 users by setting perforce as an alias to the true host name in the
host’s /etc/hosts file, or by doing so via Sun’s NIS or Internet DNS.

7HOOLQJ�3��:KHUH�7KH�3�'�6HUYHU�,V

The P4 client program needs to know on which TCP/IP port the P4D server program is lis-
tening. P4 can be told which host and port the P4D server program is listening on by settin
each P4 user’s P4PORT environment variable to host:port# , where host is the name of the
host that P4D is running on, and port# is the port that P4D is listening on.

Examples:

The definition of P4PORT can be shortened if P4 is running on the same host as P4D. In
this case, only the P4D port number need be provided to P4. If P4D is running on a host
named or aliased perforce, listening on port 1666, the definition of P4PORT for the P4
client can be dispensed with altogether.

• Examples:

6WDUWLQJ�3�'��7KH�%DVLFV

After P4D’s P4PORT and P4ROOT environment variables have been set, P4D can be run in
the background with the command

p4d &

P4PORT can be overridden by starting P4D with the -p flag, and P4ROOT will be ignored
if the -r flag is provided. The startup command would then have this form:

p4d -r /usr/local/p4files -p 1818 &

Although this command is sufficient to run P4D, other flags, which control such things a
error logging, checkpointing, and journaling, can and should be provided. These flag
discussed in the next two sections.

If P4PORT is... Then...

dogs:3435 P4 will communicate with the P4D server on host dogs
listening at port 3435.

x.com:1818 P4 will communicate with the P4D server on host
x.com listening on port 1818.

If P4PORT is... Then...

3435 P4 will communicate with the P4D server on its local
host listening at port 3435.

<not set> P4 will communicate with the P4D server on the host
named or aliased perforce listening on port 1666.
anual 97

Perforce 97.3 User’s M

Chapter 13 : System Administration: Installation and Maintenance

ary,

es

base
ent in
se files
g the
 jour-

ck-

bined

Checkpointing and
journaling archive
only the database
files, not the files in
the depot
directories! Back
up the depot files
with the standard
OS backup
commands after
checkpointing; this
is because the static
checkpoint can be
dumped and
restored
consistently, while
the dynamic
database files may
change during the
course of backing
up and may be
inconsistent.

!

/RJJLQJ�(UURUV

The P4D program tries to ensure that all error messages reach the user, but if an error
occurs and the client program disconnects before the error is sent, P4D logs the error to its
error output. The error output file can be specified with the -L flag to P4D, or can be
defined in the environment variable P4LOG. If no error output file is defined, errors are
dumped to the P4D program’s standard error.

3URWHFWLRQV

By default, every PERFORCE user is a PERFORCE superuser, and can run any PERFORCE

command on any file. These default access levels are changed easily with the p4 pro-

tect command; the administrator who installs PERFORCE should run p4 protect soon
after installing P4 and P4D. Access levels are described in detail in the next chapter.

&KHFNSRLQWLQJ��-RXUQDOLQJ��DQG�
5HFRYHU\

Two sets of files in the P4D root directory are sufficient to recover the complete P4D server
data:

• P4D stores its metadata in the top level of its root directory; all of these files are bin
and begin with “db.”.

• Files submitted by P4 clients are stored in P4D subdirectories that have the same nam
as the depots. By default, there is only one of these subdirectories; its name is depot.

P4D provides checkpointing and journaling facilities for recovery of the metadata data
files. A checkpoint is just a snapshot or copy of the database files at a particular mom
time, and a journal is a log that records updates since that snapshot. If the databa
become corrupted, or if there’s a disk crash, you can recover the files by reloadin
checkpoint and applying the changes stored in the journal. Both the checkpoint and
nal are text files, and have the same format.

Because the data stored in the PERFORCE database is irreplaceable, journaling and che
pointing should be performed early and regularly.

0DNLQJ�D�&KHFNSRLQW�

You can create a checkpoint by invoking the P4D program with the -jc flag:

% p4d -r root -jc

This can be run while the P4D server is running. To make the checkpoint, P4D locks the
entire database and then dumps the database contents to a file named checkpoint.x,
where x is a sequence number. Before unlocking the database, P4D copies and then trun-
cates the journal file if it exists. This action guarantees that the last checkpoint com
with the current journal always reflects the database.

A different checkpoint file can be specified by typing a filename after the -jc flag:
anual 98

Perforce 97.3 User’s M

Chapter 13 : System Administration: Installation and Maintenance

rotec-

nvi-

 in the
point

NIX
% p4d -r root -jc /disk2/perfback/ckp

A checkpoint file may be compressed, archived, or moved onto another disk. At that time
or shortly thereafter, the files in the depot subdirectories should be archived as well. When
recovering, the checkpoint must be no newer than the files in the depots.

The checkpoint file is often much smaller than the original database, and can be made
smaller still by compressing it. The journal file, on the other hand, can grow quite large; it
is truncated whenever a checkpoint is made, but the older journal is backed up and saved.
The older journal files can then be moved to external media, freeing up more space
locally.

Since checkpoints are readable only by the server version that created them, a new check-
point should be taken every time the P4D server is upgraded.

Regular checkpointing is important if journaling is turned on, to keep the journal from get-
ting too long. Making a checkpoint just before dumping the file system is simply good
practice.

7XUQLQJ�-RXUQDOLQJ�2Q�DQG�2II�

By default, the journal is written to the file journal in the P4D root directory. The name and
location of this file can be changed by specifying the name of the journal file in the envi-
ronment variable P4JOURNAL, or by providing a -J filename flag to P4D. In either case,
the journal file name can be provided as an absolute path, or as a path relative to the P4D

server root.

To create a journal, do one of the following:

• Create an empty journal file in the server root, then start P4D;

• Set the P4JOURNAL environment variable to point to any file, then start P4D; or

• Start P4D with the -J filename flags.

Be sure to create a new checkpoint with the p4d -jc flag immediately after taking a
checkpoint, since a journal without a checkpoint is useless. Since there is no sure p
tion against disk crashes, the journal file and the P4D root directory should be located on
different disks.

To disable journaling, remove the existing default journal file (if it exists), unset the e
ronment variable P4JOURNAL, and type the P4D command again without the -J flag.

5HFRYHULQJ�

If the database files become corrupted or lost, either because of disk errors, errors
P4D program itself, or a disk crash, the files can be recreated with your stored check
and journal. To do this, kill P4D, remove the database (“db.”) files, and then invoke the
P4D program with the -jr flag:

% rm root/db.*
% p4d -jr checkpoint_file journal_file

After recovering the database you will need to restore the depot files with the U
restore command to ensure that they are as new as the database.
anual 99

Perforce 97.3 User’s M

Chapter 13 : System Administration: Installation and Maintenance

 grow-
lowing

a
 then
.

d to
e the

enta-
g them
should
kpoint

This

ion
lay
aned
0DQDJLQJ�'LVN�6SDFH�

All of P4D’s stored source files reside in subdirectories of the P4D root, as do its database
files, and by default the checkpoints and journals. The stored source file depots are
only, and this can clearly present disk space problems on high use systems. The fol
approaches may be used to remedy this:

• Store the journal file on a separate disk, using the P4JOURNAL environment variable or
the -J flag to p4d.

• Checkpoint on a daily basis to keep the journal file short.

• Compress checkpoints after they are made.

• Use the -jc checkpointfile option with the P4D command to write the checkpoint to
different disk. Or use the default checkpoint files, but backup your checkpoints and
delete them from the root directory. They aren’t needed unless you are recovering

• [UNIX only] If necessary, all or part of the depot subdirectories may be relocate
other disks, using symbolic links from the depot trees. This should be done whil
P4D server is not running.

• The database files can become internally bloated, due to the nature of the implem
tion of their access methods. They can sometimes be compressed by recreatin
from a checkpoint: take a checkpoint, delete the database files, then recover. This
only be done if the database files are more than about 10 times the size of the chec
in total.

/LFHQVH�)LOH

PERFORCE servers are licensed according to how many users they will support.
licensing information lives in a file called license in the P4D root directory. It is a plain text
file supplied by PERFORCE Software. Without this license file, the P4D server will limit
itself to two users and two client workspaces.

The current licensing information can be viewed by invoking p4d -V from the server
root directory.

When the server is running, the license information can also be viewed with p4 info.

5HOHDVH�DQG�/LFHQVH�,QIRUPDWLRQ�

The P4 client and P4D server programs will display their version and license informat
with the -V flag. The p4 info command will attempt to connect to the server and disp
its license information (among other things). Version information can also be gle
from P4 or p4d executables with the UNIX what(1) command.
anual 100

CHAPTER 14 6\VWHP�$GPLQLVWUDWLRQ�
3URWHFWLRQV
Perforce 97.3 User’s M

n

ack

 a

se of

Sample
protections table
PERFORCE provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protections determines which PERFORCE commands can be run, on which
files, by whom, and from which host. Since any user can change their PERFORCE username
with P4USER, user level protections provide safety, not security. At the host level, protec-
tions are as secure as the host itself.

Protections are set with the p4 protect command.

:KHQ�6KRXOG�3URWHFWLRQV�%H�6HW"

Before p4 protect is run, every PERFORCE user is a superuser, and can access and
change anything in the depot. The first time protect is invoked, a protections table is
created that gives the invoking user superuser access from all hosts, and lowers everyone
else’s access level to write permission on all files from all hosts. Therefore, protect
should be run as the concluding step of all new PERFORCE installations; the superuser ca
change the access levels as needed at any time.

The PERFORCE protections are stored in the db.protect file in the server root direc-
tory; if p4 protect is first run by an unauthorized user, the depot can be brought b
to its unprotected state by removing this file.

6HWWLQJ�3URWHFWLRQV�ZLWK�S��SURWHFW

The p4 protect form contains a single field with multiple lines. Each line specifies
particular permission; the contents look something like this:

(The four fields may not line up vertically on your screen; they are aligned here for ea
reading).

Protections:
 read emily * //depot/elm_proj/...
 write * 195.3.21.* //...
 write joe * -//...
 write lisag * -//depot/...
 write lisag * //depot/doc/...
 super edk * //...
anual 101

Perforce 97.3 User’s M

Chapter 14 : System Administration: Protections

s
7KH�3HUPLVVLRQ�/LQHV·�)RXU�)LHOGV

Each line specifies a particular permission; each permission is always described by four
fields. The meanings of these four fields are:

$FFHVV�/HYHOV

The access level is described by the first field; the six access levels are:

Field Meaning

Access
Level

Which access level is being granted: list, read, open, write,
super, or review. These are described below.

User The user whose protection level is being defined. This field can contain
the ‘*’ wildcard: ‘*’ by itself would grant this protection to everyone;
‘*e’ would grant this protection to everyone whose username ends with
an ‘e’ .

Since PERFORCE usernames can be changed by setting P4USER, this
field provides safety, not security.

Host The TCP/IP address of the host being granted access. This must be pro-
vided as the numeric address of the host in dotted quad notation (e.g.
206.14.52.194).

This field may contain the ‘*’ wildcard. A ‘*’ by itself means that this
protection is being granted for all hosts. The wildcard can be used as in
any string, so ‘127.30.41.*’ would define access to any subnet
within 127.30.41 , and ‘*3*’ would refer to any IP address with a
‘3’ in it.

Since the client’s IP address is provided by IP itself, this field provide
as much security as is provided by the network.

Files The files in the depot that permission is being granted on.
‘//...’ means all files in all depots.

Access Level Meaning

list Permission is granted to run PERFORCE commands that display data
about files, (e.g. p4 filelog) . No permission is granted to view or
change the contents of the files.

read The user(s) can run those PERFORCE commands that are needed to read
files, such as p4 client and p4 sync . The read permission in-
cludes list access.

open Grants permission to read files from the depot into the client workspace,
and gives permission to open and edit those files. This permission does
not allow the user to write the files back to the depot. open is similar to
write, except that with open permission, users are not allowed to run
p4 submit or p4 lock.

The open permission includes read and list access.

write Permission is granted to run those commands that edit, delete, or add
files. Write permission includes read , list, and open access.

This permission allows use of all PERFORCE commands except pro-
tect , depot , obliterate , and verify .
anual 102

Perforce 97.3 User’s M

Chapter 14 : System Administration: Protections

t

t those
e

rit-
oose
hen
want to

hanges
ht be
elop-
been

tec-

on-
Each PERFORCE command is associated with a particular minimum access level; for exam-
ple, to run p4 sync on a particular file, the user must have been granted at least read
access on that file. The access level required to run a particular command can usually be
reasoned from knowledge of what the command does; for example, it is somewhat obvi-
ous that p4 print would require read access. A full list of the minimum access levels
required to run each PERFORCE command is provided on page 105.

:KLFK�8VHUV�6KRXOG�5HFHLYH�:KLFK�3HUPLVVLRQV"

The simplest method of granting permissions is to give write permission to all users who
don’t need to manage the PERFORCE system, and give super access to those who do. Bu
there are times when this simple solution isn’t sufficient.

Read access to particular files should be granted to users who don’t ever need to edi
files. For example, an engineer might have write permissions for source files, but hav
only read access to the documentation; managers might be granted only read access to
all files.

Because open access allows local editing of files, but doesn’t allow these files to be w
ten to the depot, open access is usually granted only in unusual circumstances. Ch
open access over write access when users will be testing their changes locally, but w
these changes should not be seen by other users. For example, bug testers may
change code in order to test theories as to why particular bugs occur, but these c
would be for their own use, and would not be written to the depot. Or, a codeline mig
frozen, with local changes submitted to the depot only after careful review by the dev
ment team. In this case, open access would be granted until the code changes have
approved; at that time, the protection level would be upgraded to write.

'HIDXOW�3URWHFWLRQV

When p4 protect is first run, two permissions are set by default. The default pro
tions form looks like this:

This indicates that write access is granted to all users, on all hosts, to all files. Additi
ally, the user who first invokes p4 protect (in this case, edk) is granted superuser
privileges.

review A special permission granted to review daemons. It includes list and
read access, plus use of the p4 review command. It is needed only
by review daemons.

super For PERFORCE superusers; grants permission to run all PERFORCE com-
mands. Provides write and review access plus the added ability to
edit protections, create depots, obliterate files, and verify files.

Protections:
 write * * //...
 super edk * //...

Access Level Meaning
anual 103

Perforce 97.3 User’s M

Chapter 14 : System Administration: Protections

e can
s

er

is

f the
 pro-

 exclu-

Example:
How protections
work.
,QWHUSUHWLQJ�0XOWLSOH�3HUPLVVLRQ�/LQHV

The access rights granted to any user are defined by the union of mappings in the pro-
tection lines that match her user name and client IP address. (This behavior is slightly
different when exclusionary protections are provided; this is described in the next section).

Lisa, whose PERFORCE username is lisag, is using a client with the IP address
195.42.39.17. The protections file reads as follows:

The union of the first three permissions apply to Lisa. Her username is lisag, and she’s
currently using a client workspace on the host specified in lines 1 and 2. Thus, sh
write files located in the depot’s doc subdirectory, but can only read other files. Lisa trie
the following:

She types p4 edit //lisag/doc/elm-help.1, and is successful.

She types p4 edit //lisag/READ.ME, and is told that she doesn’t have the prop
permission. She is trying to write a file that she only has read access to. She types p4
sync //lisag/READ.ME, and this command succeeds; only read access is needed,
and this is granted to her on line 1.

Lisa later switches to another machine with IP address 195.42.39.13. She types p4
edit //lisag/doc/elm-help.1, and the command fails; when she’s using th
host, only the third permission applies to her, and she only has read privileges.

([FOXVLRQDU\�3URWHFWLRQV

A user can be denied access from particular files by prefacing the fourth field in a permis-
sion line with a minus sign (-). This is useful for giving most users access to a particular
set of files, while denying access to the same files to only a few users.

To use exclusionary mappings properly, it is necessary to understand some peculiarities
associated with them:

• When an exclusionary protection is included in the protections table, the order o
protections is relevant: the exclusionary protection is used to remove any matching
tections above it in the table.

• No matter what access level is provided in an exclusionary protection, all access levels
for the matching files and IP addresses are denied. The access levels provided in
sionary protections are irrelevant.

The reasons for this seemingly strange behavior are described in the section How Protec-
tions are Implemented on page 106.

Protections:
read * 195.42.39.17 //...
write lisag 195.42.39.17 //depot/elm_proj/doc/...
read lisag * //...
super edk * //...
anual 104

Perforce 97.3 User’s M

Chapter 14 : System Administration: Protections

subse-
ed out

rmis-
th

Example:
Exclusionary
protections
Ed has used p4 protect to set up protections as follows:

The second permission seemingly grants write access to all users to all files in all
depots, but this is overruled by later exclusionary protections for certain users:

• The third permission denies Joe permission to access any file from any host. No
quent lines grant Joe any further permissions; thus, Joe has been effectively lock
of PERFORCE.

• The fourth permission denies Lisa all access to all files on all hosts, but the fifth pe
sion gives her back write access on all files within a specific directory. If the four
and fifth lines were switched, Lisa would be unable to run any PERFORCE command

$FFHVV�/HYHOV�5HTXLUHG�E\�3(5)25&(�
&RPPDQGV

The following table lists the minimum access level required to run each command. For
example, since p4 add requires at least open access, p4 add can be run if open, write
or super protections are granted.

Protections:
 read emily * //depot/elm_proj/...
 write * * //...
 super joe * -//...
 list lisag * -//...
 write lisag * //depot/elm_proj/doc/...

Command Access Level Command Access Level

add open jobs a list

branch a open label a open

branches list labels a list

change open labelsync open

change -f super lock write

changes a list obliterate super

client list open open

clients a list opened list

delete open print read

depot a super protect a super

depots a list refresh read

describe read reopen open

describe -s list reresolve open

diff read resolve open

diff2 read resolved open

edit open revert open

files list review a review

filelog list reviews a list

fix a open submit write
anual 105

Perforce 97.3 User’s M

Chapter 14 : System Administration: Protections

105 to
,
nd is

 move
pass
e file

e user
sion-

op of
e user

m
 that

t; this
is line

 com-
Those commands that list files, such as p4 describe, will only list those files to which
the user has at least list access.

+RZ�3URWHFWLRQV�DUH�,PSOHPHQWHG

This section describes the algorithm that PERFORCE follows to implement its protection
scheme. Protections can be used properly without reading this section; the material here is
provided to explain some of the more eccentric behavior described above.

Users’ access to files is determined by the following steps:

• The command is looked up in the command access level table shown on page
determine the minimum access level needed to run that command. In our examplep4

print is the command, and the minimum access level required to run that comma
read.

• PERFORCE makes the first of two passes through the protections table. Both passes
up the protections table, bottom to top, looking for the first relevant line. The first
is used to determine whether or not the user is allowed to know whether or not th
exists, and this search simply looks for the first line encountered that matches th
name, host IP address, and file argument. If the first matching line found is an inclu
ary protection, then the user has permission to list the file, and PERFORCE proceeds to
the second pass. If the first mapping found is an exclusionary mapping , or if the t
the protections table is reached without a matching protection being found, then th
has no permission to even list the file, and will receive a message like File not on

client.

• As an example, suppose that our protections table is set as follows:

If Ed runs p4 print //depot/foo, PERFORCE examines the protections table botto
to top, and first encounters the last line. The files specified there don’t match the file
Ed wants to print, so this line is irrelevant. The second-to-last line is examined nex
line matches Ed’s user name, his IP address, and the file he wants to print; since th
is an exclusionary mapping, Ed isn’t allowed to even list the file.

fixes a list sync read

have list unlock open

help none user a list

info none users a list

integrate b open verify review

integrated list where a none

job a open

a. This command doesn’t operate on specific files. Thus, permission is granted to run these
mands if the user has the specified access to at least one file in the depot.

b. To run p4 integrate, the user needs open access on the target files and read access on
the donor files.

write * * //...
read edk * -//...

 read edk * //depot/elm_proj/...

Command Access Level Command Access Level
anual 106

Perforce 97.3 User’s M

Chapter 14 : System Administration: Protections

in read-
 taken

ches
equal to
 to run
tches
thout
d, and
• If the first pass is successful, a second pass is made at the protections table, aga
ing bottom to top; this pass is the same as the first, except that access level is now
into account. If an inclusionary protection line is the first line encountered that mat
the user name, IP address, file argument, and has an access level greater than or
the access level required by the given command, then the user is given permission
the command. If an exclusionary mapping is the first line encountered that ma
according to the above criteria, or if the top of the protections table is reached wi
finding a matching protection, then the user has no permission to run the comman
will receive the message You don’t have permission for this operation.
anual 107

CHAPTER 15 6\VWHP�$GPLQLVWUDWLRQ�
6XSHUXVHU�&RPPDQGV
Perforce 97.3 User’s M

intact.

 file
 first
 it

b-
Three PERFORCE commands can be used only by users with PERFORCE superuser privi-
leges. These commands allow the superuser to verify files using 128-bit signatures,
remove all traces of file from the depot, create multiple depots on the local server, or pro-
vide read access to files on other servers.

)LOH�9HULILFDWLRQ�E\�6LJQDWXUH

The p4 verify filenames command can be used to generate 128-bit signatures of
each revision of the named files. A list of signatures generated by p4 verify can later
be used to confirm proper recovery in case of a crash: if the signatures of the recovered
files match the previously saved signatures, the files were recovered accurately.

For more information about the MD5 algorithm, which is used to generate the file signa-
tures, please see <http://backupvault.com/md5.htm>.

)LOH�2EOLWHUDWLRQ

The depot is always growing. Obviously, this is not always desirable: a branch might be
performed incorrectly, creating hundreds of unneeded files; or perhaps there are simply a
lot of old files around that are no longer being used. p4 delete won’t help, since this
command marks the file as deleted in its head revision, but leaves the old revisions

p4 obliterate filename can be used by superusers to remove all traces of a
from a depot, making the file indistinguishable from one that never existed in the
place. p4 obliterate is so destructive, in fact, that we haven’t even told you how
really works yet. p4 obliterate filename only reports on what it will do; to actu-
ally destroy the files, use p4 obliterate -y filename.

&KDQJHOLVW�'HOHWLRQ�
	�'HVFULSWLRQ�(GLWLQJ

The -f flag can be used with p4 change to change the description or username of su
mitted changelists. The syntax is p4 change -f changenumber; this presents the stan-
dard changelist form, in which the description and/or username may be edited.
anual 108

Perforce 97.3 User’s M

Chapter 15 : System Administration: Superuser Commands

pro-
oesn’t

pera-
e in
to

ate

y

d

The -f flag can also be used to delete any submitted changelists that have been emptied of
files with p4 obliterate. The full syntax is p4 change -d -f changenumber.

'LVWULEXWHG�'HSRWV

PERFORCE distributed depots allow the P4 client program to access files from multiple
depots. These other depots may reside within the P4D server normally accessed by the P4
client program, or they may reside within other, remote, P4D servers.

The P4 client’s local P4D server program acts as a proxy client to the remote server
grams, so the client doesn’t need to know where the files are actually stored, and d
need direct access to the remote P4D server programs.

The use of distributed depots on remote servers is currently limited to read-only o
tions; thus, a P4 client program may not add, edit, delete or integrate files that resid
depots on other servers. Depots sharing the same P4D server as the client are not subject
this limitation.

'HILQLQJ�1HZ�'HSRWV

New depots in a server namespace are defined with the command p4 depot depot-
name. If called with the default depotname depot, the p4 depot command will bring
up the following form:

When p4 depot depot is called, the form is filled in with values representing the st
of the default depot. Its name, of course, is depot. It resides in the local P4D server
namespace; so its type is local, (as opposed to remote). The Map: field indicates
where the depot subdirectory is located relative to the root directory of the P4D server pro-
gram; in this default case, the depot called depot starts in the depot subdirectory directl
underneath the root.

'HILQLQJ�/RFDO�'HSRWV

To define a new local depot (that is, a new depot in the current P4D server program
namespace), p4 depot is called with the new depot name, and only the Map: field in
the resulting form need be changed. For example, to create a new depot called book with
the files stored in the local P4D server namespace in a root subdirectory called manual,
the command p4 depot book would be typed, and the resulting form would be fille
in as follows:

Depot Name: depot
Type: local
Address: subdir
Map: depot/...

Depot Name: book
Type: local
Address: subdir
Map: manual/...
anual 109

Perforce 97.3 User’s M

Chapter 15 : System Administration: Superuser Commands

r

s

iple
or-
:

ve to

ive to

ple,

-

om-

Example:
Defining a remote
depot
'HILQLQJ�5HPRWH�'HSRWV

Defining a new depot on a remote P4D server is only slightly more complicated. The
Type: is remote; the server address must be provided in the Address: field, and the
Map: field must be given a mapping into the remote depot namespace.

Lisa is working on a GUI for Elm. She and Ed are using different P4D servers; his is on
host pine, and it’s listening on port 1818. Lisa wants to grab Ed’s GUI routines for he
own use; she knows that Ed’s color routine files are located on his P4D server’s single
depot under the subdirectory graphics/GUI. Lisa’s first step towards accessing Ed’
files would be to create a new depot. She’ll call this depot gui; she’d type p4 depot
GUI and fill in the form as follows:

This creates a remote depot called gui on Lisa’s P4D server; this depot maps to Ed’s
depot’s namespace under its graphics/gui subdirectory.

7KH�0DSSLQJ�)LHOG�
DQG�:KDW�LW�0HDQV

The Map: field is analogous to a client’s view, except that the view may contain mult
mappings and the Map: field always contains a single mapping. This single mapping f
mat changes depending on whether or not the depot being defined is local or remote

• If a local depot is being defined, the mapping should contain a subdirectory relati
the file space of the P4D server root directory. For example, graphics/gui/...
maps to the graphics/gui subdirectory of the P4D server root.

• If a remote depot is being defined, the mapping should contain a subdirectory relat
the remote depot namespace. For example, //depot/graphic/gui/... would
map to the graphic/gui subdirectory of the remote server depot named depot.

Note that the mapping subdirectory must always contains the “...” wildcard on its right
side.

1DPLQJ�'HSRWV

Depot names share the same namespace as branches, clients, and labels. For exam
//foo refers unambiguously to either the depot foo, the client foo, the branch foo, or
the label foo.

$FFHVVLQJ�)LOHV�,Q�2WKHU�'HSRWV

Files from any remote or local depot known to the default P4D server can be accessed sim
ply by using the depot’s name wherever the default depot name depot is usually used.
This means that any defined depot name can be used in the following ways:

• As part of any P4 command that takes depot syntax. For example, the following c
mand will retrieve all files in the subdirectory foo of depot bar:

p4 sync //bar/foo/...

Depot Name: gui
Type: remote
Address: pine:1818
Map: //depot/graphics/gui/...
anual 110

Perforce 97.3 User’s M

Chapter 15 : System Administration: Superuser Commands

s been

epots
 oper-

d and
anch-

 are

lly,
vi-
cal

s are
• On the left-hand side of any client view. For example, if the P4 client form is filled in as
follows on client spice, any files from the local depot depot will be mapped to
/usr/jake/src/local, and any files from the remote depot foo will be mapped
to /usr/jake/src/remote.

• On the left-hand side of any branch or label view, in the same way the mapping ha
provided in the above client view.

There is one, rather large, exception to these rules: although files from other local d
can be used in any operation, files from remote depots can be used only in read-only
ations. Thus, no files can ever be used in a p4 submit to a remote depot.

Additionally, files from remote depots can’t be used in p4 filelog or p4
describe, even though these operations are read-only.

,QWHJUDWLQJ�)LOHV�)URP�2WKHU�'HSRWV

A branch view may contain remote files in its mappings, so that files can be branche
later integrated from a remote depot into the local one. This works much as local br
ing and integration do, with two exceptions:

1. When remote files are integrated for the first time (i.e. they don't exist locally), they
opened for import rather than branch. The difference between import and
branch is only that, upon submission, the remote files are copied locally. Norma
branch performs a “lazy copy”, referring to the source file/revision until a new re
sion is submitted. Import copies the contents of the source file/revision to the lo
target.

2. Since it is not possible to make remote files the targets of integration, integration
one-way only, from remote to local.

'HOHWLQJ�'HSRWV

Depots may be deleted with p4 -d depotname.

'HSRW�5HSRUWLQJ�&RPPDQGV

All depots known to the current P4D server can be listed with the p4 depots command.

Client: spice
Description:
Created by Jake.
Root: /usr/jake/src
View:
 //depot/... //spice/local/...
 //foo/... //spice/remote/...
anual 111

APPENDIX A (QYLURQPHQW�9DULDEOHV
Perforce 97.3 User’s M
Each operating system and shell uses its own syntax for setting environment variables.
This table shows how each OS and shell would set the P4CLIENT environment variable.

The two tables on the next four pages describe the environment variables used by PER-
FORCE. The most important of the variables are described in the first table; the second
table describes the more esoteric variables.

OS & Shell Environment Variable Example

UNIX: ksh, sh, bash export P4CLIENT=value

UNIX: csh setenv P4CLIENT value

VMS def/j P4CLIENT "value"

Mac MPW set -e P4CLIENT value

Windows 95/NT Environment variables can be set with

 set P4CLIENT=value,

but if registry variables are set, they will
override the environment variable values.
The registry variables can be set in the
user-specific part of the registry through
the P4 client program with

p4 set P4VAR=value

and can be set in the system registry with

p4 set -s P4VAR=value

The use of registry variables is recom-
mended.
anual 112

Chapter APPENDIX A : Environment Variables
TABLE 1. Basic PERFORCE Environment Variables (page 1 of 2)

Environment
Variable

P4CLIENT P4JOURNAL P4LOG

Description Name of client workspace Database journal file File to write errors to

Command-Line
Alternative

-c -J -L

Used by P4? Yes No No

Used by P4d? No Yes Yes

Examples eds_elm

manual

journal

/disk2/perf/journal

log

/disk2/perf/log

Value if not
Explicitly Set

UNIX:
name of P4 host

NT:
value of
COMPUTERNAME
environment variable

P4ROOT/journal standard error

Notes File is specified relative to
P4D server root, or as an ab-
solute path.

Setting this variable, or
using the command-line
alternative, enables
journaling.

File is specified relative to
P4D server root, or as an
absolute path.
Perforce 97.3 User’s Manual 113

Chapter APPENDIX A : Environment Variables
TABLE 2. Basic PERFORCE Environment Variables (page 2 of 2)

Environment
Variable

P4PORT P4ROOT P4USER

Description For P4D server,
port # to listen on.

For P4 client,
P4D host and its port

Directory in which
P4D stores its files
and subdirectories

PERFORCE client
username

Command-Line
Alternative

-p -r -u

Used by P4? Yes No Yes

Used by P4D? Yes Yes No

Examples P4D server example:

1515

P4 client example:

squid:1666
it.com:1308

/usr/lcl/
p4root

edk

lisag

Value if not
Explicitly Set

For P4D server:

1666

For P4 client:

perforce:1666

<none> UNIX:
the value of the
USER environment
variable

NT:
the value of the
USERNAME envi-
ronment variable

Notes Format on P4 client is host:port#, or
port# by itself if the P4 client and the
P4D server run on the same host.

To use the default value with P4D, define
perforce as an alias to the host in
/etc/hosts, or use the domain name
services.

Port numbers must be in the range
1024 - 31767.

Create this directo-
ry before starting
P4D.

Only the account
running P4D needs
read/write permis-
sions in this direc-
tory.

By default, the PER-
FORCE username is
the same as the OS
username, but this
can be set to any
other PERFORCE us-
er.
Perforce 97.3 User’s Manual 114

Chapter APPENDIX A : Environment Variables
TABLE 3. Esoteric PERFORCE Environment Variables (page 1 of 2)

Environment
Variable

P4DIFF P4EDITOR P4MERGE

Description Name and location of the
‘diff’ program used by p4
resolve and p4 diff.

Editor used by P4 com-
mands, like p4 client,
that bring up forms

MERGE program used by
p4 resolve’s merge
command

Command-Line
Alternative

Used by P4? Yes Yes Yes

Used by P4D? No No No

Examples diff

diff -b

windiff

vi

emacs

SimpleText

Prescient Software’s
MergeRight

Value if not
Explicitly Set

UNIX:
If DIFF is set, then value of
DIFF; otherwise P4’s in-
ternal diff

NT:
If DIFF is set, then value of
DIFF; else if SHELL set,
diff ; otherwise,
p4diff.exe

If EDITOR environment
variable is set, its value;
otherwise:

UNIX: vi

NT: if SHELL is set, vi ;
otherwise, notepad

VMS: if POSIX$SHELL is
set, vi ; otherwise, edit

Mac:
if EDITOR_SIGNATURE
is set, the program with that
four-character creator; oth-
erwise, SimpleText .

If MERGE environment vari-
able is set, its value; other-
wise, nothing.

Notes This EV can contain flags to
diff, such as diff -u .

p4 describe ,
p4 diff2 , and
p4 submit use the diff
built into P4D; this cannot be
changed.

This program is used only
by p4 resolve ’s merge
command. It takes four ar-
guments, representing
base, theirs, yours, and the
resulting merge file. Please
see page 43 for more de-
tails.
Perforce 97.3 User’s Manual 115

Chapter APPENDIX A : Environment Variables
TABLE 4. Esoteric PERFORCE Environment Variables (page 2 of 2)

Environment
Variable

P4PAGER PWD TMP, TEMP

Description Program used to page out-
put from p4 resolve’s
diff.

The working directory
when P4 commands are
run.

Directory in which tempo-
rary files are written

Command-Line
Alternative

-d

Used by P4? Yes Yes Yes

Used by P4D? No No No

Examples more /u1/doug/prog /tmp

Value if not
Explicitly Set

If PAGER environment
variable is set, then the val-
ue of PAGER; otherwise,
none.

UNIX:
Value of PWD as set by
shell; if not set by shell,
getwd() is used.

VMS, NT,
Mac/MPW:
Actual current working di-
rectory

UNIX:
/tmp

VMS, Mac/MPW, NT:
on client: current directory;
on server: P4ROOT

Notes Used only by
p4 resolve.

If this variable is not set,
the output of p4 re-
solve’s diff will not be
paged.

If the TEMP environment
variable is set, this is used;

otherwise, if TMP is set,
this is used;

otherwise, defaults to the
values above.
Perforce 97.3 User’s Manual 116

APPENDIX B *ORVVDU\
Perforc

r

on

m-
DFFHVV�OHYHO A permission given to a user controlling which PERFORCE commands can be used.
Access levels are assigned with p4 protect. The five access levels are list,
read, write, review, and super.

DGG An operation that takes a file in the client workspace and adds it as a new file to the
depot.

DWRPLF Grouping a number of operations together such that either all of them occur, or
none of them do. See atomic change transaction.

DWRPLF�FKDQJH�
WUDQVDFWLRQ

Grouping a number of files and operations together in a single changelist, such that
when the changelist is submitted, either all the files are updated in the depot, or
none of them are.

EDVH The file revision that two newer, conflicting file revisions were commonly based
on.

ELQDU\�ILOH A non-ascii file. Whether a file is binary or ascii is determined by the C library call
isascii(). Binary files are always stored in the depot in full.

EUDQFK Creating a copy of a file or files in the depot so that the new file set can evolve sep-
arately from the original files. See Inter-File Branching.

EUDQFK�IRUP The form displayed when the p4 branch command is given.

EUDQFK�YLHZ The view that specifies how files are mapped from the original codeline to the
branched codeline. The mappings within a branch map files within the depot to the
copied files within the depot. Branch views are edited in the branch form.

EXLOG�
PDQDJHPHQW

A tool that manages the process of turning source code into product. PERFORCE
does not have a build tool, built in, but PERFORCE Software offers a companion
freeware build tool called “Jam” at <www.perforce.com>.

FKDQJH 1. An edit of a file.

2. In previous versions of PERFORCE, this term was used as a synonym fo
changelist.

FKDQJHOLVW A list of files, revision numbers of those files, and operations to be performed
these files. The commands p4 add, p4 edit, p4 delete, and p4 inte-
grate all include files in a particular changelist, which is sent to the depot ato
ically when p4 submit is typed with no parameters.

FKDQJHOLVW�IRUP The form brought up by p4 change, and by p4 submit when submitting the
default change.
e 97.3 User’s Manual 117

Perforc

Chapter APPENDIX B : Glossary

ting

n
FKDQJHOLVW�
QXPEHU

The number that a particular changelist is known by. The default changelist is as-
signed a number if a submit of the default changelist fails. Changelist numbers al-
ways increase in sequence.

FKDQJH�UHYLHZ The process of sending email to users when files that they are interested in have
changed within the depot.

FKHFNSRLQW A copy of the underlying server metadata at one moment in time. This is one half
of the journaling process.

FOLHQW A computer running P4; a computer storing a client workspace. All PERFORCE work
is done by users on client machines. A single PERFORCE system can have many cli-
ents, which all talk to a single server via TCP/IP.

FOLHQW�IRUP The form brought up by the p4 client command to define a client workspace.

FOLHQW�QDPH A name that uniquely identifies the current client workspace. It is set through the
P4CLIENT environment variable, or on the command-line with the -c flag.

FOLHQW�URRW The root directory of a client workspace; the lowest level directory under which the
managed files sit. The client root is set in the Root: field of the client form. If the
client name is proj1, and the client root is /usr/joe/project1, then the file
//proj1/docs/read.me is actually located on the client machine under
/usr/joe/project1/docs/read.me.

FOLHQW�VLGH The right-hand side of a mapping within a client view. Expresses where the corre-
sponding depot files are found within a client workspace.

FOLHQW�YLHZ A set of mappings that express which files from the depot can be accessed from a
particular client workspace, and where in the client workspace the depot files are
mapped to. Client views are defined in the View: field of the form brought up by
p4 client.

FOLHQW�
ZRUNVSDFH

A local copy of some or all of the files stored in the depot. These files are managed
by PERFORCE; users may work on PERFORCE files only within a client workspace.
Client workspaces are defined with the p4 client command.

FRGHOLQH A set of files that evolve collectively. One codeline can be branched from another,
allowing both sets of files to evolve separately from the other.

FRPPDQG�OLQH The interface that this PERFORCE manual describes. If you’re looking at this glos-
sary entry because you don’t know what a command line is, and you’re expec
to use a GUI, you’re in the wrong manual.

FRQIOLFW See file conflict.

FRXQWHU A variable tracked and set by p4 review. Used internally by PERFORCE to track
which changelists have and haven’t been reviewed; users can create their ow
counters for use in their own daemons.

GDHPRQ A program running in the background on the PERFORCE server. PERFORCE provides
a change review daemon; users can create their own to handle other needs.

GDWDEDVH Files in a PERFORCE server used to store the server metadata.

GHIDXOW�
FKDQJHOLVW

The changelist used by p4 add, p4 edit, p4 delete, p4 submit, etc., un-
less a numbered changelist is provided to these commands with the -c flag. There
is always a single default changelist in use for each client workspace.

GHIDXOW
GHSRW

The depot that is always available on a PERFORCE server. Its name is depot.
e 97.3 User’s Manual 118

Perforc

Chapter APPENDIX B : Glossary

 com-

ode-
rig-

eges
d

ry
 ac-

ol-
GHOHWH 1. To remove a file from the client workspace and from the depot with p4
delete followed by p4 submit. Deleted files are not actually erased from
the depot; the head revision of the file is marked as being deleted, but older
revisions of the file are still available.

2. To remove an existing client, label, or branch from the PERFORCE server. This
is accomplished with the -d flag to p4 client, p4 label, and p4
branch.

GHOWD The line-by-line differences between one file revision and its next (or previous) re-
vision.

GHOWD�VWRUDJH See reverse delta storage.

GHSRW A file repository on the P4D server. It contains all versions of all files ever submit-
ted to the server. There can be multiple depots on a single server.

GHSRW�URRW The root directory for a particular depot. For the default depot depot, the depot
root is the depot subdirectory of the server root directory.

GHSRW�VLGH The left side of any client view mapping. The union of all depot sides of a client
view specifies which files are available to the corresponding client workspace.

GHSRW�V\QWD[PERFORCE syntax, when applied to a file in the depot. A file called readme in the
depot’s doc subdirectory would be referred to in depot syntax as //depot/
doc/readme.

GHWDFKHG A client workspace not connected to a PERFORCE server with a functioning network
connection is said to be detached. Permissions must be set on files using OS
mands; PERFORCE is unable to open files for you.

GLIIHUHQFH�
PDUNHU

A named counter used by p4 review. Each difference marker keeps track of
which changes have already been reviewed for the counter with that name.

GLVWULEXWHG�
GHSRW

A depot within another P4D server, accessed by the local P4D server acting as a
proxy client.

GRQRU�ILOH The file from which changes are taken when propagating changes from one c
line to another. A donor file can come either from the branched codeline or the o
inal codeline; this is determined by the use of the -r flag to p4 integrate.

HGLW Opening a file in a client workspace with p4 edit. PERFORCE notes that the file
has been opened, adds the file revision to a changelist, and turns on write privil
for this file within the client workspace. A file is opened for edit before it is edite
with the system editor.

HQYLURQPHQW�
YDULDEOH

A variable set in the operating system’s command shell. PERFORCE utilizes envi-
ronment variables that are passed to the p4 client or P4D server.

H[FOXVLRQDU\�
PDSSLQJ

A view mapping that excludes depot files from a client workspace. Exclusiona
mappings begin with a minus sign. For example, to allow a client workspace to
cess all the files in the depot except for the file called secret, the view might look
like this:

//depot/... //a_client/...
-//depot/secret //a_client/secret

H[FOXVLRQDU\
DFFHVV

A permission that denies access on the specified files. For example, the f
lowing permission denies Ed write permissions on all files in the directory
secret:

write edk * -//depot/secret

IDVW See PERFORCE.
e 97.3 User’s Manual 119

Perforc

Chapter APPENDIX B : Glossary
ILOH In a client workspace, file has the usual meaning. A file in the depot consists of
the head revision of the file, and every revision of the same file.

ILOH�FRQIOLFW A state in which the version of a file in the client workspace is not an edit of the
head revision in the depot at submit time.

ILOH�SDWWHUQ An argument on a P4 command line specifying files using wildcards.

ILOH�UHIHUHQFH A file revision specification, like foo#3. Used specifically when storing pointers to
files in lists such as a label. The label contains file references, not the contents of
the files themselves.

ILOH�UHSRVLWRU\ The master copy of all files; shared by all users. In PERFORCE, this is called the de-
pot.

ILOH�UHYLVLRQ A specific version of a file within the depot. Each revision is assigned a number, in
sequence. Any revision can be accessed in the depot by its revision number, like
foo#3.

ILOH�WUHH All the subdirectories and files under a given root directory.

ILOH�W\SH An attribute that determines how a particular file is handled by PERFORCE. The two
basic PERFORCE file types are text and binary, but there are quite a few sub-
types.

IL[A job that has been linked to a changelist with p4 fix, p4 submit, or p4
change. Under most circumstances, a fixed job has a status of closed, but this is
not always true: when an open job is linked to a pending changelist, it is still open,
and closed, fixed jobs can always be reopened or suspended.

IRUP Screens brought up by certain PERFORCE commands containing elements whose
value needs to be changed. The form is displayed in an external editor; the editor
used is defined by the environment variable P4EDIT.

The commands that bring up forms are p4 change, p4 client, p4 depot,
p4 job, p4 label, p4 user, and sometimes p4 submit.

IXOO�ILOH
VWRUDJH

The method by which PERFORCE stores file revisions of binary files within the de-
pot: every file revision is stored in full. Contrast this with reverse delta storage,
which is used for text files.

JHW Formerly used to describe the process accomplished by p4 get, which has been
renamed p4 sync. The p4 get command can still be used as a synonym for p4
sync. See sync.

*18 Software provided by the Free Software Foundation. Most GNU software is system
level software such as enhanced versions of standard UNIX utilities and language
compilers.

GNU stands for "GNU’s not UNIX".

KDYH�OLVW The list of file revisions that the PERFORCE server believes are currently in the cli-
ent workspace. Generated by p4 have.

KHDG�UHYLVLRQ The most recent revision of a file within the depot. Since file revisions are num-
bered sequentially, this will also be the highest-numbered revision of the file. To
refer to the head revision of file foo, use foo#head.

LQWHJUDWH To propagate changes from one codeline to another.

LQWHJUDWLRQ
UHFRUG

The data structure by which PERFORCE keeps track of integrated files. It tracks
which revisions of which donor files were integrated into which target files.
e 97.3 User’s Manual 120

Perforc

Chapter APPENDIX B : Glossary

ed
e in

der.
tem.

e

he de-

-
on

his

 the

 the

s-

h as
rtic-
n-

nds

t
lly
n be

e-

cor-

is
,QWHU�)LOH�
%UDQFKLQJ

PERFORCE’s branching mechanism. It differs from the branching mechanism us
by most SCM systems, allowing arbitrary copies of files to be stored anywher
the depot, and allowing these files to evolve separately. Additionally, changes
made to any file can be propagated to the corresponding file in any branch.

MRE A generic term for a defect report, system improvement request, or change or
An arbitrary textual description of some change intended to be made to the sys

MRE�WUDFNLQJ PERFORCE’s mechanism for keeping track of jobs. It is implemented via p4 job
and p4 fix.

MRXUQDO A file containing a record of every change made to the PERFORCE server’s metadata
since the time of the last checkpoint. One half of the journaling process.

MRXUQDOLQJ Keeping track of every change made to the PERFORCE server’s metadata since one
particular moment in time. Requires a checkpoint file and a journal file. Only th
server’s metadata is journaled; external processes need to be run to backup t
pot’s file revisions.

ODEHO A user-configurable list of file revisions. Used to save “important” file configura
tions for later use. Any file included in a label can be referred to with the revisi
specifier @labelname; e.g. foo@release3.0.1.

ODEHO�YLHZ The view that defines which files in the depot are stored in a particular label. T
can be edited in the form brought up by p4 label. The left-hand side of each
mapping represents a subtree of the depot’s file tree; the right side represents
files’ corresponding location within the label.

OLFHQVH PERFORCE’s mechanism to ensure that our software is run on each site only by
number of users that have been paid for. Two users may be run on any PERFORCE
server without a license or any form of payment. For more information on licen
ing, please send email to info@perforce.com.

OLVW�DFFHVV A protections level giving the user permission to run reporting commands, suc
p4 client, that give access to metadata. A user with only list access to a pa
ular file can’t run any commands that would allow them to read or write the co
tents of the file.

ORFDO�GHSRW Any depot located on the current PERFORCE server. By default, only one such depot
is constructed; others may be defined with p4 depot.

ORFDO�V\QWD[The native name of a file on the client host, as would be used by other comma
in that operating system. For example, file foo in joe’s home directory in UNIX
local syntax would be ~joe/foo, or /usr/joe/foo, etc.

ORFN Locking a file with p4 lock ensures that no other clients will be able to submi
the same file until the file is unlocked by the locking client. Files are automatica
locked when submission starts, and unlocked when submission ends; they ca
manually unlocked with p4 unlock.

ORJ Error output from the P4D server. By default, this is written to standard error; a sp
cific file can be set in the P4LOG environment variable, or with the -L flag to P4D.

PDSSLQJ A single line in a view, consisting of a left side and a right side that specify the
respondences between files in the depot and files in a client, label, or branch.

(See also client view, branch view, label view).

PHUJH To combine the contents of two conflicting file revisions into a single file. This
accomplished with p4 resolve.
e 97.3 User’s Manual 121

Perforc

Chapter APPENDIX B : Glossary
PHUJH�ILOH A file revision generated by PERFORCE from two conflicting file revisions. This file
can be edited by the user during the p4 resolve process, producing a result ac-
ceptable to the user.

PHWDGDWD The data stored by the server that describes the files in the depot, the current state
of client workspaces, protections, users, clients, labels, and branches. It includes all
the data stored in the server except for the actual contents of the files.

PRGWLPH The modification time of a file that has been read from the depot into a client work-
space. By default, the modtime is the time that the file was last written to the depot;
this can be changed in the P4 client form to be the time that the file is read into the
client workspace.

QDPHVSDFH The pool of legal names for clients, branches, depots, and labels. Clients, branches,
depots, and labels all share the same namespace; therefore a client cannot have the
same name as any branch, depot, or label.

QHWZRUN�FRQ�
QHFWLRQ

A TCP/IP connection between a PERFORCE client and PERFORCE server. Generally,
users are expected to work within a functioning network connection; they can still
edit client files without a network connection by following the instructions for
working detached.

QRQH[LVWHQW�
UHYLVLRQ

A special file revision; a completely empty revision of any file. Useful only to re-
move a file from the client workspace while leaving it intact in the depot: use
p4 sync foo#none.

QXPEHUHG�
FKDQJHOLVW

A changelist that has been created by PERFORCE but that has not yet been submit-
ted. A numbered changelist can be created manually, with p4 change -c, or is
created automatically by PERFORCE when a submit of the default change has failed.
Once a changelist has been assigned a number, it must be referred to by that number
in all subsequent commands, e.g. p4 submit -c 31.

RSHQ A file in a client workspace that has been included on a changelist with p4 add,
p4 delete, or p4 edit. The file is said to be open within the client workspace.

RZQHU The PERFORCE user who created a particular client, branch, or label. This can be
changed through the form brought up by p4 client, p4 branch, or
p4 label.

3� The program invoked by users from a client to run all PERFORCE commands. It talks
via TCP/IP to the PERFORCE server, mediating the interaction between the managed
files in the client workspace and the master repository and metadata on the server
host.

3�' The program on the PERFORCE server that manages the depot and the metadata. It
waits on a TCP/IP port for a connection from the client program.

SHQGLQJ
FKDQJH

An existing changelist that has not yet been submitted. These can be created man-
ually with p4 change -c, and are automatically created when submission of the
default change fails.

3(5)25&(The fast Software Configuration Management system.

3(5)25&(�VHUYHU See server.

3(5)25&(�V\Q�
WD[

A syntax for referring to files that remains invariant across operating systems. It
consists of two slashes, followed by the depot or client name, followed by a slash,
and then the name of the file specified relative to the depot or client root.

3HUO A scripting language available for most operating systems. Useful for creating pro-
grams that utilize PERFORCE commands, such as the change review daemon.

SHUPLVVLRQ See access.
e 97.3 User’s Manual 122

Perforc

Chapter APPENDIX B : Glossary

m

.

ace.

nt

ers
, and

 time

ess,
le,
on.

.

e

e-

ted
SRUW A TCP/IP logical channel. Since every application on a host listens to a different
port, the ports are used to funnel messages to the correct application. The P4D serv-
er program listens on the port assigned by P4PORT.

SURMHFW Generic term for some set of files kept by PERFORCE. One server might be storing
source files for multiple projects.

SURSDJDWH To copy changes in one file to a branched copy of the same file, leaving the rest of
the branch file intact.

SURWHFWLRQV The complete set of permissions as stored in the server’s protections table.

SXUH
LQWHJUDWLRQ

An integration in which changes to the target file incorporates only revisions fro
a single source file.

5&6�IRUPDW Revision Control System algorithm and data structure for storing file revisions
Uses reverse delta encoding for file storage. This is the method used by PERFORCE.
See also reverse delta encoding.

UHDG�DFFHVV A protections level giving the user permission to run commands, such as p4
sync, that allow them to read the contents of PERFORCE files stored in the depot.
Read access includes list access.

UHIUHVK To copy the contents of an unopened file from the depot into the client worksp

UHPRWH�GHSRW A depot located on a server other than the current PERFORCE server defined under
P4PORT. PERFORCE superusers can make these depots accessible to the curre
server’s clients for read-only access.

UHQXPEHU PERFORCE may renumber a changelist when it is submitted. Since change numb
are allocated sequentially, a change might have one number when it is created
another when it is submitted.

UHUHVROYH To run the resolve process a second time. This can be done only between the
a file is resolved and the time it is submitted

UHVROYH The process by which an integration is finalized by the user. The resolve proc
run by p4 resolve, allows the user to decide whether to keep the integrated fi
edit it, or accept some other revision of the file in place of the integrated revisi

UHVRXUFH�IRUN One fork of a Macintosh file. The PERFORCE file type is resource.

UHYHUVH�GHOWD�
VWRUDJH

The method by which PERFORCE stores file revisions of text files within the depot.
Rather than store every file revision in full, PERFORCE stores only the deltas from
each revision to the one previous, storing the full text of only the head revision

UHYHUW To throw away a file in the client workspace, replacing it with the revision in th
depot that was being edited. Files that were opened with p4 add are left in the cli-
ent workspace; they are simply removed from the corresponding changelist. R
verting files can only be done before the files have been submitted.

UHYLHZ�DFFHVV A special protections level given to the review daemon, or to any daemon crea
by a user. It includes read and list accesses, plus permission to run the p4 review
command.

UHYLHZ�GDHPRQ Any daemon process written that uses the p4 review command. See also change
review.
e 97.3 User’s Manual 123

Perforc

Chapter APPENDIX B : Glossary
UHYLHZ�PDUNHU Any named counter used by p4 review. Counter values are stored as PERFORCE
metadata, so their value remains the same from execution to execution of p4 re-
view. Each review marker has its own name, hence its own value. The value of
any counter can be accessed and set at any time. Review markers are commonly
used to track which changelists have been processed by a particular daemon, but
other uses are possible.

UHYLVLRQ A specific version of a file within the depot.

UHYLVLRQ�QXPEHU A number indicating which revision of the file is being referred to. Revision num-
bers start at 1, and increase sequentially. To refer to a particular revision of a file,
append the pound sign and the revision number to the name of the file; e.g., the
tenth revision of file foo would be referred to as foo#10.

The revision specification foo#10 is actually the same as the revision range speci-
fication foo#1,#10, since revision ten of the file encompasses all the changes made
in the file from revision 1 to revision 10.

UHYLVLRQ�UDQJH A range of revision numbers for a specified file, specified as the low and high end
of the range. For example, foo#5,7 would access the fifth through seventh revi-
sions of file foo.

Only a few commands allow revision ranges to be specified. The only non-report-
ing command that allows a revision range is p4 integrate.

UHYLVLRQ�
VSHFLILFDWLRQ

A suffix to filenames that specify a particular revision of that file. Revision speci-
fiers can refer to files by revision number, change number, label name or client
name.

URRW A top level directory under which all accessible files are found. See client root,
server root, depot root.

6&0 Commonly used abbreviation for Software Configuration Management.

6HQGPDLO A UNIX mail transfer agent that, like a post office, collects mail and figures out
how to move it further along. Used by the PERFORCE change review daemon.

VHUYHU The PERFORCE depot and metadata on a central UNIX or NT host. All the client
workspaces in a PERFORCE system access the same server.

VHUYHU�URRW The directory in which the server program stores its metadata and all the shared
files. The directory is set via the P4ROOT environment variable.

6RIWZDUH�
&RQILJXUDWLRQ�
0DQDJHPHQW

A category of software whose definition changes from manufacturer to manufac-
turer. PERFORCE is a Software Configuration Management system. Functions com-
monly said to comprise SCM systems are version control, concurrent development,
release management, build management, and change review.

VWDWXV For a changelist, a value that indicates whether the changelist is new, pending or
submitted. For a job, an indicator of whether the job is open, closed, or
suspended.

VXEPLW To send a pending changelist to the server for processing. The files referenced by
the changelist are locked, the corresponding operations are performed, and then the
files are unlocked.

VXEVFULEH To register to receive email whenever changelists are submitted that affect partic-
ular files. Files are subscribed to via the p4 user form; the change review daemon
watches the depot and sends email when the specified files have been affected.

VXSHUXVHU A PERFORCE user with superuser permissions.
e 97.3 User’s Manual 124

Perforc

Chapter APPENDIX B : Glossary

.
VXSHUXVHU
DFFHVV

A protections level that gives the user permission to run every PERFORCE com-
mand, including those that set protections, obliterate files, verify files with an MD5
signature, and set up connections to remote depots.

V\QF To copy a file revision (or set of file revisions) from the depot to a client workspace.
This is accomplished with the p4 sync command.

WDUJHW�ILOH When integrating changes between a branched codeline and the original codeline,
the target file is the file that receives the changes from the donor file. Either the
branched file or the original file can be the target; this is determined by the use or
non-use of the -r flag when calling p4 integrate.

7&3�,3 A networking protocol; the protocol of the Internet.

WH[W�ILOH The basic PERFORCE file type. Text files can be stored using reverse delta encoding,
saving space on the server.

WKHLUV When resolving a file conflict, the theirs file is the revision in the depot that the cli-
ent file conflicts with. This is usually the head revision.

When working with branched files, theirs is the donor file.

WKUHH�ZD\�
PHUJH

A merge between yours, theirs, and base. When a three-way merge is schedule by
PERFORCE, it is because yours and theirs are both revisions of a common base file,
theirs has been submitted to the depot, and the unconditional acceptance of yours
would lose all the changes to theirs.

WLS�UHYLVLRQ A term sometimes used by other SCM systems in place of head revision.

WZR�ZD\�PHUJH The type of merge performed when a donor file is being integrated into a target file
that was branched from a different file. In this case, there is no base file, so a two-
way merge is performed, in which your file is used as the base of the merge. In a
two-way merge, all changes appear as theirs, and there can be no conflicts.

XVHU An identifier that informs PERFORCE who is running the P4 commands. By default,
this is the same as the system username, but the environment variable P4USER
overrides this, allowing any user to impersonate any other.

YHUVLRQ�
FRQWURO

The tracking of each revision and variant of every file managed by an SCM system

YLHZ A description of the relationship between files in the depot and a client workspace,
label, or branch. The view determines which files from the depot are included in
the mapping, and the names by which the mapped files are known. See client view,
label view, branch view.

ZLOGFDUG A special character that is not interpreted literally, but is used to match other char-
acters in strings. PERFORCE wildcards are ‘*’, which matches anything except a
slash; ‘...’, which matches any string including slashes, and ‘%d’, which is used
for parametric substitution in views.

ZRUNVSDFH See client workspace.

ZULWH�DFFHVV A protections level that gives the user permission to run commands, such as p4
submit and p4 edit, that allow him to alter the contents of files in the depot
Write access includes read and list accesses.

\RXUV When resolving a file conflict, the yours file is the edited version within the client
workspace. In an integration of a branched file, yours is the target file.
e 97.3 User’s Manual 125

Index

Symbols
#have 34
#head 34
#label 34
#none 34
Id

RCS keyword 36
%d 27
* 27
... 27
>>>> 42
@client 34
@label 34

A
access levels 101
adding files 20
algorithm

of integration 71
architecture, of PERFORCE 12
atomic 12, 53
atomic change transaction 22, 53
automatic changelist renumbering 56

B
base 41, 71
binary files 35, 36
branch views 64

and exclusionary mapping 65
exclusionary mapping and 65

branches
creating 63, 64
listing 89
naming 64

branching 13, 63–72
and reporting 72
and re-resolving 70
donor files and 68
integration and 65
re-integration and 70
surprise by-product of 70
target files and 68

browser 3
bug descriptions

tracking of 13
build management 11

C
-c changenum flag 55
change numbers

contrasted to labels 58
change review 14, 78

and protections 81
changelists 12, 20, 53–57

and branches 65
and integration 65
automatic renumbering of 41
commands affecting 54
creating 54
creation 54
creation of 56
default 53
deleting 56
deleting jobs from 57
describing 88
failure of submission and 56
listing 87
listing files in 57
moving files between 57
numbered 54
pending 54
removing files from 57
renumbering of 56
reporting 57

checkpointing 97
client form

fields of 18
client root 28
client view 12, 28

and branched files 65
usage 28

client workspaces 12
defined 17, 26–27
defining 18
deleting 20
effects of editing specification 28
listing 92
naming 18

client, specifying 48
client/server 12
client/server architecture 15
clients

detached 49
clobber 51
closed status, of jobs 74
closing files 24
codeline 63
codelines 13

evolution of 67
command arguments

syntax of 32
command arguments, from files 49
Command Reference 3
command-line flags 48
commands

and required access levels 104
format for 17

concurrent development 11
connecting to server 15
contacting PERFORCE 4
counters 80

listing 91
cross-platform development

with branching 63

D
daemons 14

creating 81
reporting commands for 91

defect tracking 11
defect tracking systems, integrating with 77
deleted file revisions 83
deleting files 22
deletion

of changelists 56
of client workspace specifications 20
of jobs 77
of jobs from changelists 57
of labels 62

delta storage 36, 38
depot

adding files to 20
deleting files from 22
mapping to client workspace 28
subdirectories within 94
updating files in 21

depots
defining new 108
deleting 110
distributed 108
listing 92
multiple 108
organization of 51
reporting 110

Description field 19
Descriptions

limitations on 33
development vs. release code 63
diff 40

and flags 86
overriding client’s 47
Perforce’s internal 86
setting client program 86
use of in Perforce 85

diff chunks 41
DIFF environment variable 43
difference marker 42
difference markers 43
directory, specifying 48
disk space management 99
distributed depots 108

integrating files from 110
donor files 68

reversing sense with target 68

E
editing files 21
EDITOR environment variable 18, 36
Edits 67
Elm, use of in examples 4
email, automatically sent 78
email, reaching Perforce by 4

environment variables
P4CLIENT 18, 19, 26, 48
P4DIFF 43
P4EDITOR 18, 36
P4MERGE 43
P4PORT 15, 48, 79
P4USER 49
PWD 48
USER 49
USERNAME 49

error
from incorrect connection to server 16

error logging 97
example set 4
exclusionary mappings

and protections 103

F
file conflicts 38–47

locking files to minimize 45
reasons for 38
types of 42

file names
limitations on 33
syntax for 31

file permissions 21
file type

inheritance of 35
file types 35

changing 35
determining 36

files
closing 24
comparing contents 85
conflicts in 13
copying, as branches 63
deleting from labels 62
depot’s storage of 38
getting 23
modification times of 51
moving between changelists 57
obliterating 107
permissions 12
reintegration of 70
relationship between client and depot 84
removing from changelist 57
renaming 52
reproducing state of 58
re-resolving of 70
reverting 24
revision history 83
revisions 12
storage of 36
viewing 85

forced integration 70
form

editing 18
forms 36

and syntax 36
full-file storage 36

G
GNU diff 40
GUI 3

H
head revision 13
help, online 25
host name 15

I
icons, in margin notes 3
installation, of p4 and p4d 95
integration

algorithm for 71
and changelists 65
and revision ranges 70
atomicity of 65
forcing 70
of unrelated files 70
reporting 89
reversing sense of 68

integration to external defect tracking systems 77
intended work 73
Inter-File Branching 13. See branching

J
Jam - Make(1) Redux 11
job fix reporting 91
job reporting 90
job tracking 13, 73
jobs 13, 73

automatic naming of 74
creation of 73
deleting from changelist 57
listing 90
reporting 77
status 74

jollity and mirth 2
journaling 97

K
keyword expansion 36
keyword text files 35
ktext files 36
kxtext files 36

L
label revision specifier 61
label views 59
labels 13, 58–62

adding files to 59
changing files within 59
contrasted to change numbers 58
creating 58
deleting 62
deleting files from 62
locking 59, 61
name limitations of 59
preventing accidental overwrite 61
reporting 62, 88

when to use 58
labelsync 59

and filename arguments 59, 60
large text files 35
licensing 99
lifecycle management 11
list access level 101
local depots 108
locking

of labels 59, 61
locking files 45

to minimize file conflicts 46
ltext files 36

M
Macintosh resource forks 35
manual

bugs and 4
manual, authors of

Robert Orenstein, Philboyd Studge
mapping depots to client workspaces 28
mappings

and depots 109
changing string order 30
conflicting 31
defined 28
exclusionary 30
types of 29
wildcards in 29

margin note icons 3
MD5 algorithm 107
MERGE environment variable 43
merge file 41

generation of 42
merge scheduling 67
merge.See resolve
merging

three-way 13
metadata 15

and protections 100
modification times of files 51
modtime 51
moving files between changelists 57

N
-n flag 92
namespaces

of labels 59
naming the p4d host 16
noclobber 51
nomodtime 51

O
-o flag 92
older revisions 33
one-to-one mapping

between depot and client 28
open 20

definition of 20
open status, of jobs 74
opening files. See editing files

options, p4 client 51
organization of depot 51
OS file permissions 21

P
p4 12, 15

installation 95
p4 client options 51
p4 commands
add 20, 27, 35, 54
branch 52, 64
branches 89
change 52, 54-57, 74
changes 57, 87
client 18-20, 28-29, 36, 51-52
clients 92
counters 91
delete 20, 22, 50, 54
depots 92, 110
describe 57, 79, 88
diff 47, 49-50, 85, 86
diff2 47, 85, 86
edit 20- 21, 35, 40, 50, 54-56
filelog 37, 83, 90
files 37, 62, 82-83, 88, 89
fix 57, 76-77
fixes 77, 81, 90-91
get 23
have 25, 37, 50, 60, 84
help 25, 49
info 25
integrate 52, 66-72, 89
integrated 90
job 52, 73-77
jobs 77, 90-91
label 52, 58-62
labels 62, 88, 89
labelsync 59- 62
lock 45, 56
obliterate 107
opened 36-37, 84
print 37, 85
protect 52, 100-106
refresh 24, 50
rename 52
reopen 54, 55, 57
reresolve 70
resolve 38-46, 67-71, 89
resolved 47, 72, 89
revert 24, 51, 54, 57
review 79, 80, 81, 91
reviews 79, 81, 92
submit 20-22, 36, 41, 44, 52-54, 65, 74, 75
sync 23-24, 33-37, 40-41, 47, 50-51, 61-62, 64,

67, 84, 85
unlock 45
user 52, 78, 81
users 81, 92
verify 107
where 37, 84, 85

P4CLIENT environment variable 18, 19, 26, 48

p4d 12, 15
and journaling 97
error logging 97
installation 95
root directory of 95
starting 96

P4PORT environment variable 15, 16, 48, 79, 95,
96

P4ROOT environment variable 95
P4USER environment variable 49
pending changelists 54
perfreview.perl 79
Perl, and PERFORCE 79, 81
permissions. See protections
platforms supported 12
port 15
port, specifying 48
printing files 85
protection mechanism 14
protections 100

and exclusionary mappings 103
and superusers 102
commands affected by 104
levels needed for integration 68

protections form 100
PWD environment variable 48

R
RCS format 38
RCS keyword expansion 36
read access level 101
reference manual, command-line 3
refreshing files 50
release management 11
releases

labeling 58, 62
renaming files 52
renumbering changelists 56
reporting 82–??

and changelists 57, 87
and daemons 91
and labels 62
basic 24, 37
branches 89
client workspaces 92
depots 92
file contents 85
file metadata 82
file revision comparisons 85
file revision history 83
fixes 91
integration 72, 89
jobs 77, 90
labels 88
of branches 72
of depots 110
of system configuration 92
opened files 84
PERFORCE users 92
resolves 46

resolve

non-interactive 45
of binary files 45
reporting 46
scheduling 40

resolve dialog 41, 42
options 43

resource forks 35
result file 41
retrieving files 23
retrieving label contents 61
reverse delta storage 38
reverting files 24
review access level 102
review daemon 79
review functionality 11
review markers 80
revision history 83
revision numbers 21
revision ranges 35

and integration 70
revision specifications 33

without filenames 35
revisions

head 13
of files 12

root directory 95
root. See client root, depot root

S
scheduling

of merges 67
scheduling of resolves and merges 40
scheduling resolves 40
SCM. See software configuration management
scripts,sample 93
server

connecting to 15
starting 96

shared file repository. See depot
signatures of files 107
software configuration management 11
standard input 52
standard output 52
status

of jobs 74, 76
storage of files 38
subdirectories of depot 94
submission

failure of 56
subscribing to files 78
super access level 102
superuser commands 107
superusers

and protections 102
suspended status, of jobs 74
symlink files 36
synbolic links 35
sync

use of in resolving 40
syntax

client 31

depot 31
local 31
perforce 31

system improvement request 13

T
target files 68

reversing sense with donor 68
TCP/IP 95
temporary files 27
text files 36
theirs

and integration 71
theirs 41, 71
three-way merge 13
tracking viewed changes 80
types, of files. See file types

U
unlocking files 45
unopened files,bringing into client workspace 50
updating files 21
user cooperation with Perforce 26
USER environment variable 49
user, specifying 49
USERNAME environment variable 49
users

listing 92

V
version control 11
version information 99
viewing files 85
views

and branching 64
and labels 59
client 19
usage 28

W
wildcards 27

and p4 add 27
in views 29
usage 33

work
intended 13

work, intended 73
workspace. See client workspace
write access level 101

X
xbinary files 36
xtext files 36

Y
yours file 41

and integrate 71

	PREFACE About This Manual
	New 97.3 Features
	Margin Note Icons
	The Example Set
	Please Give Us Feedback

	CHAPTER 1 Perforce Concepts
	Perforce Architecture
	Moving Files Between the Clients and the Server
	File Conflicts
	Labeling Groups of Files
	Branching Files
	Job Tracking
	Change Review and Daemons
	Protections

	CHAPTER 2 Connecting to the p4d Server
	Verifying the Connection to the p4d Server
	Telling p4 Where p4d is

	CHAPTER 3 Perforce Basics: Quick Start
	Underlying Concepts
	File Configurations Used in the Examples

	Setting Up a Client Workspace
	Naming the Client Workspace
	Describing the Client Workspace to the Perforce Server
	Editing an Existing Client Specification
	Deleting an Existing Client Specification

	Copying Files from the Workspace to the Depot
	Adding Files to the Depot
	Updating Depot Files
	Deleting Files From the Depot
	Submitting with Multiple Operations

	Retrieving Files from the Depot into a Workspace
	Reverting Files to their Unopened States
	Basic Reporting Commands

	CHAPTER 4 Perforce Basics: The Details
	Description of the Client Workspace
	Wildcards
	Wildcards and ‘p4 add’

	Mapping the Depot to the Client Workspace
	Using Views
	Wildcards in Views
	Types of Mappings

	Referring to Files on Command Lines
	Local Syntax
	Perforce Syntax
	Providing Files as Arguments to Commands
	Wildcards and Perforce Syntax

	Name and String Limitations
	File Names
	Descriptions

	Specifying Older File Revisions
	Using Revision Specifications without Filenames

	Revision Ranges
	File Types
	Forms and Perforce Commands
	General Reporting Commands

	CHAPTER 5 Perforce Basics: Resolving File Conflicts
	RCS Format: How Perforce Stores File Revisions
	Only the Differences Between Revisions are Stored
	Use of ‘diff’ to Determine File Revision Differences

	Scheduling Resolves of Conflicting Files
	Why ‘p4 sync’ to Schedule a Resolve?
	How Do I Know When a Resolve is Needed?

	Performing Resolves of Conflicting Files
	File Revisions Used and Generated by ‘p4 resolve’
	Types of Conflicts Between File Revisions
	How the Merge File is Generated
	The ‘p4 resolve’ Options
	Using Flags with Resolve to Non-Interactively Accept Particular Revisions
	Binary Files and ‘p4 resolve’

	Locking Files to Minimize File Conflicts
	Preventing Multiple Resolves with File Locking

	Resolves and Branching
	Resolve Reporting

	CHAPTER 6 Perforce Basics: Miscellaneous Topics
	Command-Line Flags Common to All Perforce Commands
	Working Detached
	Finding Changed Files with ‘p4 diff’
	Using ‘p4 diff’ to Update the Depot

	Refreshing files
	Options in the ‘p4 client’ Form
	Recommendations for Organizing the Depot
	Renaming Files
	Reading Forms from Standard Input; Writing Forms to Standard Output

	CHAPTER 7 Changelists
	Working with the Default Changelist
	Creating Numbered Changelists Manually
	Working With Numbered Changelists
	Automatic Creation and Renumbering of Changelists
	When Submit of the Default Changelist Fails, the Changelist is Assigned a Number
	Perforce May Renumber a Changelist upon Submission

	Deleting Changelists
	Changelist Reporting

	CHAPTER 8 Labels
	Why Not Just Use Change Numbers?
	Creating a Label
	Adding and Changing Files Listed in a Label
	Previewing Labelsync’s Results

	Preventing Accidental Overwrites of a Label’s Contents
	Retrieving a Label’s Contents into a Client Workspace
	Deleting Labels
	Label Reporting

	CHAPTER 9 Branching
	What is Branching?
	When to Create a Branch
	Branching’s First Action: Creating a Branch
	Step 1: Create the Branch View
	Step 2: Include the Branched Files in the Client View
	Steps 3 & 4: Use ‘p4 integrate’ and ‘p4 submit’ to Create the Target Files

	Working With Branched Files
	Branching’s Second Action: Propagating Changes from One Codeline to the Other
	Propagating Changes from Branched Files to the Original Files
	When the -r flag is used to propagate changes from branched donors to original targets, the origi...

	Branching and Merging Without a Branch View
	Deleting Branches
	Advanced Integration Functions
	Integrating Specific File Revisions
	Re-Integrating and Re-Resolving Files

	How Integrate Works
	p4 integrate’s Definitions of yours, theirs, and base
	The Integration Algorithm
	Integrate’s Actions

	Integration Reporting

	CHAPTER 10 Job Tracking
	Creating and Editing Jobs
	Linking Jobs to Changelists, and Changing a Job’s Status
	Automatically Performed Functions
	Controlling Which Jobs Appear in Changelists
	Manually Associating Jobs with Changelists
	Arbitrarily Changing a Job’s Status

	Deleting Jobs
	Integrating to External Defect Tracking Systems
	Job Reporting

	CHAPTER 11 Change Review & Other Daemons
	Providing Change Review Parameters
	Running the Daemon
	How the Review Daemon Works
	Tracking Reviewed Changelists with Review Counters
	Change Review and Protections

	Creating Other Daemons
	Change Review Reporting

	CHAPTER 12 Reporting and Data Mining
	Files
	File Metadata
	Relationships Between Client and Depot Files
	File Contents

	Changelists
	Changelists that Meet Particular Criteria
	Files and Jobs Affected by Changelists

	Labels
	Branch and Integration Reporting
	Job Reporting
	Jobs, Fixes, and Changelists

	Reporting for Daemons
	System Configuration
	Special Reporting Flags
	Reporting with Scripting
	Comparing the Change Content of Two File Sets
	Changelists Submitted by Particular Users
	Listing Subdirectories of the Depot

	CHAPTER 13 System Administration: Installation and Maintenance
	Installation of p4d and p4
	Creating a p4d Root Directory
	Setting p4d’s Port
	Telling p4 Where The p4d Server Is
	Starting p4d: The Basics
	Logging Errors
	Protections
	Checkpointing, Journaling, and Recovery
	Making a Checkpoint
	Turning Journaling On and Off
	Recovering

	Managing Disk Space
	License File
	Release and License Information

	CHAPTER 14 System Administration: Protections
	When Should Protections Be Set?
	Setting Protections with p4 protect
	The Permission Lines’ Four Fields
	Access Levels
	Default Protections
	Interpreting Multiple Permission Lines
	Exclusionary Protections

	Access Levels Required by Perforce Commands
	How Protections are Implemented

	CHAPTER 15 System Administration: Superuser Commands
	File Verification by Signature
	File Obliteration
	Changelist Deletion & Description Editing
	Distributed Depots
	Defining New Depots
	Accessing Files In Other Depots
	Integrating Files From Other Depots
	Deleting Depots
	Depot Reporting Commands

	APPENDIX A Environment Variables
	APPENDIX B Glossary

