
CCHEF – Covert Channels Evaluation Framework
Design and Implementation

Sebastian Zander, Grenville Armitage
Centre for Advanced Internet Architectures, Technical Report 080530A

Swinburne University of Technology
Melbourne, Australia

szander@swin.edu.au, garmitage@swin.edu.au

Abstract—Communication is not necessarily made se-
cure by the use of encryption alone. The mere existence
of communication is often enough to raise suspicion and
trigger investigative actions. Covert channels aim to hide
the very existence of the communication. The huge amount
of data and vast number of different protocols in the
Internet makes it ideal as a high-bandwidth vehicle for
covert communications. Covert channels are hidden inside
pre-existing overt communication by encoding additional
semantics onto ‘normal’ behaviours of the overt channels.
We have developed CCHEF – a flexible and extensible
software framework for evaluating covert channels in
network protocols. The framework is able to establish
covert channels across real networks using real overt
traffic, but can also emulate covert channels based on overt
traffic previously collected in trace files. In this paper we
present the design and implementation of CCHEF.

Index Terms—Covert Channels, Network Protocols

I. INTRODUCTION

Often it is thought that the use of encryption is
sufficient to secure communication. However, encryption
only prevents unauthorised parties from decoding the
communication. In many cases the simple existence of
communication or changes in communication patterns,
such as an increased message frequency, are enough to
raise suspicion and reveal the onset of events. Covert
channels aim to hide the very existence of the commu-
nication. They hide within pre-existing (overt) communi-
cations channels by encoding additional semantics onto
‘normal’ behaviours of the overt channels.

Lampson introduced covert channels as a means to
secretly leak information between different processes
on monolithic systems [1]. In recent years the focus
has shifted to covert channels in network protocols
[2], [3]. The huge amount of data and vast number of
different protocols in the Internet makes it ideal as a
high-bandwidth vehicle for covert communications. The

capacity of covert channels in computer networks has
greatly increased because of new high-speed network
technologies, and this trend is likely to continue. Even
if only one bit per packet can be covertly transmitted,
a large Internet site could lose 26 GB of data annually
[4].

Covert channels are primarily used to circumvent
existing information security policies, to exfiltrate in-
formation from an organisation or country in a manner
that does not raise suspicions of the network owners or
operators. Although network covert channels may not
be used frequently today, because of increased measures
against ‘open channels’, such as the free transfer of
memory sticks in and out of organisations, the use of
covert channels in computer networks will increase in
the near future [5].

We have developed a software framework to evaluate
covert channels in network protocols called Covert Chan-
nels Evaluation Framework (CCHEF). The main goals of
CCHEF are to evaluate the capacity, stealth and robust-
ness of network covert channels. Since CCHEF creates
network covert channels, it also can provide traffic data
for evaluating countermeasures against network covert
channels – mechanisms for their elimination, capacity
limitation or detection. Furthermore, CCHEF is able to
create traffic for testing existing firewalls or intrusion
detection software.

CCHEF can be used in real networks with real overt
traffic, but can also emulate covert channels using overt
traffic from trace files. Usually testing with real traffic
is restricted to controlled testbeds where it is almost
impossible to generate a realistic traffic mix from a larger
number of users/hosts. Therefore, CCHEF also runs on
single hosts emulating covert channels based on overt
traffic from trace files. CCHEF supports both covert
channels hidden in data fields (storage channels) and the
timing of packets (timing channels).

CAIA Technical Report 080530A May 2008 page 1 of 10

mailto:szander@swin.edu.au
mailto:garmitage@swin.edu.au


The architecture of CCHEF is very flexible and ex-
tensible. New covert channels modules can be added
without the need to modify the framework itself. Fur-
thermore, new mechanisms for covert channel security
(authentication, encryption), framing or (reliable) trans-
port can easily be added to CCHEF.

The paper is organised as follows. Section III describe
the overall goals and main features of CCHEF. Section
IV describes the architecture of CCHEF. Section V
provides an overview how CCHEF can be configured to
perform different tasks. A more detailed description of
how to configure and use CCHEF is provided in the user
manual [6]. Section VI concludes and discusses future
work.

II. COVERT CHANNELS OVERVIEW

A. Covert Communication

The de-facto standard model for covert channel com-
munication is the prisoner problem posed by Simmons
[7]. Two people, Alice and Bob, are thrown into prison
and intend to escape. To agree on an escape plan they
need to communicate, but all their messages are moni-
tored by Wendy (the warden). If Wendy finds any signs
of suspicious messages she will place Alice and Bob
into solitary confinement preventing any escape. Alice
and Bob must exchange innocuous messages containing
hidden information that (ideally) Wendy will not notice.

Extending this scenario towards communication net-
works, Alice and Bob use two networked computers to
communicate. They run some innocuous overt commu-
nication between their computers, with a hidden covert
channel inside. Alice and Bob share a secret useful
for determining covert channel encoding parameters and
for encrypting/authenticating the hidden messages. For
practical purposes Alice and Bob may well be the same
person (e.g. a hacker ex-filtrating restricted information).
Wendy manages the network and can monitor the passing
traffic for covert channels or alter the passing traffic to
disrupt or eliminate covert channels. Figure 1 depicts the
communication model (Alice sending to Bob).

Overt + Covert 
Channel

(altered) Overt + 
Covert Channel

Shared SecretCovert Message Covert Message

Overt
Channel

Overt
Channel

Wendy BobAlice

Figure 1. The prisoner problem – model for covert channel
communication

In computer networks Alice and Bob do not have to
be the sender and receiver of the overt communication.
One or both of them may act as a middleman (see
Figure 2). If Alice can observe and manipulate an
existing overt communication from an innocent sender
that reaches Bob, she can insert a covert channel into
it. Bob does not need to be the receiver of the overt
communication, but merely must be able to observe it
to decode the hidden information. If Bob can also alter
the overt+covert communication, he can even remove
the covert channel preventing further upstream nodes
from discovering it. A middleman could be located for
example inside a network router or inside an end host’s
network stack.

Overt Sender Middleman Middleman Overt Receiver

Alice Bob

Alice Bob

Alice Bob

Alice Bob

Figure 2. Communication scenarios depending on sender and
receiver locations

Traditionally covert channels were classified into stor-
age and timing channels even though there is no funda-
mental distinction between them [8]:

• Storage channels involve the direct/indirect writing
of object values by the sender and the direct/indirect
reading of the object values by the receiver.

• Timing channels involve the sender signaling infor-
mation by modulating the use of resources (e.g.
CPU usage) over time such that the receiver can
observe it and decode the information.

B. Countermeasures

Before any action can be taken against a covert
channel, it needs to be identified. The identification of
a covert channel can be ad-hoc or based on a formal
method. A number of formal methods have been de-
veloped for identifying covert channels in single host
systems [9]. The few proposed formal techniques for
identifying covert channels in network protocols are
mostly based on an adaptation of one of these techniques
[3].

There are two causes of covert channels: design over-
sights and weaknesses inherent in the system design.

CAIA Technical Report 080530A May 2008 page 2 of 10



While covert channels caused by oversights may be
corrected once discovered, those intrinsic to the system
can never be removed without redesigning the system.
Therefore, ideally covert channels should be identified
and removed during the design phase.

If a covert channel was not removed in the design
phase the next best option is to eliminate its possible use.
However, this may lead to very inefficient systems, as
covert channels can often only be completely removed by
replacing automated procedures with manual procedures.
Furthermore, covert channels based on the modulation
of visible message parameters are inherent in distributed
systems, such as computer networks. Therefore, it seems
covert channels cannot all be completely eliminated [10].

If a channel cannot be eliminated its capacity should
be reduced. What is an acceptable capacity depends
on the amount of information leakage that is critical.
For example, if the channel is so small that classified
information cannot be leaked before it is outdated, then
the channel capacity is tolerable. Limiting the channel
capacity is often problematic, because it means slowing
down system mechanisms or introducing noise, which
both limit the performance of the system.

Any covert channels that cannot be removed should be
audited. Auditing acts as deterrence to possible users of
the channel. Covert channels with capacities too low to
be significant, or which cannot be audited should at least
be documented (e.g. in the protocol specification), so that
everybody is aware of their existence and potential threat.

C. Evaluation Criteria

We propose three main criteria for evaluating covert
channels in network protocols. These criteria are similar
to those used for evaluating steganographic systems [11]:

• Capacity determines the maximum capacity of the
covert channel in bits per packet of the overt traffic.
The capacity in bits per time unit depends on the
amount of overt traffic.

• Robustness determines how easily the covert chan-
nel can be eliminated and how robust it is against
channel noise.

• Stealth determines how different the modified traffic
is from normal unmodified traffic (also referred to
as stealth).

Obviously capacity, robustness and stealth are conflicting
goals. It is impossible to optimise them all at the same
time. Usually a trade-off must be chosen that is best for
a particular situation.

III. GOALS AND FEATURES

This section describes the overall goals and main
features of CCHEF. The overall goal of the software is
to hide covert data in overt network traffic for various
research purposes:

• Evaluate the capacity, stealth and robustness of net-
work covert channels and compare different covert
channels in different scenarios.

• Evaluate and compare mechanisms to eliminate,
limit the capacity or detect different network covert
channels in different scenarios.

• Create test traffic for existing intrusion detection
software or firewalls (composed of some overt traf-
fic with one or more hidden covert channels).

It is not a goal for the software framework to actually
become (mis)used for circumventing any security mea-
sures. Therefore, no attempts will be made to hide the
presence of the software itself. The sender and receiver
are normal user space applications and if root privileges
are needed for the execution, applications need to be
started as root. This allows us to focus on the actual
covert channel methods, avoids facilitating possible mis-
use of the software, and improves the portability of
CCHEF (since techniques to hide executables are very
operating system dependent).

There are two different types of scenarios we want to
support:

1) CCHEF should work in real networks with real
overt traffic. This allows evaluating covert chan-
nels across real networks and is mandatory for
the testing existing intrusion detection software or
firewalls.

2) Usually testing with real traffic is restricted to
controlled testbeds where it is almost impossible
to generate a realistic traffic mix from a larger
number of hosts. Therefore, CCHEF should also
be capable of running on a single host emulating
the use of covert channels with overt traffic from
traffic traces.

This following list describes the main features of
CCHEF:

• CCHEF allows evaluating covert channels regarding
their capacity, robustness and stealth.

• CCHEF supports both storage and timing channels.
• CCHEF supports covert channels in the IP protocol

and in higher-layer network protocols (e.g. TCP,
HTTP). It is planned as future work to extend
CCHEF to also support link-layer channels.

CAIA Technical Report 080530A May 2008 page 3 of 10



• CCHEF currently only supports IPv4. Support for
IPv6 may be added in the future.

• CCHEF is very flexible and extensible. It is possible
to create new covert channel encoding modules
without having to write or modify any code of
the framework itself. Furthermore, it is possible
to easily modify or add new code for encryption,
authentication, framing and reliably transport of the
covert data.

• In general the source code of CCHEF was written
to be as portable as possible, so that CCHEF can
be used on different operating systems. However,
the primary development platform is Linux and
currently some functions only work on Linux.

• CCHEF is efficient enough (in terms of CPU and
memory usage) to handle real ‘realistic’ overt traffic
(realistic mix of protocols and packet sizes) of up
to 100 Mbit/s (Fast Ethernet) and trace files of up
to few hundred million packets.

IV. ARCHITECTURE

This section describes the architecture of CCHEF.
First we present an overview of the architecture and
the different layers of the covert communication. Then
we discuss parts of the architecture in more detail:
input/output devices, selection of overt packets, covert
channel encoding/decoding modules and error simula-
tion/emulation.

A. CCHEF Modes

Figure 3 shows how CCHEF is used for actually
transmitting covert information across a network. For
clarity the figure only shows the unidirectional channel
of Alice sending to Bob, but channels in CCHEF can be
bi-directional and therefore Bob could send to Alice at
the same time.

Alice and Bob tap into an overt channel, which is a
number of traffic flows between Alice and Bob. Alice and
Bob can be the sender and receiver of the overt traffic
or act as middlemen and use pre-existing overt traffic
of unwitting users. Alice intercepts the overt traffic,
encodes the covert data and re-injects the overt traffic
with the covert channel embedded into the network.
Bobs intercepts the overt traffic, decodes the covert
information and possibly removes the covert channel.

Figure 4 shows how CCHEF can be used to evaluate
covert channels based on overt traffic from trace files. In
this case covert information is not actually send across a
network; Alice and Bob are a single entity. For each overt
packet read from the trace file CCHEF first embeds the

Alice Bob

Covert In

Channel

Overt In/Out

Covert Out

Channel

Overt In/Out
Overt Channel

Covert Channel

Network

Figure 3. CCHEF used to transmit information across the network
(Alice sending to Bob)

covert information, optionally simulates noise and then
decodes the covert information from the packet straight
away. The received information is compared with the
sent information and statistics are computed (e.g. channel
error rate). The modified trace can be stored for later use,
such as testing firewalls or intrusion detection systems.

Alice/Bob

Covert In

Channel

Overt Channel

Covert Channel
Noise

Trace

Channel

Covert Out Statistics

Trace

Figure 4. CCHEF used to evaluate covert channels based on overt
traffic from trace files

B. Main Modules

Figure 5 shows the modules of CCHEF. The heart
of CCHEF is the Channel module that interfaces with
multiple Device modules. Covert data to be send is read
through a Covert In device while received covert data is
passed to a Covert Out device. The Overt In/Out device
intercepts and re-injects IP packets from the network
to be used as carrier for the covert information. The
Selection module selects which packets of the overt
traffic are used to embed the covert channel.

The Overt In/Out module intercepts overt packets in
the send direction. A subset of packets (the carrier traffic)
is chosen by the Selection module and passed on to the
Channel module. Packets not selected are re-injected into
the network immediately. The Channel module encodes
covert data into the carrier traffic and passes the modified
packets back to the Overt In/Out device, which then re-
injects them back into the network.

CAIA Technical Report 080530A May 2008 page 4 of 10



Covert In/Out

Channel

Overt In/Out
Overt Channel

Covert Channel

Alice/Bob

Selection

Figure 5. CCHEF main modules

Overt packets arriving in the receive direction are
intercepted by the Overt In/Out module and passed on to
the Channel module. The Channel module decodes any
covert information present in the packets (and if possible
removes the covert channel). CCHEF also supports pas-
sive receivers that work on copies of the original packets
avoiding delay of the overt traffic, if removing the covert
channel is not desired or not possible. In this case the
Overt In/Out device intercepts not the actual packet, but
a copy of the packet.

The Channel module performs all the functions
necessary for covert communication such as modula-
tion/demodulation of the covert data, segmenting the
covert bits into blocks (framing/de-framing), encryp-
tion/decryption and reliability transport (see next sub
section). A configuration module configures all devices
and the channel itself. Configuration information is
mainly taken from a configuration file (see Section V).

C. Channel Module

The Channel module is composed of multiple sub
modules, each representing a communication layer of the
covert channel. Figure 6 shows the details of the channel
layers on the sender (left) and receiver (right). There
are four main modules in CCHEF: modulation, framing,
encryption and transport. The modulation, framing and
transport modules are similar to the physical, link and
transport layers of the OSI model. CCHEF does only
support a connection between one covert sender and one
or multiple covert receiver(s) and therefore the equivalent
of the OSI network layer does not exist. Note that
Framing, Encryption or Transport modules can also be
bypassed if their particular function is not required.

The Modulation modules are responsible for modu-
lating/demodulating the covert bits into the overt packet
stream and bit synchronisation (if needed). Each module

Transport

Encrypt

Framing

Modulation

Transport

Decrypt

Framing

Demodulation

Statistics

Mod 1 … Mod nMod 1 … Mod n

Figure 6. CCHEF channel module functions at sender and receiver

implements a certain covert channel technique and pro-
vides modulation (sending) and demodulation (receiving)
functions. Multiple modulation modules can be used
in parallel to encode covert information using different
covert channel techniques simultaneously. However, Al-
ice and Bob must use the same set of modules with the
same parameters in the same order. The implemented
modules are described in Section IV-F.

The Framing module is responsible for framing (in-
cluding byte synchronisation). Each Framing module
provides a framing (sender) and de-framing (receiver)
method. Currently we have implemented Start of Frame
(SOF) based framing based on the technique used
by HDLC and checksum-based framing based on the
CRC32 function used by ATM. Overt traffic is always
present, but Alice may not have covert data to be send.
To improve stealth Alice does not modify the overt traffic
when idle i.e. she does not send an idle signal. This must
be taken into account by the framing module. For SOF-
based framing the current frame ends either when a new
SOF is received or when the number of bits received
equal the expected frame length (either fixed or signalled
by a frame length header field).

The Encryption module encrypts/decrypts the covert
data. Currently only a simple XOR-based algorithm is
implemented. The main reason for having this module
is not to actually secure the covert data, as CCHEF has
been developed for the sole purpose of research. But
encryption can change the distribution of the input data
(the distribution of 0 bits and 1 bits), which may affect
the characteristics of the channel. Often theoretic models
assume uniform random distributed input data. For ex-
ample, the maximum capacity of the binary symmetric
channel is achieved only under this assumption [12].

CAIA Technical Report 080530A May 2008 page 5 of 10



The Transport module is responsible for loss detec-
tion, error correction, retransmissions, and flow control
(if needed). The transport module also performs segmen-
tation of the input data into packets. Note that the frame
size is equal to the packet size, as lower layers do not
perform any further segmentation. At the moment there
is only one simple Transport module implemented. This
module uses fixed-size packets, because then a packet
length header field is not needed. If a packet cannot be
completely filled, because there is no covert data (within
some time limit), it is padded with zeros. The module
uses sequence numbers to detect loss of covert packets.

During operation Alice and Bob compute statistics,
for example the number of covert bits sent or received.
Also Alice and Bob log actual copies of the bit stream
for analysis purposes, such as computing the bit error
rate. Firstly, Alice logs the bit stream before modulation
and Bob logs the bit stream after demodulation (transport
layer). Secondly, Alice logs the bit stream before trans-
port and Bob logs the bit stream after transport (payload
layer). If Alice and Bob work on overt data from traffic
traces the bit streams can be compared during operation.
If a network separates Alice and Bob, bit streams are
stored and can be compared offline.

D. Device Modules

Devices are used to input and output covert data, and
to intercept and re-inject overt traffic into which covert
information is encoded. There are a number of different
device modules. First we describe the function of the
devices and then table I summarises the purposes of the
different devices.

The Random device generates a uniform random data
stream (the probability of 0 bits and 1 bits is equal).
This device is used for avoiding a bias that specific input
data may introduce to the analysis. For example, the
amount of bit stuffing done by the SOF framer depends
heavily on the input data. The Null device writes data to
/dev/null. This device is useful when the received data
should be ignored. The Text device reads from a text file
or outputs to a text file.

The Tunnel device reads and writes IP packets from
and to a tunnel network device. This enables CCHEF to
tunnel IP packets of any networked application across the
covert channel. The Netfilter Queue device instruments
the Netfilter queue framework inside the Linux kernel
[13]. This framework consists of a number of hooks in
the packet processing routines of the kernel. Packets are
intercepted and delivered to a userspace application. The
userspace application can modify the packets and re-

inject them back into the kernel (or drop them). Netfilter
only allows write access to the IP header and data.
Therefore currently it is not possible to embed covert
channels in link layer protocols. We plan to add another
device for this at a later stage. The Tunnel and Netfilter
Queue devices work under only under Linux.

The Libtrace device reads and writes packets from and
to various trace file formats e.g. libpcap format, Endace
Record Format (ERF), and some older formats used by
DAG measurement cards [14]. Its main purpose is to
read overt traffic from trace files and to create trace files
with embedded covert channels that could be used to
test firewalls or intrusion detection systems. However, it
could also be used to send recorded IP packets across the
covert channel. It is based on the libtrace library [15].

Table I
DEVICE MODULES AND THEIR FUNCTION

Device Covert In Covert Out Overt In/Out
Random yes no no

Null no yes no
Text yes yes no

Tunnel yes yes possibly
NetfilterQueue possibly possibly yes

Pcap possibly possibly yes
Libtrace possibly possibly yes

E. Packet Selection Modules

The packet selection module determines which overt
packets are used as carrier for the covert channel. The
module is composed of a number of sub modules:
classifier module, flow grouping module, and selector
module.

Covert packets are obtained either via the Netfilter
Queue device (real network) or via the Libtrace de-
vice (traffic trace analysis). The Classifier module only
passes on packets that match a set of configurable rules.
The rules use the standard 5-tuple of source/destination
IP address, protocol, and UDP/TCP ports for packet
matching. Non-matching packets are re-injected into the
network straight away. The use of this module is to limit
the covert channel to overt traffic flowing between the
specified sender/receiver pair(s).

Then Flow Grouping module groups packets into bi-
directional flows according to the 5-tuple. Each flow is
identified by a ‘unique’ flow ID. The flow ID is a 64-
bit integer so it will wrap around eventually. Packets
are grouped into flows because some covert channel
techniques can only encode data relative to flows. Flows
are ended by a timeout or by a TCP connection teardown,

CAIA Technical Report 080530A May 2008 page 6 of 10



in which case any flow state is deleted. The first packet
of a flow defines the forward direction. Packets with
IP addresses and ports reversed are going in backward
direction.

Then packets are passed to the Selector module. The
purpose of this module is to only select specific packets
within a flow or across flows to be used as carrier for
covert information. For example, the selector module
could be used to only encode the covert channel in some
packets or flows determined by a secret shared between
Alice and Bob. Packets meeting the selection criteria are
passed on to the modulation module. Modified packets
(including covert data) are re-injected into the network
by the Overt In/Out device. Figure 7 depicts the process
of selecting overt packets used as carrier for the covert
channel.

Overt In/Out

Classifier

Selector

Modulation

Flow Grouping

Userspace

Kernel

Figure 7. Selection of overt packets to be used as carrier for covert
data

F. Modulation Modules

Modulation modules are responsible for embedding
covert data into the overt traffic and for decoding (and
possibly removing) covert data from the overt traffic.
Modulation modules are fairly independent of CCHEF
(realised as shared libraries). This means new modules
can be added without the need to modify or recompile
CCHEF.

A module has global constructor and destructor func-
tions to initialise and destroy global state. A module
also has per-flow initialise and destroy functions, which
are called each time a new flow starts or an existing
flow ends (as determined by CCHEF’s Flow Grouping
module). In the per-flow initialise function a module can
allocate per flow state. Each time a suitable overt packet
arrives, CCHEF calls either the encode or decode func-
tion of a module. Whether the encode or decode function
is called depends on the direction of the overt packet as
determined by the Classifier, i.e. if the packet travels

from Alice to Bob (forward) or vice versa (backward).
CCHEF passes pointers to the packet data, packet meta-
data (such as packet arrival timestamps) and the allocated
per-flow state (if the module is using per-flow state) to
the encode and decode functions.

CCHEF also provides timers for modulation modules.
A modulation module can register multiple timers at
start-up and every time a new flow starts. Each timer
is characterised by a unique ID and a timeout value.
When a timer expires CCHEF calls the timeout function
of the module. Each time the timeout function is called
the module can adjust the timeout value of the expired
timer.

Figure 8 summarises the various functions of modu-
lation modules called by CCHEF.

Modulation

CCHEF
starts/terminates init/destroy 

Traffic flow
starts/terminates init/destroy flow 

Packet arrives
forward/reverse encode/decode 

timeout Timer expires

Figure 8. Modulation module functions

We have implemented a number of modulation mod-
ules. Several modules have been developed for different
techniques to encode covert information in the IP Time
to Live (TTL) field [16]. Another module encodes the
covert channel in the IP ID fields as described in [17].
Furthermore, there are two modules for encoding covert
information into the timing of packets: one module
encodes covert bits as absolute delays and the other
modules uses the encoding scheme proposed in [18].

G. Error Simulation Modules

CCHEF can simulate channel errors. This is most use-
ful in trace-file mode (see Figure 4). The error simulation
is done at the sender-side after the bit modulation. An
error module has two functions, which are called with
a pointer to the current overt packet and its meta-data.
The pre function is called prior to modulation. This
function allows the error module to learn the original
unmodified packet data. The post function is called after
the modulation. This function enables the error module
to modify the overt packet with embedded covert data
and thus simulate any kind of error characteristics of the
covert channel.

CAIA Technical Report 080530A May 2008 page 7 of 10



The error simulation of CCHEF was primarily de-
signed to simulate channel errors caused by the mod-
ification of data fields in the packet (storage channel)
or timing noise (packet timing) on the path between
Alice and Bob. However, lost or reordered IP packets
also introduce errors in the covert channel (unless the
covert channel is based on a reliable transport protocol
such as TCP). Currently CCHEF cannot simulate errors
related to the loss or reordering of IP packets, but we
plan including this in future versions.

V. CONFIGURATION

This section illustrates how CCHEF is configured. For
further information on how to configure and use CCHEF
the interested reader is referred to the user manual [6].
An XML configuration file controls the behaviour of
CCHEF. The configuration file is divided into several
parts:

• The main section defines general settings e.g. the
name of the log file and how detailed the logging
is.

• Module specifications define the modulation mod-
ules.

• Device specifications define the input/output de-
vices.

• Encryption specifications define encryp-
tion/decryption techniques used for the covert
data.

• The packet selection specifications define what
packets are used to embed covert information.

• Framer specifications define how covert data is split
into frames and how frames are decoded at the
receiver.

• Transport specifications define how covert data is
transported e.g. error detection and recovery.

• Noise specifications define if and how noise is
simulated.

• Finally, the covert channel is defined by specifying
the devices for the input and output of covert data,
the source of overt packets used as cover, and
the encryption, framing, transport, packet selection
techniques used.

In each part configuration information is specified as
preferences (PREFs). Preferences have a name, a value
and (optionally) a type specification. The following is an
example for a preference:

<PREF NAME="Verbose" TYPE="UInt8">4</PREF>

Table II shows the existing types. The type is an optional
attribute (used for checking the values). If no type is
specified, the default type of string is assumed.

Table II
EXISTING DATA TYPES FOR CONFIGURATION PREFERENCES

Type Explanation
UInt8 8 bit unsigned integer
SInt8 8 bit signed integer
UInt16 16 bit unsigned integer
SInt16 16 bit signed integer
UInt32 32 bit unsigned integer
SInt32 32 bit signed integer
UInt64 64 bit unsigned integer
SInt64 64 bit signed integer
Float Single precision floating point
Double Double precision floating point
Bool Boolean (yes or no)
String Character string
IPAddr IPv4 address in dotted decimal notation or domain

name

The following shows a configuration file with only the
main part and the covert channel definition. The other
parts of the configuration are explained later.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CONFIG SYSTEM "config.dtd">
<CONFIG>
<MAIN>
<!-- general settings -->
<PREF NAME="Verbose" TYPE="UInt8">4</PREF>
<PREF NAME="LogFile">/home/szander/src/

cchef/install/var/log/cchef.log</PREF>
</MAIN>
<!-- modulation modules -->
<!-- devices -->
<!-- encryption -->
<!-- packet selection -->
<!-- framing -->
<!-- transport -->
<!-- noise simulation -->
<!-- covert channel -->
<CHANNEL NAME="channel1">
<PREF NAME="CovertIn">InFile</PREF>
<PREF NAME="CovertOut">OutFile</PREF>
<PREF NAME="Cover">NFQueue</PREF>
<PREF NAME="PacketSelection">All</PREF>
<PREF NAME="Cryptor">XOR</PREF>
<PREF NAME="Framer">SOF</PREF>
<PREF NAME="Transport">Simple</PREF>
<PREF NAME="Noise">TTLRandom</PREF>
<PREF NAME="Modules">ttl</PREF>

</CHANNEL>

</CONFIG>

A channel must specify Cover and either CovertIn
or CovertOut (unidirectional channel) or both (bi-
directional channel) using device names of devices spec-
ified in the device section of the configuration. It must
also specify at least one module under Modules using
the module name(s) as specified in the module section
of the configuration. Multiple modules can be specified

CAIA Technical Report 080530A May 2008 page 8 of 10



by separating the names with spaces. If multiple modules
are specified covert data is encoded by the modules in the
order they are specified. This means sender and receiver
configuration files must specify modules in the same
order; otherwise the communication will not work.

PacketSelection, Cryptor, Framer, Transport and Noise
specifications are optional. By default all overt packets
will be used to encode covert data, and the SOF framer
and simple transport module will be used. By default no
encryption will be used and no noise is simulated.

The following specifies a modulation module. Each
module must have a unique name. The preferences are
module-specific [6].

<MODULE NAME="ttl">
<PREF NAME="BitsPerPacket">1</PREF>
<PREF NAME="Delta">1</PREF>

</MODULE>

A device specification must have a unique name
and have the Type preference set to an existing device
(see section IV-D for a list of existing devices). Other
preferences are device-specific [6].

<DEV NAME="InFile">
<PREF NAME="Type">File</PREF>
<PREF NAME="Filename">send.txt</PREF>

</DEV>

Encryption/decryption specification must have a
unique name and Type must be set to an existing module.
Currently the only existing module is XOR [6].

<CRYPT NAME="XOR">
<PREF NAME="Type">XOR</PREF>
<PREF NAME="Key">geheim</PREF>

</CRYPT>

A framer specification must have a unique name and
the Type preference must be set to an existing module.
Currently two framing methods are implemented. The
SOF framer uses a start of frame byte and bit stuffing
whereas the CRC framer identifies frames based on a
CRC32 checksum [6].

<FRAMER NAME="SOF">
<PREF NAME="Type">SOF</PREF>

</FRAMER>

A transport specification must have a unique name and
the Type preference must be set to an existing module.
Currently the only transport module implemented is the
Simple module [6].

<TRANSPORT NAME="Simple">

<PREF NAME="Type">Simple</PREF>
<PREF NAME="BlockSize">16</PREF>
<PREF NAME="Parity">0</PREF>

</TRANSPORT>

The noise specification is optional and is only present
for testing covert channels with overt data from trace
files. A noise specification must have a unique name
and the type must be set to an existing noise module.
Currently two noise modules exist for Time to Live
(TTL) covert channels. The TTL module emulates noise
based on TTLs from trace files and the TTLRandom
module generates artificial noise based on a Gaussian
distribution [6].

<NOISE NAME="TTLRandom">
<PREF NAME="Type">TTLRandom</PREF>
<PREF NAME="StdDev">0.5</PREF>

</NOISE>

The packet selector specification is optional. By de-
fault all available packets are used to embed covert
data. A packet selection specification must have a unique
name and the Type preference set to an existing module.
Currently the All module selects all packets and the Hash
module samples packets with specified probability [6].

<SELECTOR NAME="All">
<PREF NAME="Type">All</PREF>

</SELECTOR>

VI. CONCLUSIONS AND FUTURE WORK

In this paper we describe the Covert Channels Evalua-
tion Framework (CCHEF). CCHEF can be used to evalu-
ate the capacity, stealth and robustness of covert channels
in network protocols. Since it creates covert channels
it can also be used for generating the data needed to
evaluate countermeasures against network covert chan-
nels or for testing existing firewalls or intrusion detection
software.

CCHEF can be used in real networks with real overt
traffic, but can also emulate covert channels using overt
traffic from trace files. CCHEF supports both covert
channels hidden in data fields (storage channels) and
the timing of packets (timing channels). The architecture
of CCHEF is very flexible and extensible. New covert
channels modules can be added without the need to mod-
ify the framework itself. Furthermore, new mechanisms
for covert channel security (authentication, encryption),
framing and (reliable) transport can easily be added.

CCHEF is still under development and a number of
desired features remain future work. For example, the
simulation of IP packet loss and reordering and link
layer covert channels have not been implemented yet.
Furthermore, we plan to fully optimise CCHEF and
measure its performance under a variety of conditions.

CAIA Technical Report 080530A May 2008 page 9 of 10



REFERENCES

[1] B. Lampson, “A Note on the Confinement Problem,” Commu-
nication of the ACM, vol. 16, pp. 613–615, October 1973.

[2] S. Zander, G. Armitage, P. Branch, “Covert Channels and
Countermeasures in Computer Network Protocols,” IEEE Com-
munications Magazine, vol. 45, pp. 136–142, December 2007.

[3] S. Zander, G. Armitage, P. Branch, “A Survey of Covert Chan-
nels and Countermeasures in Computer Network Protocols,”
IEEE Communications Surveys and Tutorials, vol. 9, pp. 44–57,
October 2007.

[4] G. Fisk, M. Fisk, C. Papadopoulos, J. Neil, “Eliminating
Steganography in Internet Traffic with Active Wardens,” in
Proceedings of 5th International Workshop on Information
Hiding, October 2002.

[5] M. Van Horenbeeck, “Deception on the Network: Thinking
Differently About Covert Channels,” in Proceedings of 7th
Australian Information Warfare and Security Conference, De-
cember 2006.

[6] S. Zander, “CCHEF – Covert Channels Evaluation Framework
User Manual,” May 2008. http://caia.swin.edu.au/cv/szander/
cc/cchef/cchef-user-manual.pdf.

[7] G. J. Simmons, “The Prisoners’ Problem and the Sublim-
inal Channel,” in Proceedings of Advances in Cryptology
(CRYPTO), pp. 51–67, 1983.

[8] US Department of Defense Standard, “Trusted Computer Sys-
tem Evaluation Criteria,” Tech. Rep. DOD 5200.28-STD, US
Department of Defense, December 1985. http://csrc.nist.gov/
publications/history/dod85.pdf.

[9] V. Gligor, “A Guide to Understanding Covert Channel Anal-
ysis of Trusted Systems,” Tech. Rep. NCSC-TG-030, National
Computer Security Center, November 1993. http://www.radium.
ncsc.mil/tpep/library/rainbow/NCSC-TG-030.html.

[10] I. S. Moskowitz, M. H. Kang, “Covert Channels - Here to
Stay?,” in Proceedings of 9th Annual Conference on Computer
Assurance, pp. 235–244, 1994.

[11] N. Lucena, J. Pease, P. Yadollahpour, S. J. Chapin, “Syntax and
Semantics-Preserving Application-Layer Protocol Steganogra-
phy,” in Proceedings of 6th Information Hiding Workshop, May
2004.

[12] T. M. Cover, J. A. Thomas, Elements of Information Theory.
Wiley Series in Telecommunications, John Wiley & Sons, 1991.

[13] H. Welte, “Netfilter Queue Library.” http://www.netfilter.org/
projects/libnetfilter_queue/.

[14] Endace Limited, “DAG Network Monitoring Cards.” http://
www.endace.com/what-we-do/dag-network-monitoring-cards/.

[15] WAND Network Research Group, “libtrace – A Library
for Trace Processing.” http://research.wand.net.nz/software/
libtrace.php.

[16] S. Zander, G. Armitage, P. Branch, “An Empirical Evaluation
of IP Time To Live Covert Channels,” in Proceedings of
IEEE International Conference on Networks (ICON), November
2007.

[17] C. H. Rowland, “Covert Channels in the TCP/IP Protocol Suite,”
First Monday, Peer Reviewed Journal on the Internet, July 1997.

[18] G. Shah, A. Molina, M. Blaze, “Keyboards and Covert Chan-
nels,” in Proceedings of USENIX Security Symposium, August
2006.

CAIA Technical Report 080530A May 2008 page 10 of 10

http://caia.swin.edu.au/cv/szander/cc/cchef/cchef-user-manual.pdf
http://caia.swin.edu.au/cv/szander/cc/cchef/cchef-user-manual.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-030.html
http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-030.html
http://www.netfilter.org/projects/libnetfilter_queue/
http://www.netfilter.org/projects/libnetfilter_queue/
http://www.endace.com/what-we-do/dag-network-monitoring-cards/
http://www.endace.com/what-we-do/dag-network-monitoring-cards/
http://research.wand.net.nz/software/libtrace.php
http://research.wand.net.nz/software/libtrace.php

	Introduction
	Covert Channels Overview
	Covert Communication
	Countermeasures
	Evaluation Criteria

	Goals and Features
	Architecture
	CCHEF Modes
	Main Modules
	Channel Module
	Device Modules
	Packet Selection Modules
	Modulation Modules
	Error Simulation Modules

	Configuration
	Conclusions and Future Work
	References

