

TM1800[™] CIRCUIT BREAKER ANALYZER SYSTEM

- ✓ System platform for testing high voltage circuit breakers
- ✓ Expandable modular concept high flexibility (up to 48 + 48 timing channels)
- ✓ Stand-alone functionality one toolbox for all breaker testing
- ✓ Designed for Off-line and On-line measurement
- ✓ Analog or digital transducers for contact travel measurements
- ✓ Rugged and reliable for field use
- ✓ Calibration module for stable accuracy
- ✓ Predefined circuit breaker templates Automatic testing
- ✓ Enhanced contact timing

- ✓ Integrated static contact resistance measurement
- Automatic measurement of coil voltage and current
- ✓ Automatic measurement of a and b auxiliary contacts
- ✓ Quick test functions
- ✓ Vibration measurement
- ✓ Temperature measurement
- ✓ CABA backwards compatibility
- ✓ Multi-lingual Human-Machine Interface
- ✓ Enhanced reporting, assessments and archiving of test results

CIRCUIT BREAKER ANALYZING

High voltage circuit breakers are extremely important for the function of modern electric power supply systems. The breaker is the active link that ultimately has the role of quickly opening the primary circuit when a fault has occurred. Many times, the breaker has to perform its duty within a few milliseconds, after months, perhaps years of idly standing by. Since condition based maintenance has become the established strategy for most owners and operators of electric power supply systems, the need for reliable and accurate field test instruments is obvious.

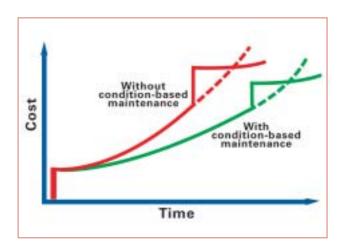
Market trends

Many new breaker technologies and designs have been introduced over the past decades. At the same time, the lifetime of an installed circuit breaker is often longer than 40 years. This means that at most sites, the vast range of existing circuit breakers with different configurations present an enormous challenge to the test engineers.

Another factor has been market driven reorganizations of electric power utilities. Frequently, the established service organizations within utilities have given way to slimmed operations with outsourced maintenance and service. Again, this has meant that a lot of practical know how and background history about specific breakers has been lost along the way.

The financial requirements on utilities have tightened as well. Asset optimization has become a priority. The possibility to continue using a costly circuit breaker rather than unnecessarily replacing it with a new is very interesting from this perspective – as long as it does not put the safety and reliability of the electric power supply at risk. This again puts the possibility to quickly and reliably diagnose the breaker's condition into focus.

The reorganizations within the industry mentioned above, (leading to outsourcing of service and maintenance), means that reporting, archiving and evaluation of test results become more critical. Modern service organizations need tools and facilities to provide the breaker owner / operator with reports and recommendations in formats that are suitable.


The response

In response to all these challenges, GE Energy Services has designed the TM1800 breaker analyzer system. The objective was to incorporate all relevant test functions in one compact unit that should be flexible enough to test any circuit breaker that exist on the market.

In line with Programma's tradition, the new TM1800 Breaker Analyzer System is portable and rugged, making it suitable for use in any type of environment. The concept is a flexible, modular system that can be easily configured for any type of circuit breaker. Distribution breakers with one contact per phase and one operating mechanism can easily be tested. Transmission breakers often have a more complex design with several contacts per phase and separate operating mechanisms. Even here, TM1800 is fully capable of capturing any parameter. For example, when testing circuit breakers with pre-insertion resistor (PIR) contacts, TM1800 automatically measures timing of the main and PIR contacts, as well as the resistance value of the pre insertion resistor. Furthermore, with the TM1800 system, test methods such as static resistance measurement (SRM), dynamic resistance measurement (DRM) and vibration testing are easily integrated in the circuit breaker testing.

TM1800 has a straightforward and user-friendly interface, CABA Local. The display is an 8-inch transreflecive screen that enhances the use in direct sunlight. You can also use a separate PC with the optional CABA Win software to prepare and evaluate the tests.

The user interface, CABA Local, has been designed to facilitate setup and analysis. There are e.g. integrated help functions that guides the user throughout the testing. Special efforts have also been made to reduce the number of connecting leads required. Furthermore, many functions have been automatized to reduce the number of manual exercises and breaker operations required to perform a test. As a result, the training needed to use the TM1800 to its full extent is minimized and the time to carry out actual tests is brought down to a minimum.

WHAT NEEDS TO BE TESTED ON A CIRCUIT BREAKER

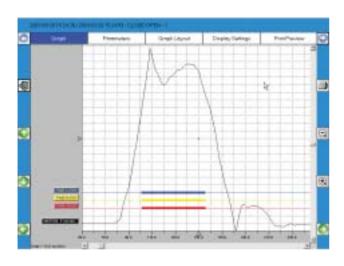
Timing measurements

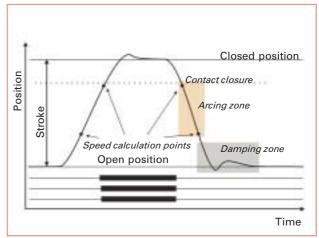
Simultaneity within a single phase is important in situations where a number of contacts are connected in series. Here, the breaker becomes a voltage divider when it opens a circuit. If the time differences are too great, the voltage becomes too high across one contact, and the tolerance for most types of breakers is less than 2 ms.

The time tolerance for simultaneity between phases is greater for a 3-phase power transmission system running at 50 Hz since there is always 6.67 ms between zero-crossovers. Still, the time tolerance is usually specified as less than 2 ms, even for such systems. It should also be noted that breakers that perform synchronized breaking must meet more stringent requirements in both of the aforesaid situations.

There are no generalized time limits for the time relationships between main and auxiliary contacts, but it is still important to understand and check their operation. The purpose of an auxiliary contact is to close and open a circuit. Such a circuit might enable a closing coil when a breaker is about to perform a closing operation and then open the circuit immediately after the operation starts, thereby preventing coil burnout.

The A contact must close well in advance of the closing of the main contact. The B contact must open when the operating mechanism has released its stored energy in order to close the breaker. The breaker manufacturer will be able to provide detailed information about this cycle.


Motion measurement


A high-voltage breaker is designed to interrupt a specific short-circuit current, and this requires operation at a given speed in order to build up an adequate cooling stream of air, oil or gas (depending on the type of breaker). This stream cools the electric arc sufficiently to interrupt the current at the next zero-crossover. It is important to interrupt the current in such a way that the arc will not re-strike before the breaker contact has entered the so-called damping zone.

Speed is calculated between two points on the motion curve. The upper point is defined as a distance in length, degrees or percentage of movement from a) the breaker's closed-position or b) the contact-closure or contact-separation point. The time that elapses between these two points ranges from 10 to 20 ms, which corresponds to 1-2 zero-crossovers.

The distance throughout which the breaker's electric arc must be extinguished is usually called the arcing zone. From the motion curve, a velocity or acceleration curve can be calculated in order to reveal even marginal changes that may have taken place in the breaker mechanics.

Damping is an important parameter for the highenergy operating mechanisms used to open and close a circuit breaker. If the damping device does not function satisfactorily, the powerful mechanical strains that develop can shorten breaker service life and/or cause serious damage. The damping of opening operations is usually measured as a second speed, but it can also be based on the time that elapses between two points just above the breaker's open position.

Coil currents

These can be measured on a routine basis to detect potential mechanical and/or electrical problems in actuating coils well in advance of their emergence as actual faults. The coil's maximum current (if current is permitted to reach its highest value) is a direct function of the coil's resistance and actuating voltage. This test indicates whether or not a winding has been short-circuited.

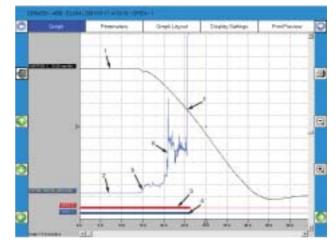
When you apply a voltage across a coil, the current curve first shows a straight transition whose rate of rise depends on the coil's electrical characteristic and the supply voltage (refer to picture 1-2). When the coil armature (which actuates the latch on the operating mechanism's energy package) starts to move the electrical relationship changes and the coil current drops (3-5). When the armature hits its mechanical end position, the coil current rises to the current proportional to the coil voltage (5-8). The auxiliary contact then opens the circuit and the coil current drops to zero with a current decay caused by the inductance in the circuit (8-9).

The peak value of the first, lower current peak is related to the fully saturated coil current (max current), and this relationship gives an indication of the spread to the lowest tripping voltage. If the coil was to reach its maximum current before the armature and latch start to move, the breaker would not be tripped. It is important to note, however, that the relationship between the two current peaks varies, particularly with temperature. This also applies to the lowest tripping voltage.

Dynamic resistance measurements (DRM)

DRM procedures measure variations in contact resistance during breaker operation - not to be confused with static resistance measurement, which measures contact resistance when a breaker is closed.

DRM has a number of applications. On certain types of breakers DRM can be used to measure the shortening of arcing contacts. When breaker contact motion is measured simultaneously with resistance, the results can be used to determine the length of the arcing contact. In some cases, breaker manufacturers can supply reference curves for the type of contact in question.


In another application, timing measurements can be performed on a breaker with both sides grounded, and it is difficult (because of practical considerations) to disconnect one side from ground. If a sufficiently high current is used (about 250 A or higher), there will be a clearly evident step in the voltage change when the breaker contact closes or opens in spite of the parallel ground connections. Similarly, DRM can be used when a breaker has parallel main contacts.

Example of coil current on circuit breaker

- 1 Trip coil energized
- 6 Change in coil inductance
- 2-3 Armature travel
- 7 Proportional to DC coil resistance
- 3-4 Armature operates trip latch
- 8 Auxiliary contact opens
- 4-5 Armature completes its travel 9 Current decay
- 5 Armature hits stop

Example of DRM measurement

- Motion measurement, phase C 6 Separation of main contact
- 2 Voltage drop, phase C
- 7 Separation of arcing contact
- 3 Timing, phase B
- Timing, phase A
- 5 Start of motion

FLEXIBILITY WITH MODULAR CONFIGURATION

TM1800 ascertain the condition of any circuit breaker type and model from a wide range of circuit breaker manufacturers and with its modular design it permits user configurations for any application. It also enables upgrading for future circuit breaker applications and designs.

The main part of the top panel is designed for the modules. You can configure your TM1800 with the type of module that suit your needs and of course add/replace modules whenever you like. In an "empty" slot there should always be a dummy module.

Controls the operation of the circuit breaker. It gives a pulse to the coil for close, open and for the motor operation. The module has three contact closures, one for each phase. For 1-phase operation use A for close and B for open, C can be used for motor operation or second trip coil. If two modules are used you can have 3-phase operation with separate voltage for all phases and close and open operation.

The control module measures coil current and voltage and timing of auxiliary a and b contacts.

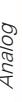
Measures the timing of the main and parallel resistor contacts. Each pair of channels is independent of the others and has its own current limited DC voltage source. Measurement current is limited to 27 mA.

One channel can measure both the main and the resistor contact and resistance of linear PIR.

For DRM measurements you need two channels per break.

The analog module is for measurement of any analog signal measured with an industrial standard transducer with voltage (10V) or current (4-20mA) output. Typical quantities that are measured are for example motion, voltage, current, vibration (acoustic), pressure etc.

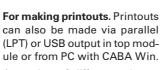
Control



- Three independent contact functions per module.
- Sequences C, O, C-O, O-C, O-C-O
- The function of the sequence is set in CABA Local

- Six channels per module (grouped 3x2 in pairs with common return)
- · Main contact timing
- Parallel contact timing
- Parallel contact (PIR) resistance

- Three channels per module
- 10 V and 24 V output
- Measure with any industrial standard analog transducer



Digital channels for measurement of motion, both linear and rotary with incremental transducer.

- Six channels per module
- Measurement ranges transducer resolution up to ±32000 pulses.
- Power supply: 5 V and 12 V DC

On the top panel of the basic unit are the following inputs and outputs.

- Power supply
- Trig inputs and trig outputs
- External outputs for DRM trig and Warning signal (alerting nearby personnel that breaker operation is about to take place).
- Earth (Ground) Connection
- Sync input and sync output
- Temperature transducer input
- Communication interfaces (USB, Ethernet etc)

A number of different printout formats are available as well as user adapted, both graphic and numeric. You can have printouts in English, German, French, Spanish, Swedish. The printing can be set to automatic printout in CABA Local.

For on-site calibration of measuring inputs. The calibration module is slightly smaller than the other modules and has a designated module place.

Like any other measuring instrument TM1800 has to be calibrated to traceable standards on a regular basis. With the calibration module the unit can be calibrated in field.

PC-card module is a non-optional module, which is a part of the basic unit. The two PCcard slots are for any type of PCMCIA card i.e. storage, modem, network, wireless communication etc. The module also contains the hard disk for the system for easy extraction and secures storage of recorded data during transport.

This module is always in slot 10 in the module panel.

iary contact, for example spring

voltage. Polarity insensitive.

motor auxiliary contacts.

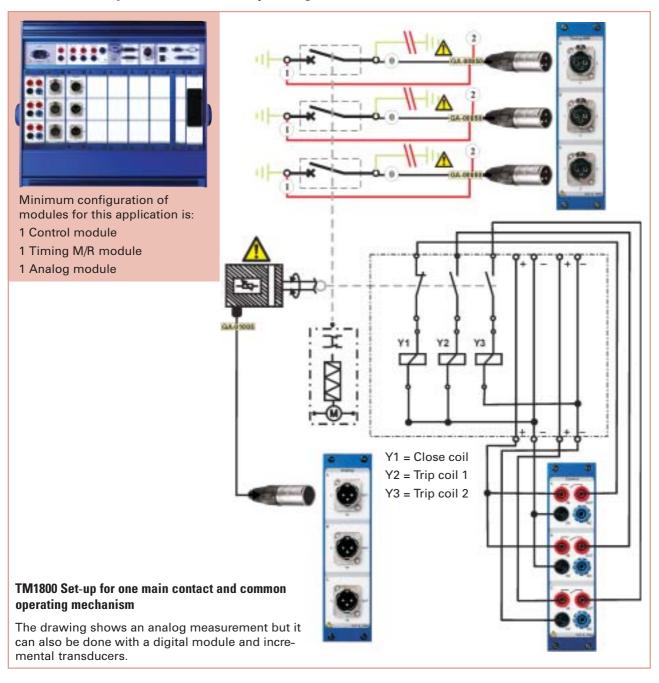
· Six channels per module

(each one separately) grouping marked with background colour · Safety plug type of connec-

tions

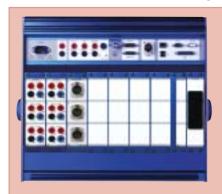
· Timing of contact or

- · Thermal printer sensitive line dot method
- Paper width 114mm (4")
- Printing speed 50mm/s (400 dot lines/s)

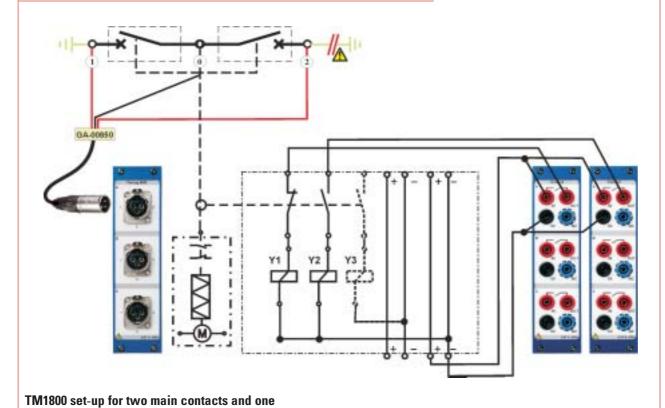

- · The calibration module is intended to be in slot 9 in the module panel.
- · You only need to send this module for calibration and you can use TM1800 without it.

- Two PC-card slots
- Type I/II/III PCMCIA cards
- 20 GB storage capacity on built-in hard drive
- · Optional: Flash disk

APPLICATION EXAMPLES


Circuit breaker system with common operating mechanism

The settings in TM1800 are easy to handle in the internal software CABA Local. Easy access via function keys and the built in keyboard with track ball and a large, bright screen wich is sharp as well indoor as in direct sunlight.

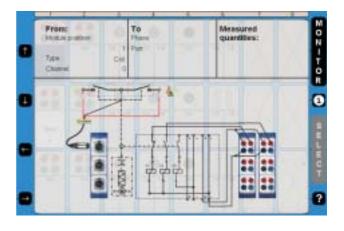


Circuit breaker system with separate operating mechanism per pole

Minimum configuration of modules for this application is:

- 2 Control modules
- 1 Timing M/R module

Above set-up shows complete wiring for pole A. The timing hook-up for remaining pole B and C is done accordingly to pole A.


Motion measurement can be added with an analog

operating mechanism per pole.

or digital module.

Two control modules (six outputs) are needed to control each coil (Y1/Y2) for every pole. The above set-up shows the wiring of pole A. This also automatically tests timing on the auxiliary contacts that are connected in series to the coils.

When at site, doing the hook-up you can get help on how to connect by pressing the i-button, see example to the right.

SPECIFICATIONS

General

Specifications are valid after 30 minutes warm up time Specifications are subject to change without notice.

Application field

For use in highvoltage substations and industrial environments.

ISTA 2A (unit in transport case)

Temperature

-20°C to +50°C (-4°F to +122°F) Operating Storage & transport -55°C to +85°C (-67°F to +185°F) IP41

Enclosure class

5% - 95% RH, non-condensing. Humidity Operating and non-operating

Transport Compliance

EN 61326:1997+ A1:1998 + A2:2001 **EMC** Safety EN 61010-1:2001

Certifications

CR-Certificate IEC 61010-1:2001 (incl. all national deviations) CE marking

Basic unit

General

100 - 240 V AC 50 - 60 Hz Mains input

Max power consumption

200 VA

513x175x438 mm (20.2"x17.2"x6.9") Dimensions

Weight 15.5 kg (34.2 lbs)

Display Type

Transreflecting to increase visibility in direct sunlight

Diagonal size 21 cm (8") No. of pixels 800 x 600 (W x H) Display mode 256k colour Luminance 350 cd/m²

Keyboard

English, Swedish, Spanish, French, Available languages

German

Pointing device Built-in trackball and mouse buttons

External input

Trig in

Voltage mode Input range

0 - 250 V AC/DC Threshold level User configurable in software in

stens of 1 V

Time inaccuracy $\pm 0.01\%$ of reading ± 0.1 ms

Contact mode

Output voltage 25 - 30 V DCOutput current 20 mA ±5 mA Threshold level $1.5~\text{k}\Omega~\pm0.5~\text{k}\Omega$

External outputs

General

No. of channels 3. (TRIG OUT, DRM, WARNING)

TRIG OUT

Switch Electronic Resolution 1 ms

User configurable in software Duration Inaccuracy ±0.01% of reading ±0.1 ms

Voltage mode

Output Voltage 12 V DC ±5% Output Current max 0.5 A

Contact mode

Making/Breaking range

max. 0.5 A Resistive load at 12 V

DRM

Switch Relay Resolution 10 ms

Inaccuracy ±0.01% of reading ±10 ms

Voltage mode

12 V DC ±5% Output voltage Output current max 0.5 A

Contact mode

Making/Breaking range

max. 0.5 A Resistive load at 12 V

WARNING

Relay Switch Resolution 10 ms

User configurable in software Duration Inaccuracy ±0.01% of reading ±10 ms

Voltage mode

Output Voltage 12 V DC ±5% Output Current max 1 A

Contact mode

Making/Breaking range

max. 1 A Resistive load at 12 V

Temperature

for HighPrecision 1-wire® Digital Interface

Thermometer

Communication interfaces

Type I/II/III PCMCIA cards PC-card USB Universal Serial Bus ver. 1.1 Ethernet 100 base-Tx Fast Ethernet Printer port

LTP, Multi-mode parallel (ECP/EPP/

SPP)

RS232, 9-pin D-Sub female Serial port SVGA, up to 800 x 600 at 64k color, External screen

2 MB SDRAM

Modules

Control Module

General

No. of channels

Time base inaccuracy ±0.01% of reading ±0.1 ms

Resolution 0.1 ms Bandwidth 5 kHz

19 sec at 10 kS/s, 39 sec at Measuring time 5 kS/s, 200 sec at 10 kS/s (Data

compression) 0 - 250 V AC/DC

Input voltage range 1.0 kg (2.2 lbs) Weiaht

Non-bouncing switch

Normally Open/Normally closed, Function dual direction

Continuous current 16 A

60 A during 100 ms with Max current intermittence of 5%

Delay from trig in (if applicable) , <2.5 ms

Current measuring

Measuring range +90 A

Resolution 3 mA (At data compression x 2) Inaccuracy. ±1% of reading ±0.1% of range

Voltage measuring

±250 V Measuring range Resolution 20 mV

±1% of reading ±0.1% of range Inaccuracy

Auxiliary contact status/resistance

Open circuit voltage 30 V ±10% Short circuit current < 25 mA Status threshold

Open > 10 k Ω > close Resistance range $0-10 \text{ k}\Omega$ Resolution 4 digits

Inaccuracy ±2% of reading ±0.2% of range

Timing M/R Module

General

No. of channels 6, in pairs of 2

Time base inaccuracy $\pm 0.01\%$ of reading ± 0.05 ms

Resolution 0.05 ms

 $5 \text{ kHz at} \leq 10 \text{ kS/s}, 10 \text{ kHz at} 20 \text{ kS/s}$ Randwidth 8 sec at 20 kS/s, 16 sec at Measuring time 10 kS/s, 1000 sec at 20 kS/s (Data

compression)

Induction protection Capacitively coupled interference

current from surroundings max 20 mA per channel.

Weight 0.8 kg (1.8 lbs)

Timing of main and resistive contacts

Measuring voltage 55 V ±10% Measuring current ≤27 mA ±10%

Status threshold $Main < 10~\Omega < PIR < 10~k\Omega < 0 pen$ PIR resistance measurement

Supported PIR types Linear PIR $0.\Omega - 10 k\Omega$ Measuring range

Inaccuracy ±10% of reading ±0.1% of range

Voltage measurement

Measuring range ±100 V, ±10 V, ±0.5 V, $20 \text{ mV*}, 0.4 \text{ mV*}, 20 \mu\text{V*}$ Resolution ±1% of reading ±0.1% of range Inaccuracy

* At data compression x 2

Analog Module

General

No. of channels

Time base inaccuracy ±0.01% of reading ±0.025 ms

Sampling rate 1-40 kS/s 15 kHz **Bandwidth**

Measuring time 10 sec at 40 kS/s, 20 sec at 20 kS/s

Transducer resistance 500 Ω – 10 k Ω at 10 V output Weight 0.8 kg (1.8 lbs)

Output

10 V ±5%, 24 V ±5% Voltage output Current output 0 - 22 mA

Current measuring

Current meas. range $0 - 22 \, \text{mA}$

Resolution $0.35 \mu A$ (At data compression x 2) Inaccuracy ±1% of reading ±0.1% of range

Voltage measuring

Input voltage range 0 - 250 V AC/DC Measuring ranges ±10 V, ±250 V 0.3 mV 20 mV Resolution

±1% of reading ±0.01% of range Inaccuracy.

Digital module

General

No. of channels

Incremental transducers, RS422 Supported types

Time base inaccuracy ±0.01% of reading ±0.05 ms

16 sec at 20 kS/s Measuring time Weight 0.7 kg (1.5 lbs)

Output

5 V DC $\pm5\%$ or 12 V DC $\pm5\%$

Voltage Current output < 200 mA

Digital input

1 - 20 kS/s Sampling rate Range ±32000 pulses Resolution 1 pulse Inaccuracy ±1 pulse

Timing Aux Module

General

No. of channels Time base inaccuracy ±0.01% of reading ±0.05 ms

Resolution Measuring current < 25 mA

16 sec at 20 kS/s, 32 sec at 10 kS/s Measuring time

±5% of threshold

Weight 0.8 kg (1.8 lbs)

Contact Mode

Measuring voltage 27 V +10%

Status threshold Closed < 100 Ω , Open > 1 k Ω

±0.5 V

Inaccuracy Voltage Mode

Input voltage range 0 - 250 V AC/DC Status threshold 10 V

Printer module

Inaccuracy

General

Printer type Thermal printer Paper type Thermal 114 mm Printing speed 50 mm/s (400 dotlines/s)

Horizontal resolution 8 dots/mm Vertical resolution 8 dots/mm Enclosure class IP21 0.8 kg (1.8 lbs) Weight

Calibration module

General

Reference Stability ±250 ppm per year Weight 0.6 kg (1.3 lbs)

ORDERING INFORMATION	Art. No:
TM1800 Basic Unit	CG-19090
Complete with:Transport case, User's manual, Mains and Ground cable, USB memory pen	
Control module	CG-19030
Complete with: 3 cable sets, 5 m GA-00870	
iming M/R module	CG-1908
Complete with: 3 cable sets, 5 m GA-00850 3 dolphin clips, black	
6 dolphin clips, track	
nalog module	CG-1900
Complete with: 3 cable sets, 10 m GA-01005	
ligital module Cables delivered with transducers iming Aux module	
Complete with: 3 cable sets, 5 m GA-00870	CG-1906
Calibration module	CG-1902
Complete with: Calibration cable GA-001006	
Printer module Complete with: Paper role	
Dummy module	CG-1901
0	
OPTIONAL ACCESSORIES	
CABA Win R02A	
Motion Transducers – Rotary - Digital	. AD-3 IU I
-phase Ready-to-Use Digital Rotary Transducer	XB-3911
B-phase Ready-to-Use Digital Rotary Transducer	
Complete with: Mounting and calibration kit	
Baumer BDH Digital transducer	XB-3913
Complete with: Transd.cable & Flex coupling Motion Transducers – Rotary - Analog	
-phase Ready-to-Use Analog Rotary Transducer	XB-3109
B-phase Ready-to-Use Analog Rotary Transducer	
Complete with: Mounting and calibration kit	
P 6501 rotary transducer 357°	XB-3101
Motion Transducers – Linear - Analog	
LH 500 linear transducer 500 mm (20") travel	XB-3002
1980 WG 225 linear transducer, 225 mm (9°) travel.	XB-3011
TS 150 linear transducer 150 mm (6") travel	XB-3003
Mounting kits	VP
Kit for TLH, LWG, TS and IP transducers Kit for linear transducers, TLH/LWH	XB-3901
Kit for vibration transducers	
(it for calibration of rotary transducer, IP6501	
Breaker-Specific Transducer Mounting Kits	
or HPL circuit breaker (ABB)	XB-3908
or LTB circuit breaker (ABB)	
or BLG operating mechanism (ABB)	XB-3908
extension cables Analog cable TM1800, XLR female to male, 10 m	GA-0100
For Analog and Timing M/R cables and	GA-0100
temperature sensor	
Cable reel, 20 m (65.5 ft) black	GA-0084
red blue	GA-0084
green	GA-0084
yellow	GA-0084
Oynamic resistance measurement	DI COO
DRM1000 Injection Control	BL-9004
and blue for vehicle battery) and Sensing cables	
/ibration testing	
Signal Conditioning Amplifier SCA606	
Accelerometer DYTRAN 3200B5	XB-3201
/ibration Analysis Software Separate CABA option for DTW-analysis	RI -9270
Ocharate Cypy obtion for D1 M-dildivsis	DL-02/0/
Please contact GF Fnerov Services for more	
Please contact GE Energy Services for more information on optional accessories.	

<u>SUBSTATION AUTOMATION SOLUTIONS</u>

TV1800 Circuit Breaker Analyzer System PROGRAMMA PRODUCTS

GE Energy Services

NOTICE OF COPYRIGHT & PROPRIETARY RIGHTS

© 2003, Programma Electric AB. All rights reserved

The contents of this document are the property of Programma Electric AB. No part of this work may be reproduced or transmitted in any form or by any means, except as permitted in written license agreement with Programma Electric AB.

Programma Electric AB has made every reasonable attempt to ensure the completeness and

accuracy of this document. However, the information contained in this document is subject to change without notice, and does not represent a commitment on the part of Programma

TRADEMARK NOTICES

Programma® is a registered trademark of Programma Electric AB. The GE logo is registered trademark of General Electric Company. All other brand and product names mentioned in this document are trademarks or registered trademarks of their respective companies. Programma Electric AB is certified according to ISO 9001.

Programma Electric AB Eldarvägen 4 SE-187 75 TÄBY Sweden Phone +46 8 510 195 00 Fax +46 8 510 195 95 E-mail programma@ps.ge.com Internet www.gepower.com

Printed matter No. 7L-CG01F R01A 2003 GFA-13519