

Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Pavel Novák

Simulation of Network Structures

Department of Software Engineering

Supervisor: RNDr. Ing. Jiří Peterka

External Advisor: Mgr. Petr Votava

Study Program: Computer Science, Software Systems

I would like to thank Jiří Peterka for his encouragements to this text and Petr Votava for his
suggestions to the simulator design. Special thanks to Vendulka and my parents for their
support throughout my studies.

I hereby declare that I have elaborated this master thesis on my own and listed all used
references. I agree with lending of this work.

9th August 2006, Prague Pavel Novák

3

Table of Contents

1. INTRODUCTION ..6

REGUIREMENTS ANALYSIS ..7
EXISTING SIMULATORS..9

Simulator Comparison..11
PROJECT GOALS REVISITED...13

2. SIMULATOR ARCHITECTURE..16

LINKS AND NODES...16
SIMULATOR INTERNALS...19

Thread Management...19
Timer...20
Remote Control...20
Event Log..20

SIMULATOR CONFIGURATION..21
OTHER FEATURES..22

Interconnection to the real network..22
Running Third Party Network Applications ...22
SNMP Support ..23

3. IMPLEMENTATION..24

PACKETS AND FRAMES...24
LINKS AND ADAPTERS...25
NODES AND MODULES...27
APPLICATIONS...29
LIBRARIES ...30

Standard NetSim Library..31
Ethernet Library ...32

USER INTERFACE...33
Console ...33
Graphic Application ...33

4. REMOTE SOCKETS ..35

LAYERED SERVICE PROVIDER ...36
COMMUNICATION WITH THE SIMULATOR ..38

Callbacks ..38
REDIRECTION MANAGER...39
NOTE TO THE IMPLEMENTATION..41

5. PRACTICAL TESTS...42

Using Virtual Nodes from Live Network ..42
Interconnecting Real Nodes through the Simulated Network ..46
Running a Real Application on the Virtual Node...47

4

6. CONCLUSIONS...49

SUMMARY ...49
COMPARISON TO OTHER SIMULATORS ..49
GOALS FULFILLMENTS ..50
FURTHER WORK..52

7. REFERENCES ...53

8. APPENDIXES...54

APPENDIX A – OTHER NETWORK SIMULATORS..54
APPENDIX B – SOURCE CODE DESCRIPTION..56
APPENDIX C – USER’S MANUAL ...60

Building the source code ..60
Installation..60
Using the command line ...61
Using graphic interface..62
Example virtual network...65

APPENDIX D – CD-ROM CONTENTS..69

9. INDEX ...70

List of Figures...70

5

Title: Simulation of Network Structures

Author: Pavel Novák

Department: Department of Software Engineering

Supervisor: RNDr. Ing. Jiří Peterka

Supervisor’s e-mail address: jiri.peterka@mff.cuni.cz

Abstract:

The simulation of network structures can be an effective method for example in teaching,
research, or testing the network software, in order to lower the cost of building the real
network structure that would be otherwise needed. Moreover, the simulated network can
provide some advantages, e.g. simplified control and monitoring, statistical data collecting or
visualization of the network behavior.

This work focuses on the usage for teaching and testing; illustrates that existing network
simulators are not always suitable for this purpose, suggests the architecture and design of a
new solution, and offers implementation of the proposed simulation tool.

Keywords: simulator, computer network, teaching, testing, NetSim

Název práce: Simulace síťové struktury

Autor: Pavel Novák

Katedra (ústav): Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. Ing. Jiří Peterka

E-mail vedoucího: jiri.peterka@mff.cuni.cz

Abstrakt:

Simulace síťové struktury může být efektivní metodou použitelnou např. při výuce, výzkumu
nebo testování síťových monitorovacích programů, všude, kde by jinak byla potřeba mnohem
dražší výstavba reálné sítě. Navíc přináší simulace sítě některé výhody, jako je zjednodušené
ovládání simulované struktury a jejího sledování či sběru statistických dat, nebo i vizuální
znázornění sítě a jejího chování v průběhu simulace.

Tato práce se zaměřuje na použití pro výuku a testování, ukazuje, že stávající dostupné
simulátory často nejsou nejvhodnější volbou pro toto použití. Navrhuje strukturu nového
simulátoru pro daný účel, součástí práce je i jeho implementace.

Klíčová slova: simulátor, počítačová síť, výuka, testování, NetSim

6

1. Introduction
The task of network simulation has been solved for a long time and many simulators have
been created. However, a lot of them were written for special purposes – for testing just one
network component or protocol. It is obvious that those simulators cannot be widely used and
this work does not not deal with them. On the other hand, the goal of other simulators is to be
extensible and to allow others to add their own modules for currently unsupported or new
protocols, create new network devices etc. This is the kind of simulators the thesis deals with.
The most widely known simulator of this kind is probably NS1.

Let’s take a look at reasons why network simulators are needed or, at least, why they are
worthwhile and helpful. Here are some scenarios where the network simulator is benefical:

1. Education

Students can build a network and see how it works without the need of hardware; try
network tools or develop network components.

2. Testing

Simulators can help test network management tools or other network applications,
which can be deployed at a complex virtual network structure.

3. Demonstration

Network application or management tools can be demonstrated to potential customers
without affecting their real network structure.

4. Security

Running a virtual network within the real network can lower the chance that an
attacker will compromise vital real system, since he/she will get confused by other
virtual nodes, and the network administrator has a chance to notice an illegal activity
before the real system is compromised [8].

5. Designing new network protocols

Protocol designers need to test their ideas in real environment to see if they are
behaving in the way they expect. Building the real network structure is very expensive
and these days, when computer networks are quite large, testing in such environment
is inevitable.

As summarized in Appendix A, many general purpose simulators have been developed; also
many of them are well-designed, so they are extensible and allow adding new features or
communication protocols with quite a little effort. However, the following discussion will
show that there are some reasons to develop a new one.

1 Currently NS-2; for more information and the link see Appendix A.

7

Requirements Analysis

The original thesis submission states:

The task is to simulate a network structure for use in teaching, testing applications for
network monitoring, or creating "hacker-traps" (so-called honeypots). The author should
become familiar with network simulation, design and implement either his own solution or
use existing frameworks (e.g. open source framework Honeyd). The solution should simulate
switches, routers, and host computers so they would behave like real and react at least to the
basic network protocols like ICMP and SNMP.

However, as will be explained, the final usage scenarios proposed here have different
requirements and the development of a system that meets all of them is not viable.

The use for teaching
Various uses of a simulator for teaching are possible. Firstly, it can help the lecturer to show a
network behavior for some cases, for example network reconfiguration after a failure of some
network component, or how routing information is propagated through the network. The
simulator used for this purpose should be able to visualize the network structure, network data
transfer, pause the simulation. Naturally, it should implement network features that would be
taught. Moreover, it would be better to simulate the network at the link layer, not only
network layer, and packets being transferred through the network should be displayed in the
same format as the real packets.

Secondly, students can use the simulator themselves to either build their own network and see
how it works (in this case the requirements coincide with the use by the lecturer; moreover,
the simulator control and creation of the virtual network structure should be quite simple), or,
they can implement their own network components, such as a modules for routing, switching,
etc. This requires the simulator to be well extensible and to provide a simple interface to add
new components.

Thirdly, a simulated network can be used to teach network administration and administration
tools; nevertheless, this is almost the same case as application testing.

Testing (and demonstration of) applications for network monitoring
This usage has a bit different requirements than teaching. Firstly, a virtual network setup does
not have to be necessarily so intuitive, since it will be used mainly by specialists in computer
networks. However, it would be a considerable advantage if the intuitiveness would be
present along with other features.

The key requirement is the support for all network technologies and protocols that are mainly
used by network monitoring programs. It includes primarily ICMP, SMTP (preferably all
versions) and protocols for dynamic routing (OSPF, RIP, perhaps BGP). The second
requirement, that will be necessary in some cases, is the possibility to simulate large
networks, hundreds (thousands) of nodes. Creation of such network manually would be a
painful work; having some tool for automatic network generation would be handy.

8

Honeypots (honeynets)
Honeynets is a pseudonym for computer networks (real or virtual) that are deployed only for
monitoring attackers activity, warn, and provide information about the attack scenario to help
prevent attackers from being successful in their activity2.

Therefore, the main requirement for the network simulator acting as honeynet is to have
support for distinguishing attacks from ordinary network traffic3 and to log the operations
performed by an attacker; possibly warn a network administrator that the attacker is trying to
compromise his/her network. Wide range of network protocols does not have to be
necessarily implemented; no graphical interface is necessary. However, a possibility to add
new features to be simulated should be a priority, since it will allow adding new simulated
items as attackers change their targets to correspond with known vulnerabilities of real
systems.

The following table summarizes the results of a previous discussion.

Requirement Teaching Testing Honeynets

Simulation at link layer level � � �

Network and data flow visualization � � �

Easy extensibility � � �

Wide range of protocols support � � �

Large networks simulation � � �

Writing logs for activity in the network � � �

�required �required in some cases � generally not required

Many of the requirements presented in the table are not contradictory; however, some
combinations would be hard to achieve. For example, link layer simulation needs more
computation resources than only network layer, and therefore the maximum number of nodes
will be much lower even if it would be efficiently implemented. The same applies for
visualization; however, it could be a feature that does not have to be used throughout the
simulation process.

Moreover, after a closer look at the table, it is evident that requirements for teaching and
virtual honeynets differ. The use for testing is somewhere in between and the requirements for
teaching and testing are not contradictory.

First Conclusion
Development of a simulator that meets all needs for the usage scenarios mentioned in the
assignment would result in a complex solution, which would compel many trade-offs. Since

2 A lot of information about honeynets can be found for example at http://www.honeynet.org

3 Which is generally not so hard since any activity in a honeynet is usually mean; regular network traffic should
not be targeted to the honeynet.

9

the requirements for honeynets differ from others and the author and advisor are much more
interested in testing and teaching, this work will not be focused on honeynets.

From now on, the text is oriented only to teaching and network software testing purposes.

Existing Simulators

This chapter provides an overview of existing simulation tools, describes their usability and
shows that there is a scope for another network simulator to be developed.

The simulators mentioned here are those that can be used for teaching and network
monitoring tools testing. More simulators that the author found and that he considered to be
somehow important are listed in Appendix A on page 54.

NS-2 [11]
This is probably the oldest widely used general-purpose simulator. It is written in C++ and
many contributors have developed extensions for wide range of protocols. Its primary usage
was intended for designing new protocols and testing their behavior.

Its use for teaching is a bit complicated. First, it supports only Unix-like operating systems;
students using Windows are forced to learn much more to use it than only the program itself.
One can object that the student who is learning computer networks should be familiar with
Linux systems since they are more often used in networking than others are. However, as the
NS installation is not straightforward and can make some problems to the student that is used
to Linux too, this is not the right way how to begin learning Linux.

Moreover, the creation of the simulated network requires writing Tcl4 scripts, which could be
a serious problem for some students. There is a “network animator” called Nam, which can
replay the previously executed simulation and – in the latest releases – build a network
structure. However, it is completely bound to Linux and OTcl packages, which require
compilation of the source code before installation.

In conclusion, NS-2 is a great tool for researchers and in some cases for testing, but it is too
complex for non-experienced users. A useful tool for teaching should provide an easy
installation (preferably only copying files) and a user-friendly (graphic) environment.

CNET [9]
Cnet was developed at The University of Western Australia and was intended primarily for
teaching; students can write their own protocols. It requires Linux operating system; even
though it is much more simple than NS-2, the installation also needs a source code to build it
and some settings require a deep knowledge of the OS structure. Therefore, the preferred
usage is probably the installation by an administrator in the lab where the students should
work on their assignments.

4 Tcl stands for “Tool Command Language”; more information at Tcl homepage: http://www.tcl.tk/

10

It cannot be used for testing purposes; firstly, it does not support connecting to the real
network, secondly, no library with protocols implementation is available.

JNS [16]
Java Network Simulator is a Java version of NS-2, but obviously it had to be developed from
scratch and almost all NS-2 features and libraries are missing. Instead of writing scripts in
Tcl, they have to be written in Java. There is no graphic environment to build the network
structure, nor can it be controlled interactively while the simulation is running. Since almost
no libraries with protocols are present, it is unusable for testing. It can be used for teaching,
but requires students having the knowledge of Java to be able to make their own simulations.

OPNET [12]
OPNET provides a set of tools for simulation that include a graphic environment for network
modeling (with wireless mobility support), displaying statistics. Many pre-defined types of
nodes are present and almost all widely used protocols and technologies are supported.
However, the use for teaching is available only to universities and the conditions are strictly
limited. The software can be installed in the university lab only, the license is only to six
months and some reports about teaching experiences should be sent to the OPNET Company.

The supported operating system is Windows only. The source code for protocols
implementation is available, the application source code is closed. The application is quite
sophisticated; it provides many settings for almost everything and it may be difficult for the
beginner to get into it. Therefore, it is intended rather for the networking professionals than
students. Anyway, without those license restrictions, it would be a nice tool.

AdventNet [1]
AdventNet is another commercial simulator, its properties are almost the same as for the
OPNET. Even if there are no remarks on licenses for teaching/education at their website, after
a question they replied promptly and provided a 6-month full license.

On the other hand, it provides less flexibility than OPNET. Modification/addition of new
network components is very limited, just a configuration file or setting MIB values is
available. There is no support to add new protocols; therefore, students cannot implement
their own solutions. Moreover, there is neither data visualization nor any statistics available; it
is not a convenient tool for teaching. However, since network programs usually need SNMP
which is supported quite well, it is the right application for testing and demonstration of
network management tools (although it is a bit limited by no support for interconnection to
the real network).

NCTUns [17]
NCTUns seems to be the most suitable simulator for the specified purposes. It includes a
graphical network topology editor, new protocol modules can be added, the protocol stack of
each node modified, and the virtual network can be interconnected to the real one. Moreover,
many protocols are currently supported and the simulator writes a log file during the
simulation, which can be later used for data flow visualization.

11

However, NCTUns has one main disadvantage: it actually requires a dedicated machine for
practical usage. This is because Fedora Core 4 is the only supported system; the simulator is
closely associated with the kernel and it uses kernel protocol stack for simulated nodes. (The
kernel is patched during the installation and the simulation can be executed using the new
version of kernel only.) Moreover, root privileges and no active firewall is needed for many
operations. These demands prevent it from being installed in the computer lab or on any other
computer that is in daily use for other tasks. Hence, it is impractical for teaching; however,
having a dedicated machine is usually no problem while testing the network applications.

Other Simulators

QualNet [14]
QualNet is a proprietary network simulator. Although there is some version available for
universities and the author of this thesis asked the Scalable Network Technologies for a copy,
they did not reply in time so the comparison to this product is not available.

As can be read in the datasheet, graphical tools for network designing and analyzing are
available; however, the proprietary license and closed source code make the use of the
simulator and creation of the extensions difficult.

REAL [7]
REAL was developed at Cornell University for research of flow and congestion control. It is
completely unusable for teaching since it does not run on the i386 platform that is in almost
all computer labs and it is probably the computer students have at home. A port to i386 was
created, but it works with FreeBSD 2.0.5 only. Similar arguments can be applied to the
usability for testing.

Moreover, it seems that the simulator is not maintained anymore since the year of its last
release is 1997.

Simulator Comparison

The previous paragraphs described the existing implementations of simulators; to be able to
make some conclusion, the results should be compared. Recall that this work is concerned to
the teaching of networking, network protocols, and to the testing of network monitoring
applications. Obviously, this influences the requirements selected for the comparison.

The following table summarizes which requirements needed for the intended usage are met by
the existing simulators. The numbers are references to the comments below the table.

12

Requirement

N
S

-2

C
N

E
T

JN
S

O
P

N
E

T

A
d

ve
n

tN
e
t

N
C

T
U

n
s

Easy installation � � � � � �

Requires writing no code to build simulated network � � � � � �

Simulation at link layer level � � � � � �

Network structure visualization �
1

� � � � �

Data flow visualization � � �
1 � � �

Extensibility of network components � � �
2 ?

 4 �
3 �

Extensibility of supported protocols � � �
2 � � �

Wide range of protocols supported � � � � � �

Interconnection to the real network �
5 � � ?

 4 � �

Runs on Linux � � � � � �
6

Runs on Windows � � � � � �

Source code available � � � � � �

 �present �not completely present

 � not present ? not known

1) The visualization is available by Nam (or some other tools) that reads the dump created during the
simulation process.

2) Since the whole source code is available and the simulator is designed to be extensible, new
components can be created. However, there is no special support for that.

3) A new type of device can be created, but changes to its behavior are very limited; only its MIB values
can be changed and IOS commands added.

4) The author was unable to find any information for the particular simulator.

5) This feature is available thanks to a third party add-in.

6) Only Fedora Core 4 is officially supported.

The ideal simulator for the target usage would have the�sign in all rows. None of the
examined real simulators fits those needs in all cases; the most suitable does not meet two
requirements, the majority at least four requirements.

Second Conclusion
Most of the existing simulators are not very feasible for teaching computer networks and
testing of network monitoring tools. The most suitable one, OPNET, is commercial; its
university licensing is very restrictive, for example it does not allow students to install the
simulator to their own computers, allows the installation at maximum 30 copies, the license
should be renewed every 6 months and reports about teaching experiences should be written.

13

The second one that satisfies almost all requirements, NCTUns, has nearly all the features;
however, it is bound to Fedora Core 4 kernel, which restricts its practical usability.

Therefore, the development of a new simulator that will extend the current set of simulators,
which could be considered for the use for teaching and testing, is reasonable5.

Project Goals Revisited

Let us go back to the requirements that were considered while comparing the existing
simulators.

1) Easy installation
That means preferably just copying files, or some simple installation wizard. Linux
guru would appreciate a possibility to compile the application from source code
(which might be also possible), but a regular user wants to put as little effort as
possible. Therefore, binaries (along with source code) should be distributed.

2) No code when creating the simulated network
A graphic tool for designing the virtual network would be the best; if not a graphic
environment, some easy to understand configuration scripts should be available.

3) Link layer simulation
Since the simulator will be used also for teaching, the simulated network should
correspond to the networks in the real world. There are not only routers, but also
switches and other components operating at link layer level.

4) Network structure and data flow visualization
Network structure visualization is related to the creation of a network structure in a
graphical environment. Data (packets) visualization might be needed for teaching
while demonstrating network behavior and also for debugging purposes.

5) Extensibility
Providing an easy way to add “third party” components to the simulated network
increases the usability for both teaching and testing. Students can add their own
protocol implementations, while developers of networking tools can add the currently
unsupported functionality they need. Therefore, the addition of new components
should not require simulator recompilation; just the modification of configuration files
should be necessary.

6) Wide range of protocols
This requirement does not affect design decisions. It is just about the amount of work
that will be done. Hence, it is obvious that the first version of the simulator will
include only a few protocols, preferably the TCP/IP suite.

5 Moreover, the author is interested in computer networks and development of a network simulator from scratch
would be a worthwile experience for him.

14

7) Multiplatform solution
The simulator should be ported at least to two leading platforms: Windows and Linux.

Keeping these things in mind, the programming language and technology for development
should be chosen.

First of all, it should be considered whether there is some platform for network simulation
already developed. The use of honeyd, which is mentioned in the thesis submission, is
impossible, since it does not support link layer simulation; moreover, it is intended mainly for
honeypots. Another possibility would be to use JNS as a basis, but the implementation is very
small; it would not save much time and would restrict further design decisions – the author
could not find any other suitable framework that would meet the requirements described
above. Therefore, he decided to implement a completely new simulator.

Multiplatform and extensible solution requirements support a decision for environments like
Java or .NET. These also correspond with an easy installation, since some intermediate code
that can be just copied can be usually distributed. Moreover, graphic applications created in
Java can run on any computer where JRE is installed.

On the other hand, link layer simulation denotes that the simulator will require more computer
resources than just the simulation on the network layer – native code would be faster than
Java or .NET managed environment. However, this is the only reason to use traditional
compilers and run native system code. The author’s experiences with .NET show that it is not
much slower than native code, since the intermediate code is recompiled to native before
execution.

The managed environment will also simplify the development. The last choice between Java
and .NET is needed. Here, the greatest factor is probably the author’s experience in C#
programming. Moreover, because, firstly, the .NET Framework for Linux is available and will
be hopefully also implemented for other platforms in the future and, secondly, .NET will
make the extending of the simulator even more simple since there are more programming
languages the extender can select from6, the last decision is .NET.

In conclusion, the project goals are summarized in the following statements that arise from the
previous discussion:

• A managed environment should be used for development, .NET in particular.

• The simulator should be simply extensible allowing addition of new protocols, types
of nodes and applications running at the virtual nodes. (The first implementation will
consist of TCP/IP protocol suite emulation and some basic example applications.)

• A graphic interface simplifying the creation of virtual network structure should be
provided.

• The user should not be forced to write any code if he/she uses only predefined
(implemented) components.

6 Not only C#, Visual Basic, J#, or C++, but also others made by third parties like PHP, Python, and other. A
complete list can be found e.g. at http://www.gotdotnet.com/team/lang/

15

• Target platforms should be Windows and Linux7.

• The simulation should be done at the link layer (Layer 2 in ISO/OSI model).
Therefore, the simulation of network technologies has to be supported. (Ethernet,
since it is the most wide-spread technology, will be provided as an example.)

• It should be possible to connect the virtual network to the real physical network.

• Nodes and links should be capable of shutting down/resuming to simulate network
failures.

It was said that the best simulation behaves like a real network. Network traffic is
generated by applications running on virtual nodes, so the applications are an important
part of the simulator. It is not feasible to simulate all necessary applications; providing a
way to run the existing applications on the virtual network nodes is an additional goal of
the project.

7 Windows XP and Fedora Core 5 have been used for development and testing.

16

2. Simulator Architecture
The second chapter introduces the simulator architecture, explains the decisions made, and
defines the naming convention for some network components used throughout this text. The
results presented here will then be used in the following chapter elaborating the
implementation details.

From here, the name NetSim will be used for references to the new simulator that has been
developed.

Links and Nodes

The simulator should be designed to be well extensible; therefore, it should consist of several
units with exactly defined interfaces, allowing the extender to write only one small piece of
code and do not force him/her to understand the whole simulator structure. It is
straightforward that those units will correspond to the components of a real network, provide
basic network functionality such as transferring data from one node to another, switching and
routing, etc. Nevertheless, for the simulation environment, some additional components might
be needed; for example to launch applications or transfer data from a simulated network to the
real network and vice versa.

There are two kinds of basic network components: cables (metal or optical, or one can
imagine “virtual” cable in case of wireless connection) and some nodes that are
interconnected with the cables. For the purpose of this document, they will be called links and
nodes. However, there are many kinds of nodes and links in the real world and NetSim should
be able to emulate them.

The simulation of links is much easier than for nodes. The purpose of the link is always the
same: to transfer data from one place to (one or more) other places, with some constant or
variable delay, and sometimes a loss or corruption of carried data. Compared to ISO/OSI
network model, the links simulate physical and a part of link layer. Sometimes the situation is
slightly more complicated; for example when simulating a ring-based network such as FDDI,
it is not possible to just hand the data over to the link and not care about them any more – they
will come back and should be removed from the link. In the case of Ethernet, the node should
be informed about the collision and the need of retransmission. Therefore, the node might be
required to participate in data transfer over the link.

In the case of nodes, the simulation is not so straightforward as there could be many kinds of
nodes; just simple repeaters and switches, or complex machines running web and ftp servers,
firewall, capable of routing etc. Because such nodes can be connected to various types of
links, it will be effective to divide the link-specific part from the other node functionality.
(Recall that for some link types, node cooperation is required.) Such parts of nodes are called
adapters. Moreover, because the node can be connected to more than one link and link types
can vary, each node can have more adapters. One can think of the adapters as of network
cards with drivers.

17

The previous paragraphs described a data transfer between nodes. Nevertheless, what should
the node do with the incoming data? They should be probably passed to some application
running on the node. However, how should the node recognize which application it is? In the
real networking world, incoming data packet traverses through the so called “protocol stack”,
packet headers are checked at each stage, eventually removed, and the rest is passed to the
higher level in the stack. This process should be emulated on each virtual node; each node can
support various protocols that should cooperate with each other. Those protocols should be
independent of applications running on the node – every application can use more than one
protocol to communicate. So, what is the answer to the questions given at the beginning of the
paragraph? The packet should be given to the first appropriate protocol implementation in the
protocol stack. Such answer yields a problem: identifying an “appropriate” protocol. In
general, there are two basic solutions: either the node will have some logic to recognize it or it
can pass the packet to all protocols and they will decide themselves if it is “their” packet,
which they should accept.

The first idea requires the node to know every protocol that might be possibly used, so that,
with addition of a new protocol to the stack, the node code would have to be modified, which
is inconsistent with the requirement of as easy as possible extensibility. From this point of
view, the second solution is better – the implementer of the new protocol will make a logic
recognizing new kind of packets. However, for correct packet processing the node cannot pass
incoming packet to all possible protocol implementations, because there might be two of them
accepting the packet and there would be two (different) reactions to the packet. Instead, the
node will pass it to the protocol implementations in some sequential order and stop after the
first that accepts the packet is found.

A strange phrase “protocol implementation” has been used several times in previous
paragraphs. Let us define it as a module for now; the definition will be extended later.

In the real networking, a protocol stack is not only a sequence of modules; more than one
module can be layered over another. For example, TCP and UDP protocols are layered over
IP protocol. On the other hand, one module can be layered over more than one too: e.g. IP
over Ethernet and serial line. However, that solution requires not only the node maintaining
the list of modules, but also each module having to store its own list of the modules on the
upper layer. Moreover, as described above, the packet will be passed to the modules in
sequential order until it is recognized by some module. This approach can be applied not only
when the packet is coming to the protocol stack, but at each layer. As a result, the whole
protocol stack can be represented as a sequence of modules, if each module has its own logic
to recognize whether it should process the incoming packet.

Figure 1: Protocol stack linearization

18

An example of such “linearization” is shown in Figure 1. If a packet is coming from the
bottom, the first receiver is always IP. In the original protocol stack, IP module decides
whether to pass it further to TCP or UDP. In the linearized stack, it passes the packet always
to UDP, it decides whether it is an UDP packet; if not, it passes the packet up unchanged and
TCP module has a possibility to process it if it is a TCP packet.

This linearization approach, where the module just takes a packet, processes it, and passes it
up without knowledge of modules layered over has another advantage: other modules can be
inserted into the stack without modifying the existing ones. For example modules for
encryption or data counting.

In Figure 1, there is a “Sockets” module layered over TCP and UDP. It is clear that this
module does not represent a protocol layer; however, it is useful to make it a part of protocol
stack too; it allows for example data encryption between sockets and TCP/UDP. Moreover, it
is logically consistent, because Ethernet frame carries e.g. IP packet as data, IP packet carries
UDP or TCP as data, and TCP/UDP carries data of some application protocol.

Let us focus on applications running on the virtual node. From the previous discussion, one
can conclude that they should receive and send data through a specific module – e.g.
applications using sockets through the “Socket” module. On the other hand, those applications
might want to communicate with other modules in the stack, for example application running
some routing algorithm has to modify the routing tables managed probably by IP module.
Hence, the applications will run independently from the linear protocol stack and they will be
able to cooperate with any module, if the module provides an appropriate interface.

Figure 2 shows two examples of nodes.

Figure 2: Examples of simulated nodes

The following chapters will explain the NetSim structure in more detail.

19

Simulator Internals

This chapter goes through the NetSim core components that provide basic functionality for
other parts of the simulator.

Thread Management

As mentioned earlier, a good simulation behaves like a real environment. However, some
behavior cannot be done exactly as it is in the real world. In a real network, many events can
occur at the same time. Since the simulator runs on a computer with a (small) finite number of
processors, those events cannot be simulated exactly at the same time. However, the
simulation should behave almost like the real network. Doing so in a single thread would be
very hard, most probably impossible, so the simulator takes advantage of threads and lets the
system take care about the “simultaneous” execution.

However, using threads brings some new issues. The most complicated is probably the need
of synchronization. One has to always keep in mind that there can be two or more threads
accessing the same data at the same time. There is nothing about it to describe in general;
almost in each component of the simulator, some kind of locking or other synchronization has
to be accomplished.

Secondly, threads should be reused; otherwise, the execution will be very inefficient.
Individual jobs executed by the simulator are mostly simple and short (transferring a packet
from one node to another, inserting additional protocol headers to the packet, serializing
packet for transfer over the real network, etc.) Creating a thread every time such task is
executed would waste CPU time and operating system resources. Moreover, the job should
not be executed immediately in many cases, it should be delayed some small amount of time.
If a new thread was created each time, it would result in many threads just waiting.

Therefore, a tread pool of threads executing jobs from the queue is implemented. The
implementation is based on Stephen Toub’s ManagedThreadPool [15], which has the same
interface as .NET Framework ThreadPool8, but the queue and the way the work items are
removed is modified. The queue of jobs to execute is not just the simple
System.Collections.Queue as in the original solution; binary heap is used [2].

The reason why the heap (acting as a priority queue) is used has been mentioned above:
timing. Work requests should not be executed in the order in which they are added, for
example, a link can simulate some delay in delivery by adding a request to the thread pool to
execute code that will finish the data transfer after some amount of time. It is straightforward
that work requests are sorted by the time they should be executed.

8 The same interface, but a different behavior. .NET Framework Thread Pool creates and destroys treads
according to the number of work requests [3], compared to the ManagedThreadPool where constant number of
threads is used. This behavior is better for the simulation since there might be high demand for data transfer after
a long time of inactivity and there would be no time to create new threads.

20

If there is a request to do something that should be processed right now or that should have
been done in the past, an available thread takes it and executes it. If there are no jobs, all
threads go to sleep waiting for a new item in the queue. Finally, if there are only jobs that
should be processed in the future, threads should go to sleep and wake up after the job is
ready to execute. However, for performance reasons, it is better to wake up always just one
thread; it than removes an item from the queue and wakes up another thread that will check
the execution time of the next item and either process the job or go back to sleep for some
time. The last thing to consider: a special case concerns adding a new item that should be
executed before all others in the queue. In such case, the sleeping thread is woken up and it
either executes the job or goes to sleep for a shorter amount of time than before.

Timer

The discussion above indicates that an accurate timing is very important for the simulation.
Although the hardware usually supports some high-resolution timer, regular system timer
resolution is one millisecond, which is quite a long time for today’s high-speed networks.
Therefore, a new timer implementation that uses this high-resolution timer is provided; only
in case the hardware does not support it, a regular OS timer is used.

Since a millisecond is not an accurate time unit for the simulator, ticks (100 ns intervals) are
used. The reason why ticks (and not for example microseconds) have been chosen is that
.NET Framework time functions support this time unit naturally; almost all classes have Ticks
property that returns the time interval in ticks.

Remote Control

Remote Control is a way for controlling a simulation programmatically by another
application. This might be useful e.g. for interactive applications that visualize the network
behavior and allows a user to submit commands for the simulator, or for applications that
automate the simulation process. The graphic application described on page 33 also takes
advantage of this feature.

There is another possibility to control the simulation – through a command line. Although it is
a convenient way to instruct the simulator to do some simple actions, e.g. to stop the
simulation, or enable/disable some part of the virtual network, for other tasks, mainly for
retrieving information, it is a bit impractical to parse the console output. Therefore, a
programmatic interface is a useful alternative to the command line.

Since .NET Remoting is used for all other inter-process communication, not surprisingly it is
used also for the Remote Control. The simulator creates an object that is remotely accessible
and which provides methods to affect the simulation. Moreover, a callback object can be
registered and it will be called if some event in the simulator occurs; it simplifies controlling
the application implementation since it does not have to examine the simulator state
repeatedly.

Event Log

While the simulator is running, some events that the operator should know about can occur.
For example, an application fails on some node or an attempt to redirect an application
network communication via Remote Sockets to a non-existent node or a node that does not

21

support sockets is made. In such cases the simulator run can continue; however, it would be
practical to store such information somewhere: to an event log, which can be listed on the
console; or, if some application is using the Remote Control and has registered a callback
object, it will be notified immediately.

Simulator Configuration

The simulator should be extensible and users should be able to add their own modules or
create their own link types, which would be probably also configurable. Therefore, NetSim
configuration should be designed carefully to make such extensions possible and do not force
the users to make much effort to configure their own virtual networks.

Since the users should be able to add their own configurable parts, having only one
configuration file with a well-defined structure is impractical; it would be better to let the
users choose their preferred format9. For this reason, virtual network configuration consists of
one main configuration file describing the initial interconnection of simulated links, nodes
and their adapters, modules, and applications – just the interconnection and no details about
each node, link, or module. Those details are written in separate configuration files, which are
referenced from this main file (format of those files is not predefined, each module or link
type can have a different one, since it is responsible for parsing its own configuration).

What is the essential information needed in the main configuration file? Obviously, a list of
links and nodes, plus adapters, modules, and applications that attach to the nodes. In addition,
from the previous discussion, references to other configuration files of the components.
Moreover, because those files can have various formats, also some information about how to
parse the data, or which component should parse it.

This is, de facto, all the information necessarily needed; all other data could be moved to
separate configuration files. However, how would the case that a particular adapter is
connected to a particular link be represented? There should be some unique link
identification; the same applies also to the nodes. Since this identification should be the same
for all components, it would be practical to have it in the main configuration file: textual
string was chosen for this purpose.

It is not clear whether to have information about connections in the main configuration file or
in the configuration files of the adapters. However, there are two reasons to choose the first
possibility: firstly, if the adapter would be very simple (non-configurable), having a separate
file to store just information about the link is a bit impractical. Secondly, having the
connections in the separate files of not well-defined format will cause great problems during
the implementation of a helper tool that allows for creation of the virtual network in the
graphic environment.

9 However, XML is preferred, since it is today’s widely accepted format.

22

An example of a configuration for one node in the main configuration file follows; the
complete virtual network configuration can be found in the chapter User’s Manual on page
63.

<Node name="A" class="NetSim.Core.Node">
 <Adapter name="eth0" class="NetSim.Ethernet.EthernetAdapter"
 link="Link 4" config="nodes/A/adapters/eth0.xml" />
 <Module class="NetSim.Library.Modules.IPModule" name="IP"
 config="nodes/A/modules/IP.xml"/>
 <Module class="NetSim.Library.Modules.IcmpModule" name="ICMP" />
 <Module class="NetSim.Library.Modules.UdpModule" />
 <Module class="NetSim.Library.Modules.TcpModule" />
 <Module class="NetSim.Library.Modules.SocketModule" name="SocketModule" />
 <Application class="NetSim.Library.Applications.SimpleWebServer"
 config="nodes/A/applications/SimpleWebServer.xml"/>
</Node>

The name attribute represents a unique identification of the component. The config attribute is
a relative path to the particular configuration file; link is the name of the link the adapter
connects to. Finally, class is the name of a class that should be instantiated for a given
network component (the object of this class will parse its configuration file; more information
can be found in the chapter Implementation, page 24).

Other features

Interconnection to the real network

The support for data transfer between virtual and real networks is a basic presumption for the
simulator usability. However, there is no need to conform the simulator design to this
requirement; it can be achieved by the presented model of nodes, links, adapters, and
modules. For the transfer in direction from the virtual network link to the real network, there
can be an additional node with an adapter in a “promiscuous” mode attached. That adapter
will pass all packets to the node core and the node to the first module in the module chain.
There can be a module that will hand the packets over to a real network. Moreover, such
module can listen on the real network and pass the captured packets back to the node, which
will send it to the adapter and then to the link.

The NetSim implementation is done exactly as described above – a module called
ExternalConnection is implemented. It uses the libpcap (winpcap) library and its C#
wrapper SharpPcap [6].

Running Third Party Network Applications

The simulator allows a simulation of some applications by adding specific components (called
applications) to the nodes. However, such possibility is not always sufficient – running a real
application on the virtual node might be useful for example for monitoring purposes, for
creating a substantive network load etc.

23

It would be most convenient to the users to just execute their application and configure it to be
virtually running on the specified node. This is also possible with the Remote Sockets feature
(see page 35).

Another way how to manage this would be to implement a socket library for virtual network
and recompile the application with the new library. However, this way is a bit impractical –
the compilation often requires a non-trivial build environment; moreover, the source code is
unavailable in many cases. Finally, the library would be OS specific and it should be
implemented for every supported operating system. (Of course, Remote Sockets is also OS
specific.) Such library is not included in this work.

Finally, in case the application source code is available, in case it uses .NET sockets, and can
be slightly modified, it can be easily changed to the application component that can be placed
on the virtual node10.

SNMP Support

It is a bit complicated to add SNMP support, because it requires information from all parts of
the node, adapters, modules etc. The solution to this issue could be following: there could be a
SNMP module on the node. Every part of the node (adapter, module, or application) that
supports SNMP would register itself by the SNMP module and provide a set of supported
MIB entries. The module would capture requests for exploring or changing values and then
query the appropriate components to provide or change the values. This solution enables to
implement SNMP in one module only; there would be a simple common interface for other
components to provide information about them11.

10 The source code change yields a creation of the new class implementing IApplication interface, calling
Main() from the special method of that class and replacing all occurrences of System.Net.Socket to
NetSimSocket. More information about applications can be found in the chapter Implementation on page 24.

11 SNMP support is not included in the current version. However, it is one of the priorities for the next release.
See Further Work, page 52.

24

3. Implementation
The third chapter stems from the previous text, where the main ideas were introduced. The
NetSim design is explained; some important parts are explained in more detail.

The main goal of the design is to propose a simple extensibility, which allows the simulator to
be widely used. This is achieved by simulator modularity and as simple as possible interface
of the modules that the users would write by themselves. To avoid any ambiguities, some
vocabulary that is used in the following text should be explained now. The term frame always
represents a link protocol packet, like Ethernet frame. Every packet (i.e. some data with
headers) for all higher-level protocols (like IP) is called a packet.

Packets and frames

Packets and frames are maybe the simplest thing to explain – therefore it is the right part to
begin. Every type of packet or frame has its own class that represents its format. Those classes
inherit from an abstract class Packet, which allows the simulator to work without knowing all
the packet types a priori.

Figure 3: Packets and Frames

As depicted in Figure 3, even if there is some hierarchy between packets in a usual protocol
stack, there is (almost) no inheritance hierarchy between those packets, because the
combination of protocols in the protocol stack is up to the user and simulator configuration.
Instead, the inheritance, packets and frames are combined into a chain, every object has a
higherLevelPacket member that points to the object of a higher-level protocol packet
(current packet data). For the packet at the end of the chain, this member is null.

Because the packets created and transferred through the simulated network can eventually
reach a real network, there is a need to create the real network packet from the one that is used

25

inside the simulator. To do this effectively without copying data at each layer, every class that
inherits from Packet has to implement AppendBytesHeader and AppendBytesFooter
methods. The use of this method while creating the real network packet is illustrated in Figure
4; the data from all protocol layers are added to one buffer.

Figure 4: Creation of a binary packet for transmission over the real network

Links and Adapters

There are two abstract classes: Link and Adapter. Each link implementation has to be a
descendant of Link (Adapter, respectively; for adapter, also implementing IAdapter
interface is possible).

For transmission of packets from a node to an adapter, the adapter has to implement the
method SendPacket(), which is called by the node. This method enqueues the packet for a
future transmission. If the queue is empty and no packet is being sent, a new frame object is
created according to the media used (Ethernet in our example) and passed to the link
SendPacket() method. A successful transmission is recognized by the simplest way – the
same data are received back by the adapter; whether the data are the same can be recognized
just by reference comparison. If the frame cannot be sent (for example a collision occurred in
Ethernet case, or the link is down), the link calls back to the adapter
PacketSendingFailed() method. Therefore, the adapter can rely on the link to be notified
about packet delivery, it does not need to implement its own timer to recognize failures. Only
one queue of packets ready to send is needed – this queue is located in the adapter object. The
adapter will send another frame only after a successful transmission of the previous one, so

26

there is no need to have a queue in the link object and no need to queue packets in the upper
layers.

Receiving a frame by an adapter is similar. The link will call a ReceivePacket() method of
the adapter; the frame has to be delivered also back to the sender as an acknowledgement of a
successful transmission.

The link behavior should correspond to a simulated technology and both links and adapters
can provide other media specific methods; for example, to simulate a ring based data delivery
(such as Token Ring), the link should internally order the connected adapters into a ring and
send the frame received from an adapter only to the next one. For bus technologies like
Ethernet, the link will deliver data to all adapters at about the same time. However, in all
cases, it should be specified which adapters can cooperate with the link and the link should
test the adapters as they are connected and refuse the connection of an incompatible adapter.

Figure 5: Links and adapters - abstract classes + Ethernet example

Figure 5 shows a class diagram of links and adapters. All adapters and links are descendants
of StructureObject or implement IStructureObject interface. This ensures that all will
implement a common functionality such as providing information whether enabling and
disabling is available. It is shown that actual Ethernet link implementation classes derive from
the Link class and adapter EthernetAdapter derives from Adapter.

In addition, a class ProtocolSettings is associated with an adapter. Only IP networks are
supported in this version; however, future extension to other protocols is allowed. Therefore,
it is possible to assign more than one protocol and its basic settings to the adapter. While a
packet is being sent, the node should decide to which adapter the packet should be transferred.
The adapter decides, according to this protocol specific information, whether it is the right
one for packet delivery.

27

Nodes and Modules

As described in Chapter 2, nodes are associated not only with adapters, but also with modules,
that actually provide node functionality. The node maintains a sorted list of modules that are
present on the node. Whenever a frame is received through any adapter, the adapter creates a
structure called PacketInfo that is used for passing packets up and down through the
linearized protocol stack. The received frame is actually a chain of Packet class descendant
objects; the adapter stores a reference to the first one to the RawPacket field in PacketInfo
and a reference to the second one (that should be processed by a module) to the field Packet.
Then, the structure is forwarded to the node. The node itself does not know how to handle
packets; it just passes the structure to the first module in the list. The module should look at
the Packet field in the structure (or also other fields); determine whether it is a known packet
type and whether it should be processed. If not, it does not do anything and the node will pass
it to the next module.

In case the module should process the packet, it can either set the reference to the whole
PacketInfo to null, which means that there is no need to continue in forwarding the packet
up the protocol stack; for example, if the IP module recognizes that the packet target is not a
current node and performs routing to the next hop destination. Second, the fields in
PacketInfo can be just changed; mostly it is the member Packet, which is changed to point
to the packet object of the next layer.

An example of packet receiving is depicted in Figure 6; the objects in dotted boxes are always
the same, of course, they are shown multiple times to make the figure more understandable.
Thanks to the RawPacket reference, any module can have complete information about the
frame received; therefore, an Ethernet switch can be implemented as a module and there is no
need to have different types for nodes that operate at link layer.

Any module can also send a packet; it creates its own PacketInfo and calls SendPacket()
method on the node. The node then passes the packet info down to all modules layered below
the sending one and they can change the packet being sent appropriately – mostly new packet
objects that contain low level packet headers will be added to the chain. If some module sets
RawPacket while the packet is being sent, it forces the adapter not to add its own headers and
take the packet as a raw frame; this allows modules to have direct access to the link media.
However, in such case, the module should exactly know the links the node is connected to –
this would be used probably for nodes operating at link layer, such as previously mentioned
Ethernet switch.

28

Figure 6: Passing received packet up the protocol stack

The modules have to either inherit from an abstract class Module or implement IModule
interface to allow the node handle any type of module. Figure 7 shows some examples of
modules that are implemented and the relationships between Module, Node, and
StructureObject classes.

29

Figure 7: Examples of modules and their relationship to the node

Modules can interact each other; for example, when IPModule receives a packet that should
be forwarded to an unknown destination, an ICMP message should be generated and sent
back to the sender. However, a separate module called IcmpModule handles ICMP messages;
therefore, IPModule instructs it to send a ‘Destination Unreachable’ message. Nevertheless,
how can the IPModule reach ICMP, if only the node has a list of references? Each module can
have a name, which is specified in the virtual network configuration file, and other modules
can ask the node to obtain a reference to the module of such name. Although the reference can
be obtained, modules should not store the reference for future use and should ask for it each
time they need it, since the node configuration could change and the previously obtained
reference may be invalid12.

Modules also lie in between the communication of applications and the node. For example,
when an application creates a socket, it registers itself in the SocketModule and all
communication goes through this module.

Applications

Applications are an important part of a network structure since they generate traffic sent over
the network. NetSim provides two possibilities to allow an application to run on the specific
virtual node. The first one called Remote Sockets is intended for the existing real applications
without recompilation; Chapter 4 describes it in detail. The second possibility is writing a new
application or modifying an existing one to run on the virtual network.

12 In future releases, the node could return reference to a proxy object of a module, which will know that its
module has been deleted.

30

Writing an application specifically for NetSim involves creation of a subclass of
NodeApplication or implementing INodeApplication interface. When inheriting
NodeApplication, Run() method, which is called from Start(), should be overridden.
Start() just encapsulates Run() by error checking and letting the simulator know about
uncaught exceptions that occur in the application. When implementing an interface, just
Start() is needed. Figure 8 shows the NodeApplication class, some descendants
implemented in the NetSim library and their relationship to the node.

Figure 8: Examples of applications and their relationship to the node

While the simulator is starting, it creates a separate thread for each application and executes
the Start() method, which is like Main() for a regular application. Then, if the application
needs more threads, it can create them as usual; however, they should be registered by the
NodeApplication object. This is necessary for the simulator to be able to pause/resume the
simulation process. If the pause is requested, all threads, including the applications, should be
suspended, because the application could try to send data and report errors to the user (that
data would remain queued and would not be delivered).

Libraries

The previous chapters described the core of the simulator. However, for practical use also a
set of functionality is required. As it is not possible for every user to create his/her own nodes,
links, and protocols implementation, NetSim provides a standard library. Ethernet library is
separated as a small example showing how to extend the simulator with a new functionality.
(Some classes included in those libraries were shown in previous figures.)

While the simulator is starting, it loads the libraries according to a configuration file. The
main configuration file can contain for example the following elements:

31

<Extension path="<path>/NetSimEthernet.dll">
 <PacketFactory class="NetSim.Ethernet.EthernetPacketFactory" />
</Extension>
<Extension path="<path>/NetSimLibrary.dll">
 <PacketFactory class="NetSim.Library.LibPacketFactory" />
</Extension>

This tells NetSim to load two libraries. Those libraries are then searched for classes specified
further in the configuration file. The search is performed sequentially in the order the
extensions are specified; it is possible to use some functionality from the second library and
some replace by the first library. However, this is not a recommended procedure, using
different class names or different namespace in each library is much better technique.

Every extension can have any number of Packet Factories. If the extension adds a new type
of protocol, it probably needs to use new packet type. As soon as the simulator runs separately
from the real network, those new types of packets are created/sent/received only by this
extension, which knows their structure. However, if those types of packets come from the live
network, they are just a sequence of bytes and the simulator has to know how to create
Packet object from that sequence. The simulator (usually some module) knows the network
layer (in the sense of ISO/OSI model) at which the packet is used and some identification
from the lower layer13. This is the only information available for packet identification.

Therefore, when loaded, the packet factory tells NetSim the types of packets it can create: the
ISO/OSI layer and packet type identification. When needed, the simulator then asks the
factory to create packet object from an array of bytes.

The description of classes implemented in the libraries distributed as a part of the NetSim
package follows. Great Comer’s book about TCP/IP and adequate RFC documents have been
used as a reference for the implementation [4].

Standard NetSim Library

This library provides implementation of core components that are needed for practical use of
the simulator; it will be definitely enlarged in future versions. The currently implemented
features include: TCP/IP protocols, RIP routing, interconnection to the real network, and
SocketModule used for data transfer between virtual node and NetSimSocket (a socket that
can be used by applications running on virtual nodes and provides the same interface as
standard system socket).

TCP/IP protocol suite
The support of TCP/IP includes the implementation of packets, packet factories, and
especially modules that support for example routing, resending, or sorting of out of order
delivered packets.

13 That identification coincides with identification numbers assigned by IANA organization. The numbers
assigned can be found at http://www.iana.org/assignments/protocol-numbers

32

IPModule is the basic module in TCP/IP implementation. It handles the core IP functionality:
fragmentation, defragmentation, and routing. It maintains a routing table internally; entries
can be added either via the configuration file, or dynamically by other parts of the node while
the simulator is running (see RIP below). It also uses IcmpModule to send ICMP messages if
some error should be reported to remote node.

IcmpModule should be layered over IP; it is capable of sending and receiving ICMP
messages. Either reacts to incoming messages (ping), or provides support for other modules
or applications for error reporting to remote destinations.

UdpModule is quite a simple module implementing UDP protocol.

Compared to UDP, TcpModule is a complex implementation of TCP protocol. It provides
support for establishing connection and disconnecting, resending data, sorting of data that
came out of order.

RIP
Currently only the second version of the RIP protocol is supported. It is covered by a single
application that takes advantage of a socket support in NetSim. The application listens on the
port specified in the configuration file and periodically sends a routing table to neighbor
routers (also from the configuration file).

It cooperates with an IPModule, where the routing table is stored, reads and changes the
routing information appropriately.

External Connection

This is a single module ExternalConnection, which internally uses WinPcap (or libpcap on
Linux) to send and receive packets. Currently the wrapper SharpPcap is used [6], but it was
modified and many code remains unused; an exclusion of SharpPcap and using packet capture
library directly is one of the tasks in the TODO list.

While the simulator is configured, the capture library is initialized; the device where it should
listen is specified and opened. Then, at the time the simulator is started, the packet capturing
is started too. When a packet arrives, it is parsed, the simulator internal representation of the
packet is created and it is sent to the virtual network. On the other hand, if the packet is
received by the module from the virtual network, an array of bytes is created and sent through
the packet capture library to the real network.

This module is intended to be the only one module on the node. For a description of how to
interconnect virtual and live networks see the User’s Manual in Appendix C, page 60.

Ethernet Library

Ethernet library could be a part of the standard library; however, it is intended to remain as a
small example library, even if the standard library will grow. It is a good example for the
developers that will add their own libraries, since it shows addition of a new protocol with
packet factory and one simple module (for Ethernet switching).

To support Ethernet functionality fully, an adapter (EthernetAdapter), link (EthernetLink),
frame (EthFrame), and address (EthMacAddress) are implemented; all of them are the

33

descendants of particular abstract classes intended for extending the set of the network
components.

EthFrame is a new packet (frame, actually) type; along with the type, its factory that should
be registered with the simulator is implemented.

EthernetLink provides a common algorithm for delivery, such as applying delay and
collision recognition if two frames are sent at one time. Two other classes are further inherited
from that class, they differ just by the link speed (delay after the frames are sent further):
Ethernet10Base2 and Ethernet100TX.

EthernetAdapter wraps incoming packets to the EthFrame and sends – it does not need to
be connected exactly to the EthernetLink; however, resending with exponential back-off is
included, so it works well together with collision detection implemented by the link; exactly
as the real Ethernet. The adapter has also its own ArpCache object that stores the upper-layer
address to MAC address mapping. The adapter itself sends and receives ARP packets and
sends the request automatically if the packet to an unknown destination address should be
sent.

EthMacAddress is an address implementation allowing the simulator to handle the Ethernet
addresses easily via its parent class NetworkAddress.

Finally, a module LearningSwitch implements the behavior of a cheap non-configurable
Ethernet learning switch.

User Interface

The previous chapters described the internal simulator components; however, how nicely the
simulator engine is designed and implemented is maybe not so important for the users, as they
will appreciate a subtle and usable interface. There are both console and graphic UI available;
however, the graphic is implemented currently for Windows only.

Console

Console application is very simple; it just parses command line arguments, loads simulator
assembly, configures the simulator and prompts the user to write commands. Currently only
enabling/disabling of the simulator components is available (plus printing some information),
the network structure cannot be changed through the console commands. Changing the
configuration scripts directly is needed while using the console only. However, a set of scripts
generated by the graphic application also can be used (since GUI uses console internally).

Graphic Application

Graphic application (GUI) is both a network designer and a tool for running simulations. It
allows a creation of the simulated network by simply using drag&drop from the panel of
predefined network components. The application is also designed to be extensible, new
components can be added by modification of a configuration file that is checked each time the
application starts and all predefined components are added to the panels of nodes and links (a
screenshot is shown in Figure 23 on page 63).

34

GUI maintains a main configuration file, since its format is known, and therefore it can be
modified according to the changes to the virtual network made by the user in the designer. On
the other hand, configuration files for separate network components cannot be simply
modified since their format is generally unknown; however, the GUI is capable of starting a
user-defined editor for modifying that configuration files.

To provide a better application stability, the simulator runs within a separate process;
therefore, if there would be some error in the simulator that would make the process unstable,
the graphic application will continue and inform the user about such bad event. For this
purpose, GUI runs the console application internally and some commands are sent directly to
its standard input. (Moreover, the console is also available to the user within the GUI.)

Nevertheless, not all communication between GUI and the simulator is done via the console, a
connection via .NET Remoting is also used (see Remote Control, page 20).

More information on using the simulator can be found in Appendix C, page 60.

35

4. Remote Sockets
This chapter introduces the Remote Sockets feature, which is unique for NetSim and is not
present in other existing network simulators. Remote Sockets allows redirection of any
application network communication to any node in the virtual network. It is obvious that this
feature is operating system specific; this work focuses only on MS Windows. Support for
other operating systems might be added in the future14.

Redirection of an application communication requires interception of a way in which data are
delivered between the application and a network card driver. Windows provide two points
where it is possible to insert a component that all data will go through it.

First, it is the NDIS15 kernel driver. NDIS allows for creation of three types of drivers:
Miniport, Intermediate, and Protocol. Miniport driver provides communication between
hardware (network card) and NDIS library. Protocol drivers transfer data between NDIS and
upper layer protocol (via private interface). Intermediate drivers are layered in between and
can have any purpose, e.g. data filtering or, in our case, data redirection [10]. Described
architecture is shown in Figure 9.

Figure 9: NDIS Driver types and layering16

However, this implementation brings many issues. Firstly, the need of kernel driver
development and then its installation, which requires administrator privileges and many
administrators prefer to avoid the installation of additional drivers (especially those not signed
by Microsoft). Secondly, protocol headers changes. While the data goes through the protocol
stack, headers containing addresses and other information are added to form packets.

14 For Linux, LD_PRELOAD environment variable can cause loading different library than the standard one,
which can replace socket function calls and therefore redirect network data transfer.

15 NDIS stands for Network Driver Interface Specification.

16 The figure was taken from MSDN Library.

36

However, the local machine address is used as the sender address and in many cases also the
destination will differ from the one that should be assigned in the virtual network. Thirdly,
performance issues; there would be a lot of work done for nothing. Headers added by the
system protocol stack would have to be changed, checksums recomputed. The advantage of
this approach is quite simple interface to the upper and lower layer; just “packet is coming”
and “send this bunch of data”.

Second possible point of interception is the protocol stack itself. Windows Sockets allows
changes to the stack by so called WinSock Catalog, which is maintained by the system and
describing installed protocol chains. When a socket is being created, the system determines
which chain is the best according to the address family, socket type, and protocol specified.

One entry in the protocol chain is called service provider; two types of service providers can
reside in a chain: base provider and layered service provider. Base provider is always the
lowest one and provides communication with the NDIS protocol driver. Any number of
layered providers can be installed over the base provider – they can provide for example
authentication or security [18]. In the case of NetSim, the provider would redirect WinSock
calls to NetSim implementation redirecting them to the virtual network. This solution
eliminates all disadvantages mentioned in the first case, but there is one main drawback: a
necessity to implement a huge WSP interface. However, this is the solution chosen for this
work.

Base Protocol

WinSock 2 DLL

Layered Protocol

Layered Protocol

API

SPI

SPI

SPI

Figure 10: WinSock Protocol Chain17

Layered Service Provider

As mentioned above, Layered Service Provider that will be installed over other providers is
implemented. Microsoft provides an example of simple layered provider in its Platform
SDK18; a LSP for redirecting network communication is based on that example.

17 The figure was taken from WinSock WSP Interface documentation.

18 Windows Server 2003 SP1 Platform SDK was used for the development; there is currently new release named
Windows Server 2003 R2 Platform SDK available. Both of them can be downloaded at
http://www.microsoft.com/downloads/

37

First, some basic background how the LSP works should be presented. When the application
is about to use network communication through WinSock, it calls socket() function to create
a new socket. This forces the WinSock library to be loaded; it determines which protocol
chain is the best for such type of socket and loads appropriate DLLs for providers in the
chain. Provider’s DLLs are regular native unmanaged libraries; DllMain() is called to
initialize the library. Then, WinSock invokes WSPStartup() to determine some information
about the provider and addresses of other provider functions; it also provides a table of
function pointers to its own functions that can be called by the provider. During the
initialization process, if the provider is a layered provider, it initializes the lower layer
provider, gets its set of functions etc.

Because the layered providers’ DLL is loaded into the original process address space, some
kind of inter-process communication with the simulator is needed. Moreover, when installed,
the LSP will be loaded and used in each application using network communication;
obviously, only some set of applications should be redirected. Therefore, LSP requires also
information which application to redirect.

Since NetSim is written for .NET framework in C#, its ‘natural’ inter-process communication
is .NET Remoting. It is probably also the only choice if the simulator should remain
completely managed and independent of unmanaged code (for accessing Windows API);
therefore, the LSP has to use .NET Remoting too. However, it is not so straightforward. Using
remoting requires using managed code, but we have mentioned that providers’ DLL is
unmanaged. This implies the need of mixed DLL; using just Platform Invoke19 is not enough
since calling managed code from unmanaged is required. One issue arises: mixed DLL
requires a managed runtime initialization function to be called as the first of all functions in
the library. However, because the LSP DLL is loaded by WinSock, this requirement cannot be
met. A solution is to write two DLL libraries: one unmanaged loaded by the WinSock (it is
called LSP in this document) and one mixed loaded by the LSP (called LSPWrapper).

Redirection within the LSP
The Microsoft provided LSP example creates an internal structure for each socket; this
structure contains also a pointer to another structure with the information about the lower
layer provider, which then contains a table of function pointers used to access lower layer
providers’ interface. This behavior can be simply availed: while creating the socket, if the
communication should be redirected20, the pointer to the providers’ info can be changed to
different structure created for the purpose of redirection. After the socket is created, no
function call using that socket will call the functions of the lower layer provider, but different
ones that will redirect the communication to NetSim.

19 Mixed DLL means one DLL including both managed and unmanaged code. Platform Invoke is .NET feature
for simplifying calls from managed code to unmanaged, parameters and return values are converted (marshaled)
automatically. For more information, see MSDN library.

20 For the information which application should be redirected, shared memory and process ID is used. See
Redirection Manager, page 39.

38

Making the redirection in that manner has two advantages. Firstly, detecting whether to
redirect or not is done only once for each socket. Additional usage of the socket, e.g. for data
transfer, is redirected automatically. Secondly, the solution is robust, because it is impossible
to redirect only a part of the communication, so the lower layer provider cannot become
confused about a function call for a socket that had not opened.

Communication with the Simulator

As previously mentioned, communication between LSPWrapper and NetSim is done via
.NET Remoting. Although it allows communication on one computer only, currently Shared
Memory Channel (ShmChannel) is used [13]. TCP channel would be much more flexible,
allowing an application to run on a different computer than the simulator. However, using a
channel that requires network communication is a non-trivial task, because the redirection of
one network access would cause another network communication (within the same process)
and that additional network access should not be redirected. Simple global counter of provider
function calls fails, because the application can use more threads to access single socket. Per-
thread counter is not the right solution too, since .NET internally creates some additional
threads to perform data transfer. Adding the possibility to run the application on a different
machine than the simulator is one of the tasks in the TODO list (see Further Work, page 52).

The description of the method the simulator is accessed follows. When an LSPWrapper is
loaded, it registers ShmChannel for further usage. Then the wrapper waits for the socket()
call by the application, which communication should be redirected to the simulator. At this
time, it tries to obtain remote reference to RemoteSocketsManager object; that object
manages remotely created sockets in NetSim. If it fails, socket() function returns error,
otherwise the remote object (residing in the simulator address space) is called, creates
NetSimSocket and returns some internal identification of such socket, which is then returned
to the calling application. For all additional accesses to that socket, the same reference to the
RemoteSocketsManager is used, since RemoteSocketsManager lifetime never expires.

Callbacks

Obviously, sometimes the simulator needs to call an application, for example if an
asynchronous receive operation has been requested and new data came through the virtual
network. For such case, an object that can be remotely accessed should reside in the
LSPWrapper. There can be only one such object per process, or one object for each created
socket. Because the number of sockets created by the application is usually not large, the
second option is implemented. It eliminates the need of transferring socket identification and
than lookup for the information about the socket. (However, that table of opened sockets
exists since only the identification of a socket comes when LSP is called by the application.)

A structure of LSP, LSPWrapper, and the simulator communication is shown in Figure 11.

39

Figure 11: LSP, LSPWrapper, and simulator interaction

Redirection Manager

Finally, the way of letting the LSP know which communication should be redirected and
which should pass through to the lower layer shall be discussed.

Realize that such information should be common for all applications that use or would
possibly use Windows sockets. Moreover, the access to such information should be fast,
otherwise it will slow down all applications that uses the network. Because of those two

40

requirements, shared memory in LSP was chosen. Currently its size is fixed and therefore the
maximum number of redirected applications cannot exceed 32 (of course, the value can be
changed, but currently in the source code only).

What is the information in that shared memory? First, an identification of an application.
Because we need a unique per computer identification, process ID is probably the best choice,
which is commonly used in such situations. Second, a virtual node to which the
communication should be redirected. Since node names are unique in the simulator, node
name is adequate. Although this is currently enough (only the redirection to one instance of
simulator running on local computer is supported), server IP address and port have been
added for future use, allowing more than one instance of simulator running on different
computers.

To allow modifying a set of applications (processes) being redirected, a small graphic
application called Redirection Manager was developed. It simply loads LSP into its address
space and modifies the shared information for redirecting, so all processes that use WinSock
know about the change, because they have loaded LSP DLL. That application allows
displaying currently valid redirections, adding new redirections based on process ID, running
new application and redirecting its communication immediately. A screenshot is shown in
Figure 12; console application for this purpose is not created yet; however, its implementation
is planned (see Further Work, page 52).

Figure 12: Redirection Manager

41

Note to the Implementation

In this version, the Remote Sockets feature is marked as EXPERIMENTAL, because the code
is not finished yet, nor well tested. However, testing of some working scenarios has shown
that ideas described in the previous paragraphs are applicable and the redirection is fast
enough for practical use. Examples of applications currently working with this version of
Remote Sockets are Telnet or WinSCP.

42

5. Practical Tests
In this chapter, some examples of the NetSim usage are shown; this should demonstrate a
practical usability of the current version.

A machine running NetSim is always the same: CPU AMD Athlon XP 1800+ (1.54 GHz),
1 GB Memory (DDR2, 400MHz), Windows XP SP2. All network connections are 100 MBit
Ethernet. Other computers do not do anything sophisticated; they are fast enough to process
the incoming or outgoing traffic; the speed of network connection is a limitation for them.

Using Virtual Nodes from Live Network

The following text will demonstrate that the virtual network actually behaves like real to other
computers. The situation is shown in Figure 13.

Figure 13: Accessing virtual network test

Figure 14: Virtual network in the NetSim GUI application

43

PC1 is running the virtual network that is provided as an example in the NetSim package.
Figure 14 shows its design in the NetSim GUI, Figure 15 then its structure along with the
connections to the real computers.

Figure 15: Network structure for the accessing virtual netwok test

The Server is a regular Linux server; RIP routing is enabled. It has set up two virtual routers
that attach directly to the real network as neighbor routers that should receive routing
information; those routers also have the Server’s address in their RIP configuration file. PC2
will run the applications that will access the virtual network on PC1. Moreover, it has set
Server’s IP address as a default gateway, therefore the RIP on virtual nodes should be running
properly to enable PC2 and Server access all virtual nodes.

The first test was just ping to the virtual network; it should be working and the return time
should be quite stable, as it will be in the real network with low traffic. Ping was performed
from PC2 to the “RipRouter E” node (192.168.70.2).

44

The ping test has been made twice, first with 512 bytes of data, second with 50,000 bytes of
data. Times of the first one vary from 7 to 12 ms, times of the second one from 79 to 86 ms. It
should be noticed that the same ping of 50,000 bytes directly from PC2 to the Sever is about
20 ms. The original console output follows.

Pinging the “RipRouter E” virtual node (over 2 virtual hops) with 512 bytes of data:

C:\>ping -t 192.168.70.2 -l 512

Pinging 192.168.70.2 with 512 bytes of data:

Reply from 192.168.70.2: bytes=512 time=10ms TTL=126
Reply from 192.168.70.2: bytes=512 time=8ms TTL=126
Reply from 192.168.70.2: bytes=512 time=12ms TTL=126
Reply from 192.168.70.2: bytes=512 time=10ms TTL=126
Reply from 192.168.70.2: bytes=512 time=9ms TTL=126
Reply from 192.168.70.2: bytes=512 time=8ms TTL=126
Reply from 192.168.70.2: bytes=512 time=12ms TTL=126
Reply from 192.168.70.2: bytes=512 time=10ms TTL=126
Reply from 192.168.70.2: bytes=512 time=9ms TTL=126
Reply from 192.168.70.2: bytes=512 time=7ms TTL=126
Reply from 192.168.70.2: bytes=512 time=11ms TTL=126
Reply from 192.168.70.2: bytes=512 time=10ms TTL=126
Reply from 192.168.70.2: bytes=512 time=8ms TTL=126
Reply from 192.168.70.2: bytes=512 time=13ms TTL=126
Reply from 192.168.70.2: bytes=512 time=11ms TTL=126
Reply from 192.168.70.2: bytes=512 time=10ms TTL=126
Reply from 192.168.70.2: bytes=512 time=8ms TTL=126
Reply from 192.168.70.2: bytes=512 time=12ms TTL=126
Reply from 192.168.70.2: bytes=512 time=11ms TTL=126
Reply from 192.168.70.2: bytes=512 time=9ms TTL=126
Reply from 192.168.70.2: bytes=512 time=8ms TTL=126
Reply from 192.168.70.2: bytes=512 time=12ms TTL=126
Reply from 192.168.70.2: bytes=512 time=10ms TTL=126
Reply from 192.168.70.2: bytes=512 time=9ms TTL=126

Ping statistics for 192.168.70.2:
 Packets: Sent = 24, Received = 24, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 7ms, Maximum = 13ms, Average = 9ms

Similar to above, but with 50,000 bytes of data:

C:\>ping -t 192.168.70.2 -l 50000

Pinging 192.168.70.2 with 50000 bytes of data:

Reply from 192.168.70.2: bytes=50000 time=86ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=82ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=83ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=79ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=83ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=80ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=81ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=81ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=81ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=82ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=80ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=81ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=80ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=81ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=80ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=81ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=80ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=82ms TTL=126
Reply from 192.168.70.2: bytes=50000 time=80ms TTL=126

Ping statistics for 192.168.70.2:
 Packets: Sent = 19, Received = 19, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 79ms, Maximum = 86ms, Average = 81ms

45

Next, the traceroute command was executed:

C:\>tracert 192.168.70.2

Tracing route to 192.168.70.2 over a maximum of 30 hops

 1 <1 ms <1 ms <1 ms 192.168.1.1
 2 13 ms 15 ms 15 ms 192.168.1.7
 3 14 ms 15 ms 15 ms 192.168.60.2
 4 14 ms 15 ms 15 ms 192.168.70.2

Trace complete.

After this trace, “RipRouter A” node was disabled. Since the previous route goes through that
node (192.168.1.7), the traceroute commands executed afterwards was not able to reach the
destination. However, after few minutes RIP updated routing tables and an additional route
was found, as the next traceroute output demonstrates:

C:\>tracert 192.168.70.2

Tracing route to 192.168.70.2 over a maximum of 30 hops

 1 <1 ms <1 ms <1 ms 192.168.1.1
 2 10 ms 15 ms 14 ms 192.168.1.8
 3 10 ms 15 ms 15 ms 192.168.55.2
 4 10 ms 15 ms 15 ms 192.168.70.2

Trace complete.

The traceroute output shows also a bottleneck of the data transfer – that is a transfer of
packets between real and virtual network. Even though it causes delay only, it is fast enough
to transfer a lot of data, as will be demonstrated in the following section. Nevertheless, a
proposed task in the TODO list, excluding SharpPcap and using packet capture library
directly, could make these numbers a bit better.

A final test tried SimpleWebServer module running on “WebServer A”. As expected, the
web browser displayed the following page according to the SimpleWebServer application
configuration file:

Figure 16: SimpleWebServer page in a web browser

46

Interconnecting Real Nodes through the Simulated

Network

The goal of this part is to test how fast the data can flow through the virtual network. A
schema of the real network is in Figure 17.

Figure 17: Testing virtual network throughput

PC2 is running NetSim; it has two physical interfaces, one connects to the PC1 and the
second one to the PC3. The virtual network has two “ExternalConnection” nodes; the first one
captures and sends files to the interface connected to PC1, the second one to the other
interface. Data are transferred via four routers in the virtual network; its design in NetSim
GUI shows Figure 18, complete network structure including both real and virtual networks is
depicted in Figure 19.

Figure 18: Virtual network for throughput test design

Figure 19: Throughput test network structure

A very large file has been transferred from PC1 to PC3. As Figure 20 demonstrates, the speed
was usually above 3,000 kilobytes per second, which is almost 25 Mbps. The machine
running NetSim had CPU usage about 50-60% during the transfer.

47

Figure 20: Data transfer speed over the virtual network

Running a Real Application on the Virtual Node

The final test is focused on the Remote Sockets feature. It uses an application that is known to
work with current experimental version of Remote Sockets – WinSCP. The test configuration
is shown in Figure 21.

Figure 21: Remote Sockets test

The PC is running virtual network; again, the example network provided with NetSim is used
(see Figure 15 on page 43). The WinSCP application is redirected to the “Workstation2”
node, connected to the remote server in the Internet, and large files are downloaded and
uploaded.

The file transfer worked well; large file of about 10 MB was uploaded and then downloaded.
The screenshot of packet capture at the same interface where the virtual network is connected
is shown in Figure 22. It evidences that the file transfer was really from “Workstation2” node
(192.168.65.50).

48

Figure 22: Ethereal screenshot while uploading the file

49

6. Conclusions
The purpose of this chapter is to summarize the work, the fulfillment of its goals and
contributions. It also suggests possible directions of further work.

Summary

According to an original thesis submission, a main goal of this work should be providing an
implementation of a computer network simulator that will be suitable for teaching, testing of
network monitoring tools, and deploying so called ‘honeypots’. The first chapter discusses the
sense of such usage combination, shows that some requirements for teaching versus
honeypots are contradictory and that it would be better to provide just a tool for teaching and
testing. In addition, existing simulators are compared and their feasibility for such usage is
dissected.

The second chapter introduces the NetSim architecture, discusses the alternatives and reasons
for the choices made. Chapter 3 then explains in detail how the ideas from Chapter 2 are
implemented.

Chapter 4 introduces the Remote Sockets feature that allows redirection of any network
communication to a node in the virtual network; this unique feature is not supported by any
other simulator.

Chapter 5 demonstrates some usage scenarios and NetSim performance under various test
conditions.

Comparison to Other Simulators

A comparison according to some impartial and measurable criteria would be a very hard task:
the main purpose of each existing simulator is different; therefore, formulation of criteria to
compare is almost impossible. For example, a speed of the simulation could be a well
measurable criterion. However, a lower speed is not a handicap for teaching and in most cases
also testing.

Discussion about features that are available in individual simulators is presented in the first
chapter. A table summarizing the features of existing simulators is shown on page 12; the
same table having one additional column for NetSim follows.

50

Requirement

N
S

-2

C
N

E
T

JN
S

O
P

N
E

T

A
d

ve
n

tN
e
t

N
C

T
U

n
s

N
e
tS

im

Easy installation � � � � � � �

Requires writing no code to build simulated
network

� � � � � �
�

Simulation at link layer level � � � � � � �

Network structure visualization �

� � � � � �

Data flow visualization � � � � � � �

Extensibility of network components � � � ?
 � � �

Extensibility of supported protocols � � � � � � �

Wide range of protocols supported � � � � � � �

Interconnection to the real network � � � ?
 � � �

Runs on Linux � � � � � � �

Runs on Windows � � � � � � �

Source code available � � � � � � �

 �present �not completely present

 � not present ? not known

The table shows that NetSim meets most requirements among of all simulators. Moreover, the
missing support for wide range of protocols cannot be simply compared to other simulators
since this is just the first version. In addition, data flow visualization can also be implemented
in some of future releases.

It is obvious that the support of some feature by NetSim does not mean that the feature is the
best. For example, other existing simulators have much more sophisticated graphic
environment. However, those drawbacks would certainly be gradually eliminated in new
versions.

The next chapter describes separate requirements in more detail.

Goals Fulfillments

The features that should be included in NetSim are listed in Chapter 1 (see Project Goals
Revisited, page 13). The following table summarizes them and provides comments to the
implementation.

51

Requirement Fulfilled? Comment

Easy installation Yes The installation can be done just by copying the directory
tree to the target machine; on Windows is then finished
by executing one batch script. (For Remote Sockets usage
the installer is currently needed; however, it asks only a
few simple questions.)

No code when
creating the simulated
network

Yes A graphic application for designing the virtual network
structure is implemented; just modifying configuration
files of separate network components is needed. On
Linux, where the graphic tool is not currently available,
creating manually one additional configuration file is
required.

Link layer simulation Yes The simulation is done at a link layer, Ethernet
implementation is provided.

Network structure and
data flow visualization

Partially Network structure visualization is satisfied thanks to the
graphic application, which allows also modification of
the network. Data flow visualization is not implemented
in this version.

Extensibility Yes The simulator allows the addition of new components and
protocols. It is done by implementing a class (in any
language for .NET) that derives from an abstract class
provided or implements a specific interface. Moreover, a
set of predefined components in the graphic application
can also be easily extended by modifying application
configuration file.

Wide range of
protocols

No Only TCP/IP protocol suite and RIPv2 for routing are
implemented. Therefore, the usability for testing of
network monitoring programs is limited (especially due
to missing SNMP).

Multiplatform solution Partially NetSim is implemented over the .NET Framework, which
is currently available for Windows and Linux. It will be
hopefully implemented for some other platforms in the
future.

As stated in the table, almost all requirements are satisfied. The only one is completely
missing due to a lack of libraries of protocol implementations – it is excusable since this is the
first version of the application. Data flow visualization is also missing because there was no
time for implementation; it will be certainly included in a new version. Finally, having the
implementation for Windows and Linux only is not so crucial since those are the two leading
platforms over the world.

52

Further Work

Since this is the first version of NetSim, there are many things to improve. Obviously, first,
unfinished and not well-tested parts of the simulator should be completed. Afterwards new
features and libraries can be added. A list of things to do follows – current priority
corresponds to the list order. However, priorities are subject to change depending on the users
feedback and the purpose for which the simulator will be mainly used.

1) Complete Remote Sockets feature. Windows Sockets Layered Service Provider
interface is not completely implemented; there are obviously many programs not
working. Moreover, the installation of this LSP breaks the network connection on
many computers. This feature should be well tested on all versions of MS Windows.

Running Remote Sockets over the network (via TCP channel) results currently in non-
trivial problems; only local redirection via shared memory can be used for now.
Solving this issue will help improve the simulation performance because applications
would be able to run on the different machine than the simulator.

LSP should be also rebuilt using new release of Platform SDK (R2) from March 2006,
currently the release SP1 from May 2005 is used.

2) Exclude SharpPcap library from the project. SharpPcap is needed for communication
with the real network. However, this library is capable of crating its own internal
representation of packets etc. NetSim needs just capture an array of bytes and send
raw array of bytes to the network, nothing else. Therefore, the library was modified
and currently the main part of it is not needed. Own managed interface to WinPcap
(libpcap) would be a much more plain solution.

3) Deeply test the simulator in a multiprocessor environment for race conditions.
Because the author does not have access to any multiprocessor machine, the simulator
was not tested in this environment. Although it was implemented carefully with
respect to such conditions, because threads are widely used in the core of the
simulator, it is possible that some bad situations are not handled.

4) Implement SNMP and DHCP support.

5) Add capturing of packets support; at least dump packets traveling over the link to a
file that can be read by third-party tools such as Ethereal [5].

6) Implement data flow visualization in a graphic application.

7) Move all strings displayed to the user to separate file that can be localized.

8) Implement more network protocols (OSPF, IPv6).

9) Implement more network components (Application running FTP, …; another link
layer protocols such as ATM or FDDI).

10) Add console interface for remote sockets. This will be useful to redirect applications
in the script.

11) Add Remote Sockets for Linux.

53

7. References
[1] AdventNet, Inc.: AdventNet Simulation Toolkit.

http://www.adventnet.com/products/simulator/ 10

[2] BenDi, PriorityQueue. http://www.codeproject.com/csharp/PriorityQueue.asp 19

[3] Clifton, Mark: .NET’s ThreadPool class – Behind the Scenes.
http://www.codeproject.com/csharp/threadtests.asp 19

[4] Comer, Douglas E. (2006): Internetworking with TCP/IP, fifth edition. Pearson Prentice
Hall, Upper Saddle River, New Jersey. 31

[5] Ethereal Network Analyzer. http://www.ethereal.com/ 52

[6] Gal, Tamir: SharpPcapLibrary,
http://www.tamirgal.com/home/dev.aspx?Item=SharpPcap 22, 59

[7] Keshav, Srinivasan: Computer Science Department Technical Report 88/472, UC
Berkeley, 1988. http://www.cs.cornell.edu/skeshav/real/ 11

[8] Krasser, Sven at al.: The use of honeynets to increase computer network security and
user awareness.
http://www.ece.gatech.edu/research/labs/nsa/papers/use_of_honeynets.pdf 6

[9] McDonald, Chris: CNET Network Simulator. http://www.csse.uwa.edu.au/cnet/ 9

[10] MSDN Library, NDIS Drivers.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/NetXP_d/hh/NetXp_d/102gen_24174df5-78af-48f3-8853-563c44c2e852.xml.asp 35

[11] NS-2 Network Simulator. http://www.isi.edu/nsnam/ns/ 9

[12] OPNET Technologies: OPNET IT Guru Academic Edition. http://www.opnet.com/ 10

[13] Prošek, Ladislav (2006): Shared Memory Channel, Phalanger Project, http://www.php-
compiler.net 59

[14] Scalable Network Technologies: QualNet Network Simulator. http://www.scalable-
networks.com/ 11

[15] Toub, Stephen: ManagedThreadPool.
http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=BF59C
98E-D708-4F8E-9795-8BAE1825C3B6 19, 56

[16] Vollset, Einar W.: Java Network Simulator. http://jns.sourceforge.net/ 10

[17] Wang, S.Y. et al.: The Design and Implementation of the NCTUns 1.0 Network
Simulator, Computer Networks, Vol. 42, Issue 2, June 2003, pp.175-197. 10

[18] Windows Sockets 2 Service Provider Interface documentation.
ftp://ftp.microsoft.com/bussys/winsock/winsock2/WSSPI22.DOC 36

54

8. Appendixes

Appendix A – other network simulators

NS-2
http://www.isi.edu/nsnam/ns/

NS-2 is one of the first network simulators which was funded by DARPA. It is written in
C++, the simulation requires writing scripts in OTcl (object extension of Tcl language). After
about 15 years of development, it is stable and many contributors created extensions that
support other protocols than TCP/IP. Requires Unix-like operating system, the source code is
available.

QualNet
http://www.scalable-networks.com/

A commercial network simulator that supports a wide range of protocols; some of them are
also written by third parties. Even though it is commercial, they provide the simulator for
research and education to the universities. Runs on Windows, Unix-like OS, Solaris, and
Apple. Core written in C/C++, some tools in Java. Includes GUI for creating virtual network
topology.

CNET
http://www.csse.uwa.edu.au/cnet/

Developed for education purposes at The University of Western Australia. Written in C, it
requires writing scripts describing the simulated environment. Requires Unix-like operating
system. The simulation can be affected through C API.

AdventNet Simulation Toolkit
http://www.adventnet.com/

A commercial simulator running on Windows, Linux and Solaris. Supports SNMP, Cisco
IOS, it has GUI for creating simulated network topology.

REAL
http://www.cs.cornell.edu/skeshav/real/

Developed at Cornell University for research of flow and congestion control. Written in C, it
requires Unix-like OS, Solaris, or some others. Currently also GUI RealEdit for building
network topology is available.

RouterSim
http://www.routersim.com/

55

Simulator intended primarily for training of Cisco IOS, provides experience to pass Cisco
exams. Only Windows platform is supported.

NIST ATM Network Simulator
http://w3.antd.nist.gov/Hsntg/prd_atm-sim.html

Implemented at National Institute of Standards and Technology; written in C. As the name
shows, it is ATM only simulator. Requires Unix-like operating system.

Enhanced Network Simulator
http://www.cse.iitk.ac.in/~bhaskar/tens/

Developed at Indian Institute of Technology, it is an extension of NS-2 simulator. Adds some
features not included in the original NS-2 like mobility support.

NAB
http://nab.epfl.ch/

Written in Objective Caml, it is targeted at wireless ad hoc networks.

JNS
http://jns.sourceforge.net/

Java Network Simulator is Java implementation of NS-2. It is not so complete as the original,
but simplifies creating scripts and provides the same output as NS-2, so it can be processed by
any tool written for NS-2.

NCTUns Network Simulator and Emulator
http://nsl10.csie.nctu.edu.tw/

Developed at National Chiao Tung University by Prof. S. Y. Wang and his students. Supports
both wired and wireless networks, mobility and many protocols, simulations can run on a
remote computer. Requires Linux, actually Fedora Core 4.

OPNET
http://www.opnet.com/

A commercial network simulator; the subtle graphic interface allows to model not only
traditional wired networks, but also wireless networks and simulate node mobility. Some
licenses for universities for education and research are available.

56

Appendix B – Source Code Description

Core project

Core simulator functionality – thread pool for executing network events, server-side for
remote sockets, abstract classes for network structure implementation.

• Collections
o ByteArrayList.cs – Collection used for storing bytes of packets.
o DoubleHashtable.cs – Hashtable hashing both keys to values and values to

keys.
o PriorityQueue.cs – Priority queue; implemented as binary heap.
o SortedList2.cs – Sorted list allowing duplicate entries.

• Configuration
o NetSimConfig.xml – Virtual network configuration file.
o NetSimConfig.xsd – XSD schema for checking network configuration files.

• Structure
o Adapter.cs – Abstract class for creating adapters; SimpleAdapter

implementation.
o Application.cs – Abstract class for creating applications running on the virtual

nodes.
o Interfaces.cs – Some interfaces used in the Core project.
o Link.cs – Abstract class for creating virtual network links; SimpleLink

implementation.
o Module.cs – Abstract class for creating modules.
o NetworkAddress.cs – Basic class for addresses used over the network.
o Node.cs – Virtual node that carries adapters, modules, and applications.
o Packets.cs – Abstract class for crating packets, packets for carrying known and

unknown data.
o ProtocolSettings.cs – Ancestor for arbitrary protocol settings associated with

adapters.
o StructureObject.cs – Common ancestor for all objects in the virtual network.

• AssemblyResources.cs – Access to assembly resources (localized strings etc.).
• EventLog.cs – Log for errors, warnings and notices.
• Exceptions.cs – Exceptions used in the simulator.
• Factories.cs – Abstract class for creating packet factories.
• ManagedThreadPool.cs – Thread pool of threads waiting for the network event to

execute. Based on Stephen Toub’s ManagedThreadPool [15]
• NetSimSocket.cs – Socket at the virtual node; implements the same interface as

.NET Framework Socket class.
• RemoteControl.cs – An object that can be referenced remotely to control the

simulation.
• RemoteSockets.cs – Controls sockets on the virtual network created remotely. Can be

accessed remotely to execute socket operations.

57

• SimulationTimer.cs – Timer used by the simulator.
• Simulator.cs – The simulator – initializes and runs the simulation.
• Strings.resx – Resource strings that can be localized.

Ethernet project
As a specific part, Ethernet functionality was implemented independently from the main
simulator library to be an example project for creating another libraries.

• Modules
o LearningSwitch.cs – Simple non-configurable learning switch.

• ArpCache.cs – ARP cache for Ethernet adapter.
• EthFrame.cs – Ethernet packet implementation.
• EthMacAddress.cs – Ethernet address.
• EthernetAdapter.cs – Adapter for Ethernet links family.
• EthernetLink.cs – 10Base2 and 100BaseTX Ethernet link implementation.

Gui project
Graphic application that simplifies virtual network creation.

• Data
o Exceptions.cs – Exceptions used in GUI.
o GeneralData.cs – Graphic application configuration parsing and handling.
o GuiProjectData.cs – Project-specific configuration used in graphic application

parsing and handling.
o ProjectData.cs – Virtual network configuration files processing.
o XmlData.cs – Abstract class for XML files processing.

• Forms
o AboutForm.cs – About screen.
o ErrorForm.cs – Form used when an unexpected error occurs.
o ItemAppearanceForm.cs – Changing the appearance of an graphic item in the

virtual network.
o MainForm.cs – Main application form.
o NewVersionForm.cs – Form with current and newly available version

information.
o NodeItemsListForm.cs – Form used for displaying the list of items that can be

added to the node.
o NodeProperties.cs – Properties of the virtual network node.
o RenameItem.cs – Form used for renaming various network items.
o SplashScreen.cs – Splash screen displayed while the application is starting.

• App.ico – Application icon.
• Console.cs – Console within the graphic application.
• FileSystem.cs – Helper methods related to filesystem.
• GuiConfig.xml – Graphic application configuration file.
• SimulatorControl.cs – Communication with the simulator to control the simulation

process.

58

Installer project
Microsoft Windows Installer project that builds MSI package for installation.

LSP project
Layered Service Provider installed to the system; provides redirection of socket function calls.
Loads LSPWrapper to communicate with the simulator via .NET Remoting. Based on LSP
example provided by Microsoft in Platform SDK.

Only files in bold were modified or newly added, others were left unchanged or only some
minor modifications were made.

• common
o provider.cpp – Common support functions for enumerating WinSock catalog.

• install
o instlsp.cpp – Installer for inserting the LSP to the catalog.
o lspadd.cpp – Installing provider.
o lspdel.cpp – Removing provider.
o lspmap.cpp – Handling provider dependencies.
o lsputil.cpp – Helper functions used by other parts of the installer.
o prnpinfo.cpp – Printing information about the provider.

• netsim
o netsimspecific.cpp – Routines for initializing provider and handling

information about which processes are redirected.
o netsimspi.cpp – WinSock interface functions called by the LSP that interacts

with the simulator internally.
• nonifslsp

o asyncselect.cpp – Hidden window for interceptiong WSPAsyncSelect calls.
o extension.cpp – WinSock extension functions intercepting.
o lspguid.cpp – GUID for provider catalog entry.
o overlap.cpp – Overlapped I/O operations handling.
o sockinfo.cpp – Mapping between upper and lower layer sockets.
o spi.cpp – Service provider interface functions called by the upper layer.

LSPWrapper project
Managed part of NetSim LSP; loaded by the unmanaged LSP. Handles communication with
the simulator via .NET Remoting.

• LSPWrapper.cpp– Initializes remoting, stores remote references to simulator objects.
• init.cpp – Exported functions called by unmanaged LSP to initialize DLL.
• spi.cpp – WinSock LSP functions called by LSP when appropriate function is called

by the application that is being redirected.

LSPWrapperControl project
Graphic application that controls LSP to redirect socket communication of selected
applications.

59

• App.ico – Application icon.
• MainForm.cs – Application logic + user interface.

Library project
Basic library of network structure objects.

• Applications
o RIP.cs – Routing Information Protocol (version 2).
o SimpleWebServer.cs – Simple web serever that can reply to web requests with

page or error according to configuration file.
• Modules

o ExternalConnection.cs – Connection to the real network.
o IP.cs – IP (currently version 4 only) protocol implementation.
o IcmpModule.cs – ICMP protocol.
o Repeater.cs – Module that sends immediately everything that receives.
o SocketModule.cs – Module required for socket applications or remote sockets.
o TCP.cs – TCP protocol implementation.
o UDP.cs – UDP protocol implementation.

• Addresses.cs – IP address.
• Packets.cs – IP, ICMP, TCP, UDP, ARP, and SocketDataPacket packets and their

factory. All those packets are used by applications and modules in the library.
• ProtocolSettings.cs – IP settings that are associated with an adapter.

NetSimConsole project
Console application that runs the simulator.

• App.ico – Application icon.
• NetSimConsole.cs – Console application; parsing and executing user commands.

SharpPcap project
SharpPcap library. The main part of the library is currently not used (see Further Work,
page 52) [6].

ShmChannel project
Shared memory channel used for remoting communication between processes [13].

60

Appendix C – User’s Manual

Building the source code

To build the source code, following components should be installed:

• .NET Framework 1.1 SDK
(Usually installed together with the Visual Studio 2003; otherwise available at
Microsoft’s download website.)

• Visual Studio 2003

• Windows Server 2003 SP1 Platform SDK
This is not the most recent version of the SDK; however, it is the one used for the
simulator development. Upgrading to the newer release is in the TODO list. It can be
also downloaded at http://www.microsoft.com/downloads/.
The only required component of Platform SDK is “MS Windows Core SDK.”

Then, the NetSim-1.0-alpha.src.zip from the NetSim package should be unpacked to the
destination directory and NetSim.sln, which can be found in the NetSim directory, opened in
the Visual Studio. Next, one of four configurations can be selected: Debug, Release,
MonoDebug, or MonoRelease. The first two of them are intended for Windows, the others for
Mono running on Linux.

After building any of the pre-set configurations21, the Deployment directory will contain
executable files and libraries that can be copied to the target machine. In addition, in the sub-
directory NetSim/Installer an installer package will be created for Windows configurations.

Installation

Prerequisities
NetSim requires some components installed on your computer.

• .NET Framework v1.1

This is a required component. For Windows, go to
http://www.microsoft.com/downloads/details.aspx?FamilyID=262d25e3-f589-4842-
8157-034d1e7cf3a3&DisplayLang=en
(or visit http://www.microsoft.com/downloads/ and search for .NET Framework 1.1
Redistributable Package).

For Linux, install Mono. Go to http://go-mono.com/sources-stable/, download the
latest release of version 1.1 and install.

21 One more step is necessary for source package downloaded from the NetSim website. For security reasons,
key pairs for signing assemblies that are required to have a strong name are excluded. Each developer should
create his/her own: NetSim/NetSim.snk and NetSim/ShmChannel/ShmChannel.snk. This task is necessary only
when using the downloadable package; the source code tree on a CD attached to this work includes those files.

61

• Packet capture library

This component is not required if connecting virtual network with the real network
will not be used. However, it is recommended to prepare the environment for this
feature.

For Windows, download WinPcap. At http://www.winpcap.org/install/ select the latest
stable version (currently 3.1) and install.

For Linux, LibPcap library might be already installed (it is included in many
distributions). If not, download LibPcap at http://sourceforge.net/projects/libpcap/ and
install.

Two types of installation are available. One is very easy – just decompressing file into the
target directory; however, remote sockets feature is not available if you use this one. Another
one is regular Microsoft installation package. (Of course, available only on Windows,
nevertheless, remote sockets are windows-based and not available on Linux.)

Installation type 1
Decompress the file NetSim-1.0-alpha.zip (NetSim-1.0-alpha.tar.gz for Linux) into the
destination directory. On Windows, go to Tools directory and execute gacregister.bat, which
will register some assemblies to the Global Assembly Cache. Such operation is not required
for Linux, because no assembly in GAC is needed for command-line simulator interface.

Network simulator console is located in Bin directory (netsim.exe), for launching simulator
graphic interface use either NetSim.cmd in Gui directory or launch Bin/NetSimGui.exe
specifying GUI main configuration file as the first parameter (Gui/GuiConfig.xml).

Installation type 2
This type of installation is available only for Windows and is required if you want to use
remote sockets. Run Setup.exe after unpacking NetSim-1.0-alpha.install.zip and follow the
setup instructions.

Uninstallation
For Windows: If the NetSim was installed through the installation wizard, either run it again
or go to Control Panel � Add or remove programs, select “Network Simulator” and click
Remove.

In all other cases, deletion of the directory where the simulator files were copied or unpacked
is sufficient.

Using the command line

The command line executable named netsim.exe can be found in Bin directory. It requires the
path to virtual network configuration file as a command line parameter and accepts some
switches. The usage is following (individual command line switches are described in the
table):

netsim [-rc:shm] [-rs:shm] [-pt:simple|adv|none] [-h] <configuration file>

62

SWITCH ACCEPTED VALUES DESCRIPTION

-rc shm Turns on Remote Control, which allows programmatic access to
the simulator. The simulator will provide remotely accessed
object that can be used for controlling the simulation from
another process via .NET Remoting.

The value represents a channel that can be used for accessing the
object, currently only shm is available. (shm = ShmChannel;
communication through the shared memory)

-rs shm Turns on Remote Sockets, a feature that enables a redirection of
network communication of any application. (shm =
Communication via shared memory) Not available for Linux.

-pt simple
adv
none

Type of prompt displayed.

 simple – The simulator will be configured and started and
only stopping will be possible

 adv – Prompt enabling the user to control the simulation,
enable/disable network components and exit the
simulation will be available. This is the default value.

 none – No user interaction. The simulator will be configured
and started and the console will just wait for simulator
shutdown. Useful with -rc only.

-h --- Displays help for the usage.

Using graphic interface

The GUI application contains three main panels. The largest one is used for virtual network
design and is available only if a project is opened. On the left, there is a panel containing
predefined types of nodes and links that can be added to the network by dragging the icon to
the previously described panel. The last one is placed at the bottom: it displays error and
information messages, and on other two tabs (while the simulator is running) simulator
console and events written to the simulator log. An application screenshot is shown in
Figure 23.

63

Figure 23: Graphic application screenshot

Small “HOWTO“ list of common actions follows.

Creating new project
Go to File � New… and choose the directory. Enter the new project name; the directory of
that name and a file with the same name and .xml extension inside will be created. That .xml
file is the main configuration file for the virtual network and should be selected in the future
while opening the project.

Adding new link to the network
On the panel on the left, select ‘Links’ tab. Then use Drag&Drop to move the appropriate
icon to the network design on the right. Right-click the new icon to view a context menu.
Dialog boxes for renaming or changing the link color can be shown, the link deleted or, if the
link has some configurable properties, its configuration file can be opened for editation.

Adding new node to the network
On the panel on the left, select the ‘Nodes’ tab and add the appropriate node to the network
design exactly as described above for the link. In addition to the link, the ‘Properties’ item is

64

available in the context menu. Its activation will show a dialog box that allows choosing
adapters, modules, and applications for the node.

Configuring node and connecting the node to the link
Right-click the node and choose ‘Properties’. The dialog box with three tab pages will appear.
On the first tab, adapters associated with the node can be added, removed, and configured. To
add a new adapter, click ‘New’ and select the adapter type. To remove, select an existing
adapter and click ‘Remove’. If the adapter has some configurable properties, double-click the
adapter on the list or click ‘Configure’ to open its configuration file. Finally, to connect the
adapter to the link, select the adapter and choose the link name in the combo box below.

The procedure for Modules and Applications is almost identical, except that for modules the
order in which they are listed can be altered. The first module in the list will be the first that
will get the packet received by any adapter.

Starting the simulation
When the virtual network is configured, the simulation can be started by choosing Simulation
� Start or clicking the Start button on the toolbar. The application will start the simulator in a
separate process and connect to it to control and monitor the simulation process. If there was
some error, for example in the configuration, the simulator would exit and an error message
can be found either in ‘Command Window’ or ‘Output’ window.

Enabling/disabling network component
While the simulator is running, it is possible to enable/disable the link or node, which can
simulate the node or cable failure. Right click to the node/link and choose Enable/disable, it
will toggle the element state. Disabled elements are displayed with a red background of the
title.

Using the simulator command line
It is possible to control the simulator via either GUI, or the command line. To enter a
command, select ‘Command Window’ on the bottom and click inside. Move the cursor to the
end (or try to type, the first key press will move the cursor), write the command and press
enter. The simulator reply will be displayed in the same window. Do not be confused by the
presence of commands you have not written, some commands sent by GUI are sent via the
command line and they are displayed here. To get a list of available commands use ‘help’.

Connecting the virtual and live network
A special module called ExternalConnection is used for interconnection between real and
virtual network. Add node called Ext. Connection to the network, it includes such module.
Second, add Simple link and connect the previously added node to it. In addition, connect all
nodes that should be visible from the real network (and that will get packets that will be
captured from the real network) to the Simple link. Finally, open properties of new
ExternalConnection node and open configuration file of ExternalConnection module. In the
configuration file, specify the name of a local computer’s real interface that will be used for
capturing and sending packets. If you do not know the name, just run the simulator and it will
list all possible interface names.

65

Changing the MAC and IP address of a node interface
If using IP protocol, generally after adding a node to the virtual network, a change of IP
address and physical interface address is needed. Open node properties, go to ‘Adapters’ tab
page, the appropriate adapter and click ‘Configure’. Change the IP and physical address
appropriately in an opened configuration file.

Changing the editor for configuration files
If the default ‘notepad.exe’ is not enough, open GuiConfig.xml, which is located in Gui
subdirectory in the installation directory. Find the ‘ExternalEditor’ XML tag and change the
notepad to the path to the executable file of your favorite editor. Restart GUI application if
running.

Adding a new node type to the list of predefined nodes
Create a new directory under Gui/Templates/Nodes. In that directory, create a file Config.xml
that will contain the only element ‘Node’ as a root element. Write node configuration
(including adapters, modules, and applications) in this file. The contents of this file will be
copied to the main configuration file of the virtual network while adding a new node. If some
items require their own configuration files, create them in this directory or subdirectories and
refer to them by relative path (relative to the Gui directory). It would be the best to follow the
pattern used by other predefined nodes, that is to create three subdirectories next to the
Config.xml: Adapters, Modules, Applications and place the appropriate configuration files
into that subdirectories.

The procedure for creation of a predefined Link, Adapter, Module, or Application is almost
the same; take the existing entries in the Templates directory as an example.

Example virtual network

A part of the main configuration file for an example virtual network, which is distributed with
NetSim, follows. That network is also displayed on GUI screenshot in Figure 23. Instead of
describing it generally here, XML comments are presented in the code. The diagram of the
network is shown in Figure 24.

<?xml version="1.0" encoding="utf-8"?>

<!-- XML configuration file is validated against the XML schema -->
<NetSimConfig xmlns=http://pavelnovak.eu/NetSimConfig
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://pavelnovak.eu/NetSimConfig NetSimConfig.xsd">

 <!-- Assemblies to load and search for classes. Paths are absolute or relative to
 the directory where Simulator executable file resides. -->
 <Extension path="../../../Bin/NetSimEthernet.dll">
 <!-- Packet factory is used to create internal structure of packets that
 are newly added by this extension library. More than one packet factory
 can be listed here. -->
 <PacketFactory class="NetSim.Ethernet.EthernetPacketFactory" />
 </Extension>
 <Extension path="../../../Bin/NetSimLibrary.dll">
 <PacketFactory class="NetSim.Library.LibPacketFactory" />
 </Extension>

 <!-- Network structure -->
 <Network>

66

 <!-- List of nodes in the virtual network -->
 <Nodes>

 <!-- Node providing the interconnection between virtual and real networks -->
 <Node name="ExternalConnection" class="NetSim.Core.Node">
 <!-- Simple adapter does not add any link layer headers -->
 <Adapter name="SimpleAdapter" link="SimpleLink"
 class="NetSim.Core.SimpleAdapter" />
 <!-- Module capturing the real network traffic and sending virtual
 network packets to the real network -->
 <Module name="ExtConnection" class="NetSim.Library.Modules.ExternalConnection
 config="Nodes/ExternalConnection/Modules/
 ExternalConnection/ExternalConnection.xml" />
 </Node>

 <!-- Node with a web server that replies by simple page to browser requests -->
 <Node name="WebServer A" class="NetSim.Core.Node">
 <!-- Adapter for ethernet-like links; here is connected to the SimpleLink,
 however, we expect that the real network is Ethernet. -->
 <Adapter name="Ethernet" link="SimpleLink" config="Nodes/WebServer
 class="NetSim.Ethernet.EthernetAdapter" A/Adapters/Ethernet/Ethernet.xml" />
 <!-- Module implementing IP protocol -->
 <Module class="NetSim.Library.Modules.IPModule" name="IP"
 config="Nodes/WebServer A/Modules/IP/IP.xml" />
 <!-- Module implementing ICMP protocol. Cooperates with IP. -->
 <Module class="NetSim.Library.Modules.IcmpModule" name="ICMP" />
 <!-- TCP and UDP protocol modules, require IP, indeed -->
 <Module class="NetSim.Library.Modules.UdpModule" name="UDP" />
 <Module class="NetSim.Library.Modules.TcpModule" name="TCP" />
 <!-- This module provides support for NetSimSockets -->
 <Module class="NetSim.Library.Modules.SocketModule" name="SocketModule" />
 <!-- Finally the only one application on this node -->
 <Application class="NetSim.Library.Applications.SimpleWebServer"
 name="SimpleWebServer" config="Nodes/WebServer A/Applications/
 SimpleWebServer/SimpleWebServer.xml" />
 </Node>

 <!-- Node with more than one adapter to route packets -->
 <Node name="RipRouter A" class="NetSim.Core.Node">
 <Adapter name="Ethernet" link="SimpleLink" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/RipRouter A/Adapters/Ethernet/Ethernet.xml" />
 <Adapter name="Ethernet1" link="Eth A-D" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/RipRouter A/Adapters/Ethernet1/Ethernet.xml">
 <!-- IP module is capable of routing -->
 <Module class="NetSim.Library.Modules.IPModule" name="IP"
 config="Nodes/RipRouter A/Modules/IP/IP.xml" />
 <Module class="NetSim.Library.Modules.IcmpModule" name="ICMP" />
 <Module class="NetSim.Library.Modules.UdpModule" name="UDP" />
 <Module class="NetSim.Library.Modules.TcpModule" name="TCP" />
 <Module class="NetSim.Library.Modules.SocketModule" name="SocketModule" />
 <!-- RIP application receives and sends RIP update packets and modifies
 routing table located in IP module -->
 <Application class="NetSim.Library.Applications.Rip" name="RIP"
 config="Nodes/RipRouter A/Applications/Rip/Rip.xml" />
 </Node>

 <!-- Node with many adapters that acts as Ethernet switch. Some of the
 adapters are not connected. -->
 <Node name="EthSwitch" class="NetSim.Core.Node">
 <Adapter name="Ethernet" link="Eth" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet/Ethernet.xml" />
 <Adapter name="Ethernet1" link="Eth1" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet1/Ethernet.xml" />
 <Adapter name="Ethernet2" link="Eth2" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet2/Ethernet.xml" />
 <Adapter name="Ethernet3" link="Eth3" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet3/Ethernet.xml" />

67

 <Adapter name="Ethernet4" link="Eth4" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet4/Ethernet.xml" />
 <Adapter name="Ethernet5" link="" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet5/Ethernet.xml" />
 <Adapter name="Ethernet6" link="" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet6/Ethernet.xml" />
 <Adapter name="Ethernet7" link="" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet7/Ethernet.xml" />
 <Adapter name="Ethernet8" link="" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/EthSwitch/Adapters/Ethernet8/Ethernet.xml" />

 <!-- The only one module providing the learning switch logic -->
 <Module class="NetSim.Ethernet.LearningSwitch" name="EthLearningSwitch" />
 </Node>

 <!-- Node with no application that is ready to accept application traffic
 via Remote Sockets -->
 <Node name="Workstation" class="NetSim.Core.Node" >
 <Adapter name="Ethernet" link="Eth4" class="NetSim.Ethernet.EthernetAdapter"
 config="Nodes/Workstation/Adapters/Ethernet/Ethernet.xml" />
 <Module class="NetSim.Library.Modules.IPModule" name="IP"
 config="Nodes/Workstation/Modules/IP/IP.xml" />
 <Module class="NetSim.Library.Modules.IcmpModule" name="ICMP" />
 <Module class="NetSim.Library.Modules.UdpModule" name="UDP" />
 <Module class="NetSim.Library.Modules.TcpModule" name="TCP" />
 <Module class="NetSim.Library.Modules.SocketModule" name="SocketModule" />
 </Node>

 <!--
 Some other nodes skipped...
 -->

 <!-- List of links used in the virtual network -->
 <Links>

 <!-- SimpleLink is used by ExternalConnection -->
 <Link name="SimpleLink" class="NetSim.Core.SimpleLink" />

 <!-- Other Ethernet links interconnecting the nodes with the references
 to their configuration files -->
 <Link name="Eth A-D" class="NetSim.Ethernet.Ethernet100TX"
 config="Links/Eth A-D/Eth100BaseTX.xml" />
 <Link name="Eth10Base2" class="NetSim.Ethernet.Ethernet10Base2"
 config="Links/Eth10Base2/Eth10Base2.xml" />
 <Link name="Eth D-E" class="NetSim.Ethernet.Ethernet100TX"
 config="Links/Eth D-E/Eth100BaseTX.xml" />
 <Link name="Eth10Base2a" class="NetSim.Ethernet.Ethernet10Base2"
 config="Links/Eth10Base2a/Eth10Base2.xml" />
 <Link name="Eth" class="NetSim.Ethernet.Ethernet100TX"
 config="Links/Eth/Eth100BaseTX.xml" />
 <Link name="Eth1" class="NetSim.Ethernet.Ethernet100TX"
 config="Links/Eth1/Eth100BaseTX.xml" />
 <Link name="Eth2" class="NetSim.Ethernet.Ethernet100TX"
 config="Links/Eth2/Eth100BaseTX.xml" />
 <Link name="Eth3" class="NetSim.Ethernet.Ethernet100TX"
 config="Links/Eth3/Eth100BaseTX.xml" />
 <Link name="Eth4" class="NetSim.Ethernet.Ethernet100TX"
 config="Links/Eth4/Eth100BaseTX.xml" />

 </Links>

 </Network>
</NetSimConfig>

68

Figure 24: Diagram of an example network

Adapting the example to run on particular computer
The previous example, which is included in the simulator package, is almost ready to run on
any computer. However, since it uses an interconnection to the real network, certainly, some
changes are needed.

First, the name of an adapter used for capturing packets should be changed: open the
configuration file for ExtConnection module on ExternalConnection node and change the
contents of <Device> element to the name of the network adapter in the system. For Linux, it
is usually something similar to eth0. For Windows, open the properties of the particular
adapter and use the description on the ‘General’ tab. Alternatively, just run the simulator with
any meaningless value, it will complain and write you a list of available adapters.

Second, change of IP addresses of three nodes that connects directly to the real network to
match your subnet is required. (The current configuration is for 192.168.1.0/24 subnet.) Open
the configuration files of adapters on WebServer, RipRouter A, and RipRouter B and change
the IP addresses and masks to any unused values from your local subnet. Moreover, for
RipRouter A and RipRouter B it is necessary to adjust those values also in configuration files
of IP module and Rip application.

After all these changes are done, the simulator should be able to start the example network,
reply to traceroute or ping commands, web servers respond to the http GET requests for the
root page. Finally, the network should reconfigure using RIP protocol if some node or link is
disabled (please wait at least 3 minutes, since it is the default timeout for entries in routing
tables managed by RIP).

69

Appendix D – CD-ROM Contents

The following files and directories can be found on the attached CD:

Readme.txt
CD-ROM general description.

Bin
The directory containing compressed files that are used for installation. The installation
process is described in User’s Manual on page 60.

Text/Thesis.doc
The text of this thesis in MS Word format.

Text/Thesis.pdf
The text of this thesis in Adobe Acrobat Reader format.

Src
The directory containing the source code. It can be easily opened in MS Visual Studio
through Src/NetSim/NetSim.sln

Doc
Generated documentation in HTML format.

70

9. Index
adapter, 16, 25
application, 29
configuration, 21
external editor, 65
frame, 24
Layered Service Provider, 36, 37
link, 16, 25
LSP. see Layered Service Provider
LSPWrapper, 37
module, 17, 27
NDIS, 35

node, 16
packet, 24
packet factory, 31
predefined link, 62
predefined node, 62
project, 63
Remote Control, 20
Remote Sockets, 35, 52
SNMP, 23
WinSock Catalog, 36

List of Figures

FIGURE 1: PROTOCOL STACK LINEARIZATION..17
FIGURE 2: EXAMPLES OF SIMULATED NODES...18
FIGURE 3: PACKETS AND FRAMES ...24
FIGURE 4: CREATION OF A BINARY PACKET FOR TRANSMISSION OVER THE REAL NETWORK......25
FIGURE 5: LINKS AND ADAPTERS - ABSTRACT CLASSES + ETHERNET EXAMPLE........................26
FIGURE 6: PASSING RECEIVED PACKET UP THE PROTOCOL STACK..28
FIGURE 7: EXAMPLES OF MODULES AND THEIR RELATIONSHIP TO THE NODE............................29
FIGURE 8: EXAMPLES OF APPLICATIONS AND THEIR RELATIONSHIP TO THE NODE.....................30
FIGURE 9: NDIS DRIVER TYPES AND LAYERING...35
FIGURE 10: WINSOCK PROTOCOL CHAIN ..36
FIGURE 11: LSP, LSPWRAPPER, AND SIMULATOR INTERACTION ...39
FIGURE 12: REDIRECTION MANAGER..40
FIGURE 13: ACCESSING VIRTUAL NETWORK TEST...42
FIGURE 14: VIRTUAL NETWORK IN THE NETSIM GUI APPLICATION..42
FIGURE 15: NETWORK STRUCTURE FOR THE ACCESSING VIRTUAL NETWOK TEST......................43
FIGURE 16: SIMPLEWEBSERVER PAGE IN A WEB BROWSER...45
FIGURE 17: TESTING VIRTUAL NETWORK THROUGHPUT..46
FIGURE 18: VIRTUAL NETWORK FOR THROUGHPUT TEST DESIGN..46
FIGURE 19: THROUGHPUT TEST NETWORK STRUCTURE...46
FIGURE 20: DATA TRANSFER SPEED OVER THE VIRTUAL NETWORK...47
FIGURE 21: REMOTE SOCKETS TEST..47
FIGURE 22: ETHEREAL SCREENSHOT WHILE UPLOADING THE FILE...48
FIGURE 23: GRAPHIC APPLICATION SCREENSHOT..63
FIGURE 24: DIAGRAM OF AN EXAMPLE NETWORK...68

