Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Pavel Novak

Simulation of Network Structures

Department of Software Engineering
Supervisor: RNDr. Ing. i Peterka
External Advisor: Mgr. Petr Votava

Study Program: Computer Science, Software Systems

| would like to thank Ji Peterka for his encouragements to this text aett Fotava for his
suggestions to the simulator design. Special thaok¥endulka and my parents for their
support throughout my studies.

| hereby declare that | have elaborated this masiesis on my own and listed all used
references. | agree with lending of this work.

o™ August 2006, Prague Pavel Novak

Table of Contents

1

INTRODUCTION ...ttt sttt s et ss bbb s ene e 6
REGUIREMENTSANALYSIS ..iitiiiiteeeie et e et e etseetseeaesssessnmsssssnnsssnsessnssssnsessnsesnnsesnneesnsdons
EXISTING SIMULATORS ittt i ettt e ettt e e ettt s e ettt e e e et ree e e et s e e e et e e e et e e e esa e e eeaneeeesn e enennns 9

[a101 F= 1o g @0 g] o 7= 5 1 0] o 11
PROJECTGOALS REVISITED. ..ccttiiiiiieeeeeeii e sttt ee e e e e s s s s e e e e e e e e aeaeeeens 13

SIMULATOR ARCHITECTURE ..ot 16
LINKS AND INODES. ... tttiitiieitie et ee e st e e et e e ma e et e e e e et e e e et e e et e e et e e ean e e snaneeannes 16
SIMULATOR INTERNALS.ttttttttteetetettataaeeeeeeeassssaass s mnneeeaeaaaaeeaaasssssssaasnnnsbntesnsseseeeenes 19

Thread ManagemMENT..........ooveviiiiiiiiicemmmmm e e e e e e e enraa e s s e e e e e aaaaaees 19

I L1 PP 20

REMOLE CONLIOL.....ceiiiii e e 20

Y] o 1o o PP PP 20
SIMULATOR CONFIGURATION.tttttttteeeeeeeeeeaaasesaesssssssasssssnnnnesessaeessssssssssssnsssssssssssseseeees 21
(O 1 o U R 22

Interconnection to the real NEIWOIK..........coereriiiiii 22

Running Third Party Network ApplICAtiONS o« eeeeeeiiiniiieeeeeeeeeeeeeeeciiiiieneeens 22

S NN 1L YU o] oo] o AP PPPPT PPN 23

IMPLEMENTATION oottt sttt sttt sne et sneenne s 24
PACKETS AND FRAMES ... ttttuutttttteetttutesestnsesessnaesesssaassnnssnesessnaesessaeeesnaeessnaeessneeeennnn 24
LINKS AND ADAPTERS. ... uuuttttttttittteeeeeeeeaaaaaaaeaeasssssassssssseeteeeaaaaaeaaaaeassssssaaasnsssssrenees 25
NODES ANDMODULES......uuiiitttiitiiieeeeeeeeeeee e e e e e e e e e e e s st ettt e e e e e aaaaeaeeeeaesassaannnnenbbbeees 27
AAPPLICATIONS. 1.t ttttttttttetet et e e e e e e e e e e e e s s s s s s s eraaee e e e e eeeeaeaaesaaaa s sbbbbb bbbt sseeeeeeeeneessnnnnnnnnns 29
L IBRARIES ..ttt ettt ettt e e et e et e e et e e et e e e e e e e e e et et e e e a e e n et e e e e s 30

Standard NetSIm LiDrary ... ee e e eeee e 31

Lo 1T A 1] o > YR 32
USERINTERFACE. ... tttttttttttteettttetae e e e e e e e e e s s s s eneeee e e e e e e e e e e e s s s s s s s a s abbbbbbbbbeseeeeeeeeeessnnnnns 33

(70 01570 [USSR 33

GraphiC APPIICALIONceeiiiiiiiee e ettt e e e e e e e e e e eee e e e e eeeeeeeeenes 33

REMOTE SOCKETS ...ttt sttt bt 35
LAYERED SERVICE PROVIDERciiiiiiiiiiittttteeee et eee e e e e e e e e e seseasssbssssseeeeeeeeeeaaaeaeeesasssnnannns 36
COMMUNICATION WITH THE SIMULATOR ..evtuuiiiitieeetineeeettneeeesneesesneesssnnnsssesnnseesnneessnnnns 38

CallDACKS ... et 38
REDIRECTIONMANAGERttttttittiitttteaeaeee e e e e e e e s s s s s s eeneee e e e e e e e e e e e e e s s s s s sannnebbbbbbeeeeeeees 39
NOTE TO THEIMPLEMENTATION ...ttittiiiiitttttttee ettt e et e e e e e e e e e s eseabsasse e e et e eeeaaaaaeeeeseasssannnnns 41

PRACTICAL TEST Sttt st st s sae e sneenne s 42

Using Virtual Nodes from Live Networkcccoeeiiiiiiiiiiiiiiiiiiee e 42

Interconnecting Real Nodes through the Simulatelvdidcccooeeeeiiiiiiiiiiieeiiinn, 46

Running a Real Application on the Virtual NOde............coovvviiiiiiiiiiiiie e a7

6. CONCLUSIONS.......oo e 49

SUMMARY <.ttt e ettt e e e ettt e e e e et et saaaaee e e et ta e e e e e e e e e a e e et e e e Ena e e e e e eeshmn e e e e eenrnan e aaas 49
COMPARISON TOOTHER SIMULATORS ...cvvvttttiiiinasseaeeeeeeeseeeeessssssssssmmnnssssssnnsseeaeeeesaeeeees 49
GOALS FULFILLMENTS ..iiie et eee ettt ettt e e e e e e e e e e a e e e e e e e et e e e e ee et bbb s e e e e e e e e e e eeneas 50
FURTHERWORK ...ttt ettt ettt e et e e e e e e e et e e e et e e e e b e eeeenn s 52
7. REFERENGCES..... .ottt et ens 53
8. APPENDIXES.......o ettt e 54
APPENDIXA — OTHER NETWORK SIMULATORStttuuuaaaeeeeeeeeeeeeeeeessnssnnnn s 54
APPENDIXB — SOURCECODE DESCRIPTION.....cciiiiiiiiiiiiiiie ittt issie e 56
APPENDIXC — USER SIMANUALiiitiiieeeieeeti e e ettt e e e et eee e s e e e eenaa s e e e e e enaa e e eeeennnnns 60
Building the SOUICE COEcoiiieeeeeiit e e e e e e e e e e e e e e eeeeeeeeeenanne 60
1013 P 11 F= U1 0] o H TP PPPPPRPTPPPPRRN 60
Using the comMmMaNnd lINEeiiii e e e e e e e e 61
USING graphiC INTEITACEuueeiiiie s 62
Example Virtual NEtWOIK.........ccooiii it e e e e e e e e e e e e e e e eeaeeeeeeeannnes 65
APPENDIXD — CD-ROM CGONTENTS. ..cctttttttttiuiaaaeeeeeeeeeeateeeessnssssmnnnnssssssnnnnnaaaeaeeeeeeeees 69
S 115 TSR 70
S A T U PR 70

Title: Simulation of Network Structures

Author: Pavel Novak
Department: Department of Software Engineering
Supervisor: RNDr. Ing. Jii Peterka

Supervisor’'s e-mail address: jiri.peterka@mff.cuni.cz
Abstract:

The simulation of network structures can be ancéffe method for example in teaching,
research, or testing the network software, in ondetower the cost of building the real
network structure that would be otherwise neededredver, the simulated network can
provide some advantages, e.g. simplified contrdl @onitoring, statistical data collecting or
visualization of the network behavior.

This work focuses on the usage for teaching antintgsillustrates that existing network
simulators are not always suitable for this purpesggests the architecture and design of a
new solution, and offers implementation of the j@sg simulation tool.

Keywords: simulator, computer network, teachingtiteg, NetSim

Nazev prace: Simulace gbvé struktury
Autor: Pavel Novak
Katedra (Ustav): Katedra softwarového inzenyrstvi

Vedouci diplomové prace: RNDr. Ing. Jii Peterka
E-mail vedouciho: jiri.peterka@mff.cuni.cz
Abstrakt:

Simulace giové struktury niZze byt efektivni metodou pouzitelnou tapéi vyuce, vyzkumu
nebo testovani tdvych monitorovacich programvsude, kde by jinak byla geba mnohem
drazsi vystavba reélné &ilNavic @inasi simulace sitne¢které vyhody, jako je zjednoduSené
ovladani simulované struktury a jejiho sledovéingbru statistickych dat, nebo i vizualni

znézorrni sit a jejiho chovani v ibéhu simulace.

Tato prace se zaffuje na pouziti pro vyuku a testovani, ukazuje, #vagici dostupné
simulatory ¢asto nejsou nejvhodj$i volbou pro toto pouziti. Navrhuje strukturu ebw
simulatoru pro danydgl, souasti prace je i jeho implementace.

Kli¢ova slova: simulator, @itacova sf, vyuka, testovani, NetSim

1.Introduction

The task of network simulation has been solvedafdong time and many simulators have

been created. However, a lot of them were writtanspecial purposes — for testing just one
network component or protocol. It is obvious thaige simulators cannot be widely used and
this work does not not deal with them. On the otteerd, the goal of other simulators is to be
extensible and to allow others to add their own ohesl for currently unsupported or new

protocols, create new network devices etc. Thieaskind of simulators the thesis deals with.

The most widely known simulator of this kind is pably NS.

Let’'s take a look at reasons why network simulatme needed or, at least, why they are
worthwhile and helpful. Here are some scenariosrvtiee network simulator is benefical:

1. Education

Students can build a network and see how it worikisout the need of hardware; try
network tools or develop network components.

2. Testing

Simulators can help test network management toolstlzer network applications,
which can be deployed at a complex virtual netwstrcture.

3. Demonstration

Network application or management tools can be detnated to potential customers
without affecting their real network structure.

4. Security

Running a virtual network within the real networknclower the chance that an
attacker will compromise vital real system, sina#she will get confused by other
virtual nodes, and the network administrator hafiance to notice an illegal activity
before the real system is compromised [8].

5. Designing new network protocols

Protocol designers need to test their ideas in ee&ironment to see if they are
behaving in the way they expect. Building the regtivork structure is very expensive
and these days, when computer networks are qude,lgesting in such environment
Is inevitable.

As summarized in Appendix A, many general purpasriiators have been developed; also
many of them are well-designed, so they are extensind allow adding new features or
communication protocols with quite a little effolowever, the following discussion will
show that there are some reasons to develop amew o

! Currently NS-2; for more information and the lisée Appendix A.

Requirements Analysis

The original thesis submission states:

The task is to simulate a network structure for usdeaching, testing applications for

network monitoring, or creating "hacker-traps" (saled honeypots). The author should
become familiar with network simulation, design amgblement either his own solution or
use existing frameworks (e.g. open source frameworkeyd). The solution should simulate
switches, routers, and host computers so they woeihdive like real and react at least to the
basic network protocols like ICMP and SNMP.

However, as will be explained, the final usage ades proposed here have different
requirements and the development of a system thatswall of them is not viable.

The use for teaching

Various uses of a simulator for teaching are pdssHirstly, it can help the lecturer to show a
network behavior for some cases, for example ndétwaronfiguration after a failure of some

network component, or how routing information iompagated through the network. The
simulator used for this purpose should be ablagoalize the network structure, network data
transfer, pause the simulation. Naturally, it sdanhplement network features that would be
taught. Moreover, it would be better to simulate thetwork at the link layer, not only

network layer, and packets being transferred thiahg network should be displayed in the
same format as the real packets.

Secondly, students can use the simulator themstvasher build their own network and see
how it works (in this case the requirements coiecidth the use by the lecturer; moreover,
the simulator control and creation of the virtuatwork structure should be quite simple), or,
they can implement their own network componentshsas a modules for routing, switching,
etc. This requires the simulator to be well extelesand to provide a simple interface to add
new components.

Thirdly, a simulated network can be used to teastiwark administration and administration
tools; nevertheless, this is almost the same aap@lication testing.

Testing (and demonstration of) applications for network monitoring

This usage has a bit different requirements thachieg. Firstly, a virtual network setup does
not have to be necessarily so intuitive, sinceilitve used mainly by specialists in computer
networks. However, it would be a considerable athga if the intuitiveness would be
present along with other features.

The key requirement is the support for all netwiméhnologies and protocols that are mainly
used by network monitoring programs. It includesnarily ICMP, SMTP (preferably all
versions) and protocols for dynamic routing (OSHHP, perhaps BGP). The second
requirement, that will be necessary in some cagseshe possibility to simulate large
networks, hundreds (thousands) of nodes. Creatiosuch network manually would be a
painful work; having some tool for automatic netlwgeneration would be handy.

Honeypots (honeynets)

Honeynets is a pseudonym for computer networks (regirtual) that are deployed only for
monitoring attackers activity, warn, and provid@®@mmation about the attack scenario to help
prevent attackers from being successful in theiviag’.

Therefore, the main requirement for the networkuator acting as honeynet is to have
support for distinguishing attacks from ordinarywerk traffic® and to log the operations
performed by an attacker; possibly warn a netwaikiaistrator that the attacker is trying to
compromise his/her network. Wide range of networbtqrols does not have to be
necessarily implemented; no graphical interfaceesessary. However, a possibility to add
new features to be simulated should be a priosityce it will allow adding new simulated
items as attackers change their targets to comelspath known vulnerabilities of real
systems.

The following table summarizes the results of avjongs discussion.

Requirement Teaching Testing Honeynets
Simulation at link layer level v [X
Network and data flow visualization v X X
Easy extensibility v [v
Wide range of protocols support ° v X
Large networks simulation X o v
Writing logs for activity in the network X o v

v required erequired in some casesX generally not required

Many of the requirements presented in the table raxe contradictory; however, some
combinations would be hard to achieve. For examiod, layer simulation needs more
computation resources than only network layer, thedefore the maximum number of nodes
will be much lower even if it would be efficientiynplemented. The same applies for
visualization; however, it could be a feature tdaes not have to be used throughout the
simulation process.

Moreover, after a closer look at the table, it v&dent that requirements for teaching and
virtual honeynets differ. The use for testing immewhere in between and the requirements for
teaching and testing are not contradictory.

First Conclusion

Development of a simulator that meets all needstherusage scenarios mentioned in the
assignment would result in a complex solution, Wwhiould compel many trade-offs. Since

2 A lot of information about honeynets can be fofmdexample at http://www.honeynet.org

% Which is generally not so hard since any actiiritg honeynet is usually mean; regular networkitrahould
not be targeted to the honeynet.

the requirements for honeynets differ from otherd the author and advisor are much more
interested in testing and teaching, this work nit be focused on honeynets.

From now on, the text is oriented only to teackang network software testing purposes.

Existing Simulators

This chapter provides an overview of existing sitioh tools, describes their usability and
shows that there is a scope for another networklator to be developed.

The simulators mentioned here are those that carudeel for teaching and network
monitoring tools testing. More simulators that theéhor found and that he considered to be
somehow important are listed in Appendix A on pade

NS-2 [11]
This is probably the oldest widely used generappge simulator. It is written in C++ and

many contributors have developed extensions foewahge of protocols. Its primary usage
was intended for designing new protocols and tgghieir behavior.

Its use for teaching is a bit complicated. Firssupports only Unix-like operating systems;
students using Windows are forced to learn muchenmwuse it than only the program itself.
One can object that the student who is learningpeder networks should be familiar with
Linux systems since they are more often used iwarking than others are. However, as the
NS installation is not straightforward and can makme problems to the student that is used
to Linux too, this is not the right way how to bedgarning Linux.

Moreover, the creation of the simulated networkuies writing Tcf scripts, which could be
a serious problem for some students. There is stk animator” called Nam, which can
replay the previously executed simulation and -the latest releases — build a network
structure. However, it is completely bound to Lineard OTcl packages, which require
compilation of the source code before installation.

In conclusion, NS-2 is a great tool for researclard in some cases for testing, but it is too
complex for non-experienced users. A useful toal teaching should provide an easy
installation (preferably only copying files) andiser-friendly (graphic) environment.

CNET [9]

Cnet was developed at The University of Westerntrialia and was intended primarily for
teaching; students can write their own protocdigequires Linux operating system; even
though it is much more simple than NS-2, the ifeti@n also needs a source code to build it
and some settings require a deep knowledge of Best@cture. Therefore, the preferred
usage is probably the installation by an admintistran the lab where the students should
work on their assignments.

* Tcl stands for “Tool Command Language”; more infation at Tcl homepage: http://www.tcl.tk/

It cannot be used for testing purposes; firstlydaes not support connecting to the real
network, secondly, no library with protocols implentation is available.

JNS [16]

Java Network Simulator is a Java version of NSt2,dbviously it had to be developed from
scratch and almost all NS-2 features and librasies missing. Instead of writing scripts in
Tcl, they have to be written in Java. There is napgic environment to build the network
structure, nor can it be controlled interactivellyil the simulation is running. Since almost
no libraries with protocols are present, it is wahie for testing. It can be used for teaching,
but requires students having the knowledge of fab& able to make their own simulations.

OPNET [12]

OPNET provides a set of tools for simulation thmatlude a graphic environment for network
modeling (with wireless mobility support), displagi statistics. Many pre-defined types of
nodes are present and almost all widely used potstoand technologies are supported.
However, the use for teaching is available onlymoversities and the conditions are strictly
limited. The software can be installed in the ursitg lab only, the license is only to six
months and some reports about teaching experishoesd be sent to the OPNET Company.

The supported operating system is Windows only. H™warce code for protocols
implementation is available, the application soutode is closed. The application is quite
sophisticated; it provides many settings for alneatrything and it may be difficult for the
beginner to get into it. Therefore, it is intendather for the networking professionals than
students. Anyway, without those license restricjaohwould be a nice tool.

AdventNet [1]

AdventNet is another commercial simulator, its @nbjes are almost the same as for the
OPNET. Even if there are no remarks on licensesefaching/education at their website, after
a question they replied promptly and provided adh full license.

On the other hand, it provides less flexibility th@PNET. Modification/addition of new
network components is very limited, just a confgjion file or setting MIB values is
available. There is no support to add new protodbisrefore, students cannot implement
their own solutions. Moreover, there is neitheladasualization nor any statistics available; it
is not a convenient tool for teaching. Howevergcsimetwork programs usually need SNMP
which is supported quite well, it is the right apption for testing and demonstration of
network management tools (although it is a bit t@diby no support for interconnection to
the real network).

NCTUns [17]

NCTUns seems to be the most suitable simulatortiferspecified purposes. It includes a
graphical network topology editor, new protocol mies$ can be added, the protocol stack of
each node modified, and the virtual network camberconnected to the real one. Moreover,
many protocols are currently supported and the Isitou writes a log file during the
simulation, which can be later used for data flagsusalization.

10

However, NCTUns has one main disadvantage: it Hgttequires a dedicated machine for

practical usage. This is because Fedora Corelieisnly supported system; the simulator is
closely associated with the kernel and it usesetgrrotocol stack for simulated nodes. (The
kernel is patched during the installation and timeutation can be executed using the new
version of kernel only.) Moreover, root privilegasd no active firewall is needed for many
operations. These demands prevent it from beirtgliad in the computer lab or on any other
computer that is in daily use for other tasks. Hentis impractical for teaching; however,

having a dedicated machine is usually no problenhevtbsting the network applications.

Other Simulators

QualNet [14]

QualNet is a proprietary network simulator. Althbuthere is some version available for
universities and the author of this thesis askedSitalable Network Technologies for a copy,
they did not reply in time so the comparison t@ {moduct is not available.

As can be read in the datasheet, graphical toolsnédwork designing and analyzing are
available; however, the proprietary license andseaib source code make the use of the
simulator and creation of the extensions difficult.

REAL [7]

REAL was developed at Cornell University for resdaof flow and congestion control. It is

completely unusable for teaching since it doesranton the i386 platform that is in almost
all computer labs and it is probably the computedants have at home. A port to i386 was
created, but it works with FreeBSD 2.0.5 only. $amiarguments can be applied to the
usability for testing.

Moreover, it seems that the simulator is not manei anymore since the year of its last
release is 1997.

Simulator Comparison

The previous paragraphs described the existingemehtations of simulators; to be able to
make some conclusion, the results should be compRecall that this work is concerned to
the teaching of networking, network protocols, aondthe testing of network monitoring
applications. Obviously, this influences the regments selected for the comparison.

The following table summarizes which requiremergeded for the intended usage are met by
the existing simulators. The numbers are referettcdse comments below the table.

11

()
Requirement — I % %
BEAERERERE
zZz |0 |5 |0 |« |2
Easy installation X | X v v v X
Requires writing no code to build simulated netwarkX | X | X | v v v
Simulation at link layer level X v X v X v
Network structure visualization o' X | X v v v
Data flow visualization v | X e v | X | v
Extensibility of network components v | X | o] 2% X3 X
Extensibility of supported protocols v v | @%]| v X | v
Wide range of protocols supported v X | X v v v
Interconnection to the real network v X | X 2% X v
Runs on Linux v | v | v | X | v v®
Runs on Windows X | X | v v v X
Source code available v v v X | X | v
v present ® not completely present
X not present 2 not known

1) The visualization is available by Nam (or sortteeo tools) that reads the dump created during the
simulation process.

2) Since the whole source code is available andgithelator is designed to be extensible, new
components can be created. However, there is reagepport for that.

3) A new type of device can be created, but chatwi#s behavior are very limited; only its MIB wals
can be changed and IOS commands added.

4) The author was unable to find any informationtf® particular simulator.
5) This feature is available thanks to a third padd-in.
6) Only Fedora Core 4 is officially supported.

The ideal simulator for the target usage would hthe sign in all rows. None of the
examined real simulators fits those needs in aksathe most suitable does not meet two
requirements, the majority at least four requiretsien

Second Conclusion

Most of the existing simulators are not very feksitor teaching computer networks and
testing of network monitoring tools. The most shiégaone, OPNET, is commercial; its
university licensing is very restrictive, for exampt does not allow students to install the
simulator to their own computers, allows the idatadn at maximum 30 copies, the license
should be renewed every 6 months and reports dbaching experiences should be written.

12

The second one that satisfies almost all requirgsn@&CTUns, has nearly all the features;
however, it is bound to Fedora Core 4 kernel, winedtricts its practical usability.

Therefore, the development of a new simulator Wilitextend the current set of simulators,
which could be considered for the use for teachimg)testing, is reasonahle

Project Goals Revisited

Let us go back to the requirements that were censtl while comparing the existing
simulators.

1) Easy installation
That means preferably just copying files, or somgke installation wizard. Linux
guru would appreciate a possibility to compile dipplication from source code
(which might be also possible), but a regular ugants to put as little effort as
possible. Therefore, binaries (along with sourade¢should be distributed.

2) No code when creating the simulated network
A graphic tool for designing the virtual network wd be the best; if not a graphic
environment, some easy to understand configuratapts should be available.

3) Link layer simulation
Since the simulator will be used also for teachthg,simulated network should
correspond to the networks in the real world. Tlaeenot only routers, but also
switches and other components operating at lingrlbgvel.

4) Network structure and data flow visualization
Network structure visualization is related to theation of a network structure in a
graphical environment. Data (packets) visualizatioght be needed for teaching
while demonstrating network behavior and also fvuyging purposes.

5) Extensibility
Providing an easy way to add “third party” compasedno the simulated network
increases the usability for both teaching andnigs®tudents can add their own
protocol implementations, while developers of netitg tools can add the currently
unsupported functionality they need. Therefore atidition of new components
should not require simulator recompilation; just thodification of configuration files
should be necessary.

6) Wide range of protocols
This requirement does not affect design decisilbims just about the amount of work
that will be done. Hence, it is obvious that thetfversion of the simulator will
include only a few protocols, preferably the TCHi#te.

®> Moreover, the author is interested in computewnsks and development of a network simulator framagh
would be a worthwile experience for him.

13

7) Multiplatform solution
The simulator should be ported at least to twoitepgdlatforms: Windows and Linux.

Keeping these things in mind, the programming lagguand technology for development
should be chosen.

First of all, it should be considered whether thisraome platform for network simulation
already developed. The use of honeyd, which is ioead in the thesis submission, is
impossible, since it does not support link layendation; moreover, it is intended mainly for
honeypots. Another possibility would be to use H$& basis, but the implementation is very
small; it would not save much time and would restfurther design decisions — the author
could not find any other suitable framework thatuwdomeet the requirements described
above. Therefore, he decided to implement a comlglaew simulator.

Multiplatform and extensible solution requiremestgport a decision for environments like
Java or .NET. These also correspond with an eatgliation, since some intermediate code
that can be just copied can be usually distribukddreover, graphic applications created in
Java can run on any computer where JRE is installed

On the other hand, link layer simulation denoted the simulator will require more computer
resources than just the simulation on the netwaykrl — native code would be faster than
Java or .NET managed environment. However, thithés only reason to use traditional
compilers and run native system code. The autlexperiences with .NET show that it is not
much slower than native code, since the intermediaide is recompiled to native before
execution.

The managed environment will also simplify the depenent. The last choice between Java
and .NET is needed. Here, the greatest factor abgimly the author’'s experience in C#
programming. Moreover, because, firstly, the .NEdnkework for Linux is available and will
be hopefully also implemented for other platformsthe future and, secondly, .NET will
make the extending of the simulator even more sngohce there are more programming
languages the extender can select fdhe last decision is .NET.

In conclusion, the project goals are summarizdtiénfollowing statements that arise from the
previous discussion:

* A managed environment should be used for developmeBT in particular.

* The simulator should be simply extensible allowadylition of new protocols, types
of nodes and applications running at the virtualeso (The first implementation will
consist of TCP/IP protocol suite emulation and stasc example applications.)

* A graphic interface simplifying the creation of tual network structure should be
provided.

e The user should not be forced to write any codéefshe uses only predefined
(implemented) components.

® Not only C#, Visual Basic, J#, or C++, but alsbess made by third parties like PHP, Python, amémotA
complete list can be found e.g. at http://www.gthéd.com/team/lang/

14

 Target platforms should be Windows and Lifux

e The simulation should be done at the link layeryfdra2 in 1ISO/OSI model).
Therefore, the simulation of network technologiess o be supported. (Ethernet,
since it is the most wide-spread technology, welldnovided as an example.)

» It should be possible to connect the virtual nelwtorthe real physical network.

* Nodes and links should be capable of shutting dasoming to simulate network
failures.

It was said that the best simulation behaves likeea network. Network traffic is
generated by applications running on virtual nodesthe applications are an important
part of the simulator. It is not feasible to sintalall necessary applications; providing a
way to run the existing applications on the virtnatwork nodes is an additional goal of
the project.

7 Windows XP and Fedora Core 5 have been usecf@iapment and testing.

15

2.Simulator Architecture

The second chapter introduces the simulator axthite, explains the decisions made, and
defines the naming convention for some network camepts used throughout this text. The
results presented here will then be used in thdovimhg chapter elaborating the
implementation details.

From here, the namidetSimwill be used for references to the new simulahat thas been
developed.

Links and Nodes

The simulator should be designed to be well extdastherefore, it should consist of several
units with exactly defined interfaces, allowing tetender to write only one small piece of
code and do not force him/her to understand the levi®mulator structure. It is
straightforward that those units will correspondhiie components of a real network, provide
basic network functionality such as transferringadaom one node to another, switching and
routing, etc. Nevertheless, for the simulation emunent, some additional components might
be needed; for example to launch applicationsamsfier data from a simulated network to the
real network and vice versa.

There are two kinds of basic network componentfilesa(metal or optical, or one can
imagine “virtual” cable in case of wireless conmetl and some nodes that are
interconnected with the cables. For the purpogbisfdocument, they will be calldihks and
nodes However, there are many kinds of nodes and limkke real world and NetSim should
be able to emulate them.

The simulation of links is much easier than for @mdThe purpose of the link is always the
same: to transfer data from one place to (one ae)nmather places, with some constant or
variable delay, and sometimes a loss or corruptibearried data. Compared to 1SO/OSI
network model, the links simulate physical and @ p#link layer. Sometimes the situation is
slightly more complicated; for example when siminigta ring-based network such as FDDI,
it is not possible to just hand the data over ®lihk and not care about them any more — they
will come back and should be removed from the linkhe case of Ethernet, the node should
be informed about the collision and the need ahremission. Therefore, the node might be
required to participate in data transfer over thk. |

In the case of nodes, the simulation is not sagsttrward as there could be many kinds of
nodes; just simple repeaters and switches, or aamphlchines running web and ftp servers,
firewall, capable of routing etc. Because such soc&n be connected to various types of
links, it will be effective to divide the link-spiic part from the other node functionality.
(Recall that for some link types, node cooperaisorequired.) Such parts of nodes are called
adapters Moreover, because the node can be connectedr® tman one link and link types
can vary, each node can have more adapters. Onthicdnof the adapters as of network
cards with drivers.

16

The previous paragraphs described a data transfelebn nodes. Nevertheless, what should
the node do with the incoming data? They shoulgtodably passed to some application
running on the node. However, how should the nedegnize which application it is? In the
real networking world, incoming data packet traesrthrough the so called “protocol stack”,
packet headers are checked at each stage, evgneralbved, and the rest is passed to the
higher level in the stack. This process shouldrhalated on each virtual node; each node can
support various protocols that should cooperaté wéch other. Those protocols should be
independent of applications running on the nodeeryeapplication can use more than one
protocol to communicate. So, what is the answeheaguestions given at the beginning of the
paragraph? The packet should be given to thedpptopriate protocol implementation in the
protocol stack. Such answer yields a problem: iflenyy an “appropriate” protocol. In
general, there are two basic solutions: eithentide will have some logic to recognize it or it
can pass the packet to all protocols and they detlide themselves if it is “their” packet,
which they should accept.

The first idea requires the node to know everyqmok that might be possibly used, so that,
with addition of a new protocol to the stack, tleele code would have to be modified, which
Is inconsistent with the requirement of as easp@ssible extensibility. From this point of
view, the second solution is better — the implemenf the new protocol will make a logic
recognizing new kind of packets. However, for corfgacket processing the node cannot pass
incoming packet to all possible protocol impleméptas, because there might be two of them
accepting the packet and there would be two (@iffgrreactions to the packet. Instead, the
node will pass it to the protocol implementationssome sequential order and stop after the
first that accepts the packet is found.

A strange phrase “protocol implementation” has bemed several times in previous
paragraphs. Let us define it amadulefor now; the definition will be extended later.

In the real networking, a protocol stack is notyoalsequence of modules; more than one
module can be layered over another. For exampl® @@ UDP protocols are layered over
IP protocol. On the other hand, one module canaeréd over more than one too: e.g. IP
over Ethernet and serial line. However, that sofutiequires not only the node maintaining

the list of modules, but also each module havingttwe its own list of the modules on the

upper layer. Moreover, as described above, the ghasill be passed to the modules in

sequential order until it is recognized by some wedThis approach can be applied not only
when the packet is coming to the protocol stack,diveach layer. As a result, the whole

protocol stack can be represented as a sequemgedailes, if each module has its own logic

to recognize whether it should process the incorpanket.

Original protocol stack Linearized protocol stack

Sockets Sockets

TCP UDP TCcP
P UDP

P

Figure 1: Protocol stack linearization

17

An example of such “linearization” is shown in Figu. If a packet is coming from the
bottom, the first receiver is always IP. In thegoral protocol stack, IP module decides
whether to pass it further to TCP or UDP. In tmedirized stack, it passes the packet always
to UDP, it decides whether it is an UDP packendt, it passes the packet up unchanged and
TCP module has a possibility to process it if &i$CP packet.

This linearization approach, where the module jakés a packet, processes it, and passes it
up without knowledge of modules layered over hastteer advantage: other modules can be
inserted into the stack without modifying the exigt ones. For example modules for
encryption or data counting.

In Figure 1, there is a “Sockets” module layere@roVCP and UDP. It is clear that this
module does not represent a protocol layer; howetver useful to make it a part of protocol
stack too; it allows for example data encryptiotwsen sockets and TCP/UDP. Moreover, it
is logically consistent, because Ethernet framéesae.g. IP packet as data, IP packet carries
UDP or TCP as data, and TCP/UDP carries data oéspplication protocol.

Let us focus on applications running on the virtmatle. From the previous discussion, one
can conclude that they should receive and send thataigh a specific module — e.g.
applications using sockets through the “Socket” ad@dOn the other hand, those applications
might want to communicate with other modules in dteck, for example application running
some routing algorithm has to modify the routingléa managed probably by IP module.
Hence, the applications will run independently frima linear protocol stack and they will be
able to cooperate with any module, if the modutevjgles an appropriate interface.

Figure 2 shows two examples of nodes.

Host computer node example Router node example
,,,,,,,,,,,,,,,,,,, S — . Routing |
Sockets ! | Application 1 | Logic
”””””””””” @::::::::::::::f :> Application
,,,,,,, UDP | Application 2 IP

,,,,,,,,,,,,,,,,,,, 3 ‘ Core node functionality

Core node functionality ‘ Adapter ‘ Adapter

i

Figure 2: Examples of simulated nodes

Adapter

Link
Link

Link

The following chapters will explain the NetSim sttwre in more detail.

18

Simulator Internals

This chapter goes through the NetSim core compsnatt provide basic functionality for
other parts of the simulator.

Thread Management

As mentioned earlier, a good simulation behaves &kreal environment. However, some
behavior cannot be done exactly as it is in theweald. In a real network, many events can
occur at the same time. Since the simulator rung computer with a (small) finite number of
processors, those events cannot be simulated gxattthe same time. However, the
simulation should behave almost like the real nétwbBoing so in a single thread would be
very hard, most probably impossible, so the sinoultakes advantage of threads and lets the
system take care about the “simultaneous” execution

However, using threads brings some new issues.mids complicated is probably the need
of synchronization. One has to always keep in niivat there can be two or more threads
accessing the same data at the same time. Theahmg about it to describe in general;
almost in each component of the simulator, somd kirnocking or other synchronization has
to be accomplished.

Secondly, threads should be reused; otherwise,ettezution will be very inefficient.
Individual jobs executed by the simulator are nmysiinple and short (transferring a packet
from one node to another, inserting additional geot headers to the packet, serializing
packet for transfer over the real network, etc.pdfing a thread every time such task is
executed would waste CPU time and operating sysésources. Moreover, the job should
not be executed immediately in many cases, it shbeldelayed some small amount of time.
If a new thread was created each time, it wouldltés many threads just waiting.

Therefore, a tread pool of threads executing jalesnfthe queue is implemented. The
implementation is based on Stephen Toub’s Manage@ddfool [15], which has the same
interface as .NET Framework ThreadPpdiut the queue and the way the work items are
removed is modified. The queue of jobs to execuge not just the simple
System.Collections.Queue as in the original sohjtmnary heap is used [2].

The reason why the heap (acting as a priority queu@ised has been mentioned above:
timing. Work requests should not be executed indraer in which they are added, for

example, a link can simulate some delay in delil®radding a request to the thread pool to
execute code that will finish the data transfeeraiome amount of time. It is straightforward

that work requests are sorted by the time theylghmeiexecuted.

8 The same interface, but a different behavior. .NEFBmework Thread Pool creates and destroys treads
according to the number of work requests [3], camgao the ManagedThreadPool where constant nuofber
threads is used. This behavior is better for thaukition since there might be high demand for ttatiasfer after

a long time of inactivity and there would be nodito create new threads.

19

If there is a request to do something that shoelgitwcessed right now or that should have
been done in the past, an available thread takasdtexecutes it. If there are no jobs, all
threads go to sleep waiting for a new item in theuwg. Finally, if there are only jobs that

should be processed in the future, threads shoultb gsleep and wake up after the job is
ready to execute. However, for performance reasons, better to wake up always just one

thread; it than removes an item from the queueveaices up another thread that will check
the execution time of the next item and either psscthe job or go back to sleep for some
time. The last thing to consider: a special casecems adding a new item that should be
executed before all others in the queue. In susk,dhe sleeping thread is woken up and it
either executes the job or goes to sleep for ashamount of time than before.

Timer

The discussion above indicates that an accurategdim very important for the simulation.
Although the hardware usually supports some higltgion timer, regular system timer
resolution is one millisecond, which is quite adotime for today’'s high-speed networks.
Therefore, a new timer implementation that uses high-resolution timer is provided; only
in case the hardware does not support it, a re@atimer is used.

Since a millisecond is not an accurate time unittie simulator, ticks (100 ns intervals) are
used. The reason why ticks (and not for exampleraséconds) have been chosen is that
.NET Framework time functions support this timetunaturally; almost all classes have Ticks
property that returns the time interval in ticks.

Remote Control

Remote Control is a way for controlling a simulatiggrogrammatically by another
application. This might be useful e.g. for intenaetapplications that visualize the network
behavior and allows a user to submit commandsHersimulator, or for applications that
automate the simulation process. The graphic agtpic described on page 33 also takes
advantage of this feature.

There is another possibility to control the simiglat- through a command line. Although it is

a convenient way to instruct the simulator to densosimple actions, e.g. to stop the
simulation, or enable/disable some part of theuairtnetwork, for other tasks, mainly for

retrieving information, it is a bit impractical tparse the console output. Therefore, a
programmatic interface is a useful alternativen¢command line.

Since .NET Remoting is used for all other intergass communication, not surprisingly it is
used also for the Remote Control. The simulatoateiean object that is remotely accessible
and which provides methods to affect the simulatigioreover, a callback object can be
registered and it will be called if some eventhe simulator occurs; it simplifies controlling
the application implementation since it does novehd@ examine the simulator state
repeatedly.

Event Log

While the simulator is running, some events thatdperator should know about can occur.
For example, an application fails on some node roratiempt to redirect an application
network communication via Remote Sockets to a nastent node or a node that does not

20

support sockets is made. In such cases the simulatocan continue; however, it would be
practical to store such information somewhere:ncegent log, which can be listed on the
console; or, if some application is using the RamBontrol and has registered a callback
object, it will be notified immediately.

Simulator Configuration

The simulator should be extensible and users shioelldble to add their own modules or
create their own link types, which would be prolyadliso configurable. Therefore, NetSim

configuration should be designed carefully to mailkeh extensions possible and do not force
the users to make much effort to configure thein aivtual networks.

Since the users should be able to add their owrfigzoable parts, having only one
configuration file with a well-defined structure impractical; it would be better to let the
users choose their preferred forfn&or this reason, virtual network configuratiomsists of
one main configuration file describing the initiaterconnection of simulated links, nodes
and their adapters, modules, and applications tthgsinterconnection and no details about
each node, link, or module. Those details are evwrith separate configuration files, which are
referenced from this main file (format of thoseesilis not predefined, each module or link
type can have a different one, since it is resfgd@$or parsing its own configuration).

What is the essential information needed in thenncanfiguration file? Obviously, a list of
links and nodes, plus adapters, modules, and apiplis that attach to the nodes. In addition,
from the previous discussion, references to ottmfiguration files of the components.
Moreover, because those files can have variousdtsnalso some information about how to
parse the data, or which component should parse it.

This is, de facto, all the information necessaneded; all other data could be moved to
separate configuration files. However, how woul@ tbase that a particular adapter is
connected to a particular link be represented? erhemnould be some unique link
identification; the same applies also to the no&asce this identification should be the same
for all components, it would be practical to haveni the main configuration file: textual
string was chosen for this purpose.

It is not clear whether to have information aboanreections in the main configuration file or
in the configuration files of the adapters. Howewhere are two reasons to choose the first
possibility: firstly, if the adapter would be vesymple (non-configurable), having a separate
file to store just information about the link is kat impractical. Secondly, having the
connections in the separate files of not well-dsdiiormat will cause great problems during
the implementation of a helper tool that allows &oeation of the virtual network in the
graphic environment.

° However, XML is preferred, since it is today’s wid accepted format.

21

An example of a configuration for one node in thairmconfiguration file follows; the
complete virtual network configuration can be foundhe chapter User's Manual on page
63.
<Node nane="A" cl ass="Net Si m Cor e. Node" >
<Adapt er nane="et h0" cl ass="Net Si m Et hernet. Et her net Adapter"
i nk="Link 4" config="nodes/ Al adapters/ethO0.xm" />
<Mbdul e cl ass="Net Si m Li brary. Modul es. | PModul e" nane="1P"
confi g="nodes/ A/ nodul es/| P. xm "/ >
<Mbdul e cl ass="Net Si m Li brary. Modul es. | cnrpModul " nanme="1CW" />
<Mbdul e cl ass="Net Si m Li brary. Modul es. UdpMbdul e" />
<Mbdul e cl ass="Net Si m Li brary. Modul es. TcpMbdul e" />
<Mbdul e cl ass="Net Si m Li brary. Modul es. Socket Mbdul e" nane="Socket Modul e" />
<Application class="NetSimLibrary. Applications. Si npl eWebServer"
config="nodes/ Al appl i cati ons/ Si npl eWebServer. xm "/ >
</ Node>

Thenameattribute represents a unique identification @ tomponent. Theonfig attribute is

a relative path to the particular configuratiorefilink is the name of the link the adapter
connects to. Finallyclassis the name of a class that should be instantitdeda given
network component (the object of this class willgeaits configuration file; more information
can be found in the chapter Implementation, page 24

Other features

Interconnection to the real network

The support for data transfer between virtual aad networks is a basic presumption for the
simulator usability. However, there is no need tmform the simulator design to this
requirement; it can be achieved by the presentedemof nodes, links, adapters, and
modules. For the transfer in direction from theauat network link to the real network, there
can be an additional node with an adapter in amfygouous” mode attached. That adapter
will pass all packets to the node core and the riodée first module in the module chain.
There can be a module that will hand the packets tw a real network. Moreover, such
module can listen on the real network and passapéured packets back to the node, which
will send it to the adapter and then to the link.

The NetSim implementation is done exactly as deedriabove — a module called
Ext er nal Connection is implemented. It uses the libpcap (winpcap)alprand its C#
wrapper SharpPcap [6].

Running Third Party Network Applications

The simulator allows a simulation of some applmasi by adding specific components (called
applicationg to the nodes. However, such possibility is netagls sufficient — running a real
application on the virtual node might be useful érample for monitoring purposes, for
creating a substantive network load etc.

22

It would be most convenient to the users to justelke their application and configure it to be
virtually running on the specified node. This is@apossible with the Remote Sockets feature
(see page 35).

Another way how to manage this would be to impleieesocket library for virtual network
and recompile the application with the new librafpwever, this way is a bit impractical —
the compilation often requires a non-trivial buddvironment; moreover, the source code is
unavailable in many cases. Finally, the library ldobe OS specific and it should be
implemented for every supported operating systédf.course, Remote Sockets is also OS
specific.) Such library is not included in this Wor

Finally, in case the application source code islabke, in case it uses .NET sockets, and can
be slightly modified, it can be easily changedhedpplicationcomponent that can be placed
on the virtual nod®.

SNMP Support

It is a bit complicated to add SNMP support, beeatisequires information from all parts of

the node, adapters, modules etc. The solutionigagbue could be following: there could be a
SNMP module on the node. Every part of the nodetd, module, or application) that

supports SNMP would register itself by the SNMP mledand provide a set of supported
MIB entries. The module would capture requestsefguloring or changing values and then
query the appropriate components to provide or ghdhe values. This solution enables to
implement SNMP in one module only; there would b&maple common interface for other

components to provide information about thém

% The source code change yields a creation of the alass implementingAppl i cation interface, calling
mai n() from the special method of that class and reptpcati occurrences ofystem Net. Socket to
Net Si nBocket . More information about applications can be foimthe chapter Implementation on page 24.

2 SNMP support is not included in the current versidowever, it is one of the priorities for the heslease.
See Further Work, page 52.

23

3.Implementation

The third chapter stems from the previous text, rettbe main ideas were introduced. The
NetSim design is explained; some important pagseaplained in more detail.

The main goal of the design is to propose a siraptensibility, which allows the simulator to
be widely used. This is achieved by simulator madty and as simple as possible interface
of the modules that the users would write by théwese To avoid any ambiguities, some
vocabulary that is used in the following text slibbé explained now. The terframealways
represents a link protocol packet, like Etherneimie. Every packet (i.e. some data with
headers) for all higher-level protocols (like IB)cialled gpacket

Packets and frames

Packets and frames are maybe the simplest thieggdtmin — therefore it is the right part to
begin. Every type of packet or frame has its ovas€lthat represents its format. Those classes
inherit from an abstract clagscket , which allows the simulator to work without knowiall

the packet types a priori.

Packet
-higherLayerPacket : Packet

+AppendBytes(in buffer : Buffer)
#AppendBytesHeader(in buffer : Buffer)
#AppendBytesFooter(in buffer : Buffer)

sl |

b ‘
it i rressese. eirglt - wehon
sk I
ctoadny on o
onoliie b
Irich Wb
gl e e st
: gl Wl ‘
el i
Al o L
DL

Figure 3: Packetsand Frames

As depicted in Figure 3, even if there is somedrhy between packets in a usual protocol
stack, there is (almost) no inheritance hierarclegwben those packets, because the
combination of protocols in the protocol stack psta the user and simulator configuration.
Instead, the inheritance, packets and frames ariioed into a chain, every object has a
hi gher Level Packet member that points to the object of a higher-lepmitocol packet
(current packet data). For the packet at the enldeo€hain, this member nsil | .

Because the packets created and transferred thiihegbimulated network can eventually
reach a real network, there is a need to createetiisetwork packet from the one that is used

24

inside the simulator. To do this effectively with@opying data at each layer, every class that
inherits from Packet has to implementppendByt esHeader and AppendByt esFoot er
methods. The use of this method while creatingélaénetwork packet is illustrated in Figure
4; the data from all protocol layers are addedn® louffer.

ethFrame ipPacket tcpPacket applicationData

|

0

AppendBytesHeader
AppendBytes

]
I
I
I
|
|
I
|
|
I
|
AppendBytesHeader i
I
I
I

AppendBytes

»
P

g,

AppendBytesHeader(buffer)

AppendBytes(buffer)

> ___

AppendBytesFooter(buffer

=

Y

return [
|

~

4

|
i
AppendBytesFooter(buffer)

return

> AppendBytesFooter

Figure 4: Creation of a binary packet for transmission over thereal network

Links and Adapters

There are two abstract classeshk and Adapt er. Each link implementation has to be a
descendant ofLi nk (Adapter, respectively; for adapter, also implementingdapter
interface is possible).

For transmission of packets from a node to an adaphe adapter has to implement the
methodsSendPacket (), which is called by the node. This method enquebhespacket for a
future transmission. If the queue is empty and ackpt is being sent, a new frame object is
created according to the media used (Ethernet nexample) and passed to the link
SendPacket () method. A successful transmission is recognizedhkysimplest way — the
same data are received back by the adapter; whitibelata are the same can be recognized
just by reference comparison. If the frame canmosdnt (for example a collision occurred in
Ethernet case, or the Ilink is down), the Ilink callsack to the adapter
Packet Sendi ngFai | ed() method. Therefore, the adapter can rely on thettnbe notified
about packet delivery, it does not need to implantsrown timer to recognize failures. Only
one queue of packets ready to send is needed gubige is located in the adapter object. The
adapter will send another frame only after a sugfoésransmission of the previous one, so

25

there is no need to have a queue in the link olgjedtno need to queue packets in the upper
layers.

Receiving a frame by an adapter is similar. Thie Winll call a Recei vePacket () method of
the adapter; the frame has to be delivered alsk toeihe sender as an acknowledgement of a
successful transmission.

The link behavior should correspond to a simuldgsdhnology and both links and adapters
can provide other media specific methods; for edanmp simulate a ring based data delivery
(such as Token Ring), the link should internallgerthe connected adapters into a ring and
send the frame received from an adapter only tonénd one. For bus technologies like
Ethernet, the link will deliver data to all adagteat about the same time. However, in all
cases, it should be specified which adapters capearate with the link and the link should
test the adapters as they are connected and teisennection of an incompatible adapter.

StructureObject & |StructureObject
-name : string | ——O |Suspendable

+Configure()

i

Node
|Adapter
T +SendPacket(in packet : Packet)
; Adapter ?
Link = _

— #link #adapters -mtu adapters 1 -node
#maxAdapters : int sentPackets
+RegisterAdapter() +SendPacket() -adapter
+DeregisterAdapter() 1 * +ReceivePacket() ®
*SendPacket() +PacketSendingFailed()| 1

Z% -protocols ProtocolSettings
- - ‘ + |*CanSendPacketTo() : bool
SimpleLink EthernetLink +ShouldReceive() : bool
+Speed
+CollisionSlot T |ArpCacheOwner
ZF. EthernetAdapter
[| -macAddress : EthMacAddress IPSettings
-promiscuousMode : bool -ipAddress
Ethernet10Base2 Ethernet100TX waitingFrames sk
-arpCache : ArpCache

Figure5: Linksand adapters - abstract classes + Ether net example

Figure 5 shows a class diagram of links and adsyp#dl adapters and links are descendants
of Structureoj ect or implement Struct ureCbj ect interface. This ensures that all will
implement a common functionality such as providingprmation whether enabling and
disabling is available. It is shown that actualdgttet link implementation classes derive from
theLi nk class and adapter her net Adapt er derives fromadapt er .

In addition, a clas®r ot ocol Set ti ngs is associated with an adapter. Only IP networks ar
supported in this version; however, future extemge other protocols is allowed. Therefore,
it is possible to assign more than one protocol itasic settings to the adapter. While a
packet is being sent, the node should decide tohwdulapter the packet should be transferred.
The adapter decides, according to this protocotifpanformation, whether it is the right
one for packet delivery.

26

Nodes and Modules

As described in Chapter 2, nodes are associateohhptvith adapters, but also withodules
that actually provide node functionality. The nodaintains a sorted list of modules that are
present on the node. Whenever a frame is receireddh any adapter, the adapter creates a
structure calledrPacket I nfo that is used for passing packets up and down gfrahe
linearized protocol stack. The received frame isiaty a chain of Packet class descendant
objects; the adapter stores a reference to theoiirs to therawPacket field in Packet I nfo

and a reference to the second one (that shoulddoessed by a module) to the fielatket .
Then, the structure is forwarded to the node. Toeentself does not know how to handle
packets; it just passes the structure to the iietiule in the list. The module should look at
thepacket field in the structure (or also other fields); ef@tine whether it is a known packet
type and whether it should be processed. If nalpés not do anything and the node will pass
it to the next module.

In case the module should process the packet,nitedaier set the reference to the whole
Packet | nf o to nul | , which means that there is no need to continderimarding the packet
up the protocol stack; for example, if the IP medrdcognizes that the packet target is not a
current node and performs routing to the next hegtidation. Second, the fields in
Packet | nf o can be just changed; mostly it is the mentzeket , which is changed to point
to the packet object of the next layer.

An example of packet receiving is depicted in Fegby the objects in dotted boxes are always
the same, of course, they are shown multiple titbemake the figure more understandable.
Thanks to therawPacket reference, any module can have complete informagioout the
frame received; therefore, an Ethernet switch @anrplemented as a module and there is no
need to have different types for nodes that opextaiak layer.

Any module can also send a packet; it createswts Racket | nf o and callsSendPacket ()
method on the node. The node then passes the pafikeiown to all modules layered below
the sending one and they can change the packej beim appropriately — mostly new packet
objects that contain low level packet headers belladded to the chain. If some module sets
RawPacket while the packet is being sent, it forces the &efapot to add its own headers and
take the packet as a raw frame; this allows modiddsave direct access to the link media.
However, in such case, the module should exacthnkihe links the node is connected to —
this would be used probably for nodes operatinin&tlayer, such as previously mentioned
Ethernet switch.

27

Node
SocketModule
» PacketInfo —
Packet e . T T I ek
RawPacket —»i EthFrame —»i IPPacket :—» TcpPacket i—»i SocketDataPacket
N— UdpModule
| Packetinfo -
Packet e | . N L
RawPacket @+ » EthFrame i—»i IPPacket {—» TcpPacket i—»i SocketDataPacket
N TcpModule
| PacketInfo -
Packet o~ //' y ; } \\A H H i
RawPacket ® i » EthFrame i—»! |PPacket i—»i TcpPacket i—»i SocketDataPacket |
N— IPModule
PacketInfo [
_— —
Packet o~ h I A H . i
RawPacket ® » EthFrame i—»i IPPacket {—» TcpPacket —# SocketDataPacket i
EthernetAdapter

| EthFrame —»{ IPPacket i} TcpPacket ——i SocketDataPacket i

Figure 6: Passing received packet up the protocol stack

The modules have to either inherit from an abstcd@ssMbdul e or implementl Modul e
interface to allow the node handle any type of nbe@dkigure 7 shows some examples of
modules that are implemented and the relationsHygsveen Modul e, Node, and

St ruct ureoj ect classes.

28

StructureObject

-name : string

+Configure()

T

Node

IModule
T -modules -node #SendPacket(in packet : Packet)
Module +ReceivePacket()
@ +NewPacketToSend()
* 1 |*NewPacketToReceive()

+SendPacket(in packet : Packet)
+ReceivePacket(in packet : Packet)

T

IPModule TcpModule UdpModule IcmpModule ExternalConnection

Figure 7: Examples of modules and their relationship to the node

Modules can interact each other; for example, wimmdul e receives a packet that should
be forwarded to an unknown destination, an ICMP sags should be generated and sent
back to the sender. However, a separate modukedealipMdul e handles ICMP messages;
therefore,l PModul e instructs it to send a ‘Destination Unreachable€ssage. Nevertheless,
how can the Pvodul e reach ICMP, if only the node has a list of refees? Each module can
have a name, which is specified in the virtual mekaconfiguration file, and other modules
can ask the node to obtain a reference to the raadfiduch name. Although the reference can
be obtained, modules should not store the referarciture use and should ask for it each
time they need it, since the node configurationld&dathange and the previously obtained
reference may be invalit

Modules also lie in between the communication giliaptions and the node. For example,
when an application creates a socket, it registtsalf in the Socket Modul e and all
communication goes through this module.

Applications

Applications are an important part of a networkisture since they generate traffic sent over
the network. NetSim provides two possibilities tlma an application to run on the specific
virtual node. The first one called Remote Sockeistended for the existing real applications
without recompilation; Chapter 4 describes it itafle The second possibility is writing a new
application or modifying an existing one to runtbe virtual network.

2 In future releases, the node could return referdnca proxy object of a module, which will knowvattits
module has been deleted.

29

Writing an application specifically for NetSim inves creation of a subclass of
NodeAppl i cation or implementing | NodeApplication interface. When inheriting
NodeAppl i cation, Run() method, which is called fronstart (), should be overridden.
Start() just encapsulateBun() by error checking and letting the simulator knokoat
uncaught exceptions that occur in the applicatfhen implementing an interface, just
Start() Is needed. Figure 8 shows th@deApplication class, some descendants
implemented in the NetSim library and their relaibip to the node.

StructureObject «interface»
— INodeApplication
-name : string Sonf 0
- +Configure
+Configure() +SetNode()
ﬁk +Start()
| |
Node NodeApplication
-applications —CO [INodeApplication
#SendPacket(in packet : Packet) @y +Configure()
+ReceivePacket() 1 . |+SetNode()
+NewPacketToSend() +Start()
+NewPacketToReceive() #Run()
SimpleWebServer| Rip

Figure 8: Examples of applications and their relationship to the node

While the simulator is starting, it creates a saefgathread for each application and executes
thestart () method, which is likevai n() for a regular application. Then, if the applicatio
needs more threads, it can create them as usuaEvieo, they should be registered by the
NodeAppl i cati on object. This is necessary for the simulator taabke to pause/resume the
simulation process. If the pause is requestedhadhds, including the applications, should be
suspended, because the application could try td data and report errors to the user (that
data would remain queued and would not be deliyered

Libraries

The previous chapters described the core of thelator. However, for practical use also a
set of functionality is required. As it is not pids for every user to create his/her own nodes,
links, and protocols implementation, NetSim prosgidestandard library. Ethernet library is
separated as a small example showing how to extendimulator with a new functionality.
(Some classes included in those libraries were showrevious figures.)

While the simulator is starting, it loads the libes according to a configuration file. The
main configuration file can contain for example fokowing elements:

30

<Ext ensi on pat h="<pat h>/ Net Si nEt hernet.dl | ">
<Packet Factory cl ass="Net Si m Et her net . Et her net Packet Fact ory" />
</ Ext ensi on>
<Ext ensi on pat h="<pat h>/ Net Si nLi brary.dl|">
<Packet Factory cl ass="Net Si m Li brary. Li bPacket Factory" />
</ Ext ensi on>

This tells NetSim to load two libraries. Those #ibes are then searched for classes specified
further in the configuration file. The search isrfpemed sequentially in the order the
extensions are specified; it is possible to useesmctionality from the second library and
some replace by the first library. However, thisnist a recommended procedure, using
different class names or different namespace ih Blaary is much better technique.

Every extension can have any numbePatket Factorieslf the extension adds a new type
of protocol, it probably needs to use new packee¢tyAs soon as the simulator runs separately
from the real network, those new types of packets aeated/sent/received only by this
extension, which knows their structure. Howevethdse types of packets come from the live
network, they are just a sequence of bytes andsithelator has to know how to create
Packet oObject from that sequence. The simulator (ususdiyye module) knows the network
layer (in the sense of ISO/OSI model) at which plagket is used and some identification
from the lower layeF. This is the only information available for pacigntification.

Therefore, when loaded, the packet factory tellsSkhe the types of packets it can create: the
ISO/OSI layer and packet type identification. Wheeeded, the simulator then asks the
factory to create packet object from an array aéby

The description of classes implemented in the dibsadistributed as a part of the NetSim
package follows. Great Comer’s book about TCP/I# astequate RFC documents have been
used as a reference for the implementation [4].

Standard NetSim Library

This library provides implementation of core comeois that are needed for practical use of
the simulator; it will be definitely enlarged intfwe versions. The currently implemented
features include: TCP/IP protocols, RIP routingeioonnection to the real network, and
Socket Modul e used for data transfer between virtual node rendi nSocket (a socket that
can be used by applications running on virtual soded provides the same interface as
standard system socket).

TCP/IP protocol suite

The support of TCP/IP includes the implementatidn packets, packet factories, and
especially modules that support for example roytnegending, or sorting of out of order
delivered packets.

3 That identification coincides with identificationumbers assigned by IANA organization. The numbers
assigned can be found at http://www.iana.org/asséns/protocol-numbers

31

| PMbdul e is the basic module in TCP/IP implementation.dndiies the core IP functionality:

fragmentation, defragmentation, and routing. It mteins a routing table internally; entries
can be added either via the configuration fileggmamically by other parts of the node while
the simulator is running (see RIP below). It alsesl crpMdul e to send ICMP messages if
some error should be reported to remote node.

I cmpModul e should be layered over IP; it is capable of semdamd receiving ICMP
messages. Either reacts to incoming messages ,(mng@yovides support for other modules
or applications for error reporting to remote deeions.

UdpModul e is quite a simple module implementing UDP protocol

Compared to UDP7cpMdul e is a complex implementation of TCP protocol. loydes
support for establishing connection and disconnggtresending data, sorting of data that
came out of order.

RIP

Currently only the second version of the RIP protas supported. It is covered by a single
application that takes advantage of a socket suppdetSim. The application listens on the
port specified in the configuration file and peiiadly sends a routing table to neighbor
routers (also from the configuration file).

It cooperates with amnPwbdul e, where the routing table is stored, reads and gdmnhe
routing information appropriately.

External Connection

This is a single modulext er nal Connect i on, which internally uses WinPcap (or libpcap on
Linux) to send and receive packets. Currently thapwer SharpPcap is used [6], but it was
modified and many code remains unused; an exclugi@hnarpPcap and using packet capture
library directly is one of the tasks in the TODGXL

While the simulator is configured, the capturediyris initialized; the device where it should

listen is specified and opened. Then, at the timeesimulator is started, the packet capturing
is started too. When a packet arrives, it is pardez simulator internal representation of the
packet is created and it is sent to the virtualvodt. On the other hand, if the packet is

received by the module from the virtual network,aaray of bytes is created and sent through
the packet capture library to the real network.

This module is intended to be the only one moduléh@ node. For a description of how to
interconnect virtual and live networks see the 4ddianual in Appendix C, page 60.

Ethernet Library

Ethernet library could be a part of the standdvchhy; however, it is intended to remain as a
small example library, even if the standard libraml grow. It is a good example for the
developers that will add their own libraries, sintehows addition of a new protocol with
packet factory and one simple module (for Ethesmatching).

To support Ethernet functionality fully, an adap&rmer net Adapt er), link (Et her net Li nk),
frame €t hFrame), and addresse(hMacAddress) are implemented; all of them are the

32

descendants of particular abstract classes intefole@xtending the set of the network
components.

Et hFrame IS a new packet (frame, actually) type; along wita type, its factory that should
be registered with the simulator is implemented.

Et her net Li nk provides a common algorithm for delivery, such asplying delay and
collision recognition if two frames are sent at dinge. Two other classes are further inherited
from that class, they differ just by the link spgelay after the frames are sent further):
Ethernetl0Base2 and Ethernet100TX.

Et her net Adapt er wraps incoming packets to tlzehFr ame and sends — it does not need to
be connected exactly to tiEeher net Li nk; however, resending with exponential back-off is
included, so it works well together with collisialetection implemented by the link; exactly

as the real Ethernet. The adapter has also itspop@ache object that stores the upper-layer

address to MAC address mapping. The adapter gselfls and receives ARP packets and
sends the request automatically if the packet taurginown destination address should be
sent.

Et hMacAddr ess is an address implementation allowing the simul&dohandle the Ethernet
addresses easily via its parent classwor kAddr ess.

Finally, a moduleLear ni ngswi t ch implements the behavior of a cheap non-configarabl
Ethernet learning switch.

User Interface

The previous chapters described the internal simutaomponents; however, how nicely the
simulator engine is designed and implemented isomawt so important for the users, as they
will appreciate a subtle and usable interface. @laee both console and graphic Ul available;
however, the graphic is implemented currently fandféws only.

Console

Console application is very simple; it just parsesnmand line arguments, loads simulator
assembly, configures the simulator and promptsuex to write commands. Currently only
enabling/disabling of the simulator componentsvigilable (plus printing some information),
the network structure cannot be changed throughctimesole commands. Changing the
configuration scripts directly is needed while gsthe console only. However, a set of scripts
generated by the graphic application also can bd (gnce GUI uses console internally).

Graphic Application

Graphic application (GUI) is both a network desigaad a tool for running simulations. It
allows a creation of the simulated network by synpsing drag&drop from the panel of
predefined network components. The application I$® alesigned to be extensible, new
components can be added by modification of a cardigpn file that is checked each time the
application starts and all predefined componerdgsadded to the panels of nodes and links (a
screenshot is shown in Figure 23 on page 63).

33

GUI maintains a main configuration file, since itgmat is known, and therefore it can be
modified according to the changes to the virtu&ivoek made by the user in the designer. On
the other hand, configuration files for separatéwonek components cannot be simply
modified since their format is generally unknowowever, the GUI is capable of starting a
user-defined editor for modifying that configuratibles.

To provide a better application stability, the siatar runs within a separate process;
therefore, if there would be some error in the $atan that would make the process unstable,
the graphic application will continue and informethiser about such bad event. For this
purpose, GUI runs the console application inteynatid some commands are sent directly to
its standard input. (Moreover, the console is algilable to the user within the GUI.)

Nevertheless, not all communication between GUIthedsimulator is done via the console, a
connection via .NET Remoting is also used (see Re@ontrol, page 20).

More information on using the simulator can be himAppendix C, page 60.

34

4.Remote Sockets

This chapter introduces the Remote Sockets featash is unique for NetSim and is not
present in other existing network simulators. Rem8bckets allows redirection of any
application network communication to any node i@ Wrtual network. It is obvious that this
feature is operating system specific; this worku®s only on MS Windows. Support for
other operating systems might be added in thedtftur

Redirection of an application communication regairgerception of a way in which data are
delivered between the application and a networkl caiver. Windows provide two points
where it is possible to insert a component thatiaih will go through it.

First, it is the NDIS® kernel driver. NDIS allows for creation of thregoés of drivers:
Miniport, Intermediate, and Protocol. Miniport deiv provides communication between
hardware (network card) and NDIS library. ProtodovVers transfer data between NDIS and
upper layer protocol (via private interface). Imediate drivers are layered in between and
can have any purpose, e.g. data filtering or, in case, data redirection [10]. Described
architecture is shown in Figure 9.

Transport Driver
Interface {TDI)

LAN Protocols
Native
LAN Media Type edia
a Protocol
< NDIS Intermediate
E
g Natire Media Type
=
HDIS Miniport NDIS Miniport

HetCard NetCard

Figure 9: NDIS Driver typesand layering™

However, this implementation brings many issuegstlyi the need of kernel driver

development and then its installation, which regmimdministrator privileges and many
administrators prefer to avoid the installatioradtlitional drivers (especially those not signed
by Microsoft). Secondly, protocol headers chanyékile the data goes through the protocol
stack, headers containing addresses and othermafmm are added to form packets.

4 For Linux, LD_PRELOAD environment variable can saudoading different library than the standard one,
which can replace socket function calls and theeefedirect network data transfer.

!> NDIS stands for Network Driver Interface Specifioa.

'8 The figure was taken from MSDN Library.

35

However, the local machine address is used asetiies address and in many cases also the
destination will differ from the one that should &ssigned in the virtual network. Thirdly,
performance issues; there would be a lot of workedfor nothing. Headers added by the
system protocol stack would have to be changed;kslkns recomputed. The advantage of
this approach is quite simple interface to the u@yel lower layer; just “packet is coming”
and “send this bunch of data”.

Second possible point of interception is the protastack itself. Windows Sockets allows

changes to the stack by so called WinSock Catalbigh is maintained by the system and
describing installed protocol chains. When a sockdieing created, the system determines
which chain is the best according to the addrasslyasocket type, and protocol specified.

One entry in the protocol chain is called servioevjgler; two types of service providers can
reside in a chain: base provider and layered serprovider. Base provider is always the
lowest one and provides communication with the NPIStocol driver. Any number of
layered providers can be installed over the baseiger — they can provide for example
authentication or security [18]. In the case of $iet, the provider would redirect WinSock
calls to NetSim implementation redirecting them tte virtual network. This solution
eliminates all disadvantages mentioned in the tieste, but there is one main drawback: a
necessity to implement a huge WSP interface. Howehes is the solution chosen for this
work.

API
WinSock 2 DLL
SP| ¢
| Layered Protocol|
SP|
| Layered Protocol|
SPI

Base Protocol

Figure 10: WinSock Protocol Chain®’

Layered Service Provider

As mentioned above, Layered Service Provider thttbs installed over other providers is
implemented. Microsoft provides an example of senfdyered provider in its Platform
SDK™®: a LSP for redirecting network communication iségon that example.

" The figure was taken from WinSock WSP Interfaceusoentation.

'8 Windows Server 2003 SP1 Platform SDK was usedhierdevelopment; there is currently new releaseedam
Windows Server 2003 R2 Platform SDK available. Botf them can be downloaded at
http://mwww.microsoft.com/downloads/

36

First, some basic background how the LSP works lghioel presented. When the application
is about to use network communication through WokSd callssocket () function to create

a new socket. This forces the WinSock library tolteded; it determines which protocol
chain is the best for such type of socket and laguisropriate DLLs for providers in the
chain. Provider's DLLs are regular native unmanagjedaries; DI | Mai n() is called to
initialize the library. Then, WinSock invoke®sPst art up() to determine some information
about the provider and addresses of other proviglections; it also provides a table of
function pointers to its own functions that can taled by the provider. During the
initialization process, if the provider is a layér@rovider, it initializes the lower layer
provider, gets its set of functions etc.

Because the layered providers’ DLL is loaded itite original process address space, some
kind of inter-process communication with the sintoitas needed. Moreover, when installed,
the LSP will be loaded and used in each applicatimmg network communication;
obviously, only some set of applications shouldrédirected. Therefore, LSP requires also
information which application to redirect.

Since NetSim is written for .NET framework in C# inatural’ inter-process communication
is .NET Remoting. It is probably also the only awiif the simulator should remain
completely managed and independent of unmanaged (fod accessing Windows API);
therefore, the LSP has to use .NET Remoting toavéyer, it is not so straightforward. Using
remoting requires using managed code, but we haestiomed that providers’ DLL is
unmanaged. This implies the need of mixed DLL; ggirst Platform InvokE is not enough
since calling managed code from unmanaged is reduiDne issue arises: mixed DLL
requires a managed runtime initialization functtorbe called as the first of all functions in
the library. However, because the LSP DLL is loadedVinSock, this requirement cannot be
met. A solution is to write two DLL libraries: onenmanaged loaded by the WinSock (it is
called LSP in this document) and one mixed loadethe LSP (called LSPWrapper).

Redirection within the LSP

The Microsoft provided LSP example creates an ivatestructure for each socket; this
structure contains also a pointer to another siractvith the information about the lower
layer provider, which then contains a table of fiort pointers used to access lower layer
providers’ interface. This behavior can be simphaiked: while creating the socket, if the
communication should be redirect&dthe pointer to the providers’ info can be changed
different structure created for the purpose of medion. After the socket is created, no
function call using that socket will call the fuimts of the lower layer provider, but different
ones that will redirect the communication to NetSim

' Mixed DLL means one DLL including both managed aminanaged code. Platform Invoke is .NET feature
for simplifying calls from managed code to unmanhgerameters and return values are converted lfadady
automatically. For more information, see MSDN lityra

% For the information which application should belirected, shared memory and process ID is used. See
Redirection Manager, page 39.

37

Making the redirection in that manner has two atlkges. Firstly, detecting whether to

redirect or not is done only once for each sockdditional usage of the socket, e.g. for data
transfer, is redirected automatically. Secondlg, $blution is robust, because it is impossible
to redirect only a part of the communication, se tbwer layer provider cannot become

confused about a function call for a socket that iat opened.

Communication with the Simulator

As previously mentioned, communication between L$&Wer and NetSim is done via
.NET Remoting. Although it allows communication one computer only, currently Shared
Memory Channel shnChannel) is used [13]. TCP channel would be much moreilflex
allowing an application to run on a different cortgguthan the simulator. However, using a
channel that requires network communication is -tiwial task, because the redirection of
one network access would cause another network comneation (within the same process)
and that additional network access should not bieeeted. Simple global counter of provider
function calls fails, because the application cae more threads to access single socket. Per-
thread counter is not the right solution too, SinNET internally creates some additional
threads to perform data transfer. Adding the pdgsilbo run the application on a different
machine than the simulator is one of the taskhenTtODO list (see Further Work, page 52).

The description of the method the simulator is ased follows. When an LSPWrapper is
loaded, it registershntchannel for further usage. Then the wrapper waits for ¢heket ()

call by the application, which communication shoblkl redirected to the simulator. At this
time, it tries to obtain remote reference Renot eSocket sManager object; that object
manages remotely created sockets in NetSim. l&ils,fsocket () function returns error,
otherwise the remote object (residing in the sitwulaaddress space) is called, creates
Net Si nSocket and returns some internal identification of sucbket, which is then returned

to the calling application. For all additional asses to that socket, the same reference to the
Renot eSocket sManager IS used, sincBenot eSocket sManager lifetime never expires.

Callbacks

Obviously, sometimes the simulator needs to call amplication, for example if an
asynchronous receive operation has been requestesheav data came through the virtual
network. For such case, an object that can be mynaiccessed should reside in the
LSPWrapper. There can be only one such object preps, or one object for each created
socket. Because the number of sockets createdéwypplication is usually not large, the
second option is implemented. It eliminates thednafetransferring socket identification and
than lookup for the information about the sockétowever, that table of opened sockets
exists since only the identification of a sockethes when LSP is called by the application.)

A structure of LSP, LSPWrapper, and the simulaton@unication is shown in Figure 11.

38

Application Application Application P T LT T R .
I// \‘\
/ Native Managed: Windows Forms

\
1
|
i
. o P :
HnSock Lbrary %’ Shared Redirection i
memory with | |€--------------------- i
redirections Manager '
NetSim LSP i
2 ~C i
o 1
< ‘ TCP ‘ ‘ UDP ‘ |
© i
P Mixed :
LSPWrapper i
1
””””” RemoteSocket '
NDIS Packet Drivers ‘ emotesockets i
1
] List of callback *
» objects associated . N
a NDIS Intermediate Drivers ‘ with the sockets SocketCallbackObject s
z - 1 1. !
I |
— - 2 e | B/ /
NDIS Miniport Drivers ‘ , /
,,,,,,,,,, ’ ’
7 < //’
Hardware s SocketCallbackObject
Remote reference to /' -
simulator sockets manager / P
° e
\ ’I '/
\ 1
S . II’,
Reference N
> Vol
1 '
P4
Invocation -
[N
"""""" L £
@t
[=a]
1 O
(=N
| i
H (n: Managed
1 1
Simulator (Core) I
R
/]
A
RemoteSocketsManager [~="7"7"7"7TTmTomomoommomommmmmmmmm oot - !
. /I'I
List of open SocketEntry S NetSimSocket
sockets A
-7 ’
T e > Callback ®-------t-------==" T
2 o Socket e I/ W
\ SocketEntry /’/ NetSimSocket
Callback ®-------
Socket @-------F-—com- »!

Figure 11: L SP, L SPWrapper, and simulator interaction

Redirection Manager

Finally, the way of letting the LSP know which commnication should be redirected and
which should pass through to the lower layer dhaltliscussed.

Realize that such information should be common dibrapplications that use or would
possibly use Windows sockets. Moreover, the actessuch information should be fast,
otherwise it will slow down all applications thasaes the network. Because of those two

39

requirements, shared memory in LSP was chosenefiiyrits size is fixed and therefore the
maximum number of redirected applications cannates 32 (of course, the value can be
changed, but currently in the source code only).

What is the information in that shared memory? tFia® identification of an application.
Because we need a unique per computer identifitgpiamcess ID is probably the best choice,
which is commonly used in such situations. Secoadyirtual node to which the
communication should be redirected. Since node maane unique in the simulator, node
name is adequate. Although this is currently enofagily the redirection to one instance of
simulator running on local computer is supportes®rver IP address and port have been
added for future use, allowing more than one irsgaof simulator running on different
computers.

To allow modifying a set of applications (procedséeing redirected, a small graphic
application called Redirection Manager was devealopesimply loads LSP into its address
space and modifies the shared information for estiing, so all processes that use WinSock
know about the change, because they have loaded RISP That application allows
displaying currently valid redirections, adding nesdirections based on process ID, running
new application and redirecting its communicatiommediately. A screenshot is shown in
Figure 12; console application for this purposeascreated yet; however, its implementation
is planned (see Further Work, page 52).

@Packel Redirection Manager

[2340] Tatal Commander 5.50 - Pavel -3 localhost3001[0] [
[1620] Doréens podta - Microzoft Outlook. -> localhost: 3007 [E

Figure 12: Redirection Manager

40

Note to the Implementation

In this version, the Remote Sockets feature is sthds EXPERIMENTAL, because the code
is not finished yet, nor well tested. However, itegtof some working scenarios has shown
that ideas described in the previous paragraphsappéicable and the redirection is fast
enough for practical use. Examples of applicationgently working with this version of
Remote Sockets are Telnet or WinSCP.

41

5.Practical Tests

In this chapter, some examples of the NetSim usageshown; this should demonstrate a
practical usability of the current version.

A machine running NetSim is always the same: CPUDARthlon XP 1800+ (1.54 GHz),

1 GB Memory (DDR2, 400MHz), Windows XP SP2. All wetrk connections are 100 MBit
Ethernet. Other computers do not do anything stiphied; they are fast enough to process
the incoming or outgoing traffic; the speed of natikvconnection is a limitation for them.

Using Virtual Nodes from Live Network

The following text will demonstrate that the virtueetwork actually behaves like real to other
computers. The situation is shown in Figure 13.

Computer running the
simulator

92.168.1.171

Il

PC1

192.168.1.1

Switch

192.168.1.174 Server

Computer from
PC2 where the virtual
network is accessed

Figure 13: Accessing virtual network test

=l

=/ =2

v
D orkstation

Server Connection

Eth10Base2

|
8 @ B @ B
EthD-E

WebSetver A RipRauter A Eth AD RipRouter D

FipFouter E

I

Estemal Connection SimpleLink

=

;‘_‘ s L WehSernerE
RipRouter B RipRouter C Eth10Base2a
Lo)

Eth

hownes| Etpgich (o]
Eth2

"\

Eth3

g 8 g

‘WehServer C ‘Workstation

WebZerver B

[Statting up simulator... D
Cormnected ta the i

one.
imulator

Figure 14: Virtual network in the NetSim GUI application

42

PC1 is running the virtual network that is providesl an example in the NetSim package.
Figure 14 shows its design in the NetSim GUI, Fegtb then its structure along with the

connections to the real computers.

ExternalConnection

7} 192.168.65.10

WebS D Workstation2
eoserver 92.168.65.50
— 192.168.60.1 192.168.65.1
WebSe @ @
192.168.1. ~

WebServer E

192.168.55.2

92.168.55.1
192.168:75.50

EthSwitch

192.168.55.100 Workstation

WebServer B WebServer C Workstation

Virtual Network running on PC1

Real Network

192.168.1.1

Ethernet Swi

Figure 15: Network structurefor the accessing virtual netwok test

The Server is a regular Linux server; RIP routimgmabled. It has set up two virtual routers
that attach directly to the real network as neighbmuters that should receive routing
information; those routers also have the Servettiress in their RIP configuration file. PC2
will run the applications that will access the wat network on PC1. Moreover, it has set
Server’s IP address as a default gateway, therdier&IP on virtual nodes should be running

properly to enable PC2 and Server access all Vindes.

The first test was jugti ng to the virtual network; it should be working arktreturn time
should be quite stable, as it will be in the restwork with low traffic. Ping was performed

from PC2 to the “RipRouter E” node (192.168.70.2).

43

The ping test has been made twice, first with 5fi2$of data, second with 50,000 bytes of
data. Times of the first one vary from 7 to 12 timeges of the second one from 79 to 86 ms. It
should be noticed that the same ping of 50,000sbgte=ctly from PC2 to the Sever is about
20 ms. The original console output follows.

Pinging the “RipRouter E” virtual node (over 2 vial hops) with 512 bytes of data:

C\>ping -t 192.168.70.2 -1 512
Pinging 192.168.70.2 with 512 bytes of data:

Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.

byt es=512 ti me=10ms TTL=126
byt es=512 tine=8ms TTL=126
byt es=512 tine=12nms TTL=126
byt es=512 ti me=10ms TTL=126
byt es=512 tine=9nms TTL=126
byt es=512 tine=8ms TTL=126
byt es=512 tine=12ms TTL=126
byt es=512 tine=10nms TTL=126
byt es=512 tine=9nms TTL=126
byt es=512 tine=7ms TTL=126
byt es=512 tine=11nms TTL=126
byt es=512 tine=10nms TTL=126
byt es=512 tine=8ms TTL=126
byt es=512 ti me=13ms TTL=126
byt es=512 tine=11nms TTL=126
byt es=512 tine=10nms TTL=126
byt es=512 tine=8ms TTL=126
byt es=512 time=12ms TTL=126
byt es=512 tine=11nms TTL=126
byt es=512 tine=9ms TTL=126
byt es=512 tine=8ms TTL=126
byt es=512 time=12ms TTL=126
byt es=512 tine=10nms TTL=126
byt es=512 tine=9ms TTL=126

NNONNPNNNNODNNNPODNNDNNNNDNNDNNDNNDNDNNDN

Ping statistics for 192.168.70. 2:

Packets: Sent = 24, Received = 24, Lost = 0 (0% oss),
Approximate round trip times in nmilli-seconds:

M ni rum = 7ns, Maxi num = 13nms, Average = 9ms

Similar to above, but with 50,000 bytes of data:

C.\>ping -t 192.168.70.2 -1 50000

Pi ngi ng 192.168.70.2 with 50000 bytes of data:

Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.
Reply from 192. 168. 70.

byt es=50000 ti ne=86nms TTL=126
byt es=50000 tine=82nms TTL=126
byt es=50000 ti nme=83nms TTL=126
byt es=50000 ti me=79nms TTL=126
byt es=50000 ti ne=83nms TTL=126
byt es=50000 ti ne=80nms TTL=126
byt es=50000 ti me=81ns TTL=126
byt es=50000 ti nme=81ns TTL=126
byt es=50000 ti ne=81nms TTL=126
byt es=50000 tine=82nms TTL=126
byt es=50000 ti me=80ns TTL=126
byt es=50000 ti nme=81ns TTL=126
byt es=50000 ti ne=80nms TTL=126
byt es=50000 tine=81nms TTL=126
byt es=50000 ti me=80ns TTL=126
byt es=50000 ti nme=81ns TTL=126
byt es=50000 ti ne=80nms TTL=126
byt es=50000 tine=82nms TTL=126
byt es=50000 ti me=80nms TTL=126

NNNNNNPNPDNNNNDNNDNNNDNNNDN

Ping statistics for 192.168.70. 2:

Packets: Sent = 19, Received = 19, Lost = 0 (0% oss),
Approximate round trip times in nilli-seconds:

M ni rum = 79ns, Maxi mum = 86ns, Average = 81ns

44

Next, the traceroute command was executed:

C \>tracert 192.168.70.2

Tracing route to 192.168.70.2 over a maxi mum of 30 hops

1 <1l nms <1l nms <l ns 192.168.1.1
2 13 s 15 s 15 ms 192.168.1.7
3 14 s 15 s 15 ms 192.168.60.2
4 14 s 15 s 15 ms 192.168.70.2

Trace conpl ete.

After this trace, “RipRouter A” node was disabl&ince the previous route goes through that
node (192.168.1.7), the traceroute commands exg@iterwards was not able to reach the
destination. However, after few minutes RIP updatading tables and an additional route
was found, as the next traceroute output demomstrat

C. \>tracert 192.168.70.2

Tracing route to 192.168.70.2 over a maxi mum of 30 hops

1 <1l nms <1l nms <l ns 192.168.1.1
2 10 s 15 s 14 ms 192.168.1.8
3 10 s 15 s 15 ms 192.168.55.2
4 10 s 15 s 15 ms 192.168.70.2

Trace conpl ete.

The traceroute output shows also a bottleneck efdata transfer — that is a transfer of
packets between real and virtual network. Evendhdticauses delay only, it is fast enough
to transfer a lot of data, as will be demonstratedhe following section. Nevertheless, a
proposed task in the TODO list, excluding SharpPaad using packet capture library
directly, could make these numbers a bit better.

A final test triedsi npl evebServer module running on “WebServer A”. As expected, the
web browser displayed the following page accordinghe SimpleWebServer application
configuration file:

©3Mode A - Mozilla Firefox

0 | L) nttpr192.168.1.5/ | ©

Hello from SimpleWebServer!

Thiz page 12 at the wirtual node &

Figure 16: SimpleWebServer pagein a web browser

45

Interconnecting Real Nodes through the Simulated
Network

The goal of this part is to test how fast the dzda flow through the virtual network. A
schema of the real network is in Figure 17.

= '~ 4
192.168.1.175 _ 1 1]192.168.200.1 — _
= =] — —
L\ 192.168.1.171| ——— 192.168.200.50
i PC3
PC2

Figure 17: Testing virtual network throughput

PC2 is running NetSim; it has two physical inteelscone connects to the PC1 and the
second one to the PC3. The virtual network has‘ExternalConnection” nodes; the first one
captures and sends files to the interface connettelC1, the second one to the other
interface. Data are transferred via four routershim virtual network; its design in NetSim
GUI shows Figure 18, complete network structuréuiding both real and virtual networks is
depicted in Figure 19.

BT o, e

SimpleLink Eth100BaseTxI Eth100BaseTx2 Eth100BaseTx3 SimpleLink?
ExternalConnection RipRouter RipRouterl RipRouter2 RipRouter3 ExternalConnectionl

Figure 18: Virtual network for throughput test design

192.168.1.175

RipRouter2 192.168.30.4 192.168.30.5
. IpRoLfer. RipRouter3

Figure 19: Throughput test network structure

A very large file has been transferred from PCP@SB. As Figure 20 demonstrates, the speed
was usually above 3,000 kilobytes per second, wisclalmost 25 Mbps. The machine
running NetSim had CPU usage about 50-60% duriedrémsfer.

46

=|Total Commander -0 =|

Download: 72 978 432 bytes, 3398.9 kbytesds, 11 =

From: MCTUnsg-allinone-linus-2.6.17 -fod. 20060503 1oz
To : cimphHCT Ung-alinone-hnus-2. 6.1 -fed. 20060503 tgz

Figure 20: Data transfer speed over thevirtual network

Running a Real Application on the Virtual Node

The final test is focused on the Remote Socketsifealt uses an application that is known to
work with current experimental version of Remotel&is — WinSCP. The test configuration
is shown in Figure 21.

I 192.168.1.171 (m\ 84.42.165.210 | =

PC Server

Figure 21: Remote Sockets test

The PC is running virtual network; again, the exlemetwork provided with NetSim is used
(see Figure 15 on page 43). The WIinSCP applicasoredirected to the “Workstation2”

node, connected to the remote server in the Inteara large files are downloaded and
uploaded.

The file transfer worked well; large file of abdl@ MB was uploaded and then downloaded.
The screenshot of packet capture at the samean&rfhere the virtual network is connected
is shown in Figure 22. It evidences that the filnsfer was really from “Workstation2” node
(192.168.65.50).

47

{@ [Untitled) - Ethereal

4. 518251
23 4.521029
24 4.523239
25 4.523890
26 4.526102
27 4.530707
28 4. 531548
29 4. 533680
30 4. 536632
31 4.538839
32 4.539491
33 4.542114
34 4.545238
35 4.545468
36 4. 550317
37 4.550782
38 4.551548
39 4.554782
40 4. 556981
41 4.559380
42 4.561060
43 4

. 064451

192.168.65.50
192.168.65.50
152.168.65. 50
B84.42.165. 210
192.168.65.50
182.1 .50
192.1 i, a0
192.168.65.50
152,168,465, 50
152,168,653, 50
B84.42.165. 210
152,168,465, 50
84,424,165, 210
192.168.65.50
84.42.165. 210
152,168,653, 50
192.168.65.50
84.42.165. 210
152,168,653, 50
B84.42.165. 210
84.42.165. 210
B4.42.165, 210

84.42.165.210
84.42.165.210
B4.42.165.210
152.168.65. 50
84 . . 210
84.

B84.42. . 210
B4.42.1a5.210
84,424,165, 210
192.168.65. 50
B4.42.1a5.210
19:.168.a5.50
84.42.165.210
1592.168.65. 50
84,424,165, 210
84.42.165.210
1592.168.65. 50
84,424,165, 210
192.168.65. 50
1592.168.65. 50
1%2.168.a5.50

Encrypted
Encrypted
Encrypted
22 » 1650
Encrypted
Encrypted
Encrypted
Encrypted
Encrypted
Encrypted
22 » 1650
Encrypted
22 = 1630
Encrypted
22 » 1650
Encrypted
Encrypted
22 » 1650
Encrypted
22 » 1650
22 » 1650
22 = 1630

requast packet len=52
regquest packet len=512
reguest packet len=52

[ACK] Seq=236 Ack=864 wWin=9648 Len=0

regquest packet len=512
reguest packet len=52
request p et len=51.
request packet len=52

reguest packet len=512
request packet len=52

[ACK] Seq=236 Ack=1428
reguest packet len=68

[ACK] Seq=236 Ack=1952
regquest packet len=512
[aCK] Seq=236 ack=2556
requast packet len=52

regquest packet len=512
[aCK] Seq=236 ack=3120
request packet len=52

[ACK] Seq=236 Ack=3684
[aCK] Seq=236 ack=4248
[ACK] Seq=236 Ack=4812

Figure 22: Ethereal screenshot while uploading thefile

48

win=10720
win=11752

win=12864

win=13936

win=15008
win=16080
wjn=16080

Len=0

Len=0

Len=0

Len=0

Len=0

6.Conclusions

The purpose of this chapter is to summarize thekwtre fulfilment of its goals and
contributions. It also suggests possible directifsirther work.

Summary

According to an original thesis submission, a ngoal of this work should be providing an
implementation of a computer network simulator thdt be suitable for teaching, testing of
network monitoring tools, and deploying so callaedriieypots’. The first chapter discusses the
sense of such usage combination, shows that somp@rements for teaching versus
honeypots are contradictory and that it would bigelbéo provide just a tool for teaching and
testing. In addition, existing simulators are coneplaand their feasibility for such usage is
dissected.

The second chapter introduces the NetSim archrectliscusses the alternatives and reasons
for the choices made. Chapter 3 then explains taildeow the ideas from Chapter 2 are
implemented.

Chapter 4 introduces the Remote Sockets feature altavs redirection of any network
communication to a node in the virtual networksthnique feature is not supported by any
other simulator.

Chapter 5 demonstrates some usage scenarios agdriNperformance under various test
conditions.

Comparison to Other Simulators

A comparison according to some impartial and mesdsarcriteria would be a very hard task:
the main purpose of each existing simulator isedét; therefore, formulation of criteria to
compare is almost impossible. For example, a spdethe simulation could be a well
measurable criterion. However, a lower speed isaftwndicap for teaching and in most cases
also testing.

Discussion about features that are available iividdal simulators is presented in the first
chapter. A table summarizing the features of exissimulators is shown on page 12; the
same table having one additional column for Netfillows.

49

D
zZ (2}
Requirement — |2 |5 |E
Y u g |2 |2 |5 |2
N =z = (ol S O @)
zZ |0 | |O | |2 |2
Easy installation X | X v v v X v
- — —— v
Requires writing no code to build simulated s | % | x| v 5 5
network
Simulation at link layer level v X v X v v
Network structure visualization ® | X | X | v v v v
Data flow visualization v X o v X v X
Extensibility of network components v X | @ ? X | X | v
Extensibility of supported protocols v v [v X | v v
Wide range of protocols supported v X | X v v v X
Interconnection to the real network v X | X ? X v v
Runs on Linux v v v X v v v
Runs on Windows X | X v v v X | ¥
Source code available v v v X | X | v v
v present ® not completely present
X not present ? not known

The table shows that NetSim meets most requirenantsg of all simulators. Moreover, the
missing support for wide range of protocols canm®tsimply compared to other simulators
since this is just the first version. In additiaiata flow visualization can also be implemented
in some of future releases.

It is obvious that the support of some feature Iy does not mean that the feature is the
best. For example, other existing simulators havechm more sophisticated graphic
environment. However, those drawbacks would cdstdie gradually eliminated in new
versions.

The next chapter describes separate requirementsria detail.

Goals Fulfillments

The features that should be included in NetSimligted in Chapter 1 (see Project Goals
Revisited, page 13). The following table summarigesm and provides comments to the
implementation.

50

Requirement FulfilledPComment

Easy installation Yes The installation can be doseby copying the directory
tree to the target machine; on Windows is thersfiad
by executing one batch script. (For Remote Soakedge
the installer is currently needed; however, it askly a
few simple questions.)

No code when Yes A graphic application for designing the virtnakwork
creating the simulated structure is implemented; just modifying configuvat
network files of separate network components is needed. On

Linux, where the graphic tool is not currently dahle,
creating manually one additional configuration fie
required.

Link layer simulation | Yes The simulation is donedink layer, Ethernet
implementation is provided.

Network structure andgPartially | Network structure visualization is sagsfthanks to the
data flow visualization graphic application, which allows also modificatioh
the network. Data flow visualization is not implembed
in this version.

Extensibility Yes The simulator allows the additioihnew components and
protocols. It is done by implementing a class (g a
language for .NET) that derives from an abstraas<l
provided or implements a specific interface. Mona
set of predefined components in the graphic apjdica
can also be easily extended by modifying applicatio
configuration file.

Wide range of No Only TCP/IP protocol suite and RIPv2 for routeng
protocols implemented. Therefore, the usability for testiig o
network monitoring programs is limited (especiallye
to missing SNMP).

Multiplatform solution| Partially | NetSim is implemented over the .NET Framek, which
is currently available for Windows and Linux. Itlixne
hopefully implemented for some other platformsha t
future.

As stated in the table, almost all requirements satsfied. The only one is completely
missing due to a lack of libraries of protocol immplentations — it is excusable since this is the
first version of the application. Data flow visuadtion is also missing because there was no
time for implementation; it will be certainly inaled in a new version. Finally, having the
implementation for Windows and Linux only is not@uicial since those are the two leading
platforms over the world.

51

Further Work

Since this is the first version of NetSim, there arany things to improve. Obviously, first,
unfinished and not well-tested parts of the sinmarlahould be completed. Afterwards new
features and libraries can be added. A list of ghino do follows — current priority
corresponds to the list order. However, prioriaes subject to change depending on the users
feedback and the purpose for which the simulatdirb& mainly used.

1)

2)

3)

4)
5)

6)
7
8)
9)

Complete Remote Socketseature. Windows Sockets Layered Service Provider
interface is not completely implemented; there abwiously many programs not
working. Moreover, the installation of this LSP &éks the network connection on
many computers. This feature should be well testedll versions of MS Windows.

RunningRemote Socketsver the network (via TCP channel) results cufyeintnon-
trivial problems; only local redirection via sharedemory can be used for now.
Solving this issue will help improve the simulatiparformance because applications
would be able to run on the different machine ttinsimulator.

LSP should be also rebuilt using new release dfd?ta SDK (R2) from March 2006,
currently the release SP1 from May 2005 is used.

Exclude SharpPcap library from the project. Raap is needed for communication
with the real network. However, this library is esfe of crating its own internal
representation of packets etc. NetSim needs jysum an array of bytes and send
raw array of bytes to the network, nothing elseer€fore, the library was modified
and currently the main part of it is not needed.nOwanaged interface to WinPcap
(libpcap) would be a much more plain solution.

Deeply test the simulator in a multiprocessoviemment for race conditions.

Because the author does not have access to anprcdssor machine, the simulator
was not tested in this environment. Although it wagplemented carefully with

respect to such conditions, because threads arelywigsed in the core of the
simulator, it is possible that some bad situatiamsnot handled.

Implement SNMP and DHCP support.

Add capturing of packets support; at least dyapkets traveling over the link to a
file that can be read by third-party tools suclttdsereal [5].

Implement data flow visualization in a graphppBcation.
Move all strings displayed to the user to sefediite that can be localized.
Implement more network protocols (OSPF, IPv6).

Implement more network components (Applicatiamning FTP, ...; another link
layer protocols such as ATM or FDDI).

10) Add console interface for remote sockets. Tilsbe useful to redirect applications

in the script.

11) Add Remote Sockets for Linux.

52

7.References

[1] AdventNet, Inc.: AdventNet Simulation Toolkit.

http://www.adventnet.com/products/simulator/ 10
[2] BenDi, PriorityQueue. http://www.codeprojectrafcsharp/PriorityQueue.asp 19
[3] Clifton, Mark: .NET’s ThreadPool class — Behitite Scenes.
http://www.codeproject.com/csharp/threadtests.asp 9 1
[4] Comer, Douglas E. (2006): Internetworking wit€P/IP, fifth edition. Pearson Prentice
Hall, Upper Saddle River, New Jersey. 31
[5] Ethereal Network Analyzer. http://www.etherealn/ 52

[6] Gal, Tamir: SharpPcapLibrary,
http://www.tamirgal.com/home/dev.aspx?ltem=SharpPca 22,59

[7] Keshav, Srinivasan: Computer Science Departriieshnical Report 88/472, UC
Berkeley, 1988. http://www.cs.cornell.edu/skesheallr 11

[8] Krasser, Sven at al.: The use of honeynetadoease computer network security and
user awareness.
http://www.ece.gatech.edu/research/labs/nsa/pajserséf _honeynets.pdf 6

[9] McDonald, Chris: CNET Network Simulator. httfwivw.csse.uwa.edu.au/cnet/ 9

[10] MSDN Library, NDIS Drivers.
http://msdn.microsoft.com/library/default.asp?ulibrary/en-
us/NetXP_d/hh/NetXp_d/102gen_24174df5-78af-48f3388B63c44c2e852.xml.asp 35

[11] NS-2 Network Simulator. http://www.isi.edu/ren/ns/ 9
[12] OPNET Technologies: OPNET IT Guru Academicteai. http://www.opnet.com/ 10

[13] ProSek, Ladislav (2006): Shared Memory ChanRkhlanger Project, http://www.php-
compiler.net 59

[14] Scalable Network Technologies: QualNet NetwSmkulator. http://www.scalable-
networks.com/ 11

[15] Toub, Stephen: ManagedThreadPool.
http://www.gotdotnet.com/Community/UserSamples/Dei@spx?SampleGuid=BF59C

98E-D708-4F8E-9795-8BAE1825C3B6 19, 56
[16] Vollset, Einar W.: Java Network Simulator.ghttjns.sourceforge.net/ 10
[17] Wang, S.Y. et al.: The Design and Implemeptatf the NCTUns 1.0 Network

Simulator, Computer Networks, Vol. 42, Issue 2,eJ8003, pp.175-197. 10

[18] Windows Sockets 2 Service Provider Interfaceuimentation.
ftp://ftp.microsoft.com/bussys/winsock/winsock2/WE232.DOC 36

53

8. Appendixes

Appendix A - other network simulators

NS-2
http://www.isi.edu/nsnam/ns/

NS-2 is one of the first network simulators whiclasMunded by DARPA. It is written in
C++, the simulation requires writing scripts in @{@bject extension of Tcl language). After
about 15 years of development, it is stable andym@mtributors created extensions that
support other protocols than TCP/IP. Requires Uikix-operating system, the source code is
available.

QualNet
http://www.scalable-networks.com/

A commercial network simulator that supports a widege of protocols; some of them are
also written by third parties. Even though it isysuercial, they provide the simulator for
research and education to the universities. Run§Vardows, Unix-like OS, Solaris, and

Apple. Core written in C/C++, some tools in Javatliides GUI for creating virtual network

topology.

CNET
http://www.csse.uwa.edu.au/cnet/

Developed for education purposes at The UnivesityVestern Australia. Written in C, it
requires writing scripts describing the simulatedimnment. Requires Unix-like operating
system. The simulation can be affected through C AP

AdventNet Simulation Toolkit
http://www.adventnet.com/

A commercial simulator running on Windows, Linuxda®olaris. Supports SNMP, Cisco
IOS, it has GUI for creating simulated network tiogyy.

REAL
http://www.cs.cornell.edu/skeshav/real/

Developed at Cornell University for research ofafland congestion control. Written in C, it
requires Unix-like OS, Solaris, or some others.réntty also GUI RealEdit for building
network topology is available.

RouterSim
http://www.routersim.com/

54

Simulator intended primarily for training of Cisd®S, provides experience to pass Cisco
exams. Only Windows platform is supported.

NIST ATM Network Simulator
http://w3.antd.nist.gov/Hsntg/prd atm-sim.html

Implemented at National Institute of Standards @edhnology; written in C. As the name
shows, it is ATM only simulator. Requires Unix-lik@erating system.

Enhanced Network Simulator
http://www.cse.iitk.ac.in/~bhaskar/tens/

Developed at Indian Institute of Technology, iais extension of NS-2 simulator. Adds some
features not included in the original NS-2 like niitjpsupport.

NAB
http://nab.epfl.ch/

Written in Objective Caml, it is targeted at wirgdead hoc networks.

JNS
http://ins.sourceforge.net/

Java Network Simulator is Java implementation of2N& is not so complete as the original,
but simplifies creating scripts and provides thesautput as NS-2, so it can be processed by
any tool written for NS-2.

NCTUns Network Simulator and Emulator
http://nsl10.csie.nctu.edu.tw/

Developed at National Chiao Tung University by P&fY. Wang and his students. Supports
both wired and wireless networks, mobility and mamgtocols, simulations can run on a
remote computer. Requires Linux, actually Fedoree@o

OPNET
http://www.opnet.com/

A commercial network simulator; the subtle graphiterface allows to model not only
traditional wired networks, but also wireless netygoand simulate node mobility. Some
licenses for universities for education and redeare available.

55

Appendix B — Source Code Description
Core project

Core simulator functionality — thread pool for extieg network events, server-side for
remote sockets, abstract classes for network sheignplementation.

« Collections
o ByteArrayList.cs- Collection used for storing bytes of packets.
o DoubleHashtable.cs Hashtable hashing both keys to values and vatues
keys.
o PriorityQueue.cs- Priority queue; implemented as binary heap.
o SortedList2.cs- Sorted list allowing duplicate entries.
« Configuration
o NetSimConfig.xmt Virtual network configuration file.
o NetSimConfig.xsd XSD schema for checking network configuratidedi
« Structure
o Adapter.cs- Abstract class for creating adapters; SimpleAetap
implementation.
o Application.cs- Abstract class for creating applications runronghe virtual
nodes.
Interfaces.cs- Some interfaces used in the Core project.
Link.cs— Abstract class for creating virtual network kniSimpleLink
implementation.
Module.cs- Abstract class for creating modules.
NetworkAddress.cs Basic class for addresses used over the network.
Node.cs- Virtual node that carries adapters, modules,aqmdications.
Packets.cs- Abstract class for crating packets, packets&orying known and
unknown data.
o ProtocolSettings.cs Ancestor for arbitrary protocol settings asstsdawith
adapters.
o StructureObject.cs Common ancestor for all objects in the virtuetiwork.
+ AssemblyResources-edAccess to assembly resources (localized stetgs
+ EventLog.cs- Log for errors, warnings and notices.
« Exceptions.cs Exceptions used in the simulator.
+ Factories.cs- Abstract class for creating packet factories.
+ ManagedThreadPool.cs Thread pool of threads waiting for the networkré to
execute. Based on Stephen Toub’s ManagedThreaiPsjol
+ NetSimSocket.ecs Socket at the virtual node; implements the sentegface as
.NET Framework Socket class.
+ RemoteControl.cs An object that can be referenced remotely tdrobthe
simulation.
+ RemoteSockets.esControls sockets on the virtual network creatgdotely. Can be
accessed remotely to execute socket operations.

O O O O

56

SimulationTimer.cs- Timer used by the simulator.
Simulator.cs- The simulator — initializes and runs the simolat
Strings.resx Resource strings that can be localized.

Ethernet project

As a specific part, Ethernet functionality was ierpkented independently from the main
simulator library to be an example project for tirgaanother libraries.

Gui

Modules

o LearningSwitch.cs Simple non-configurable learning switch.
ArpCache.cs- ARP cache for Ethernet adapter.
EthFrame.cs- Ethernet packet implementation.
EthMacAddress.cs Ethernet address.
EthernetAdapter.cs Adapter for Ethernet links family.
EthernetLink.cs- 10Base2 and 100BaseTX Ethernet link implemesriati

project

Graphic application that simplifies virtual netwarteation.

Data
o Exceptions.cs Exceptions used in GUI.
o GeneralData.cs- Graphic application configuration parsing anddieg.
o GuiProjectData.cs- Project-specific configuration used in graptpplacation
parsing and handling.
o ProjectData.cs- Virtual network configuration files processing.
o XmlData.cs- Abstract class for XML files processing.

AboutForm.cs- About screen.
ErrorForm.cs— Form used when an unexpected error occurs.
ItemAppearanceForm.es Changing the appearance of an graphic itemein th
virtual network.
MainForm.cs— Main application form.
NewVersionForm.cs Form with current and newly available version
information.
o NodeltemsListForm.cs Form used for displaying the list of items tbah be
added to the node.
o NodeProperties.cs Properties of the virtual network node.
o Renameltem.cs Form used for renaming various network items.
o SplashScreen.esSplash screen displayed while the applicatiataging.
App.ico— Application icon.
Console.cs- Console within the graphic application.
FileSystem.cs Helper methods related to filesystem.
GuiConfig.xmk Graphic application configuration file.
SimulatorControl.cs- Communication with the simulator to control gimulation
process.

57

Installer project
Microsoft Windows Installer project that builds M@ckage for installation.

LSP project

Layered Service Provider installed to the systemyipes redirection of socket function calls.
Loads LSPWrapper to communicate with the simulai@:NET Remoting. Based on LSP
example provided by Microsoft in Platform SDK.

Only files inbold were modified or newly added, others were lefthamged or only some
minor modifications were made.

« common
o provider.cpp—- Common support functions for enumerating WinScatalog.
install

instlsp.cpp- Installer for inserting the LSP to the catalog.
Ispadd.cpp- Installing provider.

Ispdel.cpp- Removing provider.

Ispmap.cpp- Handling provider dependencies.

Isputil.cpp— Helper functions used by other parts of theailtest
prnpinfo.cpp— Printing information about the provider.

O O o O o

(@]

« netsim
o netsimspecific.cpp — Routines for initializing provider and handling
information about which processes are redirected.
o netsimspi.cpp — WinSock interface functions called by the LS& tinteracts
with the simulator internally.
nonifssp
asyncselect.cpp Hidden window for interceptiong WSPAsyncSeleaitsc
extension.cpp- WinSock extension functions intercepting.
Ispguid.cpp- GUID for provider catalog entry.
overlap.cpp- Overlapped I/0O operations handling.
sockinfo.cpp- Mapping between upper and lower layer sockets.
spi.cpp — Service provider interface functions called gy tipper layer.

O O O O o o

LSPWrapper project

Managed part of NetSim LSP; loaded by the unmana&d Handles communication with
the simulator via .NET Remoting.

+ LSPWrapper.cpp Initializes remoting, stores remote referencesrtailator objects.

« init.cpp— Exported functions called by unmanaged LSPit@lize DLL.

+ spi.cpp— WinSock LSP functions called by LSP when appuprfunction is called
by the application that is being redirected.

LSPWrapperControl project

Graphic application that controls LSP to redirextket communication of selected
applications.

58

+ App.ico— Application icon.
+ MainForm.cs- Application logic + user interface.

Library project
Basic library of network structure objects.

Applications
o RIP.cs— Routing Information Protocol (version 2).
o SimpleWebServer.esSimple web serever that can reply to web reguegh
page or error according to configuration file.
+ Modules
ExternalConnection.cs Connection to the real network.
IP.cs— IP (currently version 4 only) protocol implematnbn.
IcmpModule.cs- ICMP protocol.
Repeater.cs Module that sends immediately everything theénees.
SocketModule.cs Module required for socket applications or resnsxickets.
TCP.cs— TCP protocol implementation.
o UDP.cs— UDP protocol implementation.
+ Addresses.cs IP address.
+ Packets.cs IP, ICMP, TCP, UDP, ARP, and SocketDataPackekgia and their
factory. All those packets are used by applicatemm$ modules in the library.
+ ProtocolSettings.cs IP settings that are associated with an adapter.

O O O O o o

NetSimConsole project
Console application that runs the simulator.

+ App.ico— Application icon.
+ NetSimConsole.cs Console application; parsing and executing asermands.

SharpPcap project
SharpPcap library. The main part of the librargusrently not used (see Further Work,
page 52) [6].

ShmChannel project
Shared memory channel used for remoting communpicdtetween processes [13].

59

Appendix C - User’s Manual

Building the source code
To build the source code, following components s&thbe installed:

 .NET Framework 1.1 SDK
(Usually installed together with the Visual Stu@@03; otherwise available at
Microsoft’s download website.)

* Visual Studio 2003

¢ Windows Server 2003 SP1 Platform SDK
This is not the most recent version of the SDK; baev, it is the one used for the
simulator development. Upgrading to the newer sgesa in the TODO list. It can be
also downloaded dittp://www.microsoft.com/downloads/
The only required component of Platform SDK is “M8nhdows Core SDK.”

Then, theNetSim-1.0-alpha.src.zifrom the NetSim package should be unpacked to the
destination directory anNetSim.sInwhich can be found in thdetSimdirectory, opened in
the Visual Studio. Next, one of four configuratiooan be selected: Debug, Release,
MonoDebug, or MonoRelease. The first two of themiatended for Windows, the others for
Mono running on Linux.

After building any of the pre-set configuratihsthe Deploymentdirectory will contain
executable files and libraries that can be copoetthé¢ target machine. In addition, in the sub-
directoryNetSim/Installean installer package will be created for Windowsfurations.

Installation

Prerequisities
NetSim requires some components installed on yoonpuiter.

¢ NET Framework v1.1

This is a required component. For Windows, go to
http://www.microsoft.com/downloads/details.aspx?FaiD=262d25e3-f589-4842-
8157-034d1e7cf3a3&DisplayLang=en

(or visit http://www.microsoft.com/downloadshd search foNET Framework 1.1
Redistributable Package

For Linux, install Mono. Go taittp://go-mono.com/sources-stablédwnload the
latest release of version 1.1 and install.

I One more step is necessary for source packagelamsed from the NetSim website. For security reason
key pairs for signing assemblies that are requicetave a strong name are excluded. Each devestymedd
create his/her own: NetSim/NetSim.snk and NetSimShannel/ShmChannel.snk. This task is necessayy onl
when using the downloadable package; the source tted on a CD attached to this work includes tffitese

60

» Packet capturelibrary

This component is not required if connecting virtoetwork with the real network
will not be used. However, it is recommended t@pre the environment for this
feature.

For Windows, download WinPcap. Attp://www.winpcap.org/installéelect the latest
stable version (currently 3.1) and install.

For Linux, LibPcap library might be already insgall(it is included in many
distributions). If not, download LibPcap fatp://sourceforge.net/projects/libpcagid
install.

Two types of installation are available. One isyveasy — just decompressing file into the
target directory; however, remote sockets featsingot available if you use this one. Another
one is regular Microsoft installation package. (€dfurse, available only on Windows,
nevertheless, remote sockets are windows-basedarayailable on Linux.)

I nstallation type 1

Decompress the fildNetSim-1.0-alpha.zip(NetSim-1.0-alpha.tar.gZor Linux) into the
destination directory. On Windows, go Toolsdirectory and executgacregister.bgtwhich
will register some assemblies to the Global Assgn@ldche. Such operation is not required
for Linux, because no assembly in GAC is neededdonmand-line simulator interface.

Network simulator console is located Bin directory fietsim.exg for launching simulator
graphic interface use eithédetSim.cmdin Gui directory or launchBin/NetSimGui.exe
specifying GUI main configuration file as the fipgirameter@ui/GuiConfig.xm).

I nstallation type 2

This type of installation is available only for Vdiows and is required if you want to use
remote sockets. RuSetup.exeafter unpackingNetSim-1.0-alpha.install.zipnd follow the
setup instructions.

Uninstallation

For Windows: If the NetSim was installed througke thstallation wizard, either run it again
or go to Control Panet> Add or remove programs, select “Network Simulatanid click
Remove.

In all other cases, deletion of the directory whitsee simulator files were copied or unpacked
is sufficient.

Using the command line

The command line executable nanmedsim.exe&an be found imBin directory. It requires the
path to virtual network configuration file as a amand line parameter and accepts some
switches. The usage is following (individual commadme switches are described in the
table):

netsim[-rc:shm [-rs:shn [-pt:sinple|adv|none] [-h] <configuration file>

61

SWITCH

ACCEPTED VALUES

DESCRIPTION

-rc

shm

Turns on Remote Control, which allows programmaticess t
the simulator. The simulator will provide remotedgcesse
object that can be used for controlling the simafatfrom
another process via .NET Remoting.

| .—

The value represents a channel that can be useddessing the
object, currently onlyshm is available. {hm = ShmChanne];
communication through the shared memory)

-rs

shm

Turns on Remote Sockets, a feature that enablegirection of
network communication of any application.shfh =
Communication via shared memory) Not availableLioux.

-pt

sinmpl e
adv
none

Type of prompt displayed.

si npl e — The simulator will be configured and started and
only stopping will be possible

adv — Prompt enabling the user to control the simaoikgt
enable/disable network components and exit | the
simulation will be available. This is the defauttive.

none — No user interaction. The simulator will be cogufied
and started and the console will just wait for detr
shutdown. Useful withr c only.

Displays help for the usage.

Using graphic interface

The GUI application contains three main panels. [Hngest one is used for virtual network
design and is available only if a project is open@d the left, there is a panel containing
predefined types of nodes and links that can beadd the network by dragging the icon to
the previously described panel. The last one iseulaat the bottom: it displays error and
information messages, and on other two tabs (wthke simulator is running) simulator
console and events written to the simulator log. @plication screenshot is shown in
Figure 23.

62

Empty Ethernet
Node Switch

g
Rip Router Wweb
Server

N /E
WehSerer D Workstation2

ICBASE:

= =

‘wiorksta... -

Eth10Base?

‘WebhSarver A RipRouter A Eth A-D RipPouter O Eth D-E

| RipRouter B - Properties

ExternalConnection SimpleLink

IP [MetSim.Librarg. b odules.IPModule]

ICMP [MetSinn Libram. Modules.lempModule]

UDP [MetSinn. Library. Modules. 1 dpkdodule]

TCP [MetSim. Library. Modules. TepModule]
RipRouter B SocketModule [MetSim.Library.Modules. SocketModule)

g

WehSerer B WebSererC “Workstation

Starting simulator... Done.
Type 'help for the list of options,

netsim

Figure 23: Graphic application screenshot

Small “HOWTO* list of common actions follows.

Creating new project
Go to File=> New... and choose the directory. Enter the new ptajame; the directory of
that name and a file with the same name and .xteinsion inside will be created. That .xml

file is the main configuration file for the virtuaketwork and should be selected in the future
while opening the project.

Adding new link to the network

On the panel on the left, select ‘Links’ tab. These Drag&Drop to move the appropriate
icon to the network design on the right. Rightklibe new icon to view a context menu.
Dialog boxes for renaming or changing the link caan be shown, the link deleted or, if the
link has some configurable properties, its confagian file can be opened for editation.

Adding new node to the network

On the panel on the left, select the ‘Nodes’ tabh add the appropriate node to the network
design exactly as described above for the linkaddition to the link, the ‘Properties’ item is

63

available in the context menu. Its activation vallow a dialog box that allows choosing
adapters, modules, and applications for the node.

Configuring node and connecting the node to the link

Right-click the node and choose ‘Properties’. Thaod) box with three tab pages will appear.
On the first tab, adapters associated with the wadebe added, removed, and configured. To
add a new adapter, click ‘New’ and select the agtapipe. To remove, select an existing
adapter and click ‘Remove’. If the adapter has soordigurable properties, double-click the
adapter on the list or click ‘Configure’ to opes ttonfiguration file. Finally, to connect the
adapter to the link, select the adapter and chtbesknk name in the combo box below.

The procedure for Modules and Applications is alimdentical, except that for modules the
order in which they are listed can be altered. fits¢ module in the list will be the first that
will get the packet received by any adapter.

Starting the ssimulation

When the virtual network is configured, the simigiatcan be started by choosing Simulation
—> Start or clicking the Start button on the toolbEre application will start the simulator in a
separate process and connect to it to control amitor the simulation process. If there was
some error, for example in the configuration, thewator would exit and an error message
can be found either in ‘Command Window’ or ‘Outpwindow.

Enabling/disabling network component

While the simulator is running, it is possible teable/disable the link or node, which can
simulate the node or cable failure. Right clickitte node/link and choose Enable/disable, it
will toggle the element state. Disabled elemenésdisplayed with a red background of the
title.

Using the simulator command line

It is possible to control the simulator via eith@tJl, or the command line. To enter a
command, select ‘Command Window’ on the bottom elick inside. Move the cursor to the
end (or try to type, the first key press will mothee cursor), write the command and press
enter. The simulator reply will be displayed in g@me window. Do not be confused by the
presence of commands you have not written, somanaods sent by GUI are sent via the
command line and they are displayed here. To gst af available commands use ‘help’.

Connecting the virtual and live network

A special module called ExternalConnection is ugmdinterconnection between real and
virtual network. Add node called Ext. Connectiontle network, it includes such module.
Second, add Simple link and connect the previoadhjed node to it. In addition, connect all
nodes that should be visible from the real netw@kd that will get packets that will be
captured from the real network) to the Simple lirfknally, open properties of new
ExternalConnection node and open configuration dileexternalConnection module. In the
configuration file, specify the name of a local quuter’'s real interface that will be used for
capturing and sending packets. If you do not knlogvrtame, just run the simulator and it will
list all possible interface names.

64

Changing the MAC and | P address of a node interface

If using IP protocol, generally after adding a nddethe virtual network, a change of IP

address and physical interface address is needezh @ode properties, go to ‘Adapters’ tab
page, the appropriate adapter and click ‘Configuhange the IP and physical address
appropriately in an opened configuration file.

Changing the editor for configuration files

If the default ‘notepad.exe’ is not enough, opBniConfig.xm| which is located inGui
subdirectory in the installation directory. FincetlExternalEditor XML tag and change the
notepad to the path to the executable file of ylauprite editor. Restart GUI application if
running.

Adding a new node type to the list of predefined nodes

Create a new directory undéui/Templates/Nodesn that directory, create a fileonfig.xml
that will contain the only element ‘Node’ as a raglement. Write node configuration
(including adapters, modules, and applicationshis file. The contents of this file will be
copied to the main configuration file of the virtunetwork while adding a new node. If some
items require their own configuration files, credtem in this directory or subdirectories and
refer to them by relative path (relative to tBai directory). It would be the best to follow the
pattern used by other predefined nodes, that isréate three subdirectories next to the
Config.xmi Adapters Modules Applicationsand place the appropriate configuration files
into that subdirectories.

The procedure for creation of a predefined Linkapikr, Module, or Application is almost
the same; take the existing entries in Teenplateslirectory as an example.

Example virtual network

A part of the main configuration file for an examplirtual network, which is distributed with
NetSim, follows. That network is also displayed ®bl screenshot in Figure 23. Instead of
describing it generally here, XML comments are en¢ésd in the code. The diagram of the
network is shown in Figure 24.

<?xm version="1.0" encodi ng="utf-8"?>

<l-- XM configuration file is validated against the XM schema -->
<Net Si nConfi g xm ns=http://pavel novak. eu/ Net Si nConfi g
xm ns: xsi =htt p: // ww. wW3. or g/ 2001/ XM_Schena- i nst ance
Xsi : schemalLocati on="htt p://pavel novak. eu/ Net Si nConfi g Net Si nConfi g. xsd" >

<I-- Assenblies to | oad and search for classes. Paths are absolute or relative to
the directory where Sinulator executable file resides. -->
<Extension path="../../../Bin/NetSinEthernet.dll">
<I-- Packet factory is used to create internal structure of packets that
are newy added by this extension library. Mre than one packet factory
can be listed here. -->

<Packet Factory cl ass="Net Si m Et her net . Et her net Packet Fact ory" />
</ Ext ensi on>
<Extension path="../../../Bin/NetSinLibrary.dl|">

<Packet Factory cl ass="Net Si m Li brary. Li bPacket Factory" />
</ Ext ensi on>

<l-- Network structure -->
<Net wor k>

65

<l-- List of nodes in the virtual network -->

<Nodes>
<!-- Node providing the interconnection between virtual and real networks -->
<Node nane="Ext er nal Connection" cl ass="Net Si m Core. Node" >
<I-- Sinple adapter does not add any link |ayer headers -->

<Adapt er nane="Si npl eAdapter” |ink="Si npl eLi nk"
cl ass="Net Si m Core. Si npl eAdapter"” />
<I-- Mdul e capturing the real network traffic and sendi ng virtual
networ k packets to the real network -->
<Mbdul e nanme="Ext Connection" cl ass="Net Si m Li brary. Mbdul es. Ext er nal Connecti on
confi g="Nodes/ Ext er nal Connecti on/ Modul es/
Ext er nal Connect i on/ Ext er nal Connecti on. xm " />

</ Node>
<I-- Node with a web server that replies by sinple page to browser requests -->
<Node nane="WebServer A" cl ass="Net Si m Core. Node">

<!-- Adapter for ethernet-like links; here is connected to the SinpleLink,

however, we expect that the real network is Ethernet. -->
<Adapt er nanme="Ethernet" |ink="Si npl eLi nk" confi g="Nodes/ WbSer ver
cl ass="Net Si m Et her net . Et her net Adapter" A/ Adapt ers/ Et hernet/Ethernet.xm" />
<!-- Modul e inplenenting IP protocol -->

<Mbdul e cl ass="Net Si m Li brary. Modul es. | PModul e" nanme="1P"

confi g="Nodes/ WebServer A/ Modules/IP/IP.xm" />
<!'-- Mbdul e inplenenting | CVP protocol. Cooperates with IP. -->
<Modul e cl ass="Net Si m Li brary. Modul es. | cnpModul €" nane="1CW" [>
<l-- TCP and UDP protocol nodules, require | P, indeed -->
<Modul e cl ass="Net Si m Li brary. Modul es. UdpModul e" nane="UDP" />
<Mbdul e cl ass="Net Si m Li brary. Modul es. TcpMdul e" nanme="TCP" />
<!-- Thi s nodul e provides support for NetSinSockets -->
<Mbdul e cl ass="Net Si m Li brary. Modul es. Socket Mbdul e" name="Socket Modul e" />
<l-- Finally the only one application on this node -->
<Application class="NetSi mLibrary. Applications. Si npl eWebServer"

name="Si npl eWebServer" confi g="Nodes/ WebServer A/ Applications/
Si npl eWebSer ver/ Si npl eWebServer. xm " />

</ Node>
<I-- Node with nore than one adapter to route packets -->
<Node nane="Ri pRouter A" cl ass="NetSi m Core. Node">
<Adapt er name="Ethernet" |ink="Si npl eLi nk" cl ass="Net Si m Et her net. Et her net Adapt er"

confi g="Nodes/ R pRout er A/ Adapt ers/Ethernet/Ethernet.xm" />
<Adapt er name="Ethernetl1" |link="Eth A-D' cl ass="Net Si m Et her net . Et her net Adapt er"
confi g="Nodes/ Ri pRout er A/ Adapt er s/ Et her net 1/ Et her net . xm ">
<l-- IP nodule is capable of routing -->
<Mbdul e cl ass="Net Si m Li brary. Modul es. | PModul e" nanme="1P"
confi g="Nodes/ Ri pRouter A/ Modul es/IP/IP.xm" />
<Modul e cl ass="Net Si m Li brary. Modul es. | cnpMdul " nane="1CW" [>
<Mbdul e cl ass="Net Si m Li brary. Modul es. UdpMbdul e" nanme="UDP" />
<Mbdul e cl ass="Net Si m Li brary. Modul es. TcpMdul e" nane="TCP" />
<Mbdul e cl ass="Net Si m Li brary. Modul es. Socket Mbdul e" name="Socket Modul e" />
<l-- RIP application receives and sends RI P update packets and nodifies
routing table located in IP nodule -->
<Application class="NetSimLibrary.Applications.Ri p" nane="RIP"
confi g="Nodes/ R pRouter A/ Applications/R p/Rip.xm" />

</ Node>
<!-- Node with nmany adapters that acts as Ethernet switch. Sone of the
adapters are not connected. -->
<Node nanme="Et hSwi tch" cl ass="Net Si m Cor e. Node" >
<Adapt er nane="Ethernet" |ink="Eth" class="NetSi m Et her net. Et her net Adapter"

confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et her net/ Et hernet.xm " />

<Adapt er nane="Ethernetl1" |ink="Ethl" cl ass="NetSi m Et her net. Et her net Adapter"”
confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et her net 1/ Et hernet. xm " />

<Adapt er nane="Et hernet2" |ink="Eth2" class="NetSi m Et hernet. Et her net Adapter"”
confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et her net 2/ Et hernet. xm " />

<Adapt er nane="Ethernet3" |ink="Eth3" class="NetSi m Et hernet. Et her net Adapter"”
confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et her net 3/ Et hernet . xm " />

66

<Adapt er nanme="Et hernet4" |ink="Eth4" class="NetSi m Et hernet. Et her net Adapter"”
confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et her net 4/ Et hernet. xm " />

<Adapt er name="Ethernet5" |ink="" class="Net Si m Et her net. Et her net Adapt er"

confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et her net 5/ Et hernet. xm " />
<Adapt er name="Ethernet6" |ink="" class="Net Si m Et her net. Et her net Adapter"

confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et her net 6/ Et hernet. xm " />
<Adapt er name="Ethernet7" |ink="" class="Net Si m Et her net. Et her net Adapt er"

confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et hernet 7/ Et hernet . xm " />
<Adapt er name="Ethernet8" |ink="" class="Net Si m Et her net. Et her net Adapt er"

confi g="Nodes/ Et hSwi t ch/ Adapt er s/ Et her net 8/ Et hernet. xm " />

<!-- The only one nodule providing the learning switch logic -->

<Modul e cl ass="Net Si m Et her net. Learni ngSwi t ch" nane="Et hLear ni ngSwi tch" />
</ Node>
<I-- Node with no application that is ready to accept application traffic

via Renote Sockets -->
<Node nanme="Wbrkstation" class="NetSi m Core. Node" >
<Adapt er nanme="Ethernet" |ink="Eth4" class="Net Si m Et her net. Et her net Adapter™
confi g="Nodes/ Wor kst ati on/ Adapt er s/ Et her net/ Et hernet . xm " />
<Mbdul e cl ass="Net Si m Li brary. Modul es. | PModul e" nanme="1P"
confi g="Nodes/ Wrkstation/Mdules/IP/IP.xm" />
<Modul e cl ass="Net Si m Li brary. Modul es. | cnpModul " nane="1CW" [>
<Mbdul e cl ass="Net Si m Li brary. Modul es. UdpMbdul e" nanme="UDP" />
<Modul e cl ass="Net Si m Li brary. Modul es. TcpMdul e" nane="TCP" />
<Mbdul e cl ass="Net Si m Li brary. Modul es. Socket Mbdul e" nanme="Socket Modul e" />

</ Node>
<t--
Sone ot her nodes ski pped...
-->
<l-- List of links used in the virtual network -->
<Li nks>
<!-- SinpleLink is used by External Connection -->
<Li nk name="Si npl eLi nk" cl ass="Net Si m Core. Si npl eLi nk" />
<l-- Oher Ethernet links interconnecting the nodes with the references
to their configuration files -->
<Link nanme="Eth A-D' cl ass="Net Si m Et her net. Et her net 100TX"
config="Links/Eth A-D¥ Et h100BaseTX. xm " />
<Li nk nanme="Et h10Base2" cl ass="Net Si m Et her net. Et her net 10Base2"
confi g="Li nks/ Et h10Base2/ Et h10Base2. xm " />
<Link name="Eth D-E" cl ass="Net Si m Et her net. Et her net 100TX"
config="Links/Eth D-E/ Eth100BaseTX. xm " />
<Li nk nanme="Et h10Base2a" cl ass="Net Si m Et her net. Et her net 10Base2"
config="Links/ Et h10Base2a/ Et h10Base2. xm " />
<Li nk nanme="Eth" cl ass="Net Si m Et her net . Et her net 100TX"
config="Links/Eth/ Et h100BaseTX. xm " />
<Li nk nanme="Et h1l" cl ass="Net Si m Et her net . Et her net 100TX"
config="Links/Ethl/ Et h100BaseTX. xm " [>
<Li nk nanme="Et h2" cl ass="Net Si m Et her net . Et her net 100TX"
confi g="Links/ Et h2/ Et h100BaseTX. xm " />
<Li nk nanme="Et h3" cl ass="Net Si m Et her net . Et her net 100TX"
confi g="Links/ Et h3/ Et h100BaseTX. xm " />
<Li nk nanme="Et h4" cl ass="Net Si m Et her net . Et her net 100TX"
confi g="Links/ Et h4/ Et h100BaseTX. xm " />
</ Li nks>
</ Net wor k>

</ Net Si nConfi g>

67

;F 192.168.65.10

Workstation2

WebServer D 92.168.65.50

= 192.168.60.1 192.168.65.1

RipRouter A
1927168.1.7

ExternalConnection

92.168.55.1 192.168.55.2 ,

Workstation1

WebServer B WebServer C Workstation

Figure 24: Diagram of an example network

Adapting the example to run on particular computer

The previous example, which is included in the datar package, is almost ready to run on
any computer. However, since it uses an intercarore¢o the real network, certainly, some
changes are needed.

First, the name of an adapter used for capturingkgia should be changed: open the
configuration file for ExtConnectionmodule onExternalConnectiomode and change the
contents of <Device> element to the name of thevowt adapter in the system. For Linux, it
is usually something similar tethQ For Windows, open the properties of the particula
adapter and use the description on the ‘Genefal’ Aiternatively, just run the simulator with
any meaningless value, it will complain and writeiya list of available adapters.

Second, change of IP addresses of three nodegdhaects directly to the real network to
match your subnet is required. (The current coméiion is for 192.168.1.0/24 subnet.) Open
the configuration files of adapters on WebServépReuter A, and RipRouter B and change
the IP addresses and masks to any unused valuasymar local subnet. Moreover, for

RipRouter A and RipRouter B it is necessary to sidfllose values also in configuration files
of IP module and Rip application.

After all these changes are done, the simulatoulghioe able to start the example network,
reply to traceroute or ping commands, web servespand to the http GET requests for the
root page. Finally, the network should reconfiguseng RIP protocol if some node or link is

disabled (please wait at least 3 minutes, sinég tihe default timeout for entries in routing

tables managed by RIP).

68

Appendix D - CD-ROM Contents

The following files and directories can be foundtbe attached CD:
Readne. t xt
CD-ROM general description.
Bi n
The directory containing compressed files thatueed for installation. The installation
process is described in User's Manual on page 60.
Text/ Thesi s. doc
The text of this thesis in MS Word format.
Text/ Thesi s. pdf
The text of this thesis in Adobe Acrobat Reademiair

Src
The directory containing the source code. It caedmly opened in MS Visual Studio
throughSr ¢/ Net Si m Net Si m sl n

Doc
Generated documentation in HTML format.

69

9.Index

adapter, 16, 25
application, 29
configuration, 21
external editor, 65

frame, 24

Layered Service Provider, 36, 37
link, 16, 25

LSP.seelLayered Service Provider
LSPWrapper, 37

module, 17, 27

NDIS, 35

node, 16

packet, 24

packet factory, 31
predefined link, 62
predefined node, 62
project, 63

Remote Control, 20
Remote Socket$s, 52
SNMP, 23

WinSock Catalog, 36

List of Figures

FIGURE 1: PROTOCOL STACK LINEARIZATION. ...euuitueitneeteetiesneeteetieensesnesseessenneeseesnsennesnnees 17
FIGURE 2: EXAMPLES OF SIMULATED NODES. ... ccuttutituittettieseeteetiesnsesneerieennesnseseetneennesnns 18
FIGURE 3: PACKETS AND FRAMES .. ettt ee e et e e s e e e s e e aans 24
FIGURE4: CREATION OF A BINARY PACKET FOR TRANSMISSION OVER THE REAL NETWORK...25
FIGURES: LINKS AND ADAPTERS- ABSTRACT CLASSESt ETHERNET EXAMPLE.......ccvvvvivvinnenn. 26
FIGURE 6: PASSING RECEIVED PACKET UP THE PROTOCOL STACK . .tuittiiteitiertieeneeseeresneeennes 28
FIGURE 7. EXAMPLES OF MODULES AND THEIR RELATIONSHIP TO THE NODE......c.ccveevvivnennnen. 29
FIGURE 8: EXAMPLES OF APPLICATIONS AND THEIR RELATIONSHIP TO THE NODE..........c..cvu... 30
FIGURE 9: NDIS DRIVER TYPES AND LAYERINGcuuituiitiitietiiineiieetiesnisnsssnsennsesssssnessneenns 35
FIGURE 10: WINSOCK PROTOCOLCHAIN ...uuiititeiiieetieeeeteeetee et sesneeseesisennsesnesssenesnsssnessneens 36
FIGURE 11: LSP, LSPWAPPER AND SIMULATOR INTERACTION ...cvtivtiiiieiieetieeneerneeneeniesnennns 39
FIGURE 12: REDIRECTIONMANAGER ... ettt iitiiteite ettt et e e s e st s esaeea s s sbaeebseasesnsesnsesnnns 40
FIGURE 13: ACCESSING VIRTUAL NETWORK TEST . uuituiitiitniirnieteetiesniiseetiesniesnsssseessesnessns 42
FIGURE 14 VIRTUAL NETWORK IN THENETSIM GUI APPLICATION . .cuiiiiiieetieieerieeteeineeneeean, 42
FIGURE 15: NETWORK STRUCTURE FOR THE ACCESSING VIRTUAL NETWOK TEST.......cevvueennees 43
FIGURE16: SMPLEWEBSERVER PAGE IN A WEB BROWSERccuuiitiiiiiieiiiiiieeiieeneineennaenns 45
FIGURE 17: TESTING VIRTUAL NETWORK THROUGHPUT ... ittt eeieeieeeet e eaeeneenes 46
FIGURE 18: VIRTUAL NETWORK FOR THROUGHPUT TEST DESIGN.....cuivuiiiieiiieinieeneeseerernneennes 46
FIGURE 19: THROUGHPUT TEST NETWORK STRUCTURE.......uttuiiiniiteetiertiesneerieeniesnesneeenneens 46
FIGURE 20: DATA TRANSFER SPEED OVER THE VIRTUAL NETWORKcuuituiiiiiiieiieenierneesneennas 47
FIGURE 21 REMOTE SOCKETS TEST et uitutituiitittitnittntiteenisntssseseessstsessetieesiesntese e 47
FIGURE 22:. ETHEREAL SCREENSHOT WHILE UPLOADING THE FILE.....cutiviiiieitieieerieetieenieenennns 48
FIGURE 23. GRAPHIC APPLICATION SCREENSHOT . ..uittiitieitiiiieitieetiesnsesneeseeneenssrnesseenesns 63
FIGURE 24: DIAGRAM OF AN EXAMPLE NETWORK ...ccuuittittiitietieetiesniiseitiesnissnsesnseesesnsesnns 68

70

