

Smartphone & Cross-platform
Communication Toolkit User Manual

Release 1.0.1
June 2011 Edition

© TOOLS for SMART MINDS 2 Smartphone & Cross-platform Communication Toolkit User Manual

Worldwide technical support and product information:
www.toolsforsmartminds.com
TOOLS for SMART MINDS Corporate headquarter
Via Padania, 16 Castel Mella 25030 Brescia (Italy)

Copyright © 2010 Tools for smart minds. All rights reserved.

© TOOLS for SMART MINDS 3 Smartphone & Cross-platform Communication Toolkit User Manual

© TOOLS for SMART MINDS 4 Smartphone & Cross-platform Communication Toolkit User Manual

Contents
FIGURE INDEX 5

ABOUT THIS MANUAL 6

CONVENTIONS 6

INTRODUCTION 7

OVERVIEW 7

INSTALLING THE SMARTPHONE & CROSS-PLATFORM COMMUNICATION TOOLKIT 7

GETTING STARTED WITH THE SMARTPHONE & CROSS-PLATFORM COMMUNICATION TOOLKIT 8

COMMUNICATION CONCEPTS 8

USING THE SMARTPHONE & CROSS-PLATFORM COMMUNICATION TOOLKIT 9

PUBLISHER CLASS 9

CREATING A PUBLISHER 10

PUBLISHING ANALOG DATA 10

PUBLISHING DIGITAL DATA 10

SUBSCRIBER CLASS 11

CREATING A SUBSCRIBER 12

SENDING COMMANDS 14

RECEIVING ALERTS 14

HOW TO CHECK THE STATE OF YOUR CONNECTION 15

CREATING AND MANAGING ALERTS AND USER REQUESTS 16

OVERVIEW 16

READING AVAILABLE REQUESTS 16

SENDING ALERTS TO A SPECIFIC SUBSCRIBER 16

MANAGING USER REQUESTS 17

ADVANCED OPTIONS 18

CONTROLLING ACTIVE CONNECTIONS 18

READING ACTIVE CONNECTION COUNT 18

READING ACTIVE CONNECTION ADDRESSES 18

PUBLISHING DIGITAL LINES ON CHANGE ONLY 18

CHANGING API-KEY AT RUN-TIME 19

INDEX 20

© TOOLS for SMART MINDS 5 Smartphone & Cross-platform Communication Toolkit User Manual

Figure index
FIGURE 1 - SIMPLE PUBLISHER EXAMPLE WITH ANALOG DATA... 10

FIGURE 2 - SIMPLE PUBLISHER EXAMPLE WITH DIGITAL DATA. ... 11

FIGURE 3 - SIMPLE SUBSCRIBER EXAMPLE THAT READS ANALOG DATA ONLY. ... 12

FIGURE 4 – TRANSFERSTATUS.VI DETERMINES THE FLOW OF PACKETS BETWEEN PUBLISHER AND SUBSCRIBER. 12

FIGURE 5 - SIMPLE SUBSCRIBER EXAMPLE THAT READS DIGITAL DATA ONLY. .. 13

FIGURE 6 - SIMPLE SUBSCRIBER THAT READS CONFIGURATION CLUSTER BEFORE READING ANALOG DATA. 13

FIGURE 7 - USERCOMMAND.VI EXAMPLE. ... 14

FIGURE 8 - READING AN ALERT FROM PUBLISHER. .. 14

FIGURE 9 - USING PROPERTIES NODES TO CHECK CONNECTION STATUS. .. 15

FIGURE 10 - USING AVAILABLE REQUEST PROPERTY NODE TO CHECK IS SUBSCRIBER'S REQUESTS ARE PRESENT. 16

FIGURE 11 - SENDING ALERT TO A SPECIFIC SUBSCRIBER WITH SENDALERT.VI. ... 16

FIGURE 1 - MANAGING RECEIVED USER COMMANDS EXAMPLE. .. 17

FIGURE 12 - USE READ ACTIVESUBSCRIBERSCOUNT.VI TO CHECK THE COUNT OF ACTIVE CONNECTIONS. 18

FIGURE 13 - USE READ ACTIVESUBSCRIBERSADDRESSES TO GET INFO ABOUT ACTIVE SUBSCRIBERS. 18

FIGURE 14 - USE PROPERTY NODES TO GET INFORMATION ABOUT ACTIVE SUBSCRIBERS. .. 18

FIGURE 15 – CHANGING THE WAY DIGITAL DATA ARE UPDATED TO ALL SUBSCRIBERS WITH DIGITAL.PUBLISHONLYONCHANGE

PROPERTY NODE. .. 19

FIGURE 16 – ENABLING THE REQUEST FIFO WITH ENABLEREQUESTLIST PROPERTY NODE. ... 19

FIGURE 17 – CHANGING API-KEY TO AN ACTIVE PUBLISHER WITH WRITE API-KEY.VI. ... 19

FIGURE 18 – CHANGING API-KEY TO AN ACTIVE PUBLISHER USING API-KEY PROPERTY NODE. 19

© TOOLS for SMART MINDS 6 Smartphone & Cross-platform Communication Toolkit User Manual

About this Manual
The Smartphone & Cross-platform Communication Toolkit User Manual describes the
virtual instruments (VIs) used to communicate and pass data between Labview and
either a local or remote application. You should be familiar with the operation of
LabVIEW, your computer and your computer operating system.

Conventions
The following conventions appear in this manual:

� The�symbol leads you through nested menu items and dialog box

options to a final action. The sequence Tools ����Options directs you
to pull down the Tools menu, select Options item.

Bold Bold text denotes items that you must select or click on the software,

such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an

introduction to a key concept. This font also denotes text that is a
placeholder for a word or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from

the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names,
functions, operations, variables, filenames and extensions, and code
excerpts.

monospace italic

Italic text in this font denotes text that is a placeholder for a word or
value that you must supply.

© TOOLS for SMART MINDS 7 Smartphone & Cross-platform Communication Toolkit User Manual

Introduction
This chapter describes the installation procedure, installed components, and the main
features of the Smartphone & Cross-platform Communication Toolkit.

Overview
The Smartphone & Cross-platform Communication Toolkit is an add-on package for
communicating data trough applications. The toolkit contains a set of high level
functions for sending your application data and advanced functions for customized
tasks.

The following list describes the main features of the Smartphone & Cross-platform
Communication Toolkit:

• Works over any TCP/IP connection
• Works over Local Area Networks as well as Internet connections.
• Implements the publisher – subscriber pattern (also know as Observer pattern)
• Authenticate subscribers through a API-KEY.
• Controls in background the state of every connection to identify loss of

communication.
• Publishes GPS coordinates to manage mobile systems.
• Works with platform independent Data format and communicate with multiple

platforms at the same time: third party vendors have implemented toolkit to
develop on Android platform, Java, .NET and VB.

Because of the wide range of devices the Smartphone & Cross-platform
Communication Toolkit works with, some portability issues remain. Consider the
following issues when choosing your way to publish data:

• Some smart phones and tables uses CPU with low computing power so are not
able to receive and process large streams of data.

• Smartphone & Cross-platform Communication Toolkit uses a platform
independent data format and subscribers require a some computing power to
decode data streams into their specific binary format.

• Smartphone & Cross-platform Communication Toolkit handles communication
with subscribers as a set of peer to peer connections and every data you
publish is transmitted individually to each subscriber. So you have to identify the
right size of your data streams to avoid band saturation over your
communication channel.

Installing the Smartphone & Cross-platform Communication
Toolkit
Smartphone & Cross-platform Communication Toolkit is shipped as a VI Package
Manager. Before installing Smartphone & Cross-platform Communication Toolkit you
must install a copy of VI Package Manager on your machine. You can download a free
copy of VIPM at this address:

© TOOLS for SMART MINDS 8 Smartphone & Cross-platform Communication Toolkit User Manual

http://www.jki.net/vipm/download

To install Smartphone & Cross-platform Communication Toolkit double click on

smartphone_&_crossplatform_communication_toolkit-1.x.x.xx.vip

and follow the installation wizard. Package contains LabVIEW Vis as well as
documents in PDF format (installed in c:\SCCT\Manuals) and libraries to create
applications with Java, Android and .Net (in c:\SCCT\cross-platform libs).

Getting started with the Smartphone &
Cross-platform Communication Toolkit
Communication concepts
Smartphone & Cross-platform Communication Toolkit implements the publisher-
subscriber pattern. This well known pattern is also called Observer pattern. In this
pattern you have one application (publisher) that receives the data you want to publish,
and 1 to many applications (subscribers) which subscribe the service. To subscribe the
service and receive fresh data from the publisher, they must use an API-KEY to be
authenticated. The following figure represents the pattern:

When an application wants to receive data, asks the publisher to be inscribed among
the active subscribers. Publisher will accept all incoming requests with the valid API-
KEY.
When a application doesn’t want to receive data anymore, simply inform the publisher.
If the communication channel between publisher and subscriber fails, subscriber
automatically remove the subscribers from its list of active listeners.

Your application

Publisher

Subscriber 1

Subscriber 2

Subscriber N

Internet /Intranet

© TOOLS for SMART MINDS 9 Smartphone & Cross-platform Communication Toolkit User Manual

Using the Smartphone & Cross-platform
Communication Toolkit
This Toolkit is composed of two classes: Publisher that creates the server side of your
communication system and the subscriber that implements the client side. Publisher
and Subscriber work together to pass data from one application which holds the data to
many applications on different systems (MS-Windows OS family, Linux, Apple systems,
mobile devices, etc.). Publisher uses a platform independent data format to transmit
your data so that all subscribers can read them. Doing so you add a little overhead to a
simple transmission that uses binary data format, but gain a great portability and
opportunity to communicate with heterogeneous systems. To better understand the
way this communication works, think to this example. A publishing company receives
requests from different subscribers who want to receive a magazine. As long as they
are subscribed, they receive the magazine. When they don’t want to receive it
anymore, simply cancel their subscription. Your application can implement more than
one Publisher each of them works on different port of your machine. An application can
contain publishers and subscribers together, working with different remote machines at
the same time. Either objects work in background of your application with specific tasks
that are created and destroyed automatically.

Publisher Class
Publisher is a Class with methods and properties detailed in the following tables:

Publisher Class
Property name description Read/write
availableRequests gets the count of received requests from subscribers Read only
enableRequestList Sets/gets the management of subscriber requests. Read/Write
Port Gets the actual port number Read only
API-Key Gets the actual API-Key Read/Write
activeSubscribersCount Gets the count of active connections Read only
activeSubscribersAddresses Gets the IP address and port of each active connection Read only
Digital.publishOnlyOnChange Sets/gets the property that define digital lines are

published: if true, digital lines are transmitted only if their
value is changed, otherwise they are transmitted every
time regardless of their value.

Read/Write

Publisher Class
method name description
PublishData Publishes analog and/or digital lines
startPublisher Implements a publisher object
stopPublisher Destroy a Publisher object
updateConfiguration Transmit a new system configuration to all active connections
getRequest Get the next request from one of the active connections
sendAlert Transmit a message to a specific connection or to all active connections

© TOOLS for SMART MINDS 10 Smartphone & Cross-platform Communication Toolkit User Manual

Creating a Publisher
To create a publisher in your LabVIEW application use the palette SCCT�Publisher .
the following examples show how to create a publisher in few click.
To create a publisher in your application you must choose two parameters that have to
shared with subscribers:

• Publisher port is the TCP port that Publisher uses to manage all TCP
connections.

• API-Key is the connection password that subscribers must communicate to
publisher to be authenticated.

Take care to use one of the available port of your machine. Some ports are reserved
for other common applications like port 21 to FTP, 80 to HTTP and so on. Moreover
you have to check that the chosen port is open on your company firewall.

Publishing analog data

Figure 1 - Simple Publisher example with analog data.

In this example, a Publisher is created with startPublisher.vi that immediately creates
all necessary data structures and tasks and takes care of all incoming connections.
Please note that configuration cluster must be filled according to the analog signals you
want to transmit. channelConfiguration must describe each channel of your data
acquisition.
In the while loop your acquired data are published directly to the active subscribers. If
no subscribers are connected, data are discarded.
When the loop terminates, stopPublisher.vi closes all active tasks and flushes FIFO
with user requests.

Notice: startPublisher.vi create some background tasks which handle the data
transfer to and from active subscribers. These tasks are also responsible of checking if
connections are lost in case your application is not publishing any information. All these
tasks periodically check if your top level VI is running and stop automatically when your
top level VI stops.

Publishing digital data
In this example, a Publisher is created with startPublisher.vi that immediately create
all necessary data structures and tasks and takes care of all incoming connections.
Please note that configuration cluster must be filled according to the digital lines you
want to transmit. digitalLines.Configuration must describes each line of your data
acquisition.

© TOOLS for SMART MINDS 11 Smartphone & Cross-platform Communication Toolkit User Manual

In the while loop your acquired data are published directly to the active subscribers. If
no subscribers are connected, data are discarded.
When the loop terminates, stopPublisher.vi closes all active tasks and flushes FIFO
with user requests.

Figure 2 - Simple publisher example with digital data.

Subscriber Class
Subscriber is a Class with methods and properties detailed in the following tables:

Subscriber Class
availableAlerts Gets the number of received alerts from Publisher that

application has to process
Read only

availableAnalogData Gets the number of analog data packets received from
Publisher that application has to process

Read only

availableConfiguration Gets the number of configuration clusters received from
publisher that application has to process. Remember that when
you establish a connection, you receive immediately a
configuration cluster.

Read only

availableDigitalData Gets the number of digital data packets received from Publisher
that application has to process

Read only

connected Returns TRUE if connection is active, FALSE if connection is
lost

Read only

connectionStatus Gets a numeric code related to connection status Read only

Subscriber Class
method name description
openConnection Creates a subscriber and open a connection with a running Publisher
closeConnection Destroys a subscriber and close connection, if active
Read alert Reads next available alert received from Publisher
Read analogData Reads next available analog data packet received from Publisher. To activate

data transmission, you must use transferStatus.vi
Read digitalData Reads next available digital data packet received from Publisher. To activate

data transmission, you must use transferStatus.vi
discardData Throws all received alerts, analog and digital data and configuration clusters away
transferStatus Set the status of transmission. If you connect TRUE, publisher start sending analog

data and digital lines as soon as they are available on server side. If you connect
FALSE, Publisher stop data transmission. Alerts from publisher cannot be stopped.

To implement the subscriber in your application and receive data from a source, you
must know three parameters:

• Data source address, that is usually the IP address of the machine where
Publisher is running on.

• Data source port, that is the TCP port of the Publisher.

© TOOLS for SMART MINDS 12 Smartphone & Cross-platform Communication Toolkit User Manual

• API-Key is the key necessary to be authenticated by publisher. If a subscriber
uses a wrong API-Key connection is refused by publisher.

When your application succeeds to connect, publisher sends immediately a
configuration of remote system i.e analog channel descriptions, unit of measure and
range of all signals, digital line descriptions and system location GPS coordinates.

Creating a Subscriber
In the following example you create a simple subcriber with openConnection.vi that
need three parameters: Publisher address (default value is localhost), Publisher port
(default value in 8081) and API-Key.

Figure 3 - Simple Subscriber Example that reads analog data only.

Publisher doesn’t start data transmission automatically. After connection, your
subscriber must tell to the Publisher to start sending data. If your subscriber doesn’t
need fresh data, use transferStatus.vi with a FALSE constant to tell to publisher to
stop sending data. To re-start data transmission use transferStatus.vi with TRUE
constant.
Publisher doesn’t buffer data if transmission is stopped. The following diagram
illustrates how analog and digital data are managed in situation.

Figure 4 – transferStatus.vi determines the flow of packets between publisher and subscriber.

After connection,
Publisher sends the most
recent data it has so that
subscriber can update
system status

Connection start here transferStatus = FALSE transferStatus = TRUE

When
transferStatus=FALSE,
publisher doesn’t send
fresh data to subscriber.
These data are discarded.

PUBLISHER SIDE

SUBSCRIBER SIDE

YOUR APPLICATION

© TOOLS for SMART MINDS 13 Smartphone & Cross-platform Communication Toolkit User Manual

To get analog data use Read analogData.vi that returns a packet of data. Background
tasks takes care of all received packets and enqueues them in a FIFO so you can
process all packets without data loss. To know the number of available packet use the
property node that returns the data packets count. The following figure illustrate the
case of reading digital lines only. Notice that at the end of the while loop you always
have to close communication with publisher. When communication is closed, if you
want to open again the communication use openCommunication.vi.

Figure 5 - Simple subscriber example that reads digital data only.

Publisher automatically sends a communication cluster that describes the remote
system. Use this cluster to properly format your graph and chart setting x and y scales,
as shown in the following figure.

Figure 6 - Simple Subscriber that reads configuration cluster before reading analog data.

Notice: openCommunication.vi create a background task which handles the data
transfer to and from the publisher. This task is also responsible of checking if
connection is lost in case publisher is not sending any information. This task
periodically checks if your top level VI is running and stops automatically when your top
level VI stops.

© TOOLS for SMART MINDS 14 Smartphone & Cross-platform Communication Toolkit User Manual

Sending Commands
Subscribers can send textual commands to the Publisher with userCommand.vi. In
this context user means your application and a command is a string message that
Publisher receives and pass directly to its main application. The following figure
illustrates the path of user commands.

User commands are sent immediately to publisher and server processes them in the
same order they are received. If string is empty, command is not posted. You can
specify an additional numeric code if your application uses numeric codes to identify
command sets.

Figure 7 - userCommand.vi example.

Receiving Alerts
Subscribers can receive textual alerts from the Publisher with Read alert.vi. an alert is
a cluster composed by a timestamp, a string message and a numeric code. The
following figure illustrates the path of alerts.

Alerts are received and enqueued in a dedicated FIFO. Your application have to
process incoming alerts and take care of FIFO size. You can use

Figure 8 - Reading an alert from Publisher.

Client application

Subscriber

Server application

Publisher

Client application

Subscriber

Server application

Publisher

© TOOLS for SMART MINDS 15 Smartphone & Cross-platform Communication Toolkit User Manual

How to check the state of your connection
You can monitor connection state with connected property node which returns TRUE if
your connection is still alive. A connection is alive also if Publisher is not sending data
to your subscriber. Publisher and subscriber exchange acknowledge packets to verify if
connection is still active so you don’t have to.

Figure 9 - Using properties nodes to check connection status.

© TOOLS for SMART MINDS 16 Smartphone & Cross-platform Communication Toolkit User Manual

Creating and managing alerts and user
requests
Overview
When an active communication is established between Publisher and subscriber, they
can exchange some messages with a specific format: messages from your application
to subscriber(s) are called Alerts. Every alert is composed by a numeric code and a
message string. Messages from subscribers to your application are called user
requests. Every user request contains a numeric code, a timestamp, a connection
identifier, an event code and an optional data string. Publisher uses a FIFO to enqueue
all incoming user requests in the order they are received. Your application can identify
which subscriber is sending the request by its ipAddress:port identifier.

Reading available Requests

Subscribers send their request to your application and Publisher keeps them in a FIFO
together with some messages it sends to inform your application about the connection
status and the communication between publisher and subscribers. Use
availableRequests property node to retrieve the number of received request that your
application has to process. When a request is processed with getRequest.vi,
availableRequests is decremented by 1.

Figure 10 - Using available request property node to check is subscriber's requests are present.

Sending alerts to a specific subscriber
Your application can communicate with active subscribers with custom messages
called Alerts. To send an Alert use sendAlert.vi, as shown in the following figure:

Figure 11 - Sending alert to a specific subscriber with sendAlert.vi.

Codes between 1 and 9 are reserved to publisher and your application must use code
0 (default) or code values higher than 9. Use message string to add additional
information to your alert. To send an alert to every active subscriber ipAddress:port

© TOOLS for SMART MINDS 17 Smartphone & Cross-platform Communication Toolkit User Manual

must be empty string, instead, if you want to send a message to a specific subscriber,
connect ipAddress:port to the specific address and port of its connection.

Managing User Requests
User request (i.e. user command) is inserted into a FIFO by Publisher so your
application can process al request in the order they are received from Publisher. The
following figure illustrates the right way to manage the commands:

Figure 1 - Managing received user commands example.

First, you have to check that found indicator is TRUE, if found is FALSE, no request is
available. All requests are classified with event field. User requests are returned with
“user command received” value, as shown above. Every request has its time field,
address:port field that identify the subscriber that sent the request and an optional
data field.

Every request has an event code which helps you to identify the request class. Event
is a enum that can assume one of the following values:

© TOOLS for SMART MINDS 18 Smartphone & Cross-platform Communication Toolkit User Manual

Advanced Options
Controlling active connections
Publisher Vis handle all incoming connections and close inactive connections so you
just focus on your main application and forget all issues related to data transmission. In
some cases you want to know the number of active connections and the address of
subscribers. Usually you can map all incoming connections using getRequest.vi and
filtering events such “connection successful” and “connection closed” and “connection
timeout”, which help you to map all active and closed connections.

Reading active connection count
To know the count of active connections at a specific time, use Read
activeSubscribersCount.vi that returns the number of active connections.

Figure 12 - Use Read activeSubscribersCount.vi to check the count of active connections.

Reading active connection addresses

To know the addresses of active subscribers, use Read
activeSubscribersAddresses.vi that returns a string array: every string is a
subscriber’s address in the form ipAddress:port. the array is ordered by connection
time so the first element of the array is related to the active subscribers that connected
first. Closed connections don’t appear in the array.

Figure 13 - Use Read activeSubscribersAddresses to get info about active subscribers.

You can use activeSubscriberCount property node to get active connection count
and activeSubscriberAddress property node to get active connection addresses, as
shown in the following figure:

Figure 14 - Use property nodes to get information about active subscribers.

Publishing digital lines on change only
Digital lines often don’t change often so you can publish them only when they change.
Doing so you can reduce the consumed band on your communication channel. To
change the way publisher works with your digital lines, use the
Digital.publishOnlyOnChange property node. If you want to publish digital lines also
if they aren’t changed, set FALSE value to this property node. If you want to publish

© TOOLS for SMART MINDS 19 Smartphone & Cross-platform Communication Toolkit User Manual

digital lines only when their value is different form the previous one you published, set
this property value to TRUE. By default, a Publisher works with
Digital.publishOnlyOnChange equal to FALSE:

Figure 15 – Changing the way digital data are updated to all subscribers with

Digital.publishOnlyOnchange property node.

If your application doesn’t need to handle user request you can disable userRequest
FIFO to avoid waste of memory. To disable or enable FIFO, use enableRequestList
property node, as shown in the next figure.

Figure 16 – Enabling the request FIFO with enableRequestList property node.

By default, every Publisher starts with FIFO enabled, so remember to consume
elements in this FIFO with getRequest.vi or disable the FIFO with enableRequestList
property node.
Many properties can be set either by specific Vis or by properties nodes. We
encourage you to use properties node whenever it is possible.

Changing API-Key at run-time
Publishers are created with an API-Key they use to authenticate every incoming
connection. You can modify the API-Key at run-time so that new subscribers have to
use the new API-Key to be accepted. Existing connections are not affected by API-Key
changes. To update the API-Key use Write API-Key.vi as show in the following figure:

Figure 17 – Changing API-Key to an active Publisher with Write API-Key.vi.

Alternatively you can use API-Key property node as shown below:

Figure 18 – Changing API-Key to an active Publisher using API-Key property node.

© TOOLS for SMART MINDS 20 Smartphone & Cross-platform Communication Toolkit User Manual

Index
A

active connection

addresses ... 18

count .. 18

alert .. 16

API-Key

changing ... 19

available Requests .. 16

P

Publisher

methods .. 9

properties ... 9

Publisher Class .. 9

S

Subscriber

methods .. 11

properies .. 11

Subscriber Class .. 11

U

User Request ... 17

