- Make Yourself a Favor
&3 and Learn VIM

(=
‘:.. . “i '1{ ‘I . A\

\1. k : B Davide Balzarotti
. \ \

1

Vim is a beautiful tool.
Unfortunately, it is about as user-friendly
as a radioactive crocodile.

)

Why Mastering an Editor?

In a world of text streams, the text editor is your home

Computer scientists spend a lot of time editing files,
writing documents, writing source code, answering

emails...

Choose a good editor
(no, they are not all the same)

Invest time to learn how to use it
(really, the better you master its cryptic commands, the
more productive you will be)

Use it all the time
(using different editors for different tasks is not usually a good idea)

| Said an Editor.. not an IDE

Integrated Development Enviroments are pre-packaged
toolboxes that includes many tools needed for a specific
job (usually writing code)

Good to handle very large code bases

Bad for typing text

The Unix philosophy

Write tools that do one thing (in our case “edit text”) and do it well
The shell is your IDE and Unix is your toolbox

Integration can be achieved by configuration

| Said an Editor.. not a Word Processor

Preparing a document involves two separate tasks:

Composition — preparing the text content

Typesetting - preparing the layout: fonts, colors, alignment,
section headings, one or two columns, ...

| Said an Editor.. not a Word Processor

Preparing a document involves two separate tasks:

Composition — preparing the text content

Typesetting - preparing the layout: fonts, colors, alignment,
section headings, one or two columns, ...

Word processors are WYSIWYG (“What You See Is What You Get")
tools that combine composition and typesetting

Should | mention again the Unix Philosophy ?

Use a text editor to write text

Use a specialized markup/language for typesetting (e.g., LaTeX)

Why should | use a text editor that is so difficult?
After one year | still don't know what | am doing

The same reason why you use a violin to
play music instead of a kazoo

*from a discussion on reddit/r/vim

Writing Text

Text Composition involves two aspects:

Creative — in which the author produces words and sentences

Operational — in which the author manipulates the text and gives
command to the editor
(e.g., to save files, search and replace a word, ...)

Writing Text

Text Composition involves two aspects:

Creative — in which the author produces words and sentences

Operational — in which the author manipulates the text and gives
command to the editor
(e.g., to save files, search and replace a word, ...)

Most of the editors combine the two aspects together:

You write text by typing letters, numbers, and symbols

You give commands using:
Mouse + Menus
Special keys (e.g. F1-F12)
Shortcuts based on modifier keys (ALT, CTRL, Meta, ...)

VIM is a Modal Editor

Modal editors keep the creative and operational tasks
separated

One mode is dedicated to type text, another to manipulate it

The same key performs different actions depending on the
currently active mode

cllallt type the word “cat” in insert mode and
s st s Change Around a Tag in normal mode

The Lesson of VI

* Vi is fundamentally built on command
It favors small, general-purpose commands that can be
combined with objects to compose larger commands ”

- Mike KozlowskKi

History

vi was originally developed by Bill Joy in 1976 as part of the
BSD Unix distribution

Originally a visual extension of a line editor named ex

Developed on an ADM 3A terminal, to be usable over a
300 bits-per-second modem line

vim was developed by Bram Moolenaar in 1988 for the Amiga
operating system

Originally it stood for “Vi Imitation”
but quickly became synonym of
“Vi iMproved”

An Important Historical Aspect

Lot [# (s [% & (* |= |1 |} |Home
1 |2 |3 |4 |5 |6 |7 |8 |9 |0 [1 |~
Q W E R T Y U I 0 P = Enter Here
Esc Feed 4_I is
Ctrl A S D F G H J K L +) | H:h Break
«~ [y |t |- |; |@ |\

Shift Z X C Vv B N M < > ? Shift Repeat| Clear
4> I VR AN

An Important Historical Aspect

w 3

= H

%

o

" | Esc

|||||||||

""""""

Line

Feed

Ctrl

Rub

Break

CJ
% N
%, s
‘“, o
)., Shift .
, 17 K\

Repeat

Clear

14

CAPS LOCK is the second biggest key on the
home row.. and it is practically useless!!
Switching it with ESC will make your life
much easier (and not only in VIM)

)

14

CAPS LOCK is the second biggest key on the
home row.. and it is practically useless!!
Switching it with ESC will make your life
much easier (and not only in VIM)

7

A
S\A > cat ~/.xmodmap

ON remove Lock Caps_Lock

keycode 0x09 Caps_Lock é

keycode 0x42 Escape : .

add Lock Caps_Lock : féﬁf et
> xmodmap ~/.xmodmap ; i

Changing Mode

> Normal Mode

and do most of the operational editing

where you move around, delete, cut&paste,

.......................

Insert Mode LA

Where yOU type yOUr teXt
and do most of the creative editing

Visual Mode

where you visually select

regions of text

..........................

o
..........................

Command-line Mode
where you work on files, configure the

editor, type search patterns or Ex commands

Changing Mode

> Normal Mode

where you move around, delete, cut&paste,
and do most of the operational editing

A
Insert Mode Visual Mode
where you type your text where you operate on visually
and do most of the creative editing selected regions of text
ESC, Enter

Command-line Mode

where you work on files, configure the
editor, type search patterns or Ex commands

& & Ehddmdd T

i P b el

[y Pl ey

=
[r—————
=

.n.n._..n_! ; m _.H

14

Stay in insert mode only while typing.
When you pause to think,
move back to nhormal mode

)

Vim Help and Documentation

You can access an inline help page by typing
:help <subject>

The Vim documentation consists of two parts:

The User Manual: task oriented explanations, from simple to complex.
It reads from start to end like a book.

:help usr N.txt N=01,02,03...99
:help usr_toc.txt

The Reference Manual: precise description of how everything
in Vim works.

:help motion.txt

:help reference_toc

Vim help/documentation is a sort of hypertext with links
you can follow between each part

Command Mode

Command Mode

Vim commands are based on a composable grammar

(go) a word

copy » (until) %a sentence
delete& around \: a paragraph
change iInside a lag

vselect a regexp

Command Mode

Movement commands:

either specifies an absolute position
(in the file or in the current line) or

a relative target from the current cursor
position

for relative targets, how many times the
movement needs to be repeated to reach the
destination

4>

:help motion.txt

Absolute, File-Based

99
G

G

first line

last line
line
column

Absolute, Line-Based

A

9_
0

$

first non-blank character
last non-blank character
first character
last character

Relative, Line-Based

f

t

F

T

next (previous)
occurrence of character

before the next (previous)
occurrence of character

repeat the last tf or the
last TF command

Relative, Text-Based

=1l
hijk
w b

e ge

W N E gE
()

{ }

%

*#

[])
{1

move one character
same as above

beginning of the next
(previous) word

end of the next
(previous) word

like above but use space-
separated words

previous (next) sentence
previous (next) paragraph

match of next brace,
bracket, or comment

next (previous)
occurrence of the word
under the cursor

previous (next)
unmatched parenthesis

previous (next)
unmatched curly bracket

Absolute, File-Based

Relative, Text-Based

ag first line «— — 1] move one character
G last line hljk same as above
nG n line w b beginning of the next
n| - el (previous) word
e ge end of the next
Absolute, Line-Based (previous) word
g first non-blank character WNE gE Isll;?):rg?;g \Ilovlétrgge space-
9 last non-blank character () previous (next) sentence
: e
Use :set iskeyword to ont!
Re.-. ® configure what is a word for you.
fc Fci word
................. T —
tc Tc before the next (previous) [(] previous (next)
occurrence of character c unmatched parenthesis
. repeat the last tf or the {1} previous (next)

last TF command

unmatched curly bracket
'cannot be preceded by a counter

14

You should not try to learn every command an editor
offers. That would be a complete waste of time.
Most people only need to learn 10 to 20% of the
commands for their work.

But it's a different set of commands for everybody

)J

- Bram Moolenar

Marks

Allow the user to record the current cursor position
There is no visible indication of where marks are set
Four types of marks:

Local marks (letters a-z) are unique to each file

Global marks (letters A-Z) identify a location in a particular file
(so jumping to the mark also open that file)

Special marks, managed automatically by VIM

. position of the last change

. position before the last jump ("'G/(){In)
A 1 position where the cursor last exited insert mode
< > : start and end positions of the last selected text

Change marks, automatically generated every time a piece of
text is modified. These marks have no name

Marks

Marks-related Commands

mx record the current position in mark x

"X jump to mark x

'X jump to the first char of the line containing
mark x

:marks list the values of all the marks

:changes list the values of all the changes

g, g; jump to the next (previous) change mark

[repetition] move-cmd

Command Mode

called operator, specifies the
action to perform on the text

s Editing commands

{"register} [repetition] verb {object}

— P selected text (in visual mode)

—» fext object around the
current cursor position

» Variable” to store
the command text between the current
result cursor position and a

destination reachable with
one movement command

From the current position to a destination reachable
through a movement command:

lot of money and received the credit they deserved for being daring

visionaries. But around [§he—same—time,—Bill-Gates—and—PautPllen came

up with an idea even stranger and more fantastical: selling computer
operating systems. This was much weirder than the idea of Jobs and
Wozniak. A computer at least had some sort of physical reality to it. It

On the text around the current position (text objects):

lot of money and received the credit they deserved for being daring
visionaries. But around phe same time, Bill Gates and Paul Allen came
up with an idea even stranger and more fantastical: selling computer

operating systems. This was much weirder than the idea of Jobs and
Wozniak. A computer at least had some sort of physical reality to it. It

On the visually selected text (more about it later):

0T OT money and recelved geserved 1or peing daring

visionaries. [IyaEIGlld the same time, Bill Gates and Paul Allen came
up with an 1dENSEIEtranger and more fantastical: selling computer

operating syssuEiMlNs was much weirder than the idea of Jobs and
Wozniak. A computer at least had some sort of physical reality to it. It

Learning some Verbs

Verbs that enter insert mode
i a insert before (after) the cursor

I insert before the first non-blank
character at the beginning of the line

A appending at the end of the line

o] insert at the beginning of the line

gl Insert where you left insert mode last
time

o O Insert text in a new line below (above)
the current one

R insert text in overwrite mode

co change text of object o

cc change the current line

C change till the end of the line

This is an fnteresting text

>

an |interesting text

an ibteresting text

an interesting text

is an interesting text

Cut & Paste

General commands

do Cut the object o
yo Yank (copy) the object o
pP Paste after (or before) the cursor

Linewise versions

dd cut current line
yy Copy current line
D Delete till the end of the line

If you want it to yank till the end of the line
(more intuitive) you can redefine it with:

map Y y$

guo gUo Make lowercase or uppercase

<0 >0 Indent left and right

= Swap case of a single letter

modifier object

= Modifiers
| —inside
a — around
= Object
w W — word or Word
s — sentences
p — paragraphs
t — Tagged blocks

[1(){} <> — Blocks delimited by these characters

© ' — Strings delimited by these characters

What would the engineer say, after you

had explained your problem,

and enumerated all of the dissatisfactions in your life? He would
probably tell ynulthat life is a very hard and complicated thing;
that

no interface can change that; that anyone

who believes otherwise

is a sucker; and that if you don't like hawving choices made for you,
you should start making your own.

What would the engineer say, after you had explained your problem, and
enumerated all of the dissatisfactions in your life? He would probably tell
you that life is a very hard and complicated thing; that no interface can
change that; that anyone who believes otherwise is a sucker; and that if
you inn't like having choices made for you, you should start making your
own.

What would the engineer say, after you
had explained your problem,
and enumerated all of the dl atisfactions in your life? He would

probably tell yuulthdt life i very hard and complicated thing;
that

no interface can change that; that anyone

whu believes otherwise
\aucker dﬁd thdt if yuu dun't like having choices made for you,

write text that | believe it deserves its own
key:

‘map Q gqip

cnange

you don't llke having choices mdde for ynu you should start making your
own . I

In the BEginning was the command Line

In the Beginning was the Cﬂmmand Line

Some random Eext (now a comment
about T(x) and g(x)) and more text.

Some random text JJand more text.

Registers

Sort of global variables that can contain text

VIM has in total 48 registers (some read/write, some read-only)

Unnamed register (") is the default target for most of the commands,
including cut (d), copy (y), and paste (p) operations

Last inserted text (.)
Register zero (0) contains the last yanked text

26 named registers (a-z)

Using the uppercase version (A-Z) append to a register instead
of replacing its content

Last search register (/)
Blackhole register () is like /dev/null

System Clipboard (+) and mouse selection (*)

let @r="..." manually set a register value in command-
line mode

Unlimited Undo/Redo

One undo command normally undoes a typed command, no
matter how many changes that command makes

This sequence of undo-able changes forms an undo block

When you enter insert mode you start a new block that ends when you
move back to normal mode (or when you press an arrow key!)

Repeats, at your current location, the last
edit command you executed in normal mode

u Undo the last change

(use multiple times to undo many changes)
<ctrl-r> Re-do changes that were previously undone
-earlier {N}s Move back to the state {N} seconds, minutes,
-earlier {N}m hours, or file writes ago
-earlier {N}h
-earlier {N}f
later {N}s Move forward to the state {N} seconds, minutes,

hours, or file writes in the future

href="fooo.html":
href="foo2.html":
href="foo3.html"=

href="fooo
href="foo2

href="foo3

href="fooo.html"=
href="fmm2.htm1";ﬂ
href="foo3.html">

href="fooo.html"=>
href="foo2.html"=>
hrEf=”fﬂﬂ3.htm1"}E

some function(f, b);
Esc

some function([lchar*]a, b);

some function((char*)a, [lchar+[Jb);

Macros

The . command is great to repeat a single command

For more, you need to record a macro (a sequence of
commands) in a register

Record: g<register>cmd_1cmd 2cmd ng

Play: [counter]@<register>

Excellent to:

Repeat repetitive operations that involve multiple commands

Repeat one or more commands in many different places
(record the command + the motion to move to the next place)

Start recording a macro in
the register w

| href="" 2 Edit the first line, then press |

A e (to move to the next one) and
q (to terminate the macro
A Esc | q recording)

Execute the macro 3 times

Mode

d, delete, cut&paste,
operational editing

..
o .
o
o

0
0
.

..

C ™,

Insert Mode LA, Visual Mode

where you type your text where you visually select
and do most of the creative editing regions of text

..........................

Command-line Mode

where you work on files, configure the
editor, type search patterns or Ex commands

Visual Mode

Visual Mode

Visually select regions of text

Pro: sometimes easier than remembering obscure ranges
or motion commands

Cons: does not work well with the dot . command

Enter visual mode

\/ — linewise selection
v — characterwise selection
CTRL-V —rectangular (or block) selection

gv — select the last visually selected area

You can use any vim movement commands to move
the selection corner

o and O let you cycle through the different corners

In line- and character-visual mode

r

S
P
J
I

A
g<CTRL-g>

Replace each character of the selected area with

Delete the selected text and enter insert mode
Replace the selected area with the clipboard
Join all the selected lines

Insert before the selection

Insert after the selection

Show some statistics about byte/word/line counts

Special behaviors in block mode

A

Special configurations

:set virtualedit

Insert some text at the start of the block in each
selected line

Insert some text at the end of the block in each
selected line

As in other visual mode, but the text is copied in
each line of the selection

Control if (and when) the cursor can be
positioned where there is no text

In the Bfginning was the Command Line

In the Beginning was the Command Line
In the Beginning was the Command Line

In the Beginning was the Command Line

point2
point3
point4
point5
pointé
point?
point8

pointl
point2
point3
point4d
point5s
pointb
point?
point8

Mode

d, delete, cut&paste,
operational editing

o 05

o

. .

Insert Mode 1LAc

where you type your toxt
and do most of the creative editing

ually select
f text

..

Command-line Mode

where you work on files, configure the
editor, type search patterns or Ex commands

Insert Mode

Some useful shortcuts..

<ctrl-r>r Insert the content of register r
<ctrl-y> <ctrl-e> Insert the character just above or below
<ctrl-v>c Literally enter the character c (e.g. a tab or an
<ctrl-v>ddd escape) or the character with ascii code ddd
<ctrl-v>xhh (decimal) or hh (hexadecimal), or the unicode
<ctrl-v>uxxxx character xxxx (hexadecimal)
<ctrl-k>digraph Insert a digraph (characters that normally cannot
be entered by an ordinary keyboard.
E.g:
e =e
0:=0

You can find out the code of a character by
using the ga command in normal mode

:help insert.txt

Spell Checking

Vim has an integrated, on-the-fly spell checker

:set spell

:spelllang=en_us, it (you can use multiple languages at the same time)
Four types of words are highlighted:

Not recognized, not capitalized, rare words, and wrongly spelled for
the selected region (e.g., grey in US English)

Is [s Move to the previous (next) misspelled word

zg Mark as good (add the current word to your local
dictionary)

zZW Mark as wrong (comment the word out of the
dictionary)

z= Suggest a correction for the word under the
cursor

:help spell.txt

Abbreviations

Abbreviations are a way to automatically substitute a
typed word with something else

Useful to auto-correct words you often misspell
teh — the dont — don't eurecom — Eurecom

Useful to abbreviate text you need to type often

me(@ — davide.balzarotti@eurecom. fr
main(— main (int argc, char* argv([]) {
Definition:

:iab word whathever_ you_want

To avoid the expansion of a world, type <ctrl1-v> after it

Auto-Completion (ctri-x mode)

A sub-mode of insert-mode used to auto-complete text

ctrl-x ctrl-n
ctrl-x ctrl-k
ctrl-x ctrl-t
ctrl-x ctrl-f
ctrl-x ctrl-i

ctrl-x ctrl-o

ctrl-x ctrl-]
ctrl-x ctrl-I

ctrl-n

words in the current document

words from the dictionary

words from the thesaurus

file names

included file (depends of the file type)

user-provided context-aware completion
(works out of the box for html, css, php, python,...)

c-tags
entire lines

words from a number of sources, by default
including all buffers

Ctrl X Ctrl 0

}, -I:II

<a href=

</HThref=" *URI
hreflang=" LangCode
charset=" LangCode
shape=" Shape

A fast| solution

Ctrl X Ctrl t

A fast| solution
fast /home/balzarot/.vim/thesaurus
speedy /home/balzarot/.vim/thesaurus
quick /home/balzarot/.vim/thesaurus
swift /home/balzarot/.vim/thesaurus
rapid /home/balzarot/.vim/thesaurus

Ctrl X Ctrl 0

o — d— —— i,
<a href=
</HThref=" *URI

hreflang=" LangCode

Cha et a1gCode

- =

) Dictionary and thesaurus auto-completion need to be
"""""""""" - configured to point to the right dictionary files
: :set dictionary=/etc/dictionaries-common/words

A fast| solution
fast /home/balzarot/.vim/thesaurus
speedy /home/balzarot/.vim/thesaurus
quick /home/balzarot/.vim/thesaurus
swift /home/balzarot/.vim/thesaurus
rapid /home/balzarot/.vim/thesaurus

Mode

d, delete, cut&paste,
and do mos operational editing

..

. 05

o

,i,a,A,0,0,c,C,R
Insert LAC
where y ur text -
and do most of ative editing
........ / ?'
yo

ually select
f text

Command-line Mode

where you work on files, configure the
editor, type search patterns or Ex commands

Command-Line Mode

Command-Line Mode

Command-line mode is used to enter

Ex commands (":" or "g:")

Forward ("/" and "g/") and backward (">" and "g>")
search patterns

Filter commands ("!")

Normally the command is typed in a single line that
appears at the bottom of the screen

However, if entered through the g command, the entire
history is shown in a separate vim windows

Searching

The basics:

Use /regex or ?regex to search for a regular expression forward or
backward

Use n and N to move to the next and previous match

Tricks

Search commands can be used as any other movement command. E.g.
d/foo deletes until the next appearance of foo

Use < and > to delimit words in a regex. E.g. <foo>
Start a regex by \v to use a more intuitive syntax

You can tell vim to highlight the matches, and then move from one to the
other. If you want to select the current match you can use v/ /e

Ex commands: the core of VI

[range] command [parameters]
| |

N —line N

— the current line

% — the entire file

$ — the last line of the file

"m — line of mark m

N,M — between line N and line M

<, '> — the lines containing the visually-selected area
+X — X lines ahead

/regexp/ — next line matching the regular expression
?regexp? — previous line matching the regular expression

:help cmdline-ranges

Ex commands: the core of VI

:[range] command [parameters]

print

write [>>] [filename]
read filename

read !shell cmd
del [req], yank [reg]

copy [dest_pos]
move [dest_pos]

normal cmd

just print the line

write range (default the file) to disk (default to the
open file). '>>' can be used to append to a file

insert the content of a file after the line defined
by range (default the current one)

same as before but with the output of a
shell command

equivalent to y and d in normal mode

copy the range lines after dest_pos
move the range lines after dest_pos

execute the normal-mode command on each
line of the range

:'<, '">normal

= Repeat the last command on the selected lines

s&g

: [range] s/ {regex}/{replacement}/[flags]

Replace the first match of the regular expression in the range
(default the current line) with the replacement.

Use the g flag to replace all matches

By default the replacement is done line-by-line. If you want to restrict a
regex to a visually selected area start the regex with a \%V

If replacement starts with \= it is evaluated as an expression

: [range] g[!'] /{regex}/ [ex_cmd]

Execute the Ex command on every line in range (default the entire file)
that match the regular expression

I invert the match, i.e. runs the command on the lines that do not match
the regex

s&g

[
L
<

range]s/{regex}/{replacement}/[flags]

N

nlace.the first. match.of the reaular.exnression.in.the.ranqe......eee :

:set gdefault
to enable the g flag by default

:set ignorecase

:set smartcase
to have case-insensitive search *unless™ the pattern
contains uppercase letters

fasssmsssssssssnannnnn R TEXR U U L o \.'mwwvgu-:u-r--v:vwvvuwav ... Fl

= linvert the match, i.e. runs the command on the lines that do not match
the regex

:g/re/p
Does the name sound familiar?
For instance: g/FIXME/p

:g/FIXME/.w >> fixme.txt

Same as before, but save them to a separate file

qgaq :g/FIXME/y A

Same as before, but copy them to register a

:g/*\s*$/d

Removes empty lines

:g/DEBUG/normal I//

Comment out every line that contains “DEBUG”

Filters

.[range]! unix_cmd

Executes a system command, pipes the range lines to its
standard input, and insert the output in the buffer

If no range is specified, the command is still executed but its
output is only displayed and NOT inserted back !!

It can also be triggered by ! in visual mode

Examples:
:!1ls vs :.!ls
:3lunig

:'<, ">lcolumn -t

doniel@daniel (10.0:0.9)- byobu
geocode_all_addres:

db--query result_array();

db- ~query($ ult_array();

query result_array();

get_location_coordinates

db--where("

get_location_coordinates:
db--update

Top |control Lers/utils.php

11 Buff Clay with a Seni-Matt Glai
geocode_all_addres

with a Glass Glaze || £CT id, ddre

db--query! result_array(); result_array();

4 prosuetion
ore (o L e v st i i
o L 4

pag program including Kenneth Smith, F
S cdlalsaita mw el maurmn pleces with the Nerconb Guild. Houever,
ewcomb Guild proved to be less popular than the earlier program and it effectively endet s s 3 get_location_coordinate 5 get_Location_coordinates(s
ith Sadie Irvine's retirement in 1952.<ref name=Poesch>{{cite book|title=New
Crafts: An Educational Enterprise for Womenlauthor=Poesch, Jessie and Kain, Sellylyear]
ge=271}}

Exanples of Newconb College Pottery:

ed by Joseph Meyer and decorated by Maz
db-where da'1); b -uhere(
tery Harks fron the fyen Plate db-update! ‘g - 4 2 db--update('g
y Vese potted by Joseph Heyes decorate 3
JpglAncther View of Newconb College Pottery
rated by Sara Levy fron 1985
File: RecClosetork.pol xenple of Newconb College Pottery Marks Fron the Le
VNCVase. 1pg [Newconb College Pottery Vase in the “Moon & Moss' Style, atted | by Fran
Arbo in the 1538s

danieledaniel [T penu: £
EECRT RN | s Jisonbpsaod xBIBCHE TRIGB1ZN 2012-68-12 10

Working with Multiple Files

Buffers

A buffer is the in-memory text of a file

You can open a buffer by using :edit filename
You can list buffers with : 1s (buffers have names and numbers)

Buffers are not necessarily visible on the screen

By default a buffer can be in background only if it does not have
pending modifications. You can change it by setting : set hidden

Working with buffers

bn bring buffer n to the current window
:bnext switch to the next buffer

bd[!] n close a buffer

:bufdo cmd execute a command in all buffers

:help buffers

Windows

A window is a view on a single buffer

You can have the same buffer open in multiple windows
Useful when you want to see multiple buffers at the same time
You can open new windows with :split or :vsplit

Use ctrl-w w to move the cursor between windows

:g close a window (and vim if that was the last window)
:g! force it to close and discharge changes, but...

...
04 e

either you save the changes...
..or you force close the buffers (:bd!)..

.. or you use :qall!

. 5
...

Tabs

A tab is a collection of windows

‘tabnew [filename] open a new tab
tabn :tabp move to the next (or previous) tab
:tab ball assign each buffer to a different tab

vim -q file1 file2 .. to open multiple file on different tabs

:help tabpage

14

Don't believe what people say:
There is no “real” or “proper” way to
combine tabs, windows, and buffers.

Just find a way that works for you. T

Configuration

Vim Configuration

Even though vanilla Vim is not very fancy, Vim is
designed to be extremely configurable to match your
taste and needs

All the setup and initialization commands are stored in a vimrc
file (default ~/ . vimrc)

Every line is an Ex command (without the : in front)

Vim has a large number of internal variables and
switches which can be set to tweak its behavior

Key mappings can be used to change the behavior of
typed keys (typically associating a sequence of
commands to a single key)

Setting Options

:set {option}? Show the value of one option

.set Show the value of the modified options
.set all Show the value of all options

:set option Set a boolean option

:set no{option} .. unset it..

.set {option}! .. switch its value..

:set option=value Set a non-boolean option

:options

nocompatible

mouse=a

number

autoindent

showmode

showmatch

nobackup

nowrap

backspace=eol,start,indent
on

ignorecase
smartcase
hlsearch
wrapscan
incsearch

expandtab
tabstop=4
shiftwidth=4

:filetype
FileType human,txt,tex,mail

Key Mapping

[mode] [nore]map <key> commands. .

mode specifies in which mode the mapping is defined
(i=insert, n=normal, v=visual, ...)

nore avoid recursive mappings

Examples:

:nnoremap <C—1> :nohlsearch<CR><C-1>
:nmap <F1> <nop>
:vnoremap < <gv

:1noremap <CR> <CR><C-G>u

Unfortunately, most of they key are already associated to
useful operations :(

Key Mapping

To extend the set of available keys for user mappings,
Vim uses a leader key
By default it is set to \ but it can be easily changed:

:let mapleader= ", "

You can then redefine any sequence of keys that starts
with the leader

:nnoremap <leader>d" F"xf"x

:nnoremap <leader>—-—- yypVr-o

:vnoremap <leader>" <esc> >a"<esc> <i"<esc>

:nnoremap <leader>t :call LatexBox_TOC () <CR>

1
You can find plenty of ideas of “useful”

mappings. But keep in mind that the most
Important thing is to look at your current
behavior and try to simplify repetitive tasks

)J

Events

= Vim provides hooks for 78 distinct editing events

= :help autocmd-events

BufWinEnter
InsertEnter

= vim
BufWinEnter {create a default window)
BufEnter {create a default buffer)
VimEnter (start the Vim session):edit example.txt
BufNew {create a new buffer to contain demo.txt)
BufAdd {add that new buffer to the session’'s buffer list)
BufLeave {exit the default buffer)
BufWinLeave {exit the default window)
BufUnload {remove the default buffer from the buffer list)
BufDelete {deallocate the default buffer)
BufReadCmd {read the contexts of demo.txt into the new buffer)
BufEnter {activate the new buffer)

{activate the new buffer's windowll
{swap into Insert mode)

Hello
CursorMovedlI (insert a character)
CursorMoved]I {(insert a character)
CursorMoved]I {insert a character)
CursorMovedlI {(insert a character)
CursorMovedI (insert a character)<ESC>

InsertlLeave
BufWriteCmd
BufWinLeave

{(swap back to Normal mode)Wq
{save the buffer contents back to disk)
{exit the buffer's window)

BufUnload {remove the buffer from the buffer 1ist)
VimLeavePre (get ready te quit Vim)
VimLeave (guit Vim)

Events

It is possible to add automatic behaviors for each of them

autocmd EventName filename_ pattern :command

Examples:

autocmd FileType help nmap <buffer> <Return> <C-]>
autocmd FileType html,css setlocal tabstop=2
autocmd FileType make setlocal noexpandtab shiftwidth=8

autocmd FileType human,txt,tex,mail,asciidoc set spell

Plugins

Plugins are scripts designed to extend VIM functionality

They can be global (saved under ~/ .vim/plugin/) or specific
for a certain file type (under ~/ .vim/ftplugin/)

You can install a new plugin by simply copying its file in
the right directories
Or you can use a plugin manager

Vim-addon-manager (command-line utility)

Pathogen (vim plugin)

Vundle (vim plugin)

Plugins

By default, plugins are written using the vimscript
scripting language:

I s:max (numbers)
Ilen (affnumbers)

0

numbers = copy(a:numbers)
maxnum = numbers[0]

nextnum numbers[1:]
nextnum maxnum
maxnum nextnum

maxnum

Plugins

By default, plugins are written using the vimscript
scripting language:

I s:max (numbers)
I'len (affnumbers)

Buffer scope—Only usable from within the current buffer
w: | Window scope—Only available from the current window
t: Tab page scope—Only available in the tab page

g: Global scope—available everywhere

I: Local scope—available locally to that function defined
s: Source scope—available only within the sourced file

a: | Argument scope—only available within the function

' Global scope—used to refer to a variable defined and used by Vim

Scripting in Python

FixPlural()

Hoport vim
cur word = vim.eval('expand("<cWORD>")")
cur word.endswith('s"):
cur word = cur word[:-1]
else:
cur word = cur word+"s"
vim.command("normal ciWss"%scur word)

ExpandNumber()

import vim
numbers = {'1':'one', '2':'two', '3':'three', '4':'four’,
'5'":'five', '6':'six', '7':'seven', '8':'eight’,
'9':'nine', '10':'ten'}
cur word = vim.eval('expand("<cWORD>")")
cur_word numbers :
cur word = numbers[cur word]
vim.command("normal ciWss"%scur word)

S :call FixPlural()<Esc>
<leader=N :call ExpandNumber()<Esc>

1
Mastering is more than just knowing.

It is knowing in a way that lightens your
load.

)

-from “Apprenticeship Patterns”

Happy Vimming

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

