
Make Yourself a Favor Make Yourself a Favor
and Learn and Learn VIM VIM

Davide Balzarotti

Vim is a beautiful tool.
Unfortunately, it is about as user-friendly
as a radioactive crocodile.

“
”

Why Mastering an Editor?

 In a world of text streams, the text editor is your home

 Computer scientists spend a lot of time editing files,
writing documents, writing source code, answering
emails...

 Choose a good editor
 (no, they are not all the same)

 Invest time to learn how to use it
 (really, the better you master its cryptic commands, the
 more productive you will be)

 Use it all the time
 (using different editors for different tasks is not usually a good idea)

I Said an Editor.. not an IDE

 Integrated Development Enviroments are pre-packaged
toolboxes that includes many tools needed for a specific
job (usually writing code)

 Good to handle very large code bases

 Bad for typing text

 The Unix philosophy
 Write tools that do one thing (in our case “edit text”) and do it well

 The shell is your IDE and Unix is your toolbox

 Integration can be achieved by configuration

I Said an Editor.. not a Word Processor

 Preparing a document involves two separate tasks:
 Composition – preparing the text content

 Typesetting – preparing the layout: fonts, colors, alignment,
 section headings, one or two columns, …

I Said an Editor.. not a Word Processor

 Preparing a document involves two separate tasks:
 Composition – preparing the text content

 Typesetting – preparing the layout: fonts, colors, alignment,
 section headings, one or two columns, …

 Word processors are WYSIWYG (“What You See Is What You Get'')
tools that combine composition and typesetting

 Should I mention again the Unix Philosophy ?
 Use a text editor to write text

 Use a specialized markup/language for typesetting (e.g., LaTeX)

Why should I use a text editor that is so difficult?
After one year I still don't know what I am doing

Why should I use a text editor that is so difficult?
After one year I still don't know what I am doing

 The same reason why you use a violin to
 play music instead of a kazoo

VS

*from a discussion on reddit/r/vim

Writing Text

 Text Composition involves two aspects:
 Creative – in which the author produces words and sentences

 Operational – in which the author manipulates the text and gives
 command to the editor
 (e.g., to save files, search and replace a word, …)

Writing Text

 Text Composition involves two aspects:
 Creative – in which the author produces words and sentences

 Operational – in which the author manipulates the text and gives
 command to the editor
 (e.g., to save files, search and replace a word, …)

 Most of the editors combine the two aspects together:
 You write text by typing letters, numbers, and symbols

 You give commands using:

 Mouse + Menus
 Special keys (e.g. F1-F12)
 Shortcuts based on modifier keys (ALT, CTRL, Meta, ...)

VIM is a Modal Editor

 Modal editors keep the creative and operational tasks
separated

 One mode is dedicated to type text, another to manipulate it

 The same key performs different actions depending on the
currently active mode

a tc type the word “cat” in insert mode and
Change Around a Tag in normal mode

The Lesson of VI

“ Vi is fundamentally built on command composability.
 It favors small, general-purpose commands that can be
 combined with objects to compose larger commands ”

 - Mike Kozlowski

History

 vi was originally developed by Bill Joy in 1976 as part of the
BSD Unix distribution

 Originally a visual extension of a line editor named ex

 Developed on an ADM 3A terminal, to be usable over a
300 bits-per-second modem line

 vim was developed by Bram Moolenaar in 1988 for the Amiga
operating system

 Originally it stood for “Vi Imitation”
but quickly became synonym of
“Vi iMproved”

An Important Historical Aspect

An Important Historical Aspect

CAPS LOCK is the second biggest key on the
home row.. and it is practically useless!!
Switching it with ESC will make your life
much easier (and not only in VIM)

“

”

“

”
> cat ~/.xmodmap
remove Lock = Caps_Lock
keycode 0x09 = Caps_Lock
keycode 0x42 = Escape
add Lock = Caps_Lock
> xmodmap ~/.xmodmap

CAPS LOCK is the second biggest key on the
home row.. and it is practically useless!!
Switching it with ESC will make your life
much easier (and not only in VIM)

Changing Mode

Normal Mode
where you move around, delete, cut&paste,

and do most of the operational editing

Insert Mode
where you type your text

and do most of the creative editing

Visual Mode
where you visually select

regions of text

Command-line Mode
where you work on files, configure the

editor, type search patterns or Ex commands

Changing Mode

Visual Mode
where you visually select

regions of text

I,i,a,A,o,O,c,C,R V,v,ctrl-v

: / ? !

I,A,c

Normal Mode
where you move around, delete, cut&paste,

and do most of the operational editing

Insert Mode
where you type your text

and do most of the creative editing

Command-line Mode
where you work on files, configure the

editor, type search patterns or Ex commands

: / ? !

Changing Mode

Visual Mode
where you operate on visually

selected regions of text

ESC

ESC, Enter

 ESC

Normal Mode
where you move around, delete, cut&paste,

and do most of the operational editing

Insert Mode
where you type your text

and do most of the creative editing

Command-line Mode
where you work on files, configure the

editor, type search patterns or Ex commands

The real picture

Stay in insert mode only while typing.
When you pause to think,
move back to normal mode

“
”

Vim Help and Documentation

 You can access an inline help page by typing
:help <subject>

 The Vim documentation consists of two parts:

 The User Manual: task oriented explanations, from simple to complex.
It reads from start to end like a book.

:help usr_N.txt N=01,02,03...99

:help usr_toc.txt

 The Reference Manual: precise description of how everything
in Vim works.

:help motion.txt

:help reference_toc

 Vim help/documentation is a sort of hypertext with links
you can follow between each part

Command Mode

Command Mode

(go)
copy
delete
change
vselect
...

(until)
around
inside

a word
a sentence
a paragraph
a tag
a regexp
...

Vim commands are based on a composable grammar

Command Mode

Movement commands:

 [repetition] move-cmd

 either specifies an absolute position
 (in the file or in the current line) or
 a relative target from the current cursor
 position

 for relative targets, how many times the
 movement needs to be repeated to reach the
 destination

:help motion.txt

Absolute, File-Based
gg first line

G last line

nG n line

n| n column

Absolute, Line-Based
^ first non-blank character

g_ last non-blank character

0 first character

$ last character

Relative, Text-Based
← → ↑ ↓ move one character

h l j k same as above

w b beginning of the next
(previous) word

e ge end of the next
(previous) word

W N E gE like above but use space-
separated words

() previous (next) sentence

{ } previous (next) paragraph

% match of next brace,
bracket, or comment

* # next (previous)
occurrence of the word
under the cursor

[(]) previous (next)
unmatched parenthesis

[{]} previous (next)
unmatched curly bracket

Relative, Line-Based
fc Fc next (previous)

occurrence of character c

tc Tc before the next (previous)
occurrence of character c

; , repeat the last tf or the
last TF command

Absolute, File-Based
gg first line

G last line

nG n line

n| n column

Absolute, Line-Based
^ first non-blank character

g_ last non-blank character

0 first character

$ last character

Relative, Text-Based
← → ↑ ↓ move one character

h l j k same as above

w b beginning of the next
(previous) word

e ge end of the next
(previous) word

W N E gE like above but use space-
separated words

() previous (next) sentence

{ } previous (next) paragraph

% match of next brace,
bracket, or comment1

* # next (previous)
occurrence of the word
under the cursor

[(]) previous (next)
unmatched parenthesis

[{]} previous (next)
unmatched curly bracket

Relative, Line-Based
fc Fc next (previous)

occurrence of character c

tc Tc before the next (previous)
occurrence of character c

; , repeat the last tf or the
last TF command

1cannot be preceded by a counter

Use :set iskeyword to
configure what is a word for you.

 You should not try to learn every command an editor
 offers. That would be a complete waste of time.
 Most people only need to learn 10 to 20% of the
 commands for their work.
 But it's a different set of commands for everybody

 - Bram Moolenar

“

”

Marks

 Allow the user to record the current cursor position
 There is no visible indication of where marks are set

 Four types of marks:
 Local marks (letters a-z) are unique to each file

 Global marks (letters A-Z) identify a location in a particular file
(so jumping to the mark also open that file)

 Special marks, managed automatically by VIM

. : position of the last change

` : position before the last jump (`'G/(){}n)

^ : position where the cursor last exited insert mode

< > : start and end positions of the last selected text

 Change marks, automatically generated every time a piece of
text is modified. These marks have no name

Marks

Marks-related Commands
mx record the current position in mark x

`x jump to mark x

'x jump to the first char of the line containing
mark x

:marks list the values of all the marks

:changes list the values of all the changes

g, g; jump to the next (previous) change mark

Command Mode

Move commands

 [repetition] move-cmd

Command Mode

Move commands

 [repetition] move-cmd
 called operator, specifies the
 action to perform on the text

Editing commands

 {"register} [repetition] verb {object}

 selected text (in visual mode)

 text object around the
 current cursor position
 “variable” to store
 the command text between the current
 result cursor position and a
 destination reachable with
 one movement command

From the current position to a destination reachable
through a movement command:

On the text around the current position (text objects):

On the visually selected text (more about it later):

Verbs that enter insert mode
i a insert before (after) the cursor

I insert before the first non-blank
character at the beginning of the line

A appending at the end of the line

gI insert at the beginning of the line

gi Insert where you left insert mode last
time

o O Insert text in a new line below (above)
the current one

R insert text in overwrite mode

co change text of object o

cc change the current line

C change till the end of the line

Learning some Verbs

i

a

I

A

Cut & Paste

General commands
do Cut the object o

yo Yank (copy) the object o

p P Paste after (or before) the cursor

Linewise versions

dd cut current line

yy Copy current line

D Delete till the end of the line

For compatibility issues, Y is a synonym of yy
If you want it to yank till the end of the line
(more intuitive) you can redefine it with:
:map Y y$

Few More Verbs

guo gUo Make lowercase or uppercase

gqo Format text

<o >o Indent left and right

J Join the current line with the next one

~ Swap case of a single letter

Text Objects

 modifier object
 Modifiers

i – inside

a – around

 Object

w W – word or Word

s – sentences

p – paragraphs

t – Tagged blocks

[] () {} <> – Blocks delimited by these characters

“ ' ` – Strings delimited by these characters

g q i p

g q i p
This operation is so common when you
write text that I believe it deserves its own
key:
:map Q gqip

c i "

f c ~

w d %

Registers

 Sort of global variables that can contain text

 VIM has in total 48 registers (some read/write, some read-only)

 Unnamed register (") is the default target for most of the commands,
including cut (d), copy (y), and paste (p) operations

 Last inserted text (.)

 Register zero (0) contains the last yanked text

 26 named registers (a-z)

 Using the uppercase version (A-Z) append to a register instead
of replacing its content

 Last search register (/)

 Blackhole register (_) is like /dev/null

 System Clipboard (+) and mouse selection (*)

Playing with Registers

"r<cmd> Use register r as a destination for <cmd>

<ctrl-r>r in insert mode, insert the content of
register r

:let @r=”...” manually set a register value in command-
line mode

:reg [r] list all (or one im particular) registers values

Unlimited Undo/Redo

 One undo command normally undoes a typed command, no
matter how many changes that command makes

 This sequence of undo-able changes forms an undo block

 When you enter insert mode you start a new block that ends when you
move back to normal mode (or when you press an arrow key!)

. Repeats, at your current location, the last
edit command you executed in normal mode

u Undo the last change
(use multiple times to undo many changes)

<ctrl-r> Re-do changes that were previously undone

:earlier {N}s
:earlier {N}m
:earlier {N}h
:earlier {N}f

Move back to the state {N} seconds, minutes,
hours, or file writes ago

:later {N}s
...

Move forward to the state {N} seconds, minutes,
hours, or file writes in the future

g U i t

j .

Esci (char*)

W .

j .

Macros

 The . command is great to repeat a single command

 For more, you need to record a macro (a sequence of
commands) in a register

Record: q<register>cmd_1 cmd_2 …. cmd_n q

Play: [counter]@<register>

 Excellent to:

 Repeat repetitive operations that involve multiple commands

 Repeat one or more commands in many different places
 (record the command + the motion to move to the next place)

q w

I Esc

A Esc j

3 @

q

w

Start recording a macro in
the register w

Edit the first line, then press j
(to move to the next one) and
q (to terminate the macro
recording)

Execute the macro 3 times

Visual Mode
where you visually select

regions of text

I,i,a,A,o,O,c,C,R V,v,ctrl-v

: / ? !

I,A,c

Normal Mode
where you move around, delete, cut&paste,

and do most of the operational editing

Insert Mode
where you type your text

and do most of the creative editing

Command-line Mode
where you work on files, configure the

editor, type search patterns or Ex commands

: / ? !

 Visual Mode

Visual Mode

 Visually select regions of text

 Pro: sometimes easier than remembering obscure ranges
or motion commands

 Cons: does not work well with the dot . command

 Enter visual mode

V – linewise selection

v – characterwise selection

CTRL-V – rectangular (or block) selection

gv – select the last visually selected area

 You can use any vim movement commands to move
the selection corner

 o and O let you cycle through the different corners

In line- and character-visual mode
rc Replace each character of the selected area with

c

s Delete the selected text and enter insert mode

p Replace the selected area with the clipboard

J Join all the selected lines

I Insert before the selection

A Insert after the selection

g<CTRL-g> Show some statistics about byte/word/line counts

Special behaviors in block mode

I Insert some text at the start of the block in each
selected line

A Insert some text at the end of the block in each
selected line

s As in other visual mode, but the text is copied in
each line of the selection

Special configurations

:set virtualedit Control if (and when) the cursor can be
positioned where there is no text

y y p

V r =

Ctrl v)

EscI - ␣

Visual Mode
where you visually select

regions of text

I,i,a,A,o,O,c,C,R V,v,ctrl-v

: / ? !

I,A,c

Normal Mode
where you move around, delete, cut&paste,

and do most of the operational editing

Insert Mode
where you type your text

and do most of the creative editing

Command-line Mode
where you work on files, configure the

editor, type search patterns or Ex commands

: / ? !

 Insert Mode

Some useful shortcuts..

<ctrl-r>r Insert the content of register r

<ctrl-y> <ctrl-e> Insert the character just above or below

<ctrl-v>c
<ctrl-v>ddd
<ctrl-v>xhh
<ctrl-v>uxxxx

Literally enter the character c (e.g. a tab or an
escape) or the character with ascii code ddd
(decimal) or hh (hexadecimal), or the unicode
character xxxx (hexadecimal)

<ctrl-k>digraph Insert a digraph (characters that normally cannot
be entered by an ordinary keyboard.
E.g:
 e' = é
 o: = ö

:help insert.txt

You can find out the code of a character by
using the ga command in normal mode

Spell Checking

 Vim has an integrated, on-the-fly spell checker

:set spell

:spelllang=en_us,it (you can use multiple languages at the same time)

 Four types of words are highlighted:

 Not recognized, not capitalized, rare words, and wrongly spelled for
the selected region (e.g., grey in US English)

:help spell.txt

]s [s Move to the previous (next) misspelled word

zg Mark as good (add the current word to your local
dictionary)

zw Mark as wrong (comment the word out of the
dictionary)

z= Suggest a correction for the word under the
cursor

Abbreviations

 Abbreviations are a way to automatically substitute a
typed word with something else

 Useful to auto-correct words you often misspell
 teh → the dont → don't eurecom → Eurecom

 Useful to abbreviate text you need to type often
 me@ → davide.balzarotti@eurecom.fr
 main(→ main(int argc, char* argv[]){

 Definition:
 :iab word whathever_you_want

 To avoid the expansion of a world, type <ctrl-v> after it

Auto-Completion (ctrl-x mode)

 A sub-mode of insert-mode used to auto-complete text

ctrl-x ctrl-n words in the current document

ctrl-x ctrl-k words from the dictionary

ctrl-x ctrl-t words from the thesaurus

ctrl-x ctrl-f file names

ctrl-x ctrl-i included file (depends of the file type)

ctrl-x ctrl-o user-provided context-aware completion
(works out of the box for html, css, php, python,...)

ctrl-x ctrl-] c-tags

ctrl-x ctrl-l entire lines

ctrl-n words from a number of sources, by default
including all buffers

Ctrl x Ctrl o

Ctrl x Ctrl t

Ctrl x Ctrl o

Ctrl x Ctrl t

g q i p
Dictionary and thesaurus auto-completion need to be
configured to point to the right dictionary files
:set dictionary=/etc/dictionaries-common/words

Visual Mode
where you visually select

regions of text

I,i,a,A,o,O,c,C,R V,v,ctrl-v

: / ? !

I,A,c

Normal Mode
where you move around, delete, cut&paste,

and do most of the operational editing

Insert Mode
where you type your text

and do most of the creative editing

Command-line Mode
where you work on files, configure the

editor, type search patterns or Ex commands

: / ? !

 Command-Line Mode

Command-Line Mode

 Command-line mode is used to enter
 Ex commands (":" or "q:")

 Forward ("/" and "q/") and backward ("?" and "q?")
search patterns

 Filter commands ("!")

 Normally the command is typed in a single line that
appears at the bottom of the screen

 However, if entered through the q command, the entire
history is shown in a separate vim windows

Searching

 The basics:

 Use /regex or ?regex to search for a regular expression forward or
backward

 Use n and N to move to the next and previous match

 Tricks

 Search commands can be used as any other movement command. E.g.
d/foo deletes until the next appearance of foo

 Use < and > to delimit words in a regex. E.g. <foo>

 Start a regex by \v to use a more intuitive syntax

 You can tell vim to highlight the matches, and then move from one to the
other. If you want to select the current match you can use v//e

Ex commands: the core of VI

N – line N

. – the current line

% – the entire file

$ – the last line of the file

'm – line of mark m

N,M – between line N and line M

'<,'> – the lines containing the visually-selected area

+X – X lines ahead

/regexp/ – next line matching the regular expression

?regexp? – previous line matching the regular expression

[range] command [parameters]

:help cmdline-ranges

Ex commands: the core of VI

print just print the line

write [>>] [filename] write range (default the file) to disk (default to the
 open file). '>>' can be used to append to a file

read filename insert the content of a file after the line defined
 by range (default the current one)

read !shell_cmd same as before but with the output of a
 shell command

del [reg], yank [reg] equivalent to y and d in normal mode

copy [dest_pos] copy the range lines after dest_pos
move [dest_pos] move the range lines after dest_pos

normal cmd execute the normal-mode command on each
 line of the range

:[range] command [parameters]

:%normal A;

 Add a semicolon at the end of each line

:'<,'>normal .

 Repeat the last command on the selected lines

s & g

:[range]s/{regex}/{replacement}/[flags]

 Replace the first match of the regular expression in the range
(default the current line) with the replacement.

 Use the g flag to replace all matches

 By default the replacement is done line-by-line. If you want to restrict a
regex to a visually selected area start the regex with a \%V

 If replacement starts with \= it is evaluated as an expression

:[range] g[!] /{regex}/ [ex_cmd]

 Execute the Ex command on every line in range (default the entire file)
that match the regular expression

 ! invert the match, i.e. runs the command on the lines that do not match
the regex

s & g

:[range]s/{regex}/{replacement}/[flags]

 Replace the first match of the regular expression in the range
(default the current line) with the replacement.

 Use the g flag to replace all matches

 By default the replacement is done line-by-line. If you want to restrict a
regex to a visually selected area start the regex with a \%V

:[range] g[!] /{regex}/ [ex_cmd]

 Execute the Ex command on every line in range (default the entire file)
that match the regular expression

 ! invert the match, i.e. runs the command on the lines that do not match
the regex

:set gdefault
to enable the g flag by default

:set ignorecase
:set smartcase
to have case-insensitive search *unless* the pattern
contains uppercase letters

:g/re/p

 Does the name sound familiar?

 For instance: g/FIXME/p

:g/FIXME/.w >> fixme.txt

 Same as before, but save them to a separate file

qaq :g/FIXME/y A

 Same as before, but copy them to register a

:g/^\s*$/d

 Removes empty lines

:g/DEBUG/normal I//

 Comment out every line that contains “DEBUG”

Filters

:[range]! unix_cmd
 Executes a system command, pipes the range lines to its

standard input, and insert the output in the buffer

 If no range is specified, the command is still executed but its
output is only displayed and NOT inserted back !!

 It can also be triggered by ! in visual mode

 Examples:

:!ls vs :.!ls

:%!uniq

:'<,'>!column -t

 Working with Multiple Files

Buffers

 A buffer is the in-memory text of a file
 You can open a buffer by using :edit filename

 You can list buffers with :ls (buffers have names and numbers)

 Buffers are not necessarily visible on the screen

 By default a buffer can be in background only if it does not have
pending modifications. You can change it by setting :set hidden

 Working with buffers

:b n bring buffer n to the current window

:bnext switch to the next buffer

:bd[!] n close a buffer

:bufdo cmd execute a command in all buffers

:help buffers

Windows

 A window is a view on a single buffer
 You can have the same buffer open in multiple windows

 Useful when you want to see multiple buffers at the same time

 You can open new windows with :split or :vsplit

 Use ctrl-w w to move the cursor between windows

 :q close a window (and vim if that was the last window)
:q! force it to close and discharge changes, but...

If you allow modified hidden buffers things may get weird...
 either you save the changes...

 ..or you force close the buffers (:bd!)..

 .. or you use :qall!

Tabs

 A tab is a collection of windows

:tabnew [filename] open a new tab

:tabn :tabp move to the next (or previous) tab

:tab ball assign each buffer to a different tab

vim -q file1 file2 .. to open multiple file on different tabs

:help tabpage

buf 2

Tab1

w1

buf 1

w1 w2 w3

buf 3 buf 4

FileA FileB FileC

Tab2

Don't believe what people say:
There is no “real” or “proper” way to
combine tabs, windows, and buffers.
Just find a way that works for you.

“

”

Configuration

Vim Configuration

 Even though vanilla Vim is not very fancy, Vim is
designed to be extremely configurable to match your
taste and needs

 All the setup and initialization commands are stored in a vimrc
file (default ~/.vimrc)

 Every line is an Ex command (without the : in front)

 Vim has a large number of internal variables and
switches which can be set to tweak its behavior

 Key mappings can be used to change the behavior of
typed keys (typically associating a sequence of
commands to a single key)

Setting Options

:set {option}? Show the value of one option

:set Show the value of the modified options

:set all Show the value of all options

:set option Set a boolean option
:set no{option} .. unset it..
:set {option}! .. switch its value..

:set option=value Set a non-boolean option

:options

Setting Options

:set {option}? Show the value of one option

:set Show the value of the modified options

:set all Show the value of all options

:set option Set a boolean option
:set no{option} .. unset it..
:set {option}! .. switch its value..

:set option=value Set a non-boolean option

:options

Key Mapping

[mode][nore]map <key> commands..

mode specifies in which mode the mapping is defined
 (i=insert, n=normal, v=visual, ...)

nore avoid recursive mappings

 Examples:

:nnoremap <C-l> :nohlsearch<CR><C-l>

:nmap <F1> <nop>

:vnoremap < <gv

:inoremap <CR> <CR><C-G>u

 Unfortunately, most of they key are already associated to
useful operations :(

Key Mapping

 To extend the set of available keys for user mappings,
Vim uses a leader key

 By default it is set to \ but it can be easily changed:

:let mapleader= ","

 You can then redefine any sequence of keys that starts
with the leader

:nnoremap <leader>d" F"xf"x

:nnoremap <leader>-- yypVr-o

:vnoremap <leader>" <esc>`>a"<esc>`<i"<esc>

:nnoremap <leader>t :call LatexBox_TOC()<CR>

You can find plenty of ideas of “useful”
mappings. But keep in mind that the most
important thing is to look at your current
behavior and try to simplify repetitive tasks

“

”

Events

 Vim provides hooks for 78 distinct editing events

 :help autocmd-events

Events

 It is possible to add automatic behaviors for each of them

autocmd EventName filename_pattern :command

 Examples:

 autocmd FileType help nmap <buffer> <Return> <C-]>

 autocmd FileType html,css setlocal tabstop=2

 autocmd FileType make setlocal noexpandtab shiftwidth=8

 autocmd FileType human,txt,tex,mail,asciidoc set spell

Plugins

Plugins

 Plugins are scripts designed to extend VIM functionality
 They can be global (saved under ~/.vim/plugin/) or specific

for a certain file type (under ~/.vim/ftplugin/)

 You can install a new plugin by simply copying its file in
the right directories

 Or you can use a plugin manager
 Vim-addon-manager (command-line utility)

 Pathogen (vim plugin)

 Vundle (vim plugin)

Plugins

By default, plugins are written using the vimscript
scripting language:

Plugins

By default, plugins are written using the vimscript
scripting language:

Scripting in Python

Mastering is more than just knowing.
It is knowing in a way that lightens your
load.

-from “Apprenticeship Patterns”

“
”

Happy Vimming

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

