
Manual for version 1.3.5

Written by Dimitri van Heesch

c©1997-2003

CONTENTS 1

Contents

I User Manual 4

1 Installation 4

2 Getting started 11

3 Documenting the code 15

4 Lists 22

5 Grouping 24

6 Including formulas 28

7 Graphs and diagrams 29

8 Preprocessing 31

9 Linking to external documentation 34

10 Frequently Asked Questions 36

11 Troubleshooting 39

II Reference Manual 41

12 Features 41

13 Doxygen History 43

14 Doxygen usage 45

15 Doxytag usage 46

16 Doxywizard usage 48

17 Installdox usage 48

18 Automatic link generation 49

19 Configuration 53

20 Special Commands 70

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

CONTENTS 2

21 HTML Commands 100

III Developers Manual 103

22 Doxygen’s Internals 103

23 Perl Module output format documentation 107

24 Internationalization 109

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

CONTENTS 1

Introduction

Doxygen is a documentation system for C++, C, Java, IDL (Corba and Microsoft flavors) and to some
extent PHP and C#.

It can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line reference manual
(in LATEX) from a set of documented source files. There is also support for generating output in RTF
(MS-Word), PostScript, hyperlinked PDF, compressed HTML, and Unix man pages. The documen-
tation is extracted directly from the sources, which makes it much easier to keep the documentation
consistent with the source code.

2. You canconfiguredoxygen to extract the code structure from undocumented source files. This is very
useful to quickly find your way in large source distributions. You can also visualize the relations
between the various elements by means of include dependency graphs, inheritance diagrams, and
collaboration diagrams, which are all generated automatically.

3. You can even ‘abuse’ doxygen for creating normal documentation (as I did for this manual).

Doxygen is developed underLinux , but is set-up to be highly portable. As a result, it runs on most other
Unix flavors as well. Furthermore, executables for Windows 9x/NT and Mac OS X are available.

This manual is divided into three parts, each of which is divided into several sections.

The first part forms a user manual:

• SectionInstallationdiscusses how todownload , compile and install doxygen for your platform.

• SectionGetting startedtells you how to generate your first piece of documentation quickly.

• SectionDocumenting the codedemonstrates the various ways that code can be documented.

• SectionListsshow various ways to create lists.

• SectionGroupingshows how to group things together.

• SectionIncluding formulasshows how to insert formulas in the documentation.

• SectionGraphs and diagramsdescribes the diagrams and graphs that doxygen can generate.

• SectionPreprocessingexplains how doxygen deals with macro definitions.

• SectionLinking to external documentationexplains how to let doxygen create links to externally
generated documentation.

• SectionFrequently Asked Questionsgives answers to frequently asked questions.

• SectionTroubleshootingtells you what to do when you have problems.

The second part forms a reference manual:

• SectionFeaturespresents an overview of what doxygen can do.

• SectionDoxygen Historyshows what has changed during the development of doxygen and what still
has to be done.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.linux.org
http://www.doxygen.org/download.html

CONTENTS 2

• SectionDoxygen usageshows how to use thedoxygen program.

• SectionDoxytag usageshows how to use thedoxytag program.

• SectionDoxywizard usageshows how to use thedoxywizard program.

• SectionInstalldox usageshows how to use theinstalldox script that is generated by doxygen if
you use tag files.

• SectionOutput Formatsshows how to generate the various output formats supported by doxygen.

• SectionAutomatic link generationshows how to put links to files, classes, and members in the
documentation.

• SectionConfigurationshows how to fine-tune doxygen, so it generates the documentation you want.

• SectionSpecial Commandsshows an overview of the special commands that can be used within the
documentation.

• SectionHTML Commandsshows an overview of the HTML commands that can be used within the
documentation.

The third part provides information for developers:

• SectionDoxygen’s Internalsgives a global overview of how doxygen is internally structured.

• SectionPerl Module output format documentationshows how to use the PerlMod output.

• SectionInternationalizationexplains how to add support for new output languages.

Doxygen license

Copyright c©1997-2003 byDimitri van Heesch .

Permission to use, copy, modify, and distribute this software and its documentation under the terms of
the GNU General Public License is hereby granted. No representations are made about the suitability of
this software for any purpose. It is provided ”as is” without express or implied warranty. See theGNU
General Public License for more details.

Documents produced by doxygen are derivative works derived from the input used in their production; they
are not affected by this license.

Projects using doxygen

I have compiled a list of projects that use doxygen (seehttp://www.doxygen.org/projects.html).
If you know other projects, let me know and I’ll add them.

Future work

Although doxygen is used successfully by a lot of people already, there is always room for improvement.
Therefore, I have compiled a todo/wish list (seehttp://www.doxygen.org/todo.html) of possi-
ble and/or requested enhancements.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

mailto:dimitri@stack.nl
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

CONTENTS 3

Acknowledgements

Thanks go to:

• Malte Zöckler and Roland Wunderling, authors of DOC++. The first version of doxygen borrowed
some code of an old version of DOC++. Although I have rewritten practically all code since then,
DOC++ has still given me a good start in writing doxygen.

• All people at Troll Tech, for creating a beautiful GUI Toolkit (which is very useful as a Win-
dows/Unix platform abstraction layer :-)

• My brotherFrank for rendering the logos.

• Harm van der Heijden for adding HTML help support.

• Wouter Slegers ofYour Creative Solutions for registering the www.doxygen.org domain.

• Parker Waechter for adding the RTF output generator.

• Joerg Baumann, for adding conditional documentation blocks, PDF links, and the configuration
generator.

• Matthias Andree for providing a .spec script for building rpms from the sources.

• Tim Mensch for adding the todo command.

• Christian Hammond for redesigning the web-site.

• Ken Wong for providing the HTML tree view code.

• Petr Prikryl for coordinating the internationalisation support. All language maintainers for providing
translations into many languages.

• Erik Jan Lingen ofHabanera , Mark Roddy, Paul Schwartz, Charles Duffy, Vadym Voznyuk, Philip
Walton, Dwight Browne, Andreas Fredriksson, Karel Lindveld, Ivan Lee, Albert Vernon, Adam Mc-
Kee, Vijapurapu Anatharac, Ben Hunsberger and Walter Wartenweiler, Jeff Garbers, David Harris,
Terry Brown and Nicolas Reimen for donating money.

• The Comms group ofSymbian for donating an ultra coolRevo plus organizer!

• Steve Upstill ofWeta Digital for sending me someLord of the Rings goodies.

• The bandPorcupine Tree for providing hours of great music to listen to while coding.

• many, many others for suggestions, patches and bug reports.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.stack.nl/~fidget/index.html
http://www.yourcreativesolutions.nl
http://www.habanera.nl/
http://www.symbian.com
http://www.psion.com/revoplus
http://www.wetadigital.com/digital/index_flash.htm
http://www.lordoftherings.net/
http://www.porcupinetree.com

4

Part I

User Manual

1 Installation

First go to thedownload page (http://www.doxygen.org/download.html)to get the latest
distribution, if you did not have it already.

This section is divided into the following sections:

• Compiling from source on Unix

• Installing the binaries on Unix

• Known compilation problems for Unix

• Compiling from source on Windows

• Installing the binaries on Windows

• Tools used to develop doxygen

1.1 Compiling from source on Unix

If you downloaded the source distribution, you need at least the following to build the executable:

• TheGNUtools flex, bison and make

• In order to generate a Makefile for your platform, you needperl (see
http://www.perl.com/).

To take full advantage of doxygen’s features the following additional tools should be installed.

• Troll Tech’s GUI toolkitQt (seehttp://www.trolltech.com/products/qt.html) ver-
sion 2 or higher. This is needed to build the GUI front-end doxywizard.

• A LATEX distribution: for instanceteTeX 1.0
par (seehttp://www.tug.org/interest.html#free). This is needed for generating La-
TeX, Postscript, and PDF output.

• the Graph visualization toolkit version 1.8.10 or higher
par (seehttp://www.research.att.com/sw/tools/graphviz/). Needed for the in-
clude dependency graphs, the graphical inheritance graphs, and the collaboration graphs. If you
compile graphviz yourself, make sure you do include freetype support (which requires the freetype
library and header files), otherwise the graphs will not render proper text labels.

• The ghostscript interpreter. To be found atwww.ghostscript.com .

Compilation is now done by performing the following steps:

1. Unpack the archive, unless you already have done that:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.doxygen.org/download.html
ftp://prep.ai.mit.edu/pub/gnu/
http://www.perl.com/
http://www.trolltech.com/products/qt.html
http://www.tug.org/interest.html#free
http://www.research.att.com/sw/tools/graphviz/
http://www.ghostscript.com/

1.1 Compiling from source on Unix 5

gunzip doxygen-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

2. Run the configure script:

sh ./configure

The script tries to determine the platform you use, the make tool (whichmustbe GNU make) and
the perl interpreter. It will report what it finds.

To override the auto detected platform and compiler you can run configure as follows:

configure --platform platform-type

See thePLATFORMSfile for a list of possible platform options.

If you have Qt-2.1.x installed and want to build the GUI front-end, you should run the configure
script with the--with-doxywizard option:

configure --with-doxywizard

For an overview of other configuration options use

configure --help

3. Compile the program by running make:

make

The program should compile without problems and three binaries (doxygen anddoxytag) should
be available in the bin directory of the distribution.

4. Optional: Generate the user manual.

make docs

To let doxygen generate the HTML documentation.

Note:
You will need the stream editorsed for this, but this should be available on any Unix platform.

The HTML directory of the distribution will now contain the html documentation (just point a HTML
browser to the fileindex.html in the html directory).

5. Optional: Generate a PDF version of the manual (you will needpdflatex , makeindex , and
egrep for this).

make pdf

The PDF manualdoxygen manual.pdf will be located in the latex directory of the distribution.
Just view and print it via the acrobat reader.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

1.2 Installing the binaries on Unix 6

1.2 Installing the binaries on Unix

After the compilation of the source code do amake install to install doxygen. If you downloaded the
binary distribution for Unix, type:

./configure
make install

Binaries are installed into the directory<prefix >/bin . Usemake install docs to install the
documentation and examples into<docdir >/doxygen .

<prefix > defaults to/usr but can be changed with the--prefix option of the configure script. The
default<docdir > directory is<prefix >/share/doc/packages and can be changed with the
--docdir option of the configure script.

Alternatively, you can also copy the binaries from thebin directory manually to somebin directory in
your search path. This is sufficient to use doxygen.

Note:
You need the GNU install tool for this to work (it is part of the fileutils package). Other install tools
may put the binaries in the wrong directory!

If you have a RPM or DEP package, then please follow the standard installation procedure that is required
for these packages.

1.3 Known compilation problems for Unix

Qt problems

The Qt include files and libraries are not a subdirectory of the directory pointed to by QTDIR on some
systems (for instance on Red Hat 6.0 includes are in /usr/include/qt and libs are in /usr/lib).

The solution: go to the root of the doxygen distribution and do:

mkdir qt
cd qt
ln -s your-qt-include-dir-here include
ln -s your-qt-lib-dir-here lib
export QTDIR=$PWD

If you have a csh-like shell you should usesetenv QTDIR $PWD instead of theexport command
above.

Now install doxygen as described above.

Bison problems

Versions 1.31 to 1.34 of bison contain a ”bug” that results in a compiler errors like this:

ce parse.cpp:348: member ‘class CPPValue yyalloc::yyvs’ with constructor not allowed in union

This problem has been solved in version 1.35 (versions before 1.31 will also work).

Latex problems

The file a4wide.sty is not available for all distributions. If your distribution does not have it please
select another paper type in the config file (see thePAPERTYPEtag in the config file).

HP-UX & Digital Unix problems

If you are compiling for HP-UX with aCC and you get this error:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

1.3 Known compilation problems for Unix 7

/opt/aCC/lbin/ld: Unsatisfied symbols:
alloca (code)

then you should (according to Anke Selig) editce parse.cpp and replace

extern "C" {
void *alloca (unsigned int);

};

with

#include <alloca.h>

If that does not help, try removingce parse.cpp and let bison rebuild it (this worked for me).

If you are compiling for Digital Unix, the same problem can be solved (according to Barnard Schmallhof)
by replacing the following in ceparse.cpp:

#else /* not GNU C. */
#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) \

|| defined (__sparc) || defined (__sgi)
#include <alloca.h>

with

#else /* not GNU C. */
#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) \

|| defined (__sparc) || defined (__sgi) || defined (__osf__)
#include <alloca.h>

Alternatively, one could fix the problem at the bison side. Here is patch for bison.simple (provided by
Andre Johansen):

--- bison.simple˜ Tue Nov 18 11:45:53 1997
+++ bison.simple Mon Jan 26 15:10:26 1998
@@ -27,7 +27,7 @@

#ifdef __GNUC__
#define alloca __builtin_alloca
#else /* not GNU C. */

-#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) \
|| defined (__sparc) || defined (__sgi)

+#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) \
|| defined (__sparc) || defined (__sgi) || defined (__alpha)

#include <alloca.h>
#else /* not sparc */
#if defined (MSDOS) && !defined (__TURBOC__)

The generated scanner.cpp that comes with doxygen is build with this patch applied.

Sun compiler problems

I tried compiling doxygen only with Sun’s C++ WorkShop Compiler version 5.0 (I used./configure
--platform solaris-cc)

Qt-2.x.y is required for this compiler (Qt-1.44 has problems with the bool type).

Compiling thedoxygen binary went ok, but while linkingdoxytag I got a lot of link errors, like these:

QList<PageInfo>::__vtbl /home/dimitri/doxygen/
objects/SunWS_cache/CC_obj_6/6c3eO4IogMT2vrlGCQUQ.o
[Hint: try checking whether the first non-inlined, non-pure
virtual function of class QList<PageInfo> is defined]

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

1.4 Compiling from source on Windows 8

These are generated because the compiler is confused about the object sharing betweendoxygen and
doxytag . To compiledoxytag anyway do:

rm -rf objects
mkdir objects
cd src
gmake -f Makefile.doxytag

when configuring with--static I got:

Undefined first referenced
symbol in file

dlclose /usr/lib/libc.a(nss_deffinder.o)
dlsym /usr/lib/libc.a(nss_deffinder.o)
dlopen /usr/lib/libc.a(nss_deffinder.o)

Manually adding-Bdynamic after the target rule inMakefile.doxygen andMakefile.doxytag
will fix this:

$(TARGET): $(OBJECTS) $(OBJMOC)
$(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJMOC) $(LIBS) -Bdynamic

GCC compiler problems

Older versions of the GNU compiler have problems with constant strings containing characters with char-
acter codes larger than 127. Therefore the compiler will fail to compile some of the translatorxx.h files.
A workaround, if you are planning to use the English translation only, is to configure doxygen with the
--english-only option.

On some platforms (such as OpenBSD) using some versions of gcc with -O2 can lead to eating all memory
during the compilation of files such as config.cpp. As a workaround use –debug as a configure option or
omit the -O2 for the particular files in the Makefile.

Gcc versions before 2.95 may produce broken binaries due to bugs in these compilers.

Dot problems

Due to a change in the way image maps are generated, older versions of doxygen (<=1.2.17) will not work
correctly with newer versions of graphviz (>=1.8.8). The effect of this incompatibility is that generated
graphs in HTML are not properly clickable. For doxygen 1.3 it is recommended to use at least graphviz
1.8.10 or higher.

Red Hat 9.0 problems

If you get the following error after running make

tmake error: qtools.pro:70: Syntax error

then first type

export LANG=

before running make.

1.4 Compiling from source on Windows

Currently, I have only compiled doxygen for Windows using Microsoft’s Visual C++ (version 6.0). For
other compilers you may need to edit the perl script inwintools/make.pl a bit. Let me know what
you had to change if you got Doxygen working with another compiler.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

1.4 Compiling from source on Windows 9

If you have Visual C++ 6.0, and the source distribution, you can easily build doxygen using the project files
in the wintools directory. If you want to build the CVS sources, or want to build from the command
line, or with another compiler, you have to follow the steps below.

Thomas Baust reported that if you have Visual Studio.NET (2003) then you should be aware that there is
a problem with thepopen() andpclose() implementation, which currently leaks handles, so if you build
doxygen with it and use the INPUTFILTER, you will run to risk of crashing Windows! The problem is
reported to and confirmed by Microsoft so maybe it will fixed in the next service pack.

Since Windows comes without all the nice tools that Unix users are used to, you’ll need to install a number
of these tools before you can compile doxygen for Windows from the command-line.

Here is what is required:

• An unzip/untar tool like WinZip to unpack the tar source distribution. This can be found at
http://www.winzip.com/

The good, tested, and free alternative is thetar utility supplied withcygwin tools . Anyway,
the cygwin’s flex, bison, and sed are also recommended below.

• Microsoft Visual C++ (I only tested with version 6.0). Use thevcvars32.bat batch file to set the
environment variables (if you did not select to do this automatically during installation).

Borland C++ or MINGW (seehttp://www.mingw.org/) are also supported.

• Perl 5.0 or higher for Windows. This can be downloaded from:http://www.Active-
State.com/Products/ActivePerl/

• The GNU tools flex, bison, and sed. To get these working on Windows you should install thecyg-
win tools (seehttp://sources.redhat.com/cygwin/)

Alternatively, you can also choose to download only asmall subset (see
http://www.doxygen.org/dl/cygwin tools.zip)of the cygwin tools that I put
together just to compile doxygen.

As a third alternative one could use the GNUWin32 tools that can be found at
http://gnuwin32.sourceforge.net/

Make sure theBISONLIB environment variable points to the location where the files
bison.simple and bison.hairy are located. For instance if these files are in
c: \tools \cygwin \share then BISONLIB should be set to//c/tools/cygwin/share/

Also make sure the tools are available from a dos box, by adding the directory they are in to the
search path.

For those of you who are very new to cygwin (if you are going to install it from scratch), you
should notice that there is an archive filebootstrap.zip which also contains thetar utility
(tar.exe), gzip utilities, and thecygwin1.dll core. This also means that you have thetar
in hands from the start. It can be used to unpack the tar source distribution instead of using WinZip
– as mentioned at the beginning of this list of steps.

• From Doxygen-1.2.2-20001015 onwards, the distribution includes the part of Qt-2.x.y that is needed
for to compile doxygen and doxytag, The Windows specific part were also created. As a result
doxygen can be compiled on systems without X11 or the commerical version of Qt.

For doxywizard, a complete Qt library is still a requirement however. You can download the non-
commercial version from Troll-Tech web-site. See doxygen download page for a link.

• To generate LaTeX documentation or formulas in HTML you need the tools:latex ,
dvips and gswin32 . To get these working under Windows install the fpTeX dis-
tribution. You can find more info at: http://www.fptex.org/ and download it
from CTAN or one of its mirrors. In the Netherlands for example this would be:
ftp://ftp.easynet.nl/mirror/CTAN/systems/win32/fptex/

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.winzip.com/
http://sourceware.cygnus.com/cygwin/
http://www.mingw.org/
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePerl/
http://sources.redhat.com/cygwin/
http://sources.redhat.com/cygwin/
http://www.doxygen.org/dl/cygwin_tools.zip
http://gnuwin32.sourceforge.net/
http://www.fptex.org/
ftp://ftp.easynet.nl/mirror/CTAN/systems/win32/fptex/

1.4 Compiling from source on Windows 10

Make sure the tools are available from a dos box, by adding the directory they are in to the search
path.

For your information, the LaTeX is freely available set of so called macros and styles on the top
of the famous TeX program (by famous Donald Knuth) and the accompanied utilities (all available
for free). It is used for high quality typesetting. The result – in the form of so calledDVI (DeVice
Independent) file – can be printed or displayed on various devices preserving exactly the same look
up to the capability of the device. Thedvips allows you to convert thedvi to the high quality
PostScript (i.e. PostScript that can be processed by utilities likepsnup , psbook , psselect , and
others). The derived version of TeX (the pdfTeX) can be used to produce PDF output instead of DVI,
or the PDF can be produced from PostScript using the utilityps2pdf .

If you want to use MikTeX then you need to select at least the medium size installa-
tion. For really old versions of MikTex or minimal installations, you may need to down-
load the fancyhdr package separately. You can find it at:ftp://ftp.tex.ac.uk/tex-
archive/macros/latex/contrib/supported/fancyhdr/

• If you want to generate compressed HTML help (seeGENERATEHTMLHELP) in the
config file, then you need the Microsoft HTML help workshop. You can download
it at: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/vsconHH1Start.asp

• If you used WinZip to extract the tar archive it will (apparently) not create empty folders, so you
have to add the foldersobjects andbin manually in the root of the distribution before compiling.

• the Graph visualization toolkit version 1.8.10

(seehttp://www.research.att.com/sw/tools/graphviz/). Needed for the include
dependency graphs, the graphical inheritance graphs, and the collaboration graphs.

Compilation is now done by performing the following steps:

1. Open a dos box. Make sure all tools (i.e.nmake, latex , gswin32 , dvips , sed , flex , bison ,
cl , rm, andperl), are accessible from the command-line (add them to the PATH environment
variable if needed).

Notice: The use of LaTeX is optional and only needed for compilation of the documentation into
PostScript or PDF. It isnot needed for compiling the doxygen’s binaries.

2. Go to the doxygen root dir and type:

make.bat msvc

This should build the executablesdoxygen.exe and doxytag.exe using Microsoft’s Visual
C++ compiler (The compiler should not produce any serious warnings or errors).

You can use also thebcc argument to build executables using the Borland C++ compiler, ormingw
argument to compile using GNU gcc.

3. To build the examples, go to theexamples subdirectory and type:

nmake

4. To generate the doxygen documentation, go to thedoc subdirectory and type:

nmake

The generated HTML docs are located in the.. \html subdirectory.

The sources for LaTeX documentation are located in the.. \latex subdirectory. From those
sources, the DVI, PostScript, and PDF documentation can be generated.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/supported/fancyhdr/
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/supported/fancyhdr/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp
http://www.research.att.com/sw/tools/graphviz/

1.5 Installing the binaries on Windows 11

1.5 Installing the binaries on Windows

There is no fancy installation procedure at the moment (if anyone can add it in a location independent way
please let me know).

To install doxygen, just copy the binaries from thebin directory to a location somewhere in the path.
Alternatively, you can include thebin directory of the distribution to the path.

1.6 Tools used to develop doxygen

Doxygen was developed and tested under Linux using the following open-source tools:

• GCC version 2.95.3

• GNU flex version 2.5.4

• GNU bison version 1.35

• GNU make version 3.79.1

• Perl version 5.00503

• VIM version 5.8

• Mozilla 1.0

• Troll Tech’s tmake version 1.3 (included in the distribution)

• teTeX version 1.0

• CVS 1.10.7

2 Getting started

The executabledoxygen is the main program that parses the sources and generates the documentation.
See sectionDoxygen usagefor more detailed usage information.

The executabledoxytag is only needed if you want to generate references to external documentation
(i.e. documentation that was generated by doxygen) for which you do not have the sources. See section
Doxytag usagefor more detailed usage information.

Optionally, the executabledoxywizard can be used, which is a graphical front-end for editing the con-
figuration file that is used by doxygen.

The following figure shows the relation between the tools and the flow of information between them:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

2.1 Step 1: Creating a configuration file 12

Config file

Doxyfile

− headers

− images

− footers

generate/updateread

read

read

Tag file(s)

Doxywizard

generateread

generate/edit XML files

Latex files

Makefile
+

Doxygen

Your application

doxmlparser lib

make pdf

make ps

latex

custom
output

postscript

PDF

refman.rtf MS−Word
docimport

HTML
pages HTML Help Workshop

chm

Man pages

parse
Doxytag

read

Windows only

read

Sources

Custom

generate

Figure 1: Doxygen information flow

2.1 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should get its own configura-
tion file. A project can consist of a single source file, but can also be an entire source tree that is recursively
scanned.

To simplify the creation of a configuration file, doxygen can create a template configuration file for you.
To do this calldoxygen from the command line with the-g option:

doxygen -g <config-file>

where<config-file> is the name of the configuration file. If you omit the file name, a file namedDoxy-
file will be created. If a file with the name<config-file> already exists, doxygen will rename it to
<config-file>.bak before generating the configuration template. If you use- (i.e. the minus sign) as the
file name then doxygen will try to read the configuration file from standard input (stdin).

The configuration file has a format that is similar to that of a (simple) Makefile. It contains of a number of
assignments (tags) of the form:

TAGNAME = VALUEor

TAGNAME = VALUE1 VALUE2 ...

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

2.2 Step 2: Running doxygen 13

You can probably leave the values of most tags in a generated template configuration file to their default
value. See sectionConfigurationfor more details about the configuration file.

If you do not wish to edit the config file with a text editor, you should have a look atdoxywizard, which is a
GUI front-end that can create, read and write doxygen configuration files, and allows setting configuration
options by entering them via dialogs.

For a small project consisting of a few C and/or C++ source and header files, you can leaveINPUT tag
empty and doxygen will search for sources in the current directory.

If you have a larger project consisting of a source directory or tree you should put the root directory or
directories after theINPUT tag, and add one or more file patterns to theFILE PATTERNStag (for instance
∗.cpp ∗.h). Only files that match one of the patterns will be parsed (if the patterns are omitted a list
of source extensions is used). For recursive parsing of a source tree you must set theRECURSIVEtag to
YES. To further fine-tune the list of files that is parsed theEXCLUDE andEXCLUDE PATTERNStags
can be used. To omit alltest directories from a source tree for instance, one could use:

EXCLUDE_PATTERNS = */test/*

Doxygen normally parses files if they are C or C++ sources. If a file has a.idl or .odl extension it is
treated as an IDL file. If it has a.java extension it is treated as a file written in Java. Files ending with
.cs are treated as C# files. Finally, files with the extensions.php , .php4 , .inc or .phtml are treated
as PHP sources.

If you start using doxygen for an existing project (thus without any documentation that doxygen is aware
of), you can still get an idea of what the documented result would be. To do so, you must set theEX-
TRACT ALL tag in the configuration file toYES. Then, doxygen will pretend everything in your sources
is documented. Please note that as a consequence warnings about undocumented members will not be
generated as long asEXTRACT ALL is set toYES.

To analyse an existing piece of software it is useful to cross-reference a (documented) entity with its defini-
tion in the source files. Doxygen will generate such cross-references if you set theSOURCEBROWSER
tag toYES. It can also include the sources directly into the documentation by settingINLINE SOURCES
to YES(this can be handy for code reviews for instance).

2.2 Step 2: Running doxygen

To generate the documentation you can now enter:

doxygen <config-file>

Doxygen will create ahtml , rtf , latex and/ormandirectory inside the output directory. As the names
suggest these directories contain the generated documentation in HTML, RTF, LATEX and Unix-Man page
format.

The default output directory is the directory in whichdoxygen is started. The directory to which the
output is written can be changed using theOUTPUT DIRECTORY, HTML OUTPUT, RTF OUTPUT,
LATEX OUTPUT, andMAN OUTPUT tags of the configuration file. If the output directory does not
exist,doxygen will try to create it for you.

The generated HTML documentation can be viewed by pointing a HTML browser to theindex.html
file in thehtml directory. For the best results a browser that supports cascading style sheets (CSS) should
be used (I’m currently using Netscape 4.61 to test the generated output).

The generated LATEX documentation must first be compiled by a LATEX compiler (I use teTeX distribution
version 0.9 that contains TEX version 3.14159). To simplify the process of compiling the generated doc-
umentation,doxygen writes aMakefile into the latex directory. By typingmake in the latex

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

2.3 Step 3: Documenting the sources 14

directory the dvi filerefman.dvi will be generated (provided that you have a make tool calledmake of
course). This file can then be viewed usingxdvi or converted into a PostScript filerefman.ps by typing
make ps (this requiresdvips). To put 2 pages on one physical page usemake ps 2on1 instead. The
resulting PostScript file can be send to a PostScript printer. If you do not have a PostScript printer, you can
try to use ghostscript to convert PostScript into something your printer understands. Conversion to PDF is
also possible if you have installed the ghostscript interpreter; just typemake pdf (or make pdf 2on1).
To get the best results for PDF output you should set thePDF HYPERLINKStag toYES.

The generated man pages can be viewed using theman program. You do need to make sure the man
directory is in the man path (see theMANPATHenvironment variable). Note that there are some limitations
to the capabilities of the man page format, so some information (like class diagrams, cross references and
formulas) will be lost.

2.3 Step 3: Documenting the sources

Although documenting the source is presented as step 3, in a new project this should of course be step 1.
Here I assume you already have some code and you want doxygen to generate a nice document describing
the API and maybe the internals as well.

If the EXTRACT ALL option is set toNOin the configuration file (the default), then doxygen will only
generate documentation fordocumentedmembers, files, classes and namespaces. So how do you document
these? For members, classes and namespaces there are basically two options:

1. Place aspecialdocumentation block in front of the declaration or definition of the member, class
or namespace. For file, class and namespace members it is also allowed to place the documention
directly after the member. See sectionSpecial documentation blocksto learn more about special
documentation blocks.

2. Place a special documentation block somewhere else (another file or another location)and put a
structural commandin the documentation block. A structural command links a documentation block
to a certain entity that can be documented (e.g. a member, class, namespace or file). See section
Documentation at other placesto learn more about structural commands.

Files can only be documented using the second option, since there is no way to put a documentation
block before a file. Of course, file members (functions, variable, typedefs, defines) do not need an explicit
structural command; just putting a special documentation block in front or behind them will do.

The text inside a special documentation block is parsed before it is written to the HTML and/or LATEX
output files.

During parsing the following steps take place:

• The special commands inside the documentation are executed. See sectionSpecial Commandsfor
an overview of all commands.

• If a line starts with some whitespace followed by one or more asterisks (∗) and then optionally more
whitespace, then all whitespace and asterisks are removed.

• All resulting blank lines are treated as a paragraph separators. This saves you from placing new-
paragraph commands yourself in order to make the generated documentation readable.

• Links are created for words corresponding to documented classes.

• Links to members are created when certain patterns are found in the text. See sectionAutomatic link
generationfor more information on how the automatic link generation works.

• HTML tags that are in the documentation are interpreted and converted to LATEX equivalents for the
LATEX output. See sectionHTML Commandsfor an overview of all supported HTML tags.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

15

3 Documenting the code

3.1 Special documentation blocks

A special documentation block is a C or C++ comment block with some additional markings, so doxygen
knows it is a piece of documentation that needs to end up in the generated documentation.

For each code item there are two types of descriptions, which together form the documentation: abrief
description anddetaileddescription, both are optional. Having more than one brief or detailed description
however, is not allowed.

As the name suggest, a brief description is a short one-liner, whereas the detailed description provides
longer, more detailed documentation.

There are several ways to mark a comment block as a detailed description:

1. You can use the JavaDoc style, which consist of a C-style comment block starting with two∗’s, like
this:

/**
* ... text ...
*/

2. or you can use the Qt style and add an exclamation mark (!) after the opening of a C-style comment
block, as shown in this example:

/*!
* ... text ...
*/

In both cases the intermediate∗’s are optional, so

/*!
... text ...

*/

is also valid.

3. A third alternative is to use a block of at least two C++ comment lines, where each line starts with
an additional slash or an exclamation mark. Here are examples of the two cases:

///
/// ... text ...
///

or

//!
//!... text ...
//!

4. Some people like to make their comment blocks more visible in the documentation. For this purpose
you can use the following:

///
/// ... text ...
///

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

3.1 Special documentation blocks 16

For the brief description there are also several posibilities:

1. One could use the\brief command with one of the above comment blocks. This command ends at
the end of a paragraph, so the detailed description follows after an empty line.

Here is an example:

/*! \brief Brief description.
* Brief description continued.
*
* Detailed description starts here.
*/

2. If JAVADOC AUTOBRIEFis set toYESin the configuration file, then using JavaDoc style comment
blocks will automatically start a brief description which ends at the first dot followed by a space or
new line. Here is an example:

/** Brief description which ends at this dot. Details follow
* here.
*/

The option has the same effect for multi-line special C++ comments:

/// Brief description which ends at this dot. Details follow
/// here.

3. A third option is to use a special C++ style comment which does not span more than one line. Here
are two examples:

/// Brief description.
/** Detailed description. */

or

//! Brief descripion.

//! Detailed description
//! starts here.

Note the blank line in the last example, which is required to separate the brief description from the
block containing the detailed description. TheJAVADOC AUTOBRIEFshould also be set toNOfor
this case.

As you can see doxygen is quite flexible. The following however is not legal

//! Brief description, which is
//! really a detailed description since it spans multiple lines.
/*! Oops, another detailed description!

*/

because doxygen only allows one brief and one detailed description.

Furthermore, if there is one brief description before a declaration and one before a definition of a code item,
only the one before thedeclarationwill be used. If the same situation occurs for a detailed description, the
one before thedefinitionis preferred and the one before the declaration will be ignored.

Here is an example of a documented piece of C++ code using the Qt style:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

3.1 Special documentation blocks 17

//! A test class.
/*!

A more elaborate class description.
*/

class Test
{

public:

//! An enum.
/*! More detailed enum description. */
enum TEnum {

TVal1, /*!< Enum value TVal1. */
TVal2, /*!< Enum value TVal2. */
TVal3 /*!< Enum value TVal3. */

}
//! Enum pointer.
/*! Details. */
*enumPtr,
//! Enum variable.
/*! Details. */
enumVar;

//! A constructor.
/*!

A more elaborate description of the constructor.
*/
Test();

//! A destructor.
/*!

A more elaborate description of the destructor.
*/

˜Test();

//! A normal member taking two arguments and returning an integer value.
/*!

\param a an integer argument.
\param s a constant character pointer.
\return The test results
\sa Test(), ˜Test(), testMeToo() and publicVar()

*/
int testMe(int a,const char *s);

//! A pure virtual member.
/*!

\sa testMe()
\param c1 the first argument.
\param c2 the second argument.

*/
virtual void testMeToo(char c1,char c2) = 0;

//! A public variable.
/*!

Details.
*/
int publicVar;

//! A function variable.
/*!

Details.
*/
int (*handler)(int a,int b);

};

The one-line comments contain a brief description, whereas the multi-line comment blocks contain a more

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

3.1 Special documentation blocks 18

detailed description.

The brief descriptions are included in the member overview of a class, namespace or file and are printed
using a small italic font (this description can be hidden by settingBRIEF MEMBER DESCto NOin the
config file). By default the brief descriptions become the first sentence of the detailed descriptions (but this
can be changed by setting theREPEATBRIEF tag toNO). Both the brief and the detailed descriptions are
optional for the Qt style.

By default a JavaDoc style documentation block behaves the same way as a Qt style documentation block.
This is not according the JavaDoc specification however, where the first sentence of the documentation
block is automatically treated as a brief description. To enable this behaviour you should setJAVADOC -
AUTOBRIEFto YES in the configuration file. If you enable this option and want to put a dot in the middle
of a sentence without ending it, you should put a backslash and a space after it. Here is an example:

/** Brief description (e.g.\ using only a few words). Details follow. */

Here is the same piece of code as shown above, this time documented using the JavaDoc style and
JAVADOC AUTOBRIEFset to YES:

/**
* A test class. A more elaborate class description.
*/

class Test
{

public:

/**
* An enum.
* More detailed enum description.
*/

enum TEnum {
TVal1, /**< enum value TVal1. */
TVal2, /**< enum value TVal2. */
TVal3 /**< enum value TVal3. */

}
*enumPtr, /**< enum pointer. Details. */
enumVar; /**< enum variable. Details. */

/**
* A constructor.
* A more elaborate description of the constructor.
*/

Test();

/**
* A destructor.
* A more elaborate description of the destructor.
*/

˜Test();

/**
* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.
* @param s a constant character pointer.
* @see Test()
* @see ˜Test()
* @see testMeToo()
* @see publicVar()
* @return The test results
*/
int testMe(int a,const char *s);

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

3.2 Putting documentation after members 19

/**
* A pure virtual member.
* @see testMe()
* @param c1 the first argument.
* @param c2 the second argument.
*/
virtual void testMeToo(char c1,char c2) = 0;

/**
* a public variable.
* Details.
*/
int publicVar;

/**
* a function variable.
* Details.
*/
int (*handler)(int a,int b);

};

Unlike most other documentation systems, doxygen also allows you to put the documentation of members
(including global functions) in front of thedefinition. This way the documentation can be placed in the
source file instead of the header file. This keeps the header file compact, and allows the implementer of the
members more direct access to the documentation. As a compromise the brief description could be placed
before the declaration and the detailed description before the member definition.

3.2 Putting documentation after members

If you want to document the members of a file, struct, union, class, or enum, and you want to put the
documentation for these members inside the compound, it is sometimes desired to place the documentation
block after the member instead of before. For this purpose you should put an additional< marker in the
comment block.

Here are some examples:

int var; /*!< Detailed description after the member */

This block can be used to put a Qt style detailed documentation blockafter a member. Other ways to do
the same are:

int var; /**< Detailed description after the member */

or

int var; //!< Detailed description after the member
//!<

or

int var; ///< Detailed description after the member
///<

Most often one only wants to put a brief description after a member. This is done as follows:

int var; //!< Brief description after the member

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

3.3 Documentation at other places 20

or

int var; ///< Brief description after the member

Note that these blocks have the same structure and meaning as the special comment blocks in the previous
section only the< indicates that the member is located in front of the block instead of after the block.

Here is an example of the use of these comment blocks:

/*! A test class */

class Test
{

public:
/** An enum type.

* The documentation block cannot be put after the enum!
*/

enum EnumType
{

int EVal1, /**< enum value 1 */
int EVal2 /**< enum value 2 */

};
void member(); //!< a member function.

protected:
int value; /*!< an integer value */

};

Warning:
These blocks can only be used to documentmembersandparameters. They cannot be used to doc-
ument files, classes, unions, structs, groups, namespaces and enums themselves. Furthermore, the
structural commands mentioned in the next section (like\class) are ignored inside these comment
blocks.

3.3 Documentation at other places

So far we have assumed that the documentation blocks are always located in front of the declaration or
definition of a file, class or namespace or in front or after one of its members. Although this is often
comfortable, there may sometimes be reasons to put the documentation somewhere else. For documenting
a file this is even required since there is no such thing as ”in front of a file”. Doxygen allows you to put
your documentation blocks practically anywhere (the exception is inside the body of a function or inside a
normal C style comment block).

The price you pay for not putting the documentation block before (or after) an item is the need to put a
structural command inside the documentation block, which leads to some duplication of information.

Structural commands (like all other commands) start with a backslash (\), or an at-sign (@) if you prefer
JavaDoc style, followed by a command name and one or more parameters. For instance, if you want to
document the classTest in the example above, you could have also put the following documentation
block somewhere in the input that is read by doxygen:

/*! \class Test
\brief A test class.

A more detailed class description.
*/

Here the special command\class is used to indicate that the comment block contains documentation for
the classTest . Other structural commands are:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

3.3 Documentation at other places 21

• \struct to document a C-struct.

• \union to document a union.

• \enum to document an enumeration type.

• \fn to document a function.

• \var to document a variable or typedef or enum value.

• \def to document a #define.

• \file to document a file.

• \namespace to document a namespace.

• \package to document a Java package.

• \interface to document an IDL interface.

See sectionSpecial Commandsfor detailed information about these and many other commands.

To document a member of a C++ class, you must also document the class itself. The same holds for
namespaces. To document a global C function, typedef, enum or preprocessor definition you must first
document the file that contains it (usually this will be a header file, because that file contains the information
that is exported to other source files).

Let’s repeat that, because it is often overlooked: to document global objects (functions, typedefs, enum,
macros, etc), youmustdocument the file in which they are defined. In other words, theremustat least be a

/*! \file */

or a

/** @file */

line in this file.

Here is an example of a C header namedstructcmd.h that is documented using structural commands:

/*! \file structcmd.h
\brief A Documented file.

Details.
*/

/*! \def MAX(a,b)
\brief A macro that returns the maximum of \a a and \a b.

Details.
*/

/*! \var typedef unsigned int UINT32
\brief A type definition for a .

Details.
*/

/*! \var int errno
\brief Contains the last error code.

\warning Not thread safe!

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

22

*/

/*! \fn int open(const char *pathname,int flags)
\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.

*/

/*! \fn int close(int fd)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*/

/*! \fn size_t write(int fd,const char *buf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.
\param buf The data buffer to write.
\param count The number of bytes to write.

*/

/*! \fn int read(int fd,char *buf,size_t count)
\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.
\param count The number of bytes to read.

*/

#define MAX(a,b) (((a)>(b))?(a):(b))
typedef unsigned int UINT32;
int errno;
int open(const char *,int);
int close(int);
size_t write(int,const char *, size_t);
int read(int,char *,size_t);

Because each comment block in the example above contains a structural command, all the comment blocks
could be moved to another location or input file (the source file for instance), without affecting the generated
documentation. The disadvantage of this approach is that prototypes are duplicated, so all changes have
to be made twice! Because of this you should first consider if this is really needed, and avoid structural
commands if possible. I often receive examples that contain\fn command in comment blocks which are
place in front of a function. This is clearly a case where the\fn command is redundant and will only lead
to problems.

4 Lists

Doxygen has a number of ways to create lists of items.

Using dashes

By putting a number of column-aligned minus signs at the start of a line, a bullet list will automatically be
generated. Numbered lists can also be generated by using a minus followed by a hash. Nesting of lists is
allowed.

Here is an example:

/*!
* A list of events:
* - mouse events
* -# mouse move event
* -# mouse click event\n
* More info about the click event.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

23

* -# mouse double click event
* - keyboard events
* -# key down event
* -# key up event
*
* More text here.
*/

The result will be:

A list of events:

• mouse events

1. mouse move event

2. mouse click event

More info about the click event.

3. mouse double click event

• keyboard events

1. key down event

2. key up event

More text here.

If you use tabs within lists, please make sure thatTAB SIZE in the configuration file is set to the correct
tab size.

You can end a list by starting a new paragraph or by putting a dot (.) on an empty line at the same indent
level as the list you would like to end.

Here is an example that speaks for itself:

/**
* Text before the list
* - list item 1
* - sub item 1
* - sub sub item 1
* - sub sub item 2
* .
* The dot above ends the sub sub item list.
* More text for the first sub item
* .
* The dot above ends the first sub item.
* More text for the first list item
* - sub item 2
* - sub item 3
* - list item 2
* .
* More text in the same paragraph.
*
* More text in a new paragraph.
*/

Using HTML commands

If you like you can also use HTML commands inside the documentation blocks. Using these commands
has the advantage that it is more natural for list items that consists of multiple paragraphs.

Here is the above example with HTML commands:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

24

/*!
* A list of events:
*
* mouse events
*
* mouse move event
* mouse click event\n
* More info about the click event.
* mouse double click event
*
* keyboard events
*
* key down event
* key up event
*
*
* More text here.
*/

Note:
The indentation here is not important.

Using\arg or @li

For compatibility with the Troll Tech’s internal documentation tool and with KDoc, doxygen has two
commands that can be used to create simple unnested lists.

See\argand\li for more info.

5 Grouping

Doxygen has two mechanisms to group things together. One mechanism works at a global level, creating a
new page for each group. These groups are called ”modules” in the documentation. The other mechanism
works within a member list of some compound entity, and is refered to as a ”member group”.

5.1 Modules

Modules are a way to group things together on a separate page. You can document a group as a whole, as
well as all individual members. Members of a group can be files, namespaces, classes, functions, variables,
enums, typedefs, and defines, but also other groups.

To define a group, you should put the\defgroupcommand in a special comment block. The first argument
of the command is a label that should uniquely identify the group. You can make an entity a member of a
specific group by putting a\ingroupcommand inside its documentation block. The second argument is the
title of the group.

To avoid putting\ingroupcommands in the documentation of each member you can also group members
together by the open marker@{ before the group and the closing marker@} after the group. The markers
can be put in the documentation of the group definition or in a separate documentation block.

Groups can also be nested using these grouping markers.

You will get an error message when you use the same group label more than once. If you don’t want
doxygen to enforce unique labels, then you can use\addtogroupinstead of\defgroup. It can be used
exactly like\defgroup, but when the group has been defined already, then it silently merges the existing
documentation with the new one. The title of the group is optional for this command, so you can use

/** \addtogroup <label> */

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

5.1 Modules 25

/*\@{*/
/*\@}*/

to add members to a group that is defined in more detail elsewhere.

Note that compound entities (like classes, files and namespaces) can be put into multiple groups, but mem-
bers (like variable, functions, typedefs and enums) can only be a member of one group (this restriction is
to avoid ambiguous linking targets).

Doxygen will put members into that group where the grouping definition had the highest priority: f.i.
\ingroupoverrides any automatic grouping definition via@{@}. Conflicting grouping definitions with the
same priority trigger a warning, unless one definition was for a member without any explicit documentation.
The following example puts VarInA into group A and silently resolves the conflict for IntegerVariable by
putting it into group IntVariables, because the second instance of IntegerVariable is undocumented:

/**
* \ingroup A
*/

extern int VarInA;

/**
* \defgroup IntVariables Global integer variables
*/

/*@{*/

/** an integer variable */
extern int IntegerVariable;

/*@}*/

....

/**
* \defgroup Variables Global variables
*/

/*@{*/

/** a variable in group A */
int VarInA;

int IntegerVariable;

/*@}*/

The priorities of grouping definitions are (from highest to lowest):\ingroup, \defgroup, \addtogroup,
\weakgroup. The last command is exactly like\addtogroupwith a lower priority. It was added to allow
”lazy” grouping definitions: you can use commands with a higher priority in your .h files to define the
hierarchy and\weakgroupin .c files without having to duplicate the hierarchy exactly.

Example:
/** @defgroup group1 The First Group

* This is the first group
* @{
*/

/** @brief class C1 in group 1 */
class C1 {};

/** @brief class C2 in group 1 */
class C2 {};

/** function in group 1 */

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

5.1 Modules 26

void func() {}

/** @} */ // end of group1

/**
* @defgroup group2 The Second Group
* This is the second group
*/

/** @defgroup group3 The Third Group
* This is the third group
*/

/** @defgroup group4 The Fourth Group
* @ingroup group3
* Group 4 is a subgroup of group 3
*/

/**
* @ingroup group2
* @brief class C3 in group 2
*/

class C3 {};

/** @ingroup group2
* @brief class C4 in group 2
*/

class C4 {};

/** @ingroup group3
* @brief class C5 in @link group3 the third group@endlink.
*/

class C5 {};

/** @ingroup group1 group2 group3 group4
* namespace N1 is in four groups
* @sa @link group1 The first group@endlink, group2, group3, group4
*
* Also see @ref mypage2
*/

namespace N1 {};

/** @file
* @ingroup group3
* @brief this file in group 3
*/

/** @defgroup group5 The Fifth Group
* This is the fifth group
* @{
*/

/** @page mypage1 This is a section in group 5
* Text of the first section
*/

/** @page mypage2 This is another section in group 5
* Text of the second section
*/

/** @} */ // end of group5

/** @addtogroup group1
*
* More documentation for the first group.
* @{
*/

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

5.2 Member Groups 27

/** another function in group 1 */
void func2() {}

/** yet another function in group 1 */
void func3() {}

/** @} */ // end of group1

5.2 Member Groups

If a compound (e.g. a class or file) has many members, it is often desired to group them together. Doxygen
already automatically groups things together on type and protection level, but maybe you feel that this is
not enough or that that default grouping is wrong. For instance, because you feel that members of different
(syntactic) types belong to the same (semantic) group.

A member group is defined by a

//@{
...

//@}

block or a

/*@{*/
...

/*@}*/

block if you prefer C style comments. Note that the members of the group should be physcially inside the
member group’s body.

Before the opening marker of a block a separate comment block may be placed. This block should contain
the@name(or \name) command and is used to specify the header of the group. Optionally, the comment
block may also contain more detailed information about the group.

Nesting of member groups is not allowed.

If all members of a member group inside a class have the same type and protection level (for instance all
are static public members), then the whole member group is displayed as a subgroup of the type/protection
level group (the group is displayed as a subsection of the ”Static Public Members” section for instance).
If two or more members have different types, then the group is put at the same level as the automatically
generated groups. If you want to force all member-groups of a class to be at the top level, you should put a
\nosubgroupingcommand inside the documentation of the class.

Example:
/** A class. Details */
class Test
{

public:
//@{
/** Same documentation for both members. Details */
void func1InGroup1();
void func2InGroup1();
//@}

/** Function without group. Details. */
void ungroupedFunction();
void func1InGroup2();

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

28

protected:
void func2InGroup2();

};

void Test::func1InGroup1() {}
void Test::func2InGroup1() {}

/** @name Group2
* Description of group 2.
*/

//@{
/** Function 2 in group 2. Details. */
void Test::func2InGroup2() {}
/** Function 1 in group 2. Details. */
void Test::func1InGroup2() {}
//@}

/*! \file
* docs for this file
*/

//@{
//! one description for all members of this group
//! (because DISTRIBUTE_GROUP_DOC is YES in the config file)
#define A 1
#define B 2
void glob_func();
//@}

Here Group1 is displayed as a subsection of the ”Public Members”. And Group2 is a separate section
because it contains members with different protection levels (i.e. public and protected).

6 Including formulas

Doxygen allows you to put LATEX formulas in the output (this works only for the HTML and LATEX output,
not for the RTF nor for the man page output). To be able to include formulas (as images) in the HTML
documentation, you will also need to have the following tools installed

• latex : the LATEX compiler, needed to parse the formulas. To test I have used the teTeX 0.9 distri-
bution.

• dvips : a tool to convert DVI files to PostScript files I have used version 5.86 from Radical Eye
software for testing.

• gs : the GhostScript interpreter for converting PostScript files to bitmaps. I have used Aladdin
GhostScript 5.10 for testing.

There are two ways to include formulas in the documentation.

1. Using in-text formulas that appear in the running text. These formulas should be put between a pair
of \f$ commands, so

The distance between \f$(x_1,y_1)\f$ and \f$(x_2,y_2)\f$ is
\f$\sqrt{(x_2-x_1)ˆ2+(y_2-y_1)ˆ2}\f$.

results in:

The distance between(x1, y1) and(x2, y2) is
√

(x2 − x1)2 + (y2 − y1)2.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

29

2. Unnumbered displayed formulas that are centered on a separate line. These formulas should be put
between\f[and\f] commands. An example:

\f[
|I_2|=\left| \int_{0}ˆT \psi(t)

\left\{
u(a,t)-
\int_{\gamma(t)}ˆa
\frac{d\theta}{k(\theta,t)}
\int_{a}ˆ\theta c(\xi)u_t(\xi,t)\,d\xi

\right\} dt
\right|

\f]

results in:

|I2| =

∣∣∣∣∣
∫ T

0

ψ(t)

{
u(a, t)−

∫ a

γ(t)

dθ

k(θ, t)

∫ θ

a

c(ξ)ut(ξ, t) dξ

}
dt

∣∣∣∣∣
Formulas should be valid commands in LATEX’s math-mode.

Warning:
Currently, doxygen is not very fault tolerant in recovering from typos in formulas. It may have to be
necessary to remove the fileformula.repository that is written in the html directory to a rid of
an incorrect formula

7 Graphs and diagrams

Doxygen has built-in support to generate inheritance diagrams for C++ classes.

Doxygen can use the ”dot” tool from graphviz 1.5 to generate more advanced diagrams and graphs.
Graphviz is an ”open-sourced”, cross-platform graph drawing toolkit from AT&T and Lucent Bell Labs
and can be found athttp://www.research.att.com/sw/tools/graphviz/

If you have the ”dot” tool available in the path, you can setHAVE DOT to YESin the configuration file to
let doxygen use it.

Doxygen uses the ”dot” tool to generate the following graphs:

• if GRAPHICAL HIERARCHY is set toYES, a graphical representation of the class hierarchy will
be drawn, along with the textual one. Currently this feature is supported for HTML only.

Warning: When you have a very large class hierarchy where many classes derive from a common
base class, the resulting image may become too big to handle for some browsers.

• if CLASS GRAPHis set toYES, a graph will be generated for each documented class showing the
direct and indirect inheritance relations. This disables the generation of the built-in class inheritance
diagrams.

• if INCLUDE GRAPHis set toYES, an include dependency graph is generated for each documented
file that includes at least one other file. This feature is currently supported for HTML and RTF only.

• if COLLABORATION GRAPHis set to YES, a graph is drawn for each documented class and struct
that shows:

– the inheritance relations with base classes.

– the usage relations with other structs and classes (e.g. classA has a member variablema of
type classB, thenA has an arrow toB with ma as label).

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.research.att.com/sw/tools/graphviz/

30

The elements in the class diagrams in HTML and RTF have the following meaning:

• A yellow box indicates a class. A box can have a little marker in the lower right corner to indicate
that the class contains base classes that are hidden. For the class diagrams the maximum tree width
is currently 8 elements. If a tree is wider some nodes will be hidden. If the box is filled with a dashed
pattern the inheritance relation is virtual.

• A white box indicates that the documentation of the class is currently shown.

• A grey box indicates an undocumented class.

• A solid dark blue arrow indicates public inheritance.

• A dashed dark greenarrow indicates protected inheritance.

• A dotted dark greenarrow indicates private inheritance.

The elements in the class diagram in LATEX have the following meaning:

• A white box indicates a class. Amarker in the lower right corner of the box indicates that the class
has base classes that are hidden. If the box has adashedborder this indicates virtual inheritance.

• A solid arrow indicates public inheritance.

• A dashedarrow indicates protected inheritance.

• A dotted arrow indicates private inheritance.

The elements in the graphs generated by the dot tool have the following meaning:

• A white box indicates a class or struct or file.

• A box with a red border indicates a node that hasmorearrows than are shown! In other words: the
graph istruncatedwith respect to this node. The reason why a graph is sometimes truncated is to
prevent images from becoming too large. For the graphs generated with dot doxygen tries to limit
the width of the resulting image to 1024 pixels.

• A black box indicates that the class’ documentation is currently shown.

• A dark blue arrow indicates an include relation (for the include dependency graph) or public inher-
itance (for the other graphs).

• A dark green arrow indicates protected inheritance.

• A dark red arrow indicates private inheritance.

• A purple dashedarrow indicated a ”usage” relation, the edge of the arrow is labled with the vari-
able(s) responsible for the relation. ClassA uses classB, if classA has a member variablemof type
C, where B is a subtype of C (e.g. C could beB, B∗, T∗).

Here are a couple of header files that together show the various diagrams that doxygen can generate:

diagrams a.h

#ifndef _DIAGRAMS_A_H
#define _DIAGRAMS_A_H
class A { public: A *m_self; };
#endif

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

31

diagrams b.h

#ifndef _DIAGRAMS_B_H
#define _DIAGRAMS_B_H
class A;
class B { public: A *m_a; };
#endif

diagrams c.h

#ifndef _DIAGRAMS_C_H
#define _DIAGRAMS_C_H
#include "diagrams_c.h"
class D;
class C : public A { public: D *m_d; };
#endif

diagrams d.h

#ifndef _DIAGRAM_D_H
#define _DIAGRAM_D_H
#include "diagrams_a.h"
#include "diagrams_b.h"
class C;
class D : virtual protected A, private B { public: C m_c; };
#endif

diagrams e.h

#ifndef _DIAGRAM_E_H
#define _DIAGRAM_E_H
#include "diagrams_d.h"
class E : public D {};
#endif

8 Preprocessing

Source files that are used as input to doxygen can be parsed by doxygen’s built-in C-preprocessor.

By default doxygen does only partial preprocessing. That is, it evaluates conditional compilation statements
(like #if) and evaluates macro definitions, but it does not perform macro expansion.

So if you have the following code fragment

#define VERSION 200
#define CONST_STRING const char *

#if VERSION < 200
static CONST_STRING version = "2.xx";

#else
static CONST_STRING version = "1.xx";

#endif

Then by default doxygen will feed the following to its parser:

#define VERSION
#define CONST_STRING

static CONST_STRING version = "2.xx";

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

32

You can disable all preprocessing by settingENABLE PREPROCESSINGto NOin the configuation file.
In the case above doxygen will then read both statements, i.e:

static CONST_STRING version = "2.xx";
static CONST_STRING version = "1.xx";

In case you want to expand theCONSTSTRINGmacro, you should set theMACRO EXPANSIONtag in
the config file toYES. Then the result after preprocessing becomes:

#define VERSION
#define CONST_STRING

static const char * version = "1.xx";

Note that doxygen will now expandall macro definitions (recursively if needed). This is often too much.
Therefore, doxygen also allows you to expand only those defines that you explicitly specify. For this
you have to set theEXPAND ONLY PREDEFtag to YES and specify the macro definitions after the
PREDEFINEDor EXPAND AS DEFINEDtag.

As an example, suppose you have the following obfuscated code fragment of an abstract base class called
IUnknown :

/*! A reference to an IID */
#ifdef __cplusplus
#define REFIID const IID &
#else
#define REFIID const IID *
#endif

/*! The IUnknown interface */
DECLARE_INTERFACE(IUnknown)
{

STDMETHOD(HRESULT,QueryInterface) (THIS_ REFIID iid, void **ppv) PURE;
STDMETHOD(ULONG,AddRef) (THIS) PURE;
STDMETHOD(ULONG,Release) (THIS) PURE;

};

without macro expansion doxygen will get confused, but we may not want to expand the REFIID macro,
because it is documented and the user that reads the documentation should use it when implementing the
interface.

By setting the following in the config file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = "DECLARE_INTERFACE(name)=class name" \

"STDMETHOD(result,name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \

__cplusplus

we can make sure that the proper result is fed to doxygen’s parser:

/*! A reference to an IID */
#define REFIID

/*! The IUnknown interface */

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

33

class IUnknown
{

virtual HRESULT QueryInterface (REFIID iid, void **ppv) = 0;
virtual ULONG AddRef () = 0;
virtual ULONG Release () = 0;

};

Note that thePREDEFINEDtag accepts function like macro definitions (likeDECLAREINTERFACE),
normal macro substitutions (likePUREandTHIS) and plain defines (like cplusplus).

Note also that preprocessor definitions that are normally defined automatically by the preprocessor (like
cplusplus), have to be defined by hand with doxygen’s parser (this is done because these defines are

often platform/compiler specific).

In some cases you may want to substitute a macro name or function by something else without exposing
the result to further macro substitution. You can do this but using the:= operator instead of=

As an example suppose we have the following piece of code:

#define QList QListT
class QListT
{
};

Then the only way to get doxygen interpret this as a class definition for class QList is to define:

PREDEFINED = QListT:=QList

Here is an example provided by Valter Minute and Reyes Ponce that helps doxygen to wade through the
boilerplate code in Microsoft’s ATL & MFC libraries:

PREDEFINED = "DECLARE_INTERFACE(name)=class name" \
"STDMETHOD(result,name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \
DECLARE_REGISTRY_RESOURCEID=// \
DECLARE_PROTECT_FINAL_CONSTRUCT=// \
"DECLARE_AGGREGATABLE(Class)= " \
"DECLARE_REGISTRY_RESOURCEID(Id)= " \
DECLARE_MESSAGE_MAP = \
BEGIN_MESSAGE_MAP=/* \
END_MESSAGE_MAP=*/// \
BEGIN_COM_MAP=/* \
END_COM_MAP=*/// \
BEGIN_PROP_MAP=/* \
END_PROP_MAP=*/// \
BEGIN_MSG_MAP=/* \
END_MSG_MAP=*/// \
BEGIN_PROPERTY_MAP=/* \
END_PROPERTY_MAP=*/// \
BEGIN_OBJECT_MAP=/* \
END_OBJECT_MAP()=*/// \
DECLARE_VIEW_STATUS=// \
"STDMETHOD(a)=HRESULT a" \
"ATL_NO_VTABLE= " \
"__declspec(a)= " \
BEGIN_CONNECTION_POINT_MAP=/* \
END_CONNECTION_POINT_MAP=*/// \
"DECLARE_DYNAMIC(class)= " \
"IMPLEMENT_DYNAMIC(class1, class2)= " \
"DECLARE_DYNCREATE(class)= " \
"IMPLEMENT_DYNCREATE(class1, class2)= " \

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

34

"IMPLEMENT_SERIAL(class1, class2, class3)= " \
"DECLARE_MESSAGE_MAP()= " \
TRY=try \
"CATCH_ALL(e)= catch(...)" \
END_CATCH_ALL= \
"THROW_LAST()= throw"\
"RUNTIME_CLASS(class)=class" \
"MAKEINTRESOURCE(nId)=nId" \
"IMPLEMENT_REGISTER(v, w, x, y, z)= " \
"ASSERT(x)=assert(x)" \
"ASSERT_VALID(x)=assert(x)" \
"TRACE0(x)=printf(x)" \
"OS_ERR(A,B)={ #A, B }" \
__cplusplus \
"DECLARE_OLECREATE(class)= " \
"BEGIN_DISPATCH_MAP(class1, class2)= " \
"BEGIN_INTERFACE_MAP(class1, class2)= " \
"INTERFACE_PART(class, id, name)= " \
"END_INTERFACE_MAP()=" \
"DISP_FUNCTION(class, name, function, result, id)=" \
"END_DISPATCH_MAP()=" \
"IMPLEMENT_OLECREATE2(class, name, id1, id2, id3, id4,\

id5, id6, id7, id8, id9, id10, id11)="

As you can see doxygen’s preprocessor is quite powerful, but if you want even more flexibility you can
always write an input filter and specify it after theINPUT FILTER tag.

If you are unsure what the effect of doxygen’s preprocessing will be you can run doxygen as follows:

doxygen -d Preprocessor

This will instruct doxygen to dump the input sources to standard output after preprocessing has been done
(Hint: setQUIET = YESandWARNINGS = NOin the configuration file to disable any other output).

9 Linking to external documentation

If your project depends on external libraries or tools, there are several reasons to not include all sources for
these with every run of doxygen:

Disk space: Some documentation may be available outside of the output directory of doxygen already,
for instance somewhere on the web. You may want to link to these pages instead of generating the
documentation in your local output directory.

Compilation speed: External projects typically have a different update frequency from your own project.
It does not make much sense to let doxygen parse the sources for these external project over and over
again, even if nothing has changed.

Memory: For very large source trees, letting doxygen parse all sources may simply take too much of your
system’s memory. By dividing the sources into several ”packages”, the sources of one package can
be parsed by doxygen, while all other packages that this package depends on, are linked in externally.
This saves a lot of memory.

Availability: For some projects that are documented with doxygen, the sources may just not be available.

Copyright issues: If the external package and its documentation are copyright someone else, it may be
better - or even necessary - to reference it rather than include a copy of it with your project’s doc-
umentation. When the author forbids redistribution, this is necessary. If the author requires com-
pliance with some license condition as a precondition of redistribution, and you do not want to be

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

35

bound by those conditions, referring to their copy of their documentation is preferable to including a
copy.

If any of the above apply, you can use doxygen’s tag file mechanism. A tag file is basically a compact
representation of the entities found in the external sources. Doxygen can both generate and read tag files.

To generate a tag file for your project, simply put the name of the tag file after theGENERATETAGFILE
option in the configuration file.

To combine the output of one or more external projects with your own project you should specify the name
of the tag files after theTAGFILESoption in the configuration file.

A tag file does not contain information about where the external documentation is located. This could be a
directory or an URL. So when you include a tag file you have to specify where the external documentation
is located. There are two ways to do this:

At configuration time: just assign the location of the output to the tag files specified after theTAGFILES
configuration option. If you use a relative path it should be relative with respect to the directory
where the HTML output of your project is generated.

After compile time: if you do not assign a location to a tag file, doxygen will generate dummy links for all
external HTML references. It will also generate a perl script calledinstalldoxin the HTML output
directory. This script should be run to replace the dummy links with real links for all generated
HTML files.

Example:
Suppose you have a projectproj that uses two external projects calledext1 andext2 . The directory
structure looks as follows:

<root>
+- proj
| +- html HTML output directory for proj
| +- src sources for proj
| |- proj.cpp
+- ext1
| +- html HTML output directory for ext1
| |- ext1.tag tag file for ext1
+- ext2
| +- html HTML output directory for ext2
| |- ext2.tag tag file for ext2
|- proj.cfg doxygen configuration file for proj
|- ext1.cfg doxygen configuration file for ext1
|- ext2.cfg doxygen configuration file for ext2

Then the relevant parts of the configuration files look as follows:

proj.cfg:

OUTPUT_DIRECTORY = proj
INPUT = proj/src
TAGFILES = ext1/ext1.tag=../../ext1/html \

ext2/ext2.tag=../../ext2/html

ext1.cfg:

OUTPUT_DIRECTORY = ext1
GENERATE_TAGFILE = ext1/ext1.tag

ext2.cfg:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

36

OUTPUT_DIRECTORY = ext2
GENERATE_TAGFILE = ext2/ext2.tag

In some (hopefully exceptional) cases you may have the documentation generated by doxygen, but not the
sources nor a tag file. In this case you can use thedoxytagtool to extract a tag file from the generated
HTML sources. Another case where you should use doxytag is if you want to create a tag file for the Qt
documentation.

The tooldoxytag depends on the particular structure of the generated output and on some special markers
that are generated by doxygen. Since this type of extraction is brittle and error-prone I suggest you only
use this approach if there is no alternative. The doxytag tool may even become obsolete in the future.

10 Frequently Asked Questions

1. How to get information on the index page in HTML?

You should use the\mainpage command inside a comment block like this:

/*! \mainpage My Personal Index Page
*
* \section intro Introduction
*
* This is the introduction.
*
* \section install Installation
*
* \subsection step1 Step 1: Opening the box
*
* etc...
*/

2. Help, some/all of the members of my class / file / namespace are not documented?

Check the following:

(a) Is your class / file / namespace documented? If not, it will not be extracted from the sources
unlessEXTRACTALL is set toYESin the config file.

(b) Are the members private? If so, you must setEXTRACTPRIVATE to YES to make them
appear in the documentation.

(c) Is there a function macro in your class that does not end with a semicolon (e.g. MY-
MACRO())? If so then you have to instruct doxygen’s preprocessor to remove it.
This typically boils down to the following settings in the config file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = MY_MACRO()=

Please read thepreprocessingsection of the manual for more information.

3. When I set EXTRACT ALL to NO none of my functions are shown in the documentation.

In order for global functions, variables, enums, typedefs, and defines to be documented you should
document the file in which these commands are located using a comment block containing a\file (or
@file) command.

Alternatively, you can put all members in a group (or module) using the\ingroup command and then
document the group using a comment block containing the\defgroup command.

For member functions or functions that are part of a namespace you should document either the class
or namespace.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

37

4. How can I make doxygen ignore some code fragment?

You can use Doxygen’s preprocessor for this: If you put

#ifndef DOXYGEN_SHOULD_SKIP_THIS

/* code that must be skipped by Doxygen */

#endif /* DOXYGEN_SHOULD_SKIP_THIS */

around the blocks that should be hidden and put:

PREDEFINED = DOXYGEN_SHOULD_SKIP_THIS

in the config file then all blocks should be skipped by Doxygen as long asPREPROCESSING =
YES.

5. How can I change what is after the#include in the class documentation?

You can document your class like

/*! \class MyClassName include.h path/include.h
*
* Docs for MyClassName
*/

To make doxygen put

#include <path/include.h >

in the documentation of the class MyClassName regardless of the name of the actual header file in
which the definition of MyClassName is contained.

If you want doxygen to show that the include file should be included using quotes instead of angle
brackets you should type:

/*! \class MyClassName myhdr.h "path/myhdr.h"
*
* Docs for MyClassName
*/

6. How can I use tag files in combination with compressed HTML?

If you want to refer from one compressed HTML filea.chm to another compressed HTML file
calledb.chm , the link ina.chm must have the following format:

Unfortunately this only works if both compressed HTML files are in the same directory.

As a result you must rename the generatedindex.chm files for all projects into something unique
and put all.chm files in one directory.

Suppose you have a projecta referring to a projectb using tag fileb.tag , then you could rename
the index.chm for projecta into a.chm and theindex.chm for projectb into b.chm . In the
configuration file for projecta you write:

TAGFILES = b.tag=b.chm::

or you can useinstalldox to set the links as follows:

installdox -lb.tag@b.chm::

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

38

7. I don’t like the quick index that is put above each HTML page, what do I do?

You can disable the index by setting DISABLEINDEX to YES. Then you can put in your own
header file by writing your own header and feed that to HTMLHEADER.

8. The overall HTML output looks different, while I only wanted to use my own html header file

You probably forgot to include the stylesheetdoxygen.css that doxygen generates. You can
include this by putting

<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">

in the HEAD section of the HTML page.

9. Why does doxygen use Qt?

The most important reason is to have a platform abstraction for most Unices and Windows by means
of the QFile, QFileInfo, QDir, QDate, QTime and QIODevice classes. Another reason is for the nice
and bug free utility classes, like QList, QDict, QString, QArray, QTextStream, QRegExp, QXML
etc.

The GUI front-end doxywizard uses Qt for... well... the GUI!

10. How can I exclude all test directories from my directory tree?

Simply put an exclude pattern like this in the configuration file:

EXCLUDE_PATTERNS = */test/*

11. Doxygen automatically generates a link to the class MyClass somewhere in the running text.
How do I prevent that at a certain place?

Put a % in front of the class name. Like this: %MyClass. Doxygen will then remove the and keep
the word unlinked.

12. My favourite programming language is X. Can I still use doxygen?

No, not as such; doxygen needs to understand the structure of what it reads. If you don’t mind
spending some time on it, there are several options:

• If the grammar of X is close to C or C++, then it is probably not too hard to tweak src/scanner.l
a bit so the language is supported. This is done for all other languages directly supported by
doxygen (i.e. Java, IDL, C#, PHP).

• If the grammar of X is somewhat different than you can write an input fil-
ter that translates X into something similar enough to C/C++ for doxygen to
understand (this approach is taken for VB, Object Pascal, and Javascript, see
http://www.stack.nl/ ∼dimitri/doxygen/download.html#helpers).

• If the grammar is completely different one could write a parser for X and write a backend that
produces a similar syntax tree as is done by src/scanner.l (and also by src/tagreader.cpp while
reading tag files).

13. Help! I get the cryptic message ”input buffer overflow, can’t enlarge buffer because scanner
uses REJECT”

This error happens when doxygen lexical scanner has a rule that matches more than 16K of input
characters in one go. I’ve seen this happening on a very large generated file (>16K lines), where the
built-in preprocessor converted it into an empty file (with>16K of newlines). Another case where
this might happen is if you have lines in your code with more than 16K characters.

If you have run into such a case and want me to fix it, you should send me a code fragment that
triggers the message. To work around the problem, put some line-breaks into your file, split it up
into smaller parts, or exclude it from the input using EXCLUDE.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.stack.nl/~dimitri/doxygen/download.html#helpers

39

14. When running make in the latex dir I get ”TeX capacity exceeded”. Now what?

You can edit the texmf.cfg file to increase the default values of the various buffers and then run
”texconfig init”.

15. Why are dependencies via STL classes not shown in the dot graphs?

Doxygen is unware of the STL classes, so it does not know that class A relates to class B in the
following example

#include <vector>

using namespace std;

class B {};

class A
{

public:
vector m_bvec;

};

To overcome this problem you could provide the definition of the vector class to doxygen (by includ-
ing the file that defines it at the INPUT tag in the config file). Since STL header files are often messy,
a (possibly) better approach is to include a dummy definition of a vector class to the input. Here is
an example of a dummy STL file for the vector class:

namespace std {
/*! STL vector class */
template<class T> class vector { public: T element; };

}

I’m still looking for someone who can provide me with definitions for all (relevant) STL classes.

16. How did doxygen get its name?

Doxygen got its name from playing with the words documentation and generator.

documentation -> docs -> dox
generator -> gen

At the time I was looking into lex and yacc, where a lot of things start with ”yy”, so the ”y” slipped
in and made things pronounceable (the proper pronouncement is Docs-ee-gen, so with a long ”e”).

17. What was the reason to develop doxygen?

I once wrote a GUI widget based on the Qt library (it is still available at
http://qdbttabular.sourceforge.net/ and maintained by Sven Meyer). Qt had
nicely generated documentation (using an internal tool which they didn’t want to release) and I
wrote similar docs by hand. This was a nightmare to maintain, so I wanted a similar tool. I looked
at Doc++ but that just wasn’t good enough (it didn’t support signals and slots and did not have the
Qt look and feel I had grown to like), so I started to write my own tool...

11 Troubleshooting

Known problems:

• If you have problems building doxygen from sources, please readthis sectionfirst.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://qdbttabular.sourceforge.net/

40

• Doxygen isnot a real compiler, it is only a lexical scanner. This means that it can and will not detect
errors in your source code.

• Since it impossible to test all possible code fragments, it is very well possible, that some valid piece
of C/C++ code is not handled properly. If you find such a piece, please send it to me, so I can improve
doxygen’s parsing capabilities. Try to make the piece of code you send as small as possible, to help
me narrow down the search.

• Doxygen does not work properly if there are multiple classes, structs or unions with the same name
in your code. It should not crash however, rather it should ignore all of the classes with the same
name except one.

• Some commands do not work inside the arguments of other commands. Inside a HTML link (i.e...<a>) for instance other commands (including other HTML commands) do not work!
The sectioning commands are an important exception.

• Redundant braces can confuse doxygen in some cases. For example:

void f (int);

is properly parsed as a function declaration, but

const int (a);

is also seen as a function declaration with nameint , because only the syntax is analysed, not the
semantics. If the redundant braces can be detected, as in

int *(a[20]);

then doxygen will remove the braces and correctly parse the result.

• Not all names in code fragments that are included in the documentation are replaced by links (for
instance when usingSOURCEBROWSER= YES) and links to overloaded members may point to the
wrong member. This also holds for the ”Referenced by” list that is generated for each function.

For a part this is because the code parser isn’t smart enough at the moment. I’ll try to improve this
in the future. But even with these improvements not everthing can be properly linked to the corre-
sponding documentation, because of possible ambiguities or lack of information about the context in
which the code fragment is found.

• It is not possible to insert a non-member function f in a class A using the\relates or\relatesalso
command, if class A already has a member with name f and the same argument list.

• There is only very limited support for member specialization at the moment. It only works if there is
a specialized template class as well.

• Not all special commands are properly translated to RTF.

• Version 1.8.6 of dot (and maybe earlier versions too) do not generate proper map files, causing the
graphs that doxygen generates not to be properly clickable.

How to help

The development of Doxygen highly depends on your input!

If you are trying Doxygen let me know what you think of it (do you miss certain features?). Even if you
decide not to use it, please let me know why.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

41

How to report a bug

Bugs are tracked in GNOME’sbugzilla database. Before submitting anew bug , first check if the
same bug has already been submitted by others. If you believe you have found a new bug, pleasefile
it .

If you are unsure whether or not something is a bug, please ask help on theusers mailing list first
(subscription is required).

If you send only a (vague) description of a bug, you are usually not very helpful and it will cost me much
more time to figure out what you mean. In the worst-case your bug report may even be completely ignored
by me, so always try to include the following information in your bug report:

• The version of doxygen you are using (for instance 1.2.4, usedoxygen --version if you are
not sure).

• The name and version number of your operating system (for instance SuSE Linux 6.4)

• It is usually a good idea to send along the configuation file as well, but please use doxygen with the
-s flag while generating it to keep it small (usedoxygen -s -u [configName] to strip the
comments from an existing config file).

• The easiest (and often the only) way for me to fix bugs is if you can send me a small example
demonstrating the problem you have, so I can reproduce it on my machine. Please make sure the
example is valid source code (could potentially compile) and that the problem is really captured by
the example (I often get examples that do not trigger the actual bug!). If you intend to send more
than one file please zip or tar the files together into a single file for easier processing. When reporting
a new bug you’ll get a chance to attach a file to it immediatelyafter opening the bug.

You can (and are encouraged to) add a patch for a bug. If you do so please use PATCH as a keyword in the
bug entry form.

If you have ideas how to fix existing bugs and limitations please discuss them on thedevelopers
mailing list (subscription required). Patches can also be sent directly todimitri@stack.nl
if you prefer not to send them via the bug tracker or mailing list.

For patches please use ”diff -uN” or include the files you modified. If you send more than one file please
tar or zip everything, so I only have to save and download one file.

Part II

Reference Manual

12 Features

• Requires very little overhead from the writer of the documentation. Plain text will do, but for more
fancy or structured output HTML tags and/or some of doxygen’s special commands can be used.

• Supports C/C++, Java, (Corba and Microsoft) Java, IDL, and to some extent C# and PHP sources.

• Supports documentation of files, namespaces, classes, structs, unions, templates, variables, functions,
typedefs, enums and defines.

• JavaDoc (1.1), Qt-Doc, and KDOC compatible.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://bugzilla.gnome.org
http://bugzilla.gnome.org/enter_bug.cgi?product=doxygen
http://bugzilla.gnome.org/buglist.cgi?product=doxygen&bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=NEEDINFO&bug_status=REOPENED&bug_status=VERIFIED&email1=&emailtype1=substring&emailassigned_to1=1&email2=&emailtype2=substring&emailreporter2=1&changedin=&chfieldfrom=&chfieldto=Now&chfieldvalue=&short_desc=&short_desc_type=substring&long_desc=&long_desc_type=substring&bug_file_loc=&bug_file_loc_type=substring&status_whiteboard=&status_whiteboard_type=substring&keywords=&keywords_type=anywords&op_sys_details=&op_sys_details_type=substring&version_details=&version_details_type=substring&cmdtype=doit&namedcmd=gnome-libs+past+20+days&newqueryname=&order=Reuse+same+sort+as+last+time&form_name=query
http://bugzilla.gnome.org/enter_bug.cgi?product=doxygen
http://bugzilla.gnome.org/enter_bug.cgi?product=doxygen
http://sourceforge.net/mail/?group_id=5971
http://sourceforge.net/mail/?group_id=5971
http://sourceforge.net/mail/?group_id=5971
mailto:dimitri@stack.nl

42

• Automatically generates class diagrams in HTML (as clickable image maps) and LATEX (as Encap-
sulated PostScript images).

• Uses the dot tool of the Graphviz tool kit to generate include dependency graphs, collaboration
diagrams, and graphical class hierarchy graphs.

• Allows you to put documentation in the header file (before the declaration of an entity), source file
(before the definition of an entity) or in a separate file.

• Can generate a list of all members of a class (including any inherited members) along with their
protection level.

• Outputs documentation in on-line format (HTML and UNIX man page) and off-line format (LATEX
and RTF) simultaneously (any of these can be disabled if desired). All formats are optimized for
ease of reading.

Furthermore, compressed HTML can be generated from HTML output using Microsoft’s HTML
Help Workshop (Windows only) and PDF can be generated from the LATEX output.

• Includes a full C preprocessor to allow proper parsing of conditional code fragments and to allow
expansion of all or part of macros definitions.

• Automatically detects public, protected and private sections, as well as the Qt specific signal and
slots sections. Extraction of private class members is optional.

• Automatically generates references to documented classes, files, namespaces and members. Doc-
umentation of global functions, globals variables, typedefs, defines and enumerations is also sup-
ported.

• References to base/super classes and inherited/overridden members are generated automatically.

• Includes a fast, rank based search engine to search for strings or words in the class and member
documentation.

• You can type normal HTML tags in your documentation. Doxygen will convert them to their equiv-
alent LATEX, RTF, and man-page counterparts automatically.

• Allows references to documentation generated for other projects (or another part of the same project)
in a location independent way.

• Allows inclusion of source code examples that are automatically cross-referenced with the documen-
tation.

• Inclusion of undocumented classes is also supported, allowing to quickly learn the structure and
interfaces of a (large) piece of code without looking into the implementation details.

• Allows automatic cross-referencing of (documented) entities with their definition in the source code.

• All source code fragments are syntax highlighted for ease of reading.

• Allows inclusion of function/member/class definitions in the documentation.

• All options are read from an easy to edit and (optionally) annotated configuration file.

• Documentation and search engine can be transferred to another location or machine without regen-
erating the documentation.

• Can cope with large projects easily.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

43

Although doxygen can be used in any C or C++ project, it was specifically designed to be used for projects
that make use of Troll Tech’sQt toolkit . I have tried to make doxygen ‘Qt-compatible’. That is:
Doxygen can read the documentation contained in the Qt source code and create a class browser that looks
very similar to the one that is generated by Troll Tech. Doxygen understands the C++ extensions used by
Qt such as signals and slots.

Doxygen can also automatically generate links to existing documentation that was generated with Doxygen
or with Qt’s non-public class browser generator. For a Qt based project this means that whenever you refer
to members or classes belonging to the Qt toolkit, a link will be generated to the Qt documentation. This
is done independent of where this documentation is located!

13 Doxygen History

Version 1.2.0

Major new features:

• Support for RTF output.

• Using the dot tool of the AT&T’s GraphViz package, doxygen can now generate inheritance dia-
grams, collaboration diagrams, include dependency graphs, included by graphs and graphical inher-
itance overviews.

• Function arguments can now be documented with separate comment blocks.

• Initializers and macro definitions are now included in the documentation.

• Variables and typedefs are now put in their own section.

• Old configuration files can be upgraded using the -u option without loosing any changes.

• Using the\if and\endif commands, doxygen can conditionally include documentation blocks.

• Added Doc++ like support for member grouping.

• Doxygen now has a GUI front-end called doxywizard (based on Qt-2.1)

• All info about configuration options is now concentrated in a new tool called configgen. This tool
can generate the configuration parser and GUI front-end from source templates.

• Better support for the using keyword.

• New transparent mini logo that is put in the footer of all HTML pages.

• Internationalization support for the Polish, Portuguese and Croatian language.

• Todo list support.

• If the source browser is enabled, for a function, a list of function whose implementation calls that
function, is generated.

• All source code fragments are now syntax highlighted in the HTML output. The colors can be
changed using cascading style sheets.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.trolltech.com/products/qt.html

44

Version 1.0.0

Major new features:

• Support for templates and namespaces.

• Internationalization support. Currently supported languages are: English, Czech, German, Spanish,
Finnish, French, Italian, Japanese, Dutch, and Swedish.

• Automatic generation of inheritance diagrams for sub and super classes.

• Support for man page, compressed HTML help, and hyperlinked PDF output.

• Cross-referencing documentation with source code and source inlining.

• LaTeX formulas can be included in the documentation.

• Support for parsing Corba and Microsoft IDL.

• Images can be included in the documentation.

• Improved parsing and preprocessing.

Version 0.4

Major new features:

• LaTeX output generation.

• Full JavaDoc support.

• Build-in C-preprocessor for correct conditional parsing of source code that is read by Doxygen.

• Build-in HTML to LaTeX converter. This allows you to use HTML tags in your documentation,
while doxygen still generates proper LaTeX output.

• Many new commands (there are now more than 60!) to document more entities, to make the docu-
mentation look nicer, and to include examples or pieces of examples.

• Enum types, enum values, typedefs, #defines, and files can now be documented.

• Completely new documentation, that is now generated by Doxygen.

• A lot of small examples are now included.

Version 0.3

Major new features:

• A PHP based search engine that allows you to search through the generated documentation.

• A configuration file instead of command-line options. A default configuration file can be generated
by doxygen .

• Added an option to generate output for undocumented classes.

• Added an option to generate output for private members.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

file:doxygen_usage.html

45

• Every page now contains a condensed index page, allowing much faster navigation through the
documentation.

• Global and member variables can now be documented.

• A project name can now given, which will be included in the documentation.

Version 0.2

Major new features:

• Blocks of code are now parsed. Function calls and variables are replaced by links to their documen-
tation if possible.

• Special example documentation block added. This can be used to provide cross references between
the documentation and some example code.

• Documentation blocks can now be placed inside the body of a class.

• Documentation blocks with line range may now be created using special//! C++ line comments.

• Unrelated members can now be documented. A page containing a list of these members is generated.

• Added an\include command to insert blocks of source code into the documentation.

• Warnings are generated for members that are undocumented.

• You can now specify your own HTML headers and footers for the generated pages.

• Option added to generated indices containing all external classes instead of only the used ones.

Version 0.1

Initial version.

14 Doxygen usage

Doxygen is a command line based utility. Callingdoxygen with the--help option at the command line
will give you a brief description of the usage of the program.

All options consist of a leading character- , followed by one character and one or more arguments depend-
ing on the option.

To generate a manual for your project you typically need to follow these steps:

1. You document your source code with special documentation blocks (see sectionSpecial documenta-
tion blocks).

2. You generate a configuration file (see sectionConfiguration) by calling doxygen with the-g option:

doxygen -g <config_file>

3. You edit the configuration file so it matches your project. In the configuration file you can specify
the input files and a lot of optional information.

4. You let doxygen generate the documentation, based on the settings in the configuration file:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

46

doxygen <config_file>

If you have a configuration file generated with an older version of doxygen, you can upgrade it to the
current version by running doxygen with the -u option.

doxygen -u <config_file>

All configuration settings in the orginal configuration file will be copied to the new configuration file. Any
new options will have their default value. Note that comments that you may have added in the original
configuration file will be lost.

If you want to fine-tune the way the output looks, doxygen allows you generate default style sheet, header,
and footer files that you can edit afterwards:

• For HTML output, you can generate the default header file (seeHTML HEADER), the default footer
(seeHTML FOOTER), and the default style sheet (seeHTML STYLESHEET), using the following
command:

doxygen -w html header.html footer.html stylesheet.css

• For LaTeX output, you can generate the first part ofrefman.tex (seeLATEX HEADER) and the
style sheet included by that header (normallydoxygen.sty), using:

doxygen -w latex header.tex doxygen.sty

• For RTF output, you can generate the default style sheet file (seeRTF STYLESHEETFILE) using:

doxygen -w rtf rtfstyle.cfg

Note:

• If you do not want documentation for each item inside the configuration file then you can use the
optional-s option. This can use be used in combination with the-u option, to add or strip the docu-
mentation from an existing configuration file. Please use the-s option if you send me a configuration
file as part of a bug report!

• To make doxygen read/write to standard input/output instead of from/to a file, use- for the file name.

15 Doxytag usage

Doxytag is a small command line based utility. It can generatetag files. These tag files can be used with
doxygen to generate references to external documentation (i.e. documentation not contained in the input
files that are used by doxygen).

A tag file contains information about files, classes and members documented in external documentation.
Doxytag extracts this information directly from the HTML files. This has the advantage that you do not
need to have the sources from which the documentation was extracted.

If you do have the sources it is better to letdoxygen generate the tag file by putting the name of the tag
file afterGENERATETAGFILE in the configuration file.

The input of doxytag consists of a set of HTML files.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

file:doxygen_usage.html

47

Important:
If you use tag files, the links that are generated by doxygen will containdummylinks. You have to
run theinstalldox script to change these dummy links into real links. SeeInstalldox usagefor
more information. The use of dummy links may seem redundant, but it is really useful, if you want
to move the external documentation to another location. Then the documentation does not need to be
regenerated bydoxygen , only installdox has to be run.

Note:
Because the HTML files are expected to have a certain structure, only HTML files generated with
doxygen or with Qt’s class browser generator can be used. Doxytag onlyreadsthe HTML files, they
are not altered in any way.

Doxytag expects a list of all HTML files that form the documentation or a directory that contains all HTML
files. If neither is present doxytag will read all files with a.html extension from the current directory. If
doxytag is used with the-t flag it generates a tag file.

Example 1:
Suppose the fileexample.cpp from theexamples directory that is listed below is included in
some package for which you do not have the sources. Fortunately, the distributor of the packages
included the HTML documentation that was generated by doxygen in the package.

/** A Test class.
* More details about this class.
*/

class Test
{

public:
/** An example member function.

* More details about this function.
*/

void example();
};

void Test::example() {}

/** \example example_test.cpp
* This is an example of how to use the Test class.
* More details about this example.
*/

Now you can create a tag file from the HTML files in the package by typing:

doxytag -t example.tag example/html

from the examples directory. Finally you can use this tag file with your own piece of code, such as
done in the following example:

/*! A class that is inherited from the external class Test.
*/

class Tag : public Test
{

public:
/*! an overloaded member. */
void example();

};

Doxygen will now include links to the external package in your own documentation. Because the tag
file does not specify where the documentation is located, you will have to specify that by running the
installdox script that doxygen generates (See sectionInstalldox usagefor more information).

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

48

Note that this is actually a feature because if you (or someone else) moves the external documentation to
a different directory or URL you can simply run the script again and all links in the HTML files will be
updated.

Example 2:
To generate a tag file of the Qt documentation you can do the following:

doxytag -t qt.tag $QTDIR/doc/html

16 Doxywizard usage

Doxywizard is a GUI front-end for creating and editing configuration files that are used by doxygen.

Doxywizard consists of a single executable that, when started, pops up a window.

The main window has a number of tab field, one for each section in the configuration file. Each tab-field
contains a number of lines, one for each configuration option in that section.

The kind of input widget depends on the type of the configuration option.

• For each boolean option (those options that are answered with YES or NO in the configuration file)
there is a check-box.

• For items taking one of a fixed set of values (likeOUTPUT LANGUAGE) a combo box is used.

• For items taking an integer value from a range, a spinbox is used.

• For free form string-type options there is a one line edit field

• For options taking a lists of strings, a one line edit field is available, with a ‘+’ button to add this
string to the list and a ‘-’ button to remove the selected string from the list. There is also a button
with a circular ”refresh” arrow that, when pressed, replaces the selected item in the list with the string
entered in the edit field.

• For file and folder entries, there are special buttons that start a file dialog.

17 Installdox usage

Installdox is a perl script that is generated by doxygen whenever tag files are used (SeeTAGFILES in
sectionExternal reference options) or the search engine is enabled (SeeSEARCHENGINEin sectionSearch
engine options). The script is located in the same directory where the HTML files are located.

Its purpose is to set the location of the external documentation for each tag file and to set the correct links
to the search engine at install time.

Calling installdox with option-h at the command line will give you a brief description of the usage of
the program.

The following options are available:

-l <tagfile >@<location > Each tag file contains information about the files, classes and members
documented in a set of HTML files. A user can install these HTML files anywhere on his/her hard
disk or web site. Therefore installdoxrequiresthe location of the documentation for each tag file
<tagfile > that is used by doxygen. The location<location > can be an absolute path or a
URL.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

17.1 Output Formats 49

Note:
Each<tagfile> must be unique and should only be the name of the file, not including the path.

-q When this option is specified, installdox will generate no output other than fatal errors.

Optionally a list of HTML files may be given. These files are scanned and modified if needed. If this list is
omitted all files in the current directory that end with .html are used.

The installdox script is unique for each generated class browser in the sense that it ‘knows’ what tag
files are used. It will generate an error if the-l option is missing for a tag file or if an invalid tag file is
given.

17.1 Output Formats

The following output formats aredirectlysupported by doxygen:

HTML Generated ifGENERATEHTMLis set toYESin the configuration file.

LATEX Generated ifGENERATELATEX is set toYESin the configuration file.

Man pages Generated ifGENERATEMANis set toYESin the configuration file.

RTF Generated ifGENERATERTF is set toYESin the configuration file.

Note that the RTF output probably only looks nice with Microsoft’s Word 97. If you have success
with other programs, please let me know.

XML Generated ifGENERATEXMLis set toYESin the configuration file.

Note that the XML output is still under development.

The following output formats areindirectlysupported by doxygen:

Compressed HTML (a.k.a. Windows 98 help) Generated by Microsoft’s HTML Help workshop from
the HTML output ifGENERATEHTMLHELPis set toYES.

PostScript Generated from the LATEX output by runningmake ps in the output directory. For the best
resultsPDF HYPERLINKSshould be set toNO.

PDF Generated from the LATEX output by runningmake pdf in the output directory. In order to get
hyperlinks in the PDF file,PDF HYPERLINKSshould be set toYESin the configuration file.

18 Automatic link generation

Most documentation systems have special ‘see also’ sections where links to other pieces of documentation
can be inserted. Although doxygen also has a command to start such a section (See section\sa), it does
allow you to put these kind of links anywhere in the documentation. For LATEX documentation a reference
to the page number is written instead of a link. Furthermore, the index at the end of the document can be
used to quickly find the documentation of a member, class, namespace or file. For man pages no reference
information is generated.

The next sections show how to generate links to the various documented entities in a source file.

18.1 Links to web pages and mail addresses

Doxygen will automatically replace any URLs and mail addresses found in the documentation by links (in
HTML).

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

18.2 Links to classes. 50

18.2 Links to classes.

All words in the documentation that correspond to a documented class will automatically be replaced by
a link to the page containing the documentation of the class. If you want to prevent that a word that
corresponds to a documented class is replaced by a link you should put a % in front of the word.

18.3 Links to files.

All words that contain a dot (.) that is not the last character in the word are considered to be file names.
If the word is indeed the name of a documented input file, a link will automatically be created to the
documentation of that file.

18.4 Links to functions.

Links to functions are created if one of the following patterns is encountered:

1. <functionName >"(" <argument-list >")"

2. <functionName >"()"

3. "::" <functionName >

4. (<className >"::") n <functionName >"(" <argument-list >")"

5. (<className >"::") n <functionName >"()"

6. (<className >"::") n <functionName >

where n>0.

Note 1:
The patterns above should not contain spaces, tabs or newlines.

Note 2:
For JavaDoc compatibility a # may be used instead of a :: in the patterns above.

Note 3:
In the documentation of a class containing a member foo, a reference to a global variable is made using
::foo, whereas #foo will link to the member.

For non overloaded members the argument list may be omitted.

If a function is overloaded and no matching argument list is specified (i.e. pattern 2 or 5 is used), a link
will be created to the documentation of one of the overloaded members.

For member functions the class scope (as used in patterns 4 to 6) may be omitted, if:

1. The pattern points to a documented member that belongs to the same class as the documentation
block that contains the pattern.

2. The class that corresponds to the documentation blocks that contains the pattern has a base class that
contains a documented member that matches the pattern.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

18.5 Links to variables, typedefs, enum types, enum values and defines. 51

18.5 Links to variables, typedefs, enum types, enum values and defines.

All of these entities can be linked to in the same way as described in the previous section. For sake of
clarity it is advised to only use patterns 3 and 6 in this case.

Example:
/*! \file autolink.cpp

Testing automatic link generation.

A link to a member of the Test class: Test::member,

More specific links to the each of the overloaded members:
Test::member(int) and Test#member(int,int)

A link to a protected member variable of Test: Test#var,

A link to the global enumeration type #GlobEnum.

A link to the define #ABS(x).

A link to the destructor of the Test class: Test::˜Test,

A link to the typedef ::B.

A link to the enumeration type Test::EType

A link to some enumeration values Test::Val1 and ::GVal2
*/

/*!
Since this documentation block belongs to the class Test no link to
Test is generated.

Two ways to link to a constructor are: #Test and Test().

Links to the destructor are: #˜Test and ˜Test().

A link to a member in this class: member().

More specific links to the each of the overloaded members:
member(int) and member(int,int).

A link to the variable #var.

A link to the global typedef ::B.

A link to the global enumeration type #GlobEnum.

A link to the define ABS(x).

A link to a variable \link #var using another text\endlink as a link.

A link to the enumeration type #EType.

A link to some enumeration values: \link Test::Val1 Val1 \endlink and ::GVal1.

And last but not least a link to a file: autolink.cpp.

\sa Inside a see also section any word is checked, so EType,
Val1, GVal1, ˜Test and member will be replaced by links in HTML.

*/

class Test
{

public:
Test(); //!< constructor

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

18.6 typedefs. 52

˜Test(); //!< destructor
void member(int); /**< A member function. Details. */
void member(int,int); /**< An overloaded member function. Details */

/** An enum type. More details */
enum EType {

Val1, /**< enum value 1 */
Val2 /**< enum value 2 */

};

protected:
int var; /**< A member variable */

};

/*! details. */
Test::Test() { }

/*! details. */
Test::˜Test() { }

/*! A global variable. */
int globVar;

/*! A global enum. */
enum GlobEnum {

GVal1, /*!< global enum value 1 */
GVal2 /*!< global enum value 2 */

};

/*!
* A macro definition.
*/

#define ABS(x) (((x)>0)?(x):-(x))

typedef Test B;

/*! \fn typedef Test B
* A type definition.
*/

18.6 typedefs.

Typedefs that involve classes, structs and unions, like

typedef struct StructName TypeName

create an alias for StructName, so links will be generated to StructName, when either StructName itself or
TypeName is encountered.

Example:
/*! \file restypedef.cpp

* An example of resolving typedefs.
*/

/*! \struct CoordStruct
* A coordinate pair.
*/

struct CoordStruct
{

/*! The x coordinate */
float x;
/*! The y coordinate */
float y;

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

53

};

/*! Creates a type name for CoordStruct */
typedef CoordStruct Coord;

/*!
* This function returns the addition of \a c1 and \a c2, i.e:
* (c1.x+c2.x,c1.y+c2.y)
*/

Coord add(Coord c1,Coord c2)
{
}

19 Configuration

19.1 Format

A configuration file is a free-form ASCII text file with a structure that is similar to that of a Makefile,
default nameDoxyfile . It is parsed bydoxygen . The file may contain tabs and newlines for formatting
purposes. The statements in the file are case-sensitive. Comments may be placed anywhere within the file
(except within quotes). Comments begin with the # character and end at the end of the line.

The file essentially consists of a list of assignment statements. Each statement consists of aTAGNAME
written in capitals, followed by the= character and one or more values. If the same tag is assigned more
than once, the last assignment overwrites any earlier assignment. For options that take a list as their
argument, the+= operator can be used instead of= to append new values to the list. Values are sequences
of non-blanks. If the value should contain one or more blanks it must be surrounded by quotes (”...”).
Multiple lines can be concatenated by inserting a backslash (\) as the last character of a line. Environment
variables can be expanded using the pattern$(ENV VARIABLE NAME).

You can also include part of a configuration file from another configuration file using a@INCLUDEtag as
follows:

@INCLUDE = config_file_name

The include file is searched in the current working directory. You can also specify a list of directories that
should be searched before looking in the current working directory. Do this by putting a@INCLUDEPATH
tag with these paths before the@INCLUDEtag, e.g:

@INCLUDE_PATH = my_config_dir

The configuration options can be divided into several categories. Below is an alphabetical index of the tags
that are recognized followed by the descriptions of the tags grouped by category.

ABBREVIATE BRIEF 19.2

ALIASES 19.2

ALLEXTERNALS 19.16

ALPHABETICAL INDEX 19.7

ALWAYS DETAILED SEC 19.2

BINARY TOC 19.8

BRIEF MEMBER DESC 19.2

CALL GRAPH 19.17

CASE SENSENAMES 19.2

CHM FILE 19.8

CLASS DIAGRAMS 19.17

CLASS GRAPH 19.17

COLLABORATION GRAPH 19.17

COLS IN ALPHA INDEX 19.7

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.1 Format 54

COMPACT LATEX 19.9

COMPACT RTF 19.10

DETAILS AT TOP 19.2

DISABLE INDEX 19.8

DISTRIBUTE GROUP DOC 19.2

DOT IMAGE FORMAT 19.17

DOT PATH 19.17

DOTFILE DIRS 19.17

ENABLE PREPROCESSING 19.15

ENUM VALUES PER LINE 19.8

ENABLED SECTIONS 19.3

EXAMPLE PATH 19.5

EXAMPLE PATTERNS 19.5

EXAMPLE RECURSIVE 19.5

EXCLUDE 19.5

EXCLUDE PATTERNS 19.5

EXCLUDE SYMLINKS 19.5

EXPAND AS DEFINED 19.15

EXPAND ONLY PREDEF 19.15

EXTERNAL GROUPS 19.16

EXTRA PACKAGES 19.9

EXTRACT ALL 19.3

EXTRACT LOCAL CLASSES 19.3

EXTRACT PRIVATE 19.3

EXTRACT STATIC 19.3

FILE PATTERNS 19.5

FILTER SOURCE FILES 19.5

FULL PATH NAMES 19.2

GENERATE AUTOGEN DEF 19.13

GENERATE BUGLIST 19.3

GENERATE CHI 19.8

GENERATE DEPRECIATEDLIST 19.3

GENERATE HTML 19.8

GENERATE HTMLHELP 19.8

GENERATE LATEX 19.9

GENERATE LEGEND 19.17

GENERATE MAN 19.11

GENERATE PERLMOD 19.14

GENERATE RTF 19.10

GENERATE TAGFILE 19.16

GENERATE TESTLIST 19.3

GENERATE TODOLIST 19.3

GENERATE TREEVIEW 19.8

GENERATE XML 19.12

GRAPHICAL HIERARCHY 19.17

HAVE DOT 19.17

HHC LOCATION 19.8

HIDE FRIEND COMPOUNDS 19.3

HIDE IN BODY DOCS 19.3

HIDE SCOPE NAMES 19.3

HIDE UNDOC CLASSES 19.3

HIDE UNDOC MEMBERS 19.3

HIDE UNDOC RELATIONS 19.17

HTML ALIGN MEMBERS 19.8

HTML FOOTER 19.8

HTML HEADER 19.8

HTML OUTPUT 19.8

HTML STYLESHEET 19.8

IGNORE PREFIX 19.7

IMAGE PATH 19.5

INCLUDE GRAPH 19.17

INCLUDE PATH 19.15

INHERIT DOCS 19.2

INLINE INFO 19.3

INLINE INHERITED MEMB 19.2

INLINE SOURCES 19.6

INPUT 19.5

INPUT FILTER 19.5

INTERNAL DOCS 19.3

JAVADOC AUTOBRIEF 19.2

LATEX BATCHMODE 19.9

LATEX CMD NAME 19.9

LATEX HEADER 19.9

LATEX HIDE INDICES 19.9

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.2 Project related options 55

LATEX OUTPUT 19.9

MACRO EXPANSION 19.15

MAKEINDEX CMD NAME 19.9

MAN EXTENSION 19.11

MAN LINKS 19.11

MAN OUTPUT 19.11

MAX DOT GRAPH DEPTH 19.17

MAX DOT GRAPH HEIGHT 19.17

MAX DOT GRAPH WIDTH 19.17

MAX INITIALIZER LINES 19.3

MULTILINE CPP IS BRIEF 19.2

OPTIMIZE OUTPUT FOR C 19.2

OPTIMIZE OUTPUT JAVA 19.2

OUTPUT DIRECTORY 19.2

OUTPUT LANGUAGE 19.2

PAPER TYPE 19.9

PDF HYPERLINKS 19.9

PERL PATH 19.16

PERLMOD LATEX 19.14

PERLMOD PRETTY 19.14

PERLMOD MAKEVAR PREFIX 19.14

PREDEFINED 19.15

PROJECT NAME 19.2

PROJECT NUMBER 19.2

QUIET 19.4

RECURSIVE 19.5

REFERENCED BY RELATION 19.6

REFERENCES RELATION 19.6

REPEAT BRIEF 19.2

RTF EXTENSIONS FILE 19.10

RTF HYPERLINKS 19.10

RTF OUTPUT 19.10

RTF STYLESHEET FILE 19.10

SEARCH INCLUDES 19.15

SEARCHENGINE 19.18

SHORT NAMES 19.2

SHOW INCLUDE FILES 19.3

SHOW USED FILES 19.3

SKIP FUNCTION MACROS 19.15

SORT MEMBER DOCS 19.3

SOURCE BROWSER 19.6

STRIP CODE COMMENTS 19.6

STRIP FROM PATH 19.2

SUBGROUPING 19.2

TAB SIZE 19.2

TAGFILES 19.16

TEMPLATE RELATIONS 19.17

TOC EXPAND 19.8

TREEVIEW WIDTH 19.8

USE WINDOWS ENCODING 19.2

VERBATIM HEADERS 19.2

WARN FORMAT 19.4

WARN IF DOC ERROR 19.4

WARN IF UNDOCUMENTED 19.4

WARN LOGFILE 19.4

WARNINGS 19.4

XML DTD 19.12

XML OUTPUT 19.12

XML PROGRAMLISTING 19.12

XML SCHEMA 19.12

19.2 Project related options

PROJECTNAME The PROJECTNAMEtag is a single word (or a sequence of words surrounded by
double-quotes) that should identify the project for which the documentation is generated. This name
is used in the title of most generated pages and in a few other places.

PROJECTNUMBERThePROJECTNUMBERtag can be used to enter a project or revision number. This
could be handy for archiving the generated documentation or if some version control system is used.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.2 Project related options 56

OUTPUTDIRECTORY TheOUTPUTDIRECTORYtag is used to specify the (relative or absolute) path
into which the generated documentation will be written. If a relative path is entered, it will be relative
to the location where doxygen was started. If left blank the current directory will be used.

OUTPUTLANGUAGEThe OUTPUTLANGUAGEtag is used to specify the language in which all doc-
umentation generated by doxygen is written. Doxygen will use this information to generate all
constant output in the proper language. The default language is English, other supported languages
are: Brazilian, Chinese, Croatian, Czech, Danish, Dutch, Finnish, French, German, Greek, Hungar-
ian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak,
Slovene, Spanish, Swedish, and Ukrainian.

USEWINDOWSENCODING This tag can be used to specify the encoding used in the generated output.
The encoding is not always determined by the language that is chosen, but also whether or not the
output is meant for Windows or non-Windows users. In case there is a difference, setting theUSE-
WINDOWSENCODINGtag toYESforces the Windows encoding, (this is the default for the Windows
binary), whereas setting the tag toNOuses a Unix-style encoding (the default for all platforms other
than Windows).

BRIEF MEMBERDESC If the BRIEF MEMBERDESCtag is set toYES (the default) doxygen will in-
clude brief member descriptions after the members that are listed in the file and class documentation
(similar to JavaDoc). Set to NO to disable this.

REPEATBRIEF If the REPEATBRIEF tag is set toYES (the default) doxygen will prepend the brief
description of a member or function before the detailed description

Note:
If both HIDE UNDOCMEMBERSandBRIEF MEMBERDESCare set toNO, the brief descrip-
tions will be completely suppressed.

ABBREVIATEBRIEF This tag implements a quasi-intelligent brief description abbreviator that is used
to form the text in various listings. Each string in this list, if found as the leading text of the brief
description, will be stripped from the text and the result after processing the whole list, is used as
the annotated text. Otherwise, the brief description is used as-is. If left blank, the following values
are used (”\$name” is automatically replaced with the name of the entity): ”The $name class” ”The
$name widget” ”The $name file” ”is” ”provides” ”specifies” ”contains” ”represents” ”a” ”an” ”the”.

ALWAYSDETAILED SEC If the ALWAYSDETAILED SECandREPEATBRIEF tags are both set to
YESthen doxygen will generate a detailed section even if there is only a brief description.

INLINE INHERITED MEMB If the INLINE INHERITED MEMBtag is set toYES, doxygen will show
all inherited members of a class in the documentation of that class as if those members were ordinary
class members. Constructors, destructors and assignment operators of the base classes will not be
shown.

FULL PATHNAMES If the FULL PATHNAMEStag is set toYES doxygen will prepend the full path
before files name in the file list and in the header files. If set to NO the shortest path that makes the
file name unique will be used

STRIP FROMPATH If the FULL PATHNAMEStag is set toYESthen theSTRIP FROMPATHtag can
be used to strip a user-defined part of the path. Stripping is only done if one of the specified strings
matches the left-hand part of the path.

CASESENSENAMES If the CASESENSENAMEStag is set toNO(the default) then doxygen will only
generate file names in lower-case letters. If set toYESupper-case letters are also allowed. This is
useful if you have classes or files whose names only differ in case and if your file system supports
case sensitive file names.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.2 Project related options 57

SHORTNAMES If the SHORTNAMEStag is set toYES, doxygen will generate much shorter (but less
readable) file names. This can be useful is your file systems doesn’t support long names like on
DOS, Mac, or CD-ROM.

VERBATIMHEADERS If the VERBATIMHEADERStag is set theYES (the default) then doxygen will
generate a verbatim copy of the header file for each class for which an include is specified. Set to
NO to disable this.

See also:
Section\class.

JAVADOCAUTOBRIEF If the JAVADOCAUTOBRIEFis set toYESthen doxygen will interpret the first
line (until the first dot) of a JavaDoc-style comment as the brief description. If set to NO (the default),
the Javadoc-style will behave just like the Qt-style comments.

MULTILINE CPPIS BRIEF The MULTILINE CPPIS BRIEF tag can be set to YES to make Doxy-
gen treat a multi-line C++ special comment block (i.e. a block of //! or /// comments) as a brief
description. This used to be the default behaviour. The new default is to treat a multi-line C++ com-
ment block as a detailed description. Set this tag to YES if you prefer the old behaviour instead. Note
that setting this tag to YES also means that rational rose comments are not recognized any more.

DETAILS AT TOP If the DETAILS AT TOP tag is set to YES then Doxygen will output the detailed
description near the top, like JavaDoc. If set to NO, the detailed description appears after the member
documentation.

INHERIT DOCS If the INHERIT DOCStag is set toYES(the default) then an undocumented member
inherits the documentation from any documented member that it re-implements.

DISTRIBUTE GROUPDOC If member grouping is used in the documentation and the DISTRIBUTE-
GROUPDOC tag is set to YES, then doxygen will reuse the documentation of the first member in
the group (if any) for the other members of the group. By default all members of a group must be
documented explicitly.

TAB SIZE theTAB SIZE tag can be used to set the number of spaces in a tab. Doxygen uses this value
to replace tabs by spaces in code fragments.

ALIASES This tag can be used to specify a number of aliases that acts as commands in the documentation.
An alias has the form

name=value

For example adding

"sideeffect=\par Side Effects:\n"

will allow you to put the command\sideeffect (or @sideeffect) in the documentation, which will
result in a user-defined paragraph with heading ”Side Effects:”. You can put\n’s in the value part of
an alias to insert newlines.

OPTIMIZE OUTPUTFORC Set theOPTIMIZE OUTPUTFORC tag toYESif your project consists of
C sources only. Doxygen will then generate output that is more tailored for C. For instance, some of
the names that are used will be different. The list of all members will be omitted, etc.

OPTIMIZE OUTPUTJAVA Set the OPTIMIZEOUTPUT JAVA tag to YES if your project consists of
Java sources only. Doxygen will then generate output that is more tailored for Java. For instance,
namespaces will be presented as packages, qualified scopes will look different, etc.

SUBGROUPINGSet theSUBGROUPINGtag toYES (the default) to allow class member groups of the
same type (for instance a group of public functions) to be put as a subgroup of that type (e.g. under
the Public Functions section). Set it toNOto prevent subgrouping. Alternatively, this can be done
per class using the\nosubgroupingcommand.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.3 Build related options 58

19.3 Build related options

EXTRACTALL If the EXTRACTALL tag is set toYESdoxygen will assume all entities in documenta-
tion are documented, even if no documentation was available. Private class members and static file
members will be hidden unless theEXTRACTPRIVATE andEXTRACTSTATIC tags are set to
YES

Note:
This will also disable the warnings about undocumented members that are normally produced
whenWARNINGSis set toYES

EXTRACTPRIVATE If the EXTRACTPRIVATE tag is set toYESall private members of a class will be
included in the documentation.

EXTRACTSTATIC If the EXTRACTSTATIC tag is set toYESall static members of a file will be in-
cluded in the documentation.

EXTRACTLOCALCLASSES If the EXTRACTLOCALCLASSEStag is set toYESclasses (and structs)
defined locally in source files will be included in the documentation. If set to NO only classes defined
in header files are included. Does not have any effect for Java sources.

HIDE UNDOCMEMBERSIf the HIDE UNDOCMEMBERStag is set toYES, doxygen will hide all undoc-
umented members inside documented classes or files. If set toNO(the default) these members will
be included in the various overviews, but no documentation section is generated. This option has no
effect if EXTRACTALL is enabled.

HIDE UNDOCCLASSES If the HIDE UNDOCCLASSESStag is set toYES, doxygen will hide all un-
documented classes. If set toNO(the default) these classes will be included in the various overviews.
This option has no effect ifEXTRACTALL is enabled.

HIDE FRIEND COMPOUNDSIf the HIDE FRIEND COMPOUNDStag is set toYES, Doxygen will hide
all friend (class|struct|union) declarations. If set toNO(the default) these declarations will be in-
cluded in the documentation.

HIDE IN BODYDOCS If the HIDE IN BODYDOCStag is set toYES, Doxygen will hide any documen-
tation blocks found inside the body of a function. If set toNO(the default) these blocks will be
appended to the function’s detailed documentation block.

INTERNAL DOCS TheINTERNAL DOCStag determines if documentation that is typed after a\internal
command is included. If the tag is set toNO(the default) then the documentation will be excluded.
Set it toYESto include the internal documentation.

HIDE SCOPENAMES If the HIDE SCOPENAMEStag is set toNO(the default) then doxygen will show
members with their full class and namespace scopes in the documentation. If set toYES the scope
will be hidden.

SHOWINCLUDE FILES If the SHOWINCLUDE FILES tag is set to YES (the default) then doxygen
will put a list of the files that are included by a file in the documentation of that file.

INLINE INFO If the INLINE INFO tag is set toYES(the default) then a tag [inline] is inserted in the
documentation for inline members.

SORTMEMBERDOCS If the SORTMEMBERDOCStag is set toYES(the default) then doxygen will sort
the (detailed) documentation of file and class members alphabetically by member name. If set toNO
the members will appear in declaration order.

GENERATEDEPRECATEDLIST The GENERATEDEPRECATEDLIST tag can be used to enable
(YES) or disable (NO) the deprecated list. This list is created by putting\deprecatedcommands
in the documentation.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.4 Options related to warning and progress messages 59

GENERATETODOLIST The GENERATETODOLIST tag can be used to enable (YES) or disable (NO)
the todo list. This list is created by putting\todocommands in the documentation.

GENERATETESTLIST The GENERATETESTLIST tag can be used to enable (YES) or disable (NO)
the test list. This list is created by putting\testcommands in the documentation.

GENERATEBUGLIST The GENERATEBUGLIST tag can be used to enable (YES) or disable (NO) the
bug list. This list is created by putting\bugcommands in the documentation.

ENABLEDSECTIONS TheENABLEDSECTIONStag can be used to enable conditional documentation
sections, marked by\if <section-label> ... \endif blocks.

MAXINITIALIZER LINES The MAXINITIALIZER LINES tag determines the maximum number
of lines that the initial value of a variable or define can be. If the initializer consists of more lines than
specified here it will be hidden. Use a value of 0 to hide initializers completely. The appearance of the
value of individual variables and defines can be controlled using\showinitializeror \hideinitializer
command in the documentation.

SHOWUSEDFILES Set theSHOWUSEDFILES tag toNOto disable the list of files generated at the
bottom of the documentation of classes and structs. If set toYESthe list will mention the files that
were used to generate the documentation.

19.4 Options related to warning and progress messages

QUIET TheQUIET tag can be used to turn on/off the messages that are generated to standard output by
doxygen. Possible values areYESandNO, whereYESimplies that the messages are off. If left blank
NOis used.

WARNINGSThe WARNINGStag can be used to turn on/off the warning messages that are generated to
standard error by doxygen. Possible values areYESandNO, whereYES implies that the warnings
are on. If left blankNOis used.

Tip : Turn warnings on while writing the documentation.

WARNIF UNDOCUMENTEDIf WARNIF UNDOCUMENTEDis set toYES, then doxygen will generate
warnings for undocumented members. IfEXTRACTALL is set toYESthen this flag will automati-
cally be disabled.

WARNIF DOCERROR If WARNIF DOCERRORis set toYES, doxygen will generate warnings for po-
tential errors in the documentation, such as not documenting some parameters in a documented
function, or documenting parameters that don’t exist or using markup commands wrongly.

WARNFORMATTheWARNFORMATtag determines the format of the warning messages that doxygen can
produce. The string should contain the$file , $line , and$text tags, which will be replaced by
the file and line number from which the warning originated and the warning text.

WARNLOGFILE The WARNLOGFILE tag can be used to specify a file to which warning and error
messages should be written. If left blank the output is written to stderr.

19.5 Input related options

INPUT The INPUT tag is used to specify the files and/or directories that contain documented source
files. You may enter file names likemyfile.cpp or directories like/usr/src/myproject .
Separate the files or directories with spaces.

Note: If this tag is empty the current directory is searched.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.6 Source browsing related options 60

FILE PATTERNS If the value of the INPUT tag contains directories, you can use the
FILE PATTERNS tag to specify one or more wildcard patterns (like∗.cpp and ∗.h)
to filter out the source-files in the directories. If left blank the following patterns
are tested:.c ∗.cc ∗.cxx ∗.cpp ∗.c++ ∗.java ∗.ii ∗.ixx ∗.ipp ∗.i++ ∗.inl
∗.h ∗.hh ∗.hxx ∗.hpp .h++ ∗.idl ∗.odl ∗.cs

RECURSIVE The RECURSIVEtag can be used to specify whether or not subdirectories should be
searched for input files as well. Possible values areYESandNO. If left blank NOis used.

EXCLUDE The EXCLUDEtag can be used to specify files and/or directories that should excluded from
theINPUT source files. This way you can easily exclude a subdirectory from a directory tree whose
root is specified with theINPUT tag.

EXCLUDESYMLINKS TheEXCLUDESYMLINKStag can be used select whether or not files or directo-
ries that are symbolic links (a Unix filesystem feature) are excluded from the input.

EXCLUDEPATTERNS If the value of theINPUT tag contains directories, you can use theEXCLUDE-
PATTERNStag to specify one or more wildcard patterns to exclude certain files from those directo-
ries.

EXAMPLEPATH The EXAMPLEPATHtag can be used to specify one or more files or directories that
contain example code fragments that are included (see the\include command in section\include).

EXAMPLERECURSIVE If the EXAMPLERECURSIVEtag is set toYES then subdirectories will be
searched for input files to be used with the\include or\dontinclude commands irrespective of the
value of theRECURSIVEtag. Possible values areYESandNO. If left blank NOis used.

EXAMPLEPATTERNS If the value of theEXAMPLEPATH tag contains directories, you can use the
EXAMPLEPATTERNStag to specify one or more wildcard pattern (like∗.cpp and∗.h) to filter out
the source-files in the directories. If left blank all files are included.

IMAGEPATH The IMAGEPATHtag can be used to specify one or more files or directories that contain
images that are to be included in the documentation (see the\imagecommand).

INPUT FILTER TheINPUT FILTER tag can be used to specify a program that doxygen should invoke
to filter for each input file. Doxygen will invoke the filter program by executing (via popen()) the
command:

<filter> <input-file>

where<filter> is the value of theINPUT FILTER tag, and<input-file> is the name of an input
file. Doxygen will then use the output that the filter program writes to standard output.

FILTER SOURCEFILES If the FILTER SOURCEFILES tag is set toYES, the input filter (if set using
INPUT FILTER) will be used to filter the input files when producing source files to browse.

19.6 Source browsing related options

SOURCEBROWSERIf the SOURCEBROWSERtag is set toYESthen a list of source files will be gener-
ated. Documented entities will be cross-referenced with these sources.

INLINE SOURCESSetting theINLINE SOURCEStag to YES will include the body of functions,
classes and enums directly into the documentation.

STRIP CODECOMMENTSSetting theSTRIP CODECOMMENTStag toYES (the default) will instruct
doxygen to hide any special comment blocks from generated source code fragments. Normal C and
C++ comments will always remain visible.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.7 Alphabetical index options 61

REFERENCEDBY RELATION If the REFERENCEDBY RELATIONtag is set toYES(the default) then
for each documented function all documented functions referencing it will be listed.

REFERENCESRELATION If the REFERENCESRELATIONtag is set toYES(the default) then for each
documented function all documented entities called/used by that function will be listed.

19.7 Alphabetical index options

ALPHABETICALINDEX If the ALPHABETICALINDEX tag is set toYES, an alphabetical index of all
compounds will be generated. Enable this if the project contains a lot of classes, structs, unions or
interfaces.

COLSIN ALPHAINDEX If the alphabetical index is enabled (seeALPHABETICALINDEX) then the
COLSIN ALPHAINDEX tag can be used to specify the number of columns in which this list will
be split (can be a number in the range [1..20])

IGNOREPREFIX In case all classes in a project start with a common prefix, all classes will be put under
the same header in the alphabetical index. TheIGNOREPREFIX tag can be used to specify a prefix
(or a list of prefixes) that should be ignored while generating the index headers.

19.8 HTML related options

GENERATEHTML If the GENERATEHTMLtag is set toYES(the default) doxygen will generate HTML
output

HTMLOUTPUT TheHTMLOUTPUTtag is used to specify where the HTML docs will be put. If a relative
path is entered the value ofOUTPUTDIRECTORYwill be put in front of it. If left blank ‘html’ will
be used as the default path.

HTMLFILE EXTENSION TheHTMLFILE EXTENSIONtag can be used to specify the file extension
for each generated HTML page (for example: .htm, .php, .asp). If it is left blank doxygen will
generate files with .html extension.

HTMLHEADER TheHTMLHEADERtag can be used to specify a user-defined HTML header file for each
generated HTML page. To get valid HTML the header file should contain at least a<HTML> and
a<BODY> tag, but it is good idea to include the style sheet that is generated by doxygen as well.
Minimal example:

<HTML>
<HEAD>

<TITLE>My title</TITLE>
<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">

</HEAD>
<BODY BGCOLOR="#FFFFFF">

If the tag is left blank doxygen will generate a standard header.

The following commands have a special meaning inside the header:$title , $datetime ,
$date , $doxygenversion , $projectname , $projectnumber . Doxygen will replace
them by respectively the title of the page, the current date and time, only the current date, the
version number of doxygen, the project name (seePROJECTNAME), or the project number (see
PROJECTNUMBER).

See also sectionDoxygen usagefor information on how to generate the default header that doxygen
normally uses.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.8 HTML related options 62

HTMLFOOTER The HTMLFOOTERtag can be used to specify a user-defined HTML footer for each
generated HTML page. To get valid HTML the header file should contain at least a</BODY> and
a</HTML> tag. A minimal example:

</BODY>
</HTML>

If the tag is left blank doxygen will generate a standard footer.

The following commands have a special meaning inside the header:$title , $datetime ,
$date , $doxygenversion , $projectname , $projectnumber . Doxygen will replace
them by respectively the title of the page, the current date and time, only the current date, the
version number of doxygen, the project name (seePROJECTNAME), or the project number (see
PROJECTNUMBER).

See also sectionDoxygen usagefor information on how to generate the default footer that doxygen
normally uses.

HTMLSTYLESHEET TheHTMLSTYLESHEETtag can be used to specify a user-defined cascading style
sheet that is used by each HTML page. It can be used to fine-tune the look of the HTML output. If
the tag is left blank doxygen will generate a default style sheet.

See also sectionDoxygen usagefor information on how to generate the style sheet that doxygen
normally uses.

HTMLALIGN MEMBERSIf the HTMLALIGN MEMBERStag is set toYES, the members of classes, files
or namespaces will be aligned in HTML using tables. If set toNOa bullet list will be used.

Note: Setting this tag toNOwill become obsolete in the future, since I only intent to support and test
the aligned representation.

GENERATEHTMLHELP If the GENERATEHTMLHELPtag is set toYES then doxygen generates three
additional HTML index files:index.hhp , index.hhc , andindex.hhk . The index.hhp is
a project file that can be read byMicrosoft’s HTML Help Workshop on Windows.

The HTML Help Workshop contains a compiler that can convert all HTML output generated by
doxygen into a single compressed HTML file (.chm). Compressed HTML files are now used as
the Windows 98 help format, and will replace the old Windows help format (.hlp) on all Windows
platforms in the future. Compressed HTML files also contain an index, a table of contents, and
you can search for words in the documentation. The HTML workshop also contains a viewer for
compressed HTML files.

CHMFILE If the GENERATEHTMLHELPtag is set toYES, theCHMFILE tag can be used to specify
the file name of the resulting .chm file. You can add a path in front of the file if the result should not
be written to the html output directory.

HHCLOCATION If the GENERATEHTMLHELPtag is set toYES, theHHCLOCATIONtag can be used
to specify the location (absolute path including file name) of the HTML help compiler (hhc.exe). If
non empty doxygen will try to run the HTML help compiler on the generated index.hhp.

GENERATECHI If the GENERATEHTMLHELPtag is set toYES, theGENERATECHI flag controls if a
separate .chi index file is generated (YES) or that it should be included in the master .chm file (NO).

BINARY TOC If the GENERATEHTMLHELPtag is set toYES, theBINARY TOCflag controls whether
a binary table of contents is generated (YES) or a normal table of contents (NO) in the .chm file.

TOCEXPAND The TOCEXPANDflag can be set to YES to add extra items for group members to the
table of contents of the HTML help documentation and to the tree view.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp

19.9 LaTeX related options 63

DISABLE INDEX If you want full control over the layout of the generated HTML pages it might be
necessary to disable the index and replace it with your own. TheDISABLE INDEX tag can be used
to turn on/off the condensed index at top of each page. A value of NO (the default) enables the index
and the value YES disables it.

ENUMVALUESPERLINE This tag can be used to set the number of enum values (range [1..20]) that
doxygen will group on one line in the generated HTML documentation.

GENERATETREEVIEW If the GENERATETREEVIEWtag is set to YES, a side panel will be generated
containing a tree-like index structure (just like the one that is generated for HTML Help). For this to
work a browser that supports JavaScript and frames is required (for instance Mozilla 1.0+, Netscape
6.0+ or Internet explorer 5.0+ or Konqueror).

TREEVIEWWIDTH If the treeview is enabled (seeGENERATETREEVIEW) then this tag can be used to
set the initial width (in pixels) of the frame in which the tree is shown.

19.9 LaTeX related options

GENERATELATEX If the GENERATELATEXtag is set toYES(the default) doxygen will generate LATEX
output.

LATEX OUTPUT The LATEX OUTPUTtag is used to specify where the LATEX docs will be put. If a
relative path is entered the value ofOUTPUTDIRECTORYwill be put in front of it. If left blank
‘latex’ will be used as the default path.

LATEX CMDNAME TheLATEX CMDNAMEtag can be used to specify the LaTeX command name to be
invoked. If left blank ‘latex’ will be used as the default command name.

MAKEINDEXCMDNAME The MAKEINDEX CMD NAME tag can be used to specify the command
name to generate index for LaTeX. If left blank ‘makeindex’ will be used as the default command
name.

COMPACTLATEX If the COMPACTLATEX tag is set toYES doxygen generates more compact LATEX
documents. This may be useful for small projects and may help to save some trees in general.

PAPERTYPE ThePAPERTYPEtag can be used to set the paper type that is used by the printer. Possible
values are:

• a4 (210 x 297 mm).

• a4wide (same as a4, but including the a4wide package).

• letter (8.5 x 11 inches).

• legal (8.5 x 14 inches).

• executive (7.25 x 10.5 inches)

If left blank a4wide will be used.

EXTRAPACKAGESThe EXTRAPACKAGEStag can be used to specify one or more LATEX package
names that should be included in the LATEX output. To get the times font for instance you can specify

EXTRA_PACKAGES = times

If left blank no extra packages will be included.

LATEX HEADER TheLATEX HEADERtag can be used to specify a personal LATEX header for the gener-
ated LATEX document. The header should contain everything until the first chapter.

If it is left blank doxygen will generate a standard header. See sectionDoxygen usagefor information
on how to let doxygen write the default header to a separate file.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.10 RTF related options 64

Note:
Only use a user-defined header if you know what you are doing!

The following commands have a special meaning inside the header:$title , $datetime ,
$date , $doxygenversion , $projectname , $projectnumber . Doxygen will replace
them by respectively the title of the page, the current date and time, only the current date, the
version number of doxygen, the project name (seePROJECTNAME), or the project number (see
PROJECTNUMBER).

PDF HYPERLINKS If the PDF HYPERLINKStag is set toYES, the LATEX that is generated is prepared
for conversion to PDF (using ps2pdf). The PDF file will contain links (just like the HTML output)
instead of page references. This makes the output suitable for online browsing using a PDF viewer.

USEPDFLATEX If the LATEX PDFLATEXtag is set toYES, doxygen will use pdflatex to generate the
PDF file directly from the LATEX files.

LATEX BATCHMODEIf the LATEX BATCHMODEtag is set toYES, doxygen will add the\batchmode.
command to the generated LATEX files. This will instruct LATEX to keep running if errors occur, instead
of asking the user for help. This option is also used when generating formulas in HTML.

LATEX HIDE INDICES If LATEX HIDE INDICES is set toYES then doxygen will not include the
index chapters (such as File Index, Compound Index, etc.) in the output.

19.10 RTF related options

GENERATERTF If the GENERATERTF tag is set toYESdoxygen will generate RTF output. The RTF
output is optimized for Word 97 and may not look too pretty with other readers/editors.

RTF OUTPUT TheRTF OUTPUTtag is used to specify where the RTF docs will be put. If a relative path
is entered the value ofOUTPUTDIRECTORYwill be put in front of it. If left blankrtf will be used
as the default path.

COMPACTRTF If theCOMPACTRTFtag is set toYESdoxygen generates more compact RTF documents.
This may be useful for small projects and may help to save some trees in general.

RTF HYPERLINKS If the RTF HYPERLINKStag is set toYES, the RTF that is generated will con-
tain hyperlink fields. The RTF file will contain links (just like the HTML output) instead of page
references. This makes the output suitable for online browsing using Word or some other Word
compatible reader that support those fields.

note:
WordPad (write) and others do not support links.

RTF STYLESHEETFILE Load stylesheet definitions from file. Syntax is similar to doxygen’s config
file, i.e. a series of assignments. You only have to provide replacements, missing definitions are set
to their default value.

See also sectionDoxygen usagefor information on how to generate the default style sheet that
doxygen normally uses.

RTF EXTENSIONSFILE Set optional variables used in the generation of an RTF document. Syntax is
similar to doxygen’s config file. A template extensions file can be generated usingdoxygen -e
rtf extensionFile .

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.11 Man page related options 65

19.11 Man page related options

GENERATEMAN If the GENERATEMANtag is set toYES(the default) doxygen will generate man pages
for classes and files.

MANOUTPUT The MANOUTPUTtag is used to specify where the man pages will be put. If a relative
path is entered the value ofOUTPUTDIRECTORYwill be put in front of it. If left blank ‘man’
will be used as the default path. A directory man3 will be created inside the directory specified by
MANOUTPUT.

MANEXTENSION The MANEXTENSIONtag determines the extension that is added to the generated
man pages (default is the subroutine’s section .3)

MANLINKS If the MANLINKS tag is set toYESand doxygen generates man output, then it will generate
one additional man file for each entity documented in the real man page(s). These additional files
only source the real man page, but without them the man command would be unable to find the
correct page. The default isNO.

19.12 XML related options

GENERATEXML If the GENERATEXMLtag is set toYESDoxygen will generate an XML file that cap-
tures the structure of the code including all documentation.

XMLOUTPUT TheXMLOUTPUTtag is used to specify where the XML pages will be put. If a relative
path is entered the value ofOUTPUTDIRECTORYwill be put in front of it. If left blankxml will
be used as the default path.

XMLSCHEMAThe XMLSCHEMAtag can be used to specify an XML schema, which can be used by a
validating XML parser to check the syntax of the XML files.

XMLDTD The XMLDTDtag can be used to specify an XML DTD, which can be used by a validating
XML parser to check the syntax of the XML files.

XMLPROGRAMLISTING If the XMLPROGRAMLISTINGtag is set toYESDoxygen will dump the pro-
gram listings (including syntax highlighting and cross-referencing information) to the XML output.
Note that enabling this will significantly increase the size of the XML output.

19.13 AUTOGEN DEF related options

GENERATEAUTOGENDEF If the GENERATEAUTOGENDEFtag is set toYESDoxygen will generate
an AutoGen Definitions (seehttp://autogen.sf.net) file that captures the structure of the
code including all documentation. Note that this feature is still experimental and incomplete at the
moment.

19.14 PERLMOD related options

GENERATEPERLMODIf the GENERATEPERLMODtag is set toYESDoxygen will generate a Perl mod-
ule file that captures the structure of the code including all documentation. Note that this feature is
still experimental and incomplete at the moment.

PERLMODLATEX If the PERLMODLATEXtag is set toYESDoxygen will generate the necessary Make-
file rules, Perl scripts and LaTeX code to be able to generate PDF and DVI output from the Perl
module output.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://autogen.sf.net

19.15 Preprocessor related options 66

PERLMODPRETTY If the PERLMODPRETTYtag is set toYES the Perl module output will be nicely
formatted so it can be parsed by a human reader. This is useful if you want to understand what is
going on. On the other hand, if this tag is set toNOthe size of the Perl module output will be much
smaller and Perl will parse it just the same.

PERLMODMAKEVARPREFIX The names of the make variables in the generated doxyrules.make file
are prefixed with the string contained inPERLMODMAKEVARPREFIX. This is useful so different
doxyrules.make files included by the same Makefile don’t overwrite each other’s variables.

19.15 Preprocessor related options

ENABLEPREPROCESSINGIf the ENABLEPREPROCESSINGtag is set toYES(the default) doxygen
will evaluate all C-preprocessor directives found in the sources and include files.

MACROEXPANSION If the MACROEXPANSIONtag is set toYESdoxygen will expand all macro names
in the source code. If set toNO(the default) only conditional compilation will be performed. Macro
expansion can be done in a controlled way by settingEXPANDONLYPREDEFto YES.

EXPANDONLYPREDEF If the EXPANDONLYPREDEFandMACROEXPANSIONtags are both set to
YES then the macro expansion is limited to the macros specified with thePREDEFINEDandEX-
PANDAS DEFINEDtags.

SEARCHINCLUDES If the SEARCHINCLUDEStag is set toYES(the default) the includes files in the
INCLUDE PATH(see below) will be searched if a #include is found.

INCLUDE PATH The INCLUDE PATHtag can be used to specify one or more directories that contain
include files that are not input files but should be processed by the preprocessor.

PREDEFINED ThePREDEFINEDtag can be used to specify one or more macro names that are defined
before the preprocessor is started (similar to the -D option of gcc). The argument of the tag is a list
of macros of the form:name or name=definition (no spaces). If the definition and the ”=” are
omitted, ”=1” is assumed.

EXPANDAS DEFINED If the MACROEXPANSIONandEXPANDONLYPREDEFtags are set toYES
then this tag can be used to specify a list of macro names that should be expanded. The macro
definition that is found in the sources will be used. Use thePREDEFINEDtag if you want to use a
different macro definition.

SKIP FUNCTIONMACROSIf the SKIP FUNCTIONMACROStag is set toYES(the default) then doxy-
gen’s preprocessor will remove all function-like macros that are alone on a line, have an all uppercase
name, and do not end with a semicolon. Such function macros are typically used for boiler-plate
code, and will confuse the parser if not removed.

19.16 External reference options

TAGFILES TheTAGFILES tag can be used to specify one or more tagfiles.

See sectionDoxytag usagefor more information about the usage of tag files.

Optionally an initial location of the external documentation can be added for each tagfile. The format
of a tag file without this location is as follows:

TAGFILES = file1 file2 ...

Adding location for the tag files is done as follows:

TAGFILES = file1=loc1 "file2 = loc2" ...

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

19.17 Dot options 67

whereloc1 and loc2 can be relative or absolute paths or URLs, If a location is present for each
tag, the installdox tool (see sectionInstalldox usagefor more information) does not have to be run to
correct the links.

Note:
Each tag file must have a unique name (where the name doesnot include the path) If a tag file is
not located in the directory in which doxygen is run, you must also specify the path to the tagfile
here.

GENERATETAGFILE When a file name is specified afterGENERATETAGFILE, doxygen will create
a tag file that is based on the input files it reads. See sectionDoxytag usagefor more information
about the usage of tag files.

ALLEXTERNALS If the ALLEXTERNALStag is set toYESall external class will be listed in the class
index. If set toNOonly the inherited external classes will be listed.

EXTERNALGROUPSIf the EXTERNALGROUPStag is set toYESall external groups will be listed in
the modules index. If set toNO, only the current project’s groups will be listed.

PERL PATH ThePERL PATHshould be the absolute path and name of the perl script interpreter (i.e. the
result of ‘which perl ’).

19.17 Dot options

CLASSDIAGRAMS If the CLASSDIAGRAMStag is set toYES (the default) doxygen will generate a
class diagram (in HTML and LATEX) for classes with base or super classes. Setting the tag toNO
turns the diagrams off. Note that this option is superseded by the HAVEDOT option below. This is
only a fallback. It is recommended to install and use dot, since it yields more powerful graphs.

HAVEDOT If you set theHAVEDOTtag toYESthen doxygen will assume the dot tool is available from
the path. This tool is part ofGraphviz , a graph visualization toolkit from AT&T and Lucent Bell
Labs. The other options in this section have no effect if this option is set toNO(the default)

CLASSGRAPH If the CLASSGRAPHandHAVEDOTtags are set toYES then doxygen will generate a
graph for each documented class showing the direct and indirect inheritance relations. Setting this
tag toYESwill force the theCLASSDIAGRAMStag to NO.

COLLABORATIONGRAPH If the COLLABORATIONGRAPHandHAVEDOTtags are set toYES then
doxygen will generate a graph for each documented class showing the direct and indirect implemen-
tation dependencies (inheritance, containment, and class references variables) of the class with other
documented classes.

TEMPLATERELATIONS If theTEMPLATERELATIONSandHAVEDOTtags are set toYESthen doxy-
gen will show the relations between templates and their instances.

HIDE UNDOCRELATIONS If set to YES, the inheritance and collaboration graphs will hide inheritance
and usage relations if the target is undocumented or is not a class.

INCLUDE GRAPH If the ENABLEPREPROCESSING, SEARCHINCLUDES, INCLUDE GRAPH, and
HAVEDOTtags are set toYESthen doxygen will generate a graph for each documented file showing
the direct and indirect include dependencies of the file with other documented files.

INCLUDEDBY GRAPH If the ENABLEPREPROCESSING, SEARCHINCLUDES, INCLUDEDBY -
GRAPH, andHAVEDOTtags are set toYESthen doxygen will generate a graph for each documented
header file showing the documented files that directly or indirectly include this file.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.research.att.com/sw/tools/graphviz/

19.18 Search engine options 68

CALL GRAPH If the CALL GRAPHandHAVEDOTtags are set toYESthen doxygen will generate a call
dependency graph for every global function or class method. Note that enabling this option will
significantly increase the time of a run. So in most cases it will be better to enable call graphs for
selected functions only using the\callgraph command.

GRAPHICALHIERARCHY If the GRAPHICALHIERARCHYandHAVEDOTtags are set toYES then
doxygen will graphical hierarchy of all classes instead of a textual one.

DOTIMAGEFORMATThe DOTIMAGE FORMAT tag can be used to set the image format of the images
generated by dot. Possible values are gif, jpg, and png. If left blank png will be used.

DOTPATH This tag can be used to specify the path where the dot tool can be found. If left blank, it is
assumed the dot tool can be found on the path.

DOTFILE DIRS This tag can be used to specify one or more directories that contain dot files that are
included in the documentation (see the\dotfile command).

MAXDOTGRAPHHEIGHT TheMAXDOTGRAPHHEIGHTtag can be used to set the maximum allows
height (in pixels) of the graphs generated by dot. If a graph becomes larger than this value, doxygen
will try to truncate the graph, so that it fits within the specified constraint. Beware that most browsers
cannot cope with very large images.

MAXDOTGRAPHDEPTH TheMAXDOTGRAPHDEPTHtag can be used to set the maximum depth of
the graphs generated by dot. A depth value of 3 means that only nodes reachable from the root
by following a path via at most 3 edges will be shown. Nodes that lay further from the root node
will be omitted. Note that setting this option to 1 or 2 may greatly reduce the computation time
needed for large code bases. Also note that a graph may be further truncated if the graph’s image
dimensions are not sufficient to fit the graph (seeMAX DOT GRAPH WIDTH andMAX DOT -
GRAPH HEIGHT). If 0 is used for the depth value (the default), the graph is not depth-constraint.

MAXDOTGRAPHWIDTH The MAXDOTGRAPHWIDTHtag can be used to set the maximum allowed
width (in pixels) of the graphs generated by dot. If a graph becomes larger than this value, doxygen
will try to truncate the graph, so that it fits within the specified constraint. Beware that most browsers
cannot cope with very large images.

GENERATELEGEND If the GENERATELEGENDtag is set toYES(the default) doxygen will generate a
legend page explaining the meaning of the various boxes and arrows in the dot generated graphs.

DOTCLEANUP If theDOTCLEANUPtag is set toYES(the default) doxygen will remove the intermediate
dot files that are used to generate the various graphs.

19.18 Search engine options

SEARCHENGINEThe SEARCHENGINEtag specifies whether or not the HTML output should con-
tain a search facility. Possible values areYES and NO. If set to YES, doxygen will pro-
duce a search index and a PHP script to search through the index. For this to work the doc-
umentation should be viewed via a web-server running PHP version 4.1.0 or higher. (See
http://www.php.net/manual/en/installation.php for installation instructions).

Examples

Suppose you have a simple project consisting of two files: a source fileexample.cc and a header file
example.h . Then a minimal configuration file is as simple as:

INPUT = example.cc example.h

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.php.net/manual/en/installation.php

19.18 Search engine options 69

Assuming the example makes use of Qt classes and perl is located in/usr/bin , a more realistic config-
uration file would be:

PROJECT_NAME = Example
INPUT = example.cc example.h
WARNINGS = YES
TAGFILES = qt.tag
PERL_PATH = /usr/bin/perl
SEARCHENGINE = NO

To generate the documentation for theQdbtTabular package I have used the following configuration
file:

PROJECT_NAME = QdbtTabular
OUTPUT_DIRECTORY = html
WARNINGS = YES
INPUT = examples/examples.doc src
FILE_PATTERNS = *.cc *.h
INCLUDE_PATH = examples
TAGFILES = qt.tag
PERL_PATH = /usr/local/bin/perl
SEARCHENGINE = YES

To regenerate the Qt-1.44 documentation from the sources, you could use the following config file:

PROJECT_NAME = Qt
OUTPUT_DIRECTORY = qt_docs
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
SEARCH_INCLUDES = YES
FULL_PATH_NAMES = YES
STRIP_FROM_PATH = $(QTDIR)/
PREDEFINED = USE_TEMPLATECLASS Q_EXPORT= \

QArrayT:=QArray \
QListT:=QList \
QDictT:=QDict \
QQueueT:=QQueue \
QVectorT:=QVector \
QPtrDictT:=QPtrDict \
QIntDictT:=QIntDict \
QStackT:=QStack \
QDictIteratorT:=QDictIterator \
QListIteratorT:=QListIterator \
QCacheT:=QCache \
QCacheIteratorT:=QCacheIterator \
QIntCacheT:=QIntCache \
QIntCacheIteratorT:=QIntCacheIterator \
QIntDictIteratorT:=QIntDictIterator \
QPtrDictIteratorT:=QPtrDictIterator

INPUT = $(QTDIR)/doc \
$(QTDIR)/src/widgets \
$(QTDIR)/src/kernel \
$(QTDIR)/src/dialogs \
$(QTDIR)/src/tools

FILE_PATTERNS = *.cpp *.h q*.doc
INCLUDE_PATH = $(QTDIR)/include
RECURSIVE = YES

For the Qt-2.1 sources I recommend to use the following settings:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

http://www.stack.nl/~dimitri/qdbttabular/index.html

70

PROJECT_NAME = Qt
PROJECT_NUMBER = 2.1
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
SOURCE_BROWSER = YES
INPUT = $(QTDIR)/src
FILE_PATTERNS = *.cpp *.h q*.doc
RECURSIVE = YES
EXCLUDE_PATTERNS = *codec.cpp moc_* */compat/* */3rdparty/*
ALPHABETICAL_INDEX = YES
COLS_IN_ALPHA_INDEX = 3
IGNORE_PREFIX = Q
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
INCLUDE_PATH = $(QTDIR)/include
PREDEFINED = Q_PROPERTY(x)= \

Q_OVERRIDE(x)= \
Q_EXPORT= \
Q_ENUMS(x)= \
"QT_STATIC_CONST=static const " \
_WS_X11_ \
INCLUDE_MENUITEM_DEF

EXPAND_ONLY_PREDEF = YES
EXPAND_AS_DEFINED = Q_OBJECT_FAKE Q_OBJECT ACTIVATE_SIGNAL_WITH_PARAM \

Q_VARIANT_AS

Here doxygen’s preprocessor is used to substitute some macro names that are normally substituted by the
C preprocessor, but without doing full macro expansion.

20 Special Commands

20.1 Introduction

All commands in the documentation start with a backslash (\) or an at-sign (@). If you prefer you can
replace all commands starting with a backslash below, by their counterparts that start with an at-sign.

Some commands have one or more arguments. Each argument has a certain range:

• If <sharp> braces are used the argument is a single word.

• If (round) braces are used the argument extends until the end of the line on which the command was
found.

• If {curly} braces are used the argument extends until the next paragraph. Paragraphs are delimited
by a blank line or by a section indicator.

If [square] brackets are used the argument is optional.

Here is an alphabetically sorted list of all commands with references to their documentation:

\a 20.76

\addindex 20.59

\addtogroup 20.2

\anchor 20.60

\arg 20.77

\attention 20.30

\author 20.31

\b 20.78

\brief 20.32

\bug 20.33

\c 20.79

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.1 Introduction 71

\callgraph 20.3

\class 20.4

\code 20.80

\copydoc 20.81

\date 20.34

\def 20.5

\defgroup 20.6

\deprecated 20.35

\dontinclude 20.68

\dot 20.82

\dotfile 20.83

\e 20.84

\else 20.36

\elseif 20.37

\em 20.85

\endcode 20.86

\enddot 20.87

\endhtmlonly 20.88

\endif 20.38

\endlatexonly 20.89

\endlink 20.61

\endverbatim 20.90

\endxmlonly 20.91

\enum 20.7

\example 20.8

\exception 20.39

\f$ 20.92

\f[20.93

\f] 20.94

\file 20.9

\fn 20.10

\hideinitializer 20.11

\htmlinclude 20.75

\htmlonly 20.95

\if 20.40

\ifnot 20.41

\image 20.96

\include 20.69

\ingroup 20.12

\internal 20.14

\invariant 20.42

\interface 20.13

\latexonly 20.97

\li 20.98

\line 20.70

\link 20.62

\mainpage 20.15

\n 20.99

\name 20.16

\namespace 20.17

\nosubgrouping 20.18

\note 20.43

\overload 20.19

\p 20.100

\package 20.20

\page 20.21

\par 20.44

\param 20.45

\post 20.46

\pre 20.47

\ref 20.63

\relates 20.22

\relatesalso 20.23

\remarks 20.48

\return 20.49

\retval 20.50

\sa 20.51

\section 20.64

\showinitializer 20.24

\since 20.52

\skip 20.71

\skipline 20.72

\struct 20.25

\subsection 20.65

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.2 \addtogroup<name> [(title)] 72

\subsubsection 20.66

\test 20.53

\throw 20.54

\todo 20.55

\typedef 20.26

\union 20.27

\until 20.73

\var 20.28

\verbatim 20.101

\verbinclude 20.74

\version 20.56

\warning 20.57

\weakgroup 20.29

\xmlonly 20.102

\xrefitem 20.58

\$ 20.107

\@ 20.104

\\ 20.103

\& 20.106

\∼ 20.105

\< 20.109

\> 20.110

\# 20.108

The following subsections provide a list of all commands that are recognized by doxygen. Unrecognized
commands are treated as normal text.

Structural indicators

20.2 \addtogroup<name> [(title)]

Defines a group just like\defgroup, but in contrast to that command using the same<name> more than
once will not result in a warning, but rather one group with a merged documentation and the first title found
in any of the commands.

The title is optional, so this command can also be used to add a number of entities to an existing group
using @{ and @} like this:

/*! \addtogroup mygrp
* Additional documentation for group ‘mygrp’
* @{
*/

/*!
* A function
*/

void func1()
{
}

/*! Another function */
void func2()
{
}

/*! @} */

See also:
pageGrouping, sections\defgroup, \ingroupand\weakgroup.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.3 \callgraph 73

20.3 \callgraph

When this command is put in a comment block of a function or method andHAVE DOT is set to YES,
then doxygen will generate a call graph for that function (provided the implementation of the function
or method calls other documented functions). The call graph will generated regardless of the value of
CALL GRAPH.

Note:
The completeness (and correctness) of the call graph depends on the doxygen code parser which is not
perfect.

20.4 \class<name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a class with name<name>. Optionally a
header file and a header name can be specified. If the header-file is specified, a link to a verbatim copy of
the header will be included in the HTML documentation. The<header-name> argument can be used to
overwrite the name of the link that is used in the class documentation to something other than<header-
file>. This can be useful if the include name is not located on the default include path (like<X11/X.h>).
With the<header-name> argument you can also specify how the include statement should look like, by
adding either quotes or sharp brackets around the name. Sharp brackets are used if just the name is given.

Example:
/* A dummy class */

class Test
{
};

/*! \class Test class.h "inc/class.h"
* \brief This is a test class.
*
* Some details about the Test class
*/

20.5 \def<name>

Indicates that a comment block contains documentation for a#define macro.

Example:
/*! \file define.h

\brief testing defines

This is to test the documentation of defines.
*/

/*!
\def MAX(x,y)
Computes the maximum of \a x and \a y.

*/

/*!
Computes the absolute value of its argument \a x.

*/
#define ABS(x) (((x)>0)?(x):-(x))
#define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)>(y)?(y):(x)) /*!< Computes the minimum of \a x and \a y. */

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.6 \defgroup<name> (group title) 74

20.6 \defgroup<name> (group title)

Indicates that a comment block contains documentation for agroupof classes, files or namespaces. This
can be used to categorize classes, files or namespaces, and document those categories. You can also use
groups as members of other groups, thus building a hierarchy of groups.

The<name> argument should be a single-word identifier.

See also:
pageGrouping, sections\ingroup, \addtogroup, \weakgroup.

20.7 \enum<name>

Indicates that a comment block contains documentation for an enumeration, with name<name>. If the
enum is a member of a class and the documentation block is located outside the class definition, the scope of
the class should be specified as well. If a comment block is located directly in front of an enum declaration,
the\enum comment may be omitted.

Note:
The type of an anonymous enum cannot be documented, but the values of an anonymous enum can.

Example:
class Test
{

public:
enum TEnum { Val1, Val2 };

/*! Another enum, with inline docs */
enum AnotherEnum
{

V1, /*!< value 1 */
V2 /*!< value 2 */

};
};

/*! \class Test
* The class description.
*/

/*! \enum Test::TEnum
* A description of the enum type.
*/

/*! \var Test::TEnum Test::Val1
* The description of the first enum value.
*/

20.8 \example<file-name>

Indicates that a comment block contains documentation for a source code example. The name of the
source file is<file-name>. The text of this file will be included in the documentation, just after the
documentation contained in the comment block. All examples are placed in a list. The source code is
scanned for documented members and classes. If any are found, the names are cross-referenced with the
documentation. Source files or directories can be specified using theEXAMPLE PATH tag of doxygen’s
configuration file.

If <file-name> itself is not unique for the set of example files specified by theEXAMPLE PATH tag, you
can include part of the absolute path to disambiguate it.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.9 \file [<name>] 75

If more that one source file is needed for the example, the\include command can be used.

Example:
/** A Test class.

* More details about this class.
*/

class Test
{

public:
/** An example member function.

* More details about this function.
*/

void example();
};

void Test::example() {}

/** \example example_test.cpp
* This is an example of how to use the Test class.
* More details about this example.
*/

Where the example fileexample test.cpp looks as follows:

void main()
{

Test t;
t.example();

}

See also:
section\include.

20.9 \file [<name>]

Indicates that a comment block contains documentation for a source or header file with name<name>.
The file name may include (part of) the path if the file-name alone is not unique. If the file name is omitted
(i.e. the line after\file is left blank) then the documentation block that contains the\file command will
belong to the file it is located in.

Important:
The documentation of global functions, variables, typedefs, and enums will only be included in the
output if the file they are in is documented as well.

Example:
/** \file file.h

* A brief file description.
* A more elaborated file description.
*/

/**
* A global integer value.
* More details about this value.
*/

extern int globalValue;

20.10 \fn (function declaration)

Indicates that a comment block contains documentation for a function (either global or as a member of a
class). This command isonly needed if a comment block isnot placed in front (or behind) the function

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.11 \hideinitializer 76

declaration or definition.

If your comment blockis in front of the function declaration or definition this command can (and to avoid
redundancy should) be omitted.

A full function declaration including arguments should be specified after the\fn command on asingleline,
since the argument ends at the end of the line!

Warning:
Do not use this command if it is not absolutely needed, since it will lead to duplication of information
and thus to errors.

Example:
class Test
{

public:
const char *member(char,int) throw(std::out_of_range);

};

const char *Test::member(char c,int n) throw(std::out_of_range) {}

/*! \class Test
* \brief Test class.
*
* Details about Test.
*/

/*! \fn const char *Test::member(char c,int n)
* \brief A member function.
* \param c a character.
* \param n an integer.
* \exception std::out_of_range parameter is out of range.
* \return a character pointer.
*/

See also:
section\varand\typedef.

20.11 \hideinitializer

By default the value of a define and the initializer of a variable are displayed unless they are longer than 30
lines. By putting this command in a comment block of a define or variable, the initializer is always hidden.

See also:
section\showinitializer.

20.12 \ingroup (<groupname> [<groupname> <groupname>])

If the \ingroup command is placed in a comment block of a class, file or namespace, then it will be added
to the group or groups identified by<groupname>.

See also:
pageGrouping, sections\defgroup, \addtogroupand\weakgroup

20.13 \interface

Indicates that a comment block contains documentation for an interface with name<name>. The argu-
ments are equal to the\class command.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.14 \internal 77

See also:
section\class.

20.14 \internal

This command writes the message ‘For internal use only’ to the output and all textafter an\internal
command until the end of the comment block or the end of the section (whichever comes first) is marked
as ”internal”.

If the\internal command is put inside a section (see for example\section) all subsection after the command
are considered to be internal as well. Only a new section at the same level will be visible again.

You can useINTERNAL DOCSin the config file to show or hide the internal documentation.

20.15 \mainpage [(title)]

If the \mainpage command is placed in a comment block the block is used to customize the index page (in
HTML) or the first chapter (in LATEX).

The title argument is optional and replaces the default title that doxygen normally generates. If you do not
want any title you can specifynotitle as the argument of\mainpage.

Here is an example:

/*! \mainpage My Personal Index Page
*
* \section intro Introduction
*
* This is the introduction.
*
* \section install Installation
*
* \subsection step1 Step 1: Opening the box
*
* etc...
*/

You can refer to the main page using\ref index (if the treeview is disabled, otherwise you should use\ref
main).

See also:
section\section, section\subsectionand section\page.

20.16 \name (header)

This command turns a comment block into a header definition of a member group. The comment block
should be followed by a//@ { ... //@ } block containing the members of the group.

See sectionMember Groupsfor an example.

20.17 \namespace<name>

Indicates that a comment block contains documentation for a namespace with name<name>.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.18 \nosubgrouping 78

20.18 \nosubgrouping

This command can be put in the documentation of a class. It can be used in combination with member
grouping to avoid that doxygen puts a member group as a subgroup of a Public/Protected/Private/... section.

20.19 \overload [(function declaration)]

This command can be used to generate the following standard text for an overloaded member function:

‘This is an overloaded member function, provided for convenience. It differs from the above function only
in what argument(s) it accepts.’

If the documentation for the overloaded member function is not located in front of the function declaration
or definition, the optional argument should be used to specify the correct function.

Any other documentation that is inside the documentation block will by appended after the generated
message.

Note 1:
You are responsible that there is indeed an earlier documented member that is overloaded by this one.
To prevent that document reorders the documentation you should setSORTMEMBER DOCSto NO
in this case.

Note 2:
The\overload command does not work inside a one-line comment.

Example:
class Test
{

public:
void drawRect(int,int,int,int);
void drawRect(const Rect &r);

};

void Test::drawRect(int x,int y,int w,int h) {}
void Test::drawRect(const Rect &r) {}

/*! \class Test
* \brief A short description.
*
* More text.
*/

/*! \fn void Test::drawRect(int x,int y,int w,int h)
* This command draws a rectangle with a left upper corner at (\a x , \a y),
* width \a w and height \a h.
*/

/*!
* \overload void Test::drawRect(const Rect &r)
*/

20.20 \package<name>

Indicates that a comment block contains documentation for a Java package with name<name>.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.21 \page<name> (title) 79

20.21 \page<name> (title)

Indicates that a comment block contains a piece of documentation that is not directly related to one specific
class, file or member. The HTML generator creates a page containing the documentation. The LATEX
generator starts a new section in the chapter ‘Page documentation’.

Example:
/*! \page page1 A documentation page

Leading text.
\section sec An example section
This page contains the subsections \ref subsection1 and \ref subsection2.
For more info see page \ref page2.
\subsection subsection1 The first subsection
Text.
\subsection subsection2 The second subsection
More text.

*/

/*! \page page2 Another page
Even more info.

*/

Note:
The<name> argument consists of a combination of letters and number digits. If you wish to use upper
case letters (e.g.MYPAGE1), or mixed case letters (e.g.MyPage1) in the<name> argument, you
should setCASESENSENAMESto YES. However, this is advisable only if your file system is case
sensitive. Otherwise (and for better portability) you should use all lower case letters (e.g.mypage1)
for <name> in all references to the page.

See also:
section\section, section\subsection, and section\ref.

20.22 \relates<name>

This command can be used in the documentation of a non-member function<name>. It puts the function
inside the ‘related function’ section of the class documentation. This command is useful for documenting
non-friend functions that are nevertheless strongly coupled to a certain class. It prevents the need of having
to document a file, but only works for functions.

Example:
/*!

* A String class.
*/

class String
{

friend int strcmp(const String &,const String &);
};

/*!
* Compares two strings.
*/

int strcmp(const String &s1,const String &s2)
{
}

/*! \relates String
* A string debug function.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.23 \relatesalso<name> 80

*/

void stringDebug()
{
}

20.23 \relatesalso<name>

This command can be used in the documentation of a non-member function<name>. It puts the function
both inside the ‘related function’ section of the class documentation as well as leaving its normal file doc-
umentation location. This command is useful for documenting non-friend functions that are nevertheless
strongly coupled to a certain class. It only works for functions.

Example:
/*!

* A String class.
*/

class String
{

friend int strcmp(const String &,const String &);
};

/*!
* Compares two strings.
*/

int strcmp(const String &s1,const String &s2)
{
}

/*! \relates String
* A string debug function.
*/

void stringDebug()
{
}

20.24 \showinitializer

By default the value of a define and the initializer of a variable are only displayed if they are less than 30
lines long. By putting this command in a comment block of a define or variable, the initializer is shown
unconditionally.

See also:
section\hideinitializer.

20.25 \struct <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a struct with name<name>. The arguments
are equal to the\class command.

See also:
section\class.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.26 \typedef (typedef declaration) 81

20.26 \typedef (typedef declaration)

Indicates that a comment block contains documentation for a typedef (either global or as a member of a
class). This command is equivalent to\var and\fn.

See also:
section\fn and\var.

20.27 \union <name> [<header-file>] [<header-name>]

Indicates that a comment block contains documentation for a union with name<name>. The arguments
are equal to the\class command.

See also:
section\class.

20.28 \var (variable declaration)

Indicates that a comment block contains documentation for a variable or enum value (either global or as a
member of a class). This command is equivalent to\typedef and\fn.

See also:
section\fn and\typedef.

20.29 \weakgroup<name> [(title)]

Can be used exactly like\addtogroup, but has a lower priority when it comes to resolving conflicting
grouping definitions.

See also:
pageGroupingand\addtogroup.

Section indicators

20.30 \attention { attention text }

Starts a paragraph where a message that needs attention may be entered. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacent\attention commands will be joined into a single paragraph. The
\attention command ends when a blank line or some other sectioning command is encountered.

20.31 \author { list of authors }

Starts a paragraph where one or more author names may be entered. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacent\author commands will be joined into a single paragraph and
separated by commas. Alternatively, one\author command may mention several authors. The\author
command ends when a blank line or some other sectioning command is encountered.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.32 \brief {brief description} 82

Example:
/*! \class WindowsNT

* \brief Windows Nice Try.
* \author Bill Gates
* \author Several species of small furry animals gathered together
* in a cave and grooving with a pict.
* \version 4.0
* \date 1996-1998
* \bug It crashes a lot and requires huge amounts of memory.
* \bug The class introduces the more bugs, the longer it is used.
* \warning This class may explode in your face.
* \warning If you inherit anything from this class, you’re doomed.
*/

class WindowsNT {};

20.32 \brief {brief description}

Starts a paragraph that serves as a brief description. For classes and files the brief description will be used
in lists and at the start of the documentation page. For class and file members, the brief description will be
placed at the declaration of the member and prepended to the detailed description. A brief description may
span several lines (although it is advised to keep it brief!). A brief description ends when a blank line or
another sectioning command is encountered. If multiple\brief commands are present they will be joined.
See section\authorfor an example.

Synonymous to\short.

20.33 \bug { bug description}

Starts a paragraph where one or more bugs may be reported. The paragraph will be indented. The text of
the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent\bug commands will be joined into a single paragraph. Each bug description
will start on a new line. Alternatively, one\bug command may mention several bugs. The\bug command
ends when a blank line or some other sectioning command is encountered. See section\authorfor an
example.

20.34 \date{ date description}

Starts a paragraph where one or more dates may be entered. The paragraph will be indented. The text of
the paragraph has no special internal structure. All visual enhancement commands may be used inside the
paragraph. Multiple adjacent\date commands will be joined into a single paragraph. Each date description
will start on a new line. Alternatively, one\date command may mention several dates. The\date command
ends when a blank line or some other sectioning command is encountered. See section\authorfor an
example.

20.35 \deprecated{ description }

Starts a paragraph indicating that this documentation block belongs to a deprecated entity. Can be used to
describe alternatives, expected life span, etc.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.36 \else 83

20.36 \else

Starts a conditional section if the previous conditional section was not enabled. The previous section should
have been started with a\if , \ifnot , or \elseif command.

See also:
\if , \ifnot, \elseif, \endif.

20.37 \elseif<section-label>

Starts a conditional documentation section if the previous section was not enabled. A conditional section
is disabled by default. To enable it you must put the section-label after theENABLED SECTIONStag in
the configuration file. Conditional blocks can be nested. A nested section is only enabled if all enclosing
sections are enabled as well.

See also:
sections\endif, \ifnot, \else, and\elseif.

20.38 \endif

Ends a conditional section that was started with\if or \ifnot For each\if or \ifnot one and only
one matching\endif must follow.

See also:
\if , and\ifnot.

20.39 \exception<exception-object> { exception description}

Starts an exception description for an exception object with name<exception-object>. Followed by a
description of the exception. The existence of the exception object is not checked. The text of the paragraph
has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent\exception commands will be joined into a single paragraph. Each parameter description
will start on a new line. The\exception description ends when a blank line or some other sectioning
command is encountered. See section\fn for an example.

Note:
the tag\exceptions is a synonym for this tag.

20.40 \if <section-label>

Starts a conditional documentation section. The section ends with a matching\endif command. A
conditional section is disabled by default. To enable it you must put the section-label after theENABLED -
SECTIONStag in the configuration file. Conditional blocks can be nested. A nested section is only enabled
if all enclosing sections are enabled as well.

Example:
/*! Unconditionally shown documentation.

* \if Cond1
* Only included if Cond1 is set.
* \endif
* \if Cond2

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.41 \ifnot <section-label> 84

* Only included if Cond2 is set.
* \if Cond3
* Only included if Cond2 and Cond3 are set.
* \endif
* More text.
* \endif
* Unconditional text.
*/

You can also use conditional commands inside aliases. To document a class in two languages you could
for instance use:

Example 2:
/*! \english

* This is English.
* \endenglish
* \dutch
* Dit is Nederlands.
* \enddutch
*/

class Example
{
};

Where the following aliases are defined in the configuration file:

ALIASES = "english=\if english" \
"endenglish=\endif" \
"dutch=\if dutch" \
"enddutch=\endif"

andENABLEDSECTIONScan be used to enable eitherenglish or dutch .

See also:
sections\endif, \ifnot, \else, and\elseif.

20.41 \ifnot <section-label>

Starts a conditional documentation section. The section ends with a matching\endif command. This
conditional section is enabled by default. To disable it you must put the section-label after theENABLED -
SECTIONStag in the configuration file.

See also:
sections\endif, \if , \else, and\elseif.

20.42 \invariant { description of invariant }

Starts a paragraph where the invariant of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacent\invariant commands will be joined into a single paragraph.
Each invariant description will start on a new line. Alternatively, one\invariant command may mention
several invariants. The\invariant command ends when a blank line or some other sectioning command is
encountered.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.43 \note{ text } 85

20.43 \note{ text }

Starts a paragraph where a note can be entered. The paragraph will be indented. The text of the paragraph
has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent\note commands will be joined into a single paragraph. Each note description will start
on a new line. Alternatively, one\note command may mention several notes. The\note command ends
when a blank line or some other sectioning command is encountered. See section\parfor an example.

20.44 \par [(paragraph title)] { paragraph }

If a paragraph title is given this command starts a paragraph with a user defined heading. The heading
extends until the end of the line. The paragraph following the command will be indented.

If no paragraph title is given this command will start a new paragraph. This will also work inside other
paragraph commands (like\param or\warning) without ending the that command.

The text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. The\par command ends when a blank line or some other sectioning command is
encountered.

Example:
/*! \class Test

* Normal text.
*
* \par User defined paragraph:
* Contents of the paragraph.
*
* \par
* New paragraph under the same heading.
*
* \note
* This note consists of two paragraphs.
* This is the first paragraph.
*
* \par
* And this is the second paragraph.
*
* More normal text.
*/

class Test {};

20.45 \param <parameter-name> { parameter description}

Starts a parameter description for a function parameter with name<parameter-name>. Followed by a
description of the parameter. The existence of the parameter is not checked. The text of the paragraph
has no special internal structure. All visual enhancement commands may be used inside the paragraph.
Multiple adjacent\param commands will be joined into a single paragraph. Each parameter description
will start on a new line. The\param description ends when a blank line or some other sectioning command
is encountered. See section\fn for an example.

20.46 \post{ description of the postcondition}

Starts a paragraph where the postcondition of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be used

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.47 \pre { description of the precondition} 86

inside the paragraph. Multiple adjacent\post commands will be joined into a single paragraph. Each post-
condition will start on a new line. Alternatively, one\post command may mention several postconditions.
The\post command ends when a blank line or some other sectioning command is encountered.

20.47 \pre { description of the precondition}

Starts a paragraph where the precondition of an entity can be described. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacent\pre commands will be joined into a single paragraph. Each
precondition will start on a new line. Alternatively, one\pre command may mention several preconditions.
The\pre command ends when a blank line or some other sectioning command is encountered.

20.48 \remarks { remark text }

Starts a paragraph where one or more remarks may be entered. The paragraph will be indented. The text
of the paragraph has no special internal structure. All visual enhancement commands may be used inside
the paragraph. Multiple adjacent\remark commands will be joined into a single paragraph. Each remark
will start on a new line. Alternatively, one\remark command may mention several remarks. The\remark
command ends when a blank line or some other sectioning command is encountered.

20.49 \return { description of the return value }

Starts a return value description for a function. The text of the paragraph has no special internal structure.
All visual enhancement commands may be used inside the paragraph. Multiple adjacent\return commands
will be joined into a single paragraph. The\return description ends when a blank line or some other
sectioning command is encountered. See section\fn for an example.

20.50 \retval <return value> { description }

Starts a return value description for a function with name<return value>. Followed by a description of
the return value. The text of the paragraph that forms the description has no special internal structure. All
visual enhancement commands may be used inside the paragraph. Multiple adjacent\retval commands
will be joined into a single paragraph. Each return value description will start on a new line. The\retval
description ends when a blank line or some other sectioning command is encountered.

20.51 \sa{ references}

Starts a paragraph where one or more cross-references to classes, functions, methods, variables, files or
URL may be specified. Two names joined by either:: or # are understood as referring to a class and
one of its members. One of several overloaded methods or constructors may be selected by including a
parenthesized list of argument types after the method name.

Synonymous to\see.

See also:
sectionautolinkfor information on how to create links to objects.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.52 \since{ text } 87

20.52 \since{ text }

This tag can be used to specify since when (version or time) an entity is available. The paragraph that
follows\since does not have any special internal structure. All visual enhancement commands may be used
inside the paragraph. The\since description ends when a blank line or some other sectioning command is
encountered.

20.53 \test{ paragraph describing a test case}

Starts a paragraph where a test case can be described. The description will also add the test case to a
separate test list. The two instances of the description will be cross-referenced. Each test case in the test
list will be preceded by a header that indicates the origin of the test case.

20.54 \throw <exception-object> { exception description}

Synonymous to\exception (see section\exception).

Note:
the tag\throws is a synonym for this tag.

20.55 \todo { paragraph describing what is to be done}

Starts a paragraph where a TODO item is described. The description will also add an item to a separate
TODO list. The two instances of the description will be cross-referenced. Each item in the TODO list will
be preceded by a header that indicates the origin of the item.

20.56 \version{ version number}

Starts a paragraph where one or more version strings may be entered. The paragraph will be indented. The
text of the paragraph has no special internal structure. All visual enhancement commands may be used
inside the paragraph. Multiple adjacent\version commands will be joined into a single paragraph. Each
version description will start on a new line. Alternatively, one\version command may mention several
version strings. The\version command ends when a blank line or some other sectioning command is
encountered. See section\authorfor an example.

20.57 \warning { warning message}

Starts a paragraph where one or more warning messages may be entered. The paragraph will be indented.
The text of the paragraph has no special internal structure. All visual enhancement commands may be
used inside the paragraph. Multiple adjacent\warning commands will be joined into a single paragraph.
Each warning description will start on a new line. Alternatively, one\warning command may mention
several warnings. The\warning command ends when a blank line or some other sectioning command is
encountered. See section\authorfor an example.

20.58 \xrefitem <key> ”(heading)” ”(list title)” {text}

This command is a generalization of commands such as\todo and\bug. It can be used to create user-
defined text sections which are automatically cross-referenced between the place of occurrence and a re-
lated page, which will be generated. On the related page all sections of the same type will be collected.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.59 \addindex (text) 88

The first argument<key> is a identifier uniquely representing the type of the section. The second argument
is a quoted string representing the heading of the section under which text passed as the forth argument is
put. The third argument (list title) is used as the title for the related page containing all items with the same
key. The keys ”todo”, ”test”, ”bug”, and ”deprecated” are predefined.

To get an idea on how to use the\xrefitem command and what its effect is, consider the todo list, which
(for English output) can be seen an alias for the command

\xrefitem todo "Todo" "Todo List"

Since it is very tedious and error-prone to repeat the first three parameters of the command for each section,
the command is meant to be used in combination with theALIASES option in the configuration file. To
define a new command\reminder, for instance, one should add the following line to the configuration file:

ALIASES += "reminder=\xrefitem reminders \"Reminder\" \"Reminders\""

Note the use of escaped quotes for the second and third argument of the\xrefitem command.

Commands to create links

20.59 \addindex (text)

This command adds (text) to the LATEX index.

20.60 \anchor<word>

This command places an invisible, named anchor into the documentation to which you can refer with the
\ref command.

Note:
Anchors can currently only be put into a comment block that is marked as a page (using\page) or
mainpage (\mainpage).

See also:
section\ref.

20.61 \endlink

This command ends a link that is started with the\link command.

See also:
section\link.

20.62 \link <link-object>

The links that are automatically generated by doxygen always have the name of the object they point to as
link-text.

The\link command can be used to create a link to an object (a file, class, or member) with a user specified
link-text. The link command should end with an\endlink command. All text between the\link and
\endlink commands serves as text for a link to the<link-object> specified as the first argument of\link.

See sectionautolinkfor more information on automatically generated links and valid link-objects.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.63 \ref <name> [”(text)”] 89

20.63 \ref <name> [”(text)”]

Creates a reference to a named section, subsection, page or anchor. For HTML documentation the reference
command will generate a link to the section. For a sections or subsections the title of the section will be
used as the text of the link. For anchor the optional text between quotes will be used or<name> if no text
is specified. For LATEX documentation the reference command will generate a section number for sections
or the text followed by a page number if<name> refers to an anchor.

See also:
Section\pagefor an example of the\ref command.

20.64 \section<section-name> (section title)

Creates a section with name<section-name>. The title of the section should be specified as the second
argument of the\section command.

Warning:
This command only works inside related page documentation andnot in other documentation blocks!

20.65 \subsection<subsection-name> (subsection title)

Creates a subsection with name<subsection-name>. The title of the subsection should be specified as the
second argument of the\subsection command.

Warning:
This command only works inside a section of a related page documentation block andnot in other
documentation blocks!

See also:
Section\pagefor an example of the\subsectioncommand.

20.66 \subsubsection<subsubsection-name> (subsubsection title)

Creates a subsubsection with name<subsubsection-name>. The title of the subsubsection should be
specified as the second argument of the\subsubsection command.

Warning:
This command only works inside a subsection of a related page documentation block andnot in other
documentation blocks!

See also:
Section\pagefor an example of the\subsubsectioncommand.

20.67 \paragraph <paragraph-name> (paragraph title)

Creates a named paragraph with name<paragraph-name>. The title of the paragraph should be specified
as the second argument of the\paragraph command.

Warning:
This command only works inside a subsubsection of a related page documentation block andnot in
other documentation blocks!

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.68 \dontinclude<file-name> 90

See also:
Section\pagefor an example of the\paragraphcommand.

Commands for displaying examples

20.68 \dontinclude<file-name>

This command can be used to parse a source file without actually verbatim including it in the documentation
(as the\include command does). This is useful if you want to divide the source file into smaller pieces and
add documentation between the pieces. Source files or directories can be specified using theEXAMPLE -
PATH tag of doxygen’s configuration file.

The class and member declarations and definitions inside the code fragment are ‘remembered’ during the
parsing of the comment block that contained the\dontinclude command.

For line by line descriptions of source files, one or more lines of the example can be displayed using
the \line, \skip, \skipline, and\until commands. An internal pointer is used for these commands. The
\dontinclude command sets the pointer to the first line of the example.

Example:
/*! A test class. */

class Test
{

public:
/// a member function
void example();

};

/*! \page example
* \dontinclude example_test.cpp
* Our main function starts like this:
* \skip main
* \until {
* First we create a object \c t of the Test class.
* \skipline Test
* Then we call the example member function
* \line example
* After that our little test routine ends.
* \line }
*/

Where the example fileexample test.cpp looks as follows:

void main()
{

Test t;
t.example();

}

See also:
sections\line, \skip, \skipline, and\until.

20.69 \include<file-name>

This command can be used to include a source file as a block of code. The command takes the name of an
include file as an argument. Source files or directories can be specified using theEXAMPLE PATH tag of
doxygen’s configuration file.

If <file-name> itself is not unique for the set of example files specified by theEXAMPLE PATH tag, you
can include part of the absolute path to disambiguate it.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.70 \line (pattern) 91

Using the\include command is equivalent to inserting the file into the documentation block and surround-
ing it with \codeand\endcodecommands.

The main purpose of the\include command is to avoid code duplication in case of example blocks that
consist of multiple source and header files.

For a line by line description of a source files use the\dontincludecommand in combination with the\line,
\skip, \skipline, and\until commands.

See also:
section\exampleand\dontinclude.

20.70 \line (pattern)

This command searches line by line through the example that was last included using\include or
\dontinclude until it finds a non-blank line. If that line contains the specified pattern, it is written to
the output.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following the non-blank line that was found (or to the end of the example if no such line could be found).

See section\dontincludefor an example.

20.71 \skip (pattern)

This command searches line by line through the example that was last included using\include or
\dontinclude until it finds a line that contains the specified pattern.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
that contains the specified pattern (or to the end of the example if the pattern could not be found).

See section\dontincludefor an example.

20.72 \skipline (pattern)

This command searches line by line through the example that was last included using\include or
\dontinclude until it finds a line that contains the specified pattern. It then writes the line to the output.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following the line that is written (or to the end of the example if the pattern could not be found).

Note:
The command:

\skipline pattern

is equivalent to:

\skip pattern
\line pattern

See section\dontincludefor an example.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.73 \until (pattern) 92

20.73 \until (pattern)

This command writes all lines of the example that was last included using\include or\dontinclude to the
output, until it finds a line containing the specified pattern. The line containing the pattern will be written
as well.

The internal pointer that is used to keep track of the current line in the example, is set to the start of the line
following last written line (or to the end of the example if the pattern could not be found).

See section\dontincludefor an example.

20.74 \verbinclude<file-name>

This command includes the file<file-name> verbatim in the documentation. The command is equivalent
to pasting the file in the documentation and placing\verbatim and\endverbatim commands around it.

Files or directories that doxygen should look for can be specified using theEXAMPLE PATH tag of doxy-
gen’s configuration file.

20.75 \htmlinclude <file-name>

This command includes the file<file-name> as is in the HTML documentation. The command is equiv-
alent to pasting the file in the documentation and placing\htmlonly and\endhtmlonly commands around
it.

Files or directories that doxygen should look for can be specified using theEXAMPLE PATH tag of doxy-
gen’s configuration file.

Commands for visual enhancements

20.76 \a<word>

Displays the argument<word> using a special font. Use this command to refer to member arguments in
the running text.

Example:
... the \a x and \a y coordinates are used to ...

This will result in the following text:
... thex andy coordinates are used to ...

20.77 \arg { item-description }

This command has one argument that continues until the first blank line or until another\arg is encountered.
The command can be used to generate a simple, not nested list of arguments. Each argument should start
with a\arg command.

Example:
Typing:

\arg \c AlignLeft left alignment.
\arg \c AlignCenter center alignment.
\arg \c AlignRight right alignment

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.78 \b <word> 93

No other types of alignment are supported.

will result in the following text:

• AlignLeft left alignment.

• AlignCenter center alignment.

• AlignRight right alignment

No other types of alignment are supported.

Note:
For nested lists, HTML commands should be used.

Equivalent to\li

20.78 \b <word>

Displays the argument<word> using a bold font. Equivalent toword. To put multiple words
in bold usemultiple words.

20.79 \c<word>

Displays the argument<word> using a typewriter font. Use this to refer to a word of code. Equivalent to
<tt>word</tt>.

Example:
Typing:

... This function returns \c void and not \c int ...

will result in the following text:
... This function returnsvoid and notint ...

Equivalent to\p To have multiple words in typewriter font use<tt>multiple words</tt>.

20.80 \code

Starts a block of code. A code block is treated differently from ordinary text. It is interpreted as C/C++
code. The names of the classes and members that are documented are automatically replaced by links to
the documentation.

See also:
section\endcode, section\verbatim

20.81 \copydoc<link-object>

Copies a documentation block from the object specified by<link-object> and pastes it at the location of
the command. This command can be useful to avoid cases where a documentation block would otherwise
have to be duplicated or it can be used to extend the documentation of an inherited member.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.82 \dot 94

The link object can point to a member (of a class, file or group), a class, a namespace, a group, a page, or a
file (checked in that order). Note that if the object pointed to is a member (function, variable, typedef, etc),
the compound (class, file, or group) containing it should also be documented for the copying to work.

To copy the documentation for a member of a class for instance one can put the following in the documen-
tation

/*! @copydoc MyClass::myfunction()
* More documentation.
*/

if the member is overloaded, you should specify the argument types explicitly (without spaces!), like in the
following:

/*! @copydoc MyClass::myfunction(type1,type2) */

Qualified names are only needed if the context in which the documentation block is found requires them.

The copydoc command can be used recursively, but cycles in the copydoc relation will be broken and
flagged as an error.

20.82 \dot

Starts a text fragment which should contain a valid description of a dot graph. The text fragment ends with
\enddot. Doxygen will pass the text on to dot and include the resulting image (and image map) into the
output. The nodes of a graph can be made clickable by using the URL attribute. By using the command
\ref inside the URL value you can conveniently link to an item inside doxygen. Here is an example:

/*! class B */
class B {};

/*! class C */
class C {};

/*! \mainpage

Class relations expressed via an inline dot graph:
\dot
digraph example {

node [shape=record, fontname=Helvetica, fontsize=10];
b [label="class B" URL="\ref B"];
c [label="class C" URL="\ref C"];
b -> c [arrowhead="open", style="dashed"];

}
\enddot
Note that the classes in the above graph are clickable
(in the HTML output).

*/

20.83 \dotfile <file> [”caption”]

Inserts an image generated by dot from<file> into the documentation.

The first argument specifies the file name of the image. doxygen will look for files in the paths (or files)
that you specified after theDOTFILE DIRS tag. If the dot file is found it will be used as an input file to
the dot tool. The resulting image will be put into the correct output directory. If the dot file name contains
spaces you’ll have to put quotes (”) around it.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.84 \e<word> 95

The second argument is optional and can be used to specify the caption that is displayed below the image.
This argument has to be specified between quotes even if it does not contain any spaces. The quotes are
stripped before the caption is displayed.

20.84 \e<word>

Displays the argument<word> in italics. Use this command to emphasize words.

Example:
Typing:

... this is a \e really good example ...

will result in the following text:
... this is areally good example ...

Equivalent to\em. To emphasis multiple words usemultiple words.

20.85 \em<word>

Displays the argument<word> in italics. Use this command to emphasize words.

Example:
Typing:

... this is a \em really good example ...

will result in the following text:
... this is areally good example ...

Equivalent to\e

20.86 \endcode

Ends a block of code.

See also:
section\code

20.87 \enddot

Ends a blocks that was started with\dot.

20.88 \endhtmlonly

Ends a block of text that was started with a\htmlonly command.

See also:
section\htmlonly.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.89 \endlatexonly 96

20.89 \endlatexonly

Ends a block of text that was started with a\latexonly command.

See also:
section\latexonly.

20.90 \endverbatim

Ends a block of text that was started with a\verbatim command.

See also:
section\verbatim.

20.91 \endxmlonly

Ends a block of text that was started with a\xmlonly command.

See also:
section\xmlonly.

20.92 \f$

Marks the start and end of an in-text formula.

See also:
sectionformulasfor an example.

20.93 \f[

Marks the start of a long formula that is displayed centered on a separate line.

See also:
section\f] and sectionformulas.

20.94 \f]

Marks the end of a long formula that is displayed centered on a separate line.

See also:
section\f[and sectionformulas.

20.95 \htmlonly

Starts a block of text that will be verbatim included in the generated HTML documentation only. The block
ends with a endhtmlonly command.

This command can be used to include HTML code that is too complex for doxygen (i.e. applets, java-
scripts, and HTML tags that require attributes). You can use the\latexonly and\endlatexonly pair to
provide a proper LATEX alternative.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.96 \image<format> <file> [”caption”] [<sizeindication>=<size>] 97

Note: environment variables (like $(HOME)) are resolved inside a HTML-only block.

See also:
section\htmlonlyand section\latexonly.

20.96 \image<format> <file> [”caption”] [<sizeindication>=<size>]

Inserts an image into the documentation. This command is format specific, so if you want to insert an
image for more than one format you’ll have to repeat this command for each format.

The first argument specifies the output format. Currently, the following values are supported:html and
latex .

The second argument specifies the file name of the image. doxygen will look for files in the paths (or files)
that you specified after theIMAGE PATH tag. If the image is found it will be copied to the correct output
directory. If the image name contains spaces you’ll have to put quotes (”) around it. You can also specify
an absolute URL instead of a file name, but then doxygen does not copy the image nor check its existance.

The third argument is optional and can be used to specify the caption that is displayed below the image.
This argument has to be specified between quotes even if it does not contain any spaces. The quotes are
stripped before the caption is displayed.

The fourth argument is also optional and can be used to specify the width or height of the image. This
is only useful for LATEX output (i.e. format=latex). Thesizeindication can be eitherwidth or
height . The size should be a valid size specifier in LATEX (for example10cm or 6in or a symbolic width
like \textwidth).

Here is example of a comment block:

/*! Here is a snapshot of my new application:
* \image html application.jpg
* \image latex application.eps "My application" width=10cm
*/

And this is an example of how the relevant part of the configuration file may look:

IMAGE_PATH = my_image_dir

Warning:
The image format for HTML is limited to what your browser supports. For LATEX, the image format
must be Encapsulated PostScript (eps).
Doxygen does not check if the image is in the correct format. Soyou have to make sure this is the
case!

20.97 \latexonly

Starts a block of text that will be verbatim included in the generated LATEX documentation only. The block
ends with a endlatexonly command.

This command can be used to include LATEX code that is too complex for doxygen (i.e. images, formu-
las, special characters). You can use the\htmlonly and\endhtmlonly pair to provide a proper HTML
alternative.

Note: environment variables (like $(HOME)) are resolved inside a LATEX-only block.

See also:
section\latexonlyand section\htmlonly.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.98 \li { item-description } 98

20.98 \li { item-description }

This command has one argument that continues until the first blank line or until another\li is encountered.
The command can be used to generate a simple, not nested list of arguments. Each argument should start
with a\li command.

Example:
Typing:

\li \c AlignLeft left alignment.
\li \c AlignCenter center alignment.
\li \c AlignRight right alignment

No other types of alignment are supported.

will result in the following text:

• AlignLeft left alignment.

• AlignCenter center alignment.

• AlignRight right alignment

No other types of alignment are supported.

Note:
For nested lists, HTML commands should be used.

Equivalent to\arg

20.99 \n

Forces a new line. Equivalent to
 and inspired by the printf function.

20.100 \p <word>

Displays the parameter<word> using a typewriter font. You can use this command to refer to member
function parameters in the running text.

Example:
... the \p x and \p y coordinates are used to ...

This will result in the following text:
... thex andy coordinates are used to ...

Equivalent to\c

20.101 \verbatim

Starts a block of text that will be verbatim included in both the HTML and the LATEX documentation. The
block should end with a\endverbatim block. All commands are disabled in a verbatim block.

Warning:
Make sure you include a\endverbatim command for each\verbatim command or the parser will get
confused!

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.102 \xmlonly 99

20.102 \xmlonly

Starts a block of text that will be verbatim included in the generated XML output only. The block ends
with a endxmlonly command.

This command can be used to include custom XML tags.

See also:
section\htmlonlyand section\latexonly.

20.103 \\

This command writes a backslash character (\) to the HTML and LATEX output. The backslash has to be
escaped in some cases because doxygen uses it to detect commands.

20.104 \@

This command writes an at-sign (@) to the HTML and LATEX output. The at-sign has to be escaped in some
cases because doxygen uses it to detect JavaDoc commands.

20.105 \∼[LanguageId]

This command enables/disables a language specific filter. This can be used to put documentation for
different language into one comment block and use theOUTPUTLANGUAGEtag to filter out only a specific
language. Use\∼languageid to enable output for a specific language only and\∼ to enable output for all
languages (this is also the default mode).

Example:

/*! \˜english This is english \˜dutch Dit is Nederlands \˜german Dieses ist
deutsch. \˜ output for all languages.

*/

20.106 \&

This command writes the & character to the HTML and LATEX output. This character has to be escaped
because it has a special meaning in HTML.

20.107 \$

This command writes the $ character to the HTML and LATEX output. This character has to be escaped in
some cases, because it is used to expand environment variables.

20.108 \#

This command writes the # character to the HTML and LATEX output. This character has to be escaped in
some cases, because it is used to refer to documented entities.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

20.109 < 100

20.109 <

This command writes the< character to the HTML and LATEX output. This character has to be escaped
because it has a special meaning in HTML.

20.110 >

This command writes the> character to the HTML and LATEX output. This character has to be escaped
because it has a special meaning in HTML.

Commands included for Qt compatibility

The following commands are supported to remain compatible to the Qt class browser generator. Donot
use these commands in your own documentation.

• \annotatedclasslist

• \classhierarchy

• \define

• \functionindex

• \header

• \headerfilelist

• \inherit

• \l

• \postheader

For PHP files there are a number of additional commands, that can be used inside classes to make members
public, private, or protected even though the language itself doesn’t support this notion.

To mark a single item use one of\private,\protected,\public. For starting a section with a certain protec-
tion level use one of:\privatesection,\protectedsection,\publicsection. The latter commands are similar
to ”private:”, ”protected:”, and ”public:” in C++.

21 HTML Commands

Here is a list of all HTML commands that may be used inside the documentation. Note that all attributes
of a HTML tag are passed on to the HTML output only (the HREF and NAME attributes for the A tag are
the only exception).

• Starts a HTML hyper-link (HTML only).

• Starts an named anchor (HTML only).

• Ends a link or anchor (HTML only).

• Starts a piece of text displayed in a bold font.

• Ends a section.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

101

• <BODY> Does not generate any output.

• </BODY> Does not generate any output.

•
 Forces a line break.

• <CENTER> starts a section of centered text.

• </CENTER> ends a section of centered text.

• <CAPTION> Starts a caption. Use within a table only.

• </CAPTION> Ends a caption. Use within a table only.

• <CODE> Starts a piece of text displayed in a typewriter font.

• </CODE> End a<CODE> section.

• <DD> Starts an item description.

• <DFN> Starts a piece of text displayed in a typewriter font.

• </DFN> Ends a<DFN> section.

• <DL> Starts a description list.

• </DL > Ends a description list.

• <DT> Starts an item title.

• </DT> Ends an item title.

• Starts a piece of text displayed in an italic font.

• Ends a section.

• <FORM> Does not generate any output.

• </FORM> Does not generate any output.

• <HR> Writes a horizontal ruler.

• <H1> Starts an unnumbered section.

• </H1 > Ends an unnumberd section.

• <H2> Starts an unnumbered subsection.

• </H2 > Ends an unnumbered subsection.

• <H3> Starts an unnumbered subsubsection.

• </H3 > Ends an unnumbered subsubsection.

• <I > Starts a piece of text displayed in an italic font.

• <INPUT> Does not generate any output.

• </I > Ends a<I > section.

• This command is written with attributes to the HTML output only.

• Starts a new list item.

• Ends a list item.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

102

• <META> Does not generate any output.

• <MULTICOL> ignored by doxygen.

• </MUTLICOL> ignored by doxygen.

• Starts a numbered item list.

• Ends a numbered item list.

• <P> Starts a new paragraph.

• </P > Ends a paragraph.

• <PRE> Starts a preformatted fragment.

• </PRE> Ends a preformatted fragment.

• <SMALL> Starts a section of text displayed in a smaller font.

• </SMALL> Ends a<SMALL> section.

• Starts a section of bold text.

• Ends a section of bold text.

• <SUB> Starts a piece of text displayed in subscript.

• </SUB> Ends a<SUB> section.

• <SUP> Starts a piece of text displayed in superscript.

• </SUP> Ends a</SUP> section.

• <TABLE> starts a table.

• </TABLE> ends a table.

• <TD> Starts a new table data element.

• </TD> Ends a table data element.

• <TR> Starts a new table row.

• </TR> Ends a table row.

• <TT> Starts a piece of text displayed in a typewriter font.

• </TT > Ends a<TT> section.

• <KBD> Starts a piece of text displayed in a typewriter font.

• </KBD> Ends a<KBD> section.

• Starts an unnumbered item list.

• Ends an unnumbered item list.

• <VAR> Starts a piece of text displayed in an italic font.

• </VAR> Ends a</VAR> section.

The special HTML character entities that are recognized by Doxygen:

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

103

• © the copyright symbol

• " a double quote

• &?uml; where ? is one of{A,E,I,O,U,Y,a,e,i,o,u,y}, writes a character with a diaeresis accent (like
ä).

• &?acute; where ? is one of{A,E,I,O,U,Y,a,e,i,o,u,y}, writes a character with a acute accent (like
á).

• &?grave; where ? is one of{A,E,I,O,U,a,e,i,o,u,y}, writes a character with a grave accent (like
à).

• &?circ; where ? is one of{A,E,I,O,U,a,e,i,o,u,y}, writes a character with a circumflex accent
(like â).

• &?tilde; where ? is one of{A,N,O,a,n,o}, writes a character with a tilde accent (likeã).

• ß write a sharp s (i.e. ”s) to the output.

• &?cedil; where ? is one of{c,C}, writes a c-cedille (like ç).

• &?ring; where ? is one of{a,A}, writes ana with a ring (likeå).

• a non breakable space.

Finally, to put invisible comments inside comment blocks, HTML style comments can be used:

/*! <!-- This is a comment with a comment block --> Visible text */

Part III

Developers Manual

22 Doxygen’s Internals

Doxygen’s internals Note that this section is still under construction!

The following picture shows how source files are processed by doxygen.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

104

Config parser

Language parserC Preprocessor

HTML

LaTeX

RTF

XML

input
string

entry
tree

input files

Man

config file

drives

drives

get settings

entry
tree

drives

drives

tag file parser
Doc Parser

Source Parser

Data organiser Output generators

drives

Figure 2: Data flow overview

The following sections explain the steps above in more detail.

Config parser The configuration file that controls the settings of a project is parsed and the settings are
stored in the singleton classConfig in src/config .h. The parser itself is written usingflex and can
be found insrc/config .l. This parser is also used directly bydoxywizard , so it is put in a separate
library.

Each configuration option has one of 5 possible types:String , List , Enum, Int , or Bool . The values
of these options are available through the global functionsConfig getXXX() , whereXXXis the type of
the option. The argument of these function is a string naming the option as it appears in the configuration
file. For instance:Config getBool (”GENERATE TESTLIST”) returns a reference to a boolean value
that isTRUEif the test list was enabled in the config file.

The functionreadConfiguration() in src/doxygen .cpp reads the command line options and then
calls the configuration parser.

C Preprocessor The input files mentioned in the config file are (by default) fed to the C Preprocessor
(after being piped through a user defined filter if available).

The way the preprocessor works differs somewhat from a standard C Preprocessor. By default it does not
do macro expansion, although it can be configured to expand all macros. Typical usage is to only expand a
user specified set of macros. This is to allow macro names to appear in the type of function parameters for
instance.

Another difference is that the preprocessor parses, but not actually includes code when it encounters a
#include (with the exception of #include found inside{ ... } blocks). The reasons behind this deviation
from the standard is to prevent feeding multiple definitions of the same functions/classes to doxygen’s

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

105

parser. If all source files would include a common header file for instance, the class and type definitions
(and their documentation) would be present in each translation unit.

The preprocessor is written usingflex and can be found insrc/pre .l. For condition blocks (#if)
evaluation of constant expressions is needed. For this ayacc based parser is used, which can be found in
src/constexp .y andsrc/constexp .l.

The preprocessor is invoked for each file using thepreprocessFile() function declared in
src/pre .h, and will append the preprocessed result to a character buffer. The format of the character
buffer is

0x06 file name 1
0x06 preprocessed contents of file 1
...
0x06 file name n
0x06 preprocessed contents of file n

Language parser The preprocessed input buffer is fed to the language parser, which is implemented as
a big state machine usingflex . It can be found in the filesrc/scanner .l. There is one parser for all
languages (C/C++/Java/IDL). The state variablesinsideIDL andinsideJava are uses at some places
for language specific choices.

The task of the parser is to convert the input buffer into a tree of entries (basically an abstract syntax tree).
An entry is defined insrc/entry .h and is a blob of loosely structured information. The most important
field issection which specifies the kind of information contained in the entry.

Possible improvements for future versions:

• Use one scanner/parser per language instead of one big scanner.

• Move the first pass parsing of documentation blocks to a separate module.

• Parse defines (these are currently gathered by the preprocessor, and ignored by the language parser).

Data organizer This step consists of many smaller steps, that build dictionaries of the extracted classes,
files, namespaces, variables, functions, packages, pages, and groups. Besides building dictionaries, during
this step relations (such as inheritance relations), between the extracted entities are computed.

Each step has a function defined insrc/doxygen .cpp, which operates on the tree of entries, built during
language parsing. Look at the ”Gathering information” part ofparseInput() for details.

The result of this step is a number of dictionaries, which can be found in the Doxygen ”namespace” defined
in src/doxygen .h. Most elements of these dictionaries are derived from the classDefinition ; The
classMemberDef , for instance, holds all information for a member. An instance of such a class can be
part of a file (classFileDef), a class (classClassDef), a namespace (classNamespaceDef), a
group (classGroupDef), or a Java package (classPackageDef).

Tag file parser If tag files are specified in the configuration file, these are parsed by a SAX based XML
parser, which can be found insrc/tagreader .cpp. The result of parsing a tag file is the insertion of
Entry objects in the entry tree. The fieldEntry::tagInfo is used to mark the entry as external, and
holds information about the tag file.

Documentation parser Special comment blocks are stored as strings in the entities that they document.
There is a string for the brief description and a string for the detailed description. The documentation
parser reads these strings and executes the commands it finds in it (this is the second pass in parsing the
documentation). It writes the result directly to the output generators.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

106

The parser is written in C++ and can be found in src/docparser.cpp. The tokens that are eaten by the parser
come from src/doctokenizer.l. Code fragments found in the comment blocks are passed on to the source
parser.

The main entry point for the documentation parser isvalidatingParseDoc() declared in
src/docparser .h. For simple texts with special commandsvalidatingParseText() is used.

Source parser If source browsing is enabled or if code fragments are encountered in the documentation,
the source parser is invoked.

The code parser tries to cross-reference to source code it parses with documented entities. It also does
syntax highlighting of the sources. The output is directly written to the output generators.

The main entry point for the code parser isparseCode() declared insrc/code .h.

Output generators After data is gathered and cross-referenced, doxygen generates output in various
formats. For this it uses the methods provided by the abstract classOutputGenerator . In order to
generate output for multiple formats at once, the methods ofOutputList are called instead. This class
maintains a list of concrete output generators, where each method called is delegated to all generators in
the list.

To allow small deviations in what is written to the output for each concrete output generator, it is possible
to temporarily disable certain generators. The OutputList class contains variousdisable() anden-
able() methods for this. The methodsOutputList::pushGeneratorState() andOutput-
List::popGeneratorState() are used to temporarily save the set of enabled/disabled output gen-
erators on a stack.

The XML is generated directly from the gathered data structures. In the future XML will be used as
an intermediate language (IL). The output generators will then use this IL as a starting point to generate
the specific output formats. The advantage of having an IL is that various independently developed tools
written in various languages, could extract information from the XML output. Possible tools could be:

• an interactive source browser

• a class diagram generator

• computing code metrics.

Debugging Since doxygen uses a lot offlex code it is important to understand howflex works (for
this one should read the man page) and to understand what it is doing whenflex is parsing some input.
Fortunately, when flex is used with the -d option it outputs what rules matched. This makes it quite easy to
follow what is going on for a particular input fragment.

To make it easier to toggle debug information for a given flex file I wrote the following perl script, which
automatically adds or removes -d from the correct line in the Makefile:

#!/usr/local/bin/perl

$file = shift @ARGV;
print "Toggle debugging mode for $file\n";

add or remove the -d flex flag in the makefile
unless (rename "Makefile.libdoxygen","Makefile.libdoxygen.old") {

print STDERR "Error: cannot rename Makefile.libdoxygen!\n";
exit 1;

}
if (open(F,"<Makefile.libdoxygen.old")) {

unless (open(G,">Makefile.libdoxygen")) {

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

107

print STDERR "Error: opening file Makefile.libdoxygen for writing\n";
exit 1;

}
print "Processing Makefile.libdoxygen...\n";
while (<F>) {

if (s/\(LEX\) -P([a-z]+)YY -t $file/(LEX) -d -P\1YY -t $file/g) {
print "Enabling debug info for $file\n";

}
elsif (s/\(LEX\) -d -P([a-z]+)YY -t $file/(LEX) -P\1YY -t $file/g) {

print "Disabling debug info for $file\n";
}
print G "$_";

}
close F;
unlink "Makefile.libdoxygen.old";

}
else {

print STDERR "Warning file Makefile.libdoxygen.old does not exist!\n";
}

touch the file
$now = time;
utime $now, $now, $file

23 Perl Module output format documentation

Since version 1.2.18, Doxygen can generate a new output format we have called the ”Perl Module output
format”. It has been designed as an intermediate format that can be used to generate new and customized
output without having to modify the Doxygen source. Therefore, its purpose is similar to the XML output
format that can be also generated by Doxygen. The XML output format is more standard, but the Perl
Module output format is possibly simpler and easier to use.

The Perl Module output format is still experimental at the moment and could be changed in incompatible
ways in future versions, although this should not be very probable. It is also lacking some features of
other Doxygen backends. However, it can be already used to generate useful output, as shown by the Perl
Module-based LaTeX generator.

Please report any bugs or problems you find in the Perl Module backend or the Perl Module-based LaTeX
generator to the doxygen-develop mailing list. Suggestions are welcome as well.

23.1 Using the Perl Module output format.

When theGENERATE PERLMOD tag is enabled in the Doxyfile, running Doxygen generates a number
of files in theperlmod/ subdirectory of your output directory. These files are the following:

• DoxyDocs.pm. This is the Perl module that actually contains the documentation, in the Perl Module
format describedbelow.

• DoxyModel.pm. This Perl module describes the structure ofDoxyDocs.pm, independently of the
actual documentation. Seebelowfor details.

• doxyrules.make. This file contains the make rules to build and clean the files that are generated
from the Doxyfile. Also contains the paths to those files and other relevant information. This file is
intended to be included by your own Makefile.

• Makefile. This is a simple Makefile includingdoxyrules.make.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

23.2 Using the Perl Module-based LaTeX generator. 108

To make use of the documentation stored in DoxyDocs.pm you can use one of the default Perl Module-
based generators provided by Doxygen (at the moment this includes the Perl Module-based LaTeX gen-
erator, seebelow) or write your own customized generator. This should not be too hard if you have some
knowledge of Perl and it’s the main purpose of including the Perl Module backend in Doxygen. Seebelow
for details on how to do this.

23.2 Using the Perl Module-based LaTeX generator.

The Perl Module-based LaTeX generator is pretty experimental and incomplete at the moment, but you
could find it useful nevertheless. It can generate documentation for functions, typedefs and variables within
files and classes and can be customized quite a lot by redefining TeX macros. However, there is still no
documentation on how to do this.

Setting thePERLMOD LATEX tag toYES in the Doxyfile enables the creation of some additional files
in theperlmod/ subdirectory of your output directory. These files contain the Perl scripts and LaTeX code
necessary to generate PDF and DVI output from the Perl Module output, using PDFLaTeX and LaTeX
respectively. Rules to automate the use of these files are also added todoxyrules.makeand theMakefile.

The additional generated files are the following:

• doxylatex.pl. This Perl script uses DoxyDocs.pm and DoxyModel.pm to generatedoxydocs.tex, a
TeX file containing the documentation in a format that can be accessed by LaTeX code. This file is
not directly LaTeXable.

• doxyformat.tex. This file contains the LaTeX code that transforms the documentation from doxy-
docs.tex into LaTeX text suitable to be LaTeX’ed and presented to the user.

• doxylatex-template.pl. This Perl script uses DoxyModel.pm to generatedoxytemplate.tex, a Te-
X file defining default values for some macros. doxytemplate.tex is included by doxyformat.tex to
avoid the need of explicitly defining some macros.

• doxylatex.tex. This is a very simple LaTeX document that loads some packages and includes doxy-
format.tex and doxydocs.tex. This document is LaTeX’ed to produce the PDF and DVI documenta-
tion by the rules added todoxyrules.make.

23.2.1 Simple creation of PDF and DVI output using the Perl Module-based LaTeX generator.

To try this you need to have installed LaTeX, PDFLaTeX and the packages used bydoxylatex.tex.

1. Update your Doxyfile to the latest version using:

doxygen -u Doxyfile

2. Set bothGENERATE PERLMOD andPERLMOD LATEX tags to YES in your Doxyfile.

3. Run Doxygen on your Doxyfile:

doxygen Doxyfile

4. A perlmod/ subdirectory should have appeared in your output directory. Enter theperlmod/ subdi-
rectory and run:

make pdf

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

23.3 Perl Module documentation format. 109

This should generate adoxylatex.pdf with the documentation in PDF format.

5. Run:

make dvi

This should generate adoxylatex.dvi with the documentation in DVI format.

23.3 Perl Module documentation format.

The Perl Module documentation generated by Doxygen is stored inDoxyDocs.pm. This is a very simple
Perl module that contains only two statements: an assigment to the variable$doxydocsand the customary
1; statement which usually ends Perl modules. The documentation is stored in the variable$doxydocs,
which can then be accessed by a Perl script usingDoxyDocs.pm.

$doxydocscontains a tree-like structure composed of three types of nodes: strings, hashes and lists.

• Strings. These are normal Perl strings. They can be of any length can contain any character. Their
semantics depends on their location within the tree. This type of node has no children.

• Hashes. These are references to anonymous Perl hashes. A hash can have multiple fields, each with
a different key. The value of a hash field can be a string, a hash or a list, and its semantics depends
on the key of the hash field and the location of the hash within the tree. The values of the hash fields
are the children of the node.

• Lists. These are references to anonymous Perl lists. A list has an undefined number of elements,
which are the children of the node. Each element has the same type (string, hash or list) and the same
semantics, depending on the location of the list within the tree.

As you can see, the documentation contained in$doxydocsdoes not present any special impediment to
be processed by a simple Perl script. To be able to generate meaningful output using the documentation
contained in$doxydocsyou’ll probably need to know the semantics of the nodes of the documentation
tree, which we present inthis page.

23.4 Data structure describing the Perl Module documentation tree.

You might be interested in processing the documentation contained inDoxyDocs.pmwithout needing
to take into account the semantics of each node of the documentation tree. For this purpose, Doxygen
generates aDoxyModel.pm file which contains a data structure describing the type and children of each
node in the documentation tree.

The rest of this section is to be written yet, but in the meantime you can look at the Perl scripts generated by
Doxygen (such asdoxylatex.pl or doxytemplate-latex.pl) to get an idea on how to useDoxyModel.pm.

24 Internationalization

Support for multiple languages Doxygen has built-in support for multiple languages. This means that
the text fragments that doxygen generates can be produced in languages other than English (the default) at
configuration time.

Currently (version 1.3.5), 29 languages are supported (sorted alphabetically): Brazilian Portuguese, Cata-
lan, Chinese, Chinese Traditional, Croatian, Czech, Danish, Dutch, English, Finnish, French, German,

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

110

Greek, Hungarian, Italian, Japanese, JapaneseEn, Korean, Norwegian, Polish, Portuguese, Romanian, Rus-
sian, Serbian, Slovak, Slovene, Spanish, Swedish, and Ukrainian.

The table of information related to the supported languages follows. It is sorted by language alphabeti-
cally. TheStatuscolumn was generated from sources and shows approximately the last version when the
translator was updated.

Language Maintainer Contact address Status

Brazilian Portuguese Fabio ”FJTC” Jun Takada Chino chino@icmc.sc.usp.br up-to-date
Catalan Albert Mora amora@iua.upf.es 1.2.17
Chinese Wei Liu liuwei@asiainfo.com 1.2.13

Wang Weihan wangweihan@capinfo.com.cn
Chinese Traditional Daniel YC Lin daniel@twpda.com up-to-date

Gary Lee garylee@ecosine.com.tw
Croatian Boris Bralo boris.bralo@zg.tel.hr up-to-date
Czech Petr P̌rikryl prikrylp@skil.cz up-to-date
Danish Erik Søe Sørensen erik@mail.nu up-to-date
Dutch Dimitri van Heesch dimitri@stack.nl up-to-date
English Dimitri van Heesch dimitri@stack.nl up-to-date
Finnish Olli Korhonen Olli.Korhonen@ccc.fi obsolete
French Xavier Outhier xouthier@yahoo.fr up-to-date
German Jens Seidel jensseidel@users.sf.net up-to-date
Greek Harry Kalogirou harkal@rainbow.cs.unipi.gr 1.2.11
Hungarian Földvári György foldvari@diatronltd.com 1.2.1
Italian Alessandro Falappa alessandro@falappa.net up-to-date

Ahmed Aldo Faisal aaf23@cam.ac.uk
Japanese Ryunosuke Satoh sun594@hotmail.com 1.3.3

Kenji Nagamatsu naga@joyful.club.ne.jp
JapaneseEn unknown unknown obsolete
Korean Richard Kim ryk@dspwiz.com up-to-date
Norwegian Lars Erik Jordet lej@circuitry.no 1.2.2
Polish Piotr Kaminski Piotr.Kaminski@ctm.gdynia.pl strange

Grzegorz Kowal g kowal@poczta.onet.pl
Portuguese Rui Godinho Lopes ruiglopes@yahoo.com 1.3.3
Romanian Alexandru Iosup aiosup@yahoo.com 1.2.16
Russian Alexandr Chelpanov cav@cryptopro.ru up-to-date
Serbian Dejan Milosavljevic dmilos@email.com 1.3.3
Slovak Stanislav Kudĺač skudlac@pobox.sk 1.2.18
Slovene Matjaz Ostroversnik matjaz.ostroversnik@zrs-tk.si 1.2.16
Spanish Francisco Oltra Thennet foltra@puc.cl 1.3.3
Swedish Mikael Hallin mikaelhallin@yahoo.se 1.3.3
Ukrainian Olexij Tkatchenko olexij.tkatchenko@gmx.de 1.2.11

Most people on the list have indicated that they were also busy doing other things, so if you want to help
to speed things up please let them (or me) know.

If you want to add support for a language that is not yet listed please read the next section.

Adding a new language to doxygen This short HOWTO explains how to add support for a new language
to Doxygen:

Just follow these steps:

1. Tell me for which language you want to add support. If no one else is already working on support
for that language, you will be assigned as the maintainer for the language.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

111

2. Create a copy of translatoren.h and name it translator<your 2 letter countrycode>.h I’ll use xx
in the rest of this document.

3. Add definition of the symbol for your language into langcfg.h:

#define LANG_xx

Use capital letters for yourxx (to be consistent). Thelang cfg.h defines which language trans-
lators will be compiled into doxygen executable. It is a kind of configuration file. If you are sure that
you do not need some of the languages, you can remove (comment out) definitions of symbols for
the languages, or you can say#undef instead of#define for them.

4. Edit language.cpp: Add a

#ifdef LANG_xx
#include<translator_xx.h>
#endif

Remember to use the same symbol LANGxx that you added tolang cfg.h . I.e., thexx should
be capital letters that identify your language. On the other hand, thexx inside yourtranslator -
xx.h should be lower case.

Now, in setTranslator() add

#ifdef LANG_xx
else if (L_EQUAL("your_language_name"))
{

theTranslator = new TranslatorYourLanguage;
}

#endif

after theif { ... }. I.e., it must be placed after the code for creating the English translator
at the beginning, and before theelse { ... } part that creates the translator for the default
language (English again).

5. Edit libdoxygen.pro.in and addtranslator xx.h to theHEADERSline.

6. Edit translator xx.h :

• RenameTRANSLATOREN H to TRANSLATORXX H twice (i.e. in the#ifndef and#de-
fine preprocessor commands at the beginning of the file).

• Rename TranslatorEnglish to TranslatorYourLanguage

• In the memberidLanguage() change ”english” into the name of your language (use lower
case characters only). Depending on the language you may also wish to change the member
functions latexLanguageSupportCommand(), idLanguageCharset() and others (you will recog-
nize them when you start the work).

• Edit all the strings that are returned by the member functions that start with tr. Try to match
punctuation and capitals! To enter special characters (with accents) you can:

– Enter them directly if your keyboard supports that and you are using a Latin-1 font. Doxy-
gen will translate the characters to proper LATEX and leave the HTML and man output for
what it is (which is fine, if idLanguageCharset() is set correctly).

– Use html codes like ä for an a with an umlaut (i.e.ä). See the HTML specification
for the codes.

7. Run configure and make again from the root of the distribution, in order to regenerated the Makefiles.

8. Now you can useOUTPUTLANGUAGE = yourlanguage name in the config file to generate
output in your language.

9. Sendtranslator xx.h to me so I can add it to doxygen. Send also your name and e-mail address
to be included in themaintainers.txt list.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

112

Maintaining a language New versions of doxygen may use new translated sentences. In such situation,
theTranslator class requires implementation of new methods – its interface changes. Of course, the
English sentences need to be translated to the other languages. At least, new methods have to be imple-
mented by the language-related translator class; otherwise, doxygen wouldn’t even compile. Waiting until
all language maintainers have translated the new sentences and sent the results would not be very practical.
The following text describes the usage of translator adapters to solve the problem.

The role of Translator Adapters. Whenever theTranslator class interface changes in the new release,
the new classTranslatorAdapter x y z is added to thetranslator adapter.h file (here x, y,
and z are numbers that correspond to the current official version of doxygen). All translators that previously
derived from theTranslator class now derive from this adapter class.

The TranslatorAdapter x y z class implements the new, required methods. If the new method
replaces some similar but obsolete method(s) (e.g. if the number of arguments changed and/or the func-
tionality of the older method was changed or enriched), theTranslatorAdapter x y z class may use
the obsolete method to get the result which is as close as possible to the older result in the target language.
If it is not possible, the result (the default translation) is obtained using the English translator, which is (by
definition) always up-to-date.

For example,when the newtrFile() method with parameters (to determine the capitalization of the
first letter and the singular/plural form) was introduced to replace the older methodtrFiles() without
arguments, the following code appeared in one of the translator adapter classes:

/*! This is the default implementation of the obsolete method
* used in the documentation of a group before the list of
* links to documented files. This is possibly localized.
*/

virtual QCString trFiles()
{ return "Files"; }

/*! This is the localized implementation of newer equivalent
* using the obsolete method trFiles().
*/

virtual QCString trFile(bool first_capital, bool singular)
{

if (first_capital && !singular)
return trFiles(); // possibly localized, obsolete method

else
return english.trFile(first_capital, singular);

}

ThetrFiles() is not present in theTranslatorEnglish class, because it was removed as obsolete.
However, it was used until now and its call was replaced by

trFile(true, false)

in the doxygen source files. Probably, many language translators implemented the obsolete method, so
it perfectly makes sense to use the same language dependent result in those cases. TheTranslator-
English does not implement the old method. It derives from the abstractTranslator class. On the
other hand, the old translator for a different language does not implement the newtrFile() method. Be-
cause of that it is derived from another base class –TranslatorAdapter x y z . TheTranslator-
Adapter x y z class have to implement the new, requiredtrFile() method. However, the translator
adapter would not be compiled if thetrFiles() method was not implemented. This is the reason for
implementing the old method in the translator adapter class (using the same code, that was removed from
the TranslatorEnglish).

The simplest way would be to pass the arguments to the English translator and to return its result. Instead,
the adapter uses the oldtrFiles() in one special case – when the newtrFile(true, false) is
called. This is the mostly used case at the time of introducing the new method – see above. While this

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

113

may look too complicated, the technique allows the developers of the core sources to change the Translator
interface, while the users may not even notice the change. Of course, when the newtrFile() is used
with different arguments, the English result is returned and it will be noticed by non English users. Here
the maintainer of the language translator should implement at least that one particular method.

What says the base class of a language translator?If the language translator class inherits from any
adapter class the maintenance is needed. In such case, the language translator is not considered up-to-date.
On the other hand, if the language translator derives directly from the abstract classTranslator , the
language translator is up-to-date.

The translator adapter classes are chained so that the older translator adapter class uses the one-step-newer
translator adapter as the base class. The newer adapter does lessadaptingwork than the older one. The
oldest adapter class derives (indirectly) from all of the adapter classes. The name of the adapter class
is chosen so that its suffix is derived from the previous official version of doxygen that did not need the
adapter. This way, one can say approximately, when the language translator class was last updated – see
details below.

The newest translator adapter derives from the abstractTranslatorAdapterBase class that derives
directly from the abstractTranslator class. It adds only the private English-translator member for easy
implementation of the default translation inside the adapter classes, and it also enforces implementation
of one method for noticing the user that the language translation is not up-to-date (because of that some
sentences in the generated files may appear in English).

Once the oldest adapter class is not used by any of the language translators, it can be removed from the
doxygen project. The maintainers should try to reach the state with the minimal number of translator
adapter classes.

To simplify the maintenance of the language translator classesfor the supported languages, the
translator.pl perl script was developed (located indoxygen/doc directory). It extracts the im-
portant information about obsolete and new methods from the source files for each of the languages. The
information is stored in thetranslator reportASCII file (doxygen/doc/translator report.txt).

Looking at the base class of the language translator, the script guesses also the status of the translator – see
the last column of the table with languages above. Thetranslator.pl is called automatically when
the doxygen documentation is generated. You can also run the script manualy whenever you feel that it can
help you. Of course, you are not forced to use the results of the script. You can find the same information
by looking at the adapter class and its base classes.

How should I update my language translator?Firstly, you should be the language maintainer, or you
should let him/her know about the changes. The following text was written for the language maintainers as
the primary audience.

There are several approaches to be taken when updating your language. If you are not extremely busy,
you should always chose the most radical one. When the update takes much more time than you expected,
you can always decide use some suitable translator adapter to finish the changes later and still make your
translator working.

The most radical way of updating the language translatoris to make your translator class derive directly
from the abstract classTranslator and provide translations for the methods that are required to be
implemented – the compiler will tell you if you forgot to implement some of them. If you are in doubt, have
a look at theTranslatorEnglish class to recognize the purpose of the implemented method. Looking
at the previously used adapter class may help you sometimes, but it can also be misleading because the
adapter classes do implement also the obsolete methods (see the previoustrFiles() example).

In other words, the up-to-date language translators do not need theTranslatorAdapter x y z classes
at all, and you do not need to implement anything else than the methods required by the Translator class
(i.e. the pure virtual methods of theTranslator – they end with=0;).

If everything compiles fine, try to runtranslator.pl , and have a look at the translator report (ASCII

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

114

file) at thedoxygen/doc directory. Even if your translator is marked as up-to-date, there still may be
some remarks related to your souce code. Namely, the obsolete methods–that are not used at all–may be
listed in the section for your language. Simply, remove their code (and run thetranslator.pl again).

If you do not have time to finish all the updatesyou should still start withthe most radical approachas
described above. You can always change the base class to the translator adapter class that implements all
of the not-yet-implemented methods.

If you prefer to update your translator gradually , look at thetranslator reportgenerated by thetrans-
lator.pl script and choose one of the missing method that is implemented by the translator adapter, that
is used as your base class. When there is not such a method in your translator adapter base class, you
probably can change the translator adapter base to the newer one.

Probably the easiest approach of the gradual update is to look at the translator report to the part where the
list of the implemented translator adapters is shown. Then:

• Look how many required methods each adapter implements and guess how many methods you are
willing to update (to spend the time with).

• Choose the related oldest translator adapters to be removed (i.e. not used by your translator).

• Change the base class of your translator class to the translator adapter that you want to use.

• Implement the methods that were implemented by the older translator adapters.

Notice: Do not blindly implement all methods that are implemented by your translator adapter base class.
The reason is that the adapter classes implement also obsolete methods. Another reason is that some of the
methods could become obsolete from some newer adapter on. Focus on the methods listed asrequired.

The really obsolete language translatorsmay lead to too much complicated adapters. Because of that,
doxygen developers may decide to derive such translators from theTranslatorEnglish class, which
is by definition always up-to-date.

When doing so, all the missing methods will be replaced by the English translation. This means that
not-implemented methods will always return the English result. Such translators are marked using word
obsolete . You should read itreally obsolete. No guess about the last update can be done.

Often, it is possible to construct better result from the obsolete methods. Because of that, the translator
adapter classes should be used if possible. On the other hand, implementation of adapters for really obsolete
translators brings too much maintenance and run-time overhead.

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

Index
\#, 99
\$, 99
\&, 99
\<, 100
\>, 100
\\, 99
\a,92
\addindex,88
\addtogroup,72, 81
\anchor,88
\arg,92
\attention,81
\author,81
\b, 93
\brief, 82
\bug,82
\c, 93
\callgraph,73
\class,73
\code,93
\copydoc,93
\date,82
\def,73
\defgroup,74
\deprecated,82
\dontinclude,90
\dot,94
\dotfile,94
\e ,95
\else,83
\elseif,83
\em ,95
\endcode,95
\enddot,95
\endhtmlonly,95
\endif,83
\endlatexonly,96
\endlink ,88
\endverbatim,96
\endxmlonly,96
\enum,74
\example,74
\exception,83
\f$, 96
\f[, 96
\f], 96
\file, 75
\fn, 75
\hideinitializer,76
\htmlinclude,92
\htmlonly,96

\if, 83
\ifnot, 84
\image,97
\include,90
\ingroup,76
\interface,76
\internal,77
\invariant,84
\latexonly,97
\li, 98
\line, 91
\link, 88
\mainpage,77
\n, 98
\namespace,77
\nosubgrouping,78
\note,85
\overload,78
\p, 98
\package,78
\page,79
\par,85
\paragraph,89
\param,85
\post,85
\pre,86
\ref, 89
\relates,79
\relatesalso,80
\remarks,86
\return,86
\retval,86
\sa,86
\section,89
\showinitializer,80
\since,87
\skip,91
\skipline,91
\struct,80
\subsection,89
\subsubsection,89
\test,87
\throw,87
\todo,87
\typedef,81
\union,81
\until, 92
\var,81
\verbatim,98
\verbinclude,92
\version,87

INDEX 116

\warning,87
\xmlonly, 99
\xrefitem,87
\∼, 99

ABBREVIATE BRIEF,56
acknowledgements,3
ALIASES, 57
ALLEXTERNALS, 67
ALPHABETICAL INDEX, 61
ALWAYS DETAILED SEC,56

BINARY TOC,62
bison,4
BRIEF MEMBER DESC,56
browser,13

CALL GRAPH,68
CASE SENSENAMES, 56
CHM FILE, 62
CLASS DIAGRAMS, 67
CLASS GRAPH,67
COLLABORATION GRAPH,67
COLS IN ALPHA INDEX, 61
COMPACT LATEX, 63
COMPACT RTF,64

DETAILS AT TOP,57
DISABLE INDEX, 63
DISTRIBUTE GROUPDOC,57
Doc++,3
DOT CLEANUP,68
DOT IMAGE FORMAT, 68
DOT PATH, 68
DOTFILE DIRS,68

ENABLE PREPROCESSING,66
ENABLED SECTIONS,59
ENUM VALUES PERLINE, 63
EXAMPLE PATH, 60
EXAMPLE PATTERNS,60
EXAMPLE RECURSIVE,60
EXCLUDE, 60
EXCLUDE PATTERNS,60
EXCLUDE SYMLINKS, 60
EXPAND AS DEFINED,66
EXPAND ONLY PREDEF,66
EXTERNAL GROUPS,67
EXTRA PACKAGES,63
EXTRACT ALL, 58
EXTRACT LOCAL CLASSES,58
EXTRACT PRIVATE, 58
EXTRACT STATIC, 58

features,41

FILE PATTERNS,60
FILTER SOURCEFILES,60
flex, 4
FULL PATH NAMES, 56

GENERATEAUTOGEN DEF,65
GENERATEBUGLIST, 59
GENERATECHI, 62
GENERATEDEPRECATEDLIST,58
GENERATEHTML, 61
GENERATEHTMLHELP, 62
GENERATELATEX, 63
GENERATELEGEND,68
GENERATEMAN, 65
GENERATEPERLMOD,65
GENERATERTF,64
GENERATETAGFILE, 67
GENERATETESTLIST,59
GENERATETODOLIST,59
GENERATETREEVIEW,63
GENERATEXML, 65
GPL,2
GRAPHICAL HIERARCHY, 68

HAVE DOT, 67
HHC LOCATION, 62
HIDE FRIEND COMPOUNDS,58
HIDE IN BODY DOCS,58
HIDE SCOPENAMES, 58
HIDE UNDOC CLASSES,58
HIDE UNDOC MEMBERS,58
HIDE UNDOC RELATIONS,67
HTML ALIGN MEMBERS,62
HTML FILE EXTENSION,61
HTML FOOTER,62
HTML HEADER,61
HTML OUTPUT,61
HTML STYLESHEET,62

IGNORE PREFIX,61
IMAGE PATH, 60
INCLUDE GRAPH ,67
INCLUDE PATH, 66
INCLUDED BY GRAPH ,67
INHERIT DOCS,57
INLINE INFO , 58
INLINE INHERITED MEMB, 56
INLINE SOURCES,60
INPUT, 59
INPUT FILTER, 60
installation,4
INTERNAL DOCS,58

JAVADOC AUTOBRIEF,57

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

INDEX 117

LaTeX,13
LATEX BATCHMODE, 64
LATEX CMD NAME, 63
LATEX HEADER,63
LATEX HIDE INDICES,64
LATEX OUTPUT,63
LATEX PDFLATEX, 64
license,2

MACRO EXPANSION,66
make,4
MAKEINDEX CMD NAME, 63
MAN LINKS, 65
MAN OUTPUT,65
MAX DOT GRAPH DEPTH,68
MAX DOT GRAPH HEIGHT, 68
MAX DOT GRAPH WIDTH, 68
MAX EXTENSION,65
MAX INITIALIZER LINES, 59
MULTILINE CPPIS BRIEF,57

OPTIMIZE OUTPUT FOR C, 57
OPTIMIZE OUTPUT JAVA, 57
output formats,49
OUTPUT DIRECTORY,55
OUTPUT LANGUAGE, 56

PAPERTYPE,63
parsing,14
PDF HYPERLINKS,64
perl,4
PERL PATH, 67
perlmod,107
PERLMOD LATEX, 65
PERLMOD MAKEVAR PREFIX,66
PERLMOD PRETTY,66
PREDEFINED,66
PROJECTNAME, 55
PROJECTNUMBER, 55

Qt, 4
QUIET, 59

RECURSIVE,60
REFERENCEDBY RELATION, 61
REFERENCESRELATION, 61
REPEATBRIEF,56
RTF HYPERLINKS,64
RTF OUTPUT,64
RTF STYLESHEETFILE, 64

SEARCHINCLUDES ,66
SEARCHENGINE,68
SHORTNAMES, 57
SHOW INCLUDE FILES,58

SHOW USED FILES,59
SKIP FUNCTION MACROS,66
SORTMEMBER DOCS,58
SOURCEBROWSER,60
STRIPCODE COMMENTS,60
STRIPFROM PATH, 56
SUBGROUPING,57

TAB SIZE,57
TAGFILES,66
TEMPLATE RELATIONS,67
TOC EXPAND, 62
TREEVIEW WIDTH, 63

USE WINDOWS ENCODING,56

VERBATIM HEADERS,57

WARN FORMAT, 59
WARN IF UNDOCUMENTED,59
WARN LOGFILE, 59
WARNINGS,59

XML DTD, 65
XML OUTPUT,65
XML PROGRAMLISTING,65
XML SCHEMA,65

User Manual for Doxygen 1.3.5, written by Dimitri van Heesch c©1997-2003

	I User Manual
	Installation
	Getting started
	Documenting the code
	Lists
	Grouping
	Including formulas
	Graphs and diagrams
	Preprocessing
	Linking to external documentation
	Frequently Asked Questions
	Troubleshooting

	II Reference Manual
	Features
	Doxygen History
	Doxygen usage
	Doxytag usage
	Doxywizard usage
	Installdox usage
	Automatic link generation
	Configuration
	Special Commands
	HTML Commands

	III Developers Manual
	Doxygen's Internals
	Perl Module output format documentation
	Internationalization

