
Final thesisClient-side threats and a honeyclient-based defensemechanism, HoneyscoutbyChristian ClementsonLiTH-ISY-EX--09/4262--SE2009-09-01

Final thesisClient-side threats and a honeyclient-based defensemechanism, HoneyscoutbyChristian ClementsonLiTH-ISY-EX--09/4262--SE

Supervisor: Stefan PetterssonSecurity consultantat High Performance SystemsExaminer: Viiveke FåkDept. of Electrical Engineeringat Linköpings universitet

Abstract

Client-side computers connected to the Internet today are exposed to a lot ma-
licious activity. Browsing the web can easily result in malware infection even if
the user only visits well known and trusted sites. Attackers use website vulner-
abilities and ad-networks to expose their malicious code to a large user base.
The continuing trend of the attackers seems to be botnet construction that col-
lects large amounts of data which could be a serious threat to company secrets
and personal integrity. Meanwhile security researches are using a technology
known as honeypots/honeyclients to �nd and analyze new malware. This thesis
takes the concept of honeyclients and combines it with a proxy and database
software to construct a new kind of real time defense mechanism usable in live
environments. The concept is given the name Honeyscout and it analyzes any
content before it reaches the user by using visited sites as a starting point for
further crawling, blacklisting any malicious content found. A proof-of-concept
honeyscout has been developed using the honeyclient Monkey-Spider by Ali Ik-
inci as a base. Results from the evaluation shows that the concept has potential
as an e�ective and user-friendly defense technology. There are however large
needs to further optimize and speed up the crawling process.

i

CONTENTS Contents

Contents

1 Introduction 1

1.1 Overview . 1
1.2 Objectives . 2
1.3 Limitations . 3
1.4 Targeted readers . 3
1.5 Methods . 3

2 Background on client-side security 4

2.1 Client-side malware threats . 4
2.1.1 Virus . 6
2.1.2 Worms . 6
2.1.3 Rootkits and backdoors 7
2.1.4 Bots and botnets . 7
2.1.5 Spyware and Adware . 8
2.1.6 Malicious website scripts 8

2.2 Malware delivery methods . 9
2.2.1 Downloads and �le sharing 9
2.2.2 Software exploits . 10
2.2.3 E-mail and instant messaging 11
2.2.4 Malicious and bogus websites 12
2.2.5 Insecure websites . 13

2.3 Defenses . 14
2.3.1 Safe computer settings . 14
2.3.2 Antivirus . 15
2.3.3 Intrusion detection systems 16
2.3.4 Website blacklisting . 16
2.3.5 User education . 17

2.4 Conclusions on client-side security 17

3 Honeypots and clients 19

3.1 Honeypots . 19
3.2 Honeyclients . 20
3.3 Existing honeyclient software . 21

3.3.1 Capture-HPC . 21
3.3.2 Monkey-Spider . 23

4 Honeyscout 25

4.1 Ideal case . 25
4.2 Implementation . 27

4.2.1 Honeyclient . 27
4.2.2 Web crawler . 27
4.2.3 Programming language 29
4.2.4 Database software . 29
4.2.5 Proxy software . 29

4.3 System architecture . 29
4.3.1 List of major code changes 30
4.3.2 Blacklist database table 31
4.3.3 Whitelist database table 31
4.3.4 Con�guration �le . 32

4.4 User interface . 32
4.4.1 Heritrix . 33
4.4.2 Honeyscout engine feedback 33
4.4.3 Blocked pages . 34

4.5 Limitations . 35

ii

CONTENTS Contents

5 Evaluation 36

5.1 Crawl scope . 36
5.2 Test enviroment . 37
5.3 Results . 37

5.3.1 Speed . 37
5.3.2 Malware detection . 37
5.3.3 Usability . 37

6 Future work 38

7 Conclusions 39

References 40

A honeyscout.py 43

B honeyscout.conf 46

C monkeyscan.py 47

D ms-scanner-clamav.py 48

E ms-extract-arc.py 50

iii

LIST OF FIGURES List of Figures

List of Figures

1 Conceptual sketch . 2
2 F-secure malware detection statistics (by year). 5
3 Illustration over the honeyclients operation 21
4 Illustration over Capture-HPC's design. 22
5 Illustration over Monkey-Spider's design. 23
6 Illustration over an ideal case honeyscout. 26
7 Illustration over Honeyscout's architecture. 30
8 Honeyscout's �le structure. 31
9 Excerpt from blacklist database table (shortened to �t document

area). 31
10 Excerpt from whitelist database table. 32
11 Heritrix's status page. 33
12 Screenshot of Honeyscout's status messages. 33
13 Screenshot of blocked page screen. 34
14 Screenshot of blocked URL inside an iframe 35

iv

1 Introduction

1 Introduction

A computer connected to the Internet today is more or less pre-destined to be
hit by malicious tra�c. Worms targeting random computers on the Internet will
many times �nd and attack a newly connected system before it has a chance
to download the latest updates. Long gone are the days when attackers only
focused on servers with vulnerable services running on standard ports. One of
the most exposed machines on the Internet today is a client computer running
a web browser controlled by a careless human being. That's not to say that
a careless person is necessarily the weakest link as there are several creative
distribution methods for malware. Malicious code can for example be hidden
in dynamic content served to websites via ad-networks, user-created content
like forum posts or code uploaded to otherwise trusted sites via security holes
in the site's software. This means that no website can be fully trusted at all
times and thus makes the argument that as long as one only visits well known
and professional sites you are safe, untrue. To make it even worse; weaknesses
in browser software, browser plugins and operating systems makes it possible
for malware to install itself on the client machine silently without the need
to prompt the user and fool him/her to give it install permissions. Antivirus
programs and blacklist services can constitute good protection but antivirus
evasion techniques exists and blacklists are often general and might not include
all sites visited by users.

What if you had a scapegoat computer, one that visits the same sites as you
do, search them and follow links on those pages just like you would and then
report back to you if there was any suspicious activity or malware installed
when visiting any of the pages? You would simply tell it what sites you are
visiting and it would follow and continue ahead, recklessly open, download and
view everything it �nds while monitoring its own status. All this just to warn
you about malicious sites, documents and links so that you won't need to take
the risk. Apply this to a bigger network with several users browsing sites at
their own will all while the integrity of the internal network and the data stored
there depends on a malware free environment. Maybe this kind of scapegoat
computer could be a sensible addition as another layer of security in what should
be a defense in depth approach to protect networks. The idea is explored in this
thesis both in a theoretical way discussing the possibilities and in a practical
way by creating proof-of-concept code, evaluating it and discussing problems
that arise.

1.1 Overview

The idea is to investigate the honeyclient concept and the possibility to use it in
a practical way as a security measure against malware hidden in content found
while browsing the web.

Figure 1 illustrates how a practical implementation is thought out to work.
Tra�c from the clients at the internal network out to the Internet is routed
through a proxy which monitors URLs visited. The URLs are forwarded to a
honeyclient machine which spiders the Internet based on the URLs it receives.
The honeyclient machine reports its �ndings to a database, creating a blacklist
of URLs containing malicious code. The same database is queried by the proxy
to decide if a request should be allowed or not.

There are several possible con�gurations, for example the proxy, database and

1

1.2 Objectives 1 Introduction

Internet

Internal LAN

Proxy

Blacklist

database

Honeyclient

R
e

q
u

e
s
te

d
 U

R
L

s

Malware reports

Blacklist query

and answer

upon request

Figure 1: Conceptual sketch

honeyclient roles could all be handled by the same machine. A whitelist could
be used instead of a blacklist blocking users from sites that haven't been crawled
by the honeyclient yet and the proxy could allow for varied user interaction with
the system. One example would be to provide the option to recrawl a blocked
site for possible reevaluation and whitelisting.

1.2 Objectives

This thesis will try to evaluate and answer questions related to using honeyclient
technology in a way described in the overview. Does it add something new to
client security? Will it work in a live production environment? Can it be
made user-friendly? How much resources are needed? It will cover several
alternatives and con�guration possibilities in the implementation and try to
identify problems that need to be addressed. Finally it will try to give a correct
indication to whether the honeyclient technology is e�cient to use in this way
and what needs to, or at least should be, improved to make it perform better.

The following topics of research will make up the main structure of the thesis:

• Research and explain how malicious code is distributed on the web.

• Review the di�erent kinds of honeyclient technologies.

• Discuss how honeyclients could be used to protect users from malicious
code.

2

1.3 Limitations 1 Introduction

• Create a proof-of-concept implementation based on the ideas from the
discussion, evaluate its e�ectiveness and practical usefulness.

1.3 Limitations

As this is a master thesis a �xed time frame of 20 weeks is set and has to be
kept. The time limitation will mostly a�ect the practical implementation which
will be more simplistic than the considerations in the theoretical discussion.
Limited time as well as limited resources will also have e�ect on the evaluation
of the practical implementation.

Not all existing variations of honeyclients have been evaluated but the ones
chosen is at the time of writing among the more popular ones and most suitable
for the project.

1.4 Targeted readers

This thesis can be read by anyone interested in how malicious code is spread
on the Internet and want to �nd out more about possible ways to discover and
block such code.

Some basic understanding of the technologies behind the Internet is expected
from the readers. Knowledge of Internet infrastructure and basic programming
concepts are not mandatory but are recommended to fully understand the rea-
soning.

1.5 Methods

A lot of research has been done in the subject of IT security and malware
incidents. Information is taken from books, technical papers and articles with
credible sources.

3

2 Background on client-side security

2 Background on client-side security

To understand why it is interesting to use honeyclients in the way that this thesis
does, some background and insight in how networks are, and used to be, attacked
is needed. The attackers and their attack techniques have been changing over
time, constantly trying to get past and fool the defense mechanisms set in place.
It has always been a cat and mouse game, unfortunately with the attackers at
the lead position making the �rst move. The best the defenders can do is to
follow and quickly get into a position where the attackers have to make a new
leap forward to succeed with their intended actions.

There are two primary attack vectors that is at �rst considered by an attacker
while laying out his attack strategy. A computer system's functionality is a
direct result of technology and humans interacting. Which one of the two an
attacker decides to abuse usually depends on which one is easiest exploited at
the moment. Historically attackers has preferred to exploit the technology, this
makes sense because technology is predictable and lacks intelligence. Technology
does not have the gut feeling that a human being does which means that it
cannot separate suspicious instructions from legitimate ones. Technology does
what it is told and cannot foresee or consider the consequences of actions taken.
Even if a system has mechanisms to identify breaches and illegal presence on its
own a human must ultimately make the decision on what countermeasures to
take. This even assumes that a human has got knowledge of the incident in the
�rst place. Thus attacking technology makes it possible to attack, in�ltrate and
get out before, if ever, any human can react. An over representative amount of
attacks on technology leads to a big focus on more secure technology and defense
mechanisms directed towards weakness' in said technology. At some point it will
be more lucrative for attackers to direct their e�ort towards the other primary
attack vector, namely the persons controlling the system. This attack vector
demands di�erent techniques, requiring more sociological knowledge than pure
technological. It turns out to be fairly easy to exploit humanity, the human gut
feeling is not in any way perfect and can easily be crippled by sociological factors
such as stress, authority, feelings et cetera. One drawback for the attacker is
that he usually only gets one good try as humans tend to get much more careful
if they happen to detect an attempted attack. [1][2]

This chapter will explore the threats directed towards client computers, the
techniques used by attackers to exploit Internet end users and then continue
with an evaluation of existing defenses. It will not consider attacks on server-
like services even if client computers may have these running and be openly
exposed to the Internet. This chapter serves as a motivation to why client-side
protections are necessary and why new defensive ideas must be developed.

2.1 Client-side malware threats

Reports [3] show that the point where attackers prefer to use humans as the
opening attack vector instead of the increasingly hardened server technologies
has come, or might even have been the case for some time. The SANS Top-
20 2007 Security Risks report [4] indicated that client-side attacks is on the
rise and at least as big a security risk as server attacks. And the trends is in
favor to the attackers because not only are there a lot more client-side software
than server software where vulnerabilities can be found, there are also a lot
more clients than servers on the Internet to attack. Figure 2 is taken from
the international anti-virus �rm F-secure's IT Security Threat Summary for

4

2.1 Client-side malware threats 2 Background on client-side security

the Second Half of 2008 [5] and shows historical detection count of malware
for their signature based anti-virus product. As can be seen malware presence
on the Internet have grown at an alarming rate especially between 2007 and
2008 where the amount of signatures added by F-secure tripled. Avira, another
Internet security �rm forecasted in a report released late 2008 [6] that year 2009
will see persisted expansion of malware threats, and the F-secure report agrees.
Predictions point at botnet-construction as one of the biggest motivations for
malware authors who now �nd opportunities to make a pro�t from their skills
as the cybercrime world gets more organized.

Figure 2: F-secure malware detection statistics (by year).

Client computers and client-side software refers to workstation computers with
software such as a web browsers, o�ce suites, movie viewers, et cetera, installed.
Its purpose is to serve as a tool for people, one at a time, to do work on and
access the rest of the network to make use of services o�ered by server com-
puters. Depending on the client computer's owner it may contain everything
from personal letters and photos to sensitive company information. All mali-
cious software threats that a client computer is faced with are grouped under
the same general term, malware, a abbreviation of malicious software which
refers to the actual code that would perform the threatening action. An agreed
on de�nition of malware does not seem to exist. However, in this thesis the
following de�nition will be used:

Malware is a general term used to describe any code that has ma-
licious intents such as to damage and steal data or use system re-
sources to perform unwanted actions.

Malware, being a general term, branches out into subgroups of more speci�c
pieces of code all with their own characteristic malicious behavior. The rest of
this section will try to describe these groups which are used by end users and
security professionals alike to describe any arbitrary piece of malware code.

5

2.1 Client-side malware threats 2 Background on client-side security

2.1.1 Virus

Infectious programs that can reproduce themselves but require inter-
action to propagate. [7] (Hacking Exposed 5th edition)

One of the most widely known terms for code with unwanted behavior is com-
puter viruses. The term computer virus was used as early as in the 1980s [8]
and has come to represent a piece of code that attaches itself to other pro-
grams performing destructive or to the user otherwise irritating actions. This
de�nition still lives on even if the presence of malware which purpose is solely
to destroy data or to bother the user by showing dancing dogs on the screen
has dropped to an almost zero. This drop is due to a shift in attitude of the
malware writers which today rather write other kind of malicious code with the
purpose of making money. Characteristic for viruses is that they cannot live by
themselves, they need another executable program to attach itself to and it can
only propagate when a infected program is run. This means that a computer
virus only spreads when people are exchanging programs, which together with
the fact that they have to modify executable �les makes them quite easy to
discover and contain.

2.1.2 Worms

Infectious programs that can self-propagate via a network. [7] (Hack-
ing Exposed 5th edition)

Computer worms are, unlike viruses, a independent program that doesn't need
other executables to propagate or function. Worms instead infect the computer
system itself so that they are able to live all the time while the machine is
turned on. Worms can be extremely aggressive in the way they try to spread
themselves, they use the network connection to exploit various vulnerabilities or
send e-mails en masse in hopes of �nding new victims. This aggressiveness can
lead to congestion on the network and may shut down connectivity for whole
organizations which ends up costing a lot of money. Because of the potential
technical and economical consequences there have been a few incidents of worm
outbreaks that gained mainstream attention such as the Code Red outbreak [9]
in 2001 or the more modern and sophisticated Storm worm [10]. Storm got
its name from the well crafted email messages it used to spread itself, using
subject lines indicating the email to contain important information and video
on the violent storms wreaking havoc in Europe at the time. This important
(and probably emotional to many people) message made a lot of people click on
the attachment and get infected.

In addition to the trouble caused by worm's propagation mechanism it usually
has a purpose to ful�ll on a infected machine like stealing information and e-
mailing it to their creator [8]. The trend is that worms, or its spreading technique
anyway, are getting more and more related to botnet creation discussed further
down.

6

2.1 Client-side malware threats 2 Background on client-side security

2.1.3 Rootkits and backdoors

Programs designed to in�ltrate a system, hide their own presence,
and provide administrative control and monitoring functionality to
an unauthorized user or attacker. [7] (Hacking Exposed 5th edition)

Backdoors, also known as rootkits are programs that open up the infected com-
puter to the Internet and allow an attacker to connect back to it. The backdoor
software is engineered to be hard to detect and may allow the attacker to use the
computer however he wants for example to explore the �le system and download
�les. Backdoors are mainly used in directed attacks when the attacker wants to
spy on or extract speci�c information from a victim. Rootkit technology is also
used by botnet software (further explained in section 2.1.4) to hide its presence,
or more correctly, hide the bot software and its actions. The Torpig botnet [11]
uses a rootkit called Mebroot, which installs itself onto the master boot record
(MBR) of the victim machine. The MBR is read by the computer when it starts
up, before the operating system is loaded and can therefore have a higher level
of control than any antivirus software activated later. Mebroot does however
not contain any of the Torpig bot functionality, it is only used to hide the Torpig
�les and its actions from the rest of the system and make sure the machine stays
infected. Another well known rootkit technique is to load code directly into the
kernel (the core of the operating system), this can be done by loading a kernel
module (on UNIX systems) also called kernel hooking (Windows systems).

2.1.4 Bots and botnets

Very similar to rootkits and backdoors, but focused additionally on
usurping the victim system's resources to perform a speci�c task or
tasks (for example, distrubuted denial of service against an unrelated
target or send spam). [7] (Hacking Exposed 5th edition)

The word bot is an abbreviation of robot [12] and describes a kind of malware
that after infection connects back to its creator (or a central command server
controlled by the creator) to await further instructions. Many bots successfully
connected back to their creator will make a botnet, a network of bots. Since a
bot in practice have full control of the infected system a botnet could be used
to complete several malicious tasks ranging from password stealing to denial-of-
service attacks. Bots can have spreading techniques similar to that of worms or
be hidden in executables like viruses but are in that case called trojan horses.
Being infected with bot malware can have big consequences especially when
illegal actions such as e-mail spamming is traced back to and blamed on the
company network.

In May 2009 a group of researchers from the University of California relesed
a paper called Your botnet is my botnet: Analysis of a botnet takeover [11]
describing in detail a ten day long hijacking of the Torpig botnet. Torpig,
described at the time as "one of the most advanced pieces of crimeware ever
created", supplied the researchers who was in control of the central command
server with 70Gb worth of data. The data included credit card numbers, valid e-
mail addresses, login credentials to di�erent services (e.g. POP3, FTP, SMTP),
saved passwords as well as all data posted via input �elds in web browsers.
Furthermore it had functionality to serve up fake web pages displaying login
screens to well known �nancial institutions and opened up two TCP ports on

7

2.1 Client-side malware threats 2 Background on client-side security

the compromised computer allowing SOCKS- and HTTP-proxy functionality.
The conclusions and potential damages resulting from a Torpig compromise
where devastating. When analyzing the data the researches not only found
that they had complete access to peoples e-mail and social networking accounts
(among other things) they also managed to �lter the data collected from web
browser input �elds to allow blackmailing of individuals.

2.1.5 Spyware and Adware

Spyware is designed to surreptitiously monitor user behaviour, usu-
ally for the purposes of logging and reporting that behaviour to online
tracking companies, which in turn sell this information to advertisers
or online service providers. [7] (Hacking Exposed 5th edition)

Adware is broadly de�ned as software that inserts unwanted adver-
tisements into your everyday computing activities. [7] (Hacking Ex-
posed 5th edition)

Spyware and adware are closely related to each other where adware basically
is spyware with advertising functions. Spyware categorizes a type of malware
that usually is installed together with other software implying it's under the
users consent, but information about its presence is often well hidden and the
functionality is unwanted by a big majority of the users. Spyware functionality
range from sending quite innocuous statistical information about the software's
usage back to the spyware company to sending sensitive information about the
user and the �les on his/her computer to an unknown organization. Installation
of adware usually results in an increase of ads showing up while using the com-
puter with no options to turn the functionality o�. A well known spyware and
adware package that infected many client computers in early 2000 was Gator
who's install license (that very few people actually read) gave it permission to
at any time show ads, install other software without the users knowledge and
collect extensive information about the system. [13]

2.1.6 Malicious website scripts

Even the simplest JavaScript code snippets can do things such as pop
up windows and otherwise take near-complete control of the browser's
graphical interface, making it trivial to fool users into entering sen-
sitive information or navigating to malicious sites. [7] (Hacking Ex-
posed 5th edition)

Most commercial and popular websites of today needs the visitor to allow client-
side code to be run on their computer. This leads to more advanced web appli-
cations and better user experience but also opens up for security issues because
users have to trust the visited website and are given little control over what the
code is allowed to do. This functionality has not been implemented completely
without thought, code from websites is often given limited privileges and more
feature rich code like ActiveX and Java applications needs the user's explicit
permission before it's allowed to run. However, lightweight code like JavaScript
is considered harmless enough by web browsers that its run without any user
permission or slightest indication that code has been run at all. In the last
couple of years papers and proof-of-concept code from security researchers has

8

2.2 Malware delivery methods 2 Background on client-side security

shown that JavaScript is not that harmless after all. Stealing http cookies, also
known as session hijacking done through very simple scripts has been known and
exploited for a long time [14]. Further progressing the possibilities are more ad-
vanced code suites such as XSS Shell [15] which is basically a JavaScript rootkit
that give attackers control over the victim's web browser and allows them to for
example perform key logging, extract user browsing history or launch a denial-
of-service attack. So while attacks through website scripts o�ers very limited
functionality to the attacker when desired actions such as reading and writing
to the �le system isn't possible the simplicity and potential quantity of users
exposed is enough to make it a lucrative option to malicious minded persons.

2.2 Malware delivery methods

Before continuing to look at possible protection methods against the threats pre-
sented in section 2.1 one has to know how infection happens and what attackers
do to lure users onto their malware. Because the dilemma of attacking client
computers is that there needs to be an active action taken by the victim, some-
how the user behind the client computer must be persuaded to execute/open
a �le or visit a website that the attacker has prepared. The methods used
by attackers to expose their malicious code to innocent unwitting users di�er
depending on the situation. If the agenda is to infect as many computers as
possible without any regard to which computers it is or who they belong to,
an e�ort on broad exposure rather than design �nesse is favorable. However
if the attack is directed towards one or a group of signi�cant people, convinc-
ing delivery design is more important. The creativity of attackers has at times
shown to be tremendous but in other situations laziness in message design have
greatly diminished the impact of the attack. As stated, a lot of focus is put on
techniques where attackers try to con users into infection as it is often proven
to be the easiest way.

2.2.1 Downloads and �le sharing

Free downloads and �le sharing networks has always been used to spread mali-
cious code, especially viruses have been dependant on �le sharing taking place.
The idea is very simple, provide software that people want and they will down-
load and run it. In practice it's more complicated, making desirable software
is hard and takes time, competition from serious vendors exists in all areas
and when someone �nds out that the software contains malicious code word
will spread quickly leading to decreased downloads. Mainly three di�erent ap-
proaches are utilized by attackers to make infections as easy as possible:

Make simple or bogus software and try to spread it. Examples of this are
screen saver software, simple games, packages with smiley characters and
executable �les with an interesting name but does not function. The
drawback of this method is that it mostly attracts young and naive users
as most people are not interested in cheap, unknown software with limited
functionality. It is also hard to promote such software to a broad audience.
In some situations however when the attack is directed towards a selected
few this can be a good tactic, probable examples would be sending a little
backdoor installing calorie counting program to the executive director that
wants to lose weight or distribute password stealing online game cheat
software to users who paid a lot of money for their game accounts but are
not doing very well. A new take on this concept and yet another proof

9

2.2 Malware delivery methods 2 Background on client-side security

of attackers creativity is the rise of scareware. Professional looking, free
but fake anti-malware products that via online scans tells the user that
his computer is infected but o�ers cleansing and protection if downloaded
and installed [5].

Steal someone else's software, apply malicious code and give it away for
free. Pirated software has been traded between strangers for as long as
commercial software has existed, and a lot of trust is given to the shady
suppliers of cracked software in exchange for free quality programs and
games. With the recent growth of Internet communities it has become
harder to use �le sharing networks as a distribution channel for malware.
Advanced networking features within the pirate communities that allow
individuals to rate and comment �les leads to quick revelation of malware
infected software. At the same time trust can be given to those few that
always seem to supply non-malicious downloads and continuously are given
high ratings by the collective.

Collaborate with legitimate business which already has quality software
that people want. This is the spyware/adware approach to malware
spreading and needs some economic resources and professionalism. Be-
cause either the company owning the software needs to be convinced that
the code distributed together with their software is at least somewhat legal
or the real malicious functionality has to be hidden from them until it is
too late. A once popular application bundled with spyware and adware,
even though the company claimed that there was no such thing, is Kazaa
a media desktop-application with �le sharing capabilities. [16]

2.2.2 Software exploits

This category is not a distribution channel solely by itself, it is a more elegant
and stealthy way of getting malware to run on the victim computer. Software
exploits open up a lot of new ways for attackers to be creative in their delivery
of malware and a good exploit can render users practically defenseless.

A software exploit is code that uses a vulnerability in a computer program.
Furthermore, a vulnerability can refer to any technical problem or fault in the
original software code that makes the program misbehave or altogether crash.
One of the most popular vulnerabilities have been bu�er over�ows which in
the right circumstances give attackers control over the computer's execution
memory meaning they can continue to run any code they wish. The consequence
of software exploits is that attackers aren't limited to applying their malicious
code to executables using the techniques discussed in the Downloads and �le
sharing section (2.2.1). They can by giving malformed input to a otherwise
harmless application execute malicious code. This input can take many forms,
for example a vulnerability in Microsoft Word can be exploited by opening a
malformed Word document. To illustrate how serious software exploits can be
two real world examples have been studied further.

The Microsoft ANI vulnerability found to be exploited in the wild in March 2007
gained a lot of media attention. The vulnerability existed in routines used by
the Microsoft Windows operating system to process .ani �les. These �les contain
animated cursors that for example are used to change the mouse pointer into
an hour glass when the system is busy. ANI �les, which mostly contain graphic
content, have been used since early versions of Windows and the same old

10

2.2 Malware delivery methods 2 Background on client-side security

rendering code was reused for newer versions. By loading a malformed .ani �le a
bu�er over�ow would happen and malicious code could be executed. What made
this speci�c vulnerability critical was both the broad scope of potential victims,
since the same code existed in all versions of Windows (2000, XP and Vista)
everybody was vulnerable, but foremost that .ani �les could be loaded very
easily without the victims consent or knowledge. For example may animated
cursors easily be loaded with HTML code embedded in websites or e-mails and
Windows will automatically load the �le when detected, it doesn't even need
to have the .ani extension. What made it even worse was that example exploit
code was publicly available and Microsoft was forced to quickly produce a patch.
[17]

In February of 2009 a vulnerability in the Adobe Acrobat Reader software, com-
monly installed on client computers and used to view pdf �les, was found. Yet
again exploit code was made publicly available which made the situation much
more severe. All versions of Acrobat Reader where vulnerable and no patch
was available for several weeks. What made this vulnerability extra critical was
that the malicious pdf �le, which triggered a bu�er over�ow, didn't need to be
opened by the user for exploitation to happen. Victims simply had to get the
�le on their computer (for example by e-mail) showing up as an icon and Adobes
automatic indexing/preprocessing functions would trigger the exploit. [18]

It's no doubt that software exploits can be devastating, fortunately to some
relief several variables greatly reduce attackers' ability to make use of bu�er
over�ow vulnerabilities:

First a vulnerability has to be found, and it very rarely happens by chance.
Instead attackers have to actively examine the software and try to make
it crash. This takes time and requires that the attacker know what he's
doing.

Then exploit code has to be written, which certainly isn't easy. It might
not even be possible to use the vulnerability to write a working exploit.
This process requires a lot of knowledge and expertise because if an at-
tacker wants to use the exploit to spread malware it is not enough to get it
working on his own system, it has to be compatible with all system types
and con�gurations that he wishes to attack.

The lifetime of a vulnerability is limited, and the exploit will only work
until the vulnerability is patched. If the attacker is unlucky the same
vulnerability has been found by someone else and reported it to the com-
pany who releases a patch before he can produce a working exploit. This
is an area where both software companies and users could do much bet-
ter. Companies by getting patches out more quickly and users by actually
applying the patches.

New protection technologies makes exploitation harder, non-executable
memory, address randomization and system call interception have greatly
increased the di�culty to write working exploits. [19]

2.2.3 E-mail and instant messaging

E-mail and instant messaging (IM) allows for direct communication with indi-
viduals many times at a semi-trusted basis where sender addresses and contact

11

2.2 Malware delivery methods 2 Background on client-side security

lists tells the user from who the message originates. To the attackers delight e-
mail and IM communication allows for easy attachment of arbitrary �les which
make them very convenient malware delivery methods. The direct communica-
tion nature of these mediums means that attackers can actively contact their
victims and personalize the messages sent. To their disadvantage sending mes-
sages in the �rst place requires valid addresses. E-mail and IM communications
can be e�ective both in mass malware infection attempts and directed attacks.

Mass infection attempts are often launched as spam. Spam has become the de
facto expression for unwanted e-mail messages including everything from imper-
sonal messages that promote doubtful products and stock market recommen-
dations to newsletters from forgotten website memberships. Public knowledge
about the existence of spam and the problems it may cause is relatively high
since even non-technical users are annoyed by junk messages �lling up their
inbox. This has led to a lot of work being done to stop unwanted e-mail be-
fore it reaches the user. Yet spam doesn't seem to go away and while users
have learned to be wary of suspicious e-mail messages with attachments from
unknown senders most still can't resist to read and open messages that cause
strong emotional reactions like the message used by the Storm worm mentioned
earlier [10].

The same applies to e-mails received from trusted sources and friends, a fact
that worms take advantage of when they use e-mail settings and saved contacts
on a infected computer to spread itself. In the last couple of years several instant
messaging worms have appeared using communication protocols such as MSN
messenger, ICQ and Jabber [20]. Exploiting the trust between users can be
e�ective way to deceive a victim that otherwise is careful enough not to fall for
generic e-mail spam.

If an attacker has access to a good, un-patched software exploit e-mail and in-
stant messaging can be highly e�ective distribution channels since the commu-
nication is direct, �les can easily be attached and users often read the messages
they get. The drawback for the attackers being that they must have some sort
of list over contacts to start from.

In directed attacks personal e-mail messages can be made very convincing and
while there is a general suspicion towards attachments in e-mail from unknown
sources e-mail messages can be manipulated to appear to come from someone
else. The threat and e�ectiveness from directed attacks became very clear with
the release of The snooping dragon: social-malware surveillance of the Tibetan
movement [21] a paper by Shishir Nagaraja and Ross Anderson at the University
of Cambridge unveiling the attacks made against monks and sympathizers of
the Tibetan freedom movement. The attacks where very well thought out and
used emails that seemed to origin from trusted sources containing a convincing
message in social context together with a relevant attachment (usually a PDF
or PowerPoint �le) to infect the victims computers. The attached �le triggered
an exploit when opened that installed a rootkit on the computer, from there on
the attackers had full access to the victims data and could also use his/her email
address and contact list to further expand their operation against members of
the movement.

2.2.4 Malicious and bogus websites

Critical web browser vulnerabilities and new possibilities to write malicious
website scripts have led to attackers setting up bogus websites and attempt to

12

2.2 Malware delivery methods 2 Background on client-side security

lure Internet users to visit them. The quality of the attempts di�er greatly,
some use professional looking designs mimicking a legitimate business while
other use very basic templates. The exploitation can be very quick and with
techniques like drive-by-downloads practically invisible to the user after the site
been visited. Drive-by-downloads refers to a technique that uses a combination
of scripts and exploits to make the malware download and install itself without
any further user interaction after the site had been visited.

The common problem for bogus websites is that they need users to visit it for
exploitation to be possible. Sometimes accustomed Internet users can identify
such sites already before they click on the link as the URL address tends to have
a unusual name or pre�x. E-mail spam, links posted on discussion forums or
promises of interesting content that gets the site high up on search engine result
lists are all ways to entice visitors. What make these sites especially dangerous
is that they are fully controlled by the attackers and could contain any amount
or type of code.

2.2.5 Insecure websites

In contrast to shady and suspicious websites with strange URLs high pro�le
professional news, e-store and community sites are trusted by millions of users
every day. Well known public company ownership, cryptologic certi�cates and
social proof is more than enough for most people to feel safe and accept pretty
much any content or query originating from some sites. Unfortunately attackers
have found ways to spread malicious code through such sites, although more
di�cult, broad user exposure is guaranteed.

Malware infection trough trusted websites is done in several di�erent ways:

Users are allowed to create content on the site and there is insu�cient
checks on what is created. This could be everything from posting links to
malware infectious bogus sites on a discussion board to upload image �les
exploiting a vulnerability as pro�le picture.

Vulnerabilities in the web application may allow for content to be uploaded
or malicious scripts to be created. Web application security is a serious
concern and very few sites are completely free from security holes such as
cross-site scripting that could harm the users.

Ad-networks that supplies sites with advertisements which are out of
the sites control. Malware spreading through ads has been known to occur.
Of special concern are Flash-based ads which could exploit vulnerabilities
in the Adobe Flash player software.

The Torpig botnet infected most of its victims trough drive-by-downloads up-
loaded on trusted but insecure commercial websites [11]. If the site compromised
has a large user base and the exploits used by the malware has good quality
a drive-by-download infection approach can be highly e�ective. The problem
with compromised legitimate websites that spread malware is larger than most
people generally believe. In an interview with H-Security, Paul Ducklin, Head
of Technology for the antivirus company Sophos, says that their laboratory
alone �nds 30,000 legitimate web sites daily that were infected with malicious
JavaScript code or iframes. [22]

13

2.3 Defenses 2 Background on client-side security

2.3 Defenses

Previous sections of this chapter make it seem like the Internet is a very dan-
gerous place and being a victim of malicious code is inevitable. Although the
threats are real and many computers get infected every day there is a lot one
could do to reduce the risk signi�cantly. There is no perfect solution but that
doesn't mean that the current solutions are bad, it is more of a testimony to
the complex nature of the human-technology relationship where technology is
constantly evolving and humanity is too wide and unpredictable. Adding to
this there have been an unwillingness to take on new defensive technologies and
much trust is put in old concepts like antivirus and �rewalls. The same kind
of products that are now struggling to keep up with the new approaches taken
by attackers. This unwillingness is not unjusti�ed, cost and higher knowledge
requirements are more than enough to make people decide against adopting new
security products. But most of all, it is the lack of evidence that new defensive
measures actually work and are more e�ective than what is already in use.

2.3.1 Safe computer settings

It may sound obvious that software should be developed and shipped with se-
cure settings to make the product safe for non-technical users to use. Yet this
is nothing to take for granted, because safe settings con�icts with the one most
sought after product attribute, usability. If a software product wants to be user
friendly it must have a lot of functions and it must allow users to use these
functions easily and without obstacles. As a matter of fact most users want the
software to know what they want to do and do it automatically. Especially op-
erating systems su�ers from this fact, a newly installed operating system starts
with several services running and has many functions that most users will never
use. Some software companies have started to understand this problem and
taken various approaches to make their products more secure. One of the most
successful variants has been not to reduce functionality, but to disable it and
then allow for easy activation when needed. A good example is the built in
�rewall in Windows XP SP2 that prompt users to allow programs that wants to
connect to the Internet. This way users will know which programs tries connect
to the outside and at the same time, if they want the program to be able go
online, easily add it to the whitelist and never be bothered again. This concept
however, was not the �nal solution to client security. When Microsoft wanted to
extend this approach in the Vista operating system it didn't receive good feed-
back. The idea in Vista was to limit direct access to administrative functions.
A problem that had hunted Windows security for a long time was the fact that
users where always logged in with administrative rights thus giving software run
by the user the same rights even if it was not necessary. Users always logged
in as administrators was simply a consequence of user accounts being too lim-
ited and lacked a convenient way to allow administrative actions when needed.
Microsoft's solution was User Account Control (UAC), a security mechanism
that allowed users to decide if and when a particular software could do admin-
istrative tasks. Inspired by the earlier �rewall solution it simply prompted the
user with a dialogue box every time a program wanted to access to restricted
operating system functions giving the user a choice to whether let the program
continue or cancel the action. Theoretically the idea was great, it placed the
user in control of what happened on his/her machine, in practice it became close
to a catastrophe. First of all software developers had come to be accustomed
to their programs always having access to administrative functions which led to
an unnecessary usage of such functions, in worst cases some programs needed

14

2.3 Defenses 2 Background on client-side security

to get the users approval every time they started up. This combined with that
most users where not technical enough to understand why they needed to be
bothered all the time and what actions they were actually approving only led to
irritation and enormous amounts of complaints on the Vista operating system.
Consequently the next iteration of the Microsoft operating system (currently
called Windows 7) will have a toned down version of UAC that surely won't be
as e�ective.

Con�guring a computer system down to sensible and secure settings will con-
tinue to be a privilege to technology savvy users for a long time until software
developers �gure out a balanced way to handle the security versus usability
con�ict. In the meantime non-technical users need help locking down their
systems, because there is a lot that can be done to make client systems safer
by just a few con�guration tweaks which will ultimately make the whole net-
work safer. Concrete examples would be to disable services not used, con�gure
the web browser trusted zones settings to restrict the privileges of scripts and
ActiveX/Java applets, enable automatic updates and disable autorun features.

2.3.2 Antivirus

Antivirus has come to be the last line of everyone's defense and for some, their
only line of defense. There is an unjusti�ed con�dence put in antivirus prod-
ucts, an old concept that most attackers have learned to bypass. It is however
easy to see why antivirus is so popular, it is user friendly. Antivirus software is
basically a program that the user fully trusts and is given complete authority
over the system, it is always active in the background scanning �les and ob-
serving actions taken by other processes running. Antivirus software generally
relies on signature based detection but also do behavioral analysis. It is how-
ever important that the behavior like detection mechanisms isn't too sensitive
because that would give a lot of false positives and unnecessarily irritate the
user when he/she is trying to do something important. This would remove the
user friendliness and also the willingness to use an antivirus product at all, a
fact that makes the behavior analysis mechanism less useful.

There are several problems with antivirus protection. First how broad should
the de�nition of a virus be? As discussed before malware of today do not �t in
the old virus description, detecting bot-software and rootkits may be included
in the antivirus software's tasks but what about spyware and adware? Where is
the line between innocent statistic gathering with user consent and information
stealing? And how do the antivirus software know what the user wants and
not? What about misbehavior from commercial forces like the Sony rootkit-
incident where the music company Sony knownlingly distributed music CDs
that installed a rootkit (without user consent) when put into a computer to
prevent piracy, can users trust the antivirus software to protect them from
those situations? Or will the antivirus vendors look the other way in fear of
getting sued? Aside from the philosophical issues there are serious problems
with the technology. A lot of today's malware can detect and bypass antivirus
products, or simply disable them before the malware continues to install itself.
Hiding malware in a specially crafted RAR-archive is one example on how easy
it can be to evade antivirus detection [23]. Once malware have deep control of
the system the antivirus can't do anything. Detection is another problem. The
antivirus product needs to be constantly updated with new malware signatures
but the signatures cannot be created before the malware has been found and
analyzed which leaves a window of opportunity for the malware to spread and

15

2.3 Defenses 2 Background on client-side security

mutate (change appearance so that the signatures won't match). This was
no problem in the 90s but with today's constantly online computers and fast
Internet connections it certainly is.

2.3.3 Intrusion detection systems

Intrusion detection systems (IDS) is one of the defensive technologies that have
become accepted and used as a commercial network protection solution. Al-
though it's not originally aimed at client security it works just as well for that
purpose. IDSs operate by analyzing the tra�c going through the network look-
ing for malicious behavior, it is in other words trying to detect hacker attacks
and malware before it reaches the targeted computer. In a big network an IDS
can be a separate box connected to a tap-interface (network interface stream-
ing a copy of all tra�c on the network) thus monitoring all computers at once,
this is called a NIDS (network intrusion detection system). If there is only a
single computer a software IDS could be installed directly on the client and is
then called a HIDS (host intrusion detection system). Having a software IDS
installed directly on the computer allows for extended monitoring and protec-
tion. Because when analyzing network tra�c like NIDSs does, detection have
to rely on signature matching and behavior statistics but a HIDS can monitor
the state of the system and activities such as data written to system folders and
the addition of registry keys thus detect even stealthier kinds of malware. A
continuation of the IDS concept takes the form of intrusion prevention systems
(IPS) which not only detects and warns about malicious tra�c but also tries to
prevent such behavior when detected. It is however not always desirable to take
active actions against suspicious tra�c which may interrupt important events in
case of false positives, therefore IDS and IPS products exists as separate entities.

2.3.4 Website blacklisting

Blacklisting is a simple security measure that has proven to be quite e�ective.
By blocking access to malicious websites or websites with doubtful content the
risk of being on the Internet has been shown to decrease substantially. Of
course someone will have to build and maintain the blacklist, a very extensive
and time consuming task. Building and maintaining blacklists is often done
by commercial companies or security oriented organizations that o�er access to
their blacklist either for free, in exchange for money or as a part of their product
(which for example could be a �rewall solution, a proxy, et cetera). Blacklists
mainly protect against the threat from bogus websites as big sites will not be
put on a list by a blacklist-provider, yet as seen in section 2.2.4 such sites can
also spread malware.

One of the reasons blacklists works so well is because in a lot of cases malicious
scripts found on di�erent websites all continue to download its payload from the
same site unrelated to the maybe legitimate but hacked site the user was visiting
[24]. One site that collects URLs for such malware snake nests is malwaredo-
mainlist.com that o�ers its list for free to use as blacklist. The e�ectiveness
of blacklisting is however fading, security research �rm FireEye �nds that at-
tackers very well know about this weakness and are trying to eliminate it by
instead store the whole payload on the hacked domain [25]. It is also possible to
make blacklists obsolete by allowing botnets to serve the payload using fast-�ux
techniques (address to the payload is constantly changing between individual
computers in a botnet).

16

2.4 Conclusions on client-side security 2 Background on client-side security

2.3.5 User education

Ever since the beginning of computer technology, computer crashes, random
system faults, lost data and undesired system behavior have been blamed on
user inexperience by technology savvy people. There may be truth to some of
those accusations but often technology is just as much at fault. The bene�ts of
user education and the question if it really has any e�ects at all is well debated
among security experts [26]. The majority side seems to be the one claiming that
user education has little to no e�ects in raising security. A good example is the
password problem, it has been said for decades that choosing a good password
is important, several easy suggestions on how to make a password more complex
and harder to guess are often given at the time of password choice, still weak
and easy guessable passwords are a big problem. A reason a lot of malware
attacks today are so simplistic and easy to spot for a well informed person is
because they work well enough anyway. Yes, there is probably some attacks that
could be avoided by teaching people to not being gullible on the Internet but it
won't be a solution to the overall problem, this is because the average computer
user will never fully understand how a computer works and thus the attacker
will always have an advantage. Take for example the Tibetan monks, which
very well knew they were targeted and spied on by resourceful people. Still
they could not prevent being victims of attacks using social malware (a term
coined by the people behind the research referring to malware that is spread
using social elements), and no education could probably ever prevent it [21].

2.4 Conclusions on client-side security

This chapter has discussed existing client-side malware threats, the attacker's
methods to implement these threats in reality and what security measures are
generally taken to protect client computers. The complex relationship between
humanity and technology have also been touched upon and the conclusion drawn
is that both need attention to raise the overall security, because even if it was
possible to solve technology issues like bu�er over�ows it will never be enough.
Raising users awareness of how malware spreads on the Internet may help a
bit on the way but isn't the ultimate solution. In the end technology has to
bear most of the burden and take its role as assistance provider for humans.
In turn technology needs humanitarian help to advance, both in new defensive
techniques and in its communication with humans so that both parts better can
understand each other.

The trends of malware are quite clear, successful techniques form old concepts
are used with new ideas to build botnets. Botnets and its authors are more
e�ective and strive �nancial gain instead of fame. Users are no longer bothered
by noisy or badly written malware that makes the system malfunction. Instead
all of their data, passwords, �nancial information and personal communication
is stolen silently if front of their eyes, and may be sold to the highest bidder.
Lost data or lowered productivity is not the biggest threat anymore, �nancial
loss or public humiliation may be much worse for individuals and organizations
alike. Part of the problem is that users do not grasp what is going on and the
consequences of their data getting into the wrong hands. Educating users on
how malware act and what data is stolen may not help computer security but
hopefully make users more careful and aware when interacting with computers
and the Internet.

Looking at it from another view a lot of the security issues can be solved by

17

2.4 Conclusions on client-side security 2 Background on client-side security

making computers less general purpose. If a computer used to save and edit
important documents didn't have a web browser or e-mail client installed those
documents would be much more secure. If online banking applications where
used from a separate closed gadget, stealing login information by installing mal-
ware on the device would be close to impossible. Maybe this kind of application
isolation will be widespread in the future but today's reality is far from it. Until
some technological breakthrough that revolutionizes computer security happens,
new defense methods relating to today's technology is needed to keep up with
the attackers. The next half of this thesis will present ideas and conceptual
descriptions of a defensive measure that could be used to raise the security in
networks where users are allowed to access and browse the web, thus exposing
themselves to malware threats.

18

3 Honeypots and clients

3 Honeypots and clients

The idea behind honeypots is deception, a tactic that has been used to catch
thieves and other malicious people troughout history. A honeypot exists to lure
attackers to it like bees to a pot of honey, just as its name suggests. Its function
is also to keep the attacker occupied and away from the important systems. One
could say that a honeypot should be as sticky as possible just like honey. As an
attacker in the real world, a thief for example, would choose to break into the
big exclusive mansion where no one seems to be home rather than the plain and
simple family villa which has the kitchen light turned on. So would an attacker
on the Internet choose the easiest target with the biggest payo� to the lowest
risk. If the mansion is large enough and valuable objects seems to be hidden
behind every closet the thief might be occupied just enough for the silent alarm
to notify the police and allow for an onsite arrest.

It is not hard to understand why they are called honeypots but to de�ne what
it is tends to be harder. In his paper De�nitions and Value of Honeypots [27]
Lance Spitzner, a honeypot researcher and author of several whitepapers in the
subject, makes the following de�nition of honeypots:

A honeypot is an information system resource whose value lies in unauthorized
or illicit use of that resource

It may seem like a very general de�nition but the truth is that honeypots exists
in many various forms and they can be very �exible. What they all have in
common however is that their value increases the more they get abused by users
with malicious intent. It is important that honeypots does not have any function
at all important to the rest of the system. Neither should it have any authority
to in�uence the system's real functionality. [27]

Honeyclients are a logical evolution of honeypots following the trend of the
attackers to exploit clients and human factors instead of the servers. It's good
to have some basic knowledge of honeypots and their purpose before continuing
with honeyclients. Therefore a brief introduction to honeypots is included in this
chapter. The rest of this chapter will explain the inner workings of honeyclients
and study existing honeyclient software.

3.1 Honeypots

There are two general categories of honeypots, low-interaction and high-interac-
tion. Low-interaction honeypots are used in production environments as a secu-
rity measure to protect real networks. High-interaction honeypots are generally
used by researchers to study attackers' behavior and �nd new software vulner-
abilities and worms. They are both separate systems on the network posing as
important servers with open ports of known services that would seem interest-
ing to an attacker. In an e�ort to really lure attackers to choose the honeypot
server instead of the real production servers the services running could be older
versions of the software with known vulnerabilities. [27]

Low-interaction honeypots usually consist of a locked down unmodi�ed operat-
ing system install with honeypot software running on top. The software can be
a series of scripts listening on ports acting as real services but does not function
beyond the initial connect and login routines. This makes low-interaction hon-

19

3.2 Honeyclients 3 Honeypots and clients

eypots easy to setup and use, but also easier for attackers to discover because
extended functionality is missing. [28]

High-interaction honeypots are fully working systems running real services fully
connectable and exploitable by attackers. Instead of honeypot software-scripts
running in the background alerting the admin about break-in attempts the
operating system itself are modi�ed at the core. Much like a rootkit the modi�ed
operating system silently logs every action taken, almost undetectable by the
attacker. This way much more information of the attack can be collected and the
attacker can be kept busy for a longer time before he realizes he's been fooled.
The drawback being that high-interaction honeypots are much harder to setup
and maintain, just restoring the system every time a successful compromise has
taken place can be time consuming.

3.2 Honeyclients

As a result of better server security and mature server software which has been
around for so long many of the obvious vulnerabilities have been ironed out
attackers have directed their attention towards client-computers. Honeyclients
is one of the steps taken by security researchers to keep up with the attackers.
It is the honeypot concept taken to the client-side landscape and the ideas
are the same overall. The big di�erence is that while honeypots sits passively
waiting to be attacked honeyclients have to actively search for and expose itself
to potentially malicious content. This is illustrated in �gure 3. Furthermore
this leads to the problem that unlike honeypots which can label any tra�c to
itself as malicious, honeyclients has to be able to di�er legitimate data from
harmful. [24]

Since it is up to the honeyclient itself to �nd malicious content an important part
is the seed mechanism which is the part of the honeyclient that �nds websites to
visit and �les to download. There are many ways for a seeder to function, usually
it starts at one or more sites which it is given manually and then it continues to
spider (or crawl) to other sites from there. This means that it follows the links it
�nds on those sites, the next sites and so on. Some honeyclients can use search
engines such as Google or Live-search to �nd interesting links to start from, this
way di�erent keywords can be taken as input and sites with a common theme
will be crawled.

20

3.3 Existing honeyclient software 3 Honeypots and clients

Honeyclient

Generates

requests

Malicious

server

Non-malicious

serverRequest

Response

Request

Response

Figure 3: Illustration over the honeyclients operation

Just like in the honeypot world honeyclients are divided in low-interaction and
high-interaction variants. Low-interaction honeyclients usually just download
content and then try to analyze it through signature matching and other static
analysis methods. This makes the machine running the honeyclient software
safe from exploitations since no malicious code is actually executed, but has the
downside that a lot of unknown malware cannot be detected. High-interaction
honeyclients on the other hand executes and opens all �les downloaded with real
client-side software and additional plug-ins while being monitored by a rootkit
looking for malicious actions on the system.

3.3 Existing honeyclient software

There are several existing honeyclient software packages, both commercial and
free. For the purpose of the project done together with this thesis two potential
candidate honeyclients where chosen. Both candidates are open source for the
obvious reason that they are freely available and allows for necessary changes
to the code to be made [29][30]. One is a high-interaction honeyclient while the
other is low-interaction.

An updated list of existing commercial and open source honeyclient software
can be found in the Wikipedia article about honeyclients [31].

3.3.1 Capture-HPC

Capture-HPC is an high-interaction honeyclient developed by Ramon Steenson
and Christian Seifert at the Victoria University of Wellington together with the
New Zealand Honeynet Project [32]. It is based on VMware virtual machine
(VM) and server software (VMware Server) which is freely available from the
VMware homepage [33]. To make it scalable it is build around a client-server
infrastructure which means that several honeyclient-VMs could be run on di�er-
ent computers all being controlled by one computer running the server software.
The control software is written in Java and utilizes the VMware API to control
what actions the honeyclients take. If any VM is compromised by malicious

21

3.3 Existing honeyclient software 3 Honeypots and clients

code it can simply be reverted back to a clean state with the VMware software's
snapshot function.

Capture server

Capture clients

Control commands

Reports

Requests

Capture server

software
VMware API

VMware server software

Guest operating system

Capture client

software

Web browser

Various client

software

Internet Explorer

Firefox

Opera

Microsoft Office

Acrobat reader

Winzip

(Software examples)

Figure 4: Illustration over Capture-HPC's design.

The monitoring part of the software which also exists as a standalone project
at the New Zealand Honeynet website under the name Capture-BAT [34] is a
set of kernel drivers which monitors the �le system, registry, and processes that
are running. In practice this means that every new process started, registry key
added and �le written on the running system is reported back to the Capture
server. While these are actions taken by all malware at some point to infect a
computer, many legitimate processes act in similar ways. To be able to separate
legitimate actions from malicious ones a whitelist mechanism exists where known
legitimate actions taken by the operating system can be added. A readymade
whitelist with actions taken by a Windows XP SP2 system while idle is included
in the default install package of Capture-HPC. [24]

The client-server model and use of VMware's API makes Capture-HPC a very
�exible honeyclient. Any software, such as Microsoft Word, Adobe Reader or
WinZip can be installed on the virtual machine system and used to open �les
found for example in e-mails or while browsing the web. The Capture-HPC
server software controls which actions are taken by the honeyclient and pro-
vides it with website links to visit. If any malicious activity is reported back to
the Capture server it logs what action triggered it (e.g. opening a PowerPoint-
�le), what kind of malicious activity took place (e.g. a new �le written to the
system folder), resets the infected VM (using the VMware snapshot functional-
ity) and continues with new instructions. While VMware could handle almost
any operating system the Capture-HPC system is limited to Windows XP SP2
and Windows Vista clients. This is because of the system monitoring part that

22

3.3 Existing honeyclient software 3 Honeypots and clients

has to be customized for a speci�c operating system version. In the later half
of 2009 version 3.0 of Capture-HPC will hopefully be released. The new release
will have extended functionality such as database integration and network mon-
itoring [35]. This functionality, especially the database integration will make it
even more favorable to use in an automatized way.

3.3.2 Monkey-Spider

In 2007, Ali Ikinci, a student at the University of Mannheim, Germany �nished
his master thesis Monkey-Spider: Detecting Malicious Web Sites [12] the result
was a software and script package called Monkey-Spider [36]. Monkey-Spider
�ts into the de�nition of a low-interaction honeyclient, it uses a web crawler
called Heritrix [37], an antivirus/malware software package called ClamAV [38]
for signature based detection of malicious code and a series of Python scripts
[39] to make them work together. Figure 5 shows Monkey-Spider's di�erent
parts and how they connect. Instead of a reporting feature which just outputs
text �les a database entry is added for every malware found together with time
and the full URL to where the malware was found.

Heritrix

Crawler component
Seeder mechanisms

Manual input

Google

Yahoo

MSN Search

ClamAV

Malware scanner

Requests

Malware

database

PostgreSQL

server

Figure 5: Illustration over Monkey-Spider's design.

Heritrix is a webcrawler developed for The Internet Archive [40] which down-
loads, saves and indexes websites over time and makes them accessible to the
public through the Way Back Machine. Heritrix is a very extensive and �exi-
ble crawler with a lot of options ranging from di�erent crawling techniques to
content �ltering. It comes with a user-friendly web interface where di�erent
crawling pro�les can be created and interesting job statistics be viewed. Her-
itrix's main purpose is to dump whole websites with content such as scripts in
an uninterpreted state and save it all in a manageable archive �le-format called
ARC.

Being a low-interaction honeyclient Monkey-Spider does not have the same abil-
ity to study malware behavior as high-interaction honeyclients like Capture-
HPC has. It is completely dependent on the ClamAV engine to di�er legit con-
tent from malicious and thus only detects known malware for which ClamAV
has signatures. Theoretically the detection functionality could be extended,
phoneyc [41] for example, another low-interaction honeyclient uses Javascript
and visual basic script engines to �nd and analyze malicious Javascript and vi-
sual basic code respectively. Also other honeypot/client software is known to

23

3.3 Existing honeyclient software 3 Honeypots and clients

use libemu, an x86-cpu emulator to �nd, execute and analyze shellcode. These
extensions are not planned to be implemented in Monkey-Spider. However there
is a possibility to use CWSandbox [42] for malware analysis but it is not avail-
able in the released version and a paid-for license of CWSandbox seems to be
necessary.

24

4 Honeyscout

4 Honeyscout

Now, the background chapter has laid down a foundation of knowledge of how
client computers on the Internet are threatened by attackers and their methods.
Also discussed are the defense mechanisms in use today and why they are in-
adequate. Further, chapter 3 introduced the honeyclient concept and how such
software generally functions. It is now time to tie it all together while return-
ing to the idea presented in the introduction and give answers to the questions
stated in the objectives section.

The �rst thing to understand is that the outcome of this project is supposed
to represent a new step in defensive technologies, in this context it will be the
third and �nal step. The �rst step was the post-infection defensive capabilities
of antivirus that could scan your computer to �nd �les infected by viruses and
hopefully disinfect them. The second step is the in-the-moment technologies
such as intrusion detection systems and the newer generation of antivirus prod-
ucts that analyze data and �nds malware in real time. It is now time for the
third step, a defense that acts pre-infection and prevents the malware to even
being able to come close to any clients, no matter if the malware signatures are
known or not. Furthermore the concept is meant to operate in networks with
at least a handful of client computers connected. It is doubtful that this kind of
defense is viable and economicaly defendable for single computer users. How-
ever, it is not improbable that a di�erent implementation aimed at stand-alone
clients can be successfully developed.

From this point on defensive solutions based on the concept of using a honey-
client, proxy and blacklist database as described in section 1.1 will be called
honeyscouts. The name honeyscout has two meanings to it. The �rst part of
the name, honey, declares that the concept is related to the rest of the honey-
software family (i.e. honeypot, honeyclient et cetera). The second part, scout,
refers to how the software function as it scouts areas of the Internet ahead of
the users. The de�nition of a honeyscout will be:

A honeyscout is a separate, non-critical system on a network that
monitors and follows users' Internet usage scanning for and blocking
malicious content to prevent client infection.

4.1 Ideal case

Before going into the developed practical implementation, a theoretical ideal
case implementation will be discussed. This is to explore the full potential of
the concept as well as bring up obvious problems and how they could be handled.
An ideal case of a honeyscout (illustrated in �gure 6) would be based upon a
high-interaction honeyclient that as closely as possible resemble the systems it
is supposed to protect. This means that a honeyscout based upon, for example,
Capture-HPC would run the same operating system as the clients. It would also
have the same programs, updates and plugins installed con�gured to open �les
the way users would open the (i.e. the same �le associations). This is possible
in a network with a homogeneous client structure, such as many business and
o�ce networks that only allows a speci�c set of software to be installed. Smaller
networks with individual client con�gurations might be harder to pin down but
it is still perfectly doable to have the honeyclient run a standard set of software
that is likely to be exploited. A high-interaction type of honeyclient would also

25

4.1 Ideal case 4 Honeyscout

allow for very �exible detection of malicious behavior. In the case of Capture-
HPC which monitor �le system activity, registry edits and running processes it
is possible to make case-by-case de�nitions of what malicious behavior is. An
administrator could for example deny access to any website that serves content
which invokes �le writes to any part of the hard drive except the web browser
cache.

Internet

Internal LAN

Honeyscout

Proxy

software

URL

blacklist

database

High-interaction honeyclient

Operating system A

Web browser B

Office suite C

IM client D
Software E

...

Client computer

Operating system A

Web browser B

Office suite C

IM client D
Software E

...

Software Z

Software Z

Crawler

Figure 6: Illustration over an ideal case honeyscout.

With this ideal case in mind some statements of what honeyscouts potentially
can do to improve client security follows:

It can detect any known or unknown malicious code that tries to in�u-
ence the system. High-interaction honeyscouts are not dependant on de-
tection signatures as it is behavioral analysis dependant. It does however
not hinder the user from executing important tasks as a HIPS would do
because the analysis is taken place on the honeyclient system and only pro-
tects against malicious code coming from the open Internet. This means
that installation executables and similar media can still be distributed to
the clients by other means.

Malware distributed through an otherwise trusted site can still be de-
tected depending on how often the honeyscout is con�gured to rescan the
content.

By being able to dynamically change the detection rules the protection
can be adjusted to suit the current situation. A honeyscout could be con-
�gured to be very paranoid for a period of elevated threat level and then
adjusted back to more permissive settings when the threat is over, it could

26

4.2 Implementation 4 Honeyscout

also be con�gured to block speci�c threats, for example to block content
that start up certain processes.

Other untrusted Internet tra�c may also be scanned, for example e-mail
attachments which is often used in attacks.

There are also some potential problematic issues that come to mind:

It does not protect against every threat, for example malicious website
scripts that do not invoke any activity on the system. Web site vulnera-
bilities such as cross-site scripting that could be used to steal user input
would go by a honeyscout undetected.

There might be some privacy issues, much like the concerns regarding caching
proxies. There is however no need for a honeyscout to log which client did
a speci�c request.

Bandwidth usage will rise, due to the nature of web crawlers the honeyscout
probably is going to crawl more content than the users request. One solu-
tion to this problem could be that the concept is combined with a caching
proxy. This would also decrease web content loading times for users.

4.2 Implementation

Implementing an ideal case honeyscout would take a lot of time and resources.
To make it possible to develop a working proof-of-concept honeyscout over the
thesis time period a lot of compromises had to be done. The goal has been
to prove that the concept would work and what kind of problems show up in
practice so that future honeyscout developments have an idea of what to expect.
The project will be referred to as Honeyscout and source code and database
structure can be found in the thesis appendices. Honeyscout will be limited to
intercept and analyze HTTP tra�c as the proxy will work as a webproxy only.

4.2.1 Honeyclient

Honeyclient of choice ended up to be Monkey-Spider, developed by Ali Ikinci
and introduced in section 3.3.2. There are several reasons for this decision;
�rst of all it is a light-weight software package that is easy to understand. It is
also modular which makes it easier to modify the di�erent parts. Furthermore it
already uses a database to store malware reports and it is written in the scripting
language Python which is the preferred language of the author. Version used
for the project is 0.2, released 24th of March 2009.

4.2.2 Web crawler

Being a part of Monkey-Spider honeyclient, the web crawler function is such
an important part of the process that it calls for a closer study. Mentioned
in section 3.3.2, Heritrix, which has a solid developer and user base tied to
The Internet Archive is what the Monkey-Spider project's author decided to
use. One of the foremost reasons (stated in Ali Ikinci's thesis [12]) the choice
came to be Heritrix was the way it captures the unchanged state of a web site
which allows for bene�cial detection of malware. Further the link extraction and

27

4.2 Implementation 4 Honeyscout

queuing mechanism functions of Heritrix is far more extensive and �exible than
the alternatives. The web interface and its status page might not constitute any
vital functions when it comes to Honeyscout operation but is de�nitely a nice
bonus. Section 4.4.1 further reviews Heritrix's user interface.

Some of the questions that arise when one wants to crawl a web site is, which
content to crawl? How to extract links from the crawled content? How deep
(far) to crawl? Heritrix o�ers delicate options to control the behaviour related
to those questions which also will play an important role when experimenting
with the honeyscout concept. The crawl decisions are controlled in Heritrix
with the help of modules. Several modules may be loaded in di�erent order
to achieve desired behavior and users can create and load their own modules if
the original ones are inadequate. The following crawl scope modules (e.g. what
links to follow and in what order) come with the Heritrix installation and in
combination o�er �exible crawl rules that are su�cient for most tasks.

BroadScope - This scope allows for limiting the depth of a crawl (how many
links away Heritrix should crawl) but does not impose any limits on the
hosts, domains, or URL paths crawled. [43]

DomainScope - This scope limits discovered URLs to the set of domains de-
�ned by the provided seeds. That is any URL discovered belonging to a
domain from which one of the seed came is within scope. [43]

HostScope - This scope limits discovered URLs to the set of hosts de�ned by
the provided seeds. [43]

PathScope - This scope goes yet further and limits the discovered URLs to a
section of paths on hosts de�ned by the seeds. Of course any host that has
a seed pointing at its root (i.e. www.sample.com/index.html) will be in-
cluded in full where as a host whose only seed is www.sample2.com/path/i-
ndex.html will be limited to URIs under /path/. [43]

SurtPre�xScope - A highly �exible and fairly e�cient scope which can crawl
within de�ned domains, individual hosts, or path-de�ned areas of hosts,
or any mixture of those, depending on the con�guration. [43]

DecidingScope - A highly con�gurable scope. By adding di�erent �lters in
di�erent combinations this scope can be con�gured to provide a wide va-
riety of behavior [43]. This scope is supposed to replace all of the above
mentioned scopes by instead implementing their functionality as �lters.
Thus the di�erent behaviors of the scopes described are still relevant and
will be evaluated during Honeyscout con�guration.

In addition to the di�erent scopes (�lters) several values can be set to further
restrict and control the crawl. Examples of such values are maximum number
of links to follow, maximum �le size for downloadable content or time to wait
before a request times out.

Since Heritrix is developed in Java almost all options and actions accessible
from the web interface can also be reached via a jmx-client to directly change
variables or start a new crawl job. JMX stands for Java Management Extensions
and is an interface to the Java virtual machine that makes it possible to modify
the state of the running program. Honeyscout uses the jmx-client that comes
with Heritrix to start new crawls.

28

4.3 System architecture 4 Honeyscout

4.2.3 Programming language

Python is a dynamic object-oriented programming language that is used for
many di�erent programming tasks. It is known for its simple syntax and exten-
sive standard library that can handle for example compression of �les or URL
parsing. The wide range of functionality has led to Python users coining the
phrase a programming language with batteries included. Python is often used
to create smaller scripts that does a speci�c task but can also be used in big-
ger programs. Examples of competitors to the Python language would be Perl,
Ruby and Java. [39]

4.2.4 Database software

The Monkey-Spider honeyclient uses PostgreSQL as its database software. Post-
greSQL is BSD licensed software that can be used and modi�ed freely at no
cost. The software and its performance is considered to be of good quality and
PostgreSQL servers can often be found running in commercial production envi-
ronments. This project will only use a very basic set of features available but
since speed and reliability is still important PostgreSQL is a good choice. [44]

4.2.5 Proxy software

The only component that is missing from Monkey-Spider that would make it
possible to modify it into a honeyscout is a gateway that can intercept the
outgoing requests; any simple proxy server software could manage this task. A
proxy server is a server that sits between the internal network and the Internet.
When a client connects to the proxy server, requesting some service, for example
a web page the proxy server evaluates the request according to its �ltering rules
and if accepted mediate the tra�c exchange. There is no need for any advanced
functions, more important is that the software is easy to modify and released
under a license that allows modi�cation. Searching the Internet one �nds a lot
of open source HTTP proxies to choose from, most suitable for the project came
to be Tiny HTTP Proxy. Written in Python, very basic and released under the
MIT-license Tiny HTTP Proxy is ideal to use in this case.

Tiny HTTP Proxy is written by Hisao Suzuki and was �rst released in 2003 on
the python mailing list but now has a homepage where it can be downloaded
along with the license [45]. The size is small, only a little more than 120 lines
of code, and because it is written in Python it is very easy to consolidate with
Monkey-Spider.

4.3 System architecture

Figure 7 illustrates how Honeyscout's internals work. The Monkey-Spider scripts
that tie Heritrix, ClamAV and a database together into a honeyclient have been
slightly modi�ed. Additionally the Tiny HTTP Proxy script has been extended
with new functionality and constitutes the base of the Honeyscout startup script.
With the Monkey-Spider honeyclient the scripts have to be manually run after
each other to complete the process, Honeyscout's startup script makes every-
thing automatic. The complete Honeyscout �le structure is shown in �gure
8.

To avoid multiple seeding of the same URL a whitelist database was created.
Every time a new URL is sent to Heritrix it is also added to the whitelist. A

29

4.3 System architecture 4 Honeyscout

full list of modi�cations and database additions follow below. In �gure 7 the
whole honeyscout runs on the same machine, just as with the real test system
used during the project. It would however be possible to spread the di�erent
components over several machines.

Internet

Heritrix

ClamAVPostgreSQL

server

Internal LAN

Modified

Tiny HTTP Proxy

Honeyscout

Verify URLs

against

blacklist and

whitelist

Seed

URLs

Scans

crawled

content
Adds

malicious

URLs to

blacklist

Figure 7: Illustration over Honeyscout's architecture.

4.3.1 List of major code changes

1. The Monkey-Spider scan script now deletes crawled content when scan is
�nished. It also adds found malware reports into the database in a slightly
di�erent way (se database modi�cations section 4.3.2 further down).

2. The mv_output and mw_scanner database tables has been dropped as
they serve no prupose for Honeyscout.

3. Tiny HTTP Proxy has been modi�ed to verify HTTP requests against the
blacklist before letting it trough

4. Tiny HTTP Proxy also adds all requested URLs to a whitelist database
(see section 4.3.3) if an entry for it don't already exist.

5. All HTTP requests intercepted by Tiny HTTP Proxy refering to browsable
content and that does not exist in a whitelist entry is conveyed as seeds
to Heritrix.

6. A honeyscout.py script has been written to make the process automatic.
It starts the proxy, add new Heritrix crawl jobs via the jmxclient and
continously scans �nished crawls.

7. If a blacklisted URL is requested the honeyscout.py script will not forward
the request but instead generate a custom page stating that the URL is
blocked.

30

4.3 System architecture 4 Honeyscout

honeyscout.py

(based on TinyHTTPproxy.py)

ms-extract-arc

ms-scanner-clamav

ms-processfolder

monkeyScan.py

Monkey-Spider

honeyclient

honeyscout.conf

Figure 8: Honeyscout's �le structure.
Green means new �le written during the project, red means modi�ed �le and

grey means unmodi�ed �le.

4.3.2 Blacklist database table

To better suit the purpose of Honeyscout the original Monkey-Spider malware
database table has been modi�ed to act as the blacklist. The table now looks
according to �gure 9. Because saving the malware for further examination is
no longer interesting the �lename and size �elds from the original table has
been dropped. The comment �eld containing output from ClamAV has been
renamed to reason as it is more in-line with how the �eld now is used (i.e. the
reason �eld is used to state why the URL is blacklisted). The checksum is an
SHA1-hash of the malicious �le and kept for reference.

id | url | checksum | date | reason

---+-----------------------+----------+---------------------+---------------------

1 | http://.../eicar.zip | 3SK...GB | 2009-04-23 12:24:47 | Eicar-Test-Signature

2 | https://www.finjan... | SN4...M7 | 2009-04-23 12:28:21 | VBS.Psyme-8

Figure 9: Excerpt from blacklist database table (shortened to �t document
area).

4.3.3 Whitelist database table

To avoid crawling and scanning content several times when users on the net-
work browse the same websites a whitelist database table was created. As
seen in �gure 10 the table contains address and date for all URLs scanned by
Monkey-Spider and found clean from malware. As long as a URL exists in the
whitelist requests to that speci�c URL will be automatically accepted and not
sent to Heritrix as a seed. The date the URL was added to the whitelist is
important because entries should not be permanently trusted after a successful
scan. Therefore the whitelist has to be cleaned of entries that are too old. This
clean up interval can be set depending on how often one wants to rescan web-
sites that are generally trusted but could one day be hacked to spread malicious
code.

31

4.4 User interface 4 Honeyscout

url | date

---+------------

http://www.postgresql.jp/document/pg702doc/user/x1133.htm | 2009-04-23

http://isc.sans.org/ | 2009-04-23

http://www.sans.org/reading_room/ | 2009-04-23

http://www.svd.se/ | 2009-04-23

Figure 10: Excerpt from whitelist database table.

4.3.4 Con�guration �le

There are some variables that need to be set before Honeyscout can start run-
ning. To make it easy to con�gure Honeyscout when installed on a new system
these variables are de�ned in a separate con�guration �le called honeyscout.conf.
The con�guration �le are then processed when Honeyscout starts. The following
variables need to be set:

doctypes - This de�nes the type of documents to cralw. Honeyscout will al-
ways crawl URLs that has no de�ned document type (URLs that ends
with a /, such as in http//www.example.com/news/). The doctype con-
�g variable is an array that should contain the �le endings of crawlable
content. Its purpose is to avoid trying to crawl .txt, .avi or .doc �les
for example that would only produce errors in Heritrix. By default the
following crawlable document types are set: .html, .htm, .php, .asp, .aspx.

jmxbin - The full path to the Heritrix JMX client binary.

login - Credentials to the Heritrix engine. The user should always be set to
controlRole as this is the user allowed to start new crawl jobs via the
JMX interface. Password is the administrator password set in the Heritrix
con�guration.

addr - Internet address (IP number) and port number to the Heritrix JMX
interface. The IP address may be set to localhost if Heritrix is running on
the same system as Honeyscout.

crawlerID - This variable is needed by the JMX client to �nd the right Heritrix
crawler instance. Normally just one instance should exist and the only
value that heeds to be changed is the host attribute and possibly the
port numbers if anything else that the default ones are used. The same
identi�er string is displayed at the bottom of the Heritrix status page (see
�gure 11).

pro�le - Name of the Heritrix pro�le one desire to use for the crawls. A pro�le
must �rst be created via Heritrix's web interface.

4.4 User interface

The user interface (UI) has not been a priority in the development of Hon-
eyscout. However, there are de�nitely a need to somehow get information on
the progress and state of the process. This sub-section presents the graphical
feedback's available in Honeyscout.

32

4.4 User interface 4 Honeyscout

4.4.1 Heritrix

The stand alone web crawl application Heritrix is con�gured and controlled
solely from the web interface. Honeyscout makes use of JMX (see section 4.2.2),
thus there is no need to use web UI except if one would like to create a new
pro�le. Heritrix web interface does however provide a status page where the
progress of current jobs as well as �nished and pending ones can be viewed.
This page can be interesting to view when using Honeyscout as it provides
statistics and estimations as seen in �gure 11. The web interface is accessed
through a web browser on port 8080 and only accessible by localhost by default,
but this can be changed in the con�guration.

Figure 11: Heritrix's status page.

4.4.2 Honeyscout engine feedback

There is no graphical user interface available for Honeyscout but informative
messages are written to the console. The type of messages given includes URLs
requested, crawl jobs sent to Heritrix and started ClamAV scans. Figure 12
shows a screenshot of how a running instance of Honeyscout may look like.

Figure 12: Screenshot of Honeyscout's status messages.

Finished jobs are saved with a name represented by the md5-sum of the seed
URL and timestamp, as can be seen in the scanning ... messages. This is
to make sure the names are unique. The long lines cut o� in �gure 12 are
output from the JMX client when starting a new job which proved hard to �lter
out. Originally the Tiny HTTP Proxy script displayed a lot of more information

33

4.4 User interface 4 Honeyscout

about what connections where established and if they timed out. Such messages
are not important in the context of Honeyscout's operation but the script could
be extended to log helpful error messages either directly to the screen or to a
log �le.

4.4.3 Blocked pages

Users that try to access a URL that has been blacklisted needs to somehow
get information on why the page cannot be viewed. Instead of just aborting
the request leaving the user with a timed out connection attempt and a blank
page Honeyscout generates a custom information page. The page, shown in
�gure 13, contains information that the requested URL has been blocked, the
date it was added to the blacklist and the reason. Stated reason is the same
information ClamAV adds to the blacklist database when malware is found.
At this point the page generated is very basic, there is however big potential
to extend functionality to allow user interaction with Honeyscout through this
page. Users hitting a blocked page could for example be presented with an
option to rescan the site for re-evaluation and possible whitelisting.

Figure 13: Screenshot of blocked page screen.

Since Honeyscout blocks only the speci�c malicious URL and not the whole do-
main websites that for example has been compromised to serve malware through
an iframe (a frame inside a web page that can show content from another web
page) the main page can still be accessed. Figure 14 shows an example where
the site in question has an iframe normally showing ads. The URL pointing at
the ads has however been blocked by Honeyscout and instead shows the blocked
URL information page. All other clean content on the site is still accessible.

34

4.5 Limitations 4 Honeyscout

Figure 14: Screenshot of blocked URL inside an iframe

4.5 Limitations

Monkey-Spider is a low-interaction honeyclient which means that Honeyscout
will be severely limited compared to the ideal case honeypot discussed ear-
lier. The malware detection is signature based and thus will not �nd unknown
malware. The gateway that monitors tra�c acts as a HTTP proxy only and
therefore only intercepts web browsing. Furthermore the users ability to interact
with the software is limited due to programming and time constraints. It does
however function as intended and will give good indications on how the concept
works in practice. Heritrix also has some constraints when crawling websites,
password protected pages for example, cannot be accessed and archived.

35

5 Evaluation

5 Evaluation

This section will try to evaluate the honeyscout concept. By using the proof-
of-concept code that has been written for this thesis in a test environment con-
nected to the Internet some answers, or at least pointers in the right direction,
to the following questions are sought. What crawl scope works best? How much
resources does a honeyscout need? Will the users notice anything else than the
blocked pages?

In relation to the last question one thought abandoned early was that any site
that was on neither the blacklist nor the whitelist would be inaccessible too.
Users visiting a URL not already crawled and scanned would simply have to
wait for the �rst scan to �nish. This makes sense because allowing access to
unscanned pages that could contain malware would be a security risk. The
crawl and scan process, however, turned out to take quite a lot more time than
expected. Users would not accept having to wait several minutes before a new
URL could be accessed. The compromise came to be to still allow access to new
URLs but keep the crawl short. This way users won't notice the Honeyscout
at all unless they hit a blacklisted URL. Still the scan hopefully �nishes quickly
enough to catch any malware linked to from the main page before the user starts
to follow links further. The compromise is better than it may seem. First of
all malware is many times linked to from trusted sites (for example through
Google ad text links [46]). Secondly the information that a malicious link has
been accessed by a client in the network and that this client might be infected is
still much better than not knowing about it at all. The problem could of course
be marginalized by using a caching proxy that crawls content continuously and
sends �les independently to the honeyclient. This would make it possible to only
allow access to veri�ed content as well as speed up loading times for users in
many cases. Using a caching proxy is discussed further in future work (chapter
6).

To evaluate the system a �nal test that involved crawl of 100 webpages was
executed. 50 of those pages where known malware infected URLs taken from
malwaredomainlist.com. Speed, malware detection and usability where the ob-
served factors.

5.1 Crawl scope

There is a huge amount of possible crawl scope module combinations in Her-
itrix. After some initial tests two possible con�gurations have been chosen for
further evaluation. One of the �rst ideas was to crawl whole domains (i e
www.example.com) and whitelist/blacklist the entire site which would keep the
number of database entries low. It however quickly became clear after the �rst
couple of test crawls that crawling a whole domain would take too much time.
Sites today contain lot of content and the crawl process isn't optimized enough
for it to be practical. First of the two scopes chosen are page crawl, this crawl
which is a combination of the default crawl setting in Heritrix and a depth limit
of one. This means that all content on the seeded page will be crawled including
all pages that are linked from it. The other is path crawl, which really is the
path scope described in section 4.2.2 but build using the deciding scope and
included �lters. Using this setting would allow for whitelisting of whole website
folders.

The �nal test used the page crawl settings. Almost solely because the overall

36

5.2 Test enviroment 5 Evaluation

time it took to crawl content. In addition to the settings for page crawl already
described some small changes to the Heritrix engine con�guration was changed
to increase crawl speed. These changes where a max accepted delay of 2000
ms, a maximum of 2 retries and a retry delay of 2 seconds. It should also
be noted that Heritrix is hardcoded to be gentle on web servers and not send
several request at once to the same sever. It is therefore not possible to get the
theoretical best performance using Heritrix as a crawler.

5.2 Test enviroment

Equipment used during the tests are a 800 MHz VIA-chipset mini server with
1Gb of RAM. Not very powerful but it was the best alternative available much
because it has three network interfaces and is therefore suitable to use as a
proxy. All components of Honeyscout are run on this system which is loaded
with a fresh install of Debian Linux. Network connection to the Internet is an
unshared 100 Mbps line. Only one client computer is used to test the system
but tra�c from several computers is simulated by quickly visiting many di�erent
webpages at once.

5.3 Results

5.3.1 Speed

Speed turned out to be a bigger problem than anticipated. There are several
di�erent factors a�ecting the crawl speed such as the size of content on the
page, the amount of links a page contains and webserver load. It is therefore
hard to say what factor contributed to the slow speed most. The underpowered
test system may also have been a big factor because speed results where a quite
bit lower than the results achieved by Ali Ikinci during his thesis [12] using the
same software. In his evaluation however several di�erent sites were crawled
in parallel which could explain the better performance. Average crawl speed of
commercial and non-malicious sites was 2.1 URLs/sec or 34 Kb/sec, but these
values ranged between 0-9.8 URLs/sec and 0-80 Kb/sec. Sites known to host
malware where quite a bit slower. For reference a typical online news site's main
page (including all the links) took about 15 minutes to crawl. Adding to this is
the time it took for ClamAV to scan downloaded content. Analysis of content
occurred with an average speed of 0.46 Mb/sec this was an expected value and
inline with the results from the Monkey-Spider thesis.

5.3.2 Malware detection

The ClamAV engine which was fully updated with the newest virus de�nitions
successfully detected 80 percent of the known malicious URLs taken from mal-
waredomainlist.com. Only valid URLs that still contained content where chosen
for the test but it is hard to say if malicious code still existed at the URLs that
went undetected by ClamAV.

5.3.3 Usability

As a user one does not notice Honeyscout more than a slight delay when visit-
ing a new page, this is probably mostly due to the underpowered test system.
The blocked URL page worked as intended but two unexpected errors occurred
randomly which demanded a restart of the Honeyscout script.

37

6 Future work

6 Future work

The next step in what this thesis has de�ned as honeyscouts is de�nitely to use
a high-interaction honeyclient as base. A good alternative would probably be
Capture-HPC, but some of the commercial solutions, such as CWSandbox also
look promising. Optimizing crawler behavior would also play an important role
in improving e�ciency. If the crawler could better determine what links should
be followed �rst and continuously send data to the honeyclient for analysis,
the concept would work much better. Because the biggest problem encoun-
tered during the practical tests done was the amount of time required to crawl
and scan content. A more intelligent crawler together with a honeyclient that
could receive and analyze a continuous �ow of data would eliminate this user
acceptance obstacle. A big improvement to crawl speed would also be to incor-
porate multiple crawler instances which can be done with The Heritrix Cluster
Controller (hcc) [47]. Other improvements include better communication be-
tween the proxy and crawler to avoid multiple crawls of the same content. The
whitelist implementation used in the project is supposed to minimize this prob-
lem but it does not work perfectly. Furthermore the usage could be extended
beyond web tra�c allowing in principle all data originating from the Internet to
be analyzed by the honeyclient. At least e-mail tra�c with attachments should
be included as many attacks, especially targeted ones, use this delivery method.

Mentioned before was the integration with a caching proxy. First of all this
could improve the general web browsing for users since content pre-crawled by
the honeyscout would be cached and ready to be served if users later decides
to request it. Another bene�t is that the resources utilized by the honeyscout
crawls are not wasted solely on malware detection as generated tra�c is reused.

The following list summarizes the more interesting improvements that could
further be considered to improve the honeyscout concept:

1. Integration with other honeyclients: preferably a high-interaction one.

2. More �exible options: optimized crawl techniques, intelligent proxy be-
haviour and more user-interaction.

3. Extended usage: scanning of all untrusted content, especially e-mails.

4. Integration with a caching proxy: to raise performance and save resources.

38

7 Conclusions

7 Conclusions

Using honeyclients to analyze content with the purpose to protect clients on the
internal network does seem to be a good idea. Honeyclients, especially the high-
interaction ones can be very e�ective in �nding new malware that traditional
antivirus products can't �nd. The honeyclients available today are however not
ready for this kind of commercial use. Most of them are developed for research
purposes and are not easily con�gured or quick enough to be used in a security
product. This means that a lot of work has to be done before a commercially
accepted product emerges.

Judging from the evolution of malware, new defensive technologies are de�-
nitely needed and a fully behavioral analysis of content is certainly e�ective and
a logical next step to take. Performance and resource requirements do however
question if the �nal and successful pro-active malware solution will utilize hon-
eyclients in a conceptual way like the one studied in this thesis. Further studies
should nonetheless prove to be interesting and, if the technology becomes more
optimized, take place as a useful element in client computer defense strategy.

The work done in this thesis has somewhat found answers the questions asked in
the introduction. Does it add something new to client security? Yes, the tech-
nology certainly has its place as a defense mechanism in active client malware
protection. Will it work in a live production environment? It is very probable
that the concept can work in a live production environment. There is however
a lot of work and optimization that needs to be done. This thesis cannot give
any de�nite answers to how and when such a solution is ready, only point out
where most of the e�ort should be concentrated. Can it be made user-friendly?
Yes, it is easy to get information to the user about the software behavior by
replacing blocked pages with custom information pages. It is also easy to add
tools on those same pages that allow users to interact with the software. How
much resources are needed? Hard to specify but probably quite a bit, espe-
cially if high-interaction honeyclients are used. Yet there is room for e�ciency
improvements that could yield impressive results.

39

REFERENCES References

References

[1] Bruce Schneier. Are you sophisticated enough to rec-
ognize an internet scam? The Mercury News, 2003.
http://www.schneier.com/essay-035.html.

[2] Bruce Schneier. Bruce Schneier on IT Insecurity. CIO Insight, 2008.
http://www.schneier.com/news-073.html.

[3] Tim Greene. Client side attacks on the rise, SANS says.
NetworkWorld, 2007. http://www.networkworld.com/news/2007/

112807-client-side-attacks-rise.html?page=1.

[4] SANS Top-20 2007 Security Risks, 2007.
https://www2.sans.org/top20/.

[5] F-secure. F-Secure IT Security Threat Summary for the Second Half of
2008, 2008. http://www.f-secure.com.

[6] Avira. Avira's forecast of malware trends for 2009, 2008.
http://www.avira.com/en/company_news/malware_trends_for_2009.h

tml.

[7] George Kurtz Stuart McClure, Joel Scambray. Hacking Exposed 5th edition.
McGraw Hill, 2005.

[8] Jean-Marc Robert Thomas Chen. The Evolution of Viruses and
Worms. Technical report, Dept. of Electrical Engineering, 2004.
http://vx.netlux.org/lib/atc01.html.

[9] Analysis of the new "Code Red II" Variant.
http://www.unixwiz.net/techtips/CodeRedII.html.

[10] Bruce Schneier. The Storm Worm. http://www.schneier.com/blog/

archives/2007/10/the_storm_worm.html.

[11] Brett Stone-Gross et al. Your botnet is my botnet: Analysis of a botnet
takeover. Technical report, University of California, 2009.

[12] Ali Ikinci. Monkey-spider: Detecting malicious web sites. Master's thesis,
University of Mannheim, 2007.

[13] Gator information center. http://www.pcpitstop.com/gator/default.

asp.

[14] AJP. Cookie Stealing Upgrade: Ajax Style.
http://www.milw0rm.com/papers/130.

[15] XSS Shell website. http://www.securiteam.com/tools/6X00120HFO.html.

[16] Damien Cave. The parasite economy. Salon.com, 2001.

[17] Shashank Gonchigar. ANI vulnerability: His-
tory repeats. Technical report, SANS, 2007.
http://www.sans.org/reading_room/whitepapers/threats/ani_vulne

rability_history_repeats_1926.

[18] Steve Ragan. Adobe issues advisory on new PDF vulnerability. The Tech
Herald, 2009.

40

REFERENCES References

[19] Stefan Pettersson. "visualizing endpoint security technologies using attack
trees". Master's thesis, Linköping University, 2008.

[20] Paul C. van Oorschot Mohammad Mannan. On Instant Mes-
saging Worms, Analysis and Countermeasures. Technical report,
School of Computer Science, Carleton University, Ottawa, 2005.
http://www1.cs.columbia.edu/ angelos/worm05/imworms.pdf .

[21] Ross Anderson Shishir Nagaraja. The snooping dragon: social-malware
surveillance of the Tibetan movement. Technical report, University of Cam-
bridge, 2009.

[22] Uli Ries. Steer clear of JavaScript pack-
ers, 2009. http://www.h-online.com/security/

Steer-clear-of-JavaScript-packers�/news/113151.

[23] Thierry Zoller. Avast! - Generic eva-
sion, 2009. http://blog.zoller.lu/2009/04/

release-mode-forced-release-vendor-has.html.

[24] Christian Seifert et al. Know Your Enemy: Malicious Web Servers. Tech-
nical report, The Honeynet Project, 2007.

[25] FE Malware Research. The case against URL black-
lists, 2008. http://blog.fireeye.com/research/2008/11/

the-case-against-url-blacklists.html.

[26] Bruce Schneier. Is User Education Working, 2006.
http://www.schneier.com/essay-139.html.

[27] Lance Spitzner. De�nitions and Value of Honeypots. Technical report, The
Honeynet project, 2003. http://www.spitzner.net/honeypots.html.

[28] Jonathan Rose. Turning the tables: Loadable Kernel Module Rootkits
deployed in a honeypot environment. Technical report, SANS Institute,
2003.

[29] Free Software Foundation. GNU General Public License, version 2, 1991.
http://www.gnu.org/licenses/gpl-2.0.html.

[30] Free Software Foundation. GNU General Public License, version 3, 2007.
http://www.gnu.org/licenses/gpl-2.0.html.

[31] Client honeypot Wikipedia article. http://en.wikipedia.org/wiki/

Honeyclient.

[32] The Honeynet Project, Capture-HPC website.
https://projects.honeynet.org/capture-hpc/.

[33] VMware Server webpage. http://www.vmware.com/products/server/.

[34] The Honeynet Project, Capture-BAT website.
https://www.honeynet.org/node/315.

[35] Christian Seifert. Capture-HPC mailinglist post: 3.0 Release?, 2009.
http://public.honeynet.org/pipermail/capture-hpc/2009-March/

000739.html.

[36] The Monkey-Spider project website. http://monkeyspider.sourceforge.
net/.

41

REFERENCES References

[37] Heritrix website. http://crawler.archive.org/.

[38] ClamAV website. http://www.clamav.net/.

[39] Python website. http://www.python.org/.

[40] The Internet Archive. http://www.archive.org/.

[41] Capture-HPC mailinglist post by Nicolas, Thu 08 Jan 2009.
http://www.mail-archive.com/capture-hpc@public.honeynet.org/

msg00619.html.

[42] CWSandbox website. http://www.cwsandbox.org/.

[43] I. Ranitovic K. Sigurdsson, M. Stack. Heritrix user manual, 2009.
http://crawler.archive.org/articles/user_manual/config.html .

[44] PostgreSQL community. PostgreSQL FAQ, 2009.
http://wiki.postgresql.org/wiki/FAQ.

[45] Hisao Suzuki. Tiny HTTP Proxy website, 2006.
http://www.okisoft.co.jp/esc/python/proxy/.

[46] Jose Vilches. Google sells text ads to known malware sites, 2008.
http://www.techspot.com/news/32477-google-sells-text-ads-to-

known-malware-sites.html.

[47] The Internet Archive. The Heritrix Cluster Controller, 2009.
http://crawler.archive.org/hcc/.

42

A honeyscout.py

A honeyscout.py

#!/bin /sh −
" exec " "python" "−O" "$0" "$@"
#−−−
honeyscout . py
Created by Chr i s t i an Clementson May 2009
Based on TinyHTTPProxy . py
#−−−

__doc__ = """Tiny HTTP Proxy .

This module implements GET, HEAD, POST, PUT and DELETE methods
on BaseHTTPServer , and behaves as an HTTP proxy . The CONNECT
method i s a l s o implemented exper imenta l ly , but has not been
t e s t ed yet .

Any help w i l l be g r e a t l y apprec ia ted . SUZUKI Hisao
"""

__version__ = "0 . 2 . 1"

import BaseHTTPServer , s e l e c t , socket , SocketServer , ur lparse , pg , cStringIO ,
datetime , os , subprocess , md5 , sys , glob , Conf igParser

c l a s s ProxyHandler (BaseHTTPServer . BaseHTTPRequestHandler) :
__base = BaseHTTPServer . BaseHTTPRequestHandler
__base_handle = __base . handle

se rver_vers ion = "TinyHTTPProxy/" + __version__ + " Honeyscout mod"
r bu f s i z e = 0 # s e l f . r f i l e Be unbuf fered

def handle (s e l f) :
(ip , port) = s e l f . c l i en t_addre s s
i f ha sa t t r (s e l f , ' a l l owed_cl i ents ') and ip not in s e l f . a l l owed_c l i en t s :

s e l f . raw_request l ine = s e l f . r f i l e . r e ad l i n e ()
i f s e l f . parse_request () : s e l f . send_error (403)

e l s e :
s e l f . __base_handle ()

de f _connect_to (s e l f , net loc , soc) :
i = ne t l o c . f i nd (' : ')

i f i >= 0 :
host_port = ne t l o c [: i] , i n t (ne t l o c [i +1 :])

e l s e :
host_port = net loc , 80

#pr in t "\ t " " connect to %s :%d" % host_port
try : soc . connect (host_port)
except socket . e r ror , arg :

t ry : msg = arg [1]
except : msg = arg
s e l f . send_error (404 , msg)
return 0

return 1

def do_CONNECT(s e l f) :
soc = socket . socket (socket .AF_INET, socket .SOCK_STREAM)
try :

i f s e l f . _connect_to (s e l f . path , soc) :
s e l f . log_request (200)
s e l f . w f i l e . wr i t e (s e l f . p rotoco l_vers ion +

" 200 Connection e s t ab l i s h ed \ r \n")
s e l f . w f i l e . wr i t e ("Proxy−agent : %s\ r \n" % s e l f . v e r s i on_st r ing ())
s e l f . w f i l e . wr i t e ("\ r \n")
s e l f . _read_write (soc , 300)

f i n a l l y :
#pr in t "\ t " "bye"
soc . c l o s e ()
s e l f . connect ion . c l o s e ()

de f do_GET(s e l f) :
scan = s e l f . malware_detected ()
i f scan [0] :

s e l f . genBlack l i s tedPage (scan [2] , scan [1])
return

(scm , net loc , path , params , query , fragment) = ur lpa r s e . u r l pa r s e (
s e l f . path , ' http ')

i f " ." in path :
type = path . s p l i t (" . ")
i f l en (type) == 2 :
i f type [1] in doctypes :
seedURL(s e l f . path)

e l s e :
p r in t "Error : f e l anta l punkter ! " + path

e l s e :
i f s e l f . path [−1] == "/":
seedURL(s e l f . path)

i f scm != ' http ' or fragment or not ne t l o c :
s e l f . send_error (400 , "bad ur l %s" % s e l f . path)
return

soc = socket . socket (socket .AF_INET, socket .SOCK_STREAM)
try :

i f s e l f . _connect_to (net loc , soc) :
#s e l f . log_request ()
soc . send("%s %s %s\ r \n" % (

s e l f . command ,
u r l pa r s e . ur lunparse ((' ' , ' ' , path , params , query , ' ')) ,
s e l f . r equest_vers ion))

s e l f . headers [' Connection '] = ' c lo se '
de l s e l f . headers [' Proxy−Connection ']
f o r key_val in s e l f . headers . items () :

soc . send("%s : %s\ r \n" % key_val)
soc . send ("\ r \n")
s e l f . _read_write (soc)

43

A honeyscout.py

f i n a l l y :
#pr in t "\ t " "bye"
soc . c l o s e ()
s e l f . connect ion . c l o s e ()

de f _read_write (s e l f , soc , max_idling=20):
iw = [s e l f . connection , soc]

ow = []
count = 0
whi le 1 :

count += 1
(ins , _, exs) = s e l e c t . s e l e c t (iw , ow , iw , 3)
i f exs : break
i f i n s :

f o r i in i n s :
i f i i s soc :

out = s e l f . connect ion
e l s e :

out = soc
data = i . recv (8192)
i f data :

out . send (data)
count = 0

e l s e :
p r in t "\ t " " i d l e " , count

i f count == max_idling : break

def malware_detected (s e l f) :
q="SELECT reason , date FROM b l a c k l i s t WHERE ur l = '%s '"%(s e l f . path)
s = db . query (q)
i f s . g e t r e s u l t () == [] :

re turn (False , ' ')
e l s e :

p r in t s . g e t r e s u l t ()
return (True , s . g e t r e s u l t () [0] [0] , s . g e t r e s u l t () [0] [1])

de f genBlack l i s tedPage (s e l f , date , reason) :
s e l f . send_response (200)
s e l f . send_header ("Content−type " , " text /html ")
s e l f . end_headers ()

s t a r t HTML output
s e l f . w f i l e . wr i t e ("<html><body>")
s e l f . w f i l e . wr i t e ("<p><H3>The f o l l ow ing URL has been b l a ck l i s t e d </H3></p>")
s e l f . w f i l e . wr i t e ("<p>" + s e l f . path + "</p>")
s e l f . w f i l e . wr i t e ("<p>Reason : " + reason + "</p>")
s e l f . w f i l e . wr i t e ("<p>Added to b l a c k l i s t " + date + "</p>")

end HTML
s e l f . w f i l e . wr i t e ("</html></body>")

do_HEAD = do_GET
do_POST = do_GET
do_PUT = do_GET
do_DELETE=do_GET

c l a s s ThreadingHTTPServer (SocketServer . ThreadingMixIn ,
BaseHTTPServer . HTTPServer) : pass

de f db_connect () :
t ry :
dbc=pg . connect (dbname='exjobb ' , host = '127 . 0 . 0 . 1 ' , user='monkeyspider ' ,
passwd='kasspass1 ')
re turn dbc

except :
p r in t ' Unable to connect to database . Check your con f i gu r a t i on . '
e x i t (2)

de f seedURL(ur l) :
date = datetime . date . today ()
q1 = "SELECT date FROM seeds WHERE ur l = '%s '"%(ur l)
s = db . query (q1)

i f s . g e t r e s u l t () == [] :
addJob (u r l)
q2="INSERT INTO seeds VALUES ('%s ' , '% s ')"%(url , date)
db . query (q2)
return

e l s e :
p r in t "URL wh i t e l i s t e d : "+ ur l
re turn

def addJob (inputURL) :
seed = inputURL
name = md5 . new(seed)
name = name . hexd iges t ()
j o b p r o f i l e = "addJobBasedon="+p r o f i l e
addjobcmd = j o b p r o f i l e +","+name+",D,"+ seed
pr in t " Sta r t ing to crawl " + seed
job = subprocess . c a l l (" java " + "− j a r " + jmxbin+" "+jmxlogin+" "+
jmxaddr+" "+crawlerID+" "+ addjobcmd , s h e l l=True)
return

i f __name__ == '__main__' :
db=db_connect ()

conf=Conf igParser . Conf igParser ()
conf . read (" . / honeyscout . conf ")
try :

doctypes=conf . get (' honeyscout ' , ' doctypes ')
jmxbin=conf . get (' h e r i t r i x ' , ' jmxbin ')
jmxlogin=conf . get (' h e r i t r i x ' , ' l og in ')
jmxaddr=conf . get (' h e r i t r i x ' , ' addr ')
crawlerID=conf . get (' h e r i t r i x ' , ' crawlerID ')
p r o f i l e=conf . get (' h e r i t r i x ' , ' p r o f i l e ')

except :
p r in t ' Error in con f i g f i l e '

44

A honeyscout.py

e x i t ()

job = os . spawnl (os .P_NOWAIT, "/home/ ch r i s /proxy/monkeyScan . py" , "monkeyScan . py")
from sys import argv
i f argv [1 :] and argv [1] in ('−h ' , '−−help ') :

p r in t argv [0] , " [port [allowed_client_name . . .]] "
e l s e :

i f argv [2 :] :
a l lowed = []
f o r name in argv [2 :] :

c l i e n t = socket . gethostbyname (name)
al lowed . append (c l i e n t)
p r in t "Accept : %s (%s)" % (c l i e n t , name)

ProxyHandler . a l l owed_c l i en t s = al lowed
de l argv [2 :]

e l s e :
p r in t "Any c l i e n t s w i l l be served . . . "

BaseHTTPServer . t e s t (ProxyHandler , ThreadingHTTPServer)

45

B honeyscout.conf

B honeyscout.conf

Conf igurat ion f i l e f o r the Monkey−Spider system

[honeyscout]
doctypes = ["htm" , "html " , "php" , "asp " , "aspx "]

[h e r i t r i x]
jmxbin = "/home/ ch r i s /monkeyspider / h e r i t r i x −1.14.2/ bin /cmdline−jmxcl i ent −0 .10 .5 . j a r "
l o g i n = " cont ro lRo l e : kasspass1 "
addr = "10 . 0 . 0 . 1 : 8 8 49"
crawlerID = "org . a rch ive . c rawle r : gu ipor t =8080 , host=tom , jmxport=8849 ,
name=Her i t r i x , type=CrawlService "
p r o f i l e = " t e s t 3 "

46

C monkeyscan.py

C monkeyscan.py

#!/ usr /bin /python
#−−−
Created as a part o f honeyscout . py by Chr i s t i an Clementson May 2009
#−−−

import os , subprocess , sys , glob , time , Conf igParser

de f f inCheck (jmxbindir) :
h e r i t r i x_d i r = jmxbindir [: −33]
d i r s = os . l i s t d i r (h e r i t r i x_d i r+"/ jobs /")
f o r x in d i r s :

g z f i l e s = glob . glob (h e r i t r i x_d i r+x+"/arc s / ∗ . gz ")
i f l en (g z f i l e s) > 0 :
p r in t "Scanning " + x
subprocess . c a l l (["ms−p r o c e s s f o l d e r . py" , h e r i t r i x_d i r+"/ jobs/"+x+"/arc s "])
subprocess . c a l l ([" rm" , "−R" , h e r i t r i x_d i r+"/ jobs/"+x])

return

conf=Conf igParser . Conf igParser ()
conf . read (" . / honeyscout . conf ")
try :

jmxbin=conf . get (' h e r i t r i x ' , ' jmxbin ')
except :

p r in t ' Error in con f i g f i l e '
e x i t ()

whi le 1 :
time . s l e ep (20)
f inCheck (jmxbin)
time . s l e ep (300)

47

D ms-scanner-clamav.py

D ms-scanner-clamav.py

#!/ usr /bin /env python
#−−−
Modif ied f o r use with honeyscout . py by Chr i s t i an Clementson May 2009
#−−−
#$Id : ms−scanner−clamav . py 43 2009−03−24 07 : 34 : 44Z r ike r2000 $

ms−scanner−clamav − Scans a given d i r e c t o r y with clamav .
Moves found malware to a s epe ra t e a t t i c d i r e c t o r y and updates
the malware database .

Copyright (C) 2006−2008 Al i I k i n c i (a l i at i k i n c i dot i n f o)
#
This f i l e i s part o f the Monkey−Spider p ro j e c t .
http :// monkeyspider . s ou r c e f o r g e . net
#
The Monkey−Spider p ro j e c t i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify
i t under the terms o f the GNU General Publ ic L icense as publ i shed by
the Free Software Foundation , e i t h e r ve r s i on 3 o f the License , or
(at your opt ion) any l a t e r ve r s i on .
#
the Monkey−Spider p ro j e c t i s d i s t r i bu t ed in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl ied warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Publ ic L icense f o r more d e t a i l s .
#
You should have r e c e i v ed a copy o f the GNU General Publ ic L icense
along with the Monkey−Spider p r o j e c t . I f not , s ee http ://www. gnu . org / l i c e n s e s /

depends on clamav from http ://www. clamav . net and pygresq l from
http ://www. pygre sq l . org /

from os . path import basename
import sys

import Conf igParser
import os
import s t r i n g

try :
import pg

except :
p r in t ' Error import ing the pg module . Check your pygre sq l i n s t a l l a t i o n '
sys . e x i t (2)

de f usage () :
p r in t "Usage : ms−scanner−clamav . py [d i r e c t o r y] "

de f parseReportF i l e () :

c on f i g = Conf igParser . Conf igParser ()
c on f i g . read ("/ etc /monkey−sp ide r . conf ")
try :

dbName = con f i g . get ('ms−database ' , ' databasename ')
dbHost = con f i g . get ('ms−database ' , ' hostname ')
dbUser = con f i g . get ('ms−database ' , ' username ')
dbPass = con f i g . get ('ms−database ' , ' password ')
mwattic = con f i g . get ('ms−scanner ' , ' mwattic ')

except :
p r in t ' Unable to read con f i gu r a t i on . Check the con f i gu r a t i on f i l e . '
e x i t (2)

#cr ea t e a t t i c f o r c o l l e c t e d malware−binarys
os . system ("mkdir −p %s" % mwattic)

#cdx f i l e name
c d x f i l e = basename (os . getcwd ()) + " . cdx"

f = open (" . ./"+ cdx f i l e , " r ")
cdx = f . r e ad l i n e s ()
f . c l o s e ()

checksum index o f the f i l e s f o r the r e a s s o s i a c t i o n o f found malware
c ix = {}
f o r x in range (l en (cdx)) :

c i x [x] = s t r i n g . s p l i t (cdx [x]) [5]

f = open (" clamav . r epor t " , " r ")
clamav = f . r e ad l i n e s ()
f . c l o s e ()

clamav_engine_version = s t r i n g . s p l i t (s t r i n g . s p l i t (clamav [0]) [1] , " / ") [0]
c lamav_signature_version = s t r i n g . s p l i t (s t r i n g . s p l i t (clamav [0]) [1] , " / ") [1]
clamav_last_update = s t r i n g . s p l i t (clamav [0] , " / ") [2] [: −1]

f o r i in range (2 , l en (clamav)) :
mw_name = s t r i n g . s p l i t (clamav [i]) [1]
mw_filename = s t r i n g . s p l i t (s t r i n g . s p l i t (clamav [i]) [0] , " : ") [0]
mw_checksum = s t r i n g . s p l i t ((s t r i n g . s p l i t (s t r i n g . s p l i t (

s t r i n g . s p l i t (clamav [i]) [0] , " : ") [0] , "/") [−1]) , " . ") [0]
t ry :

db = pg . connect (dbname=dbName , host=dbHost , user=dbUser ,
passwd=dbPass)

except :
p r in t ' Unable to connect to database . Check your con f i gu r a t i on . '
e x i t (2)

os . system (" cp −u " + mw_filename + " %s" % mwattic)

#Generate the next id s f o r databases malware and mw_scanner
q = db . query ("SELECT max(id) from b l a c k l i s t ")
max_mw_id = q . g e t r e s u l t () [0] [0]
i f max_mw_id == None :

max_mw_id = 1
e l s e :

48

D ms-scanner-clamav.py

max_mw_id = max_mw_id + 1

id = max_mw_id
f i l ename = basename (mw_filename)
checksum = s t r i n g . s p l i t (basename (mw_filename) , " . ") [0]
f o r x in range (l en (c ix)) :

i f c i x [x] == checksum :
break

u r l = s t r i n g . s p l i t (cdx [x]) [2] . lower ()
s i z e = 0
date = s t r i n g . s p l i t (cdx [x]) [0]
dateS = date [: 4] + "−" + date [4 : 6] + "−" + date [6 : 8] + " " +

date [8 : 1 0] + " :" +
date [1 0 : 1 2] + " :" + date [1 2 : 1 4]

q="INSERT INTO b l a c k l i s t VALUES (%s , '%s ' , '% s ' , '% s ' , '% s ')"%(
id , ur l , checksum , dateS ,mw_name)

db . query (q)
db . c l o s e ()

de f main () :

i f (l en (sys . argv) != 2) :
usage ()
sys . e x i t (2)

i f not os . path . e x i s t s (sys . argv [1]) :
p r in t "Error : Path does not e x i s t or you don ' t have the needed permis s i ons "
sys . e x i t (2)

i f not os . path . i s d i r (sys . argv [1]) :
usage ()
sys . e x i t (2)

#chd i r to where the arc f i l e r e s i d e s
workdir = sys . argv [1]
os . chd i r (workdir)

p r in t ' Scanning f o l d e r %s f o r v i r u s e s with ClamAV' % workdir ,

#Scan d i r e c t o r y with clamav and generate repor t f i l e
os . system (" clamdscan −V > clamav . r epor t ")
os . system (" clamdscan | grep FOUND >> clamav . r epor t ")

parseReportF i l e ()

p r in t ' . '

i f __name__ == "__main__" :
main ()

49

E ms-extract-arc.py

E ms-extract-arc.py

#!/ usr /bin /env python
#−−−
Modif ied f o r use with honeyscout . py by Chr i s t i an Clementson May 2009
#−−−
#$Id : ms−extract−arc . py 43 2009−03−24 07 : 34 : 44Z r ike r2000 $

ms−extract−arc − Dump a l l f i l e s conta ined in an In t e rne t Archive ARC F i l e together
with a cdx index f i l e

Copyright (C) 2006−2008 Al i I k i n c i (a l i at i k i n c i dot i n f o)
#
This f i l e i s part o f the Monkey−Spider p ro j e c t .
http :// monkeyspider . s ou r c e f o r g e . net
#
The Monkey−Spider p ro j e c t i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify
i t under the terms o f the GNU General Publ ic L icense as publ i shed by
the Free Software Foundation , e i t h e r ve r s i on 3 o f the License , or
(at your opt ion) any l a t e r ve r s i on .
#
the Monkey−Spider p ro j e c t i s d i s t r i bu t ed in the hope that i t w i l l be use fu l ,
but WITHOUT ANY WARRANTY; without even the impl ied warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Publ ic L icense f o r more d e t a i l s .
#
You should have r e c e i v ed a copy o f the GNU General Publ ic L icense
along with the Monkey−Spider p r o j e c t . I f not , s ee http ://www. gnu . org / l i c e n s e s /

depends on the acreader t oo l from the He r i t r i x package
(http :// crawler . a r ch ive . org)

import sys

import mimetypes
import os
import re
import s t r i n g

def s t r ipHeader (f i l ename) :
s t r i p the pro toco l header from the f i l e contents
f i l e = open (f i lename , ' r ')

idx = 0

i sF i r s t L i n e = True
whi le True :

r e s u l t = re . compile (" : ") . search (f i l e . r e ad l i n e ())
idx = f i l e . t e l l ()
i f r e s u l t == None and i sF i r s t L i n e == False :

break
i s F i r s t L i n e = False

f i l e . seek (idx)
o u t f i l e = open (f i l ename [: −4] , "w")
o u t f i l e . wr i t e (f i l e . read ())
o u t f i l e . c l o s e ()

f i l e . c l o s e ()
os . remove (f i l ename)

def usage () :
p r in t ' Usage : ms−extract−arc . py [f i l ename] . arc . gz '

de f main () :

i f (l en (sys . argv) != 2) :
usage ()
sys . e x i t (2)

i f not os . path . e x i s t s (sys . argv [1]) :
usage ()
p r in t "Error : F i l e does not e x i s t or you don ' t have the needed permis s i ons "
sys . e x i t (2)

i f not os . path . i s f i l e (sys . argv [1]) :
usage ()
sys . e x i t (2)

i f sys . argv [1] [− 7 :] != " . arc . gz " :
usage ()
p r in t "Error : F i l e i s not in ∗ . arc . gz Format"
sys . e x i t (2)

a r c f i l e = os . path . basename (sys . argv [1])

change workingdir to where the arc f i l e r e s i d e s
workdir = os . path . dirname (os . path . abspath (sys . argv [1]))
os . chd i r (workdir)

p r in t ' Extract ing %s ' % a r c f i l e ,

c r ea t e a d i r e c t o r y where the a r c f i l e w i l l be extracted , remove an o lde r
one i f there i s
a r cd i r = a r c f i l e [: −7]
i f os . path . e x i s t s (a r cd i r) :

os . system ("rm −r f " + a r cd i r)
os . system ("mkdir " + a r cd i r)
os . system (" gunzip " + a r c f i l e)

generate cdx f i l e with the arc r eader t oo l from the He r i t r i x package
c d x f i l e = a r c f i l e [: −6] + "cdx"
arc r eader input = os . path . abspath (a r c f i l e [: −3])
os . system (" arc r eader −d true " + arc reader input + " > " + cd x f i l e + " . tmp")
os . system ("mv " + c d x f i l e + " . tmp " + c d x f i l e)

50

E ms-extract-arc.py

open the c d x f i l e
f=open (cdx f i l e , " r ")
cdx = f . r e ad l i n e s ()
f . c l o s e ()

g = open (a r c f i l e [: −3] , " r ")

f o r x in range (2 , l en (cdx)) :
a r ch i v eTh i sF i l e = False
cdxs t r ing = s t r i n g . s p l i t (cdx [x])

generate f i l e name
f ex t = mimetypes . guess_extens ion (cdxs t r ing [3])
i f (f e x t == None) :

f e x t = " . raw"

f index = cdxs t r ing [5]
fname = f index + f ex t

Seek to the r i gh t po s i t i on
g . seek (i n t (cdxs t r ing [6]))
g . r e ad l i n e ()
h = open (a r cd i r + "/" + fname + " . tmp" , "w")
h . wr i t e (g . read (i n t (cdxs t r ing [7])))
h . c l o s e ()

s t r ipHeader (a r cd i r + "/" + fname + " . tmp")

g . c l o s e ()

os . system ("rm "+a r c f i l e [: −3])
p r in t 'Done ex t r a c t i ng %s '% a r c f i l e

i f __name__ == "__main__" :
main ()

51

Presentationsdatum

2009-06-12

Publiceringsdatum (elektronisk version)

2009-09-01

 Institution och avdelning

Institutionen för systemteknik

Department of Electrical Engineering

URL för elektronisk version
http://www.ep.liu.se

Publikationens title
Client-side threats and a honeyclient-based defense mechanism, Honeyscout
Hot på klientsidan och en försvarsmekanism baserad på klient honungsfällor; Honeyscout

Författare
Christian Clementson

Sammanfattning

Abstract
Client-side computers connected to the Internet today are exposed to a lot malicious activity. Browsing the web can easily
result in malware infection even if the user only visits well known and trusted sites. Attackers use website vulnerabilities and
ad-networks to expose their malicious code to a large user base. The continuing trend of the attackers seems to be botnet
construction that collects large amounts of data which could be a serious threat to company secrets and personal integrity.
Meanwhile security researches are using a technology known as honeypots/honeyclients to find and analyze new malware.
This thesis takes the concept of honeyclients and combines it with a proxy and database software to construct a new kind of
real time defense mechanism usable in live environments. The concept is given the name Honeyscout and it analyzes any
content before it reaches the user by using visited sites as a starting point for further crawling, blacklisting any malicious
content found. A proof-of-concept honeyscout has been developed using the honeyclient Monkey-Spider by Ali Ikinci as a
base. Results from the evaluation shows that the concept has potential as an effective and user-friendly defense technology.
There are however large needs to further optimize and speed up the crawling process.

Nyckelord
Client security, network security, malware, virus, honeypot, honeyclient,capture-hpc, monkey-spider, honeyscout

Språk

 Svenska
x Annat (ange nedan)

Engelska

Antal sidor
40

Typ av publikation

 Licentiatavhandling
x Examensarbete
 C-uppsats
 D-uppsats
 Rapport
 Annat (ange nedan)

ISBN (licentiatavhandling)

ISRN LiTH-ISY-EX--09/4262--SE

Serietitel (licentiatavhandling)

Serienummer/ISSN (licentiatavhandling)

