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1 Introduction 

 

Habitat loss and its effects on populations of vulnerable species is 

among the most urgent problems in conservation ecology. It is critical 

that managers and scientists have effective tools to evaluate the 

effects of landuse and climate change on the extent and connectivity 

of populations.  To address this need, we introduce UNIversal CORridor 

network simulator (UNICOR), a species connectivity and corridor 

identification tool.  UNICOR applies Dijkstra‟s shortest path 

algorithm to individual-based simulations.  Outputs can be used to 

designate movement corridors, identify isolated populations, quantify 

effects of climate and management changes on population connectivity 

and prioritize conservation plans to maintain population connectivity.  

The key features include a driver-module framework, connectivity 

mapping with thresholding and buffering, and calculation of graph 

theory metrics.  Through parallel-processing, computational efficiency 

is greatly improved, allowing analyses of large extents (grid 

dimensions of thousands) and large populations (individuals in the 

thousands).  

1.1 What can UNICOR do 

UNICOR is intended for use by land managers as well as the research 

community and will be a valuable tool in applied conservation biology. 

It provides new functionality to increase understanding of species 

connectivity in current and future landscapes. This, in turn, provides 

invaluable ability to quantitatively compare spatially explicit con-

servation and restoration scenarios and prioritize actions to have the 

largest cumulative effects on population connectivity.  The results 

can be used to designate sites as potential source or sink popula-

tions, and identify corridors and barriers. Simulations could address 

prioritizing areas of greatest concern, effects of climate change on 

wildlife populations, or habitat fragmentation under future climate or 

landuse change. 

1.2 How does UNICOR work 

 

UNICOR simulator uses a modified Dijkstra‟s algorithm (Dijkstra 1959) 

to solve the single source shortest path problem from every specified 

species location on a landscape to every other specified species 

location.  Figure 1 provides a step-by-step conceptual workflow.  

UNICOR requires two input files as the first step: 1) a landscape 

resistance surface and 2) point locations for each population or 

individual's location (see section 3 for program input).  Prior to 

running UNICOR, users must create a resistance surface where each cell 

value (pixel) represents the unit cost of crossing each location.  

Pixels are given weights or „resistance values‟ reflecting the 

presumed influence of each variable to movement or connectivity of the 

species in question (e.g., Dunning et al. 1992; Cushman et al. 2006; 

Spear et al. 2010).  Resistance surfaces could be parameterized to 

reflect different costs to movement associated with vegetation types, 
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elevation, slope, or other landscape features. 

 
Figure 1: UNICOR conceptual workflow diagram.  Steps 1 and 2 define 

the inputs and problem.  Steps 3 and 4 execute the program.  Step 5 

provides synthesis and post-processing. 

 

Point locations define starting and ending nodes of paths connecting 

pairs of individuals.  The points must be referenced on the landscape 

resistance surface, with any user specified placement pattern (e.g., 

uniform, random, or placement in habitat suitability) and density.  

From graph theory and network analysis, we can then represent the 

landscape resistance surface as a graph with nodes and edges (Diestel 

2010).  Every pixel is considered to be a node.  The graph edges, 

which represent possible movement paths between each node, are 

weighted by the resistance value of the cell times the distance to the 

next pixel center, times the distance to the next pixel center, which 

gives the total edge length in terms of raster cell units (cost 

distance).  Dijkstra‟s algorithm is modified in the UNICOR code to 

find all shortest paths to all destination nodes associated with the 

same starting node.  This provides a substantial boost in 

computational efficiency where all pairwise combinations are found for 

the same starting node before clearing the search space from memory.  

All paths found are optimal paths of movement computed for every 

paired combination of starting and ending nodes.  The combination of 

these shortest paths create a path density map which is also a 

connectivity graph.     

 

In essence, this approach becomes a large graph problem for the 
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applied landscape connectivity assessments. In analyses involving 

large numbers of individuals across a large and fine-grained 

environment computational processing time becomes intractable.  

However, parallel processing allows for efficient use of increasingly 

ubiquitous, modern multi-core processors. Dijkstra's breadth-first 

search algorithm is ideal for running in parallel for sets of source 

and destination points because pairwise distances can be calculated 

independently.  We have implemented parallel processing in UNICOR 

using the multiprocessing module from Python version 2.6. Parallel 

processing in UNICOR is currently only implemented under the Linux 

operating system.   

 

To reflect species-specific differences in dispersal abilities, users 

can specify connectivity thresholds.  These connectivity thresholds 

are expressed as the maximum path length for a species given its 

dispersal ability. This enables UNICOR to realistically reflect the 

biological dispersal abilities of a particular species.  Users can 

specify the maximum dispersal distance based either on cumulative cost 

distance or Euclidean distance.  

 

Dijkstra‟s base algorithm assumes the optimal is followed by all 

individuals. However, this is unlikely to realistically represent the 

behavior of organisms. Thus, it is beneficial to consider either 

multiple low-cost paths, or to smooth output paths using a probability 

density function such as a Gaussian bell curve (Cushman et al. 2008; 

Pinto and Keitt 2008).   UNICOR implements the latter and allows for 

the application of a variety of smoothing functions referred to as 

kernel density functions:  Gaussian, Epanechnikov, uniform, triangle, 

biweight, triweight, and cosine functions can be used for the kernel 

density estimations (Li & Racine 2007). The outputs that are produced 

by the program show the cumulative density of optimal paths buffered 

by kernel density estimations (see Silverman 1986; Scott 1992) 

following a distribution around frequency of common connections.   

 

Through batch capability, users may specify alternative connectivity 

thresholds to assess how scale dependency of dispersal ability will be 

affected by landscape change and fragmentation under a range of 

scenarios (e.g. Cushman et al. 2010a; Watts et al. 2010).  Outputs 

include paths among habitat patches that can be used to display 

expected species movement routes and can provide managers with visual 

guidance on identifying corridors that are likely critical for 

maintaining network connectivity.  Quantification of changes to 

habitat fragmentation, and corridor connectivity is enabled through 

outputs of graph theory metrics (e.g., density, number of nodes, 

radius, etc.) (Hagberg et al. 2008) and connectivity outputs that can 

directly input into popular landscape pattern analysis programs (e.g., 

FRAGSTATS (McGarigal et al. 2002)).   

 

The program is written in Python 2.6.  UNICOR is built on a driver-

module, plug-in, docking architecture that allows for ease of future 

modular development.  The program‟s input parameters are organized as 

name-value-pairs in a stanza oriented, text file format.  The inputs 
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are parsed using the RipMgr package, a flexible symbol table manager 

for science models that includes special parsing capabilities (Glassy, 

2010).  UNICOR has been debugged as carefully as possible by testing 

all combination of simulation options.  The program is freeware and 

can be downloaded at http://cel.dbs.umt.edu/software/UNICOR/.      

 

2 Getting started 

 

2.1 Dependencies 

 

2.1.1 Baseline Requirements 

UNICOR requires the Python2.6.x interpreter, NumPy package, and SciPy 

package.  Several optional Python module packages, if enabled, 

facilitate additional UNICOR functionality. Remember that Python 

modules usually require particular Python interpreters, so be sure the 

version ID for any external Python module or package (e.g. NumPy or 

others) matches the version of your Python interpreter (normally 

v2.6.x).   

 

2.1.2 Python on Non-Windows Platforms 

Some common computer platforms come with Python installed.  These 

include MAC OS X and most Linux distributions.  To determine which 

Python a MAC or Linux workstation has installed, start a terminal 

console and enter “python.” You'll see the version number on the top 

line (enter Control-D to exit).  Replacing an older Python interpreter 

(pre v2.4) with a newer one (v.2.6.x) on a Linux or MAC OS X machine 

can be tricky, so ask a System Administrator for help if you‟re not 

sure which packages depend on the current Python installed. 

 

2.1.3 Python on Windows 

Windows (7, XP, 2000, Server) does not come with Python installed, so 

follow the instructions below to obtain and install Python on a 

computer running the Windows operating system. Get a windows 

installation of the base Python installation (current v.2.6.x) at: 

http://www.python.org/download/releases/. 

 

2.1.4 Obtaining NumPy and SciPy 

We recommend using the superpack Windows installer available from the 

SourceForge website: http://sourceforge.net/project/.  Note that more 

complete information for NumPy is available at www.scipy.org, where 

the SciPy module is also presented.  Another source is  

http://www.enthought.com/products/epd.php for a free academic and 

educational usage in a single downloadable installer that has 

everything and then some (Numpy, Scipy, Matplotlib, and 70+ modules 

for python). 

 

2.2 Installation 

 

2.2.1 Install Python, NumPy, and SciPy 

Make sure that Python and NumPy are installed, and available to you.  

You can test this by typing "python" at a command window.  If python 

is available you'll get the python prompt ">>>".  If it is not a 

http://cel.dbs.umt.edu/software/UNICOR/
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recognized command, it means either that python is installed but is 

not in your command shell's paths, or that python is not installed.  

In the first case ask an administrator to add it to your command 

paths.  If your shell locates and loads python, type, "import numpy".  

Similarly, type, “import scipy”.  If python does not complain that 

there are no such modules, all is well.   

 

The following instructions assume Python, NumPy, and SciPy are not yet 

available on your computer; if they are, skip to section 2.2.2. 

 

* First run the Python executable installer you've chosen (either from 

www.python.org or ActiveState, accepting defaults for the installation 

directory. On Windows this will typically place the executables and 

libraries in c:/Python2.6/bin and the "site-packages" package tree for 

user installed Python modules in c:/Python2.6/lib/site-packages.  If 

you are installing it on a network on which you do not have 

administrative privileges, you may need to ask a system administrator 

to install python and the NumPy and SciPy packages in their default 

locations. 

 

* Next install NumPy and SciPy using the supplied executable 

(superpack) installer or visiting http://www.scipy.org/Download.  This 

will install NumPy and SciPy in your Python ./site-packages directory. 

 

2.2.2 Unpack the UNICOR Archive 

Navigate to the directory on your PC where you wish to install UNICOR, 

and unpack the supplied zip archive file using a free archive tool 

like 7Zip (7z.exe), Pkunzip, Unzip, or an equivalent.  Seven-Zip 

(7Z.exe) is highly recommended since it can handle all common formats 

on Windows, MAC OS X and Linux. On Windows, it is best to setup a 

project specific modeling subdirectory to perform your modeling 

outside of any folder that has spaces in its name (like "My 

Documents"). 

 

2.2.3 Install UNICOR 

Next, install the UNICOR software itself by unpacking the zip archive 

supplied. At this point you should be able to execute the supplied 

test inputs. 

 

2.2.4 Optional Python Extension Modules 

As UNICOR is supplied in the archive, it does not require any 

additional contributed Python modules to run.  However, several   

additional Python modules are needed if you want the following 

functionality: 

 

NetworkX is required for graph theory metrics and can be obtained from 

http://networkx.lanl.gov/. 

 

wxPython is required to run the GUI and can be obtained from 

http://www.wxpython.org/. 

 

2.3 Example run 
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2.3.1 Command line run 

The example run is for 10 points representing individuals on a 

Euclidean distance resistance surface. To run the following example, 

follow these steps: 

 

1. Double check the UNICOR source, UNICOR additional packages, and 

UNICOR example files are in the same directory. 

 

2. The included .rip file specifies the parameters that can be changed 

and used in the sample UNICOR run.  Open example.rip in your editor of 

choice (e.g., notepad or wordpad). 

 

3. This file is the stanza format following RipMgr documentation.  All 

'#' signs are comments followed by variable names with a tab to the 

parameter specified.  The parameter can be changed for running UNICOR, 

but downloaded parameters will run as is.  See section 3 for more 

details on each parameter along with its dependency. 

 

4. Start the program with a graphical interface or at the command 

line: For example, if you downloaded Python 2.6.x from www.python.org, 

then you are provided with a graphical interface, IDLE.  In Windows 

you can find IDLE from your Start menu > All Programs > Python 2.6 > 

IDLE (Python GUI).  Alternatively, if you use Python from the command 

line, then open a terminal window and change your shell directory to 

the UNICOR home directory. 

 

5. Run the program: There are a number of ways to run this program.  

For example, if you are using a command shell you can run the program 

by typing “python UNICOR.py example.rip”. 

 

6. Check for successful simulation run completion: The program will 

provide a log file in your UNICOR home directory.  Once completed, 

output files will be created in UNICOR home directory. 

 

2.3.2 GUI Run 

The following are instructions for a simulation run with an optional 

graphical user interface (GUI).  Note that this GUI has a dependency 

on python library, WX python.  Go to http://wxpython.org/download.php 

and download your OS‟s version of WX python. 

 

1. Navigate to UNICOR folder and double click unicorGUI.py.  

 

2. Enter in values for each variable. To find out more information on 

a specific variable, click the radio button to the left of the 

variable label.  

 

3. After all values are entered, click the Submit button. If a value 

is in the wrong format, you will be notified at the bottom.  

 

4. The program is running successfully if the command prompt opens up 

and displays text related to running UNICOR. 

http://www.python.org/
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3 Input 

See Table 1 for UNICOR inputs and outputs. 

 

3.1 Resistance grid 

Prior to running UNICOR, users must create a resistance surface where 

each cell value (pixel) represents the unit cost of crossing each 

location.  Pixels are given weights or „resistance values‟ reflecting 

the presumed influence of each variable to movement or connectivity of 

the species in question.  Resistance surfaces could be parameterized 

to reflect different costs to movement associated with vegetation 

types, elevation, slope, or other landscape.  The filename for the 

resistance surface must be in an ascii format with header file (any file 

extension is acceptable, must be space delimited).  The example simulation 

runs are small_test.rsg and medium_test.rsg. 

 

3.2 XY locations 

Point locations define starting and ending nodes of paths connecting 

pairs of individuals.  The points must be referenced on the landscape 

resistance surface, with any user specified placement pattern (e.g., 

uniform, random, or placement in habitat suitability) and density. The 

filename for the individuals with (x,y) locations can have any file 

extension, but must be comma delimited.  The example simulation runs are 

small_test_10pts.xy and medium_test_100pts.xy. 

 

3.3 Thresholding 

To reflect species-specific differences in dispersal abilities, users 

can specify connectivity thresholds.  These connectivity thresholds 

are expressed as the maximum path length for a species given its 

dispersal ability. This enables UNICOR to realistically reflect the 

biological dispersal abilities of a particular species.  Users can 

specify the maximum dispersal distance based either on cumulative cost 

distance or Euclidean distance. To get all path lengths set the „Edge 

Distance‟ to „max‟. 

 

3.4 Number of processors 

In essence, this approach becomes a large graph problem for the 

conservation biology problems faced today. In analyses involving large 

numbers of individuals across a large and fine-grained environment 

computational time becomes intractable.  However, parallel processing 

allows for efficient use of increasingly ubiquitous, modern multi-core 

processors. Dijkstra's breadth-first search algorithm is ideal for 

running in parallel for sets of source and destination points because 

pairwise distances can be calculated independently.  We have 

implemented parallel processing in UNICOR using the multiprocessing 

module from Python version 2.6, and is currently only available in the 

Linux operating system.  For parallel computing, specify the number of 

processors that are used in a simulation. 

 

3.5 Kernel density estimation 

Dijkstra‟s base algorithm assumes the optimal is followed by all 
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individuals. However, this is unlikely to realistically represent the 

behavior of organisms. Thus, it is beneficial to consider either 

multiple low-cost paths, or to smooth output paths using a probability 

density function such as a Gaussian bell.  UNICOR implements the 

latter and allows for the application of a variety of smoothing 

functions referred to as kernel density functions:  Gaussian, 

Epanechnikov, uniform, triangle, biweight, triweight, and cosine 

functions can be used for the kernel density. The outputs that are 

produced by the program show the cumulative density of optimal paths 

buffered by kernel density estimations following a distribution around 

frequency of common connections.   

 

4 Output 

Outputs include paths among habitat patches that can be used to 

display expected species movement routes and can provide managers with 

visual guidance on identifying corridors that are likely critical for 

maintaining network connectivity.  Quantification of changes to 

habitat area, fragmentation, and corridor connectivity is enabled 

through outputs of graph theory metrics (e.g., density, number of 

nodes, radius, etc.) and connectivity outputs that can directly input 

into popular landscape pattern analysis programs (e.g., FRAGSTATS 

(McGarigal et al. 2002)).   

 

Table 1: UNICOR inputs and outputs with description and dependencies. 

Input Name Default/ 

Example 

Input 

Description Dependency 

Grid Filename small_te

st.rsg 

The filename for the resistance surface 

in ascii format with header file (any 

file extension is acceptable, must be 

space delimited). 

 

XY Filename small_te

st_10pts

.xy 

The filename for the individuals with 

(x,y) locations (any file extension is 

acceptable, must be comma delimited). 

 

Use ED Threshold False Option for using Euclidean distance 

thresholding. 

 

ED Distance 50000 If Use ED threshold is True, then the 

Euclidean distance in map units to apply 

to the (x.y) point locations 

 

Edge Distance max The resistance distance threshold in 

terms of edge distance to apply to the 

path lengths. 

 

Number of 

Processors 

8 For parallel computing, the number of 

processors that are used in a 

simulation. 

Linux 

KDE Function Gaussian The probability distribution used to 

calculate the kernel density buffer 

[Gaussian, Epanechnikov, Uniform, 

Triangle, Biweight, Triweight, Cosine]. 

SciPy 

 

KDE GridSize 2 The kernel buffer window used to 

calculate the buffered maps. 

SciPy 

Number of Levels 3 The number of categories used to display 

the kernel density buffer map. 

SciPy 
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Output Default/ 

Example 

Input 

Description Dependency 

Save Path Output TRUE The surface of paths in ascii format 

with header file (space delimited – 

.addpaths). 

 

Save Individual 

Paths Output 

TRUE The list of individual path values and 

length from every point to every other 

point (comma delimited - .paths). 

 

Save Cost 

Distance Matrix 

Output 

TRUE The resistance distance matrix of all 

the source-destination connection 

lengths (comma delimited - .cdmatrix). 

 

Save KDE Output TRUE The surface of kernel buffered paths in 

ascii format with header file (space 

delimited – .kdepaths). 

 

Save Levels 

Output 

TRUE The categorical surface created from the 

KDE output in ascii format with header 

file (space delimited - .levels) 

 

Save Graph 

Metrics Output 

FALSE Path graph theory metrics (comma 

delimited  - .graphmetrics) 

NetworkX 

 

5 General issues 

 

5.1 How to obtain UNICOR 

The program is freeware and can be downloaded at 

http://cel.dbs.umt.edu/software/UNICOR/ with information for users, 

including manual instructions, FAQ, publications, ongoing research, 

and developer involvement.      

 

5.2 Debugging and troubleshooting 

For help with installation problems please check first for postings at 

our web site. Otherwise, please report problems including any bugs, to 

me at erin.landguth@mso.umt.edu. 

 

5.3 UNICOR limitations 

The following is a list of the current (as we know of) limitations 

with UNICOR: 

 

1. The resistance surface is in ASCII format: header file with 6 lines 
of information and space delimited. 

2. The point locations have a header row and file is comma delimited. 
3. Point locations must fall inside the resistance grid extent.  The 

code will run when points lie outside of grid, but no paths will be 

calculated. 

 

5.4 How to cite UNICOR 

This program was developed by Erin Landguth, Brian Hand, and Joe 

Glassy.  GUI development was done by Mike Jacobi.  Ross Carlson 

assisted with graphics, data set, and website creation.   The 

reference to cite is: 

Landguth EL, Hand BK, Glassy JM, Cushman SA, Carlson RT (2011) UNICOR: 

A species connectivity and corridor network simulator. Ecography. 

Submitted. 



U N I C O R  u s e r  m a n u a l  | 12 
 

 

5.5 Disclaimer 

The software is in the public domain, and the recipient may not assert 

any proprietary rights thereto nor represent it to anyone as other 

than a University of Montana-produced program (version 1.x).  UNICOR 

is provided "as is" without warranty of any kind, including, but not 

limited to, the implied warranties of merchantability and fitness for 

a particular purpose.  The user assumes all responsibility for the the 

accuracy and suitability of this program for a specific 

application.  In no event will the authors or the University be liable 

for any damages, including lost profits, lost savings, or other 

incidental or consequential damages arising from the use of or the 

inability to use this program. 

We strongly urge you to read the entire documentation before ever run-

ning UNICOR.  We wish to remind users that we are not in the commer-

cial software marketing business.  We are scientists who recognized 

the need for a tool like UNICOR to assist us in our research on land-

scape ecology issues.  Therefore, we do not wish to spend a great deal 

of time consulting on trivial matters concerning the use of 

UNICOR.  However, we do recognize an obligation to provide some level 

of information support.  Of course, we welcome and encourage your 

criticisms and suggestions about the program at all times.  We will 

welcome questions about how to run UNICOR or interpret the output only 

after you have read the entire documentation.  This is only fair and 

will eliminate many trivial questions.  Finally, we are always inter-

ested in learning about how others have applied UNICOR in ecological 

investigation and management application.  Therefore, we encourage you 

to contact us and describe your application after using UNICOR. 

We hope that UNICOR is of great assistance in your work and we look 

forward to hearing about your applications. 
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