
U N I C O R u s e r m a n u a l | 1

UNICOR

USER MANUAL

2011

Version: 1.0

Authors:

E. L. Landguth
1
, B. K. Hand

1
, J. M. Glassy

1,2
,

S. A.

Cushman
3
 and R. T. Carlson

1

1 - University of Montana, Division of Biological Sciences, Missoula,

MT, 59812, USA.

2 - Lupine Logic Inc, Missoula, MT, 59802, USA.

3 - U.S. Forest Service, Rocky Mountain Research Station, 2500 S. Pine

Knoll Dr., Flagstaff, AZ 86001, USA

U N I C O R u s e r m a n u a l | 2

Table of Contents

1 Introduction.. 3

1.1 What can UNICOR do.................................... 3

1.2 How does UNICOR work.................................. 3

2 Getting started... 6

2.1 Dependencies.. 6

 2.1.1 Baseline requirements............................ 6

 2.1.2 Python on non-windows platforms.................. 6

 2.1.3 Python on windows................................ 6

 2.1.4 Obtaining NumPy and SciPy........................ 6

2.2 Installation.. 6

2.2.1 Installing Python, NumPy, and SciPy.............. 6

2.2.2 Unpack the UNICOR archive........................ 7

2.2.3 Install UNICOR................................... 7

2.2.4 Optional Python extension modules................ 7

2.3 Example run... 7

2.3.1 Command line run................................. 7

2.3.1 GUI run.. 8

3 Input... 9

3.1 Resistance grid....................................... 9

3.2 XY locations.. 9

3.3 Thresholding.. 9

3.4 Number of processors.................................. 9

3.5 Kernel density estimation............................. 9

4 Output.. 10

5 General issues.. 11

5.1 How to obtain UNICOR.................................. 11

5.2 Debugging and troubleshooting......................... 11

5.3 UNICOR limitations.................................... 11

5.4 How to cite UNICOR.................................... 11

6 References.. 12

7 Acknowledgements.. 14

U N I C O R u s e r m a n u a l | 3

1 Introduction

Habitat loss and its effects on populations of vulnerable species is

among the most urgent problems in conservation ecology. It is critical

that managers and scientists have effective tools to evaluate the

effects of landuse and climate change on the extent and connectivity

of populations. To address this need, we introduce UNIversal CORridor

network simulator (UNICOR), a species connectivity and corridor

identification tool. UNICOR applies Dijkstra‟s shortest path

algorithm to individual-based simulations. Outputs can be used to

designate movement corridors, identify isolated populations, quantify

effects of climate and management changes on population connectivity

and prioritize conservation plans to maintain population connectivity.

The key features include a driver-module framework, connectivity

mapping with thresholding and buffering, and calculation of graph

theory metrics. Through parallel-processing, computational efficiency

is greatly improved, allowing analyses of large extents (grid

dimensions of thousands) and large populations (individuals in the

thousands).

1.1 What can UNICOR do

UNICOR is intended for use by land managers as well as the research

community and will be a valuable tool in applied conservation biology.

It provides new functionality to increase understanding of species

connectivity in current and future landscapes. This, in turn, provides

invaluable ability to quantitatively compare spatially explicit con-

servation and restoration scenarios and prioritize actions to have the

largest cumulative effects on population connectivity. The results

can be used to designate sites as potential source or sink popula-

tions, and identify corridors and barriers. Simulations could address

prioritizing areas of greatest concern, effects of climate change on

wildlife populations, or habitat fragmentation under future climate or

landuse change.

1.2 How does UNICOR work

UNICOR simulator uses a modified Dijkstra‟s algorithm (Dijkstra 1959)

to solve the single source shortest path problem from every specified

species location on a landscape to every other specified species

location. Figure 1 provides a step-by-step conceptual workflow.

UNICOR requires two input files as the first step: 1) a landscape

resistance surface and 2) point locations for each population or

individual's location (see section 3 for program input). Prior to

running UNICOR, users must create a resistance surface where each cell

value (pixel) represents the unit cost of crossing each location.

Pixels are given weights or „resistance values‟ reflecting the

presumed influence of each variable to movement or connectivity of the

species in question (e.g., Dunning et al. 1992; Cushman et al. 2006;

Spear et al. 2010). Resistance surfaces could be parameterized to

reflect different costs to movement associated with vegetation types,

U N I C O R u s e r m a n u a l | 4

elevation, slope, or other landscape features.

Figure 1: UNICOR conceptual workflow diagram. Steps 1 and 2 define

the inputs and problem. Steps 3 and 4 execute the program. Step 5

provides synthesis and post-processing.

Point locations define starting and ending nodes of paths connecting

pairs of individuals. The points must be referenced on the landscape

resistance surface, with any user specified placement pattern (e.g.,

uniform, random, or placement in habitat suitability) and density.

From graph theory and network analysis, we can then represent the

landscape resistance surface as a graph with nodes and edges (Diestel

2010). Every pixel is considered to be a node. The graph edges,

which represent possible movement paths between each node, are

weighted by the resistance value of the cell times the distance to the

next pixel center, times the distance to the next pixel center, which

gives the total edge length in terms of raster cell units (cost

distance). Dijkstra‟s algorithm is modified in the UNICOR code to

find all shortest paths to all destination nodes associated with the

same starting node. This provides a substantial boost in

computational efficiency where all pairwise combinations are found for

the same starting node before clearing the search space from memory.

All paths found are optimal paths of movement computed for every

paired combination of starting and ending nodes. The combination of

these shortest paths create a path density map which is also a

connectivity graph.

In essence, this approach becomes a large graph problem for the

U N I C O R u s e r m a n u a l | 5

applied landscape connectivity assessments. In analyses involving

large numbers of individuals across a large and fine-grained

environment computational processing time becomes intractable.

However, parallel processing allows for efficient use of increasingly

ubiquitous, modern multi-core processors. Dijkstra's breadth-first

search algorithm is ideal for running in parallel for sets of source

and destination points because pairwise distances can be calculated

independently. We have implemented parallel processing in UNICOR

using the multiprocessing module from Python version 2.6. Parallel

processing in UNICOR is currently only implemented under the Linux

operating system.

To reflect species-specific differences in dispersal abilities, users

can specify connectivity thresholds. These connectivity thresholds

are expressed as the maximum path length for a species given its

dispersal ability. This enables UNICOR to realistically reflect the

biological dispersal abilities of a particular species. Users can

specify the maximum dispersal distance based either on cumulative cost

distance or Euclidean distance.

Dijkstra‟s base algorithm assumes the optimal is followed by all

individuals. However, this is unlikely to realistically represent the

behavior of organisms. Thus, it is beneficial to consider either

multiple low-cost paths, or to smooth output paths using a probability

density function such as a Gaussian bell curve (Cushman et al. 2008;

Pinto and Keitt 2008). UNICOR implements the latter and allows for

the application of a variety of smoothing functions referred to as

kernel density functions: Gaussian, Epanechnikov, uniform, triangle,

biweight, triweight, and cosine functions can be used for the kernel

density estimations (Li & Racine 2007). The outputs that are produced

by the program show the cumulative density of optimal paths buffered

by kernel density estimations (see Silverman 1986; Scott 1992)

following a distribution around frequency of common connections.

Through batch capability, users may specify alternative connectivity

thresholds to assess how scale dependency of dispersal ability will be

affected by landscape change and fragmentation under a range of

scenarios (e.g. Cushman et al. 2010a; Watts et al. 2010). Outputs

include paths among habitat patches that can be used to display

expected species movement routes and can provide managers with visual

guidance on identifying corridors that are likely critical for

maintaining network connectivity. Quantification of changes to

habitat fragmentation, and corridor connectivity is enabled through

outputs of graph theory metrics (e.g., density, number of nodes,

radius, etc.) (Hagberg et al. 2008) and connectivity outputs that can

directly input into popular landscape pattern analysis programs (e.g.,

FRAGSTATS (McGarigal et al. 2002)).

The program is written in Python 2.6. UNICOR is built on a driver-

module, plug-in, docking architecture that allows for ease of future

modular development. The program‟s input parameters are organized as

name-value-pairs in a stanza oriented, text file format. The inputs

U N I C O R u s e r m a n u a l | 6

are parsed using the RipMgr package, a flexible symbol table manager

for science models that includes special parsing capabilities (Glassy,

2010). UNICOR has been debugged as carefully as possible by testing

all combination of simulation options. The program is freeware and

can be downloaded at http://cel.dbs.umt.edu/software/UNICOR/.

2 Getting started

2.1 Dependencies

2.1.1 Baseline Requirements

UNICOR requires the Python2.6.x interpreter, NumPy package, and SciPy

package. Several optional Python module packages, if enabled,

facilitate additional UNICOR functionality. Remember that Python

modules usually require particular Python interpreters, so be sure the

version ID for any external Python module or package (e.g. NumPy or

others) matches the version of your Python interpreter (normally

v2.6.x).

2.1.2 Python on Non-Windows Platforms

Some common computer platforms come with Python installed. These

include MAC OS X and most Linux distributions. To determine which

Python a MAC or Linux workstation has installed, start a terminal

console and enter “python.” You'll see the version number on the top

line (enter Control-D to exit). Replacing an older Python interpreter

(pre v2.4) with a newer one (v.2.6.x) on a Linux or MAC OS X machine

can be tricky, so ask a System Administrator for help if you‟re not

sure which packages depend on the current Python installed.

2.1.3 Python on Windows

Windows (7, XP, 2000, Server) does not come with Python installed, so

follow the instructions below to obtain and install Python on a

computer running the Windows operating system. Get a windows

installation of the base Python installation (current v.2.6.x) at:

http://www.python.org/download/releases/.

2.1.4 Obtaining NumPy and SciPy

We recommend using the superpack Windows installer available from the

SourceForge website: http://sourceforge.net/project/. Note that more

complete information for NumPy is available at www.scipy.org, where

the SciPy module is also presented. Another source is

http://www.enthought.com/products/epd.php for a free academic and

educational usage in a single downloadable installer that has

everything and then some (Numpy, Scipy, Matplotlib, and 70+ modules

for python).

2.2 Installation

2.2.1 Install Python, NumPy, and SciPy

Make sure that Python and NumPy are installed, and available to you.

You can test this by typing "python" at a command window. If python

is available you'll get the python prompt ">>>". If it is not a

http://cel.dbs.umt.edu/software/UNICOR/

U N I C O R u s e r m a n u a l | 7

recognized command, it means either that python is installed but is

not in your command shell's paths, or that python is not installed.

In the first case ask an administrator to add it to your command

paths. If your shell locates and loads python, type, "import numpy".

Similarly, type, “import scipy”. If python does not complain that

there are no such modules, all is well.

The following instructions assume Python, NumPy, and SciPy are not yet

available on your computer; if they are, skip to section 2.2.2.

* First run the Python executable installer you've chosen (either from

www.python.org or ActiveState, accepting defaults for the installation

directory. On Windows this will typically place the executables and

libraries in c:/Python2.6/bin and the "site-packages" package tree for

user installed Python modules in c:/Python2.6/lib/site-packages. If

you are installing it on a network on which you do not have

administrative privileges, you may need to ask a system administrator

to install python and the NumPy and SciPy packages in their default

locations.

* Next install NumPy and SciPy using the supplied executable

(superpack) installer or visiting http://www.scipy.org/Download. This

will install NumPy and SciPy in your Python ./site-packages directory.

2.2.2 Unpack the UNICOR Archive

Navigate to the directory on your PC where you wish to install UNICOR,

and unpack the supplied zip archive file using a free archive tool

like 7Zip (7z.exe), Pkunzip, Unzip, or an equivalent. Seven-Zip

(7Z.exe) is highly recommended since it can handle all common formats

on Windows, MAC OS X and Linux. On Windows, it is best to setup a

project specific modeling subdirectory to perform your modeling

outside of any folder that has spaces in its name (like "My

Documents").

2.2.3 Install UNICOR

Next, install the UNICOR software itself by unpacking the zip archive

supplied. At this point you should be able to execute the supplied

test inputs.

2.2.4 Optional Python Extension Modules

As UNICOR is supplied in the archive, it does not require any

additional contributed Python modules to run. However, several

additional Python modules are needed if you want the following

functionality:

NetworkX is required for graph theory metrics and can be obtained from

http://networkx.lanl.gov/.

wxPython is required to run the GUI and can be obtained from

http://www.wxpython.org/.

2.3 Example run

U N I C O R u s e r m a n u a l | 8

2.3.1 Command line run

The example run is for 10 points representing individuals on a

Euclidean distance resistance surface. To run the following example,

follow these steps:

1. Double check the UNICOR source, UNICOR additional packages, and

UNICOR example files are in the same directory.

2. The included .rip file specifies the parameters that can be changed

and used in the sample UNICOR run. Open example.rip in your editor of

choice (e.g., notepad or wordpad).

3. This file is the stanza format following RipMgr documentation. All

'#' signs are comments followed by variable names with a tab to the

parameter specified. The parameter can be changed for running UNICOR,

but downloaded parameters will run as is. See section 3 for more

details on each parameter along with its dependency.

4. Start the program with a graphical interface or at the command

line: For example, if you downloaded Python 2.6.x from www.python.org,

then you are provided with a graphical interface, IDLE. In Windows

you can find IDLE from your Start menu > All Programs > Python 2.6 >

IDLE (Python GUI). Alternatively, if you use Python from the command

line, then open a terminal window and change your shell directory to

the UNICOR home directory.

5. Run the program: There are a number of ways to run this program.

For example, if you are using a command shell you can run the program

by typing “python UNICOR.py example.rip”.

6. Check for successful simulation run completion: The program will

provide a log file in your UNICOR home directory. Once completed,

output files will be created in UNICOR home directory.

2.3.2 GUI Run

The following are instructions for a simulation run with an optional

graphical user interface (GUI). Note that this GUI has a dependency

on python library, WX python. Go to http://wxpython.org/download.php

and download your OS‟s version of WX python.

1. Navigate to UNICOR folder and double click unicorGUI.py.

2. Enter in values for each variable. To find out more information on

a specific variable, click the radio button to the left of the

variable label.

3. After all values are entered, click the Submit button. If a value

is in the wrong format, you will be notified at the bottom.

4. The program is running successfully if the command prompt opens up

and displays text related to running UNICOR.

http://www.python.org/

U N I C O R u s e r m a n u a l | 9

3 Input

See Table 1 for UNICOR inputs and outputs.

3.1 Resistance grid

Prior to running UNICOR, users must create a resistance surface where

each cell value (pixel) represents the unit cost of crossing each

location. Pixels are given weights or „resistance values‟ reflecting

the presumed influence of each variable to movement or connectivity of

the species in question. Resistance surfaces could be parameterized

to reflect different costs to movement associated with vegetation

types, elevation, slope, or other landscape. The filename for the

resistance surface must be in an ascii format with header file (any file

extension is acceptable, must be space delimited). The example simulation

runs are small_test.rsg and medium_test.rsg.

3.2 XY locations

Point locations define starting and ending nodes of paths connecting

pairs of individuals. The points must be referenced on the landscape

resistance surface, with any user specified placement pattern (e.g.,

uniform, random, or placement in habitat suitability) and density. The

filename for the individuals with (x,y) locations can have any file

extension, but must be comma delimited. The example simulation runs are

small_test_10pts.xy and medium_test_100pts.xy.

3.3 Thresholding

To reflect species-specific differences in dispersal abilities, users

can specify connectivity thresholds. These connectivity thresholds

are expressed as the maximum path length for a species given its

dispersal ability. This enables UNICOR to realistically reflect the

biological dispersal abilities of a particular species. Users can

specify the maximum dispersal distance based either on cumulative cost

distance or Euclidean distance. To get all path lengths set the „Edge

Distance‟ to „max‟.

3.4 Number of processors

In essence, this approach becomes a large graph problem for the

conservation biology problems faced today. In analyses involving large

numbers of individuals across a large and fine-grained environment

computational time becomes intractable. However, parallel processing

allows for efficient use of increasingly ubiquitous, modern multi-core

processors. Dijkstra's breadth-first search algorithm is ideal for

running in parallel for sets of source and destination points because

pairwise distances can be calculated independently. We have

implemented parallel processing in UNICOR using the multiprocessing

module from Python version 2.6, and is currently only available in the

Linux operating system. For parallel computing, specify the number of

processors that are used in a simulation.

3.5 Kernel density estimation

Dijkstra‟s base algorithm assumes the optimal is followed by all

U N I C O R u s e r m a n u a l | 10

individuals. However, this is unlikely to realistically represent the

behavior of organisms. Thus, it is beneficial to consider either

multiple low-cost paths, or to smooth output paths using a probability

density function such as a Gaussian bell. UNICOR implements the

latter and allows for the application of a variety of smoothing

functions referred to as kernel density functions: Gaussian,

Epanechnikov, uniform, triangle, biweight, triweight, and cosine

functions can be used for the kernel density. The outputs that are

produced by the program show the cumulative density of optimal paths

buffered by kernel density estimations following a distribution around

frequency of common connections.

4 Output

Outputs include paths among habitat patches that can be used to

display expected species movement routes and can provide managers with

visual guidance on identifying corridors that are likely critical for

maintaining network connectivity. Quantification of changes to

habitat area, fragmentation, and corridor connectivity is enabled

through outputs of graph theory metrics (e.g., density, number of

nodes, radius, etc.) and connectivity outputs that can directly input

into popular landscape pattern analysis programs (e.g., FRAGSTATS

(McGarigal et al. 2002)).

Table 1: UNICOR inputs and outputs with description and dependencies.

Input Name Default/

Example

Input

Description Dependency

Grid Filename small_te

st.rsg

The filename for the resistance surface

in ascii format with header file (any

file extension is acceptable, must be

space delimited).

XY Filename small_te

st_10pts

.xy

The filename for the individuals with

(x,y) locations (any file extension is

acceptable, must be comma delimited).

Use ED Threshold False Option for using Euclidean distance

thresholding.

ED Distance 50000 If Use ED threshold is True, then the

Euclidean distance in map units to apply

to the (x.y) point locations

Edge Distance max The resistance distance threshold in

terms of edge distance to apply to the

path lengths.

Number of

Processors

8 For parallel computing, the number of

processors that are used in a

simulation.

Linux

KDE Function Gaussian The probability distribution used to

calculate the kernel density buffer

[Gaussian, Epanechnikov, Uniform,

Triangle, Biweight, Triweight, Cosine].

SciPy

KDE GridSize 2 The kernel buffer window used to

calculate the buffered maps.

SciPy

Number of Levels 3 The number of categories used to display

the kernel density buffer map.

SciPy

U N I C O R u s e r m a n u a l | 11

Output Default/

Example

Input

Description Dependency

Save Path Output TRUE The surface of paths in ascii format

with header file (space delimited –

.addpaths).

Save Individual

Paths Output

TRUE The list of individual path values and

length from every point to every other

point (comma delimited - .paths).

Save Cost

Distance Matrix

Output

TRUE The resistance distance matrix of all

the source-destination connection

lengths (comma delimited - .cdmatrix).

Save KDE Output TRUE The surface of kernel buffered paths in

ascii format with header file (space

delimited – .kdepaths).

Save Levels

Output

TRUE The categorical surface created from the

KDE output in ascii format with header

file (space delimited - .levels)

Save Graph

Metrics Output

FALSE Path graph theory metrics (comma

delimited - .graphmetrics)

NetworkX

5 General issues

5.1 How to obtain UNICOR

The program is freeware and can be downloaded at

http://cel.dbs.umt.edu/software/UNICOR/ with information for users,

including manual instructions, FAQ, publications, ongoing research,

and developer involvement.

5.2 Debugging and troubleshooting

For help with installation problems please check first for postings at

our web site. Otherwise, please report problems including any bugs, to

me at erin.landguth@mso.umt.edu.

5.3 UNICOR limitations

The following is a list of the current (as we know of) limitations

with UNICOR:

1. The resistance surface is in ASCII format: header file with 6 lines
of information and space delimited.

2. The point locations have a header row and file is comma delimited.
3. Point locations must fall inside the resistance grid extent. The

code will run when points lie outside of grid, but no paths will be

calculated.

5.4 How to cite UNICOR

This program was developed by Erin Landguth, Brian Hand, and Joe

Glassy. GUI development was done by Mike Jacobi. Ross Carlson

assisted with graphics, data set, and website creation. The

reference to cite is:

Landguth EL, Hand BK, Glassy JM, Cushman SA, Carlson RT (2011) UNICOR:

A species connectivity and corridor network simulator. Ecography.

Submitted.

U N I C O R u s e r m a n u a l | 12

5.5 Disclaimer

The software is in the public domain, and the recipient may not assert

any proprietary rights thereto nor represent it to anyone as other

than a University of Montana-produced program (version 1.x). UNICOR

is provided "as is" without warranty of any kind, including, but not

limited to, the implied warranties of merchantability and fitness for

a particular purpose. The user assumes all responsibility for the the

accuracy and suitability of this program for a specific

application. In no event will the authors or the University be liable

for any damages, including lost profits, lost savings, or other

incidental or consequential damages arising from the use of or the

inability to use this program.

We strongly urge you to read the entire documentation before ever run-

ning UNICOR. We wish to remind users that we are not in the commer-

cial software marketing business. We are scientists who recognized

the need for a tool like UNICOR to assist us in our research on land-

scape ecology issues. Therefore, we do not wish to spend a great deal

of time consulting on trivial matters concerning the use of

UNICOR. However, we do recognize an obligation to provide some level

of information support. Of course, we welcome and encourage your

criticisms and suggestions about the program at all times. We will

welcome questions about how to run UNICOR or interpret the output only

after you have read the entire documentation. This is only fair and

will eliminate many trivial questions. Finally, we are always inter-

ested in learning about how others have applied UNICOR in ecological

investigation and management application. Therefore, we encourage you

to contact us and describe your application after using UNICOR.

We hope that UNICOR is of great assistance in your work and we look

forward to hearing about your applications.

6 References

Bunn,A.G., Urban,D.L. and Keitt T.H. (2000) Landscape connectivity: A

conservation application of graph theory. Journal of Environmental

Management, 59, 265-278.

Compton,B., et al. (2007) A resistant kernel model of connectivity for vernal

pool breeding amphibians. Conservation Biology, 21, 788–799.

Cushman,S.A., et al. (2006) Gene flow in complex landscapes: testing multiple

hypotheses with casual modeling. The American Naturalist, 168, 486-499.

Cushman,SA, McKelvey,K.S. and Schwartz,M.K. (2009) Use of empirically derived

source-destination models to map regional conservation corridors.

Conservation Biology, 23, 368-376.

Cushman,S.A., Chase,M.J. and Griffin,C. (2010a) Mapping landscape resistance

to identify corridors and barriers for elephant movement in southern Africa.

In Cushman,S.A. and Huettman,F. (eds). Spatial complexity, informatics and

wildlife conservation, Springer, Tokyo, pp. 349-368.

U N I C O R u s e r m a n u a l | 13

Cushman,S.A., Compton,B.W. and McGarigal,K. (2010b) Habitat fragmentation

effects depend on complex interactions between population size and dispersal

ability: Modeling influences of roads, agriculture and residential

development across a range of life-history characteristics. In Cushman,S.A.

and Huettman,F. (eds). Spatial complexity, informatics and wildlife

conservation, Springer, Tokyo, pp. 369-387.

Dale,V.H., et al. (2001) Climate change and forest disturbances. BioScience,

51, 723-734.

Diestel,R. (2010) Graph Theory, Springer-Verlag, Heidelberg, Fourth Edition.

Dijkstra,E.W. (1959) A note on two problems in connexion with graphs.

Numerische Mathematik, 1, 269–271.

Dunning,J.B., Danielson,B.J. and Pulliam,H.R. (1992) Ecological processes

that affect populations in complex landscapes. OIKOS, 65, 169 -175.

Fall,A., et al. (2007) Spatial graphs: principles and applications for habi-

tat connectivity. Ecosystems, 10, 448-461.

FAO (2006) Global Forest Resources Assessment 2005, Main report. Progress

towards sustainable forest management, FAO Forestry Paper 147, Rome, p 320.

Hagberg,AA., et al. (2008) Exploring network structure, dynamics, and

function using NetworkX, In Varoquaux,G., et al. (eds) Proceedings of the 7th

Python in Science Conference (SciPy2008), Pasadena, CA USA, pp. 11-15.

McGarigal,K., et al. (2002) FRAGSTATS: Spatial Pattern Analysis

Program for Categorical Maps. Computer software program produced by the

authors at the University of Massachusetts, Amherst. Available at the

following web site:

http://www.umass.edu/landeco/research/fragstats/fragstats.html

McRae,B.H. and Beier,P. (2007) Circuit theory predicts gene flow in plant and

animal populations. Proceedings of the National Academy of Science USA, 104,

19885-19890.

McRae,B.H., et al. (2008) A multi-model framework for simulating wildlife

population response to land-use and climate change. Ecological Modelling,

219, 77-91.

Li,Q. and Racine,J.S. (2007) Nonparametric Econometrics: Theory and Practice.

Princeton University Press.

Opdam,P. and Wascher,D. (2003) Climate change meets habitat fragmentation:

linking landscape and biogeographical scale levels in research and

conservation. Biological Conservation, 117, 285-297.

Pinto,N. and Keitt,T.H. (2009) Beyond the least cost path: evaluating

corridor robustness using a graph-theoretic approach. Landscape Ecology, 24,

253-266.

Riitters,K. et al. (2000) Global scale patterns of forest fragmentation.

Conservation Ecology, 4, [online] URL:

U N I C O R u s e r m a n u a l | 14

http://www.consecol.org/vol4/iss2/art3/

Sawyer,H., et al. (2009) Identifying and prioritizing ungulate migration

routes for landscape-level conservation. Ecological Applictions, 19, 2016-

2025.

Scott,D.W. (1992) Chapter 6. In: Multivariate Density Estimation; Theory,

Practice, and Visualization. John Wiley and Sons, New York.

Schwartz,M.K., et al. (2009) Wolverine gene flow across a narrow climatic

niche. Ecology, 90, 3222-3232.

Silverman,B.W. (1986) Chapter 3. In: Density Estimation for Statistics and

Data Analysis. Chapman and Hall, New York.

Spear,S.F., et al. (2010) Use of resistance surfaces for landscape genetic

studies: Considerations for parameterization and analysis. Molecular

Ecology, in press.

Urban,D. and Keitt,T. (2001) Landscape connectivity: A graph-theoretic per-

spective. Ecology, 82, 1205-1218.

Watts,K., et al. (2010) Targeting and evaluating biodiversity conservation

action within fragmented landscapes: an approach based on generic focal

species and least-cost networks. Landscape Ecology, 25, 1305-1318.

7 Acknowledgements

This research was supported in part by funds provided by the Rocky

Mountain Research Station, Forest Service, U.S. Department of

Agriculture and by the National Science Foundation grant #DGE-0504628.

