
EEL 4924 Electrical Engineering Design

(Senior Design)

Final Report
21 April 2009

Project Title: Interactive Electronic Hopscotch Board

Team Name: Team Recess (Lose the Chalk)

Team Members:

Name: Karine Hoffman

Email: karine19@ufl.edu

Name: Joe Gillespie

Email: rahmza@ufl.edu

Project Abstract:

Our project is the design of an interactive electronic hopscotch court that possesses the ability to change
the layout of the court based on user input. The board will change its layout by lighting up various
sections of the board in differing colors. The board will also detect whether the user landed on the
correct part of the court and provide a visual feedback. Furthermore, the court will also be able to handle
2 players and declare a winner when one person makes a mistake.

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 2/20 Team: Team Recess

Table of Contents

Item……..……..……..……..……..……..……..……..……..……..……..……..……..Page

Project Features/ Objectives.………..……..……..……..……..……..……..……..………..4

Analysis of Competition.……..……..……..……..……..……..……..……..………….......4

Technical Concept Selection ..……..……..……..……..……..……..……..……..………..4

Project Architecture …..……..……..……..……..……..……..……..……..…………........5

Division of Labor……..……..……..……..……..……..……..……..…………..……….....8

Bill of Materials ……..……..……..……..……..……..……..……..….....……..…..……8

User Manual ………………………………………………………………………………..9

Gantt Chart ……………………………………………………………………………….10

Appendix A………………………………………………………………………………. 11

Appendix B: Code…………………………………………………………………………14

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 3/20 Team: Team Recess

List of Figures and Tables

Item……..……..……..……..……..……..……..……..……..……..……..……..……..Page

Figure 1……..……..……..……..……..……..……..……..……..……..……..………….5

Figure 2……..……..……..……..……..……..……..……..……..……..……..………….6

Figure 3……..……..……..……..……..……..……..……..……..……..……..………….7

Figure 4…………………………………………………………………………………...10

Figure 5……..……..……..……..……..……..……..……..……..……..………...Appendix

Figure 6……..……..……..……..……..……..……..……..……..……..……..….Appendix

Figure 7……………………………………………………………………………Appendix

Figure 8……..……..……..……..……..……..……..……..……..……..……..….Appendix

Figure 9……..……..……..……..……..……..……..……..……..……..……..….Appendix

Figure 10……..……..……..……..……..……..……..……..……..……..……..…Appendix

Table 1..……..……..……..……..……..……..……..……..……..……..……..………….8

Table2..……..……..……..……..……..……..……..……..……..……..……..…………..8

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 4/20 Team: Team Recess

Project Features/ Objectives:

The main objective is to have the Hopscotch board react to players. In order to create a portable and
flexible game board, the pressure sensors and LEDs chosen are flexible and able to withstand bodily
forces.

We interface a series of pressure sensors with a microprocessor that maintain gameplay using LEDs as
visual control for the user. Multicolored LEDs enhance the board and provide direction for gameplay.
Basic hopscotch rules that our gameplay will follow are found in the User Manual in this document. The
microprocessor connects to an LCD and user interface buttons to select 1 or 2 players.

We would also like to be able to create an alterable game board allowing the user to play on different
hopscotch courts. This will be achieved by using LEDs to highlight the sensors and a random select on
start up to determine the court shape.

We are housing the electronic controls including the printed circuit boards, LCD and buttons in a
housing attached to the board through protected wires. This part does not fold up with the court mat.

Analysis of Competitor Products:

Interactive Digital Hopscotch can be categorized as an electronic toy. This game board simulates the
outdoor version by bringing it inside, making it safer and more contemporary. The rules of the game are
traditional but by integrating technology it increases the excitement and competition level.

Currently, other indoor mat versions of hopscotch exist but none are digital. Our concept will combine
the fun level of the foot piano from the movie “BIG” and the timeless game of hopscotch. Figure 2 and 3
help explain the rules we are using for the game along with the basic design of the board. The main
difference in rules from the standard hopscotch is that instead of a rock being thrown onto the board, we
are instead using a sensor at the beginning. When the sensor is hit, lights run up and down the board and
when hit again, they stop on a certain square. On the way to the finish, they must skip the square, and on
their way back, the player must hit the square with their hand.

Technical Concept Selection

Our original design has evolved over the course but still maintains the same objectives as far as
gameplay and performance.

We initially wanted the ability to individually select for each of the colors in each ring for total control
of the board. Our design included 160 pin CPLD and a 12 transistor arrays to power the LEDs from the
12V power supply. When our PCB design with this CPLD failed we immediately went into reevaluate
stage. We decided to try and optimize our design by using a smaller CPLD from our Digital Logic class,
less connections to the LEDs and less transistors to power these fewer connections. We created an array
type set up for the LEDs as indicated in the wiring diagram from figure 6 in the Appendix. We also
decided to go with separate red, green and blue led strands, instead of RGB, with 4 LEDs per strand,
three colors per ring and 26 rings for the court.

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 5/20 Team: Team Recess

This led to many more complex challenges because the individual ability to select is no longer, we could
not light up individual squares of the hopscotch court but instead need to use a raster scan concept to
create the illusion that the court is illuminated to the user.

The force sensitive resistors (FSR) design of our game is mostly intact, with our 32: 1 analog mux
selecting and scanning the 26 FSRs in the court and relaying this information to the Atmega32 ADC
port. We overcame one challenge of the least significant bit of the analog mux not toggling which makes
our 32:1 mux act as a 16:1. We developed the wiring from figure 6 for the FSRs to create fewer
connections and utilize the analog mux.

Our mat design consists of two foam mats adhered in the middle with spray adhesive, wrapped in two
slip resistant, water proof, translucent tarps. It is entirely foldable able to be carried by one person. The
electronic housing protects the PCBs and LCD from user damage.

Project Architecture

High level map of concepts in hopscotch design and overlall layout for gameplay. Please see appendix
for complete PCB layouts and connectivity between Atmega32 and CPLD board designs.

Figure 1 – High Level Diagram

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 6/20 Team: Team Recess

Figure 2. Detailed Overview of design connections

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 7/20 Team: Team Recess

Figure 3 Game Rules

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 8/20 Team: Team Recess

Division of Labor

Karine Joe

Hopscotch/Atmel/LCD Research Force Sensor/ LED Research

Order Components Preliminary Circuit Design

Gameplay conceptualization Gameplay code development

Wiring (LED rings, FSRs) Test/Debug coding

PCB functionality testing PCB design

Game Mat material/design Test/Validation

Documentation and Presentation Presentation
Table 1

Bill of Materials

Prototype Cost Objectives

Part Unit(s) Cost/Unit Total Cost

Force Sensor 28 7.88 228.51

Atmel MicroP 1 0 0

CPLD160 pin 2 25, 41 66

LEDs(104 per color) 312 .40 124.8

CPLD from 3701 1 0 0

PCB 1 78 100

LCD 1 20 20

Transistor array (ULN2003A) 12 0 0

Analog Mux
(ADG732bsuz) 1 0 0

15V power supply 1 13 13

12 V power supply 1 25 25

Tubing 70ft .35 24.5

Mat(foam*2,tarp*2,edging*2) 6 14;7;12 66

Wiring (wire wrap:195 ft,
rings:200 ft cable, FSRs:100ft) 500ft Variable 100

Misc(tape, glue etc) # # 150

Total 917.81
Table 2

Prototyping costs include extra parts, unused parts and unused boards which greatly increased our
incurred costs. As our design developed and we reached our final design these costs decrease to match
parts used in final design.

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 9/20 Team: Team Recess

User Manual

How to Play Interactive Hopscotch by Team Recess:

1. Plug in to turn on

2. Court will light up

3. Select 1 or 2 player

4. Start game:

a. Step on start to start light sequence

b. Stop red light on a hopscotch square that was previously blue: this is now
the skipped spot. If you miss try again!

c. Hop on board from Start to Home and back but avoid the skipped spot

5. Correctly hit spots will change color from Blue to Green as you step on them.
Incorrect steps turn red.

6. To play different courts win your game and a new court will appear randomly
selected from courts stored in the game.

7. Unplug to turn off for storage.

8. Folds sides in first, then fold the rolled court in half for easy storage.

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 10/20 Team: Team Recess

Gantt Chart
Updated Gantt chart includes light blue extensions to processes.

Figure 4. Gantt chart

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 11/20 Team: Team Recess

Appendix A

 Figure 5 – Sensor layout/Basic court

Figure 6 wiring for FSRs and LED rings

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 12/20 Team: Team Recess

Figure 7. Quartus Diagram

Figure 8. PCB for Atmega32 and ADG732bsuz design. Headers attach CPLD to this board.

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 13/20 Team: Team Recess

Figure 9. CPLD board used in Final Design, Attached to Atmega board via headers

Figure 10. Initial PCB design with 160 pin CPLD not used in Final Design

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 14/20 Team: Team Recess

Appendix B: Code

led_toggle_16.h

#include <avr/io.h>
#include <util/delay.h>

#define LED_PORT PORTC // This is where the pins connecting to the CPLD will be
#define LED_DDR DDRC // This is where the pins connecting to the CPLD will be

#define CLK_SET 0b10000000 // By "or"ing the Port plus this will set the clock bit
high.
#define CLK_CLEAR 0b01111111 // By "and"ing the Port plus this will clear the clock
and leave the others
#define MASK1 0b00000001
#define CLEAR_BIT 0b00010011

/******************
***This Toggles the Row
******************/

void ToggleRow(int led_num)
{

 LED_PORT = led_num;
 LED_PORT = (LED_PORT | CLK_SET);
}

/******************
***This will activate a certain column
*******************/
void SetCol(int led_num)
{
 LED_PORT = (led_num+10);
}

void SetRowCol(int led_row, int led_col)
{
 ToggleRow(led_row);
 SetCol(led_col);
 _delay_us(220);
 ToggleRow(led_row);
}

/************
***Sends a Clear Command
************/
void ClearAll()
{
 LED_PORT = 0x1F;
}

/*********************************
***This function rasters the court
***for a specified period of time
*********************************/

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 15/20 Team: Team Recess

void ShowCourt(int length, int rgb_tab[10][3])
{
 int f, i, j, k, val;
 for (f=0;f<length;f++)
 {
 for (i=0;i<10;i++)
 {
 ToggleRow(i+1); //Set each row separately
 for (j=0;j<3;j++) //Go column by column
 {
 val=rgb_tab[i][j]; //Check to see if it's 1, 2, or 3
 if(val==1) //1=blue
 {
 k = ((j*3)+1);
 SetCol(k);
 }
 else if (val==2) //2=green
 {
 k = ((j*3)+2);
 SetCol(k);
 }
 else if (val==3) //3=red
 {
 k = ((j*3)+3);
 SetCol(k);
 }

 }
 ToggleRow(i+1);
 }
 }
}

Scan.h

#include <util/delay.h>

#define TRUE 1
#define FALSE 0
#define THRESHOLD 900
#define NUM_FSR 3

#define FSR_PORT PORTA
#define FSR_DDR DDRA

int SCAN_FSR(int fsr_num)
{
 int adc_val; //Declare the ADC Storage Value

 fsr_num = (fsr_num << 1); //Multiply by two
 fsr_num = fsr_num + 1; //Add one

 fsr_num = (fsr_num << 1); // Shift the number to the right
 FSR_DDR = 0b01111110; //Set the DDR properly
 FSR_PORT = 0; //Clear the Port
 _delay_us(500);
 FSR_PORT = (FSR_PORT | fsr_num); //Set the select lines
 _delay_us(500); //Delay by a bit to make sure ADC works
 adc_val = ADC_START(0); //Convert the ADC

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 16/20 Team: Team Recess

 if (adc_val > THRESHOLD) //Return 1 if above thresh, 0 else
 {
 return 1;
 }
 else
 return 0;
}

void SCAN_ALL(int fsr_press[])
{
 int i;
 for (i=0; i<(NUM_FSR+1); i++)
 {
 fsr_press[i]=SCAN_FSR(i);
 }
}

void SCAN_RANGE(int fsr_press[], int start, int end)
{
 int i;
 for (i=start; i<(end+1); i++)
 {
 fsr_press[i]=SCAN_FSR(i);
 }
}

int WHAT_PRESSED(int rgb_tab[][3])
{
 int i;
 for (i=0;i<13;i++)
 {
 ShowCourt(20,rgb_tab);
 if (SCAN_FSR(i)==1)
 {
 return i;
 }
 }
 return 99;
}

Gamestart.h

#include <avr/io.h>
#include <util/delay.h>

#define TRUE 1
#define FALSE 0
#define ROW_MAX 10
#define COL_MAX 3

void ClearArray(int rgb_tab[][3])
{
 int i, j;
 for (j=0; j<ROW_MAX; j++)
 {
 for (i=0; i<COL_MAX; i++)

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 17/20 Team: Team Recess

 {
 rgb_tab[j][i]=0; //Clear the array to 0
 }
 }
}
void DisplayCourt(int layout[][3])
{

int i;
int j;
int k;
k = 1; //rand(); //Set the random value for i, change this max in stdlib

for (j=0; j<ROW_MAX; j++){
 for (i=0; i<COL_MAX; i++){

 layout[j][i]=0; //Clear the array to 0
 }
}

switch (k) {

 case 1: //The first layout
 layout[0][1] = 1;
 layout[1][1] = 1;
 layout[2][0] = 1;
 layout[2][2] = 1;
 layout[3][1] = 1;
 layout[4][0] = 1;
 layout[4][2] = 1;
 layout[5][0] = 1;
 layout[5][2] = 1;
 layout[6][1] = 1;
 layout[7][1] = 1;
 layout[8][0] = 1;
 layout[8][2] = 1;
 layout[9][1] = 1;
 break;

 case 2: //The second layout
 layout[0][2] = 1;
 layout[1][2] = 1;
 layout[2][2] = 1;
 layout[3][2] = 1;
 layout[4][2] = 1;
 layout[5][2] = 1;
 layout[6][2] = 1;
 layout[7][2] = 1;
 layout[8][2] = 1;
 layout[9][2] = 1;
}

/*for (j=0; j<ROW_MAX; j++){ //Toggle the blue LEDs
 for (i=0; i<COL_MAX; i++){
 if (layout[j][i] == 1)
 ToggleLED(j,((i*3)-1));
 }
}*/

 return;

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 18/20 Team: Team Recess

}

Gameplay.h

int SnakeRed(int rgb_tab[][3])
{
 int i, j, k;
 int l=0;
 while(1)
 {
 for (i=0;i<10;i++) //Check every row
 {
 for (j=0;j<3;j++) //Check every column
 {
 k=rgb_tab[i][j]; //Store the value that was there
previously
 rgb_tab[i][j]=3; //Set the new one to red
 ShowCourt(300, rgb_tab); //Show the court for awhile
 l = SCAN_FSR(0); //Check to see if pressed
 if (l==1) //If it was, stop
 {
 if (k==1) //If it was blue, return a 0
 {
 return 0; //This says that you passed
 }
 else //Otherwise, return a 1
 {
 return 1; //This says you failed
 }
 }
 rgb_tab[i][j]=k; //Set the table back to whatever
 }
 }
 }

}

void LightShow(int rgb_tab[][3])
{
 ClearArray(rgb_tab);
 int k, i, j;
 for (k=1; k<4; k++)
 {
 for (i=0;i<10;i++)
 {
 for(j=0;j<3;j++)
 {
 rgb_tab[i][j]=k;
 }

 ShowCourt((300-i*28),rgb_tab);
 }
 for (i=10;i>-1;i=i-1)

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 19/20 Team: Team Recess

 {
 for(j=0;j<3;j++)
 {
 rgb_tab[i][j]=0;
 }

 ShowCourt((300-i*28),rgb_tab);
 }
 }
}

University of Florida EEL 4924—Spring 2008 21-Apr-09
Electrical & Computer Engineering
Page 20/20 Team: Team Recess

Register 1

Blue?

Turn Green
[1] [0]

Turn
Red

Fail

[1] [1]
Blue?

[1] [2]
Blue?

Turn Green
[1] [2]

Move on

Fail

Fail

Move on

Turn Green
[1] [1]

Pressed
?

Pressed
?

Pressed
?

Pressed
?

Delay w/
court

Delay w/
court

Blue-Green Flowchart

