RightNow® February '08

Integration Manual

February 15, 2008

EEEEEEEEEEEE



Documentation. This documentation is © 1998-2008 RightNow Technologies, Inc. The documentation is pro-
vided under license, and is subject to change from time to time by RightNow, in its absolute discretion.

Software Code. Except as provided hereafter, the software code is © 1997-2008 RightNow Technologies, Inc. The
software may be covered by one or more of the following patents issued by the United States Patent and Trademark
Office: patent numbers 6,665,655; 6,434,550; 6,842,748; 6,850,949; 6,985,893; 6,141,658; 6,182,059; 6,278,996,
6,411,947; 6,438,547; and D454,139, or by the following patent issued by the United Kingdom Patent Office: patent
number GB239791. Other patents ate also pending;

Trademarks. The following are trademarks of RightNow Technologies, Inc.: RightNow; Multiview Technology;
ProServices; RightFit; RightNow Live; Locator; SmartConversion; SmartSense; RightNow Outbound; RightNow
Service; RightNow Metrics; RightNow Marketing; RightNow Sales; RightPractices; RightStart; SmartAssistant;
SmartAttribute Technology; Talk RightNow; Proactive; Proactive Customer Service; TopLine; Top Line Customer
Service; iKnow; Salesnet; and RightNow Connect.

Web address: http://rightnow.com
Email address: info@rightnow.com




Contents | 1

Contents

Chapter 1 Introduction. . ....... ... . ... . 5
About thismanual. .. ... ... .. . 7

Documentation CONventions. . .. ..o vu vt n e 8

RightNow February ’08 documentation ............................ 9

Chapter 2 Integration Overview. .......... ... ... ... ... .. i, 13
Chapter 3 XML Integration. .. ......... ...t 17
XML tagS . o ottt 18

CCONNECLOL™ TAZ . . ottt e ettt et ettt e 18

SEUNCHON™ tAZ .. oottt 19

<PArAMEtEr™ tAZ . . oottt ittt 20

PRI tAZ o oottt 20

Using special characters. . ....... ... ... oo i ii 21

XML APT functions .. .ov vt e e 22

Account APT ... . 30

ACCE_CTEALE .« v v vttt e e e 30

ACCE_dESTIOY « o ottt e 31

ACCE_IMOVE « vttt e e e 32

ACCE_UPAAte. . oottt 33

Answer AP ... 34

ANS_ CLCALE .« v vttt et et et e e 34

ANS_dESTIOY. « o v ottt 38

ANS_ZCL « ottt et e 38

ANS_UPAALE .. .ot 39

Contact AP . .. 40

CONEACE_CIEALE. . o v vttt e 40

CONAC_d@STIOY « o v ottt ettt et e 42

CONLACE_GEL .ottt ettt 42

CONACE_UPAALE . « .. i vttt et et e e 43

mailing send_to_contact. .......... ... ... i 43

Flow API ... 44

RIGHT
NOW

TECHNOLOGIES




2 | Contents

flOW_EXECULE .« .« v v v v e et e e e e e e e e e e 44
Hierarchicalmenu APL. . ... .. ... ... 45
css_product_create, css_category_create,
and css_disposition_Create . ............uuveiuunnennnnnann. 45
css_product_destroy, css_category_destroy,
and css_disposition_destroy .. ...... ..o oo 47
css_product_move, css_category_move,
and css_disposition_move . ...t 47
css_product_update, css_category_update,
and css_disposition_update. . ....... .o o oo 48
Incident APT . ... o 49
INCIAENt CIEAtE . v v vttt e e e e e e e 49
incident_destroy . ... 51
INCIAENt @et. ..ottt e 52
incident_update. . ...... ... o 52
Meta-answer APL ... . . 53
META_ANS_CLEALE . v v v vttt e 53
meta_ans_deStrOy . ... vt it e 55
meta_ans_update. .. ... 56
Opportunity APL . ... 57
OPP_CIEALE .« v ettt ettt et e 57
OPP_dEStIOY. « .« vttt 59
o3 o) 0T . 59
OPP_UPdAte . . . vttt 60
Organization APL. ... . ... .. 61
Multiple addresses. .. ...ovo it 62
OFZ CIEALE ..\ vttt ettt et 64
OLZ dESTIOY « o\ttt et 65
OFG G ittt ettt e 65
OLZ UPAALE. .o o\ttt ettt 66
Purchased product APL ....... ... ... o i 66
PUL_ProducCt_CIEATE. . ..o vttt ettt et e e e 66
Sales product APL. ... ... . 67
SA_PIOA_CIEALE ...ttt t et et e 68

sa_prod_destroy . ... ... 69




Chapter 4

sa_prod_update .. ...
Search AP . . ...

SQL query APL ..o

SQLLGEt Nt ..ottt

SQLL@Et STL. . ottt
sglget dttm. ...

Task AP ..o o
taASK_CIeate ...t
task_destroy . ...
task_get ...
task_update. . ...

Additional actions . . ... ...

Setting custom fields .. ......... L
Using cf_id pairs. .. ..ot
Using data_type pairs. .. ...ttt
Using value pairs .........ooiuiiiiiiiii i

Adding thread entries ......... ... ... i

AddIng NOtes. . ... oot

Creating and deleting SLA instances. .. ........... ... .. ... ...

Passing variable IDs. . ... oo oo

Finding code numbers. . ... ... ... o o
Using the mouseover function .................. . ... ...
Finding IDs in analytics. .. ..........c oo
Using the lookup_id_for_name function......................

Implementing code for the XML APIL................. ... ... ...

Using the POST method. ...... ... oo i i,

Sending an XMIL-formatted email ......................... . ...

Errorcodes .. ..o

Using the XML APIlog ... ... o

EventHandlers........................... ... . i,
External eventhandlers ........ ... ... .. i
Enabling external eVents .. ..........ouiiiiiiiiiiiiii
Developing external events. . ......... ... i

Email integration. .. ....... ..

Contents | 3

101
102
102
104
106

RIGHT

NOW

TECHNOLOGIES



4 | Contents

Chapter 5

Appendix A

Appendix B

Creating templates for email integration . . ....................... 107
Pass-Through Authentication........................... ... ... 109
Configuring RightNow Service . . ... 111

Requiring a login to RightNow Service. . ........................ 111

Redirecting the RightNow Servicelogin . ................. ... ... 111
Implementing a customer login sctipt. . . ... 114
Pair Names. . ... e 125

Account API. ... . 125

Answer AP ... 129

Contact API . ... 133

Custom field APT .. ... 140

Flow APL. . .. 140

Hierarchical menu APL. .. ... ... ... 141

Incident AP . ... . 143

Meta-Answer APL. . ... . . 150

Opportunity APL .. ..o o o 151

Organization APL. . ... . ... . .. 158

Purchased product API ... .. oo i 162

Quote APL. ..o 164

Sales product APL. ... ... .. 167

Search API ... . 170

SLAinstance APIL. . ... .. . 171

Task AP . ... 172
Source Codes . ...t 177




1

Introduction

RightNow helps businesses deliver exceptional customer experiences that drive competitive
advantage and business growth, while reducing operation costs. With our newest offering,
RightNow February *08, you can deliver great experiences to every customer all the time.

Using RightNow’s customer service, sales, marketing, and feedback solutions, you can guaran-
tee that your customers and front-line employees—customer service agents, marketers, and
salespeople—have the information they need when they need it. We call it “knowledge at the
point of action,” and we deliver it through a combination of our intuitive knowledge founda-
tion (iIKnow) that dynamically learns from every customer interaction, our suite of front-line
action applications that facilitate knowledge delivery across all your organization’s channels
and touch points, and Dayl Advantage, our results-based engagement model, which ensures
that you start with results and build on success.

RightNow February ’08 delivers real-time actionable knowledge, guiding customers and
employees to make the right decisions and take the right actions for their buying, selling, and
servicing needs—right now.

RightNow Service

RightNow’s industry-leading customer service and support solution delivers high-value, con-
sistent customer experiences across multiple customer service channels. Using RightNow
Service, you can provide your customers with fast and accurate answers from phone, email,
web, and chat requests. RightNow Service puts knowledge at the fingertips of your customer
service agents to quickly and consistently help customers and enables your customers to help
themselves with powerful and intuitive web and voice self-service capabilities.

RightNow Service is seamlessly integrated with RightNow Marketing, RightNow Sales,
RightNow Analytics, and RightNow Feedback, enabling your organization to capture high-
value insights from customer service interactions to drive better marketing experiences and
product development decisions.

RIGHT

NOW

TECHNOLOGIES



6

Introduction

RightNow Marketing

Marketing is often the first point of contact with a customer; as a result, that first experience
is crucial to how the customer views your organization. RightNow Marketing is an email and
campaign marketing solution that ensures high-value customer experiences across your mar-
keting touch points.

Using multi-stage marketing campaigns, you can quickly target and deliver the right informa-
tion and product offers to the right recipients at the right moment. By providing your cus-
tomers and prospects with what they need when they need it, you not only create a great
experience, you also optimize the effectiveness and cost-efficiency of your marketing pro-
grams.

RightNow Marketing is seamlessly integrated with RightNow Service, RightNow Sales,
RightNow Analytics, and RightNow Feedback, so your organization can act on every new
lead in a timely, appropriate manner and provide your marketing team with more accurate,
complete, and up-to-date customer data.

RightNow Feedback

RightNow makes it easy for you to find out what your customers really think—by asking
them at the right time and in an appropriate manner. RightNow Feedback is a customer sur-
vey tool for gathering information about your customers’ experiences. The resulting informa-
tion will help your organization improve customer experiences and increase customer loyalty.

RightNow Feedback also unifies all of your organization’s feedback programs into a single
enterprise feedback management solution that supports your organization’s complete feed-
back strategy. Surveys can target diverse internal and external audiences for broad purposes
such as improving business processes, ensuring quality compliance, improving customer and
employee satisfaction, and more.

The key to any organization’s long-term success is knowing what customers expect today and
will demand tomorrow. Using our flexible and robust survey functionality, you can capture

and measure feedback across all touch points in real time and take immediate action on that
feedback.

Chapter 1



About this manual | 7

RightNow Sales

RightNow’s sales automation solution enables sales teams to capitalize on every opportunity
to maximize sales performance and provide a superior customer or prospect expetience.
RightNow Sales provides comprehensive tools to quickly and effectively manage opportuni-
ties, contacts, leads, and tasks; optimize analysis of opportunities and deal pipelines; analyze
and track performance of individuals and teams; and automate quote generation.

Seamlessly integrated with RightNow Service, RightNow Marketing, RightNow Analytics,
and RightNow Feedback, RightNow Sales can assist your organization in building sustainable,
long-term relationships with customers by understanding their needs and ensuring that those
needs are met—before, during, and after the sale.

RightNow Analytics

To deliver a great customer expetience, you need to know what you are doing right and what
you need to do better. That requires full visibility into all of your customer touch points
across customer service, sales, marketing, and feedback activities. You also have to be able to
deliver timely, actionable analytics information to managers and decision-makers across your
entire organization. With RightNow Analytics—our business analytics software—you can
capture, analyze, and distribute information about customer interactions with ease and flexi-
bility.

RightNow Analytics is embedded throughout RightNow, providing your organization with a
unified view of all analytics across all channels. With over 300 standard reports and the ability
to create custom reports and dashboards, you can easily measure your most critical petfor-
mance metrics and quickly respond to changing conditions and customer needs.

About this manual

This manual is intended for administrators responsible for carrying out integrations in
RightNow February ’08. It contains information and procedures for implementing pass-
through authentications, external event handlers, or XML API integrations.

Refer to the RightINow Administrator Manual for an overview of the RightNow Console and
configuration procedures for those areas common to all RightNow products, including
RightNow Service, RightNow Marketing, RightNow Feedback, and RightNow Sales. Refer to
the RightNow User Manual for an overview of the RightNow Console and information and
procedures for performing tasks associated with areas that are common to all RightNow
products.

Chapter 2, Integration Overview—Contains a description of each type of integration.

RIGHT
NOW

TECHNOLOGIES




8 | Introduction

Chapter 3, XML Integration—Contains information for implementing an integration using
XML to access RightNow’s API and update the database.

Chapter 4, Event Handlers—Contains information for implementing event handlers to
define custom processes for managing your incidents, contacts, organizations, answers, and
opportunities.

Chapter 5, Pass-Through Authentication—Contains information for integrating
RightNow Service with an external customer validation source to allow your customers to
automatically log in to RightNow Service from an external web page.

Appendix A, Pair Names—Describes the pairs available to be used in each XML API func-
tion.

Appendix B, Source Codes—Describes the source codes to be used in the source_lvll,
source_lvl2, and tbl pairs in each XML API function.

Documentation conventions

As you work with RightNow documentation, you will notice certain conventions used to con-
vey information. To help you become familiar with these conventions, the following table
contains examples and descriptions of the conventions used.

Convention Description

Path: Common Configuration>Double-Click | Identifies the path to open an administration item.
Staff Accounts The administration option appears first, followed
by the mouse action.

Note: All paths appear immediately before figures
in the documentation.

Path: Answers>Double-Click Report>Right- Identifies the path to open a record from a report.
Click Answer>Open>Answer The navigation list appears first, followed by the
mouse actions and the menu selection.

<angle brackets> as in: Indicates variable information specific to your

http://<your_intetface>.custhelp.com/ RightNow application.

Asterisk (¥) preceding field names in tables Indicates that the field is required. You cannot
save a record, report, or file until you fill in all
required fields.

Note: In RightNow, required fields are flagged
with an asterisk, or the field name appears in red
text, or both.

Chapter 1



RightNow February '08 documentation | 9

RightNow February '08 documentation

RightNow Technologies offers manuals, guides, and documents to help you install, adminis-
tet, and use RightNow products, including RightNow Service™, RightNow Marketing™,
RightNow Sales™, and RightNow Feedback™. Our documentation is written for users who
have a working knowledge of their operating system and web browsers and are familiar with
standard conventions such as using menus and commands to open, save, and close files.

RightNow Administrator Manual—Contains procedures for configuring options com-
mon to RightNow Service, RightNow Marketing, RightNow Feedback, and RightNow Sales.
This manual addresses staff management, common communications, custom fields, customi-
zable menus, workspaces, navigation sets, monetary configuration, business rules, system con-
figuration, database administration, contact upload, multiple interfaces, screen pops,
computer telephony integration (CTT), and the external suppression list.

RightNow User Manual—Contains procedures common to all staff members, including
customer service agents, marketing personnel, and sales representatives. This manual
addresses organization and contact records, tasks, notifications, and computer telephony inte-
gration (CTT).

RightNow Analytics Manual—Contains procedures for working with RightNow Analytics,
including generating standard reports and creating custom reports and dashboards. Also
included are descriptions of the elements used to build custom reports and dashboards,
including styles, chart styles, color schemes, images, and text fields.

RightNow Service Administrator Manual—Contains procedures for configuring
RightNow Service. This manual addresses service level agreements, standard text and answer
variables in the content library, product linking, the end-user interface, Offer Advisor,
RightNow Live, RightNow Wireless, and incident archiving,

RightNow Service User Manual—Contains procedures for customer service agents work-
ing with RightNow Service. This manual addresses incidents, incident archiving, Offer Advi-
sot, RightNow Live, answers, the accessibility interface, and the end-user interface.

Standalone End-User Manual—Contains a description of all the pages on the end-user
interface in RightNow Service and the unique features on each page. This standalone manual
describes the 8.2 end-user interface, which is an option in RightNow February *08.

RightNow Marketing User Manual—Contains procedures for staff members working
with RightNow Marketing. This manual addresses audiences, the content library, mailings, and
campaigns.

RIGHT

NOW

TECHNOLOGIES



10

Introduction

RightNow Sales Administrator and User Manual—Contains procedures for the
RightNow administrator and all staff members working with RightNow Sales. Procedures for
the RightNow administrator include adding sales process options and quote templates, and
configuring Outlook integration and disconnected access. Procedures for sales staff members
include working with opportunities, quotes, Outlook integration, and disconnected access.

RightNow Feedback User Manual—Contains procedures for all staff members working
with RightNow Feedback. This manual addresses audiences, the content library, questions,
and surveys.

RightNow Made Easy: An Administrator’s How-To Guide—Contains basic procedures
for the RightNow administrator to configure all common areas in RightNow and all
RightNow products, including RightNow Service, RightNow Marketing, RightNow Sales, and
RightNow Feedback. This streamlined how-to guide gives administrators the basic steps to
set up and configure all areas in RightNow, one task at a time, and complements the array of
published RightNow manuals and documentation.

RightNow Made Easy: A User’s How-To Guide—Contains the basic procedures for tasks
that staff members perform on a regular or daily basis. With how-to instructions for each
RightNow product, customer service agents, marketing personnel, and sales representatives
can quickly and efficiently complete routine tasks as they work with customers and prospects.
The user’s how-to guide combines several RightNow user manuals into one easy-to-use
resource.

RightNow February °08 Release Notes—Contains a brief description of the new and
expanded features in RightNow February ’08, including features common to all products and
those specific to RightNow Service, RightNow Marketing, RightNow Sales, and RightNow
Feedback.

RightNow HMS Guide—Contains upgrade instructions for customers hosted by
RightNow Technologies.

RightNow SmartConversion Guide—Contains procedures for upgrading from RightNow
CRM 7.5 to RightNow February ’08.

RightNow Smart Client Installation Guide—Contains procedures for installing the
RightNow Smart Client on staff members’ workstations using the RightNow Click-Once
installer or the RightNow Smart Client Setup Wizard.

Chapter 1



RightNow February '08 documentation | 11

RightNow Integration Manual—Contains procedures for integrating the RightNow
knowledge base with external systems, including help desks, data mining, and data reporting
systems. Contact your RightNow account manager to obtain this manual.

Tip For a comprehensive list of all RightNow documentation, refer to
http://community.rightnow.com/customer/documentation.

RIGHT

NOW

TECHNOLOGIES



12 | Introduction

Chapter 1



13

2

Integration Overview

RightNow has all the tools you need to create a fully integrated customer service solution.
There are three ways to integrate RightNow with other applications:

¢ XML API
¢ Event handlers

* Pass-through authentication

This overview provides a brief description of each integration method to assist you in decid-
ing which method best suits your integration needs. For detailed information about the types
of integration, refer to each method’s chapter in the manual.

You must be a non-hosted customer to implement event handlers. If you are a hosted cus-
tomer, you must contact your RightNow account manager to perform these functions. Both
hosted and non-hosted customers may contact their account manager for assistance from
Professional Services in planning and implementing an integration. To learn more about the
services provided, visit our web site at:

http://rightnow.com

To follow the procedures in this manual, on-premise customers must be using the latest ver-
sion of RightNow, available for download on our web site.

Caution  The API functions should be used by experienced programmers only. Misuse of
the API could result in damage to your RightNow site or database. We recom-
mend that you first test your integration on a non-production site. If you require
assistance, contact your RightNow account manager.

RIGHT

NOW

TECHNOLOGIES



14

Integration Overview

XML API

XML integration allows you to interact directly with the API through the use of XML. Using
XML integration, you can create, update, delete, get, and search on accounts, answers, con-
tacts, hierarchical menus, incidents, meta-answers, opportunities, organizations, quotes, SLA
instances, and task instances in your RightNow database. You can also run SQL queries on
any table of your RightNow database to retrieve information.

RightNow provides two methods for accessing the XML APIL You can use HTTP POST or
send an XML-formatted email to perform XML API functions. Posting XML allows real-
time interaction with RightNow.

Use XML integration when you want direct access to the RightNow database. XML integra-
tion can also be used when an external application has the ability to create and send XML-for-
matted emails or post XML directly to RightNow. You should have experience with XML and
familiarity with RightNow functions before attempting to perform an XML integration. For
more information, refer to Chapter 3, “XML Integration,” on page 17.

Event handlers

An event handler is implemented when a specific event occurs within RightNow. An event
handler can either execute a script (external event) or email data (email integration) to a spec-
ified email address when the event occurs. The following events are supported:

* Anincident is created, updated, or deleted

* An answer is created, updated, or deleted

* A contact is created, updated, or deleted

* An organization is created, updated, or deleted

* An opportunity is created, updated, or deleted

* A business rule is matched
These events facilitate execution of a program or email transmission when information is
modified within RightNow. The external event program is passed the data related to the

update. For example, this function could be used to update contact information in an external
system every time contact information is updated within RightNow.

Use event handlers when you want real-time synchronization with an external system or want
to update data external to RightNow. Using external events requires programming experience
and familiarity with RightNow functions. For more information, refer to Chapter 4, “Event
Handlers,” on page 101.

Chapter 2



15

Pass-through authentication

You can integrate RightNow Service with an external customer validation source to allow
your end-users to automatically log in to RightNow Service from an external web page by
passing the necessary login parameters in the URL of any appropriate end-user page
(home.php, std_alp.php, std_adp.php). By using this integration method, you can allow con-
tacts to have one login name and password for RightNow Service, as well as an external sys-
tem.

Use this integration method when you want to use an external customer validation source to
log in contacts to RightNow Service. This method requires programming experience and
familiarity with RightNow Service functions. For more information, refer to Chapter 5,
“Pass-Through Authentication,” on page 109.

RIGHT

NOW

TECHNOLOGIES



16 | Integration Overview

Chapter 2



17

3

XML Integration

You can use XML (Extensible Markup Language) to access RightNow’s API and update the
database. Through XML integration, you can perform many tasks normally accomplished
through the RightNow user interface, such as creating, updating, deleting, retrieving and
searching records in your RightNow database using either of the following methods:

* Sending XML data using the POST method—When posting data using this
method, the XML is immediately passed to RightNow and parsed by a PHP script. A
record is then instantly created, updated, deleted, retrieved, or searched for in the
RightNow database. For additional information, refer to “Using the POST method” on
page 94.

* Sending an XML-formatted email—When sending an XML-formatted email, the
utility zechmail will identify an email as having XML through a trigger word or phrase in
the subject line. The email will then be parsed by a PHP script to retrieve the data. For
additional information, refer to “Sending an XML-formatted email” on page 95.

Caution The XML API functions should be used by expetienced programmers only.
Misuse of the API could result in damage to your RightNow site or database. We
recommend that you first test your integration on a non-production site. If you
require assistance, please contact your RightNow account manager.

This chapter describes the XML tags used by the RightNow API, provides descriptions of the
basic API functions, and contains information on posting XML through a URL or sending an
XML-formatted email.

RIGHT
NOW

TECHNOLOGIES




18 | XML Integration

XML tags

The data sent to RightNow is identified by a series of XML tags defined in this chapter. The
tags organize data so it can be parsed by RightNow and handled appropriately. There are four
basic tags used when accessing the API through XML:

¢ <connector>
e <function>
* <parameter>

* <pair>

Each tag is used in the following example code:

<connector>

<function name="incident update" id="incident id">

<parameter name="args">

<pair
<pair

<pair

name="1i id" type="integer">19283</pair>
name="ref no" type="string">061031-000227</pair>
name="status" type="pair">

<pair name="id" type="integer">4</pair>

<pair name="type" type="integer">4</pair>

</pair>
<pair name="updated" type="time">1164451523</pair>
<pair name="updated by" type="integer">23</pair>
<palr name="use smime" type="integer">1</pair>
<pair name="wf flag" type="integer">0</pair>
</parameter>
</function>
</connector>

These tags are described in the following sections, along with descriptions of their attributes

and types.

<connector> tag

The <connector> tag is the root element of the XML code. It contains all function tags. The
<connector> tag can use the following attributes:

* ret_type—This attribute specifies either http or email as the type of return. For exam-

ple:

<connector ret type="http">

Or

Chapter 3



<function>tag | 19

<connector ret type="email">

If the ret_type is set to http, the XML return value will be sent to the http requester. If the
ret_type is set to email, an email containing the return value will be sent. If no ret_type is
specified, http will be used by default.

Note Specifying ret type="http" does not allow you to send an XML return to a
specific http location or URL.

* ret_email—This attribute specifies the email address to send return values to if
ret_type is email. For example:
<connector ret type="email" ret email="jdoe@example.com">
When return values are sent to an email address or URL, they appear in the following format:
<?xml version="1.0" encoding="UTF-8"?>
<connector ret>
<function name="incident create">
<ret val name="i id">7345</ret val>
</function>

</connector_ ret>

This example returns the i_id of an incident created through the API with the incident_create
function. The automatically assigned i_id of the new incident, 7345, is specified by the
<ret_val> tag.

<function> tag

The <function> tag contains each API call and contains the following attributes:

* name—This attribute specifies the name of the API function you want to call. For
example:
<function name="incident create">

* id—This attribute specifies a string used to apply return values to. The string can be
used later to have the return value replace a variable. For example:
<function name="contact create" id="contact id">
For information about using variables in the ID attribute, refer to “Passing variable
1Ds” on page 87.

RIGHT

NOW

TECHNOLOGIES



20 | XML Integration

<parameter> tag

The parameters described in Table 1 can be specified using the name attribute in the
<parameter> tag. The datatype should also be specified using the type attribute. For example:

<parameter name="args" type="pair"> <pair data> </parameter>

Table 1: Parameter Description

Parameter Description

ac_id This parameter defines the report ID number in the search func-
tion.

args This parameter indicates that pair data will follow the

<parameter> tag. For example:
<parameter name="args" type="pair">

<pair name="i id" type="integer">19283</pair>
</parameter>

max_rows This parameter defines the maximum number of records that
should be returned by the search when using the search API func-
tions.

sql This parameter defines the SQL statement for the SQL query API
functions.

<pair> tag

The <pair> tag contains data used by the API function. It describes the database field and the
value to add to the RightNow database. The <pair> tag can have the following attributes:

* name—This attribute defines the pair name that the enclosed data pertains to. Pair
names for the API are described in Appendix A, “Pair Names,” on page 125. For exam-
ple:
<pair name="title" type="string">Title</pair>

* type—This attribute determines whether the pair is a pair, integer, time, or string. For
example:

<pair name="c_id" type="integer">3</pair>

Chapter 3



Using special characters | 21

Table 2 describes the four pair types.

Table 2: Pair Type Description

Type Description

integer A positive or negative 4-byte integer.

string A string of characters that cannot contain any NULLs.

time A field that is the same type as the UNIX date_t, generally a long integer
that is the number of seconds since the UNIX Epoch date (00:00:00
UTC January 1, 1970).

pair A pair that contains additional data within a pair; also called a “nested

pair.”’

Using special characters

When passing data through XML, there are certain characters that cannot be used because
they are misinterpreted by the XML language as it is parsed in RightNow. These special char-
acters should always be encoded when used as a parameter value in your XML code. Table 3
shows the special characters and their required format.

Table 3: Special Characters

Character Format in XML
& &amp;

" &quot;

’ &apos; or &#039;
< &lt;

> &gt;

RIGHT

NOW

TECHNOLOGIES



22 | XML Integration

XML API functions

When using XML to integrate RightNow with an external system, you can use several API
functions to perform actions on accounts, answetrs, contacts, hierarchical menus, incidents,
meta-answers, opportunities, organizations, quotes, and tasks. An XML API function is also
available for searching in RightNow.

Table 4 lists the available XML API functions along with a description of the function and its
required parameters and pairs.

Table 4: XML API Functions

Function Description Required Parameters/Pairs

Account Functions

acct_create An account API function used to add * The args parameter

an account to the database. Refer to * An array of pair data con-

page 30. taining name, login,
display_name, profile_id,
def_curr_id, seq, and
country_id pairs
acct_destroy An account API function used to * The args parameter
delete an account from the database. * An array of pair data con-
Refer to page 31. taining seq, group_id, and
acct_id pairs
acct_move An account API function used to * The args parameter
move an account in the database. * An array of pair data con-
Refer to page 32. taining id, oldseq, newseq,
oldparent, and np_lvl_id
pairs
acct_update An account API function used to * The args parameter

update an existing account in the * An array of pair data con-

database. Refer to page 33. taining the acct_id pair

Chapter 3



XML API functions | 23

Table 4: XML API Functions (Continued)

Function

Description

Requited Parameters/Pairs

Answer Functions

ans_create

An answer API function used to add
an answer to the database. Refer to

page 34.

* The args parameter

* An array of pair data con-
taining summary, status,
access_mask, type, and

lang_id pairs

ans_destroy

An answer API function used to
delete answer data from the database.
Refer to page 38.

* The args parameter

* An array of pair data con-
taining the a_id pair

ans_get

An answer API function used to
retrieve an answer from the database.
Refer to page 38.

* The args parameter

* An array of pair data con-
taining the a_id pair

ans_update

An answer API function used to
update an existing answer in the data-
base. Refer to page 39.

* The args parameter

* An array of pair data con-
taining the a_id pair

Contact Functions

contact_create

A contact API function used to add a

contact to the database. Refer to page
40.

* The args parameter

* An array of pair data con-
taining the state pair

contact_destroy

A contact API function used to delete
a contact from the database. Refer to

page 42.

* The args parameter

* An array of pair data con-
taining the c_id pair

contact_get

A contact API function used to
retrieve a contact from the database.
Refer to page 42.

* The args parameter

* An array of pair data con-
taining the c_id pair

contact_update

A contact API function used to
update an existing contact in the data-
base. Refer to page 43.

* The args parameter

* An array of pair data con-
taining the c_id pair

RIGHT

NOW

TECHNOLOGIES



24 | XML Integration

Table 4: XML API Functions (Continued)

Function

Description

Requited Parameters/Pairs

mailing_send_
to_contact

A contact API function used with
contact_create or contact_update to
send a new or updated contact a
transactional mailing or survey. Refer
to page 43.

Note: This function should only be
used if RightNow Marketing or
RightNow Feedback is enabled.

* The c_id and mailing_id
pairs

Flow Function

flow_execute

A flow API function used to enter
contacts in campaign flows at speci-
fied entry points. Refer to page 44.
Note: This function should only be
used if RightNow Marketing is
enabled.

* The args parameter and the
c_id, flow_id, and shortcut
pairs

Hierarchical Menu

Functions

css_category_
create

A hierarchical menu API function
used to create category customizable
menu items in the database. Refer to
page 45.

* The args parameter

* An array of pair data con-
taining, seq, label, Ibl_item,
parent, Ivl_id (1-6), desc,
and vis pairs

css_disposition_
create

A hierarchical menu API function
used to create disposition customiz-
able menu items in the database. Refer
to page 45.

* The args parameter

* An array of pair data con-
taining, seq, label, 1bl_item,
parent, Ivl_id (1-6), desc,
and vis pairs

css_product_
create

A hierarchical menu API function
used to create product customizable
menu items in the database. Refer to

page 45.

* The args parameter

* An array of pair data con-
taining, seq, label, 1bl_item,
parent, Ivl_id (1-6), desc,
and vis pairs

Chapter 3



XML API functions | 25

Table 4: XML API Functions (Continued)

Function

Description

Requited Parameters/Pairs

css_category_
destroy

A hierarchical menu API function
used to destroy category customizable
menu items in the database. Refer to
page 47.

* The args parameter

* An array of pair data con-
taining id, seq, and parent
pairs

css_disposition_
destroy

A hierarchical menu API function
used to destroy disposition customiz-
able menu items in the database. Refer
to page 47.

The args parameter

An array of pair data con-
taining id, seq, and parent
pairs

css_product_
destroy

A hierarchical menu API function
used to destroy product customizable
menu items in the database. Refer to
page 47.

The args parameter

An array of pair data con-
taining id, seq, and parent
pairs

css_category_
move

A hierarchical menu API function
used to move category customizable
menu items in the database. Refer to

page 47.

The args parameter

An array of pair data con-
taining id, old_seq, new_seq,
old_parent, np_lvl_id,
Ivl_id, old_lvl, and new_lvl
pairs

css_disposition_
move

A hierarchical menu API function
used to move disposition customiz-
able menu items in the database. Refer
to page 47.

The args parameter

An array of pair data con-
taining id, old_seq, new_seq,
old_parent, np_lvl_id,
Ivl_id, old_lvl, and new_Ivl
pairs

css_product_
move

A hierarchical menu API function
used to move product customizable
menu items in the database. Refer to
page 47.

The args parameter

An array of pair data con-
taining id, old_seq, new_seq,
old_parent, np_lvl_id,
Ivl_id, old_Ivl, and new_lvl
pairs

RIGHT

NOW

TECHNOLOGIES



26 | XML Integration

Table 4: XML API Functions (Continued)

Function

Description

Requited Parameters/Pairs

css_category_
update

A hierarchical menu API function
used to update an existing category
customizable menu in the database.
Refer to page 48.

* The args parameter

* An array of pair data con-
taining id and parent paits.

css_disposition_
update

A hierarchical menu API function
used to update an existing disposition
customizable menu in the database.
Refer to page 48.

* The args parameter

* An array of pair data con-
taining id and parent pairs.

css_product_
update

A hierarchical menu API function
used to update an existing product
customizable menu in the database.
Refer to page 48.

* The args parameter

* An array of pair data con-
taining id and patent paits.

Incident Functions

incident_create

An incident API function used to add
an incident to the database. Refer to

page 49.

* The args parameter

* An array of pair data con-
taining subject, status,
interface_id, lang_id, and
contact pairs

incident_destroy

An incident API function used to
delete an incident from the database.
Refer to page 51.

* The args parameter

* An array of pair data con-
taining the i_id pair

incident_get

An incident API function used to
retrieve a specific incident from the
database. Refer to page 52.

* The args parameter

* An array of pair data con-
taining the i_id pair

incident_update

An incident API function used to
update an existing incident in the
database. Refer to page 52.

* The args parameter

* An array of pair data con-
taining the i_id pair

Chapter 3



XML API functions | 27

Table 4: XML API Functions (Continued)

Function Description

Requited Parameters/Pairs

Lookup Function

lookup_id_for_ A function used to look up the code
nhame number of a field in RightNow. Refer
to page 91.

* The args parameter

* An array of pair data con-
taining lk_tbl and lk_str
pairs

Meta-Answer Functions

meta_ans_create | A meta-answer API function used to
add a meta-answer to the database.
Refer to page 53.

* The args parameter

* An array of pair data

meta_ans_ A meta-answer API function used to
destroy delete meta-answer data from the
database. Refer to page 55.

* The args parameter

* An array of pair data con-
taining the m_id pair

meta_ans_ A meta-answer API function used to
update update an existing meta-answer in the
database. Refer to page 56.

* The args parameter

* An array of pair data con-
taining the m_id pair

Opportunity Functions

opp_create An opportunity API function used to
add an opportunity to the database.
Refer to page 57.

* The args parameter

* An array of pair data con-
taining the name and status
pairs

opp_destroy An opportunity API function used to
delete an opportunity from the data-
base. Refer to page 59.

* The args parameter

* An array of pair data con-
taining the op_id pair

opp_get An opportunity API function used to
retrieve an opportunity from the data-
base. Refer to page 59.

* The args parameter

* An array of pair data con-
taining the op_id pair

opp_update An opportunity API function used to
update an existing opportunity in the
database. Refer to page 60.

* The args parameter

* An array of pair data con-
taining the op_id pair

RIGHT

NOW

TECHNOLOGIES



28

XML Integration

Table 4: XML API Functions (Continued)

Function

Description

Requited Parameters/Pairs

Organization Func

tions

org_create

An organization API function used to
add an organization to the database.
Refer to page 64.

The args parameter

An array of pair data con-
taining the name and state
pairs

org_destroy

An organization API function used to
delete an organization from the data-
base. Refer to page 65.

The args parameter

An array of pair data con-
taining the org_id pair

org_get An organization API function used to The args parameter
retrieve an organization from the * An array of pair data con-
database. Refer to page 65. taining the org_id pair

org_update An organization API function used to * The args parameter

update an existing organization in the
database. Refer to page 66.

An array of pair data con-
taining the org_id pair

Purchased Product

Function

pur_prod_create

A purchased product API function
used to create putrchased products in
the database for use by RightNow
Sales and Offer Advisor. Refer to
page 66.

The args parameter

An array of pair data con-
taining the label and
oa_exclude pairs

Sales Product Functions

sa_prod_create

A sales product API function used to
create sales products in the database
for use by RightNow Sales and Offer
Advisor. Refer to page 68.

The args parameter

An array of pair data con-
taining the desc, label, dis-
abled, and seq pairs

sa_prod_destroy

A sales product API function used to
delete sales products in the database.
Refer to page 69.

The args parameter

An array of pair data con-
taining the product_id and
seq pairs

Chapter 3



XML API functions | 29

Table 4: XML API Functions (Continued)

Function

Description

Requited Parameters/Pairs

sa_prod_update

A sales product API function used to
update existing sales products in the
database. Refer to page 69.

* The args parameter

* An array of pair data con-
taining the product_id pair

Search Function

search

A search API function used to search
for any records in the database using
an existing view. Refer to page 70.

The args parameter

An array of pair data con-
taining the ac_id pair

SQL Query Functions

sql_get_int A SQL query API function used to * SQL parameter and state-
retrieve an integer value from the ment
database. Refer to page 74.

sql_get_str A SQL query API function used to * SQL parameter and state-

retrieve a string from the database.
Refer to page 75.

ment

sql_get_dttm

A SQL query API function used to
retrieve a datetime value from the
database. Refer to page 76.

* SQL parameter and state-
ment

Task Functions

task_create

A task API function used to add a

task to the database. Refer to page 77.

The args parameter

An array of pair data con-
taining assgn_acct_id, tbl,
status, and name pairs

task_destroy

A task API function used to delete a

task from the database. Refer to page
78.

The args parameter

An array of pair data con-
taining the task_id pair

task_get

A task API function used to retrieve a
task from the database. Refer to page
78.

The args parameter

An array of pair data con-
taining the id pair

RIGHT

NOW

TECHNOLOGIES



30

XML Integration

Table 4: XML API Functions (Continued)

Function Description Required Parameters/Pairs
task_update A task API function used to update * The args parameter

an existing task in the database. Refer * An array of pair data con-

to page 78. taining the task_id pair

Unless otherwise specified in “Error codes” on page 96, positive return values indicate suc-
cess, and negative return values indicate an error. If an invalid parameter is used with the
XML API get functions, a blank return value will be returned.

Note The XML API get functions do not return data fields with NULL values.

Account API

The account API functions (acct_create, acct_destroy, acct_move, and acct_update) allow
you to create, delete, move, or update information within the accounts table. You can act on all
standard database fields of the accounts table, as well as some specialized information, such as
staff account custom fields.

To access staff accounts from the RightNow Console, click Common Configuration and dou-
ble-click Staff Accounts under Staff Management.

acct_create

The acct_create function is used to add a staff account to the RightNow database. The func-
tion has two components: an args parameter and an array of pair data. Refer to Table 4 on
page 22 for a list of required pais.

Important The API will automatically generate an acct_id for the account that is consistent
with existing accounts in the database.

The account will be populated with data specified in the pair list. A brief description of all
accounts table fields and their corresponding pair names can be found in Appendix A, “Pair
Names,” on page 125.

Example:

<connector>
<function name="acct create">

<parameter name="args" type="pair">

Chapter 3



Account APl | 31

<pair name="name" type="pair">
<pair name="first" type="string">Chad</pair>
<pair name="last" type="string">Jones</pair>
</pair>
<pair name="display name" type="string">Chad Jones</pair>
<pair name="email" type="pair">
<pair name="addr" type="string">cj@example.com</pair>
</pair>
<pair name="def curr_ id" type="integer">1</pair>
<pair name="seq" type="integer">3</pair>
<pair name="profile id" type="integer">2</pair>
<pair name="country id" type="integer">1</pair>
<pair name="notif pending" type="integer">0</pair>
<pair name="group id" type="integer">1</pair>
<pair name="login" type="string">cjones</pair>
<pair name="attr" type="integer">0</pair>
</parameter>
</function>

</connector>

This example creates an account in the accounts table and the account ID is automatically
returned by the function.

acct_destroy

The acct_destroy function is used to delete an existing account in the RightNow database.
The function has two components: an args parameter and an array of pair data. Refer to Table
4 on page 22 for a list of required pairs.

Example.

<connector>
<function name="acct_ destroy">
<parameter name="args" type="pair">
<pair name="acct id" type="integer">3</pair>
<pair name="seq" type="integer">3</pair>
<pair name="group id" type="integer">100061</pair>
</parameter>
</function>

</connector>

This example deletes account ID 3 from the database.

RIGHT

NOW

TECHNOLOGIES



32

XML Integration

acct_move

The acct_move function is used to move an account from one group to another and to
change the sequence of an account within a group. The function has two components: an args
parameter and an array of pair data. Refer to Table 4 on page 22 for a list of required pairs.
The type attribute for each of these parameters is integer. The value of old_lvl and new_Ivl
must be 2.

Example.

<connector>
<function name="acct move">
<parameter name="args" name="pair">
<pair name="id" type="integer">16</pair>
<pair name="old 1lv1l" type="integer">2</pair>
<pair name="new lvl" type="integer">2</pair>
<pair name="old seq" type="integer">5</pair>
<pair name="new_seq" type="integer">2</pair>
<pair name="old parent" type="integer">100061</pair>
<pair name="np lvl id" type="pair">
<pair name="1lvl idl" type="integer">100068</pair>
</pair>
</parameter>
</function>

</connector>

This example moves account 1D 16 from the fifth position in the hierarchy to the second
position in the hierarchy and reassigns it from group 100061 to group 100068. Group IDs
correspond to folder IDs in the fo/ders table.

Note If an account is referenced by a rule, it cannot be moved.

Chapter 3



Account APl | 33

acct_update

The acct_update function is used to update the information associated with an existing staff
account in the RightNow database. The function has two components: an args parameter and
an array of pair data. Refer to Table 4 on page 22 for a list of required paits.

Note

If RightNow Sales is enabled and you want to change an account’s territory, you
must pass the old territory with the old_terr pair and the new territory ID with
the terr_id pair. You will also need to specify whether to update the account’s
opportunities by setting the upd_opt pair to one of the following values.

1—Update all opportunities
2—Update only active opportunities

3—Update no opportunities

The API will set any fields supplied in the pair list. Any staff account fields missing from the
pair list will not be altered in the database.

Example:

<connector>

<function name="acct update" id="myid">

<parameter name="args" name="pair">

<pair name="acct id" type="integer">22</pair>
<pair name="name" type="pair">
<pair name="last" type="string">Moore</pair>
</pair>
<pair name="display name" type="string">Susan Moore</pair>
<pair name="email" type="pair">
<pair name="addr" type="string">smoore@example.com
</pair>
</pair>
<pair name="login" type="string">smoore</pair>
<pair name="custom field" type="pair">
<pair name="cf iteml" type="pair">
<pair name="cf id" type="integer">1</pair>
<pair name="val str" type="string">1096045800
</pair>
</pair>
<pair name="cf item2" type="pair">

<pair name="cf id" type="integer">2</pair>

RIGHT

NOW

TECHNOLOGIES



34

XML Integration

<pair name="val str" type="string">Updated to
change spelling of last name.</pair>

</pair>
</pair>
</parameter>
</function>

</connector>

This example updates the account with an acct_id of 22 to have a last name of “Moore,” a
display name of “Susan Moore,” an email address of “smoore@example.com,” and a login of

“smoore.” It also updates two custom fields. The codes for custom field types are located in
Table 12 on page 80.

Answer API

The answer API functions (ans_create, ans_destroy, ans_get, and ans_update) allow you to
create, delete, retrieve, or update information from the answers table. You can act on all stan-
dard database fields of the answers table, as well as some specialized information, such as
answer custom fields.

Answers can be created and managed through the RightNow Console, and may be designated
for viewing by end-users. On the end-user pages, answers that have been designated for view-
ing by end-users appear on the Find Answers and Answer pages.

ans_create

The ans_create function is used to add an answer to the RightNow database. The function
has two components: an args parameter and an array of pair data. Refer to Table 4 on page 22
for a list of required paits.

Important The API will automatically generate an a_id for the answer that is consistent
with existing answers in the database.

The answer will be populated with data specified in the pair list. A brief description of all
answers table fields and their corresponding pair names can be found in Appendix A, “Pair
Names,” on page 125.

If you want to assign access levels to the answer, you must pass them through the
access_mask pair. The access mask pair is a decimal value computed from a binary bitmap of
your access levels. Use the following steps to compute access_mask.

Chapter 3



To compute the access mask:

Answer API | 35

1 Run the following SQL query to determine the maximum value for access IDs in your

database:
SELECT max(access_id) FROM ans_access

This is the number of digits in the binary bitmap of your access levels.

2 Run the following SQL query to display the access levels in your database:

SELECT a.access_id, l.label FROM ans access a, labels 1 WHERE
l.label id=a.access id AND 1.fld = 1 and 1l.tbl = 11

The query will return a set of data like the example in Table 5.

Table 5: Example SQL Data Set

access_id label

1 Everyone

2 Help

3 Human Resources

6 Admin—Finance

7 Information Systems
32 Product Development
33 Hosting

34 Product Management
63 Sales—NW

65 Sales—SW

66 Sales-NE

67 Sales—SE

94 Marketing

95 Technical Publications

3 Create a four grids with three columns. The first grid will contain the access IDs from one
to 31. The second grid will contain the access IDs from 32 to 63. The third grid will con-
tain the access IDs from 64 to 93. The fourth grid will contain the access 1Ds from 94 to

RIGHT

NOW

TECHNOLOGIES



36 | XML Integration

124. If you want the answer to be viewable by end-users with the access level, place a one

in the third column next to that access level. Place zeros in the remaining cells in the third
row as shown in the following grids.

Table 6: Example Grid

Access ID Access Level On/Off
1 Everyone 0
2 Help 0
3 Human Resources 1
4 Not Used 0
5 Not Used 0
6 Admin—Finance 1
7 Information Systems 0
Table 7: Example Grid
Access ID Access Level On/Off
32 Product Development 0
33 Product Management 1
34 Hosting 0
Table 8: Example Grid
Access ID Access Level On/Off
63 Sales—NW 0
64 Not Used 0
65 Sales—SW 0
66 Sales—-NE 0
67 Sales—SE 0

Chapter 3



Answer API | 37

Table 9: Example Grid

Access ID Access Level On/Off
94 Marketing 1
95 Technical Publications 0

In this example, the answer would be viewable by end-users with the following access lev-
els: Human Resources, Admin—Finance, Product Management, and Marketing.

4 TFor each grid, use the values in column 3, from bottom to top to create a binary number.
The binary numbers in this example are 0100100, 010, 0000, and 01.

5 Convert the binary number to decimal. In this example the decimal values are 30, 2, 0, and

1.

6 Add leading zeros to the decimal values to make them ten-digit numbers and place them
one after the other. For example, 0000000036000000000200000000000000000001. This is
the value of access_id.

Example:

<connector>
<function name="ans create">
<parameter name="args" type="pair">

<pair name="access mask" type="string">
0000000036000000000200000000000000000001</pair>

<pair name="assigned" type="pair">

<pair name="acct id" type="integer">4</pair>

<pair name="group id" type="integer">100061</pair>
</pair>
<palr name="type" type="integer">1</pair>
<pair name="m_id" type="integer">25</pair>
<pair name="lang id" type="integer">1</pair>
<pair name="description" type="string">How do I send a
picture with my new camera phone?</pair>
<pair name="summary" type="string">How do I send a
picture with my new camera phone?</pair>
<pair name="solution" type="string">Dear Valued Customer:
Simply use the picture taking ability of your camera phone
to take a photo. You can save the pictures on your phone

up to the limit of the storage space on your camera and

RIGHT

NOW

TECHNOLOGIES



38 | XML Integration

then send them to any World Mobile customer, upload them to
your online photo album at World Mobile, or send them to an
email address. To send to another World Mobile member, dial
their number and select the Send Picture option on
your phone.</pair>
<palr name="status" type="pair">
<pair name="id" type="integer">4</pair>
<pair name="type" type="integer">4</pair>
</pair>
</parameter>
</function>

</connector>

This example creates an answer associated with meta-answer ID 25, sets the access mask,
description, summary, solution, language, and status fields for the answer, and assigns it to the
staff member with the account ID of 4. The function will return the a_id number.

ans_destroy

The ans_destroy function is used to delete an existing answer in the RightNow database. The
function has two components: an args parameter and an array of pair data. Refer to Table 4
on page 22 for a list of required pairs.

Example.

<connector>
<function name="ans_destroy">
<parameter name="args" type="pair">
<pair name="a id" type="integer">33</pair>
<pair name="wf flag" type="integer">1</pair>
<pair name="ee flag" type="integer">1</pair>
</parameter>
</function>

</connector>

This example deletes answer ID number 33, applies business rules, and executes an external
event if one is specified in the EE_ANS_DELETE_HANDLER configuration setting.

ans_get

The ans_get function is used to retrieve the contents of an answer from the answers table. The
function has two components: an args parameter and an array of pair data. Refer to Table 4
on page 22 for a list of required pairs.

Chapter 3



Answer API | 39

Example.

<connector>
<function name="ans get">
<parameter name="args" type="pair">
<pair name="id" type="integer">33</pair>
<pair name="sub tbl" type='pair'>
<pair name="tbl id" type="integer">164</pair>
</pair>
</parameter>
</function>

</connector>

This example retrieves the details for the answer with ID number 33 from the database.

Note The XML API ans_get function does not return data fields with NULL values.

ans_update

The ans_update function is used to update the information associated with an existing answer
in the RightNow database. The function has two components: an args parameter and an array
of pair data. Refer to Table 4 on page 22 for a list of required pairs. The API will set any fields
supplied in the pair list, including custom fields. Any answer fields missing from the pair list
will not be altered in the database.

If you want to assign access levels to the answer, you must pass them through the
access_mask pair. The access mask pair is a decimal value computed from a binary bitmap of
your access levels. For more information, refer to the procedure “To compute the access
mask:” on page 35.

Example.

<connector>
<function name="ans_update">
<parameter name="args" type="pair">
<pair name="a id" type="integer">15</pair>
<palr name="status" type="pair">
<pair name="1id" type="integer">4</pair>
<palr name="type" type="integer">4</pair>
</pair>
<pair name="access mask" type="string">
00000000036000000000200000000000000000002</pair>

<pair name="wf flag" type="integer">0</pair>

</parameter>

RIGHT

NOW

TECHNOLOGIES



40 | XML Integration

</function>
</connector>

This example updates the answer with an a_id of 15 to have a status and status type of Public
(code 4) and an access level of Everyone. Business rules will not be run for the answer update.

Contact API

The contact API functions (contact_create, contact_destroy, contact_get, and
contact_update) allow you to create, delete, retrieve, or update information from the contacts
table. You can act on all standard database fields of the contacts table, as well as some special-
ized information, such as contact custom fields.

A contact is a customer who has a record in your RightNow knowledge base. Contacts have a
customer account which allows them to log in and submit incidents, subscribe to answer noti-
fications, and view their recently submitted incidents.

Note Note entries in contacts use a unique pair structure. For information, refer to
“Adding Notes” on page 85.

contact_create

The contact_create function is used to add a contact to the RightNow database. The function
has two components: an args parameter and an array of pair data. Refer to Table 4 on page 22
for a list of required pairs.

The contact will be populated with data specified in the pair list. A brief description of all
contacts table fields and their corresponding pair names can be found in Appendix A, “Pair
Names,” on page 125. For a listing of sources, refer to Appendix B, “Source Codes,” on page
177.

Note For records created or updated through the XML API, you should always allow
the API to set the source levels. The API will automatically set source_lvll to
32007 and source_lvl2 to 6001. Setting the sources to other values can have a
detrimental effect on your data. If you choose to set sources to other values, be
sure you carefully test your work and the results.

You must include a first name, a last name, and the states for the contact in your XML. The
email address of the contact is not required under certain configurations, such as call center
applications. In this case, enabling TC_CT_EMAIL_REQD would require the email address
when using the contact_create function.

Chapter 3



Contact APl | 41

Example.

<connector>
<function name="contact create">
<parameter name="args" type="pair">
<pair name="name" type="pair">
<pair name="first" type="string">Joe</pair>
<pair name="last" type="string">Smith</pair>
</pair>
<pair name="email" type="pair">
<pair name="addr" type="string">js@example.com</pair>
<pair name="cert" type="string"></pair>
</pair>
<palr name="state" type="pair">
<pair name="css" type="integer">1</pair>
<pair name="ma" type="integer">1</pair>
<pair name="sa" type="integer">0</pair>
</pair>
<pair name="ee flag" type="integer">1</pair>
<pair name="note" type="pair">
<pair name="note iteml" type="pair">
<pair name="action" type="integer">1</pair>
<pair name="seq" type="integer">1</pair>
<pair name="text" type="string">Created through
the XML API</pair>
</pair>
</pair>
</parameter>
</function>

</connector>

This example creates a contact, Joe Smith, who is associated with a Service state and a
Marketing state, but not with a Sales state. An external event is executed if one is specified in
the EE_CONTACT_INSERT_HANDLER configuration setting. A note will be added to
the contact record. This function will return the contact ID from the database.

RIGHT

NOW

TECHNOLOGIES



42

XML Integration

contact_destroy

The contact_destroy function is used to delete an existing contact in the RightNow database.
The function has two components: an args parameter and an array of pair data. Refer to Table
4 on page 22 for a list of required pairs.

Important Deleting a contact also results in the deletion of all incidents and opportunities
associated with the contact.

Example.

<connector>
<function name="contact destroy">
<parameter name="args" type="pair">
<pair name="c_ id" type="integer">94</pair>
<pair name="ee flag" type="integer">1</pair>
</parameter>
</function>

</connector>

This example deletes the contact with contact ID number 94 from the database and executes
an external event if one is specified in the EE_CONTACT_DELETE_HANDLER configu-
ration setting.

contact_get

The contact_get function is used to retrieve a record from the contacts table. The function has
two components: an args parameter and an array of pair data. Refer to Table 4 on page 22 for
a list of required pairs.

Example.

<connector>
<function name="contact get">
<parameter name="args" type="pair">
<palir name="id" type="integer">9</pair>
<pair name="sub tbl" type="pair">
<pair name="tbl id" type="integer">164</pair>
</pair>
</parameter>
</function>

</connector>

Chapter 3



Contact API | 43

This example retrieves the contact details and notes (table ID of 164) for the contact with ID
number 9.

Note The XML API contact_get function does not return data fields with NULL val-

ucs.

contact_update

The contact_update function is used to update the information associated with an existing
contact in the RightNow database. The function has two components: an args parameter and
an array of pair data. Refer to Table 4 on page 22 for a list of required paits.

The API will set any fields supplied in the pair list, including custom fields. Any contact fields
missing from the pair list will not be altered in the database.

Example.

<connector>
<function name="contact update">
<parameter name="args" type="pair">
<pair name="c_id" type="integer">9</pair>
<pair name="password" type="string">newpassword</pair>
<pair name="email" type="pair">
<pair name="addr" type="string">mib@test.com</pair>
</pair>
</parameter>
</function>

</connector>

This example updates the contact with ID number 9. The contact’s password is changed to
newpassword, and the email address is changed to mib@test.com.

mailing_send_to_contact

The mailing send_to_contact function is available when RightNow Marketing or RightNow
Feedback is enabled. This function can be used to send a transactional mailing or survey to a
contact. This function has four parameters: c_id, mailing_id, flow_id, and scheduled. Refer to
Table 4 on page 22 for a list of required parameters.

Example.

<connector>
<function name="mailing send to contact">
<parameter name="args" type="pair">

<pair name="c_id" type="integer">84</pair>

RIGHT

NOW

TECHNOLOGIES



44 | XML Integration

<pair name="mailing id" type="integer">12</pair>
<pair name="flow_ id" type="integer">5</pair>
<pair name="scheduled" type="time">1207571400</pair>
<pair name='trigger' type='pair'>
<pailr name='id' type='integer'>207</pair>
<pair name='tbl' type='integer'>1</pair>
</pair>
</parameter>
</function>

</connector>

This example would send the transactional mailing or survey with the ID of 12 to the contact
with the ID of 84 and associate it with the campaign flow with the ID of 5 and the incident
with the ID of 207. The email will be sent the first time the mailer daemon runs after 12:30
PM on April 7, 2007 (UNIX timestamp of 1207571400).

Note If the scheduled pair is not included, the mailing or survey will be sent the next
time the mailer daemon runs.

Flow API

The flow API function flow_execute allows you to enter contacts into campaign flows. Flows
are multistep processes based on business logic and are used in marketing campaigns and sur-
veys.

flow_execute

The flow_execute function can be used when RightNow Marketing is enabled. The function
is used to send a specified contact through a campaign flow starting at a flow entry point.
This function has two components: the args parameter and an array of pairs. The shortcut
parameter corresponds to the Shortcut ID field of an entry point in a campaign flow. A flow
may have multiple entry points; however, each entry point’s shortcut ID will be unique. Refer
to Table 4 on page 22 for a list of required parameters and paits.

Example.

<connector>
<function name="flow execute">
<parameter name="args" type="pair">
<pair name="c_id" type="integer">2</pair>
<pair name="flow_ id" type="integer">4</pair>
<pair name="shortcut" type="string">EPl</pair>

</parameter>

Chapter 3



Hierarchical menu API | 45

</function>

</connector>

This example sends the contact with an ID of 2 through the flow with an ID of 4, starting at
the entry point named EP1.

Hierarchical menu API

The hierarchical menu API functions (css_product_<action>, css_category_<action>, and
css_disposition_<action>) allow you to create, delete, move, and update customizable menus
in RightNow. For example, in RightNow Service you can act on products, categories, or dis-
positions. You can act on all standard database fields of the hier_menus table.

The hierarchical menu will be populated with data specified in the pair list. A brief description
of all hier_menus table fields and their corresponding pair names can be found in Appendix A,
“Pair Names,” on page 125.

css_product_create, css_category_create, and css_disposition_create

The hierachical menu create functions (css_product_create, css_category_create, and
css_disposition_create) are used to add hierarchical menu items to the RightNow database.
The parameter and pair structures of the three create functions are identical. The functions
have two components: an args parameter and an array of pair data. Refer to Table 4 on page
22 for a list of required pairs.

Important The API will automatically generate an ID for the hierarchical menu item that is
consistent with existing objects in the database.

Because the parameter and pair structures of the three create functions are identical, only one
example is provided: css_product_create. The only change required for css_category_create
and css_disposition_create is the function name.

Example.

<connector>
<function name="css product create">
<parameter name="args" type="pair">
<pair name="parent" type="pair">
<pair name="1lvl idl" type="integer">1</pair>
<pair name="1lvl id2" type="integer">2</pair>
</pair>
<pair name="seq" type="integer">1</pair>
<pair name="label" type="pair">

RIGHT

NOW

TECHNOLOGIES



46 | XML Integration

<pair name="1lbl item" type="pair">
<pair name="label" type="string">Calling Plans
</pair>
<pair name="lang id" type="integer">1</pair>
</pair>
<pair name="lbl item" type="pair">

<pailr name="label" type="string">Planes de Llamada

</pair>
<pair name="lang id" type="integer">2</pair>
</pair>
</pair>

<pair name="desc" type="pair">
<pair name="lbl item" type="pair">
<pair name="label" type="string">This product folder
lists the different wireless plans available within
the organization.

</pair>
<pair name="lang id" type="integer">1</pair>
</pair>
</pair>

<pair name="vis" type="pair">
<pair name="vis itemQO" type="pair">
<pair name="admin" type="integer">1</pair>
<pair name="enduser" type="integer">1</pair>
<pair name="intf id" type="integer">1</pair>
</pair>
<pair name="vis_ iteml" type="pair">
<pair name="admin" type="integer">0</pair>
<pair name="enduser" type="integer">0</pair>
<pair name="intf id" type="integer">2</pair>
</pair>
</pair>
</parameter>
</function>
</connector>

This example creates a top-level product in English and Spanish, Wireless Plans and Planes de
Llamada, populates the description of the product, allows administration and end-user visibil-
ity on the interface with the ID of 1, and prohibits visibility on the interface with the ID of 2.

Chapter 3



Hierarchical menu APl | 47

css_product_destroy, css_category_destroy, and css_disposition_destroy

The hierarchical menu destroy functions (css_product_destroy, css_category_destroy, and
css_disposition_destroy) are used to delete an existing object (for example, a product or cate-
gory) from a hierarchical menu. The parameter and pair structures of the three destroy func-
tions are identical. The functions have two components: an args parameter and an array of
pair data. Refer to Table 4 on page 22 for a list of required pairs.

Because the parameter and pair structures of the three destroy functions are identical, only
one example is provided: css_product_destroy. The only change required for
css_category_destroy and css_disposition_destroy is the function name.

Example.

<connector>
<function name="css_ product destroy">
<parameter name="args" type="pair">
<pair name="id" type="integer">112</pair>
<palr name="seq" type="integer">1</pair>
<pair name="parent" type="pair">
<pair name="1lvl idl" type="integer">1</pair>
<pair name="1lvl id2" type="integer">2</pair>
</pair>
</parameter>
</function>

</connector>

This example deletes the product with the ID of 112 from the database.

css_product_move, css_category_move, and css_disposition_move

The hierarchical menu move functions (css_product_move, css_category_move, and
css_disposition_move) are used to move objects in hierarchical menus. For example, you
could move a top-level product to be a lower-level product under another top-level product.
The parameter and pair structures of the three move functions are identical. The functions
have two components: an args parameter and an array of pair data. Refer to Table 4 on page
22 for a list of required pairs.

Because the parameter and pair structures of the three move functions are identical, only one
example is provided: css_product_move. The only change required for css_category_move
and css_disposition_move is the function name.

Example.

<connector>

<function name="css product move">

RIGHT

NOW

TECHNOLOGIES



48 | XML Integration

<parameter name="args" type="pair">
<pair name="id" type="integer">18</pair>
<pair name="old seq" type="integer">3</pair>
<pair name="new seq" type="integer">4</pair>
<pair name="old lvl" type="integer">3</pair>
<pair name="new lvl" type="integer">3</pair>
<pair name="old parent" type="integer">14</pair>
<pair name="np lvl id" type="pair">
<pair name="1lvl idl" type="integer">1</pair>
<pair name="lvl id2" type="integer">13</pair>
</pair>
</parameter>
</function>

</connector>

This example moves the product with the ID of 18 to the third level (new_lvl=3) of a hierar-
chical menu, placing it under the hierarchical menu item with the ID of 13 (Ivl_id2=13), along
with its associated lower-level hierarchical menu items.

css_product_update, css_category_update, and css_disposition_update

The hierarchical menu update functions (css_product_update, css_category_update, and
css_disposition_update) are used to update the information associated with an existing hierar-
chical menu item in the RightNow database. The parameter and pair structures of the three
update functions ate identical. The function has two components: an args parameter and an
array of pair data. Refer to Table 4 on page 22 for a list of required pairs.

Example.

<connector>
<function name="css product update">
<parameter name="args" type="pair">
<pair name="id" type="integer">7</pair>
<pair name="label" type="pair">
<pair name="1lbl item" type="pair">
<pair name="label" type="string">Family Calling

Plans</pair>
<pair name="lang id" type="integer">1</pair>
</pair>
</pair>
</parameter>
</function>
</connector>

Chapter 3



Incident API | 49

This example updates the name the product with the ID of 7 to be Family Calling Plans.

Incident API

The incident API functions (incident_create, incident_destroy, incident_get, and
incident_update) allow you to create, delete, retrieve, or update information from the zncidents
table. You can act on all standard database fields of the zucidents table, as well as some special-
ized information, such as incident custom fields and incident threads.

An incident is a question or request for help from an end-user through any of the channels
into RightNow Service, such as Ask a Question, email, Live chat, site or answer feedback, or
the APL.

incident_create

The incident_create function is used to add an incident to the RightNow database. The func-
tion has two components: an args parameter and an array of pair data. Refer to Table 4 on
page 22 for a list of required pairs. In addition, you should also include a thread. If you are
using organizations, you should pass the organization 1D number (org_id). Depending on
your configuration, you may also need to specity other fields, such as products and categories.

Note The API will automatically generate an i_id for the incident that is consistent
with existing incidents in the database.

Thread entries in incidents use a unique pair structure. For more information,
refer to “Adding thread entries” on page 82.

The incident will be populated with data specified in the pair list. A description of all incidents
table fields and their corresponding pair names can be found in Appendix A, “Pair Names,”
on page 125. When creating an incident, the source of the incident is a required element. For
a listing of sources, refer to Appendix B, “Source Codes,” on page 177.

Note For records created or updated through the XML API, you should always allow
the API to set the source levels. The API will automatically set source_lvll to
32007 and source_lvl2 to 6001. Setting the sources to other values can have a
detrimental effect on your data. If you choose to set sources to other values, be
sure you carefully test your work and the results.

Example.

<connector>

<function name="incident create">

RIGHT

NOW

TECHNOLOGIES



50 | XML Integration

<parameter name="args" type="pair">
<pair name="assigned" type="pair">
<palr name="acct id" type="integer">4</pair>
<pair name="group id" type="integer">100061</pair>
</pair>
<palr name="contact" type="pair">
<pair name="ic iteml" type="pair">
<pair name="c_ id" type="integer">7</pair>
<pair name="prmry" type="integer">1</pair>
</pair>
<pair name="ic item2" type="pair">
<pair name="c_id" type="integer">9</pair>
<pair name="prmry" type="integer">0</pair>
</pair>
<pair name="ic item2" type="pair">
<pair name="c_ id" type="integer">11l</pair>
<pair name="prmry" type="integer">0</pair>
</pair>
</pair>
<pair name="cat" type="pair">
<palr name="1lvl idl" type="integer">7</pair>
<pair name="lvl id2" type="integer">8</pair>
</pair>
<pair name="interface id" type="integer">1</pair>
<pair name="lang id" type="integer">1</pair>
<pair name="org id" type="integer">4</pair>
<pair name="prod" type="pair">
<pair name="lvl idl" type="integer">2</pair>
<pair name="1lvl id2" type="integer">13</pair>
</pair>
<pair name="queue_ id" type="integer">3</pair>
<pair name="source upd" type="pair">
<pailr name="source 1lv1ll" type="integer">32007</pair>
<pair name="source 1lvl2" type="integer">6001</pair>
</pair>
<pair name="status" type="pair">
<pair name="id" type="integer">1</pair>
<pair name="type" type="integer">1</pair>
</pair>

<pair name="thread" type="pair">

Chapter 3



Incident API | 51

<pair name="thread entry" type="pair">
<pair name="entry type" type="integer">3</pair>
<pair name="note" type="string">I want to send a
picture I have taken with my camera phone through
email. How can I do this?

</pair>
<pair name="seq" type="integer">1</pair>
</pair>
</pair>

<pair name="subject" type="string">How do I send a picture
with my new camera phone?</pair>
<pair name="ee flag" type="integer">1</pair>
</parameter>
</function>

</connector>

In this example, an incident is created for the contact with an ID of 7. Two secondary con-
tacts with contact IDs 9 and 11 are also associated with the incident. The incident is unte-
solved (status code 1). The first-level product is set to code 2 and the second-level product is
set to code 13. The first-level category is set to code 7 and the second-level category is set to
code 8. In addition, a contact thread is created in the incident. The function returns the i_id
number for the incident. An external event will be executed if one is specified in the
EE_INC_INSERT_HANDLER configuration setting,

incident_destroy

The incident_destroy function is used to delete an existing incident. The function has two
components: an args parameter and an array of pair data. Refer to Table 4 on page 22 for a list
of required pairs.

Example.

<connector>
<function name="incident destroy">
<parameter name="args" type="pair">
<pair name="i id" type="integer">21</pair>
<pair name="ee flag" type="integer">1</pair>
</parameter>
</function>

</connector>

This example deletes the incident with the ID of 21 from the database and executes an exter-
nal event.

RIGHT

NOW

TECHNOLOGIES



52 | XML Integration

incident_get

The incident_get function is used to retrieve the contents of the zucidents table. The function
has two components: an args parameter and an array of pair data. The sub_tbl and tbl id
pairs are used to return thread entries. The tbl_id pair should always be set to 18 (the ID of
the zhreads table). Refer to Table 4 on page 22 for a list of required pairs.

Example:

<connector>
<function name="incident get">
<parameter name="args" type="pair">
<pair name="id" type="integer">1539</pair>
<pair name="sub_ tbl" type="pair">
<pair name="tbl id" type="integer">18</pair>
</pair>
</parameter>
</function>

</connector>

This example retrieves the incident details from the incident with the ID of 1539 from the
database. All incident API pairs are returned using this function, including incident threads.

Note The XML API incident_get function does not return data fields with NULL val-

ucs.

incident_update

The incident_update function is used to update the information associated with an existing
incident in the RightNow database. The function has two components: an args parameter and
an array of pair data. Refer to Table 4 on page 22 for a list of required pairs.

The API will set any fields supplied in the pair list, including custom fields and incident
threads. Any incident fields missing from the pair list will not be altered in the database.

Important Incident threads cannot be updated. 1f you try to update an existing thread, a
new thread will be added instead.

Example.

<connector>
<function name="incident update">
—_n —n

<parameter name="args" type="pair">
<pair name="i id" type="integer">7</pair>

Chapter 3



Meta-answer APl | 53

<pair name="status" type="pair">
<pair name="id" type="integer">2</pair>
<pair name="type" type="integer">2</pair>
</pair>
<palr name="assigned" type="pair">
<pair name="acct id" type="integer">4</pair>
<pair name="group id" type="integer">100061</pair>
</pair>
<pair name="custom field" type="pair">
<pair name="cf iteml" type="pair">
<pair name="cf id" type="integer">4</pair>
<pair name="val str" type="string”>Roaming</pair>
</pair>
</pair>
</parameter>
</function>

</connector>

This example updates the incident with the ID of 7 to assign the incident to the staff member
with ID number 4. The status is set to solved (status=2) and a custom field (cf_id=4) is set to
the value Roaming;

Meta-answer API

The meta-answer API functions (meta_ans_create, meta_ans_destroy, and meta_ans_update)
allow you to create or alter information from the mefa_answers table. You can act on all stan-
dard database fields of the weta_answers table.

Meta-answers are groups of sibling answers that solve the same question, but present infor-
mation in different formats, either in another language or at different levels of detail. The
meta-answer defines the products and categories assigned to that answer. However, you must
update each answer separately to define content and visibility settings.

meta_ans_create

The meta_ans_create function is used to add a meta-answer to the RightNow database. The
function has two components: the args parameter and an array of pair data. Products and cat-
egories are also required if they are enabled in your configuration.

Important The API will automatically generate a meta-answer ID for the meta-answer that
is consistent with existing meta-answers in the database.

RIGHT

NOW

TECHNOLOGIES



54 | XML Integration

The meta-answer will be populated with data specified in the pair list. A brief description of
all meta_answers table fields and their corresponding pair names can be found in Appendix A,
“Pair Names,” on page 125.

Using meta_ans_create, you can associate up to six levels of products and categories to a
meta-answer by using multiple hier_item pairs within a products or categories pair array.

Example:

<connector>
<function name="meta ans create">
<parameter name="args" type="pair">
<pair name="notes" type="string">This is a note.</pair>
<pair name="products" type="pair">
<pair name="hier item" type="pair">
<pair name="hm" type="pair">
<pair name="1lvl idl" type="integer">1</pair>
</pair>
</pair>
<pair name="hier item" type="pair">
<pair name="hm" type="pair">
<pair name="1lvl idl" type="integer">3</pair>
<pair name="1lvl id2" type="integer">12</pair>
</pair>
</pair>
<pair name="hier item" type="pair">
<pair name="hm" type="pair">
<pair name="lvl idl" type="integer">5</pair>
<pair name="1lvl id2" type="integer">22</pair>
<pair name="1lvl id3" type="integer">33</pair>
</pair>
</pair>
</pair>
<palr name="categories" type="pair">
<pair name="hier item" type="pair">
<pair name="hm" type="pair">
<pair name="1lvl idl" type="integer">13</pair>
</pair>
</pair>
<pair name="hier item" type="pair">
<pair name="hm" type="pair">

<pair name="1lvl idl" type="integer">15</pair>

Chapter 3



Meta-answer APl | 55

<pair name="1lvl id2" type="integer">42</pair>
</pair>
</pair>
<pair name="hier item" type="pair">
<pair name="hm" type="pair">
<pair name="1lvl idl" type="integer">18</pair>
<pair name="1lvl id2" type="integer">45</pair>
<pair name="1lvl id3" type="integer">51</pair>

</pair>
</pair>
</pair>
</parameter>
</function>
</connector>

In this example, a meta-answer is created in RightNow. The meta-answer is associated with
three first-level products (IDs of 1, 3, and 5), two second-level products (IDs of 12 and 22),
and one level-three product (ID of 33). The meta-answer is also associated with three first-
level categories (IDs of 13, 15, and 18), two second-level categories (IDs of 42 and 45), and a
third-level category (ID of 51). In addition, the meta-answer is associated with a linked prod-
uct (ID of 4). The value of the m_id is automatically created and returned from the database.

Note When defining products and categories with multiple levels, the Ivl_id pairs
nested within the hm pair must match the hierarchy of your products and cate-
gories. For example, in the previous example, the category with ID 51 must be a
third-level category that is associated with the second-level category with ID 45
which must be associated with the first-level category with ID 18.

meta_ans_destroy

The meta_ans_destroy function is used to delete a meta-answer. The function has two com-
ponents: The args parameter and the the m_id pair. A valid m_id of an existing meta-answer
must be supplied.

Caution  Decleting a meta-answer will delete all answers associated with it.

Example:

<connector>
<function name="meta ans destroy">

<parameter name="args" type="pair">

RIGHT

NOW

TECHNOLOGIES



56 | XML Integration

<pair name="m_id" type="integer">25</pair>
</parameter>
</function>

</connector>

This example deletes the meta-answer with an ID number of 25 from the database.

meta_ans_update

The meta_ans_update function is used to update the information associated with an existing
meta-answer in the RightNow database. The function has two components: the args parame-
ter and an array of pair data. A valid m_id of an existing meta-answer must be supplied.

The API will set any fields supplied in the pair list, and any meta-answer fields missing from
the pair list will not be altered in the database.

Example.

<connector>
<function name="meta ans update">
<parameter name="args" type="pair">
<pair name="m id" type="integer">25</pair>
<pair name="categories" type="pair">
<pair name="hier item" type="pair">
<pair name="hm" type="pair">
<pair name="lvl idl" type="integer">18</pair>
</pair>
</pair>
<pair name="hier item" type="pair">
<pair name="hm" type="pair">
<pair name="1lvl idl" type="integer">13</pair>
<pair name="lvl id2" type="integer">42</pair>
</pair>
</pair>
<pair name="hier item" type="pair">
<pair name="hm" type="pair">
<pair name="1lvl idl" type="integer">15</pair>
<pair name="lvl id2" type="integer">45</pair>
<pair name="1lvl id3" type="integer">51</pair>

</pair>
</pair>
</pair>
</parameter>
</function>

Chapter 3



Opportunity APl | 57

</connector>

This example updates the meta-answer with a meta-answer ID of 25 to specify three addi-
tional category associations.

Opportunity API

The opportunity API functions (opp_create, opp_destroy, opp_get, and opp_update) allow
you to create, delete, retrieve, or update information in the gpportunities and guotes tables. You
can act on all standard database fields of these tables, as well as some specialized information,
such as custom fields.

Opportunities are records in RightNow Sales that contain information on a specific sale or a
pending deal that is tracked and maintained in the knowledge base.

Note Through the opportunity API, you can retrieve, update, and delete quotes; how-
ever, you cannot create quotes. Quotes must be created through the RightNow
Console.
opp_create

The opp_create function is used to add an opportunity to the RightNow database. The func-
tion has two components: an args parameter and an array of pair data. Refer to Table 4 on
page 22 for a list of required pais.

Note The API will automatically generate an op_id for the opportunity that is consis-
tent with existing opportunities in the database.

Note entries in opportunities use a unique pair structure. For information, refer
to “Adding Notes” on page 85.

The opportunity will be populated with data specified in the pair list. A brief description of all
opportunities table fields and their corresponding pair names can be found in Appendix A,
“Pair Names,” on page 125. A description of all opportunity source codes can be found in
Appendix B, “Source Codes,” on page 177.

Note For records created or updated through the XML API, you should always allow
the API to set the source levels. The API will automatically set source_lvll to
32007 and source_lvl2 to 6001. Setting the sources to other values can have a
detrimental effect on your data. If you choose to set sources to other values, be
sure carefully test your work and the results.

RIGHT

NOW

TECHNOLOGIES



58 | XML Integration

To create a hierarchy of territories or sales representatives, use the terr_Ivl<1-12>_id and
acct_lvl<1-11>_id pairs. The top-level territory is specified using terr_Ivll_id, the second-
level territory is specified using terr_Ivl2_id, and so on. The territory hierarchy in the oppot-
tunity must match the territory hierarchy.

To set the sales representative, you must use the assgn_acct_id pair, along with the
acct_lvl<1-11>_id pair. The top-level sales representative, or manager, is specified using
acct_lvll_id, the second-level sales representative is specified using acct_Ivl2_id, and so on.
The account hierarchy in the opportunity must match the account hierarchy.

You can assign multiple secondary contacts to an opportunity using the contact pair along
with an array of pair data. Separate contacts are specified using the oc_item<#> pair. The
first contact is specified by oc_item0, the second contact is specified by oc_item1, and so on.
You must set a contact role for each contact and indicate whether it is the primary contact.

Example:

<connector>
<function name="opp create">
<parameter name="args" type="pair">
<pair name="updated by" type="integer">2</pair>
<pair name="status" type="pair">
<pair name="id" type="integer">9</pair>
<palr name="type" type="integer">6</pair>
</pair>
<pair name="contact" type="pair">
<pair name="oc_item0" type="pair">
<pair name="c_ id" type="integer">1</pair>
<pair name="cr id" type="integer">1</pair>
<pair name="prmry" type="integer">1</pair>
</pair>
<pair name="oc_ iteml" type="pair">
<pair name="c_ id" type="integer">3</pair>
<pair name="cr id" type="integer">2</pair>
<pair name="prmry" type="integer">0</pair>
</pair>
</pair>
<pair name="org id" type="integer">1</pair>
<pair name="name" type="string">Fall Clearance Sale</pair>

<pair name="summary" type="string">40% off on all camera phones
for existing customers.</pair>

</parameter>
</function>

Chapter 3



Opportunity APl | 59

</connector>

This example creates an opportunity, Fall Clearance Sale, and associates two contacts (one
primary and one secondary) with the opportunity. This function will automatically return the
opportunity ID from the database.

opp_destroy

The opp_destroy function is used to delete an existing opportunity in the RightNow database.
The function has two components: an args parameter and an array of pair data. Refer to Table
4 on page 22 for a list of required pairs.

Tip If you are destroying an opportunity, it is not necessary to destroy the associated
quotes; all associated quotes will be automatically destroyed.

Example.

<connector>
<function name="opp destroy">
<parameter name="args" type="pair">
<pair name="op_ id" type="integer">116</pair>
</parameter>
</function>

</connector>

This example deletes the opportunity with the ID number 116 from the database.

opp_get

The opp_get function is used to retrieve a record from the opportunities table and associated
records from the guotes table. The function has two components: an args parameter and an
array of pair data. Refer to Table 4 on page 22 for a list of required pairs.

If you want to retrieve information about associated quotes, use the same pair structure that
you would use to retrieve note information.

Example.

<connector>
<function name="opp get">
<parameter name="args" type="pair">
<palr name="id" type="integer">9</pair>
<pair name="sub tbl" type="pair">
<pair name="tbl id" type="integer">163</pair>
<pair name="tbl id" type="integer">12</pair>
</pair>

RIGHT

NOW

TECHNOLOGIES



60 | XML Integration

</parameter>
</function>
</connector>

This example retrieves the opportunity information for the opportunity with the ID number
of 9 from the database. It also retrieves information for notes (tbl_id=163) and associated
quotes (tbl_id=12).

Note The XML API opp_get function does not return data fields with NULL values.

opp_update

The opp_update function is used to update the information associated with an existing
opportunity in the RightNow database, including quote information. The function has two
components: an args parameter and an array of pair data. Refer to Table 4 on page 22 for a list
of required pairs. If you are updating a quote, the action pair must be set to 2.

Note Note entries in opportunities use a unique pair structure. For information, refer
to “Adding Notes” on page 85.

The API will set any fields supplied in the pair list, including custom fields. Any opportunity
fields not present in the pair list will not be altered in the database.

Note If another contact is added or one of the contacts is deleted from the contact
list, the entire new list needs to be passed because the API deletes the existing
contact list and inserts the new list if there is any change. If there is no change,
opp2contact does not need to be set on update.

Example.

<connector>
<function name="opp update">
<parameter name="args" type="pair">
<pair name="op id" type="integer">568</pair>
<palr name="status" type="pair">
<pair name="id" type="integer">11l</pair>
<pair name="type" type="integer">8</pair>
</pair>
<pair name="closed value" type="pair">
<pair name="curr id" type="integer">1</pair>

<pair name="rate id" type="integer">1</pair>

Chapter 3



Organization API | 61

<pair name="val" type="string">99000</pair>
</pair>
<pair name="qgt" type="pair">
<pair name="gt item" type="pair">
<pair name="action" type="integer">2</pair>
<pair name="quote id" type="integer">767</pair>
<pair name="forecast" type="integer">1</pair>
</pair>
</pair>
</parameter>
</function>

</connector>

This example updates the opportunity with ID number 568, changing the opportunity’s status
to an ID of 11 (Closed) and setting the closed value to $99,000. Additionally, the Rep Forecast
tield will be updated with the value of the associated quote (forecast=1).

Organization API

The organization API functions (org_create, org_destroy, org_get, and org_update) allow you
to create, delete, retrieve, or update information from the orgs table. You can act on all stan-

dard database fields of the orgs table, as well as some specialized information, such as custom
fields.

Contacts can be associated with organizations in RightNow. By associating contacts with
organizations, contacts and staff members can view all incidents submitted by an organization
and allow administrators to assign an SLA instance to all contacts in an organization.

By including SLA pairs, you can also issue and terminate SLAs when creating and updating
organizations. For information on assigning and terminating SLAs, refer to “Creating and
deleting SLA instances” on page 85.

RIGHT

NOW

TECHNOLOGIES



62

XML Integration

Multiple addresses

An organization can have several types of addresses, including a billing and shipping address.
When passing address information using the org_create or org_update function, a unique pair
structure is used. Table 10 describes the default address types that can be associated with each
organization.

Table 10: Address Type Descriptions

Address Type (oat_id) ID
Billing 1
Shipping 2

The following example shows the pair for each the billing and the shipping address.

Example.

<connector>
<function name="org update">
<parameter name="args" type="pair">
<pair name="org id" type="integer">27</pair>
<pair name="oaddr" type="pair">
<pair name="oaddr iteml" type="pair">
<pair name="oat id" type="integer">1</pair>
<pair name="addr" type="pair">
<pair name="street" type="string">12345 Maple Way
</pair>
<pair name="city" type="string">Bozeman</pair>
<pair name="prov_id" type="integer">32</pair>
<pair name="postal code" type="string">59718</pair>
<pair name="country id" type="integer">1</pair>
</pair>
</pair>
<pair name="oaddr item2" type="pair">
<pair name="oat id" type="integer">2</pair>
<pair name="addr" type="pair">
<pair name="street" type="string">4321 Oak Street
</pair>
<pair name="city" type="string">Belgrade</pair>
<pair name="prov_ id" type="integer">32</pair>

<pair name="postal code" type="string">59714</pair>

Chapter 3



Organization API | 63

<pair name="country id" type="integer">1</pair>

</pair>
</pair>
</pair>
</parameter>
</function>
</connector>

RIGHT

NOW

TECHNOLOGIES



64 | XML Integration

org_create

The org_create function is used to add an organization to the RightNow database. The func-
tion has two components: an args parameter and an array of pair data. Refer to Table 4 on
page 22 for a list of required pairs.

Important The API will automatically generate an org_id for the organization that is con-
sistent with existing organizations in the database.

The organization will be populated with data specified in the pair list. A brief description of
all orgs table fields and their corresponding pair names can be found in Appendix A, “Pair
Names,” on page 125. A brief description of all organization source codes can be found in
Appendix B, “Source Codes,” on page 177.

Note Note entries in organizations use a unique pair structure. For information, refer
to “Adding Notes” on page 85.

Example.

<connector>
<function name="org create">
<parameter name="args" type="pair">
<pair name="name" type="string">The River Deep</pair>
<pair name="login" type="string">riverdeep</pair>
<pair name="password" type="string">whltewat3r</pair>
<pair name="state" type="pair">
<pair name="css" type="integer">1</pair>
<pair name="ma" type="integer">0</pair>

<pair name="sa" type="integer">0</pair>

</pair>
<pair name="ee flag" type="integer">1</pair>
</parameter>
</function>
</connector>

This example creates an organization, The River Deep, with a login of “riverdeep” and a pass-
word of “whltewat3r.” The organization state is set to Service. The function will return the

organization ID number and execute an external event if there is a value in the
EE_ORG_INSERT_HANDLER configuration setting,

Chapter 3



Organization API | 65

org_destroy

The org_destroy function is used to delete an existing organization in the RightNow database.
The function has two components: an args parameter and an array of pair data. Refer to Table
4 on page 22 for a list of required pairs.

Caution  Deleting an organization will result in the deletion of all contacts, incidents, and
opportunities associated with the organization.

Example.

<connector>
<function name="org destroy">
<parameter name="args" type="pair">
<pair name="org id" type="integer">8</pair>
<pair name="ee flag" type="integer">1</pair>
</parameter>
</function>

</connector>

This example deletes the organization with ID number 8 and executes an external event if
one is specified in the EE_ORG_DELETE_HANDLER configuration setting.

org_get

The org_get function is used to retrieve a record from the orgs table. The function has two
components: an args parameter and an array of pair data. Refer to Table 4 on page 22 for a list
of required pairs.

Example.

<connector>
<function name="org get">
<parameter name="args" type="pair">
<pair name="id" type="integer">7</pair>
<pair name="sub tbl" type="pair">
<pair name="tbl id" type="integer">163</pair>
</pair>
</parameter>
</function>

</connector>

RIGHT

NOW

TECHNOLOGIES



66

XML Integration

This example retrieves the organization details with 1D number 7 from the database.

Note The XML API org_get function does not return data fields with NULL values.

org_update

The org_update function is used to update the information associated with an existing orga-
nization in the RightNow database. The function has two components: an args parameter and
an array of pair data. Refer to Table 4 on page 22 for a list of required pairs.

Note Note entries in organizations use a unique pair structure. For information, refer
to “Adding Notes” on page 85.

The API will set any fields supplied in the pair list, including custom fields. Any organization
tields missing from the pair list will not be altered in the database.

Example.

<connector>
<function name="org update">
<parameter name="args" type="pair">
<pair name="org id" type="integer">9</pair>
<pair name="password" type="string">newpassword</pair>
</parameter>
</function>

</connector>

This example changes the password of the organization with 1D number 9 to
“newpassword.”

Purchased product API

The purchased product API function, pur_prod_create, allows you to insert information in to
the purchased_products table. The information in the purchased_products table is used by
RightNow Marketing and Offer Advisor. You can act on all standard database fields of the
purchased_products table, as well as some specialized information, such as custom fields.

pur_product_create

The pur_prod_create function is used to add a purchased product to the RightNow database.
The function has two components: an args parameter and an array of pair data. Refer to Table
4 on page 22 for a list of required pairs.

Chapter 3



Sales product API | 67

Example.

<connector>
<function name="pur prod create">
<parameter name="args">
<pair name="pp iteml" type="pair">
<pair name="c_id" type="integer">8</pair>
<pair name="campaign id" type="integer">4</pair>
<pair name="finalized by" type="integer">11</pair>
<pair name="license end" type="time">1288544400</pair>
<pair name="license start" type="time">1162328858</pair>
<pair name="mailing id" type="integer">8</pair>
<pair name="notes" type="string">Replaces 1YR400U</pair>
<pair name="oa_c_id" type="integer">311</pair>
<pair name="op_ id" type="integer">25</pair>
<pair name="org id" type="integer">4</pair>
<pair name="price" type="pair">
<pair name="curr id" type="integer">1</pair>
<pair name="rate id" type="integer">1</pair>
<pair name="val" type="string">1288</pair>
</pair>
<pair name="product id" type="integer">23</pair>
<palr name="purchase date" type="time">1162328858</pair>
<pair name="quote id" type="integer">1</pair>
<pair name="serial number" type="string">SN420ASD</pair>
</pair>
</parameter>
</function>
</connector>

This example adds a complete record to the purchased_products table.

Sales product API

The sales product API functions (sa_prod_create, sa_prod_destroy, and sa_prod_update)
allow you to create, delete, or update information in the sa_products table. The information in
the sa_products table is used by Offer Advisor. You can act on all standard database fields of
the sa_products table, as well as some specialized information, such as custom fields.

Sales products are used by RightNow Sales to identify items or services sold by an organiza-
tion. Sales products can be added to quotes and promotions.

RIGHT

NOW

TECHNOLOGIES



68 | XML Integration

sa_prod_create

The sa_prod_create function is used to add a sales product to the RightNow database. The
function has two components: an args parameter and an array of pair data. Refer to Table 4
on page 22 for a list of required pairs.

Important The API will automatically generate a product_id that is consistent with existing
sales products in the database.

Example.

<connector>
<function name="sa prod create">
<parameter name="args">
<pair name="desc" type="pair">
<pair name="1lbl item" type="pair">

<pailr name="label" type="string">One year contract
with 400 daytime minutes and unlimited evening and
weekend minutes</pair>

<pair name="fld" type="integer">2</pair>
<pair name="lang id" type="integer">1</pair>
<pair name="tbl" type="integer">93</pair>
</pair>
</pair>
<pair name="label" type="pair">
<pair name="1lbl item" type="pair">
<pair name="label" type="string">1 Yr - 400 Airtime
Unlimited Nights and Weekends</pair>
<pair name="fld" type="integer">1</pair>
<pair name="lang id" type="integer">1</pair>
<pair name="tbl" type="integer">93</pair>
</pair>
</pair>
<pair name="disabled" type="integer">0</pair>
<pair name="id" type="string">1YR400U</pair>
<pair name="oa_exclude" type="integer">0</pair>
<pair name="seq" type="integer">37</pair>
</parameter>
</function>

</connector>

Chapter 3



Sales product API | 69

This example creates a new sales product in the product catalog with a name, description, and
1D.

sa_prod_destroy

The sa_prod_destroy function is used to delete a sales product from the RightNow database.
The function has two components: an args parameter and an array of pair data. Refer to Table
4 on page 22 for a list of required pairs.

Example.

<connector>
<function name="sa prod destroy">
<parameter name="args">
<pair name="product id" type="integer">5</pair>
</parameter>
</function>

</connector>

This example deletes the sales product with the product_id of 5 from the RightNow database.

sa_prod_update

The sa_prod_update function is used to update the information associated with an existing
sales product in the RightNow database. The function has two components: an args parame-
ter and an array of pair data. Refer to Table 4 on page 22 for a list of required pairs.

Example.

<connector>
<function name="sa prod update">
<parameter name="args">
<pair name="product_ id" type="integer">5</pair>
<pair name="disabled" type="integer">1</pair>
<pair name="oa exclude" type="integer">1</pair>
<pair name="folder id" type="integer">100343</pair>
</parameter>
</function>
</connector>

This example updates the sales product with the product_id of 5, disabling the sales product,
removing it from use by Offer Advisor, and moving it to a new folder.

RIGHT

NOW

TECHNOLOGIES



70 | XML Integration

Search API

The XML search API function can be used to search for records in RightNow, including inci-
dents, answers, contacts, organizations, opportunities, quotes, and tasks.

The function has two components: the args and ac_id parameters, but filters associated with
the report can also be applied. All fixed filters defined in the report specified by the ac_id are
applied to the query that is run by the XML search API function and any run-time filters with
default values are also included. To narrow your search, you can use the run-time selectable
filters created in the view.

Note The ac_id must be defined on the current interface to work correctly. To find
the ac_id for a desired report, refer to “Finding code numbers” on page 89.

The run-time selectable filters are applied by passing the search_args pair. To identify the fil-
ter, set the name pair to the name of the filter (the name is specified by you when you create
the filter in the report). The value is passed using the compare_val pair. The format of the
data in the compare_val pair depends on the type of operator specified in the filter. Table 11
describes the type of data to use in the compare_val pair for each type of operator.

Important If you use percent-encoding reserved characters in a search string, the chatracters
must be percent encoded (also called URL encoded). For example, if you use the
percent symbol (%) as a wildcard in a search string, the percent sign must be
percent-encoded.

Table 11: Operators Description

If the operator is... Then data in the compare_val pair is...
=, 1=, <, <=, >, >=, A number or string. For example, to search for the word “roaming”
like, not like, is null, != | Wwithin a string (such as an incident subject), you would use the follow-

or null, not like ot null | 11g:
<pair name="compare val"
type="string">%25roaming%25</pair>

Where %25 is the percent-encoded representation of the % wildcard.

Chapter 3



Search APl | 71

Table 11: Operators Description (Continued)

If the operator is...

Then data in the compare_val pair is...

in list, not in list

A list of numbers separated by semicolons.
For example, to seatrch for two statuses (IDs are 4 and 5), you would
use the following:
<pair name="compare val" type="string">4;5
</pair> B

When searching for products and categories, you must specify the level
the code ID is associated with. The format is <level>.<ID>. For
example, to search for a product (ID is 2) and two of its lower-level
products (IDs are 9 and 12), you would use the following:
<pair name="compare val" type="string">
1.2;2.9;2.12</pair>

To search for something that has product=5 and sub-level NULL, you

specify “2.u5”, which says that the level two ID should be NULL and

the level 1 ID should be 5. You can combine this with others as follows:
<pair name="compare val" type="string">
1.2;2.u5</pair>

In the example listed above, “1.2;2.u5” would equate to “prod_lvl1=2

OR (prod_Ivl1=5 AND prod_lvl2 IS NULL).”

If you want to specify that the product should be NULL, you use
“1.u0”, which is a special case, since the level 1 values have no parents.

Note: Six levels of products and categories are supported. For exam-
ple, “1.2;3.22;4.u35” would search everything with “prod_Ivl1=2 or
prod_Ivl3=22 or (prod_lIvl13=35 and prod_lvl4 is null).”

In the previous example, the “4.u35” describes that prod_lvl4 should
equal something, In this particular case, the “u35” describes that
prod_Ivl4 should be null, but the parent should be 35 (which means
prod_Ivl3=35).

In other words, if the string was “1.9;4.u23”, it would expand to
prod_Ivl1=9 OR (prod_lIvl4 is NULL and prod_Ivl3=23).

RIGHT

NOW

TECHNOLOGIES



72 | XML Integration

Table 11: Operators Description (Continued)

If the operator is... Then data in the compare_val pair is...

between A set of two numbers, separated by a pipe (]). For example, to search

for answers with an ID between 1 and 50, you would use the following:
<pair name="compare val" type="string">1]|50
</pair>

You can use the max_rows parameter to pass the maximum number of rows returned by the
search. The upper limit of the allowed number passed in this parameter is set by the configu-
ration setting VRL_HARD.

Note If your view output data length is set to more than 4000 characters, the XML
search API will truncate the return results at the 4000 character limit.

Examples.

The following example produces a default result set defined by the referenced answer view
ID.

<connector>
<function name="search">

<parameter name="ac_ id" type="integer">100026</parameter>
</function>

</connector>

The following example shows a search by product and a range of answer IDs. In this example,
a filter named Product must exist in the report with the ac_id of 100026.

<connector>
<function name="search">
<parameter name="args" type="pair">
<pair name="search args" type="pair">
<pair name="search fieldl" type="pair">
<pair name="name" type="string">Product</pair>
<pair name="compare val" type="string">1.2;2.9;2.12;
</pair>
</pair>
<pair name="search field2" type="pair">
<pair name="name" type="string">a id</pair>
<pair name="compare val" type="string">1|50
</pair>

Chapter 3



Search APl | 73

</pair>

</pair>

</parameter>

<parameter name="ac id" type="integer">100026</parameter>

<parameter name="max rows" type="integer">5</parameter>

</function>

</connector>

In this example, the function searches for all answers with a product ID of 2, a second-level
product ID of 9 or 12, and an ID between the range of 1 and 50 and returns the values
according to the report with the ID (ac_id) of 1000026.

Example result set:

The following is an example of a set of results from an answer seatch.

<connector ret>

<function name="search" id="">
<row id="1">

<col
<col
<col
<col
<col
<col
<col
<col
<col
<col
<col
<col
<col
<col

</row>

id="1">1</col>
id="2">How do I email a photo with my camera phone?</col>
id="3">en US</col>
id="4">Everyone</col>
id="5">Public</col>
id="6">Mary Smith</col>
id="7">1036594069</col>
id="8">100</col>
id="9">1</col>
id="10">1</col>

id="11" />
id="12">1128020129</col>
id="13">1</col>
id="14">0</col>

<row id="2">

<col 1id="1">2</col>

<col id="2">What will it cost for me to upgrade to your business
plan?</col>

<col id="3">en US</col>

<col id="4">Everyone</col>

<col id="5">Public</col>

<col id="6">Mary Smith</col>

<col 1id="7">1036594069</col>

RIGHT

NOW

TECHNOLOGIES



74

XML Integration

<col id="8">100</col>
<col 1d="9">2</col>
<col 1id="10">1</col>
<col id="11" />
<col 1d="12">1128022171</col>
<col id="13">1</col>
<col id="14">0</col>
</row>
</function>

</connector ret>

The above result set shows a search return value containing two rows, ot two matching
records for a search. Each row relates directly to a row in the specified report.

SQL query API

The SQL query API functions (sql_get_int, sql_get_str, and sql_get_dttm) allow read-only
access to the RightNow database through the XML API. These functions will return a single
value from the database. The ID attribute and the sql parameter must be supplied for these
functions.

When using any of the sql_get functions, if more than one value meets the criteria of the SQL
statement, only the first value to match the criteria will be returned. For this reason, you
should not use an SQL statement like SELECT * from <table> because only the first value
in the table will be returned; however, SQL statements like SELECT COUNT (*) from
<table> or SELECT MAX(acct_id) FROM accounts would work well because they only
return a single value.

Important If you use percent-encoding reserved characters in a search string, the characters
must be percent encoded (also called URL encoded). For example, if you use the
percent symbol (%) as a wildcard in a search string. the percent sign must be pet-
cent-encoded.

The terminating semicolon is implied for all SQL statements.

sql_get_int
The sql_get_int function is used to execute a SELECT statement against the RightNow data-
base when the result is an integer, such as an account ID from the accounts table or a count of

recotds in the zncidents table. The function has one component: the sql parameter. A single
integer will be returned.

Chapter 3



SQL query API | 75

Example.

<connector>
<function name="sql get int" id="sqgl str">
<parameter name="sqgl" type="string">
SELECT acct id FROM accounts WHERE login = 'susan'
</parameter>
</function>

</connector>

Return:

<?xml version="1.0" encoding="UTF-8" 72>
<connector ret>
<function name="sqgl get int" id="sgl str">
<ret val name="rv" type="integer">8</ret val>
</function>

</connector_ ret>

This example runs an SQL query to find the account ID for the account with a login of
“susan” and returns the integer “8.”

sql_get_str

The sql_get_str function is used to execute a SELECT statement against the RightNow data-
base when the result is a string, such as the login name from the accounts table. The function
has one component: the sql parameter. A single string will be returned.

Example.

<connector>
<function name="sql get str" id="sql str">
<parameter name="sqgl" type="string">
SELECT login FROM accounts WHERE acct id = 10
</parameter>
</function>

</connector>

Retumn:

<?xml version="1.0" encoding="UTF-8" 72>
<connector ret>
<function name="sgl get str" id="sqgl str">
<ret val name="rv" type="string">archie</ret val>
</function>

</connector_ ret>

RIGHT

NOW

TECHNOLOGIES



76

XML Integration

This example runs an SQL query to find the account login for the account with the ID of 10
and returns the string “archie.”

sql_get_dttm

The sql_get_dttm function is used to execute a SELECT statement against the RightNow
database when the result is a datetime, such as the password expiration time from the accounts
table. The function has one component: the sql parameter. A single datetime will be returned
in UNIX date_t format (the number of seconds since the UNIX Epoch date).

Example.

<connector>
<function name="sqgl get dttm">
<parameter name="sqgl" type="string">
SELECT password exp FROM accounts WHERE acct id = 10
</parameter>
</function>
</connector>

Return:

<?xml version="1.0" encoding="UTF-8" 2>
<connector ret>
<function name="sgl get dttm">
<ret val name="rv" type="time">1174314061</ret val>
</function>

</connector ret>

This example runs an SQL query to find the password expiration time for the account with
the ID of 10 and returns the value “1174314061.”

Chapter 3



Task API | 77

Task API

The task API functions (task_create, task_destroy, task_get, and task_update) allow you to
create, update, delete, or retrieve a task from the zasks table.

Tasks are actions or activities scheduled to be completed within a specified time. Tasks can be
standalone, or they can be associated with answers, campaigns, contacts, documents, inci-
dents, mailings, opportunities, organizations, surveys, and stages in a sales strategy.

task_create

The task_create function is used to add a task to the RightNow database. The function has
two components: the args parameter and an array of pair data. Refer to Table 4 on page 22 for
a list of required pairs.

Important The API will automatically generate a task_id for the task. If no name is speci-
fied for the task, it will be named New Task.

The task will be populated with data specified in the pair list. A brief description of all zask
table fields and their corresponding pair names can be found in Appendix A, “Pair Names,”
on page 125.

Example.

<connector>
<function name="task create">
<parameter name="args" type="pair">

<pair name="assgn acct_ id" type="integer">2</pair>

<pair name="tbl" type="integer">87</pair>

<pair name="status" type="pair">
<pair name="id" type="integer">1</pair>
<pair name="type" type="integer">1</pair>

</pair>
<pair name="name" type="string">Schedule Follow-Up Call
</pair>
<pair name="due date" type="time">1176045800</pair>
</parameter>
</function>
</connector>

This example creates a task with the name “Schedule Follow-Up Call.” The API will automat-
ically generate a task_id.

RIGHT

NOW

TECHNOLOGIES



78

XML Integration

task_destroy

The task_destroy function is used to delete an existing task in the RightNow database. The
function has two components: the args parameter, and the task_id pair. A valid task_id of an
existing task must be supplied; otherwise, the function will abort with an error message.

Example.

<connector>
<function name="task destroy">
<parameter name="args" type="pair">
<pair name="task id" type="integer">7</pair>
</parameter>
</function>

</connector>

This example deletes the task with the ID number 7 from the database.

task_get

The task_get function is used to retrieve a record from the zasks table. This function has two
components: the args parameter and an array of pair data. Refer to Table 4 on page 22 for a
list of required pairs. A valid task ID number must be supplied in the id pair; otherwise, a
blank value will be returned. If the function executes without error, the task details will be
returned.

Example.

<connector>
<function name="task get">
<parameter name="args" type="pair">
<pair name="id" type="integer">7</pair>
</parameter>
</function>

</connector>

This example retrieves the task details with ID number 7 from the database.

Note The XML API task_get function does not return data fields with NULL values.

task_update

The task_update function is used to update the information associated with an existing task in
the RightNow database. The function has two components: the args parameter and an array
of pair data. Refer to Table 4 on page 22 for a list of required pairs.

Chapter 3



Task API | 79

The API will set any fields supplied in the pair list, including custom fields. Any task fields
omitted from the pair list will not be altered in the database.

Example.

<connector>
<function name="task update">
<parameter name="args" type="pair">
<pair name="task id" type="integer">1109</pair>
<pair name="name" type="string">Schedule Wrap-Up Call</pair>
</parameter>
</function>

</connector>

This example updates the task name to “Schedule Wrap-Up Call.”

RIGHT

NOW

TECHNOLOGIES



80 | XML Integration

Additional actions

When using many of the XML API functions, you can perform other actions using nested
pairs, including:

* Setting custom fields

* Creating thread and note entries

* Creating and terminating SLA instances

* Passing variables between functions

* Finding code numbers

The following sections contain information on using these pairs, along with information on
tinding code values for fields.

Setting custom fields

You can set custom field values for custom fields when creating or updating answers, con-
tacts, incidents, opportunities, quotes, sales products, or tasks with the XML API. Passing
custom field data through the API is different than interacting with standard database fields.
To set a custom field using a create or update function, each custom field must be specified
within a custom_field pair and a nested cf_item pair containing an array of pairs, including the
cf_id, data_type, and val_<type> pairs. The val_<type> pairs are also called “value pairs.”

Using cf_id pairs

The cf_id pair specifies the code of the custom field. In this pair, the name should be set to
cf_id with a type of integer, and the value of the pair will be the code number of the custom
field. For information on finding the code value of a custom field, refer to “Finding code
numbers” on page 89.

Using data_type pairs

The data_type pair specifies the code of the custom field data type. The possible data types
and the corresponding codes are specified in Table 12.

Table 12: Custom Field Data Types and Codes

Code Data Type
1 Menu
2 Radio

Chapter 3



Setting custom fields | 81

Table 12: Custom Field Data Types and Codes (Continued)

Code Data Type
3 Integer

4 Date/Time
5 Text field

6 Text area

7 Date

Using value pairs

The value pair specifies the value you want the custom field set to. There are three value pairs:
val_int, val_str, and val_time. Each value pair is used for different data types, as specified by
the data_type pair. Each pair must also has a corresponding type which must be correctly
specified in the XML tag. These three pairs are described in Table 13.

Table 13: Value Pairs Description

Pair name Description Type

val_int Use this pair for menu, radio, | integer
and integer custom fields (data
types 1, 2, and 3).

val_str Use this pair for text and text | string
area custom fields (data types 5
and 0).

val_time Use this pair for date/time and | time
date custom fields (data types 4
and 7).

Important Date and date/time custom fields must be configured with a type of time, and
the value must be in UNIX date_t format; that is, a long integer that is the num-
ber of seconds since the UNIX Epoch date (00:00:00 UTC January 1, 1970).

RIGHT

NOW

TECHNOLOGIES



82 | XML Integration

Examples.

The following example shows how to set two custom fields, a text field and a text area, where
the custom field with cf_id code of 37 is set to “Main St. Branch,” and the custom field with
the cf_id code of 38 is set to “Model 80801-DS9.”

<pair name="custom field" type="pair">
<pair name="cf iteml" type="pair">
<pair name="cf id" type="integer">37</pair>
<pair name="data type" type="integer">5</pair>
<pair name="val str" type="string">Main St. Branch</pair>
</pair>
<pair name="cf item2" type="pair">
<pair name="cf id" type="integer">38</pair>
<pair name="data type" type="integer">6</pair>
<pair name="val str" type="string">Model 80801-DS9</pair>
</pair>
</pair>

The following example shows how to set a radio button custom field and a date/time custom
tield, where the value pair is set to 1 for “yes,” or 0 for “no.”

<pair name="custom field" type="pair">
<pair name="cf itemb5" type="pair">
<pair name="cf id" type="integer">41</pair>
<pair name="data type" type="integer">2</pair>
<pair name="val int" type="integer">0</pair>
</pair>
<pair name="cf item6" type="pair">
<pair name="cf id" type="integer">42</pair>
<pair name="data type" type="integer">4</pair>
<pair name="val time" type="time">1096045800</pair>
</pair>
</pair>

Adding thread entries

An incident can contain a threaded conversation between staff members and customers. A
sales contact, sales opportunity, or sales organization can contain threaded entries by staff
members only. You can create threads with the XML API create and update functions by
using nested pairs which allow you to specity the type of thread that is associated with the
incident. The following pairs are required for create and update functions: entry_type, note,
and seq.

Chapter 3



Adding thread entries | 83

Table 14 describes the thread types that can be associated with threads and notes.

Table 14: Thread Entry Types Description

Thread Entry Type ID
Note 1
Staff 2
Contact 3
Contact Proxy 4
RightNow Live 5
Rule Response 0
Rule Response Note 7
Sales Note 8
Sales Customer Email | 9
Sales Email 10
Sales Phone 11

Table 15 describes the table types that can be associated with threads and notes.

Table 15: Channel Types Description

Channel Type ID
Service Mailbox 1
Marketing Mailbox 2
Phone 3
Fax 4

RIGHT

NOW

TECHNOLOGIES



84 | XML Integration

Table 15: Channel Types Description (Continued)

Channel Type ID

Postal 5

Service End-User Pages 6

RightNow Live 8

The following example shows two threads, the first from a customer, the second from a staff
member. This example is typical of thread entries used in the incident_create function.

Example.

<pair name="thread" type="pair">

<pair name="thread entryl" type="pair">
<pair name="c_id" type="integer">1423</pair>
<palr name="channel" type="integer">3</pair>
<pair name="entered" type="time">1096045800</pair>
<pair name="entry type" type="integer">3</pair>
<pair name="note" type="string">How do I access voice mail?
</pair>
<pair name="seq" type="integer">1</pair>

</pair>

<pair name="thread entry2" type="pair">
<pair name="acct_ id" type="integer">11</pair>
<pair name="c_id" type="integer">1423</pair>
<pair name="channel" type="integer">3</pair>
<pair name="entered" type="time">1096060222</pair>
<pair name="entry type" type="integer">2</pair>
<pair name="note" type="string">Thank you for your inquiry. One
of our agents will respond to you as soon as possible.</pair>
<pair name="seq" type="integer">2</pair>

</pair>

</pair>

Important Incident threads cannot be updated. If you try to update an existing thread, a
new thread will be added instead.

Chapter 3



Adding Notes | 85

Adding Notes

Contacts, organizations, and opportunities can have notes associated with them. You can cre-
ate notes with the XML API create and update functions by using nested pairs which allow
you to specify the type of note that is associated with the record. For a description of channel
types that can be used for notes, refer to Table 15 on page 83.

Note The action pair should always have a value of 1.

The following contact_update example shows a note entry.

Example.

<connector>
<function name="contact update">
<parameter name="args" type="pair">
<pair name="c_id" type="integer">7</pair>
<pair name="note" type="pair">
<pair name="note iteml" type="pair">
<pair name="action" type="integer">1</pair>
<pair name="seq" type="integer">1</pair>
<pair name="text" type="string">Updated through
the XML API</pair>
</pair>
</pair>
</parameter>
</function>

</connector>

Creating and deleting SLA instances

A service level agreement (SLA) instance is an assigned SLA, assigned by an agent from the
RightNow Console or through the XML API and associated with a contact or organization.
For additional information on SLAs, see the RightNow Service Administrator Manual.

RIGHT

NOW

TECHNOLOGIES



86 | XML Integration

By using the slai pair and associated nested pairs in the contact_create, contact_update,
org_create, and org_update functions, you can create or delete an SLA instance within the
sla_instances table. The slai pair must contain an array of pair data, including the slai_item<#>
pair and the action, owner_tbl, owner_id, sla_id, and activedate nested pairs.

Important The action pair is required to create or terminate an SLA instance. The value of
the action pair determines whether the SLA instance is created or terminated;
set this value to 1 to create an instance (used in contact_create or org_create
functions) or 3 to delete an instance (used in contact_update or org_update
functions). The owner_id corresponds with the c_id of the contact or org_id of
the organization the SLA is associated with. The owner_tbl corresponds with
the table ID of the table the owner_id is associated with; contact-associated
SLAs will have a table ID of 2 and organization-associated SLAs will have a
table ID of 3.

When updating an SLA instance, the slai_id pair must be included; however, when creating an
SLA instance, the API will automatically generate an slai_id for the SLA instance that is con-
sistent with existing SLA instances in the database, so you should not include the slai_id pair
when creating an SLA instance.

The SLA instance will be populated with data specified in the pair list. A brief description of
all sla_instances table fields and their corresponding pair names can be found in Appendix A,
“Pair Names,” on page 125.

The following example shows an array of pair data that would create an SLA instance when
used in a contact_create or org_create function.

Example.

<pair name="slai" type="pair">
<pair name="slai iteml" type="pair">
<palr name="action" type="integer">1</pair>
<pair name="activedate" type="time">1097683200</pair>
<pair name="expiredate" type="time">1129219200</pair>
<pair name="inc chat" type="integer">10</pair>
<pair name="inc csr" type="integer">10</pair>
<pair name="inc_email" type="integer">10</pair>
<pair name="inc_ total" type="integer">40</pair>
<pair name="inc_web" type="integer">10</pair>
<pair name="sla id" type="integer">1</pair>
<pair name="sla set" type="integer">1</pair>

<pair name="state" type="integer">2</pair>

Chapter 3



Passing variable IDs | 87

</pair>
</pair>

This example creates an SLA instance in the skz_snstances table, sets the owner_id to 4, the
owner_tbl to 3 (the orgs table).

The following example shows an array of pair data that would terminate an SLA instance
when used in a contact or organization function.

<pair name="slai" type="pair">
<pair name="slai iteml" type="pair">
<pair name="action" type="integer">3</pair>
<pair name="slai id" type="integer">61</pair>
</pair>
</pair>

This example terminates the SLA instance with the slai_id of 61.

Passing variable IDs

When you use multiple XML functions in the same XML file, the XML API allows you to
store newly created record IDs in a variable to be used later in your XML. To create a variable,
define the variable using the id attribute in the function tag as shown in the following exam-

ple.

<function name="org create" id="organization_id">

In this example, the org_id assigned to the new organization will be stored in the variable
organization_id. This variable can be called later in your XML by replacing the org_id with
the variable $organization_id.

The following example shows how you can create a contact and also create an incident associ-
ated with that contact in the same XML file by creating and passing the vatiable contact_id.

Example.

<connector>
<function name="contact create" id="contact_id">
<parameter name="args" type="pair">
<pair name="name" type="pair">
<pair name="first" type="string">Joe</pair>
<pair name="last" type="string">Smith</pair>
</pair>
<pair name="email" type="pair">
<pair name="addr" type="string">js@example.com</pair>

<palr name="cert" type="string"></pair>

RIGHT

NOW

TECHNOLOGIES



88 | XML Integration

</pair>
<pair name="state" type="pair">
<pair name="css" type="integer">1</pair>
<pair name="ma" type="integer">1</pair>
<pair name="sa" type="integer">0</pair>
</pair>
<pair name="ee flag" type="integer">1</pair>
</parameter>
</function>
<function name="incident create">
<parameter name="args" type="pair">
<pair name="contact id" type="pair">$contact_ id</pair>
<pair name="assigned" type="pair">
<palr name="acct_ id" type="integer">4</pair>
<pailr name="group id" type="integer">100061</pair>
</pair>
<palr name="contact" type="pair">
<pair name="ic iteml" type="pair">
<pair name="c_id" type="integer">7</pair>
<pair name="prmry" type="integer">1</pair>
</pair>
<pair name="ic item2" type="pair">
<pair name="c_id" type="integer">9</pair>
<pair name="prmry" type="integer">0</pair>
</pair>
<pair name="ic iteml" type='pair'>
<pair name="c_id" type='integer'>11l</pair>
<pair name="prmry" type='integer'>0</pair>
</pair>
</pair>
<pair name="cat" type="pair">
<pair name="1lvl idl" type="integer">7</pair>
<pair name="1lvl id2" type="integer">8</pair>
</pair>
<pair name="interface id" type="integer">1</pair>
<pair name="lang id" type="integer">1</pair>
<pair name="org id" type="integer">4</pair>
<pair name="prod" type='pair'>
<pair name="1lvl idl" type="integer">2</pair>
<pair name="lvl id2" type="integer">13</pair>

Chapter 3



Finding code numbers | 89

</pair>
<pair name="queue id" type="integer">3</pair>
<pair name="status" type="pair">
<pair name="id" type="integer">1</pair>
<palr name="type" type="integer">1</pair>
</pair>
<pair name="thread" type="pair">
<pair name="thread entry" type="pair">
<pair name="entry type" type="integer">3</pair>
<pair name="note" type="string">I want to send a

picture I have taken with my camera phone through
email. How can I do this?

</pair>
<pair name="seqg" type="pair">1</pair>
</pair>
</pair>

<pair name="subject" type="string">How do I send a picture
with my new camera phone?</pair>
<pair name="ee flag" type="integer">1</pair>
</parameter>
</function>

</connector>

In this example, the contact_id variable is set when the c_id is returned by the contact_cteate
function. When the incident is created, the c_id of the newly created contact is passed using
the variable $contact_id in the c_id pair.

Finding code numbers

You will frequently need to use code numbers in your XML to identify items such as prod-
ucts, categories, custom fields, and staff accounts. RightNow provides two easy ways to look
up the codes for these types of fields: mouseover functionality and the lookup_id_for_name
function.

Using the mouseover function

You can use RightNow mouseover functionality to look up many of the code numbers you
need. Simply mouse over a profile, group, staff account, contact type, country, state, province,
organization address type, service product, service category, incident disposition, incident sta-
tus, answer status, answer access level, billable task, SLA, or custom field.

RIGHT

NOW

TECHNOLOGIES



90 | XML Integration

Figure 1 shows the mouseover function for staff accounts. In this example, Tim Johnson’s
account ID number (or code) is 3. This number is used to identify Tim when creating or
updating records in RightNow.

Path: Common Configuration>Double-Click Staff Accounts

Staff Accounts = x
E @ Groups =
=& = Staff Accounts - Edit
@ Sally Jones
L ® Tim Johnsen - First Name
[ Managers [% e e
{2 web services
Display Name: Tim Jonnson| Ll Details
S in Disabled [~ 4 =
Password | s
[~ Permanently Disable
- Display Name Flags = Account Lock
[T Force Password Change
+ Profile Hotification [~ Send Email
[T Notify Always

Figure 1: Mousing Over a Staff Account

Figure 2 shows the mouseover function for a custom field menu item. In this example, a
menu item (Prepay) within the answer custom field Calling Plan is being referenced. The
mouseover function shows that the menu item Prepay is associated with ID number (or code)
8, which is used to identify the Prepay menu item ID when creating or updating records in
RightNow.

Path: Service>Double-Click Answer Custom Fields

Answer Custom Fields

B B Answer Custom Fields
Ll Cling Pia - :
Custom Fields - Edit
Database
Data Iype [1enu =
+ Cglumn Hame | callplan
Indexed [~
Field Attributes
+ Hame | Caling Plan
Hint | |
+ Meny ltems | 7| Defaut Name v |
Nationwide v
o] Frepay a

Figure 2: Mousing Over a Custom Field Menu Item

Chapter 3



Finding code numbers | 91

Most record tabs on the RightNow Console display the Info button in the upper right-hand
corner of the tab. When you click the Info button, record details are displayed, including the
record ID number. Figure 3 shows the details displayed when you mouse over the Info but-
ton when editing an organization. In this example, the organization 1D is the code number.
The Info button can be used when editing most records, such as contacts, opportunities, cam-

paigns, and tasks.

# Rocky Mountain Hootanany = X

FNew [glSave lfysaveandClose |[[yCopy (=0Print 3 Delete EEH Appointment | % Spell Check | 27 Expand -@ Help ~
Organization D 1

Organization Nams"  [Rocky Mountain Hootanany State” | Service, Marketing, Sales Date Created  12/20/2005 08:12 AM

Bing v | @ Selespersan [0 Valoe] Date LastUpdated 121202006 03:12 AM
RuleState  Not Availzble

Edit Login ID I

Figure 3: Displaying Record Information

Finding IDs in analytics

When exploring reports, you can view the report ID (ac_id) by displaying the ID column in
the explorer details. For information on customizing explorer details, refer to Righ#INow
Administrator Manual. Figure 4 displays the Reports Explorer with the ID column visible.

Report IDs
'
L
li] Reports Explorer ! =1 4
9 New Dashboard ) Mew Report Et Copy. Delete Open : @ Help
Back ~ () Forward - [(Hup |l Find [°7 Folders + Choose Details ... |@#Refresh '
4
Address[\Public Reports\Commen’\Views - Comman' Search Repors - Commen ' Fl@c
Folders w [/ Name [ 10 [ Created | Updated [ initial Run | At Refresh
= £ Fublic Reports | 5/ Contact Quick Search 8500 07/01/2006 1200AM 07/D1/2006 1200 AM  No No
& ) Commen |5 Contact Guick Search For Dashboard 8503 07/01/2006 1200 AM 07/01/2006 1200 AM  No No
1) Views - Common |5 Contact Search 8000 07/01/2006 1200 AM 07/D1/2006 1200 AM  No No
) Editor Reports - Common 5| Organization Quick Search 8501 07/01/2006 1200 AM  07/D1/2006 1200 AM  No No
[ & Scarch Reports - Common |5/ Organization Search 8001 07/01/2006 1200 AM  07/D1/2006 1200 AM  No No
4+ Cusiom Reports |21 Quick Search Dashboard 8504 07/01/2006 1200 AM  07/D1/2006 1200 AM  No No
'+ Custom Reports -C5

Figure 4: Finding the Report ID

Using the lookup_id_for_name function

In addition to using the mouseover functionality and the Info button, you can also use an
XML function, lookup_id_for_name, which will find the code number of an item and return
the value by email or in a variable used later in your XML. (For information on passing the
parameter to another function, refer to “Passing variable 1Ds” on page 87.) This function
passes two pairs, name and tbl, nested under an args parameter. The name pair is used to pass

RIGHT

NOW

TECHNOLOGIES



92 | XML Integration

the name of the string. The tbl pair is used to pass the number of the table the code item
belongs to. The numbers of each table are listed in Table 16, along with the field looked up by
the function.

Table 16: Table Numbers for tbl Parameter

Table Name Number Lookup Field

accounts 24 login

categories (hier_menu) 14 name

contacts 2 email, email_altl, email_alt2
dispositions 37 name

incidents 1 ref no

menu_items 20 name

orgs 3 name

products (hier_menu) 13 name

The following example shows lookup_id_for_name being used to find the ID number of a
product. The returned value is then passed to the incident_update function. For information
on passing variables, refer to “Passing variable IDs” on page 87.

Example:

<connector ret type="email">
<function name="lookup id for name" id="prodid">
<parameter name="args" type="pair">
<pair name="tbl" type="integer">13</pair>
<pair name="name" type="string">Cell Phones</pair>
</parameter>
</function>
<function name="incident update">
<parameter name="args" type="pair">
<pair name="prod 1lvll" type="integer">$prodid</pair>
<pair name="i id" type="integer">9</pair>
</parameter>
</function>

</connector>

Chapter 3



Finding code numbers | 93

In this example, the function looks up the code number for the product Cell Phones, and uses
a variable, prodid, to use this code to update the incident with ID number 9.

RIGHT

NOW

TECHNOLOGIES



9%

XML Integration

Implementing code for the XML API

The following sections describe the two methods you can use to implement code for use with
the RightNow XML API, and using the XML API log

Using the POST method

When using the POST method, the XML is immediately sent to RightNow and parsed by the
PHP script (parse.php). Record data is then instantly created, updated, or deleted in the
RightNow database. The parse.php script is located at:

http://<your domain>/cgi-bin/<your interface>.cfg/php/xml_ api/parse.php

To develop the integration, you will need to create code operating independently or within the
HTML on a separate web page to post the XML data. The posted data must pass two param-
eters: xml_doc and sec_string. The xml_doc parameter contains the entire set of XML data,
including the <connector> and </connector> tags and all XML contained within the tags.
The sec_string parameter should specify the XML trigger phrase specified in the
II_SEC_WEB_STRING configuration setting (refer to Table 17 on page 95).

Note The encoding of parse.php is set to UTF-8, and any XML document passed to the
parser must also be UTF-8 encoded.

A simple way to use the POST method to send XML to RightNow is to create a web form
using HTML, as shown in the following example:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<form method="POST" action="http://<your domain>/cgi-bin/
<your_ interface>.cfg/php/xml_api/parse.php" name="XML Form">
<h2>XML Data</h2>
<textarea cols="80" name="xml doc" rows="20"></textarea>
<br><br>
<h2>Security String</h2>
<input name="sec string" size="10" value="xml">
<br><br>
<input type="submit" value="Submit" name="B1">
<input type="reset" value="Reset" name="B2">
</form>

Chapter 3



Sending an XML-formatted email | 95

In this example, a web form with two text boxes (for XML data and to pass the security
string) is created. The security string text box is prepopulated with the value specified in the
1I_SEC_WEB_STRING configuration setting (in this case, “xml”). You can then use this
web page to enter XML data and submit it to parse.php.

You can also post XML data to RightNow using this method but without using a web page,
by directly opening a socket connection to parse.php. You can accomplish this using any script-
ing language, such as PHP. Using this method, you must establish a connection with
RightNow, and then use POST to pass your XML data.

RightNow Technologies Professional Services can assist you in determining which XML inte-
gration method best suits your needs and then implementing the method. For more informa-
tion, contact your RightNow account manager.

Sending an XML-formatted email

You can add, update, delete, and retrieve data or perform a search or lookup function through
the RightNow API by sending an XMI-formatted email to a RightNow mailbox. The email
must have a trigger word or phrase in the subject line that is specified in the RightNow con-
figuration settings. When RightNow receives the email, the utility zechmaz/ will identify it as
XML through the trigger word or phrase. The email will then be parsed by a PHP script to
retrieve the data.

Important XMI -formatted email messages must be in plain text.

You must configure RightNow to identify email that contains data in XML format. Through
the configuration setting II SEC_EMAIL,_STR, you can specify a value for a trigger phrase
to be used in the subject line of the email. The value specified by this configuration setting
must be matched exactly, including case, to identify the email as XML. You can also configure
RightNow to send an email message if there ate any errors during the XML integration.

The configuration settings are located under RightNow Common>External Events>Incom-
ing Integration and are detailed in Table 17.

Table 17: Incoming Integration Configuration Settings

Configuration Setting Description

II_EMAIL_ERROR_ADDR | Specifies the email address to send XML API error data. Default is
blank.

RIGHT

NOW

TECHNOLOGIES



96 | XML Integration

Table 17: Incoming Integration Configuration Settings (Continued)

Configuration Setting Description

II_SEC_EMAIL_STR Specifies the subject line of the email to be compared for valida-
tion of the XML source for email integrations. Default is blank.

II_SEC_WEB_STR Specifies the security variable to be compared for validation of the
XML source for integrations that use the POST method. Default
is blank.

Error codes

When an XML API function fails, an error code will be returned. Error codes can be used to
troubleshoot your integration. The tables in the section include the existing error codes for
the following functions: contact_create, contact_update, flow_execute,

mailing send_to_contact, org_create, and org_update.

Note Generally, positive return values indicate success, and negative return values
indicate an error. If an invalid parameter is used with the XML API get func-
tions, a blank return value will be returned.

Table 18 describes the error codes for the contact_create function.

Table 18: Error Codes for contact_create

Error Code Description
-100079801 Invalid email address
-100079802 Invalid ID number
-100079803 Invalid login

Table 19 describes the error codes for the contact_update function.

Table 19: Error Codes for contact_update

Error Code Description

-100089801 Invalid email address

Chapter 3



Error codes | 97

Table 19: Error Codes for contact_update (Continued)

Error Code Description
-100089802 Invalid ID number
-100089803 Invalid login

Table 20 describes the error codes for the flow_execute function.

Table 20: Error Codes for flow_execute

Error Code Description

-100049751 Contact update failed
-100049752 Flow failed

-100049753 Flow is not set to Launched

Table 21 describes the error codes for the mailing send_to_contact function.

Table 21: Error Codes for mailing_send_to_contact

Error Code Description

-100030001 No available mailing message
-100030002 No valid email addresses
-100030003 Mail generate error
-100030004 Filter error

-100030005 Suppressed email address
-100030006 Excluded from audience
-100030007 Exceeded recency limit
-100030008 Exceeded frequency limit

RIGHT
NOW

TECHNOLOGIES



98 | XML Integration

Table 21: Error Codes for mailing_send_to_contact (Continued)

Error Code Description

-100030009 Opted out

Table 22 describes the error codes for the org_create function.

Table 22: Error Codes for org_create

Error Code Description

-100059802 Invalid ID number

-100059803 Invalid login

-100059851 Invalid parent organization
-100059853 Organization destination changed

Table 23 describes the error codes for the org_update function.

Table 23: Error Codes for org_update

Error Code Description
-100069802 Invalid ID number
-100069803 Invalid login

Using the XML API log

The XML API log allows you to view a record of all XML functions passed to your
RightNow site though the API. Each function that was performed through the XML API is
listed, along with the IP address that passed the function, and the date and time it was per-
formed. All functions are listed, regardless of whether an error occurred during the process-
ing of the function.

The XML API log is accessed through the Common Configuration section of the RightNow
Console. You can use the log to track activity through the XML API and ensure security is
maintained by monitoring the IP addresses that pass functions to your site.

Chapter 3



Path: Common Configuration>Double-Click XML API Log

Using the XML APl log | 99

XML APl Log

= X

XML API Log

Log File for 12-20-2006

[20/Deci2006:14:52:32 -0800] acct_create (1)
[20/Dec/2006:14:53:21 -0800] ans_create (1)
[20/Dec/2006:14:53:50 -0800] ans_get (1)
[20/Deci2006:14:54:25 -0800] ans_update (1)
[20/Deci2006:14:56:52 -0800] ans_destroy (1)
[20/Deci2006:14:57:27 -0800] contact_create (1)
[20/Deci2006:14:57:49 -0800] contact_get (1)
[20/Deci2006:14:57:54 -0800] contact_get (1)
[20/Deci2006:14:57:56 -0800] contact_get (1)
[20/Deci2006:14:57:59 -0800] contact_get (1)

Interface: |iae_8000_sql 281h ¥

Figure 5: XML API Log

RIGHT

NOW

TECHNOLOGIES



100 | XML Integration

Chapter 3



101

4

Event Handlers

Through the RightNow event handlers feature, you can define custom processes for manag-
ing your incidents, contacts, organizations, answers, and opportunities. For example, if you
need to maintain your own incident database, you can create an event handler that automati-
cally copies new incidents from RightNow to your external database. These types of event
handlers are ideal for building real-time interfaces between RightNow and third-party soft-
wate applications, such as those used in external help desks, call centers, or reporting systems.

The following types of external events are supported by RightNow:

* Insert events—This type of event occurs whenever a customer or staff member cre-
ates a new incident, answer, contact, organization, or opportunity.

* Update events—This type of event occurs whenever a customer or a staff member
updates an existing incident, answer, contact, organization, or opportunity.

* Delete events—This type of event occurs whenever a customer or a staff member
deletes an existing incident, answer, contact, organization, or opportunity.

There ate two ways to handle external events in RightNow. You can specify the location of a
PHP script that directs the handling of an event (external events), or you can email the event
data to a specified mailbox (email integration). This chapter contains procedures for both of
these methods.

Important You must contact RightNow Technologies Professional Services to develop and
implement external events. This is a chargeable service. For more information,
contact your RightNow account manager.

RIGHT

NOW

TECHNOLOGIES



102 | Event Handlers

External event handlers

The external event handlers can be enabled to run a specitied PHP script when an incident,
answer, contact, organization, or opportunity is created, updated, or deleted. When an exter-
nal event occurs, a data file (CSV) is created. The data is then handled under the direction of
the PHP script specified in your configuration settings. For example, you can create a script
that will export specified incident data to an external Oracle database.

Important You must contact RightNow Technologies Professional Services to develop and
implement external events. This is a chargeable service. For more information,
contact your RightNow account manager.

Enabling external events

Enabling external events requires configuring the insert, update, or delete handlers. The event
handler configuration settings are located under RightNow Common>External Events.
These settings are described in Table 24.

Table 24: External Events Configuration Settings

Setting

Usage

EE_INC_DELETE_HANDLER

Specifies the relative path name of a PHP script to be used
to externally process incident delete events. If no handler is
specified, no external action is taken. Default is blank.

EE_INC_INSERT_HANDLER

Specifies the relative path name of a PHP script to be used
to externally process incident insert events. If no handler is
specified, no external action is taken. Default is blank.

EE_INC_UPDATE_HANDLER

Specifies the relative path name of a PHP script to be used
to externally process incident update events. If no handler is
specified, no external action is taken. Default is blank.

EE_CONTACT_DELETE_
HANDLER

Specifies the relative path name of a PHP script to be used
to externally process contact delete events. If no handler is
specified, no external action is taken. Default is blank.

Chapter 4



Enabling external events | 103

Table 24: External Events Configuration Settings (Continued)

Setting

Usage

EE_CONTACT_INSERT_
HANDLER

Specifies the relative path name of a PHP script to be used
to externally process contact insert events. This is used to
provide an interface for third-party call management sys-
tems or other third-party systems. If no handler is specified,
no external action is taken. Default is blank.

EE_CONTACT_UPDATE_
HANDLER

Specifies the relative path name of a PHP script to be used
to externally process contact update events. This is used to
provide an interface for third-party call management sys-
tems or other third-party systems. If no handler is specified,
no external action is taken. Default is blank.

EE_ANS_DELETE_HANDLER

Specifies the relative path name of a PHP script to be used
to externally process answer delete events. This is used to
provide an interface for third-party call management sys-
tems or other third-party systems. If no handler is specified,
no external action is taken. Default is blank.

EE_ANS_INSERT_HANDLER

Specifies the relative path name of a PHP script to be used
to externally process answer insert events. This is used to
provide an interface for third-party call management sys-
tems or other third-party systems. If no handler is specified,
no external action is taken. Default is blank.

EE_ANS_UPDATE_HANDLER

Specifies the relative path name of a PHP script to be used
to externally process answer update events. This is used to
provide an interface for third-party call management sys-
tems or other third-party systems. If no handler is specified,
no external action is taken. Default is blank.

EE_ORG_DELETE_HANDLER

Specifies the relative path name of a PHP script to be used
to externally process organization delete events. This is
used to provide an interface for third-party call manage-
ment systems or other third-party systems. If no handler is
specified, no external action is taken. Default is blank.

EE_ORG_INSERT_HANDLER

Specifies the relative path name of a PHP script to be used

to externally process organization insert events. This is used
to provide an interface for third-party call management sys-
tems or other third-party systems. If no handler is specified,
no external action is taken. Default is blank.

RIGHT

NOW

TECHNOLOGIES



104

Developing external events

Event Handlers

Table 24: External Events Configuration Settings (Continued)

Setting

Usage

EE_ORG_UPDATE_HANDLER

Specifies the relative path name of a PHP script to be used
to externally process organization update events. This is
used to provide an interface for third-party call manage-
ment systems or other third-party systems. If no handler is
specified, no external action is taken. Default is blank.

EE_OPP_DELETE_HANDLER

Specifies the relative path name of a PHP script used to
externally process opportunity delete events. This is used to
provide an interface for third party call management sys-
tems or other third party systems. If no handler is specified,
no external action is taken. Default is blank.

EE_OPP_INSERT_HANDLER

Specifies the relative path name of a PHP script used to
externally process opportunity insert events. This is used to
provide an interface for third party call management sys-
tems or other third party systems. If no handler is specified,
no external action is taken. Default is blank.

EE_OPP_UPDATE_HANDLER

Specifies the relative path name of a PHP script used to
externally process opportunity update events. This is used
to provide an interface for third party call management sys-
tems or other third party systems. If no handler is specified,
no external action is taken. Default is blank.

When you activate an insert, update, or delete handler, the PHP script you develop to handle
the event becomes an extension of RightNow. Event handlers must be written in PHP.

When developing event handlers, RightNow will:

1 Create a CSV file. The file format will be the same as that produced by the export utility.
The data field names and actual data provided will be determined according to the tem-
plate file. For information about &export, refer to the RightNow Administrator Manual.

Chapter 4



Developing external events | 105

2 Execute the appropriate PHP script for handling the insert, update, or delete event. The
names of the temporary files containing the incident, answer, contact, organization, or
opportunity data are passed using the variable ee_file_name.

Important Your event handler must reside in the <cgi-bin>/<interface>.cfg/scripts/
ext_evt directory.

3 Wait for the event handler to terminate, and then continue with normal processing,

Your custom event handler will:

1 Retrieve from the ee_file_name variable the name of the temporary file containing inci-
dent, answer, contact, organization, or opportunity data.

2 Open and parse the temporary files to retrieve incident, answer, contact, organization, or
opportunity data.

3 Perform any custom processing.
4 Delete the temporary files.

5 Terminate and return control to RightNow within an acceptable amount of time so as not
to degrade overall system performance.

RIGHT

NOW

TECHNOLOGIES



106 | Event Handlers

Email integration

The email integration in RightNow allows you to email data to a mailbox when an incident,
answer, contact, organization, or opportunity is created, updated, or deleted. When the event
occurs, an email is sent immediately to the specified mailbox with the incident, answer, con-

tact, organization, or opportunity data.

Enabling email integration requires configuring the insert, update, or delete handlers. The
email integration configuration settings are located under RightNow Common>External
Events>Email Integration. Use these settings to specify the email address to which you want

to send email event data.

The email integration configuration settings are described in Table 25.

Table 25: Email Integration Configuration Settings

Setting

Description

EI_INC_DELETE_ADDR

Specifies the email address to receive incident delete data. If
no address is specified, no external action is taken. Default
is blank.

EI_INC_INSERT_ADDR

Specifies the email address to receive incident insert data. If
no address is specified, no external action is taken. Default
is blank.

EI_INC_UPDATE_ADDR

Specifies the email address to receive incident update data.
If no address is specified, no external action is taken.
Default is blank.

EI_CONTACT_DELETE_ADDR

Specifies the email address to receive contact delete data. If
no address is specified, no external action is taken. Default
is blank.

EI_CONTACT_INSERT_ADDR

Specifies the email address to receive contact insert data. If
no address is specified, no external action is taken. Default
is blank.

EI_CONTACT_UPDATE_ADDR

Specifies the email address to receive contact update data. If
no address is specified, no external action is taken. Default
is blank.

EI_ANS_DELETE_ADDR

Specifies the email address to receive answer delete data. If
no address is specified, no external action is taken. Default
is blank.

Chapter 4



Creating templates for email integration | 107

Table 25: Email Integration Configuration Settings (Continued)

Setting

Description

EI_ANS_INSERT_ADDR

Specifies the email address to receive answer insert data. If
no address is specified, no external action is taken. Default
is blank.

EI_ANS_UPDATE_ADDR

Specifies the email address to receive answer update data. If
no address is specified, no external action is taken. Default
is blank.

EI_ORG_DELETE_ADDR

Specifies the email address to receive organization delete
data. If no address is specified, no external action is taken.
Default is blank.

EI_ORG_INSERT_ADDR

Specifies the email address to receive organization insert
data. If no address is specified, no external action is taken.
Default is blank.

EI_ORG_UPDATE_ADDR

Specifies the email address to receive organization update
data. If no address is specified, no external action is taken.
Default is blank.

EI_OPP_INSERT_ADDR

Specifies the email address to receive opportunity insert
data. If no address is specified, no external action is taken.
Default is blank.

EI_OPP_UPDATE_ADDR

Specifies the email address to receive opportunity update
data. If no address is specified, no external action is taken.
Default is blank.

EI_OPP_DELETE_ADDR

Specifies the email address to receive opportunity delete
data. If no address is specified, no external action is taken.
Default is blank.

Creating templates for email integration

When using the email integration in RightNow, you can create template files that specify the
data sent by email following an event. You can create up to five template files and upload
them to the sntegration files directory in File Manager. For more information about uploading
files through the File Manager, refer to the RightINow Administrator Manual.

RIGHT

NOW

TECHNOLOGIES



108 | Event Handlers

To upload a file to the integration files directory in File Manager, the file name must be in the
following format:

* incident.tmp/l—This template determines the data sent when an incident event (create,
update, or delete) occurs.

* ans.tmp/—This template determines the data sent when an answer event (create, update,
or delete) occurs.

* contact.tmpi—This template determines the data sent when a contact event (create,
update, or delete) occurs.

* org.tmpl—This template determines the data sent when an organization event (create,
update, or delete) occurs.

* gpp.tmpl—This template determines the data sent when an opportunity event (create,
update, or delete) occurs.

The template file will contain three components. The first line of the template specifies the
reply-to address of the email. The second line of the template specifies the subject of the
email. The remaining lines determine the content of the email. These lines can contain actual
text, as well as variable information designated in pipes (|). Any text contained in pipes
should be in the format table_name.column_name.

Important You can specify any field definition columns in the table related to the external
event (answers, contacts, incidents, orgs, ot gpportunities). You can also define output
for any table directly related to the external event table. For example, you can
require contact output in the sncident.tmp/ file because a contact should be directly
related to each incident.

The following is an example of an zncident.tmp! file:

jsmith@example.com

Email Integration

Reference Number: |incidents.ref no|

Subject: |incidents.subject]|

Product: |incidents.prod 1vl1l|
|incidents.prod 1v12|

In this example, the reply-to address of the email will be “jsmith@example.com” and the sub-
ject line of the email will be “Email Integration.” The body of the email will look like the
following:

Reference Number: 010620-000003
Subject: Incident Title

Product: Integration

Chapter 4



109

5

Pass-Through Authentication

You can integrate RightNow Service with an external customer validation source to allow
your customers to automatically log in to RightNow Service from an external web page. The
external source supplies login parameters to RightNow Service by placing them in the URL
of the Support Home page. In this way, customers will not have to provide customer login
data twice if you are using an external customer validation source. The contact information
will also be shared between the external source and RightNow Service, so contacts can be cre-
ated and updated during the login to RightNow Service.

To perform this integration, customers must be redirected when attempting to access or log
in to RightNow Service. When the login parameters are passed back to RightNow Service, the
customer will be logged in if the information passed is sufficient to identify an existing con-
tact or create a new contact. An existing contact is identified by matching the email field and
login field of the contacts table in the database. When an existing contact is found, the cus-
tomer is logged in as that contact and is updated if any additional or new contact information
is passed to RightNow Service.

If an existing contact is not found, a new contact is created from the data provided and the
customer is logged in to RightNow Service as the new contact. If the contact information
passed does not contain all required fields to create a new contact, RightNow Service can be
configured to redirect the customer to an alternate URL.

Important When using pass-through authentication, the configuration setting
EGW_AUTO_CUST_CREATE should be set to No to prevent contact
records from being created through email before they are created by a pass-
through authentication event. This will help eliminate login issues caused by
mismatched user names and passwords.

If you set EGW_AUTO_CUST_CREATE to No, you should also modify the
message base NOT_REG_EMAIL_MSG to direct new end-users to your por-
tal site to register and create an account.

RIGHT

NOW

TECHNOLOGIES



110 | Pass-Through Authentication

Although contacts can be created and updated through the pass-through authentication inte-
gration, deletion of contacts must be handled by manually deleting the contact from the
knowledge base though the RightNow Console or another integration method, such as the

XML APIL

Note

Contact your RightNow account manager for assistance in customizing your
pass-through authentication beyond the procedures detailed in this chapter (for
example, securing pass-through authentication strings beyond Base 64 encoding
standards).

Refer to Figure 6 for assistance in designing your login integration. This figure can help you
determine the process used by RightNow Service when pass-through authentication is used.

Customer enters thru entry

Point #1: ;
External page with a s crgated b);1R|ghtNow i ) .
customer service link R SUch as anggey RightNow Service
response with a link.
The RightNow Service
page specified by the
p_next_page parameter in
the entry point link
Did the
Are they Yes __“enter through RightNow Service Support
logged in? 7\ entry point Home page
#2?

Customer enters thru enfry
Point #2: Any entry point

No

. Are the
External login page
with user name and ﬁg:ﬁ; L;sn(zr pzzsvrvr:)a:'gu\ja?ir;in 'CheCK
fiel d
password fields password RightNow Database
Service?,

Figure 6: Pass-Through Authentication Flow Chart

Chapter 5



Configuring RightNow Service | 111

Configuring RightNow Service

Before you can perform a pass-through authentication integration with an external source,
you must configure RightNow Service to prevent customers from accessing specific options
without a proper login. Then you must redirect the login to the URL of your external valida-
tion source.

Requiring a login to RightNow Service

To integrate RightNow Service with an external customer validation source, RightNow
Service can be configured to require a login to the end-user interface (excluding the Site
Feedback page). This ensures that contact information is passed directly to the login page and
prevents customers from accessing their account information through the end-user pages.
However, customers will also be required to log in when clicking the link in an incident email
to respond or update their incident.

To configure RightNow Service to require a login.

1 Click Common Configuration.
2 Double-click Settings under System Configuration.
3 Select RightNow User Interface.

4 Click End-User Interface>Support Home Page Display>SHP_PASSWD_REQD, and
click Yes for the value (No is the default).

5 Click the Update button followed by the Commit and Exit button to save your changes
and return to the General Configuration Menu.

Redirecting the RightNow Service login

A configuration setting must also be enabled when using the integration to specify the URL
to which a customer is redirected if attempting to log in to RightNow Service, or if the exter-
nal login information supplied to RightNow Service is not adequate to create a new account
or use an existing account. When a URL value is specified for this configuration setting, the
passed login parameters must provide data for the minimum required fields needed to log in
to RightNow Service (p_userid, p_passwd) or create a new contact in RightNow Service
(p_userid, p_passwd, p_email.addr). (In most cases, it is recommended that you pass back all
URL parameters to RightNow Service that RightNow Service passed during the redirection.)
Even if the configuration setting TC_CT_EMAIL_REQD is disabled, the specified fields are
still required. If the required fields are not passed, the customer is redirected to the specified

RIGHT

NOW

TECHNOLOGIES



112 | Pass-Through Authentication

URL. You can create a new site at this URL to either inform the customer that their access is
denied or create a form to gather additional required information and re-pass the parameters
to RightNow Service.

Important If additional required contact custom fields have been created, these will also
need to be passed to create a new account.

Note RightNow Service will automatically append your customer’s session 1D infor-
mation to the URL when the customer is redirected through the end-user pages.
The specified page must be configured to accept the session ID.

To configure RightNow Service to redirect the login:

1 Click Common Configuration.

2 Double-click Settings under System Configuration.

3 Select RightNow User Interface.

4 Click My Stuff>Security>MYSEC_EXT_LOGIN_URL.

5 Type the desired URL in the Value text box and click the Update button.

6 Click the Commit and Exit button to save your changes and return to the General
Configuration Menu.

Note URLs sent to contacts via email (for example, a link to update the incident) will
use the URL specified in the MYSEC_EXT_LOGIN_URL configuration set-
ting,

If you are passing a non-blank password via p_passwd in a pass-through authentication event
and EU_CUST_PASSWD_ENABLED is disabled, the pass-through authentication event
will fail. It is recommended that you enable EU_CUST_PASSWD_ENABLED when using
pass-through authentication and use TC_CT_PASSWD_DISP to control the look and feel of
contact passwords on the administration side of RightNow. TC_CT_PASSWD_DISP does
not affect pass-through authentication.

Chapter 5



Redirecting the RightNow Service login | 113

If you use pass-through authentication to add a contact record, but the email address already
exists in the knowledge base (associated with another contact record), RightNow will add the
record; however, it will append “.0001” to the end of the email address. This will also occur if
you try to update a contact record in order to change the email address, but the email address
already exists in the knowledge base. If this occurs repeatedly with the same email address, the
appended number will automatically increment (for example, .0002, .0003, etc.).

RIGHT

NOW

TECHNOLOGIES



114

Pass-Through Authentication

Implementing a customer login script

To develop a login parameters integration, you will need to embed code within your login
script to format a URL that will pass data from your external validation soutce to RightNow
Service. The embedded code can be written in any scripting language, including PHP, JSP, or
ASP. The login parameters from the external validation source must be encoded using Base
64 encoding and placed in the RightNow Service URL from the desired page. In addition to
using the Base 64 function, certain characters must also be replaced in the URL, as shown in
“PHP Example:” on page 118 (+ becomes _, / becomes ~, and = becomes *).

Note You must use a login script for every link from your web site to RightNow
Service. If contacts exit the RightNow Service end-user pages and re-enter later
in their session, they will not be automatically logged in. Therefore, we recom-
mend that all links to the end-user interface contain pass-through data.

The following format should be used:
UNIX:

http://<your domain>/cgi-bin/<your interface>.cfg/php/enduser/
entry.php?p li=<encoded login parameters>

Windows:

http://<your domain>/scripts/<your interface>.cfg/php.exe/enduser/
entry.php?p li=<encoded login parameters>

Note You can replace entry.php with any end-user page in RightNow Service (for
example, std_alp.php), or use the p_next_page parameter to return the customer
to their original RightNow Service page. Refer to “PHP Example:” on page 118.

The parameters to be passed to RightNow Service are detailed in Table 26.

Table 26: Parameter Descriptions

Parameter Description

p_userid This parameter represents the login field in the contacts table of the
RightNow database. This field is required to log in and create a new con-

tact, and cannot be updated via pass-through authentication.

Chapter 5



Implementing a customer login script | 115

Table 26: Parameter Descriptions (Continued)

Parameter

Description

p_passwd

This parameter represents the password field in the contacts table of the
RightNow database (limited to 20 characters). This field is required to log
in and create a new contact, or log in as an existing contact, and cannot be
updated via pass-through authentication. The value can be NULL.

Note: We recommend that the password specified in the consacts table be
different than that stored in your external database. This is because the
customer’s RightNow Service password cannot be updated later by the
external system, since the password is used as a verification field by
RightNow Service. Therefore, to prevent customers who change their
password in your external system from being locked out of the RightNow
Service end-user pages, you should create a different password when the
contact is created, and use this password consistently to log in the cus-
tomer to RightNow. One way to accomplish this is to use a constant value
for all contact passwords and use the value each time a customer logs in.
You could also encrypt the contact’s user id and use the encryption as the
contact’s password. Each time the customer’s login parameters are passed
to RightNow Service, you can use your encryption script to pass the valid
password.

p_email.addr

This parameter represents the email field in the contacts table in the
RightNow database. This field is required to log in and create a new con-
tact.

Note: The value of this field must be unique.

p_title

This parameter represents the title field in the contacts table in the
RightNow database.

p_name.first

This parameter represents the first_name field in the contacts table in the
RightNow database.

p_name.last

This parameter represents the last_name field in the contacts table in the
RightNow database.

p_alt_name.first

This parameter represents the alt_first_name field in the contacts table in
the RightNow database.

p_alt_name.last

This parameter represents the alt_last_name field in the consacts table in the
RightNow database.

p_email altl.addr

This parameter represents the email_alt1 field in the conacts table in the
RightNow database.

RIGHT

NOW

TECHNOLOGIES



116 | Pass-Through Authentication

Table 26: Parameter Descriptions (Continued)

Parameter

Description

p_email_alt2.addr

This parameter represents the email_alt2 field in the contacts table in the
RightNow database.

p_addr.street

This parameter represents the street field in the contacts table in the
RightNow database.

p_addr.city

This parameter represents the city field in the contacts table in the
RightNow database.

p_addr.postal_code

This parameter represents the postal_code field in the contacts table in the
RightNow database. This field may not contain special characters (for
example, 59715-1111 should be passed as 597151111).

p_addr.country_id

This parameter represents the country_id field in the contacts table in the
RightNow database. This field should be passed as a country’s ID number.
To find the value of menu items, refer to “Finding code numbers” on page

89.

p_addr.prov_id

This parameter represents the prov_id field in the contacts table in the
RightNow database. This field should be passed as a state or province’s ID
number. To find the value of menu items, refer to “Finding code numbers”
on page 89.

p_ph_office This parameter represents the ph_office field in the contacts table in the
RightNow database.

p_ph_mobile This parameter represents the ph_mobile field in the contacts table in the
RightNow database.

p_ph_fax This parameter represents the ph_fax field in the consacts table in the
RightNow database.

p_ph_asst This parameter represents the ph_asst field in the contacts table in the
RightNow database.

p_ph_home This parameter represents the ph_home field in the contacts table in the

RightNow database.

Chapter 5



Implementing a customer login script | 117

Table 26: Parameter Descriptions (Continued)

Parameter

Description

p_ccf_*

The parameter p_ccf_* represents a contact custom field in RightNow.
The * should be replaced with the number of the cf_id for the contact cus-
tom field. If this is a menu custom field, the numbers (not the actual text)
for each menu item must be specified as the value in the integration login
code. To find the value of menu items, refer to “Finding code numbers”
on page 89.

p_li_expiry

This parameter represents the time the login session will last before expit-
ing. When the session expires, the contact will be required to resubmit
their login on the page specified by the MYSEC_EXT_LOGIN_URL
configuration setting. Your login form should calculate the expiration
timestamp and pass it back to RightNow Service.

Note: If the p_li_expiry parameter is used in combination with the
p_redirect parameter, the p_li_expiry parameter is overridden, and the
value in the MYSEC_SESSION_ID_EXP configuration setting is used
instead.

p_li_passwd

This parameter represents the string specified in the
MYSEC_LI_PASSWD configuration setting,

Note: This parameter is required if the MYSEC_LI_PASSWD configura-
tion setting contains a value.

p_org_id

This parameter represents an organization ID to associate with a contact.
To find the value of menu items, refer to “Finding code numbers” on page
89.

Note: You must manually assign any service level agreements (SLA) that
you want to associate with the organization, including those controlling
privileged access. You can do this through RightNow’s administration
interface.

p_redirect

This parameter is added to the p_li variable and is used to remove the p_li
variable from the URL. When p_redirect is set to 1, the p_li variable will
be replaced by the p_sid variable in the URL when the user logs into the
site. This will prevent secure information from being passed in the p_li
variable if the end-user copies and pastes the URL from their browser and
emails it to someone.

p_state.css

This parameter represents the contact’s state for RightNow Service.
* 0—Disabled
* 1—Enabled

RIGHT

NOW

TECHNOLOGIES



118 | Pass-Through Authentication

Table 26: Parameter Descriptions (Continued)

Parameter Description

p_state.ma This parameter represents the contact’s state for RightNow Marketing;
* 0—Disabled
* 1—FEnabled

p_state.sa This parameter represents the contact’s state for RightNow Sales.
* 0—Disabled
* 1—Enabled

The following examples show how to generate a form to pass login parameters to RightNow
Service using PHP and ASP.Net code. You can retain all query_string parameters and append
key-value pair parameters per the following examples.

Note To understand these scripts better, it will help to replace certain variables.
Replace <your_domain> with the domain name used by your RightNow site,
<your_interface> with your interface name, and <li_password> with the string
specified in MYSEC_LI_PASSWD. In addition, specify “cgi-bin” and “php” for
UNIX or “scripts” and “php.exe” for Windows.

Caution  The following examples ate for illustrative purposes only, and will be impropetly
formatted if you attempt to cut and paste directly from the following text.

PHP Example:
<?php

header ("Content-type: text/html; charset=UTF-8");
//

//NOTE: It is necessary to overwrite the html header to explicitly define
//the character set that will be used to encode PTA user data. It is not

//possible to do this with a meta equiv tag because a header already
//exists, and the existing header will take precedence. If the character
//set is not defined here, it is likely that the browser of the end user
//will select another default encoding (such as Latin-1). Data encoded
//using character sets other than UTF-8 can cause server-side SQL errors
//when the server is attempting to parse the user data coming from PTA.
//

// ***** THIS IS JUST AN EXAMPLE AND NOT INTENDED FOR PRODUCTION USE *****

Chapter 5



Implementing a customer login script | 119

//Use this script to see an illustrated example of how login integration
//is supposed to work. This script will generate a form that requests a
//login/password and other optional information. It submits this data
//back to itself (with $1i reentry set), sets up the appropriate
//parameters (important ones passed in from RNW) and redirects

//back to RNW.

/] e

// Site specific variables

$script name = 'li.php';

$domain = '<your domain>"';

$script dir = '<cgi-bin or scripts>';

Sinterface = '<your interface>';

$mysec_1li passwd = '<li password>';

Sphp bin = '<php or php.exe>';
e

// Function definitions

function urlsafe_encode(&$str)
{
return (strtr(base64 encode (Sstr),
array ('+' => '_', YU => At t=t = TRy,

function urlsafe_decode(&$str)
{
return (base64 decode (strtr($str,

array (' ' => '+', '~' = V)1, vk => 1=1))));;

/e

// Process the form & redirect

if ($1i_reentry) {
$1i data = array(

'p_userid’ => $1i userid,
'p_passwd' => $1i passwd,
'p_email.addr' => $1i email,

'p_name.first' => $1i first name,
'p_name.last' => $1li last name,

// sample text contact custom field (custom fields.cf id== 1)

RIGHT

NOW

TECHNOLOGIES



120 | Pass-Through Authentication

'p_ccf 1 => $1i ccf 1,
// sample menu contact custom field (custom fields.cf id == 3)
'p_ccf 3" => intval ($1li ccf 3),

// p_1li passwd must match the MYSEC LI PASSWD config setting
'p_1i passwd' => Smysec li passwd
)7

// set up the $p 1li variable

while (list(Skey, $val) = each($1li data))
$p 1i .= sprintf("%$s%$s=%s", Sp 1i 2 '&' : '', Skey,
Sval);

$p_1li = urlsafe encode($p 1i);

// retain all the important query string parameters passed in from
//RNW (excluding the special cases and the 1i * form parameters)

while (list($key, $val) = each(SHTTP GET VARS)) {
if (($key != 'p next page') &&
(Skey != 'p 1i') &&
(substr (Skey, 0, 3) != '1i "))
Sparms .= sprintf ("&%$s=%s", Skey,

urlencode ($val));

// default next page to support home
if (!isset (Sp_next page))

$p_next page = "home.php";
// redirect back to RNW
header ("Location: http://$domain/$script dir/
$interface.cfg/$php bin/enduser/$p next page?p 1li \
=$p_liSparms");

exit;

A R
// Display the form

2>

<html>

<body>

<h2> Login Integration </h2>

Chapter 5



Implementing a customer login script | 121

<form action="<? print($script name) ?2>">
<input type="hidden" name="1li reentry" value="1">
<?
// retain all the important query string parameters passed in from RNW
while (list(Skey, $val) = each($SHTTP GET VARS)) {
print ("<input type=\"hidden\" name=\"S$key\" \
value=\"$val\">\n");
}
2>
Login: <input type="text" name="1i userid"><br />
Password: <input type="password" name="1i passwd"><br />
Email: <input type="text" name="1i email"><br />
First Name: <input type="text" name="1li first name"><br />
Last Name: <input type="text" name="1i last name"><br />
Contact Custom 1: <input type="text" name="1li ccf 1"><br />
Contact Custom 3: <input type="text" name="1li ccf 3"><br />
<input type="submit">

</form>

</body>
</html>

RIGHT

NOW

TECHNOLOGIES



122 | Pass-Through Authentication

ASF Net Example:

Imports System

Imports System.Text

' x*xx%% THIS IS ONLY AN EXAMPLE AND NOT INTENDED FOR PRODUCTION USE *****
'Use this script to see an illustrated example of how login integration

'is supposed to work.

Public Class login
Inherits System.Web.UI.Page

Web Form Designer Generated Code
Private Sub Page Load(ByVal sender As System.Object, ByVal e As
System.EventArgs)
Handles MyBase.Load
Dim redirectLink, URLParams As String
Try
'LDAPService is an internal web service to look up user
'info.
Dim ldapWebService As New LDAPService.services
Dim aUser As LDAPService.userInfo
aUser = ldapWebService.GetUser (getUserName ())
'begin forming url
redirectLink = "http://<your domain>/cgi-bin/
<your_ interface>.cfg/php/enduser/" & getNextPage ()
'add parameters

URLParams = "p userid=" & aUser.userid &
"&p passwd=blank&p email.addr=" & aUser.email & "&p name.first=" &
aUser.first name & "&p name.last=" & aUser.last name

'convert URLParams to a byte array

Dim asciiEncoding As Encoding = Encoding.ASCII

Dim byteArray(asciiEncoding.GetByteCount (URLParams)) As
Byte

byteArray = asciiEncoding.GetBytes (URLParams)

'convert the byte array to a base64 string

URLParams = Convert.ToBase64String(byteArray)

Catch ex As Exception

1blError.Text = "Error. Cannot log in. Unknown user."
End Try
Response.Redirect (redirectLink & "?p 1i=" & URLParams, True)

End Sub

Chapter 5



Implementing a customer login script | 123

Private Function getNextPage () As String
'get p next page parameter from request
If Len(Request.Params ("p next page")) > 0 Then
Return Request.Params ("p next page'")
Else
Return "home.php"
End If
End Function

Private Function getUserName () As String
'gets the user name.
Try
Dim theUserName As String
theUserName = Request.ServerVariables ("AUTH USER")
Return theUserName
Catch ex As Exception
1blError.Text = "Error. Cannot log in. Unknown user."
End Try
End Function
End Class

RIGHT

NOW

TECHNOLOGIES



124 | Pass-Through Authentication

Chapter 5



Account APl | 125

Appendix A
Pair Names

This appendix describes the pairs available to be used in the public APIs. Each table contains
the pairs available for the API, a description of the pairs, the pair type, and visibility of the
pair for the different function types. The visibility indicators are:

* C—Visible for create functions

* D—Visible for delete functions
* G—Visible for get functions

* U—Visible for update functions

For example, if an account API pair has the visibility indicators C, G, and U, you can use that
pair in the ans_create, ans_get, and ans_update functions; however, you can not use the pair
in the ans_delete function.

Note Visibility indicators are not applicable to the search, css_category_move,
css_disposition_move, css_product_move, or flow_execute functions.

Account API

The pairs described in the following table ate available to use in account functions.

Table 27: Account Pairs

Name Use Type Visibility
acct_id The ID number of the account. integer CDGU
acd_group The automatic call distribution group associ- | string CGU

ated with a staff account.

acd_passwd The automatic call distribution password string CGU
associated with a staff account.

alt_name The alternate name of the staff account. Uses | pair CGU
the following nested pairs.

first_name The alternate first name of a staff account. | string CGU

RIGHT
NOW

TECHNOLOGIES




126 | Pair Names

Table 27: Account Pairs (Continued)

Name

Use

Type

Visibility

last_name

The alternate last name of a staff account.

string

CGU

attr

A bitmap that determines the attribute sta-
tuses of the account.

* 0—Fully enabled

* 1—Assignment to the staff member
is disabled

* 2—Views and reports are disabled
* 4—Account locked

* 8—TForce password change

* 32—Permanently disabled

integer

CGU

country_id

The default country associated with a staff
account.

integer

CGU

custom_field

A custom field associated with a staff
account. For information on the nested pairs
this pair uses, refer to “Custom field API” on
page 140.

pair

CGU

def_curr_id

The default currency associated with a staff
account.

integer

CGU

display_name

The display name associated with a staff
account.

string

CGU

eas_id

The agent skills ID associated with a staff
account.

string

CGU

email

The email address and security information
associated with a staff account. Uses the fol-
lowing nested pairs.

pair

CGU

addr

The email address associated with the
account.

string

CGU

cert

The S/MIME account certificate associated
with the account.

string

CGU

email_notif

The email notification flag associated with a
staff account.

integer

CGU

Appendix A



Table 27: Account Pairs (Continued)

Account APl | 127

Name Use Type Visibility
group_id The group ID associated with a staff integer CDG
account.
last_event_id The ID number of the last event. integer GU
login The login associated with a staff account. string CGU
mgr The management hierarchy. Uses the nested | pair CGU
pairs Ivl_id1 through Ivl_id12.
lvl_id<1-12> The pair data defining the management hier- | integer CGU
arcy.
name The name associated with the staff account. | pair CGU
Uses the following nested pairs.
first The first name associated with a staff string CGU
account.
last The last name of a staff account. string CGU
notif_cache Cached notifications. string CGU
notif_pending Indicates if notifications are pending, integer CGU
* 0—Not pending
* 1—Pending
old_terr The old territory associated with a staff integer CU
account.
passwd_history The previous password for the account string G
(encrypted).
password_text The password associated with a staff string CGU
account.
password_exp The password expiration date of a staff time G
account.
phone The phone number associated with a staff string CGU

account.

RIGHT
NOW

TECHNOLOGIES



128 | Pair Names

Table 27: Account Pairs (Continued)

Name Use Type Visibility
phone_alt_1 The first alternative phone number associ- | string CGU
ated with a staff account.
phone_alt_2 The second alternative phone number asso- | string CGU
ciated with a staff account.
profile_id The profile ID associated with a staff integer CGU
account.
seq The sequence listing within a group folder  |integer CGU
that is associated with a staff account.
signature The signature associated with a staff account. | string CGU
source_upd The source of the account. Uses the follow- | pair CGU
ing nested pairs.
lvl_id1 The level-one source of the answer. Refer to | integer CGU
Appendix B, “Source Codes,” on page 177.
lvl_id2 The level-two source of the answer. Refer to |integer CGU
Appendix B, “Source Codes,” on page 177.
sp_dial The speed dial items associated with a staff | pair CGU
account. Uses the following nested pairs.
sd_item A speed dial entry. Uses the following nested | pair CGU
pairs.
name The name of the speed dial entry. string CGU
phone The phone number of the speed dial entry. | string CGU
terr_id The territory ID associated with a staff integer CGU
account.
timezone The default timezone associated with the integer CGU
staff account.
upd_opt The flag that updates opportunities when integer CU

changing the territory of a staff account.

Appendix A



Answer API

Answer API | 129

The pairs described in the following table are available to use in answer functions.

Table 28: Answer Pairs

Name Use Type Visibility
a_id The ID number of the answer. integer CGUD
access_mask The answer access of the answer. The access | string CGU
level determines which end-users can view
the answer.
admin_last_access The last time the answer was accessed by an | time G
administrator.
assigned The staff member assigned to the answer. pair CGU
Uses the following nested pairs.
acct_id The ID number of the staff member integer CGU
assigned to the answer.
group_id The ID number of the staff group assigned |integer CGU
to the answer.
ault_solved_count The long-term solved count for administra- | integer CGU
tive users.
aust_solved_count The short-term solved count for administra- |integer CGU
tive users.
banner The flag information associated with the pair CGU
answet.
acct_id The ID number of the staff account that integer G
most recently updated the flag,
flag The importance of the flag. integer CGU
*1—Low
* 2—Medium
* 3—High
txt The flag text. string CGU
upd The time the flag text was updated. time G

RIGHT
NOW

TECHNOLOGIES



130 | Pair Names

Table 28: Answer Pairs (Continued)

Name Use Type Visibility
created The time the answer was created. time G
custom_field A custom field associated with the answer. | pair CGU
For information on the nested pairs this pair
uses, refer to “Custom field API” on page
140.
description The description of the answer. string CGU
ee_flag Determines whether external events run integer CU
when an answer is created, updated, or
deleted.
* 0—External events do not run
* 1—External events run
eust_solved_count The customers’ short-term solved count for |integer CGU
the answer.
expires The date the answer expires and is set to time CGU
review answer status.
keywords The keywords of the answer. string CGU
lang_id The ID number of the answer’s language. integer CGU
last_access The date and time the answer was last time G
accessed.
last_edited_by The ID number of the staff member who integer G
last edited the answer.
last_notify The date and time a notification was last sent | time G
for the answer.
links Link data for answers that is used for related | pair CGU
answers. Uses the following nested pairs.
link_item A link between answers. Uses the following | pair CG
nested pairs.
access_time The time a link was created. time CU

Appendix A



Table 28: Answer Pairs (Continued)

Answer API | 131

Name Use Type Visibility
action The action to take on the link. This field integer CDU
must be set to 1 to create a link, 2 to update a
link, and 3 to delete a link.
from_a_id The first linked answer viewed. integer CG
static_strength The static strength of the link. integer CG
strength The relative relatedness of the linked integer CG
answers.
to_a_id The second answer viewed. integer CG
m_id The meta-answer the answer is associated integer CDG
with.
next_notify The date a notification will be sent for the time CGU
answet.
notes The notes field of the answer. string CGU
notif_type The type of notification. string CGU
publish_on The date the answer will be published on. time CGU
rule_ctx Escalation and rule state information associ- | pair G
ated with the answer. Uses the following
pairs.
escldate The date and time the answer was escalated. | time G
escllevel The level that the answer has been escalated |integer G
to through the rules engine.
state The rule state the answer is currently in. integer G
solution The solution of the answer. string CGU
solved_count The relevancy ranking of this answer. integer CGU
source_upd The source of the answer. Uses the following | pair CGU

nested pairs.

RIGHT
NOW

TECHNOLOGIES



Pair Names

Table 28: Answer Pairs (Continued)

Name Use Type Visibility
Ivl_id1 The level-one source of the answer. Refer to |integer CGU
Appendix B, “Source Codes,” on page 177.
Ivl_id2 The level-two source of the answer. Refer to |integer CGU
Appendix B, “Source Codes,” on page 177.
static_solved The fixed relevancy ranking of this answer | integer CGU
(100 is fix at top, 50 is fix at middle, O is fix at
bottom).
status The status of the answer. Uses the following | pair CGU
nested pairs.
id The ID number of the status of the answer. |integer CGU
type The status type the answer is assigned to. integer CGU
sub_tbl Used in the ans_get function to identify the | pair G
table to retrieve notes from. Uses the follow-
ing nested pait.
tbl_id Specifies the table to get notes from. This integer G
pair should always contain a value of 164 (the
ID of the notes table).
summary The title of the answet. string CGU
type The type of answer. integer CGU
* I—HTML
* 2—URL
* 3—File Attachment
url The answer URL, if the answer type is URL. | string CGU
wi_flag Determines whether business rules run integer CU

when the answer is created, updated, or

deleted.
* 0—DBusiness rules do not run

* 1—Business rules run

Appendix A



Contact API

Contact APl | 133

The pairs described in the following table are available to use in contact functions.

Table 29: Contact Pairs

Name Use Type Visibility
acquired The time the first opportunity associated time G
with the contact was closed.
addr The address of the contact. Uses the follow- | pair CGU
ing nested pairs.
city The name of the city in the contact’s address | string CGU
information.
country_id The ID number of the country in the con- | integer CGU
tact’s address information.
postal_code The postal or zip code in the contact’s string CGU
address.
prov_id The ID number of the province or state in | integer CGU
the contact’s address information.
street The contact’s street address. string CGU
alt_name The alternative name of the contact. Uses pair CGU
the following nested pairs.
first The alternative first name of the contact. string CGU
last The alternative last name of the contact. string CGU
banner The flag information associated with the pair CGU
contact.
acct_id The ID number of the staff account that integer G
most recently updated the flag,
flag The importance of the flag. integer CGU
*1—Low
* 2—Medium
* 3—High
txt The flag text. string CGU

RIGHT
NOW

TECHNOLOGIES



Pair Names

Table 29: Contact Pairs (Continued)

Name

Use

Type

Visibility

upd

The time the flag text was updated.

time

G

cat

Defines the default category for the contact’s
searching. Uses nested paits lvl_id1 through
Ivl_ido.

pair

CGU

lvl_id<1-6>

The pair data of the default category for the
contact’s searching,

integer

CGU

The ID number of the contact. In the
mailing_send_to_contact function, this is the
ID number of the contact the mailing will be
sent to.

integer

CDGU

contact_list_ids

The contact lists that the contact is associ-
ated with. Uses the following nested pair.

pair

CGU

int_item<#>

The ID number of the contact list that the
contact is associated with. The first contact
list pair should be int_item1, the second
should be int_item2, and so on.

integer

CGU

ctype_id

The ID number of the contact type.

integer

CGU

custom_field

A custom field associated with the contact.
For information on the nested pairs this pair
uses, refer to “Custom field API” on page
140.

pair

CGU

disabled

The disabled status of the contact.
* 0—enabled
¢ 1—disabled

integer

CGU

ee_flag

Determines whether external events run
when a contact is created, updated, or

deleted.
¢ 0—External events do not run

¢ 1—External events run

integer

CDU

Appendix A



Table 29: Contact Pairs (Continued)

Contact APl | 135

Name Use Type Visibility
email The email address and security information | pair CGU
associated with the contact. Uses the follow-
ing nested pairs.
addr The email address associated with the con- | string CGU
tact.
cert The S/MIME account cettificate associated | string CGU
with the contact.
email_altl The first alternate email address and security | pair CGU
information associated with the contact.
Uses the following nested pairs.
addr The first alternate email address associated | string CGU
with the contact.
cert The S/MIME account cettificate associated | string CGU
with the contact.
email_alt2 The second alternate email address and secu- | pair CGU
rity information associated with the contact.
Uses the following nested pairs.
addr The second alternate email address associ- | string CGU
ated with the contact.
cert The S/MIME account cettificate associated | string CGU
with the contact.
email_invalid The email invalid status of the contact’s pri- |integer CGU
mary email address.
flow_id Used in the mailing_send_to_contact func- |integer CU
tion to define the campaign flow ID.
lines_per_page The default number of lines per page shown |integer CGU
for a contact.
login The contact login name. string CGU
ma_alt_org_name The alternate Marketing organization name | string CGU

associated with the contact.

RIGHT
NOW

TECHNOLOGIES



136 | Pair Names

Table 29: Contact Pairs (Continued)

Name Use Type Visibility
ma_mail_type The Marketing mail type associated with the |integer CGU
contact.
ma_opt_in The Marketing opt-in flag associated with integer CGU
the contact.
ma_org_name The Marketing organization name associated | string CGU
with the contact.
mailing_id Used in the mailing_send_to_contact func- |integer CU
tion to indicate the ID number of the mailing
or survey to send.
name The name of the contact. Uses the following | pair CGU
nested pairs.
first The first name of the contact. string CGU
last The last name of the contact. string CGU
note Used in contact_create and contact_update | pair CGU
to add note entries to contact records.
note_item<#> A note entry. Uses the following pairs. The | pair CGU
first note entry should be named note_item1,
the second should be note_item?2, and so on.
action The action for the note. This field must be | integer CDGU
set to 1 to create a note, 2 to update a note,
and 3 to delete a note.
channel The ID number of the channel the note was | integer CGU
created from. Refer to Table 15 on page 83.
created The time the note was created. time CGU
seq The sequence of the note. integer CGU
text The text of the note. string CGU
updated The time the note was updated. time CGU
updated_by The ID number of the staff account that the |integer CG

note is associated with.

Appendix A



Table 29: Contact Pairs (Continued)

Contact API | 137

Name Use Type Visibility

org_id The ID number of the organization associ- | integer CGU
ated with the contact.

password The contact’s password. string CGU

ph_asst The phone number of the contact’s assistant. | string CGU

ph_asst_raw The contact’s assistant phone number, with- | string CGU
out formatting (spaces ot punctuation).

ph_fax The contact’s fax number. string CGU

ph_home The contact’s home phone number. string CGU

ph_home_raw The contact’s home phone number, without | string CGU
formatting (spaces or punctuation).

ph_mobile The contact’s mobile phone number. string CGU

ph_mobile_raw The contact’s mobile phone number, without | string CGU
formatting (spaces or punctuation).

ph_office The contact’s office phone number. string CGU

ph_office_raw The contact’s office phone number, without | string CGU
formatting (spaces or punctuation).

prod The default product for the contact’s search- | pair CGU
ing. Uses the nested pairs lvl_id1 through
Ivl_id6.

lvl_id<1-6> The pair data of the default product for the |integer CGU

contact’s searching.

prodcat_notif The product and category notifications that | pair CGU
the contact has subsctibed to. Uses the fol-
lowing nested pairs.

prodcat_notif_item A notification. Uses the following nested pair CGU

pairs.

RIGHT
NOW

TECHNOLOGIES



138 | Pair Names

Table 29: Contact Pairs (Continued)

Name Use Type Visibility
hm The hierarchy of the product or category. pair CGU
Uses the following nested pairs.
Ivl_id<#> The hierarchy of the product or category. integer CGU
start_time The time the subscription was created. time CGU
rule_state The rule state the contact is currently in. integer G
sales_acct_id The account ID of the sales rep assigned to | integer CGU
the contact.
scheduled Used in the mailing_send_to_contact func- |time CU
tion to specify the time the mailing or survey
should be sent.
search_text The default search text for the contact’s string CGU
searching.
search_type The code of the default search type for the |integer CGU
contact’s searching.
slai The SLA instance associated with the con- | pair CGU
tact. Refer to “Creating and deleting SLA
instances” on page 85.
sn_c_id The Salesnet contact ID. integer CGU
source_upd The creation source of the contact. pair CGU
lvl_id1 The level-one source of the contact. Refer to |integer CGU
Appendix B, “Source Codes,” on page 177.
lvl_id2 The level-two source of the contact. Refer to |integer CGU
Appendix B, “Source Codes,” on page 177.
state The state of the contact. Uses the following | pair CGU
nested pairs.
css The Service state of the contact. integer CGU
ma The Marketing state of the contact. integer CGU

Appendix A



Table 29: Contact Pairs (Continued)

Contact APl | 139

Name Use Type Visibility
sa The Sales state of the contact. integer CGU
sub_tbl Used in the contact_get function to identify | pair G
the table to retrieve notes from. Uses the fol-
lowing nested pair.
tbl_id Specifies the table to get notes from. This integer G
pair should always contain a value of 164 (the
ID of the notes table).
sutvey_opt_in The Feedback opt-in flag associated with the |integer CGU
contact.
title The contact’s title. string CGU
trigger Used in the mailing_send_to_contact func- | pair CU
tion to indicate the incident or opportunity
associated with the mailing or survey. This
information is used for reporting purposes.
Uses the following nested pairs
id The ID number of the incident or opportu- |integer CU
nity that caused the mailing to be sent.
tbl The ID number of the database table the integer CU
record is associated with.
* 1—Incidents
* 87—Opportunities
updated The time the contact was last updated. time G
updated_by The staff member the contact was last integer CU
updated by.
wi_flag Determines whether business rules run integer CU

when the contact is created, updated, or
deleted.

¢ 0—DBusiness rules do not run

¢ 1—Business rules run

RIGHT
NOW

TECHNOLOGIES



140 | Pair Names

Custom field API

The pairs described in the following table are available to use in custom field functions. Refer
to “Setting custom fields” on page 80.

Table 30: Custom Field Pairs

Name Use Type Visibility
custom_field A custom field pair array using the following | pair CGU
nested pairs. Refer to “Setting custom fields”
on page 80.
cf_item A custom field item pait array using the fol- | pair CGU

lowing nested pairs.

cf_id The code number of a custom field. Refer to |integer CGU
“Using cf_id pairs” on page 80, and “Finding
code numbers” on page 89.

data_type The data_type of the custom field. Refer to | integer G
“Using data_type pairs” on page 80.

val_int The integer value of the custom field. Refer |integer CGU
to “Using value pairs” on page 81.

val_str The string value of the custom field. Refer to | string CGU
“Using value pairs” on page 81.

val_time The time value of the custom field. Refer to | time CGU
“Using value pairs” on page 81.

Flow API

The pairs described in the following table are available to use in the flow_execute function.

Table 31: Flow Pairs

Name Use Type Visibility

c_id The ID number of the contact associated integer N/A
with the flow.

shortcut The Shortcut ID field that is entered in the | string N/A
window for an Entry Point action in a flow.

Appendix A



Hierarchical menu APl | 141

Table 31: Flow Pairs (Continued)

Name

Use

Type

Visibility

flow_id

The ID number of the flow to be executed.

integer

N/A

Hierarchical menu API

The pairs described in the following table are available to use in hierarchical menu functions.

Table 32: Hierarchical Menu Pairs

Name Use Type Visibility
desc The hierarchical menu item’s description pair CGU
information. Uses the following nested pairs.
Ibl_item<#> The descriptions and languages of the hierar- | pair CGU
chical menu item. Uses the following nested
pairs. The first label item should be
Ibl_item1, the second should be Ibl_item?2,
and so on.
label The description text. string CGU
lang_id The ID number of the language the label is | integer CGU
written in.
id The ID number of the hierarchical menu integer DGU
item.
label The name(s) of the hierarchical menu items. | pair CGU
Uses the following nested pairs.
Ibl_item The names and languages of the hierarchical | pair CGU
menu item. Uses the following nested pairs.
The first label item should be Ibl_item1, the
second lbl_item?2, and so on.
label The name text. string CGU
lang_id The ID number of the language the name is |integer CGU

written in.

RIGHT
NOW

TECHNOLOGIES



142 | Pair Names

Table 32: Hierarchical Menu Pairs (Continued)

Name

Use

Type

Visibility

new_lvl

In the css_category_move, css_disposition_
move, and css_product_move functions, the
new level of the hierarchical menu item being
moved.

integer

N/A

new_seq

In the css_category_move, css_disposition_
move, and css_product_move functions, the
new sequence of the hierarchical menu being
moved.

integer

N/A

np_lIvl_id

In the css_category_move, css_disposition_
move, and css_product_move functions, the
level IDs of new parent. Uses nested pairs
lvl_id1 through Ivl_id6.

pair

N/A

lvl_id<1-6>

The pair data specifying the level IDs of the
fnew parent menu.

integer

N/A

old_lvl

In the css_category_move, css_disposition_
move, and css_product_move functions, the
old level of the hierarchical menu item being
moved.

integer

N/A

old_parent

In the css_category_move, css_disposition_
move, and css_product_move functions, the
ID of the old parent of the hierarchical menu
item being moved.

integer

N/A

old_seq

In the css_category_move, css_disposition_
move, and css_product_move functions, the
old sequence of the hierarchical menu item
being moved.

integer

N/A

parent

The hierarchy of the parent menu item.

pair

CGU

Ivl_id<1-6>

The pair data specifying the level IDs of the
patent menu.

integer

CGU

seq

The position of the hierarchical menu item
within the list of hierarchical menu items.

integer

CGU

Appendix A



Incident APl | 143

Table 32: Hierarchical Menu Pairs (Continued)

Name Use Type Visibility

vis The visibility of the hierarchical menu item. | pair CGU
Uses the following nested pairs.

vis_item The visibility settings for the hierarchical pair CGU
menu item. Uses the following nested pairs.

admin The visibility of the hierarchical menu item | integer CGU
on the administration interface.

enduser The visibility of the hierarchical menu item | integer CGU
on the end-user interface.

intf_id The ID number of the interface that the hier- | integer CGU
archical menu item is associated with.

Incident API

The pairs described in the following table are available to use in incident functions.

Table 33: Incident Pairs

Name Use Type Visibility

assigned The staff member the incident is assigned to. | pair CGU
Uses the following nested pairs.

acct_id The ID number of the staff member the integer CGU
incident is assigned to.
group_id The ID number of the staff group the inci- | integer CGU
dent is assigned to.
banner The flag information associated with the pair CGU
incident.
acct_id The ID number of the staff account that integer G

most recently updated the flag

RIGHT

NOW

TECHNOLOGIES



144 | Pair Names

Table 33: Incident Pairs (Continued)

Name Use Type Visibility
flag The importance of the flag. integer CGU
*1—Low
* 2—Medium
* 3—High
txt The flag text. string CGU
upd The time the flag text was updated. time G
call_id The ID number of the call the incident was | integer CGU
created from.
cat Defines the category the incident is associ- | pair CGU
ated with. Uses nested pairs lvl_id1 through
Ivl_id6.
lvl_id<1-6> The pair data of the category the incident is | integer CGU
associated with.
closed The time the incident was closed. time G
contact The contact(s) associated with the incident. | pair CGU
Uses the following nested pairs.
ic_item<#> A contact associated with the incident. Uses | pair CGU
the following nested pairs. The first contact
should be ic_item1, the second should be
ic_item2, and so on.
c_id The ID number of the contact associated integer CGU
with the incident.
prmry Determines whether the contact is the pri- | integer CGU
mary contact for the incident.
* 0—Not the primary contact
* 1—Primary contact
created The time the incident was created. time G
created_by The ID number of the incident creator. integer CG

Appendix A



Table 33: Incident Pairs (Continued)

Incident API | 145

Name

Use

Type

Visibility

custom_field

A custom field associated with the incident.
For information on the nested pairs this pair
uses, refer to “Custom field API” on page
140.

pair

CGU

disp

The disposition assigned to the incident.
Uses nested pairs Ivl_id1 through lvl_id6.

pair

CGU

Ivl_id<1-6>

The pair data specifying the disposition of
the incident.

integer

CGU

ee_flag

Determines whether external events run
when an incident is created, updated, or

deleted.
* 0—External events do not run

¢ 1—External events run

integer

ei_cust

The emotive index of the contact associated
with the incident.

integer

ei_staff

The emotive index of the staff assigned to
the incident.

integer

i_id

The ID number of the incident.

integer

CDGU

initial _soln

The date and time the incident was
responded to ending with a status change to
a type other than unresolved.

time

interface_id

The ID number of the interface associated
with the incident.

integer

CGU

lang_id

The ID number of the language associated
with the incident.

integer

CGU

last_resp

The date and time the incident was last
responded to.

time

last_survey_score

The score of the most recent survey com-
pleted for the incident.

integer

RIGHT
NOW

TECHNOLOGIES



146 | Pair Names

Table 33: Incident Pairs (Continued)

Name Use Type Visibility
mailbox_id The ID number of the mailbox the incident |integer G
was created from.
mailing_id The ID number of the marketing mailing. integer G
org_id The ID number of the organization associ- | integer CGU
ated with the incident.
prod The product hierarchy the incident is associ- | pair CGU
ated with. Uses the nested pairs lvl_id1
through lvl_id6.
lvl_id<1-6> The pair data of the product hierarchy the | integer CGU
incident is associated with.
queue_id The ID number of the queue the incident is | integer CGU
assigned to.
ref_no The reference number of the incident. string CG
rel_due The relative due date to be met to meet the | time G
SLA. If SLAs have not been implemented,
this would apply to the default response
requirements.
resp_sav An uncommitted (not sent) response thread. | string CGU
response Indicates what type of response to send. If | pair CU
this pair is not included, a response is not
sent.
type The ID number of the response type to integer CU
send.
* 1—Incident closed message
* 2—Incident receipt message
* 3—Incident response message
rnl_queue_id The ID number of the RightNow Live queue | integer G

the incident is assigned to.

Appendix A



Table 33: Incident Pairs (Continued)

Incident API | 147

Name Use Type Visibility
rr_id The ID number of the response require- integer G
ments associated with the incident.
rule_ctx Escalation and rule state information associ- | pair G
ated with the incident. Uses the following
pairs.
escldate The date and time the incident was escalated. | time G
escllevel The level that the incident has been escalated | integer G
to through the rules engine.
state The rule state the incident is currently in. integer G
severity_id The ID number of the severity level assigned | integer. CGU
to the incident.
sla_resp_delta The number of minutes it took to respond to | integer G
the incident past the SLLA’s response requite-
ment.
sla_rsln_delta The number of minutes it took to resolve the | integer G
incident past the SLA’ resolution require-
ment.
slai_id The ID number of the SLA instance the integer CGU
incident is assigned to.
source_upd The creation source of the incident. Uses the | pair CU
following nested pairs.
Ivl_id1 The level-one source of the incident. Refer | integer CU
to Appendix B, “Source Codes,” on page
177.
lvl_id2 The level-two source of the incident. Refer | integer CU
to Appendix B, “Source Codes,” on page
177.
status The status of the incident. Uses the follow- | pair CGU
ing nested pairs.
id The ID number of the status. integer CGU

RIGHT
NOW

TECHNOLOGIES



148 | Pair Names

Table 33: Incident Pairs (Continued)

Name Use Type Visibility
type The ID number of the status type. integer CGU
subject The title of the incident. string CGU
sub_tbl Used in the incident_get function to identify | pair G
the table to retrieve threads from. Uses the
following nested pair.
tbl_id Specifies the table to get threads from. This |integer G
pair should always contain a value of 18 (the
ID of the #hreads table).
thread The incident threads (response, note, cus- pair CGU
tomer). Uses the following nested pairs.
Refer to “Adding thread entries” on page 82.
thread_entry<#> A entry within the incident thread. Uses the | pair CGU
following nested pairs. The first thread entry
should be named thread_entryl, the second
should be thread_entry2, and so on.
acct_id The ID number of the staff account associ- | integer CG
ated with the thread.
c_id The ID number of the contact associated integer CGU
with the thread.
channel The ID number of the channel associated | integer CGU
with the thread. Refer to Table 15 on page
83.
ei The emotive index rating of the thread. integer G
entered The time the thread was created. time G
entry_type The ID number of the incident thread type. |integer CGU
Refer to Table 14 on page 83.
note The text contained in the thread entry. string CGU
seq The sequence of the thread entry. integer CGU

Appendix A



Table 33: Incident Pairs (Continued)

Incident APl | 149

Name Use Type Visibility
time_billed The time billed for the incident. Uses the pair CGU
following nested pairs.
tb_item<#> A time billed entry. Uses the following pair CGU
nested pairs. The first th_item pair should be
named tb_item1, the second should be
th_item2, and so on.
acct_id The ID number of the staff member billing | integer CGU
the time.
bill_date The time the time-billed item was created. time CGU
minutes The number of minutes billed. integer CGU
notes Notes associated with the time-billed entry. | string CGU
bt_id The ID number of the time-billed activity | integer CGU
associated with the time-billed entry.
updated The time the incident was last updated. time G
updated_by The ID number of the staff member updat- | integer CU
ing the incident.
updated_by_c_id The ID number of the contact updating the |integer U
incident.
use_smime Indicates whether S/MIME is used for the |integer G
incident.
* 0—S/MIME not used
* 1—S/MIME used
wf_flag Determines whether business rules run integer CU

when the incident is created, updated, or

deleted.
* 0—DBusiness rules do not run

* 1—Business rules run

RIGHT
NOW

TECHNOLOGIES



150 | Pair Names

Meta-Answer API

The pairs described in the following table are available to use in meta-answer functions.

Table 34: Meta-Answer Pairs

Name Use Type Visibility
categories The categories associated with the meta- pair CU
answet.
hier_item A category. Uses the following nested pair. | pair CU
hm The hierarchy of the category. Uses the fol- | pair CU
lowing nested pairs.
lvl_id<1-6> The pair data of the category hierarchy the |integer CU
meta-answer is associated with.
m_id The ID number of the meta-answet. integer CDU
notes The notes field of the meta-answet. string CU
orig_ref_no The original reference number of an incident | string CU
that has been converted to an answet.
products The products associated with the meta- pair CU
answet.
hier_item A product. Uses the following nested pair. | pair CU
hm The hierarchy of the product. Uses the fol- | pair CU
lowing nested pairs.
Ivl_id<1-6> The pair data of the product hierarchy the  |integer CU
meta-answer is associated with.
source_upd The source of the meta-answer. Uses the fol- | integer CU
lowing nested paits.
Ivl_id1 The level-one source of the meta_answer. integer CU
Refer to Appendix B, “Source Codes,” on
page 177.
Ivl_id2 The level-two source of the meta-answer. integer CU

Refer to Appendix B, “Source Codes,” on
page 177.

Appendix A



Opportunity API

Opportunity API | 151

The pairs described in the following table are available to use in opportunity functions.

Table 35: Opportunity Pairs

Name Use Type Visibility
assigned The sales representative assigned to the pair CGU
opportunity. Uses the following nested pairs.
chain The management hierarchy of the staff pair CGU
account assigned to the opportunity. Uses
the nested pairs Ivl_id1 through lvl_id12.
Ivl_id<1-12> The pair data defining the management hier- | integer CGU
archy of the sales representative assigned to
the opportunity.
id The ID number of the sales representative | integer CGU
assigned to the opportunity.
banner The flag information associated with the pair CGU
opportunity.
acct_id The ID number of the staff account that integer G
most recently updated the flag
flag The importance of the flag. integer CGU
* 1—Low
* 2—Medium
* 3—High
txt The flag text. string CGU
upd The time the flag text was updated. time G
call_id The ID number of the call the opportunity |integer CGU
was created from.
closed The date and time the opportunity was time CGU
closed.
closed_value The closed-value information for the oppot- | pair CGU

tunity. Uses the following nested pairs.

RIGHT
NOW

TECHNOLOGIES



152 | Pair Names

Table 35: Opportunity Pairs (Continued)

Name Use Type Visibility
curr_id The ID number of the closed-value currency |integer CGU
type.
rate_id The ID number of the closed-value integer CGU
exchange rate.
val The closed value of the opportunity. string CGU
competitor Competitors associated with the opportunity. | pair CGU
Uses the following nested pairs.
comp_item A competitor associated with the opportu- | pair CGU
nity. Uses the following nested pairs.
competitor_id The ID number of the competitor. integer CGU
prmry Defines which competitor is the primary integer CGU
competitor for the opportunity. One com-
petitor must be specified as the primary. A
value of 1 identifies the primary competitor.
contact Contacts associated with the opportunity. pair CGU
Uses the following nested pairs.
oc_item<#> A contact associated with the opportunity. | pair CGU
Uses the following nested pairs. The first
contact should be named oc_item1, the sec-
ond should be oc_item2, and so on.
c_id The ID number of the contact. integer CGU
cr_id The ID number of the contact role of the integer CGU
contact.
oc_primary Defines which contact is the primary contact |integer CGU
for the opportunity. One contact must be
specified as the primary contact. A value of 1
identifies the primary contact.
cos The cost of sale of the opportunity. Uses the | pair CGU

following nested pairs.

Appendix A



Table 35: Opportunity Pairs (Continued)

Opportunity API | 153

Name Use Type Visibility
curr_id The ID number of the cost-of-sale currency |integer CGU
type.
rate_id The ID number of the cost-of-sale exchange |integer CGU
rate.
val The cost of sale of the opportunity. string CGU
created_by The ID number of the staff member who integer CG
created the opportunity.
custom_field A custom field associated with the opportu- | pair CGU
nity. For information on the nested pairs this
pair uses, refer to “Custom field API” on
page 140.
ee_flag Determines whether external events run integer CDU
when an opportunity is created, updated, or
deleted.
* 0—External events do not run
* 1—External events run
flow_id The ID number of the flow the opportunity |integer CGU
is associated with.
forecast_close The date the opportunity is forecasted to time CGU
close.
initial_contact The date the sales representative initially time CGU
made contact with the organization.
interface_id The ID number of the interface the opportu- | integer CGU
nity is associated with.
last_survey_score The last survey score for the opportunity. integer G
lead_rej_desc The comments entered when the lead was string CGU
rejected.
lead_rej_dttm The time the lead was rejected. time CGU
lead_rej_id The ID of the lead rejection reason. integer CGU

RIGHT
NOW

TECHNOLOGIES



154 | Pair Names

Table 35: Opportunity Pairs (Continued)

Name Use Type Visibility
lost The time that the opportunity was lost. time CGU
mgr_commit The committed status of the manager-fore- | integer CGU
casted value.
* 0—Not committed
* 1—Committed
mgr_value The manager-forecasted value of the oppor- | pair CGU
tunity. Uses the following nested pairs.
curr_id The ID number of the currency of the man- |integer CGU
ager-forecasted value.
rate_id The ID number of the exchange rate of the |integer CGU
manager-forecasted value.
val The manager-forecasted value of the oppor- | string CGU
tunity.
name The name of the opportunity. string CGU
note Used in opp_create and opp_update to add | pair CU
note entries to opportunities.
note_item<#> A note entry. Uses the following paits. The | pair CGU
first note entry should be named note_item1,
the second should be note_item2, and so on.
action The action for the note. The action for the |integer CGU
note. This field must be set to 1 to create a
note, 2 to update a note, and 3 to delete a
note.
channel The ID number of the channel the note was | integer CDGU
created from. Refer to Table 15 on page 83.
created The time the note was created. time CGU
created_by The ID number of the staff account that the |integer CGU
note is associated with.
seq The sequence of the note. integer CGU

Appendix A



Table 35: Opportunity Pairs (Continued)

Opportunity APl | 155

Name Use Type Visibility
text The text of the note. string CGU
updated The time the note was updated. time CGU
updated_by The ID number of the staff account that the |integer CG

note is associated with.

op_id The ID number of the opportunity. integer CDGU

org_id The ID number of the organization associ- | integer CGU

ated with the opportunity.

qt The quotes associated with the opportunity. | pair GU

Refer to “Quote API” on page 164 for a list
of the nested pairs used with this pair.

recall The recall date associated with an opportu- | time CGU

nity.

rep_commit The committed status of the sales represen- | integer CGU

tative-forecasted value.
* 0—Not committed
* ]—Committed
rep_value The sales-representative-forecasted value of | pair CGU
the opportunity. Uses the following nested
pairs.
curr_id The ID number of the currency of the sales- |integer CGU
representative-forecasted value.
rate_id The ID number of the exchange rate of the |integer CGU
sales-representative-forecasted value.
val The sales-representative-forecasted value of | string CGU
the opportunity.
ret_value The return value of the opportunity. Uses pair CGU
the following nested pairs.
curr_id The ID number of the currency of the return |integer CGU

value.

RIGHT
NOW

TECHNOLOGIES



156 | Pair Names

Table 35: Opportunity Pairs (Continued)

Name Use Type Visibility
rate_id The ID number of the exchange rate of the |integer CGU
return value.
val The return value of the opportunity. string CGU
rule_ctx Escalation and rule state information associ- | pair G
ated with the opportunity. Uses the following
pairs.
escldate The date and time the opportunity was esca- | time G
lated.
escllevel The level that the opportunity has been esca- | integer G
lated to through the rules engine.
state The rule state the opportunity is currently in. | integer G
source_upd The creation source of the opportunity. pair CG
Ivl_id1 The level-one source of the opportunity. integer CG
Refer to Appendix B, “Source Codes,” on
page 177.
Ivl_id2 The level-two source of the opportunity. integer CG
Refer to Appendix B, “Source Codes,” on
page 177.
stage The stage the opportunity is in. Uses the fol- | pair CGU
lowing nested pairs.
stage_id The ID number of the stage the opportunity |integer CGU
is in.
strategy_id The ID number of the strategy the opportu- |integer CGU
nity is associated with.
status The status of the opportunity. Uses the fol- | pair CGU
lowing nested pairs.
id The ID number of the status of the opportu- | integer CGU

nity.

Appendix A



Table 35: Opportunity Pairs (Continued)

Opportunity APl | 157

Name Use Type Visibility
type The ID number of the status type of the integer CGU
opportunity.
summary The summary of the opportunity. string CGU
sub_tbl Used in the opp_get function to identify the | pair G
table to retrieve notes from. Uses the follow-
ing nested pair.
tbl_id Specifies the table to get notes from. This integer G
pair should always contain a value of 164 (the
ID of the notes table).
tert The territory associated with the opportu- | pair CGU
nity. Uses the following nested pairs.
chain The territorial hierarchy associated with the | pair CGU
opportunity. Uses the following nested pairs.
id The ID number of the territory associated | integer CGU
with the opportunity.
lvl_id<1-12> The pair data defining the territorial hierar- | integer CGU
chy associated with the opportunity.
updated The date and time the opportunity was last | time G
updated.
updated_by The ID number of the staff member who integer CGU
last updated the opportunity.
wi_flag Determines whether business rules run integer CU
when the opportunity is created, updated, or
deleted.
* 0—Business rules do not run
* 1—Business rules run
win_loss_desc The win/loss desctiption for the opportu- | string CGU
nity.
win_loss_id The ID number of the win/loss teason asso- | integer CGU

ciated with the opportunity.

RIGHT
NOW

TECHNOLOGIES



158

Pair Names

Organization API

The pairs described in the following table are available to use in organization functions.

Table 36: Organization Pairs

Name Use Type Visibility
acquired The time the first opportunity associated time G
with the organization was closed.
alt_name The alternate name for the organization. string CGU
banner The flag information associated with the pair CGU
organization.
acct_id The ID number of the staff account that integer G
most recently updated the flag,
flag The importance of the flag. integer CGU
* 1—Low
* 2—Medium
* 3—High
txt The flag text. string CGU
upd The time the flag text was updated. time G
created The time the organization was created. time G
custom_field A custom field associated with the organiza- | pair CGU
tion. For information on the nested pairs this
pair uses, refer to “Custom field API” on
page 140.
ee_flag Determines whether external events run integer CDU
when an opportunity is created, updated, or
deleted.
* 0—External events do not run
* 1—External events run
industry_id The ID number of the industry the organiza- | integer CGU

tion is associated with.

Appendix A



Table 36: Organization Pairs (Continued)

Organization APl | 159

Name Use Type Visibility
login The organization login name. string CGU
name The name of the organization. string CGU
note Used in org_create and org_update to add | pair CGU
note entries to organizations.
note_item<#> A note entry. Uses the following pairs. The | pair CGU
first note entry should be named note_item1,
the second should be note_item2, and so on.
action The action for the note. integer CGU
* 1—Create a note
* 2—Update a note
* 3—Delete a note
channel The ID number of the channel the note was | integer CG
created from. Refer to Table 15 on page 83.
created The time the note was created. time G
created_by The ID number of the staff account that the |integer G
note is associated with.
seq The sequence of the note. integer CGU
text The text of the note. string CGU
updated The time the note was updated. time G
updated_by The ID number of the staff account that the |integer G
note is associated with.
num_employees The number of employees the organization | integer CGU
has.
oaddr The addresses of the organization. Uses the | pair CGU

following nested pairs.

RIGHT
NOW

TECHNOLOGIES



160 | Pair Names

Table 36: Organization Pairs (Continued)

Name Use Type Visibility
oaddr_item<#> An organization address, including address | pair CGU
type. Uses the following nested pairs. The
first oaddr_item pair should be named
oaddr_item1, the second should be
oaddr_item2, and so on.
addr The organization address. Uses the following
nested pairs.
city The city associated with the address. string CGU
country_id The ID number of the country associated integer CGU
with the address.
postal_code The postal or zip code associated with string CGU
address.
prov_id The ID number of the state or province integer CGU
associated with the address.
street The street address. string CGU
oat_id The type of address. integer CGU
* 1—Billing
* 2—Shipping
org_id The ID number of the organization. integer CDGU
parent The ID of the higher-level hierarchical menu | integer CGU
item that the lower-level hierarchical menu
item is associated with.
lvl_id<1-6> The pair data specifying the level IDs of the |integer CGU
parent menu.
password The password of the organization. string CGU
rule_state The rule state the organization is currently | integer G
in.
sales_acct_id The ID number of the sales representative | integer CGU

who is associated with the organization.

Appendix A



Table 36: Organization Pairs (Continued)

Organization API | 161

Name Use Type Visibility
slai The SLA instance associated with the organi- | pair CGU
zation. Refer to “Creating and deleting SLA
instances” on page 85.
sn_org_id The Salesnet organization ID number. integer CGU
source_upd The creation source of the organization. pair CGU
lvl_id1 The level-one source of the organization. integer CGU
Refer to Appendix B, “Source Codes,” on
page 177.
lvl_id2 The level-two source of the organization. integer CGU
Refer to Appendix B, “Source Codes,” on
page 177.
state The state of the organization. Uses the fol- | pair CGU
lowing nested pairs.
css The Service state of the organization. integer CGU
ma The Marketing state of the organization. integer CGU
sa The Sales state of the organization. integer CGU
sub_tbl Used in the org_get function to identify the | pair G
table to retrieve notes from. Uses the follow-
ing nested pair.
tbl_id Specifies the table to get notes from. This integer G
pair should always contain a value of 164 (the
ID of the notes table).
tot_rev The total revenue generated by the organiza- | pair CGU
tion. Uses the following nested pairs.
curr_id The ID number of the currency of the total |integer CGU
revenue.
rate_id The ID number of the exchange rate of the |integer CGU
total revenue.
val The total revenue of the organization. string CGU

RIGHT
NOW

TECHNOLOGIES



162 | Pair Names

Table 36: Organization Pairs (Continued)

Name Use Type Visibility

updated The time the organization was last updated. |integer G

updated_by The staff member who last updated the integer CG
organization.

wf_flag Determines whether business rules run integer CU

when the organization is created, updated, or

deleted.
* 0—DBusiness rules do not run

* 1—DBusiness rules run

Purchased product API

Table 37: Purchased Product Pairs

The pairs described in the following table are available to use in the pur_prod_create func-
tion.

Name

Use

Type

Visibility

pp_item<#>

A purchased product. Uses the following
nested pairs. The first purchased product
pair should be named pp_item1, the second
should be pp_item?2, and so on.

pair

C

c_id

The ID number of the contact that pur-
chased the product.

integer

campaign_id

The ID number of the campaign associated
with the purchased product.

integer

custom_ field

A custom field associated with the quote.
For information on the nested pairs this pair
uses, refer to “Custom field API” on page
140.

pair

finalized_by

The ID number of the staff member that
finalized the sale.

integer

license_end

The time the product license ends.

integer

Appendix A



Purchased product API | 163

Table 37: Purchased Product Pairs (Continued)

Name Use Type Visibility
license_start The time the product license begins. integer C
mailing_id The ID number of the mailing associated integer C

with the purchased product.

notes Notes associated with the purchased prod- | string C
uct.

oa_c_id The Offer Advisor contact ID. integer C

op_id The ID number of the opportunity the put- |integer C
chased product is associated with.

org_id The organization that purchased the prod- | integer C
uct.

price The price of the purchased product. Uses pair C

the following nested pairs.

curr_id The ID number of the currency of the pur- |integer C
chase price.

rate_id The ID number of the exchange rate of the |integer C
purchase price.

val The purchase price. string C
purchase_date The time the product was purchased. time C
quote_id The ID number of the quote the purchased |integer C

product is associated with.

serial_number The serial number of the purchased product. | string C

RIGHT

NOW

TECHNOLOGIES



164 | Pair Names

Quote API

The pairs described in the following table are available to use in opportunity functions.

Table 38: Quote Pairs

Name Use Type Visibility
qt Quotes associated with the opportunity. pair GU
Uses the following nested pairs.
qt_item A quote. The first qt_item pair should be pair GU
named qt_item1, the second should be
qt_item2. Uses the following nested pairs.
action The action for the quote item. This field integer GU
must be set to 1 to create a quote item, 2 to
update a quote item, and 3 to delete a a quote
item.
adj_total The adjusted total of the quote. Uses the fol- | pair GU
lowing nested pairs.
curr_id The ID number of the currency of the integer GU
adjusted total.
rate_id The ID number of the exchange rate of the |integer GU
adjusted total.
val The adjusted total value. string GU
created The time the quote was created. time
created_by The ID number of the staff member who integer G
created the quote.
custom_field A custom field associated with the quote. For | pair GU
information on the nested pairs this pair
uses, refer to “Custom field API” on page
140.
discount The discount applied to the quote. integer GU
forecast The forecast status of the quote. integer GU

¢ 0—Forecast check box is cleared

¢ 1—Forecast check box is selected

Appendix A



Table 38: Quote Pairs (Continued)

Quote API | 165

Name Use Type Visibility
name The name of the quote. string GU
notes The notes associated with the quote. string GU
offer_end The offer end date. time GU
offer_start The offer start date. time GU
prod The sales products contained in the quote. | pair GU

Uses the following nested pairs.
pq_item A sales product associated with the quote. pair GU
Uses the following nested pairs.
adjusted_desc The adjusted description of the product string GU
associated with the quote.
adjusted_id The adjusted ID of the product associated | string GU
with the quote.
adjusted_name The adjusted name of the product associated | string GU
with the quote.
adjusted_price The adjusted price of the product associated | pair GU
with the quote. Uses the following nested
pairs.
curr_id The ID number of the currency of the integer GU
adjusted price.
rate_id The ID number of the exchange rate of the |integer GU
adjusted price.
val The adjusted price. string GU
adjusted _total The adjusted total for the product associated | pair GU
with the quote (adjusted price multiplied by
quantity). Uses the following nested pairs.
curr_id The ID number of the currency of the integer GU
adjusted total.
rate_id The ID number of the exchange rate of the |integer GU
adjusted total.

RIGHT

NOW

TECHNOLOGIES



166 | Pair Names

Table 38: Quote Pairs (Continued)

Name Use Type Visibility
val The adjusted total value. string GU
custom_field A custom field associated with the sales pair GU
product. For information on the nested pairs
this pair uses, refer to “Custom field API” on
page 140.
discount The adjusted discount for the product. integer GU
notes The notes associated with the edited sales integer GU
product.
original_desc The original sales product description, integer G
before it was edited.
original_id The original sales product ID, before it was | string G
edited.
original_name The original sales product name, before it string G
was edited.
original_price The original sales product price, before it pair G
was edited. Uses the following nested pairs.
curr_id The ID number of the currency of the origi- |integer GU
nal price.
rate_id The ID number of the exchange rate of the |integer GU
original price.
val The adjusted original price. string GU
product_id The ID number of the product. integer DGU
qty The quantity of the sales product. integer GU
seq The sequence of the sales product in the list |integer GU
of sales products associated with the quote.
quote_id The ID number of the quote. integer GU
schedule_id The ID number of the price schedule associ- | integer GU

ated with the quote.

Appendix A



Table 38: Quote Pairs (Continued)

Sales product API | 167

Name Use Type Visibility
sent The date and time the quote was sent. time GU
sent_to The email address the quote was sent to. string GU

status The current status of the quote. integer GU
tmpl_file_id The ID number of the quote template used | integer GU
in the quote.
total The total value of the quote. Uses the follow- | pair GU
ing nested pairs.
curr_id The currency ID associated with the total integer GU
value.
rate_id The exchange rate ID associated with the integer GU
total value.
val The total value. string GU
updated The time the quote was last updated. time GU
updated_by The ID number of the staff member who integer GU

last updated the quote.

Sales product API

The pairs described in the following table are available to use in sales product functions.

Table 39: Sales Product Pairs

Name Use Type Visibility

cnt The number of times the product has been | integer CGU
offered by Offer Advisor.

custom_field A custom field associated with the sales pair CGU

product. For information on the nested pairs
this pair uses, refer to “Custom field API”
on page 140.

RIGHT
NOW

TECHNOLOGIES



168 | Pair Names

Table 39: Sales Product Pairs (Continued)

Name Use Type Visibility
desc The description of the sales product. Uses | pair CGU
the following nested pairs.
Ibl_item<#> The descriptions and languages of the sales | pair CGU
product. Uses the following nested pairs.
The first label item should be 1bl_item1, the
second should be lbl_item2, and so on.
label The description text. string CGU
lang_id The ID number of the language the label is | integer CGU
written in.
disabled Indicates if the sales product is disabled. integer CGU
folder_id The ID number of the folder the productis |integer CDG
associated with.
id The ID number of the sales product. integer CGU
label The name of the sales product. pair CGU
Ibl_item<#> The descriptions and languages of the sales | pair CGU
product. Uses the following nested paits.
The first label item should be 1bl_item1, the
second should be Ibl_item2, and so on.
label The description text. string CGU
lang_id The ID number of the language the label is | integer CGU
written in.
oa_exclude Indicates whether the product is excluded integer CGU
from being suggested by Offer Advisor.
* 0—Included
* 1—Excluded
product_id The ID number of the sales product. integer DGU
sched Price schedules associated with the sales pair CGU

product. Uses the following nested paits.

Appendix A



Table 39: Sales Product Pairs (Continued)

Sales product API | 169

Name Use Type Visibility
sch_item<#> A price schedule associated with the sales pair CGU
product. Uses the following nested paits.
The first schedule item should be sch_item1,
the second should be sch_item2, and so on.
notes Notes associated with the product-to-sched- | string CGU
ule relationship.
price The price of the sales product in the associ- | pair CGU
ated schedule. Uses the following nested
pairs.
curr_id The ID number of the currency of the sales |integer CGU
product’s price.
rate_id The ID number of the exchange rate of the |integer CGU
sales product’s price.
val The sales product’s price. string CGU
schedule_end The schedule start date. time CGU
schedule_id The ID number of the schedule associated | integer CGU
with the sales product.
schedule_start The schedule end date. time CGU
seq The sequence of the sales product in the integer CDG
folder or folder list.
updated The time the sales product was last updated. | time G
vis Visibility settings for the sales product. Uses | pair CGU
the following nested pairs.
vis_item<#> Visibility settings for an interface. Uses the | pair CGU

following pair. The first vis_item pair should
be named vis_item1, the second should be
vis_item2, and so on.

RIGHT
NOW

TECHNOLOGIES



170 | Pair Names

Table 39: Sales Product Pairs (Continued)

Name Use Type Visibility
admin Indicates whether the sales product is visible |integer CGU
on the interface.
* 0—Not visible
* 1—Visible
intf_id The ID number of the interface the visibility | integer CGU
setting applies to.
yes_cnt The number of times the product has been |integer CGU

accepted when offered by Offer Advisor.

Search API

The pairs described in the following table are available to use in the search function.

Table 40: Search Pairs

Name Use Type Visibility
search_args The search argument. Uses the following pair N/A
nested pairs.
search_field<#> The search fields. Uses the following nested | pair N/A
pairs. The first search field should be named
search_field1, the second should be
search_field2, and so on.
name The name of the run-time selectable filter string N/A
being searched on.
compare_val The value of the field being searched on. string N/A

Appendix A



SLA instance API | 171

SLA instance API

The pairs described in the following table are available to use in contact and organization

functions.
Table 41: SLLA Instance Pairs
Name Use Type Visibility
slai SLA instances. Uses the following nested pair CDGU
pairs.
slai_item<#> An SLA instance. Uses the following pairs. | pair CGU
The first SLA instance should be named
slai_item1, the second should be slai_item2,
and so on.
action The action for the SLA instance. This field |integer CDGU
must be set to 1 to create an SLLA instance, 2
to update an SLA instance, and 3 to delete an
SLA instance.
activedate The activation date of the SILA instance. time CGU
expiredate The expiration date of the SLA instance. time CGU
inc_chat The number of chat incidents remaining in | integer CGU
the SLA instance.
inc_csr The number of CSR incidents remaining in | integer CGU
the SLLA instance.
inc_email The number of email incidents remaining in | integer CGU
the SLA instance.
inc_total The total number of incidents remaining in | integer CGU
the SLA instance.
inc_web The number of web incidents remaining in | integer CGU
the SLLA instance.
sla_id The ID number of the SLA that the SLA integer CGU
instance is associated with.
sla_set The shared ID number of the SLA if a modi- | integer CGU
fied version of an SLLA is used.

RIGHT

NOW

TECHNOLOGIES



172 | Pair Names

Table 41: SLA Instance Pairs (Continued)

Name Use Type Visibility
slai_id The ID number of the SLA instance. integer CDGU
state The state of the SLA. integer CGU

* 1—Not ready

* 2—Active

* 3—Used up

* 4—Disabled

Task API

The pairs described in the following table are available to use in task functions.

Table 42: Task Pairs

Name Use Type Visibility

a_id The ID number of the answer the task is integer CGU
associated with.

assgn_acct_id The ID number of the staff member integer CGU
assigned to the task.

c_id The ID number of the contact associated integer CGU
with the task.

campaign_id The ID number of the campaign the task is | integer CGU
associated with.

completed The time the task was completed. time CGU

created The time the task was created. time G

created_by The ID number of the staff member the task |integer CG

was created by.

custom_field A custom field associated with the task. For | pair CGU
information on the nested pairs this pair
uses, refer to “Custom field API” on page
140.

Appendix A



Table 42: Task Pairs (Continued)

Task API | 173

Name Use Type Visibility
doc_id The ID number of the document the task is | integer CGU
associated with.
due_date The date and time the task is due. time CGU
iid The ID number of the incident the task is integer CGU
associated with.
inherit A bitmask defining the type of data inherited |integer CGU
from the parent task.
* 1—Staff assignment
* 2—Organization association
* 4—Contact association
mailing_id The ID number of the mailing the task is integer CGU
associated with.
name The name of the task. string CGU
notes The notes associated with the task. string CGU
op_id The opportunity the task is associated with. | integer CGU
org_id The organization the task is associated with. |integer CGU
pct_complete The percentage of the task that has been integer CGU
completed.
planned_completion The planned completion date and time for | time CGU
the task.
priority The priority level of the task. integer CGU
e l—Low
* 2—Normal
* 3—High
rule_ctx Escalation and rule state information associ- | pair G
ated with the task. Uses the following pairs.
escldate The date and time the task was escalated. time G

RIGHT

NOW

TECHNOLOGIES



Pair Names

Table 42: Task Pairs (Continued)

Name Use Type Visibility
escllevel The level that the task has been escalated to |integer G
through the rules engine.
state The rule state the task is currently in. integer G
source_upd The source of the task. Uses the following | pair CGU
nested pairs.
Ivl_id1 The level-one source of the task. Refer to integer CGU
Appendix B, “Source Codes,” on page 177.
Ivl_id2 The level-two source of the task. Refer to integer CGU
Appendix B, “Source Codes,” on page 177.
start_date The time the task started. time CGU
status The status of the task. Uses the following pair CGU
nested pairs.
id The ID number of the status of the task. integer CGU
type The ID number of the status type of the integer CGU
task.
survey_id The ID number of the survey the task is integer CGU
associated with.
tt_id The ID number of the task template that the |integer CGU
task is associated with.
tbl The table the task is associated with. integer CGU
task_id The ID number of the task. integer CDGU
updated The time the task was last updated. time G
updated_by The ID number of the last staff member to | integer CGU

update the task.

Appendix A



Table 42: Task Pairs (Continued)

Task API | 175

Name

Use

Type

Visibility

wf_flag

Determines whether business rules run
when the task is created, updated, or deleted.

* 0—DBusiness rules do not run

* 1—Business rules run

integer

CU

RIGHT

NOW

TECHNOLOGIES



176 | Pair Names

Appendix A



177

Appendix B
Source Codes

This appendix lists the source codes that can be used when creating and updating answers,
contacts, incidents, opportunities, and organizations. Table 43 lists each level-one source and
its corresponding code value. Table 44 on page 178 lists each level-two source, organized by
level-one source, and its corresponding code value. If the level-one source code is 32001 for
the Administration Console, the level-two source code corresponds to the ID number of the
table. Table ID codes are located in Table 45 on page 181.

Caution  If you do not include the soutce pairs in a function, the soutces will automati-
cally be set to indicate that the record was created from the XML API
(source_lvl1=32007 and source_lvl2=6001). Setting the sources to any other
values may have significant adverse effects on your data, so you should use cau-
tion and carefully test your work.

Table 43: Level-One Source Codes

Source Code
Administration Console 32001
RightNow Console 32002
Accessibility Interface 32003
End-user interface 32004
RightNow Wireless 32005
Utilities 32006
Public API 32007
Outlook Integration 32008

RIGHT
NOW

TECHNOLOGIES




178 | Source Codes

Table 43: Level-One Source Codes (Continued)

Source Code
Import 32009
Campaign or survey flow 32010

Table 44: Level-Two Source Codes

Level-One Source

Level-Two Source

Code

32001—Administration Console Refer to Table 45 on page 181.

Appendix B



Table 44: Level-Two Source Codes (Continued)

179

Level-One Source Level-Two Soutce Code

32002—RightNow Console Incident editor 1001
Contact editor 1002
Organization editor 1003
Opportunity editor 1004
Task Instance editor 1005
Answer editor 1006
Mailing editor 1007
Survey editor 1008
Campaign editor 1009
Document editor 1010
Mailing format editor 1011
Segment editor 1012
Contact list editor 1013
Offer Advisor 1014
Answer propose 1015
Opportunity create from incident 1016
editor
RightNow Live 1017
Analytics 1018

32003—Accessibility interface Incident editor 2001
Contact editor 2002
Organization editor 2003

RIGHT
NOW

TECHNOLOGIES



180 | Source Codes

Table 44: Level-Two Source Codes (Continued)

Level-One Source Level-Two Soutce Code
32004—End-user interface Ask a Question 3001
My Stuff—Questions 3002
My Stuff—Profile 3003
Pass-through authentication 3004
Answer feedback 3005
Site feedback 3006
Survey response 3007
32005—RightNow Wireless Administration incident edited ot 4001
assigned
Ask a Question 4002
My Stuff—Questions 4003
My Stuff—Profile 4004
Pass-through authentication 4005
Answer feedback 4006
32006—Utilities (except kimport) | fechmail—Service mailbox 5001
techmail—Marketing mailbox 5002
agedatabase—Closed incident with 5003
Waiting status
agedatabase—Answer set to review 5004
agedatabase—Answer published 5005
agedatabase—Answer decayed 5006
dbstatus—LFEscalated 5007
rnmd—Mailer daemon 5008

Appendix B



Table 44: Level-Two Source Codes (Continued)

181

Level-One Source Level-Two Soutce Code
32007—Public API XML API 6001
SOAP API 6002
External event 6003
Custom tab 6004
32008—Outlook Integration Contacts added or update 7001
(during synchronization) Threads and notes appended 7002
Tasks added or updated 7003
32009—Import Contact Upload 8001
kimport utility 8002
32010—Flow Campaign 9001
Survey 9002
Table 45: Table ID Codes
Code Table
1 incidents
2 contacts
3 orgs
4 links
6 tree
7 cluster
8 visibility
9 answers
10 meta_answers

RIGHT
NOW

TECHNOLOGIES



182 | Source Codes

Table 45: Table ID Codes (Continued)

Code Table

11 ans_access

12 quotes

13 products

14 categories

15 custom_ fields
16 rnl chats

17 fattach

18 threads

19 statuses

20 menu_items
21 languages

22 std_content
23 map2meta_ans
24 accounts

25 ac_dashboard_items
26 interfaces

27 prodcat_notif
28 mailboxes

29 var2intf

30 holidays

31 billable_tasks
32 profiles

33 profile2intf
34 time_billed

Appendix B



183

Table 45: Table ID Codes (Continued)

Code Table

35 inc2contacts

36 opp_phrases

37 dispositions

38 variables

39 queues

40 contact_types
41 sla2ans_access
42 slas

43 sla_instances
44 rr_intervals

45 rr2holidays

46 response_reqs
47 org_addrs

48 provinces

49 countries

50 org_addr_types
51 documents

52 contact_lists

53 mailings

54 mailing formats
55 proofs

56 pipeline_snapshots
57 contact2list

58 tracked_links

RIGHT

NOW

TECHNOLOGIES



184 | Source Codes

Table 45: Table ID Codes (Continued)

Code Table

59 audiences

60 dca_recs

61 link_categories

62 tmp_keyword

63 profile2queue

64 labels

65 hier_menus

66 dates

67 transactions

68 session_summary
69 user_trans

70 archived_incidents
71 phrases

72 ans_phrases

73 keyword_searches
74 ans_stats

75 stats

76 inc_performance
77 ans_notif

78 rule_alerts

79 segments

80 ruleacts

81 ruleconds

82 clicktrack

Appendix B



185

Table 45: Table ID Codes (Continued)

Code Table

83 msg_types

84 rnl_staff login

85 ma_trans

86 tmp_ext_keyword
87 opportunities

88 sa_strategies

89 sa_stages

90 sa_tasks

91 flow_map2state
92 sa_prod2sched
93 sa_products

94 purchased_products
95 queue_stats

96 currencies

97 exchange_rates

98 rules

99 rules_archive

100 sa_price_schedules
101 prod2quotes

102 rule_states

103 rule_escalations
104 mail_lists

105 mail_list2addr

106 task_instances

RIGHT

NOW

TECHNOLOGIES



186 | Source Codes

Table 45: Table ID Codes (Continued)

Code Table

107 gap_report

108 ac_permissions
109 opp_performance
110 opp_snapshots
111 configuration
112 profile2layout
113 gap_info

114 gap_tree

115 db_maint_hist
116 locks

117 bounced_msgs
118 document_tags
119 mail_addrs

120 mail_groups
121 analytics_core
122 ac_nodes

123 mailing_stats
124 ac_alerts

125 ac_schedules
126 flows

127 surveys

128 questions

129 question_choices
130 ac_styles

Appendix B



187

Table 45: Table ID Codes (Continued)

Code Table

131 question_sessions
132 ac_color_schemes
133 question_responses
134 rule_state_xitions
135 rnl_chat_activities
136 rule_log

137 opp2contacts

138 rnl_staff_activity
139 ac_run_vals

140 rx_email

141 data_imports

142 folders

143 cluster_class

144 cluster_info

145 cluster_tree

146 rnl_staff_engage
147 data_import_tmpl
148 sa_period2acct
149 sa_territories

150 sa_sales_periods
151 sa_contact_roles
152 event_queue

153 meta_ans_vis

154 integration_errors

RIGHT

NOW

TECHNOLOGIES



188 | Source Codes

Table 45: Table ID Codes (Continued)

Code Table

155 oa_contacts

156 offer_phrases

157 offer_trans

158 offers

159 target2offers

160 segment_attributes
161 oa_segments

162 dependencies

163 campaigns

164 notes

165 survey_migration
166 meta_map

167 help_links

168 ac_scripts

169 flow_web_pages
170 dictionary

171 mail_queue

172 layouts

173 account_speed_dial
174 agent_acd_modes
175 profile2acd_mode
176 topic_words

177 cti_logins

178 cti_mode_changes

Appendix B



189

Table 45: Table ID Codes (Continued)

Code Table

179 cti_calls

180 call_activity

181 similar_search_links
182 similar_searches

183 cti_current_calls

184 proof_recipients

185 proof_trans

186 contact_sessions

187 flow_entry_points
188 rnl_chat2ma

189 deleted_recs

190 isync_recs

191 topic_words_phrases
192 exclude_addrs

193 exclude_trans

194 prod_links

195 meta_ans_prod_links
196 rnl_queue2cats

197 rnl_agent_queue

198 rnl_user_queue

199 rnl_ext_queue_history
200 voice_stats

201 aims_data

202 label_menus

RIGHT

NOW

TECHNOLOGIES



190 | Source Codes

Table 45: Table ID Codes (Continued)

Code Table

203 opp2competitor
204 rule_wvariables

205 ans_var_depends
206 pc_phrases

207 ac_filters

208 ac_tables

209 ac_columns

210 ac_params

211 ac_param_opts
212 ac_exceptions
213 ac_audit_log

214 ac_charts

215 ac_chart_src

216 ac_chart_styles
217 spider_track

218 nav_sets

219 nav_list_items
220 cti_custom_items
221 revenue_snapshots

Appendix B



Index | 191

Index

A

access_mask, computing the value of 34

account API

acct_create 30

acct_destroy 31

acct_move 32

acct_update 33

description 30

pair descriptions 125
accounts, see account API
acct_create function

description and example 30

required parameters 22
acct_destroy function

description and example 31

required parameters 22
acct_move function

description and example 32

required parameters 22
acct_update function

description and example 33

required parameters 22
ans.tmpl file for email integration 108
ans_create function

description 34

example 37

required parameters 23
ans_destroy function

description and example 38

required parameters 23
ans_get function

description and example 38

required parameters 23
ans_update function

description and example 39

required parameters 23
answer API

ans_create 34

ans_destroy 38

ans_get 38

answer API (continued)
ans_update 39
description 34
pair descriptions 129
answers
see answer API
source codes, list 177
API
access, for hosted and non-hosted customers 13
accessing, through XML 17
account functions 30
answer functions 34
code implementation 94
contact functions 40
flow function 44
hierarchical menu functions 45
implementing code 94
incident functions 49
meta-answer 53
opportunity functions 57
organization functions 61
purchased product functions 66
sales product functions 67
search function 70
SLA instance pairs 85
SQL query functions 74
task functions 77
API functions, see XML functions
application bridge, see email integration
args parameter 20

Base 64 encoding, in pass-through authentication 114

C

campaigns, see flow API

RIGHT

NOW

TECHNOLOGIES



192 | Index

code numbers

finding 89

with the lookup_id_for_name function 91

see alsosource codes 177
connector tag
description 18
ret_email attribute 19
ret_type attribute 18
contact API
adding notes 85
contact_create 40
contact_destroy 42
contact_get 42
contact_update 43
description 40
mailing_send_to_contact 43
pair descriptions 133
contact.tmpl file for email integration 108
contact_create function
description and example 40
required parameters 23
contact_destroy function
description and example 42
required parameters 23
contact_get function
description and example 42
required parameters 23
contact_update function
description and example 43
required parameters 23
contacts
see contact AP
source codes, list 177
conversation threads or strings 82
css_category_create function
desciption and example 45
required parameters 24
css_category_destroy function
desciption and example 47
required parameters 25
css_category_move function
desciption and example 47
required parameters 25
css_category_update function
desciption and example 48
required parameters 26

css_disposition_create function
desciption and example 45
required parameters 24
css_disposition_destroy function
desciption and example 47
required parameters 25
css_disposition_move function
desciption and example 47
required parameters 25
css_disposition_update function
desciption and example 48
required parameters 26
css_product_create function
desciption and example 45
required parameters 24
css_product_destroy function
desciption and example 47
required parameters 25
css_product_move function
desciption and example 47
required parameters 25
css_product_update function
desciption and example 48
required parameters 26
custom fields
setting through XML 80
XML API pair descriptions 140

D

DTD, see XML tags

E

email, XML-formatted 95
email integration
configuring 106
template files 107
error codes for the XML API 96
escaped characters 21
event handlers
overview 14

see also external events or email integration 101




external events
developing 104
email integration 106
enabling and configuring 102
overview 102

F

flow API
flow_execute function 44
pair descriptions 140
flow_execute function, description and example 44
function tag, name and ID attributes 19
functions, see XML functions

H

hierarchical menu API
create functions, description and example 45
description 45
destroy functions, description and example 47
move functions, description and example 47
pair descriptions 141
update functions, description and example 48
hiermenu API, see hierarchical menu API

id attribute in function tags 19
implementing code for the XML API 94
incident API

adding thread entries 82

description 49

incident_create 49

incident_destroy 51

incident_get 52

incident_update 52

pair descriptions 143
incident.tmpl file for email integration 108

Index | 193

incident_create function
description and examples 49
required parameters 26
incident_destroy function
description and example 51
required parameters 26
incident_get function
description and example 52
required parameters 26
incident_update function
description and example 52
required parameters 26
incidents
see incident API
source codes, list 177
integration overview 13
invalid parameters 30

L

login, see pass-through authentication
lookup_id_for_name function
description 91
example 92
required parameters 27

mailing_send_to_contact function
description and example 43
required parameters 24
max_rows parameter 20, 72
menu API, see hierarchical menu API
menus, see hierarchical menu API
meta_ans_create function
description and example 53
required parameters 27
meta_ans_destroy function
description and example 55
required parameters 27
meta_ans_update function
description and example 56
required parameters 27

RIGHT

NOW

TECHNOLOGIES



194 | Index

meta-answer API
description 53
meta_ans_create 53
meta_ans_destroy 55
meta_ans_update 56
pair descriptions 150
meta-answers, se¢e meta-answer API

name
attribute, in pair tags 20
atttribute, in function tags 19

note pair, example 85

notes, adding through XML API 85

0

opp.tmpl file for email integration 108
opp_create function

description and example 57

required parameters 27
opp_destroy function

description and example 59

required parameters 27
opp_get function

description and example 59

required parameters 27
opp_update function

description and example 60

required parameters 27
opportunities

see opportunity API

source codes, list 177
opportunity API

adding notes 85

description 57

opp_create 57

opp_destroy 59

opp_get 59

opp_update 60

pair descriptions 151
org.tmpl file for email integration 108

org_create function

description and example 64

required parameters 28
org_destroy function

description and example 65

required parameters 28
org_get function

description and example 65

required parameters 28
org_update function

description and example 66

required parameters 28
organization APL

adding notes 85

address type descriptions 62

description 61

org_create 64

org_destroy 65

org_get 65

org_update 66

pair descriptions 158
organizations

see organization API

source codes, list 177

P

pair names
account API 125
answer API 129
contact API 133
custom field API 140
flow API 140
hierarchical menu API 141
incident API 143
meta-answer API 150
opportunity API 151
organization API 158
purchased product API 162
quote API 164
sales API 167
search API 170
SLA instance API 171
task API 172




pair tags
name attribute 20
type attribute 20
parameter tags 20
parse.php, location 94
pass-through authentication
configuring 111
disabling account creation for 111
flow chart 110
login
formatting URL for 114
generating form with ASP.Net 121
generating form with PHP 118
implementing script 114
parameter descriptions 114
redirecting 112
requiring 111
overview 15, 109
PHP scripts, parse.php location 94
POST method 94
products
see purchased product API
see sales product API
PTA, see pass-through authentication
pur_prod_create function, required parameters 28
pur_product_create function, description and example 66
purchased product API 66
pair descriptions 162

Q

quote API, pair descriptions 164

R

ret_email attribute in connector tag 19
ret_type attribute in connector tag 18

Index | 195

S

sa_prod_create function
description and example 68
required parameters 28
sa_prod_destroy function
description and example 69
required parameters 28
sa_prod_update function
description and example 69
required parameters 29
sales API, pair descriptions 167
sales product API
description 67
sa_prod_create 68
sa_prod_destroy 69
sa_prod_update 69
search, see search AP
search API
description 70
operator descriptions and examples 70
pair descriptions 170
search function
product/sub-product example 72
required parameters 29
result set example 73
view_id example 72
service level agreements, see SLA instances
SLA instance API, pair descriptions 171
SLA instances, creating and deleting 85
slai pair example 86
SLLAs, see SILA instances
source codes
level-one, list 177
level-two, list 178
special characters, formatting in XML 21
sql parameter 20
SQL query API
description 74
sql_get_dttm 76
sql_get_int 74
sql_get_str 75
sql_get_dttm function
description and example 76
required parameters 29

RIGHT

NOW

TECHNOLOGIES



196 | Index

sql_get_int function
description and example 74
required parameters 29

sql_get_str function
description and example 75
required parameters 29

T

table ID codes, list 181

table ID numbers, for lk_tbl parameter 92

tags, see XML tags
task API
description 77
pair descriptions 172
task_create 77
task_destroy 78
task_get 78
task_update 78
task_create function
description and example 77
required parameters 29
task_destroy function
description and example 78
required parameters 29
task_get function
description and example 78
required parameters 29
task_update function
description and example 78
required parameters 30
tasks, see task API
template files for email integration 107
terminating, SLA instances 85
thread pair, example 84
threads
adding through XML API 82
updating through XML API 84
type attribute in pair tag 20

U

URLs, formatting for pass-through authentication 114

vV

variable IDs, passing in XML files 87
view_id parameter

example in search function 72

in search functions 70

X

XML
code numbers 89
connector tag 18
custom fields 80
email, configuration settings 95
email integration 95
error codes for the XML API 96
finding code numbers 89
function tag 19
implementation
patse.php 94
POST method 94
sending email in XML format 95
integration overview 17
overview 14
pair tags 20
parameter tags 20
parse.php, location 94
passing variable IDs 87
example 87
POST method 94

return values format through email or URL 19

sending email in XML format 95
setting custom fields 80
special characters 21
using the XML API log 98
variable IDs 87
XML API log 98

XML API
account functions 30
answer functions 34
contact functions 40
flow function 44
hierarchical menu functions 45
incident functions 49




XML API (continued)
meta-answer 53
opportunity functions 57
organization functions 61
purchased product functions 66
sales product functions 67
search function 70
SLA instance pairs 85
SQL query functions 74
task functions 77
see also XML functions

XML functions
acct_create 22, 30
acct_destroy 22, 31
acct_move 22, 32
acct_update 22, 33
ans_create 23, 34
ans_destroy 23, 38
ans_get 23, 38
ans_update 23, 39
contact_create 23, 40
contact_destroy 23, 42
contact_get 23, 42
contact_update 23, 43
css_category_create 24
css_category_destroy 25
css_category_move 25
css_category_update 26
css_disposition_create 24
css_disposition_destroy 25
css_disposition_move 25
css_product_create 24
css_product_destroy 25
css_product_move 25
css_product_update 26
descriptions 22
flow_execute 44
hierarchical menus

create functions 45
destroy functions 47
move functions 47
update functions 48
incident_create 26, 49
incident_destroy 26, 51
incident_get 26, 52
incident_update 26, 52
lookup_id_for_name 27, 92

XML functions (continued)

mailing_send_to_contact 24, 43
meta_ans_create 27, 53
meta_ans_destroy 27, 55
meta_ans_update 27, 56
opp_create 27, 57
opp_destroy 27, 59
opp_get 27, 59
opp_update 27, 60
org_create 28, 64
org_destroy 28, 65
org_get 28, 65
org_update 28, 66
pur_prod_create 28
pur_product_create 66
sa_prod_create 28, 68
sa_prod_destroy 28, 69
sa_prod_update 29, 69
search 29

sql_get_dttm 29, 76
sql_get_int 29, 74
sql_get_str 29,75
task_create 29, 77
task_destroy 29, 78
task_get 29, 78
task_update 30, 78

XML tags

connector 18

ret_type and ret_email attributes 18
function 19

name and ID attributes 19
pair, name and type attributes 20
parameter 20

args 20

max_rows 20

sql 20

Index

197

RIGHT
NOW

TECHNOLOGIES




198 | Index




Certain components of the software that are provided under license from RightNow belong to third parties that have
authorized RightNow to sub-license the components:

“Apache Projects” (webservers and associated utilities and sub-projects) Copyright © 2000-2007 The Apache Soft-
ware Foundation; “Sendmail” (sending email header files) is © 1983 to Eric P. Allman and © 1983, 1993 to the
Regents of the University of California; “Mime pph” (libraty for email mime, encoding/decoding) is © 1996-1998 to
Douglas W. Saunder; “Base64” (data encoding) is © 1996 to Internet Software Consortium; “Brill NLP Tagger” (nat-
ural language parser) is © 1993 MIT and University of Pennsylvania; “Expat XML Parser” (XML parser) is © 1998-
2000 to Thai Open Source Software Center Ltd. and Clark Cooper and © 2001-2002 to Expat Maintainers; “GIF
Image Reading Routines” (image reading routines) is © 1990, 1991, 1993 to David Koblas; “Semaphore Implementa-
tion” (generic semaphore routines for live server) is © 1995 to UMASS CS Dept.; “Scandir for Solaris and Win 32"
(utility routines code) is © 1997-2003 to the PHP Group; “Regular Expression Library” (pattern matching library) is
© 1992-1994 to Henty Spencer; “PDF Library” is © to PDFlib GmbH; “PopChart Enterprise” is © to Corda
Technologies, Inc.; “eWeb Edit Pro + XML” is © to Ektron, Inc.; “SSCE Java Soutce” (spell checker) is © to Wintet-
tree Software, Inc.; “libxslt” (xml transformation tool) is © 1998-2000 to David Veillard; “log4net” (logging tool) is
© 1999 to the Apache Software Foundation; “awk data encoding” (data encoding) is © 1997 to Lucent Technologies;
“Open SSL” (secure data transfer) includes cryptographic software written by Eric Young (eay@cryptsoft.com); “stt-
ftime” (utility routine code) is © 1989 the Regents of the University of California; “strtoll” (utility routine code) is ©
1992 the Regents of the University of California; portions of “ExDataGrid” (active X control for data display) are ©
2003 to Jan Tielens; portions of “svgdom” (vector graphics routines) are © 2002 to James W. Newkirk, Michael Two,
and Alexei A. Vorontosov, and © 2000-2002 to Phillip A. Craig; “php” (dynamic web html programming language) is
© 1999-2000 to the PHP Group; “PHP zip class” (ZIP file utilities) is © 2005 to Rochak Chauhan; “HtDig” (web
index/search library) is © 1999-2005 to The HtDig Group; “ClLucene” (information retrieval library) is © 2003-2005
to the CLucene team; “Snowball” (natural language parser stemmers) is © 2001, Dr. Martin Porter and Snowball
Team; “ONC-RPC” (network utility routines) is © 1997 WD Klotz, 1993 by Martin F. Gergeleit and 1988 Sun
Microsystems, Inc.; “Overlib” (Javascript Utilities) is Copyright Erik Bosrup 1998-2001; “cUrl” (networking utilities)
© 1996-2007, Daniel Stenbetg; “libmerypt” (data secutity routines) © 1998, 1999, 2001 Nikos Mavroyanopoulos;
“zlib” (data compression and utilities) is © 1995-2005 Jean-loup Gailly and Mark Adler; “HTML Tidy” (HTML/
XML cleaning routines) 1998-2003 World Wide Web Consortium - WC3; “GroupableTableHeaderUI” (java code) is
© 2004 D.IA.L. S.L; “win_service” (utility routines) is © Firebird Ashes Project and Inprise Corporation; “sgml
entities” (Unicode data) is © 1997-1999 W3C; “HTML & XHTML DTDs” (HTML and XHTML grammar data) is
© 1997-2007 W3C; “Mozilla Root SSL Certificates” (Secute data transfer) is © Mozilla; “Timer.java” (timing rou-
tines) is © 2000 The Apache Software Foundation; “YUI Ajax Library” (javasctipt and xml routines) is © 2000,
Yahoo! Inc.; “GIFDECOD?” (graphics/ image routines) is © 1990, 1991, 1993, David Koblas; “Mersenne Twister
MT19937” (random number generator) is © 1997-2002, Makoto Matsumoto and Takuji Nishimura; “Window-
sHook” (NET utility routines) is © 2002, Dino Esposito & erms-rma project; “CRC32” (NET data encoding) is ©
2003 Thoraxcentrum, Erasmus MC; “zip compression” (NET data comptession) is © 2004-2005 DevelopDotNet,
Alberto Ferrazzoli; “PropertiesBag” (NET udility routines) is © 2002 Tony Allowatt; “RichTextBox Extensions”
(NET utility routines) is © 2003-2007 Pete Vidler; “FontConfig” (font utilides) is © 2001, 2003 Keith Packard;
“Xrender/render” (graphics rendering) is © 2001, 2003 Keith Packard; “FreeType” (fonts) is © 1996-2002 by David
Turner, Robert Wilhelm, and Werner Lemberg; “LibJPEG” (graphics library) is © 1991-1998, Thomas G. Lane and
the Independent JPEG Group; “GIFLIB” (graphics library) is © 1997 Eric S. Raymond; “LibXML” (XML Parser) is
© 1998-2003 Daniel Veillard; “glib/gthread/gmodule” (utilities) is © 2001-2008 The Mono Project and Contribu-
tors; “gdiplus” (graphics utilities) is © 2001-2008 The Mono Project and Contributors; “Mono Project” (NET Vit-

RIGHT
NOW

TECHNOLOGIES




tual Machine and Toolchain) is © 2001-2008 The Mono Project and Contributors; “Mono MCS Classes” (code
library) is © 2001, 2002, 2003 The Mono Project and Conttibutors; “MBUnit” (utility and test code) © 2005-2007
Andrew Stopford and © 2000-2004 Jonathan De Halleux, Jamie Cansdale; “jaxws2” (java utility code) is Copytight ©
1996-2006 Sun Microsystems, Inc; “jstl” (java utility code) is Copyright © 1996-2006 Sun Microsystems, Inc; “activa-
tion” (java utility code) is Copyright © 1996-2006 Sun Microsystems, Inc; “JDOM” (XML utilities) is Copyright ©
2000-2002 Brett McLaughlin & Jason Huntet; “Jetty” (java servlet container) is Copyright © 1995-2006 Mort Bay
Consulting; “JUnit” (java utilities) Copyright 1997-2006 JUnit.org; “quartz” (java timer utility) is Copyright © 2004-
2005 OpenSymphony; “Spring Framework™ (web services utilities) is Copytight © 2004-2007 Rod Johnson, Juetgen
Hoeller, Alef Arendsen, Colin Sampaleanu, Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko,
Mark Pollack, Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau, Rick
Evans; “wsdl4j” (XML services utilities) is Copytight © IBM Corp 20006; “Gsgxml” (XML sitemap builder) is © 2005
Zervaas Enterprises; “php xml_writer_class” (XML Production Utility) is © 2001-2005 Manuel Lemos; “english
affixes” (natural language data) is © 1992, 1993 Geoff Kuenning; “bubblegroupbox” (ui component) is © 2005
Adam Smith; “slf4j” (logging subsystem) is © 2004-2007 QOS.ch; “xstring” (string manipulation) is © 2005 Keenan
Tims; “jsmin” (javasctipt code compressor) is © 2002 Douglas Crockford; “codeigniter” (PHP framework) © 2006
EllisLab, Inc; “simpleline” (graphics routing) is © 2005 Paul Brower;

“X11R6/XFree86” (GUI rendeting) is © 1994-2003 The XFree86 Project, Inc. and conttibutors as follows [© 1996-
2000 by David Turner; © 1984-1989, 1994 Adobe Systems Incorporated; © 2003 Eric Anholt; © 2002 Apple Com-
putet, Inc.; © 1988 AT&T; © 1992 by Robert Baron; © 1996-1998 by David Bateman; © 1988 Bitstream, Inc., Cam-
bridge, Massachusetts, USA; © 2001 by Stephen Blackheath; © 1993 by Jon Block block@frc.com; © 2000 Compaq
Computer Corporation, Inc.; © 1998 by Concurrent Computer Corporation; © 1994-2000 by Robin Cutshaw; ©
1992, 1993, 2002 by David Dawes; © 2000 by Egbert Eich; © 2002 by Paul Elliott; © 1987-1994 by Digital Equip-
ment Corporation; © 1988 by Evans & Sutherland Computer Corporation; © 1992, 1993, 1994 by FUJITSU LIM-
ITED; © 2003 by Bryan W. Headley; © 2000 by Richard A. Hecker, California, United States; © 2002 Hewlett
Packard Company, Inc.; © 1997 Matthieu Hertb; © 2000 Christian Herzog; © 1999 by David Holland; © 1992-2004
by Alan Hourihane; © 2000 Roland Jansen; © 2001 by J. Kean Johnston; © 2000, 2001 Ani Joshi; © 2000 by Rainer
Keller; © 1999-2003 by Peter Kunzmann, Citron GmbH, Germany; © 1994-2004 by Marc Autele La France (TSI @
UQV); © 1996 by Steven Lang; © 1995, 1999 by Patrick Lecoanet, France; © 2001 by Patrick LERDA; © 2000 Tuo-
mas J. Lukka; © 2000-2001 by Sven Luther; © 2002, 2003 Tortey T. Lyons; © 1996, 1998 by Sebastien Marineau; ©
1984-1989, 1991, 1993 Massachusetts Institute of Technology; © 1993 by David McCullough; © 1995-1998 Metro
Link, Inc.; © 1993, 1996, 1999 by Thomas Mueller; © 1992 by Rich Murphey; © 1993, 1994 NCR Corporation; ©
1989-1995 Network Computing Devices; © 1990, 1991 by Nippon Telegraph and Telephone Corporation; © 1990,
1991 by NTT Softwate Corporation; © 1998 by Number Nine Visual Technology, Inc.; © 1990, 1991 by OMRON
Corporation; © 1991 by the Open Softwate Foundation; © 1998-2002 Keith Packard; © 1997 Takis Psarogiannako-
poulos, Cambridge, UK; © 1993 Quarterdeck Office Systems; © 2002 by Red Hat, Inc.; © 1990, 1991 by Thomas
Roell, Dinkelschetben, Germany; © 1989 Dale Schumacher; © 1993-1997 by Silicon Graphics Computer Systems,
Inc.; © 2002 Manish Singh; © 1993, 1994 by Sony Corporation; © 1988 SRIL; © 1987, 1988, 1991, 1992, 2000 by Sun
Microsystems, Inc.; © 1999, 2000 SuSE, Inc.; © 2002 by SuSE Linux AG; © 1999-2001 by Thomas Thanner, Citron
GmbH, Germany; © 1992, 1993 by TOSHIBA Cotp.; © 1992 by Jim Tsillas; © 1997, 1998 by UCHIYAMA Yasushi;
© 1990, 1991 UNIX System Laboratoties, Inc.; © 1994, 1996 by Holger Veit; © 1992 Vrije Universiteit, The Nethet-
lands; © 1993 by David Wexelblat; © 2001-2004 Thomas Winischhofet, Vienna, Austria; © 1993 by Thomas Wol-
fram, Betlin, Germany; © 1996 X Consortium, Inc.; © 1998 by Kazutaka YOKOTA; © 1992 by Orest Zborowski; ©
1991, 1996 Digital Equipment Cortp.; © 1996 Fujitsu Limited; © 1996 Hewlett-Packard Company; © 1996 Hitachi,




Ltd.; © 1996 International Business Machines Corp.; © 1990, Network Computing Devices; © 1996 Novell, Inc.; ©
1987, 1996, 2002 Sun Microsystems, Inc.; © 1990, Tektronix Inc.; © 1985-1998 The Open Group; © 2000, 2001
Nokia Home Communications; © 2000 VA Linux Systems, Inc.; © 1990, 1991 Tektronix, Inc.; © 1987, 1988, 1989,
1990 by Digital Equipment Cotrporation, Maynard; © 1998, 1989 by Hewlett-Packard Company, Palo Alto, Califor-
nia; © 1990, 1991 Network Computing Devices; © 1993 by Sun Microsystems, Inc., Mountain View, CA; © 1988 by
Wyse Technology, Inc., San Jose, CA; © 1991 International Business Machines, Cotp.; © 1989-1994 Adobe Systems
Incorporated; © 1993, Silicon Graphics, Inc.; © 1987-1993 Digital Equipment Corporation; © 2001, Andy Ritger
aritger@nvidia.com; © 1999, 2000 by Eric Sunshine; © 1994, 1995, 1996, 1997, 1998, 1999, Theodore Ts’o; © 2001-
2004 Thomas Winischhofer; © 1999 Lennatrt Augustsson; © 1999 Chris Costello; © 1995, 1999 Theo de Raadt; ©
2001-2002 Damien Miller; © 1994 Paul Vojta; © 1993 The Regents of the University of California; © 1993, 1994
Christopher G. Demettiou; © 2003 The NetBSD Foundation, Inc.; © 1998 X-TrueType Server Project; © 2003
After X-TT Project; © 1998 Takuya SHIOZAKI; © 1998-1999 Shunsuke Akiyama; © 1998, 1999 Pablo Saratxaga; ©
1998 Go Watanabe; © 2001 Roger So; © 1998, 1999 Chen Xiangyang; © 1997 Jyunji Takagi; © 1998 Kazushi (Jam)
Marukawa; © 1999 Mutsumi ISHIKAWA; © 1999 Nozomi YTOW; © 1998 Todd C. Miller; © 1999-2001 National
Semiconductor Corporation; © 1996 NVIDIA, Cortp.; © 1991-2000 Silicon Graphics, Inc.; © 2001 by Bigelow; ©
2001 by URW++ GmbH. ]

In accordance with license requirements, some of the open source licenses granted to RightNow are available for
inspection at: http://opensoutce.rightnow.com/.

RIGHT
NOW

TECHNOLOGIES







	Contents
	Introduction
	About this manual
	Documentation conventions

	RightNow February ’08 documentation

	Integration Overview
	XML Integration
	XML tags
	<connector> tag
	<function> tag
	<parameter> tag
	<pair> tag
	Using special characters

	XML API functions
	Account API
	acct_create
	acct_destroy
	acct_move
	acct_update

	Answer API
	ans_create
	ans_destroy
	ans_get
	ans_update

	Contact API
	contact_create
	contact_destroy
	contact_get
	contact_update
	mailing_send_to_contact

	Flow API
	flow_execute

	Hierarchical menu API
	css_product_create, css_category_create, and css_disposition_create
	css_product_destroy, css_category_destroy, and css_disposition_destroy
	css_product_move, css_category_move, and css_disposition_move
	css_product_update, css_category_update, and css_disposition_update

	Incident API
	incident_create
	incident_destroy
	incident_get
	incident_update

	Meta-answer API
	meta_ans_create
	meta_ans_destroy
	meta_ans_update

	Opportunity API
	opp_create
	opp_destroy
	opp_get
	opp_update

	Organization API
	Multiple addresses
	org_create
	org_destroy
	org_get
	org_update

	Purchased product API
	pur_product_create

	Sales product API
	sa_prod_create
	sa_prod_destroy
	sa_prod_update

	Search API
	SQL query API
	sql_get_int
	sql_get_str
	sql_get_dttm

	Task API
	task_create
	task_destroy
	task_get
	task_update


	Additional actions
	Setting custom fields
	Using cf_id pairs
	Using data_type pairs
	Using value pairs

	Adding thread entries
	Adding Notes
	Creating and deleting SLA instances
	Passing variable IDs
	Finding code numbers
	Using the mouseover function
	Finding IDs in analytics
	Using the lookup_id_for_name function


	Implementing code for the XML API
	Using the POST method
	Sending an XML-formatted email
	Error codes
	Using the XML API log


	Event Handlers
	External event handlers
	Enabling external events
	Developing external events

	Email integration
	Creating templates for email integration


	Pass-Through Authentication
	Configuring RightNow Service
	Requiring a login to RightNow Service
	Redirecting the RightNow Service login

	Implementing a customer login script

	Pair Names
	Account API
	Answer API
	Contact API
	Custom field API
	Flow API
	Hierarchical menu API
	Incident API
	Meta-Answer API
	Opportunity API
	Organization API
	Purchased product API
	Quote API
	Sales product API
	Search API
	SLA instance API
	Task API

	Source Codes
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


