
 1

Designing Computational Clusters for Performance and Power 
 

Kirk W. Cameron, Rong Ge, Xizhou Feng 

 
Abstract 

Power consumption in computational clusters has reached critical levels. High-end 
cluster performance improves exponentially while the power consumed and heat 
dissipated increase operational costs and failure rates. Yet, the demand for more powerful 
machines continues to grow. In this chapter, we motivate the need to reconsider the 
traditional performance-at-any-cost cluster design approach. We propose designs where 
power and performance are considered critical constraints. We describe power-aware and 
low power techniques to reduce the power profiles of parallel applications and mitigate 
the impact on performance. 
 

1 Introduction................................................................................................................. 3 

1.1 Cluster Design PARADIGM Shift...................................................................... 4 

2 Background................................................................................................................. 4 

2.1 Computational Clusters....................................................................................... 4 

2.2 Performance ........................................................................................................ 5 

2.3 Power .................................................................................................................. 6 

2.4 Power-aware computing ..................................................................................... 6 

2.5 Energy ................................................................................................................. 7 

2.6 Power-performance Tradeoffs ............................................................................ 7 

3 Single Processor System Profiling.............................................................................. 8 

3.1 Simulator-based power estimation...................................................................... 8 

3.2 Direct measurements........................................................................................... 9 

3.3 Event-based estimation ....................................................................................... 9 

3.4 Power reduction and energy conservation ........................................................ 10 

4 Computational Cluster Power Profiling.................................................................... 10 



 2

4.1 A Cluster-wide Power Measurement System ................................................... 11 

4.1.1 Isolating Power by Component................................................................. 12 

4.1.2 Automating Cluster Power Profiling and Analysis................................... 13 

4.2 Cluster Power Profiles ...................................................................................... 14 

4.2.1 Single Node Measurements ...................................................................... 14 

4.2.2 Cluster-wide Measurements...................................................................... 15 

4.2.3 Cluster Energy-performance Efficiency ................................................... 17 

4.2.4 Application Characteristics....................................................................... 19 

4.2.5 Resource Scheduling................................................................................. 19 

5 Low Power Computational Clusters ......................................................................... 20 

5.1 Argus: Low power cluster computer................................................................. 21 

5.1.1 SYSTEM DESIGN ................................................................................... 21 

5.1.2 Low power Cluster Metrics ...................................................................... 23 

5.1.3 Analyzing a Low Power Cluster Design................................................... 25 

5.1.4 Lessons from a Low Power Cluster Design.............................................. 31 

6 Power-aware Computational Clusters....................................................................... 31 

6.1 Using DVS in high-performance clusters ......................................................... 32 

6.2 Distributed DVS Scheduling Strategies............................................................ 34 

6.2.1 CPUSPEED DAEMON............................................................................ 34 

6.2.2 INTERNAL............................................................................................... 36 

6.3 Experimental Framework.................................................................................. 37 

6.3.1 NEMO: Power-aware Cluster ................................................................... 37 

6.3.2 Power, energy and performance profiling on Nemo................................. 38 

6.3.3 PowerPack Software Enhancements......................................................... 38 

6.3.4 Energy-performance microbenchmarks.................................................... 39 



 3

6.3.5 Energy-performance efficiency metrics.................................................... 41 

6.4 Analyzing an Energy-conscious Cluster Design............................................... 41 

6.4.1 CPUSPEED DAEMON Scheduling......................................................... 42 

6.4.2 EXTERNAL Scheduling .......................................................................... 42 

6.4.3 INTERNAL Scheduling............................................................................ 46 

6.5 Lessons from power-aware cluster design........................................................ 50 

7 Conclusions............................................................................................................... 51 
 

1 Introduction 
High-end computing systems are a crucial source for scientific discovery and 
technological revolution. The unmatched level of computational capability provided by 
high-end computers enables scientists to solve challenging problems that are insolvable 
by traditional means and to make breakthroughs in a wide spectrum of fields such as 
nanoscience, fusion, climate modeling and astrophysics [40, 63]. 

The designed peak performance for high-end computing systems has increased rapidly in 
the last two decades. For example, the peak performance of the No.1 supercomputer in 
1993 was below 100Gflops. This value increased 2800 times within 13 years to 
280TFlops in 2006 [65]. 

Two facts primarily contribute to the increase in peak performance of high-end 
computers. The first is increasing microprocessor speed. The operating frequency of a 
microprocessor almost doubled every 2 years in the 90’s [10]. The second is the 
increasing size of high-end computers. The No.1 supercomputer in the 1990’s consists of 
about 1000 processors; today’s No.1 supercomputer, BlueGene /L, is about 130 times 
larger, consisting of 131,072 processors [1]. 

There is an increasing gap between achieved “sustained” performance and the designed 
peak performance. Empirical data indicates that the sustained performance achieved by 
average scientific applications is about 10-15% of the peak performance. Gordon Bell 
prize winning applications [2, 59, 61] sustain 35% to 65% of peak performance. Such 
performance requires the efforts of a team of experts working collaboratively for years. 
LINPACK [25], arguably the most scalable and optimized benchmark code suite, 
averages about 67% of the designed peak performance on TOP500 machines in the past 
decade [24].  

The power consumption of high-end computers is enormous and increases exponentially. 
Most high-end systems use tens of thousands of cutting edge components in clusters of 



 4

SMPs1, and the power dissipation of  these components increases by 2.7 times every two 
years [10]. Earth Simulator requires 12 megawatts of power. Future petaflop systems may 
require 100 megawatts of power [4], nearly the output of a small power plant (300 
megawatts). High power consumption causes intolerable operating cost and failure rates. 
For example, a petaflop system will cost $10,000 per hour at $100 per megawatt 
excluding the additional cost of dedicated cooling. Considering commodity components 
fail at an annual rate of 2-3% [41], this system with 12,000 nodes will sustain hardware 
failure once every twenty-four hours. The mean time between failures (MTBF) [67] is 6.5 
hours for LANL ASCI Q, and 5.0 hours for LLNL ASCI white [23]. 

1.1 CLUSTER DESIGN PARADIGM SHIFT 

The traditional performance-at-any-cost cluster design approach produces systems that 
make inefficient use of power and energy. Power reduction usually results in 
performance degradation, which is undesirable for high-end computing. The challenge is 
to reduce power consumption without sacrificing cluster performance. Two categories of 
approaches are used to reduce power for embedded and mobile systems: low power and 
power-aware. The low power approach uses low power components to reduce power 
consumption with or without a performance constraint, and the power-aware approach 
uses power-aware components to maximize performance subject to a power budget. We 
describe the effects of both of these approaches on computational cluster performance in 
this chapter. 

2 Background 
In this section, we provide a brief review of some terms and metrics used in evaluating 
the effects of power and performance in computational clusters. 

2.1 COMPUTATIONAL CLUSTERS 

In this chapter, we use the term computational cluster to refer to any collection of 
machines (often SMPs) designed to support parallel scientific applications. Such clusters 
differ from commercial server farms that primarily support embarrassingly parallel client-
server applications. Server farms include clusters such as those used by Google to process 
web queries. Each of these queries is independent of any other allowing power-aware 
process scheduling to leverage this independence. The workload on these machines often 
varies with time, e.g. demand is highest during late afternoon and lowest in early morning 
hours. 

Computational clusters are designed to accelerate simulation of natural phenomena such 
as weather modeling or the spread of infectious diseases. These applications are not 

                                                 
1 SMP stands for Symmetric Multi-Processing, a computer architecture that provides fast performance by 
making multiple CPUs available to complete individual processes simultaneously. SMP uses a single 
operating system and shares common memory and disk input/output resources. 



 5

typically embarrassingly parallel, that is there are often dependences among the 
processing tasks required by the parallel application. These dependencies imply power 
reduction techniques for server farms that exploit process independence may not be 
suitable for computational clusters. Computational cluster workloads are batch scheduled 
for full utilization 24 hours a day, 7 days per week. 

2.2 PERFORMANCE 

An ultimate measure of system performance is the execution time T or delay D for one or 
a set of representative applications [62]. The execution time for an application is 
determined by the CPU speed, memory hierarchy and application execution pattern. 

The sequential execution time (1)T for a program on a single processor consists of two 
parts: the time that the processor is busy executing instructions compT , and the time that the 
process  waits for data from the local memory system memoryaccessT  [21], i.e.  

(1) (1) (1)comp memoryaccessT T T= +      (1). 

Memory access is expensive: the latency for a single memory access is almost the same 
as the time for the CPU to execute one hundred instructions. The term memoryaccessT  can 
consume up to 50% of execution time for an application whose data accesses reside in 
cache 99% of the time. 

The parallel execution time on n processors ( )T n  includes three other components as 
parallel overhead: the synchronization time due to load imbalance and serialization 

( )syncT n ; the communication time ( )commT n  that the processor is stalled for data to be 
communicated from or to remote processing node; and the time that the processor is busy 
executing extra work ( )extraworkT n  due to decomposition and task assignment. The parallel 
execution time can be written as 

( ) ( ) ( ) ( ) ( ) ( )comp memoryaccess sync comm extraworkT n T n T n T n T n T n= + + + +   (2). 

Parallel overhead ( )syncT n , ( )commT n  and ( )extraworkT n  are quite expensive. For example, the 
communication time for a single piece of data can be as large as the computation time for 
thousands of instructions. Moreover, parallel overhead tends to increase with the number 
of processing nodes. 

The ratio of sequential execution time to parallel execution time on n processors is the 
parallel speedup, i.e.  

(1)( )
( )

Tspeedup n
T n

=      (3) 

Ideally, the speedup on n processors is equal to n for a fixed-size problem, or the speedup 
grows linearly with the number of processors. However, the achieved speedup for real 
applications is typically sub-linear due to parallel overhead.  



 6

2.3 POWER 

The power consumption of CMOS logic circuits [58] such as processor and cache logic is 
approximated by  

2
short leakP ACV f P P= + +      (4). 

The power consumption of CMOS logic consists of components: dynamic power 
2

dP ACV f=  which is caused by signal line switching; short circuit power shortP  which is 
caused by through-type current within the cell; and leak power leakP  which is caused by 
leakage current. Here f is the operating frequency, A is the activity of the gates in the 
system, C is the total capacitance seen by the gate outputs, and V is the supply voltage. Of 
these three components, dynamic power dominates and accounts for 70% or more, shortP  
accounts for 10-30%, and leakP  accounts for about 1% [51]. Therefore, CMOS circuit 
power consumption is approximately proportional to the operating frequency and the 
square of supply voltage when ignoring the effects of short circuit power and leak power.  

2.4 POWER-AWARE COMPUTING  

Power-aware computing describes the use of power-aware components to save energy. 
Power-aware components come with a set of power-performance modes. A high 
performance mode consumes more power than a low performance mode but provides 
better performance. By scheduling the power-aware components among different power-
performance modes according to the processing needs, a power-aware system can reduce 
the power consumption while delivering the performance required by an application. 

Power aware components, including processor, memory, disk, and network controller 
were first available to battery-powered mobile and embedded systems. Similar 
technologies have recently emerged in high end server products.  

In this chapter, we focus on power-aware computing using power-aware processors. 
Several approaches are available for CPU power control. A DVFS (dynamic voltage 
frequency scaling) capable processor is equipped with several performance modes, or 
operating points. Each operating point is specified by a frequency and core voltage pair. 
An operating point with higher frequency provides higher peak performance but 
consumes more power. Many current server processors support DVFS. For example, Intel 
Xeon implements SpeedStep, and AMD Opteron supports PowerNow. SpeedStep and 
PowerNow are trademarked by Intel and AMD respectively; this marketing language 
labels a specific DVFS implementation. 

For DVFS capable processors, scaling down voltage reduces power quadratically. 
However, scaling down the supply voltage often decreases the operating frequency and 
causes performance degradation. The maximum operating frequency of the CPU is 
roughly linear to its core voltage V, as described by the following equation [58]: 

2
max ( ) /thresholdf V V V∝ −      (5). 



 7

Since operating frequency f is usually correlated to execution time of an application, 
reducing operating frequency will increase the computation time linearly when the CPU 
is busy. 

However, the effective sustained performance for most applications is not simply 
determined by the CPU speed (i.e. operating frequency). Both application execution 
patterns and system hardware characteristics affect performance. For some codes, the 
effective performance may be insensitive to CPU speed. Therefore, scaling down the 
supply voltage and the operating frequency could reduce power consumption 
significantly without incurring noticeable additional execution time. Hence, the 
opportunity for power aware computing lies in appropriate DVFS scheduling which 
switches CPU speed to match the application performance characteristics. 

2.5 ENERGY 

While power (P) describes consumption at a discrete point in time, energy (E) specifies 
the number of joules used for time interval (t1,t2) as a product of the average power and 
the delay (D=t2-t1): 

2

1
2 1( )

t

avg avgt
E Pdt P t t P D= = × − = ×∫     (6). 

Equation (6) specifies the relation between power, delay and energy. To save energy, we 
need to reduce the delay, the average power, or both. Performance improvements such as 
code transformation, memory remapping and communication optimization may decrease 
the delay. Clever system scheduling among various power-performance modes may 
effectively reduce average power without affecting delay.  

In the context of parallel processing, by increasing the number of processors, we can 
speedup the application but also increase the total power consumption. Depending on the 
parallel scalability of the application, the energy consumed by an application may be 
constant, grow slowly or grow very quickly with the number of processors. 

In power aware cluster computing, both the number of processors and the CPU speed 
configuration of each processor affect the power-performance efficiency of the 
application. 

2.6 POWER-PERFORMANCE TRADEOFFS 

As discussed earlier, power and performance often conflict with one another. Some 
relation between power and performance is needed to define optimal in this context. To 
this end, some product forms of delay D (i.e. execution time T) and power P are used to 
quantify power-performance efficiency. Smaller products represent better efficiency. 
Commonly used metrics include PDP (the P D× product, i.e. energy E), PD2P (the 2P D×  
product), and PD3P (the 3P D×  product) respectively. These metrics can also be 
represented in the forms of energy and delay products such as EDP and ED2P. 



 8

These metrics put different emphasis on power and performance, and are appropriate for 
evaluating power-performance efficiency for different systems. PDP or energy is 
appropriate for low power portable systems where battery life is the major concern. PD2P  
[19] metrics emphasize both performance and power; this metric is appropriate for 
systems which need to save energy with some allowable performance loss. PD3P [12] 
emphasizes performance; this metric is appropriate for high-end systems where 
performance is the major concern but energy conservation is desirable. 

3 Single Processor System Profiling 
Three primary approaches: simulators, direct measurements and performance counter 
based models, are used to profile power of systems and components.  

3.1 SIMULATOR-BASED POWER ESTIMATION 

In this discussion, we focus on architecture level simulators and categorize them across 
system components, i.e. microprocessor and memory, disk and network. These power 
simulators are largely built upon or used in conjunction with performance simulators that 
provide resource usage counts, and estimate energy consumption using resource power 
models.  

Microprocessor power simulators. Wattch [11] is a microprocessor power simulator 
interfaced with a performance simulator, SimpleScalar[13]. Wattch models power 
consumption using an analytical formula 2

d ddP CV af=  for CMOS chips, where C is the load 
capacitance, Vdd is the supply voltage, f is the clock frequency, and a is the activity factor 
between 0 and 1. Parameters Vdd, f and a are identified using empirical data. The load 
capacitance C is estimated using the circuit and the transistor sizes in four categories: 
array structure (i.e. caches and register files), CAM structures (e.g. TLBs), complex logic 
blocks, and clocking. When the application is simulated on SimpleScalar, the cycle-
accurate hardware access counts are used as input to the power models to estimate energy 
consumption.  

SimplePower [68] is another microprocessor power simulator built upon SimpleScalar. It 
estimates both microprocessor and memory power consumption. Unlike Wattch which 
estimates circuit and transistor capacitance using their sizes, SimplePower uses a 
capacitance lookup table indexed by input vector transition. SimplePower differs with 
Wattch in two ways. First, it integrates rather than interfaces with SimpleSclar. Second, it 
uses the capacitance lookup table rather than empirical estimation of capacitance. The 
capacitance lookup table could lead to more accurate power simulation. However, this 
accuracy comes at the expense of flexibility as any change in circuit and transistor would 
require changes in the capacitance lookup table. 

TEM2P2EST [22] and the Cai-Lim model [14] are similar. They both build upon the 
SimpleScalar toolset. These two approaches add complexity in power models and 
functional unit classification, and differ from Wattch. First these two models use an 
empirical mode and an analytical mode. Second, they model both dynamic and leakage 
power. Third, they include a temperature model using power dissipation.  



 9

Network power simulators. Orion [69] is an interconnection network power simulator at 
the architectural-level based on the performance simulator LSE [66]. It models power 
analytically for CMOS chips using architectural-level parameters, thus reducing 
simulation time compared to circuit-level simulators while providing reasonable 
accuracy. 

System power simulators. Softwatt [39] is a complete system power simulator that 
models the microprocessor, memory systems and disk based on SimOS [60]. Softwatt 
calculates the power values for microprocessor and memory systems using analytical 
power models and the simulation data from the log-files. The disk energy consumption is 
measured during simulation based on assumptions that full power is consumed if any of 
the ports of a unit is accessed, otherwise no power is consumed. 

Powerscope [34] is a tool for profiling the energy usage of mobile applications. 
Powerscope consists of three components: the system monitor samples system activity by 
periodically recording the program counter (PC) and process identifier (PID) of the 
currently executing process; the energy monitor collects and stores current samples; and 
the energy analyzer maps the energy to specific processes and procedures. 

3.2 DIRECT MEASUREMENTS 

There are two basic approaches to measure processor power directly. The first approach 
[7, 50] inserts a precision resistor into the power supply line using a multi-meter to 
measure its voltage drop. The power dissipation by the processor is the product of power 
supply voltage and current flow, which is equal to the voltage drop over the resistor 
divided by its resistance. The second approach [48, 64] uses an ammeter to measure the 
current flow of the power supply line directly. This approach is less intrusive as it doesn’t 
need to cut wires in the circuits.  

Tiwari et al [64] used ammeters to measure current drawn by a processor while running 
programs on an embedded system and developed a power model to estimate power cost. 
Isci et al [48] used ammeters to measure the power for P4 processors to derive their 
event-count based power model. Bellosa et al [7] derived CPU power by measuring 
current on a precision resistor inserted between the power line and supply for a Pentium 
II CPU; they used this power to validate their event-count based power model and save 
energy. Joseph et al [50] used a precision resistor to measure power for a Pentium Pro 
processor. 

These approaches can be extended to measure single processor system power. Flinn et al 
[34] used a multimeter to sample the current being drawn by a laptop from its external 
power source.  

3.3 EVENT-BASED ESTIMATION 

Most high-end CPUs have a set of hardware counters to count performance events such 
as cache hit/miss, memory load, etc. If power is mainly dissipated by these performance 
events, power can be estimated based on performance counters. Isci et al [48] developed 



 10

a runtime power monitoring model which correlates performance event counts with CPU 
subunit power dissipation on real machines. CASTLE [50] did similar work on 
performance simulators (SimpleScalar) instead of real machines. Joule Watcher [7] also 
correlates power with performance events, the difference is that it measures the energy 
consumption for  a single event such as a floating point operation, L2 cache access, and 
uses this energy consumption for energy-aware scheduling. 

3.4 POWER REDUCTION AND ENERGY CONSERVATION 

Power reduction and energy conservation has been studied for decades, mostly in the area 
of energy-constrained, low power, real time and mobile systems [38, 54, 55, 71]. 
Generally, this work exploits the multiple performance/power modes available on 
components such as processor [38, 54, 71], memory [27, 28], disk [17], and network card 
[18]. When any component is not fully utilized, it can be set to a lower power mode or 
turned off to save energy. The challenge is to sustain application performance and meet a 
task deadline in spite of mode switching overhead. 

4 Computational Cluster Power Profiling 
Previous studies of power consumption on high performance clusters focus on building-
wide power usage [53]. Such studies do not separate measurements by individual 
clusters, nodes or components. Other attempts to estimate power consumption for 
systems such as ASC Terascale facilities use rule-of-thumb estimates (e.g. 20% peak 
power)[4]. Based on past experience, this approach could be completely inaccurate for 
future systems as power usage increases exponentially for some components.  

There are two compelling reasons for in-depth study of the power usage of cluster 
applications. First, there is need for a scientific approach to quantify the energy cost of 
typical high-performance systems. Such cost estimates could be used to accurately 
estimate future machine operation costs for common application types. Second, a 
component-level study may reveal opportunities for power and energy savings. For 
example, component-level profiles could suggest schedules for powering down 
equipment not being used over time. 

Profiling power directly in a distributed system at various granularities is challenging. 
First, we must determine a methodology for separating component power after 
conversion from AC to DC current in the power supply for a typical server. Next, we 
must address the physical limitations of measuring the large number of nodes found in 
typical clusters. Third, we must consider storing and filtering the enormous data sets that 
result from polling. Fourth, we must synchronize the polling data for parallel programs to 
analyze parallel power profiles. 

Our measurement system addresses these challenges and provides the capability to 
automatically measure power consumption at component level synchronized with 
application phases for power-performance analysis of clusters and applications. Though 
we do make some simplifying assumptions in our implementation (e.g. the type of 



 11

multimeter), our tools are built to be portable and require only a small amount of 
retooling for portability. 

4.1 A CLUSTER-WIDE POWER MEASUREMENT SYSTEM 

Figure 1 shows the prototype system we created for power-performance profiling. We 
measure the power consumption of the major computing resources (i.e. CPU, memory, 
disk, and NIC) on the slave nodes in a 32-node Beowulf. Each slave node has one 
933MHz Intel Pentium III processor, 4 256M SDRAM modules, one 15.3GB IBM 
DTLA-307015 DeskStar hard drive, and one Intel 82559 Ethernet Pro 100 onboard 
Ethernet controller.  

ATX extension cables connect the tested node to a group of 0.1 ohm sensor resistors on a 
circuit board. The voltage on each resistor is measured with one RadioShack 46-range 
digital multi meter 22-812 that has been attached to a multi port RS232 serial adapter 
plugged into a data collection computer running Linux. We measure 10 power points 
using 10 independent multi meters between the power supply and components 
simultaneously. 

The meters broadcast live measurements to the data collection computer for data logging 
and processing through their RS232 connections. Each meter sends 4 samples per second 
to the data collection computer. 

 

Fig. 1. Our system prototype enables measurement of cluster power at component 
granularity. For scalability, we assume the nodes are homogeneous. Thus, one node is 
profiled and software is used to remap applications when workloads are non-uniform. A 
separate PC collects data directly from the multimeters and uses time stamps to synchronize 
measured data to an application. 



 12

Currently, this system measures one slave node at a time. The power consumed by a 
parallel application requires summation of the power consumption on all nodes used by 
the application. Therefore, we first measure a second node to confirm that power 
measurements are nearly identical across like systems, and then use node remapping to 
study the effective power properties of different nodes in the cluster without requiring 
additional equipment. To ensure confidence in our results, we complete each experiment 
at least 5 times based on our observations of variability. 

Node remapping works as follows. Suppose we are running a parallel workload on M 
nodes, we fix the measurement equipment to one physical node (e.g. node #1) and 
repeatedly run the same workload M times. Each time we map the tested physical node to 
a different virtual node. Since all slave nodes are identical (as they should be and we 
experimentally confirmed), we use the M independent measurements on one node to 
emulate one measurement on M nodes. 

4.1.1 ISOLATING POWER BY COMPONENT 

For parallel applications, a cluster can be abstracted as a group of identical nodes 
consisting of CPU, memory, disk, and network interface. The power consumed by a 
parallel application is computed by equations presented in section 2 with direct or derived 
power measurement for each component. 

In our prototype system, the mother board and disk on each slave node are connected to a 
250 Watt ATX power supply through one ATX main power connector and one ATX 
peripheral power connector respectively. We experimentally deduce the correspondence 
between ATX power connectors and node components.  

Since disk is connected to a peripheral power connection independently, its power 
consumption can be directly measured through +12VDC and +5VDC pins on the 
peripheral power connect. To map the component on the motherboard with the pins on 
the main power connector, we observe the current changes on all non-COM pins by 
adding/removing components and running different micro benchmarks which access 
isolated components over time. Finally, we are able to conclude that the CPU is powered 
through four +5VDC pins; memory, NIC and others are supplied through +3.3VDC pins; 
the +12VDC feeds the CPU fan; and other pins are constant and small (or zero) current. 
The CPU power consumption is obtained by measuring all +5VDC pins directly. 



 13

Meter Reader
Thread

PowerMeter Control Thread

pipepipepipe

Meter Reader
Thread

Meter Reader
Thread

Shared Memory

Message Listener Power Data Log

PowerAnalyzer

Message Client

Application

System Statues Log

System Status Profiler

Library Calls

Library Calls

 

Fig. 2. Automation with software. We created 
scalable, multi-threaded software to collect and 
analyze power meter data in real time. An 
application programmer interface was created 
to control (i.e. start/stop/init) multimeters and to 
enable synchronization with parallel codes. 

The idle part of memory system power 
consumption is measured by 
extrapolation. Each slave node in the 
prototype has four 256MB memory 
modules. We measure the power 
consumptions of the slave node 
configured with 1, 2, 3, and 4 memory 
modules separately, then estimate the 
idle power consumed by the whole 
memory system. 

The slave nodes in the prototype are 
configured with onboard NIC. It is hard 
to separate its power consumption from 
other components directly. After, 
observing that the total system power 
consumption changes slightly when we 
disable the NIC or pull out the network 
cable and consulting the documentation 
of the NIC (Intel 82559 Ethernet Pro 
100), we approximate it with constant 
value of 0.41 watt. 

For further verification, we compared our measured power consumption for CPU and 
disk with the specifications provided by Intel and IBM separately and they matched well. 
Also by running memory access micro benchmarks, we observed that if accessed data 
size is located within L1/L2 cache, the memory power consumption doesn’t change; 
while once main memory is accessed, the memory power consumption we measured 
increases correspondingly. 

4.1.2 AUTOMATING CLUSTER POWER PROFILING AND ANALYSIS  

To automate the entire profiling process we require enough multimeters to measure 
directly, in real-time, a single node – 10 in our system. Under this constraint, we fully 
automate data profiling, measurement and analysis by creating a tool suite named 
PowerPack. PowerPack consists of utilities, benchmarks and libraries for controlling, 
recording and processing power measurements in clusters. PowerPack’s profiling 
software structure is shown in Figure 2  

In PowerPack, the PowerMeter control thread reads data samples coming from a group of 
meter readers which are controlled by globally shared variables. The control thread 
modifies the shared variables according to messages received from applications running 
on the cluster. Applications trigger message operations through a set of application level 
library calls that synchronize the live profiling process with the application source code. 
These application level library calls can be inserted into the source code of the profiled 
applications. The commonly used subset of the power profile library API includes: 



 14

CPU
14%

Memory
10%

Disk
11%

NIC
1%

Other Chipset
8%Fans

23%

Power Supply
33%

Power consumption distribution for system idle
System Power:  39 Watt

CPU
14%

Memory
10%

Disk
11%

NIC
1%

Other Chipset
8%Fans

23%

Power Supply
33%

Power consumption distribution for system idle
System Power:  39 Watt

 

(a) 

CPU
35%

Memory
16%

Disk
7%

NIC
1%

Other Chipset
5%

Fans
15%

Power Supply
21%

Power consumption distribution for
memory performance bound (171.swim)

System Power:  59 Watt

CPU
35%

Memory
16%

Disk
7%

NIC
1%

Other Chipset
5%

Fans
15%

Power Supply
21%

Power consumption distribution for
memory performance bound (171.swim)

System Power:  59 Watt

 

(b) 

Fig. 3. Power profiles for a single node (a) 
during idle operation, and (b) under load. 
As the load increases, CPU and memory 
power dominate total system power. 

 

The power profile log and the system status log are processed with the PowerAnalyzer, a 
software module that implements functions such as converting DC current to power, 
interpolating between sampling points, decomposing pins power to component power, 
computing power and energy consumed by applications and system, and performing 
related statistical calculations. 

4.2 CLUSTER POWER PROFILES 

4.2.1 SINGLE NODE MEASUREMENTS 

To better understand the power consumption 
of distributed applications and systems, we 
first profile the power consumption of a 
single slave node. Figure 3 provides power 
profiles for system idle (3a) and system 
under load (3b) for the 171.swim benchmark 
included in SPEC CPU2000 [44].  

From this figure, we make the following 
observations: 

Whether system is idle or busy, the power 
supply and cooling fans always consume 
~20 Watts of power; about 1/2 system 
power when idle and 1/3 system power 
when busy. This means optimal design for 
power supply and cooling fans could lead to 
considerable power savings. This is 
interesting but beyond the scope of this 
work, so in our graphs we typically ignore 
this power. 

During idle time, CPU, memory, disk and 
other chipset components consume about 17 
Watts of power in total. When system is 
under load, CPU power dominates (e.g. for 
171.swim, it is 35% of system power; for 
164.gzip, it is 48%). 



 15

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

idle 171.swim 164.gzip cp scp

CPU Memory Disk NIC

Power Consumption Distribution for Different Workloads  

CPU-bound
memory-bound

disk-bound

network-bound

Note: only power consumed 
by CPU, memory, disk and 
NIC are considered here

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

idle 171.swim 164.gzip cp scp

CPU Memory Disk NIC

Power Consumption Distribution for Different Workloads  

CPU-bound
memory-bound

disk-bound

network-bound

Note: only power consumed 
by CPU, memory, disk and 
NIC are considered here

 

Fig. 4. Different applications stress different components in a system. Component usage is 
reflected in power profiles. When the system is not idle, it is unlikely that the CPU is 100% 
utilized. During such periods, reducing power can impact total power consumption 
significantly. Power-aware techniques (e.g. DVS) must be studied in clusters to determine if 
power savings techniques impact performance significantly. 

Additionally, the power consumed by each component varies under different workloads. 
Figure 4 illustrates the power consumption of four representative workloads. Each 
workload is bounded by the performance of a single component. For our prototype, the 
CPU power consumption ranges from 6 Watts to 28 Watts; the memory system power 
consumption ranges from 3.6 Watts to 9.4 Watts; the disk power consumption ranges 
from 4.2 Watts to 10.8 Watts. Figure 4 indicates component use affects total power 
consumption yet it may be possible to conserve power in non-idle cases when the CPU or 
memory is not fully utilized. 

4.2.2 CLUSTER-WIDE MEASUREMENTS 

We continue illustrating the use of our prototype system by profiling the power-energy 
consumption of the NAS parallel benchmarks (Version 2.4.1) on the 32-node Beowulf 
cluster. The NAS parallel benchmarks [5] consist of 5 kernels and 3 pseudo-applications 
that mimic the computation and data movement characteristics of large scale CFD 
applications. We measured CPU, memory, NIC and disk power consumption over time 
for different applications in the benchmarks at different operating points. We ignore 
power consumed by the power supply and the cooling system because they are constant 
and machine dependent as mentioned. 

Nodal power profiles over time. Figure 5a shows the power profile of NPB FT 
benchmark (class B) during the first 200 seconds of a run on 4 nodes. The profile starts 
with a warm up phase and an initialization phase followed by N iterations (for class A, 
N=6; for class B, N=20). The power profiles are identical for all iterations in which 
spikes and valleys occur with regular patterns coinciding with the characteristics of 



 16

 

(a)          (b) 

Fig. 5. FT Power Profiles. (a) The first 200 seconds of power use on one node of four for 
the FT benchmark, class B workload. Note component results are overlaid along the y-axis 
for ease of presentation. Power use for CPU and memory dominate and closely reflect 
system performance. (b) An expanded view of the power profile of FT during a single 
iteration of computation followed by communication. 

different computation stages. The CPU power consumption varies from 25 watts in the 
computation stage to 6 watts in the communication stage. The memory power 
consumption varies from 9 watts in the computation stage to 4 watts in the 
communication stage. Power trends in the memory during computation are often the 
inverse of CPU power. Additionally, the disk uses near constant power since FT rarely 
accesses the file system. NIC power probably varies with communication, but as 
discussed, we emulate it as a constant since the maximum usage is quite low (.4 watts) 
compared to all other components. For simplification, we ignore the disk and NIC power 
consumption in succeeding discussions and figures where they do not change, focusing 
on CPU and memory behavior. An in-depth view of the power profile during one 
(computation + communication) iteration is presented in Figure 5b.  

Power profiles for varying problem sizes. Figure 6a shows the power profile of the FT 
benchmark (using the smaller class A workload) during the first 50 seconds of a run on 4 
nodes. FT has similar patterns for different problem sizes (see Figure 5a). However, 
iterations are shorter in duration for the smaller (class A) problem set making peaks and 
values more pronounced; this is effectively a reduction in the communication to 
computation ratio when the number of nodes is fixed. 

Power profiles for heterogeneous workloads. For the FT benchmark, workload is 
distributed evenly across all working nodes. We use our node remapping technique to 
provide power profiles for all nodes in the cluster (in this case just 4 nodes). For FT, there 
are no significant differences. However, Figure 6b shows a counter example snapshot for 
a 10 second interval of SP synchronized across nodes. For the SP benchmark, Class A 
problem sizes running on 4 nodes result in varied power profiles for each node. 



 17

Power profiles for varying node counts. The power profile of parallel applications also 
varies with the number of nodes used in the execution if we fix problem size (i.e. strong 
scaling). We have profiled the power consumption for all the NPB benchmarks on all 
execution nodes with different numbers of processors (up to 32) and several classes of 
problem sizes. Figure 9a-c provides an overview of the profile variations on different 
system scales for benchmarks FT, EP, and MG. These figures show segments of 
synchronized power profiles for different number of nodes; all the power profiles 
correspond to the same computing phase in the application on the same node. 

These snapshots illustrate profile results for distributed benchmarks using various 
numbers of nodes under Class A workload. Due to space limitations in a single graph, 
here we focus on power amplitude only, so each time interval is simply a fixed length 
snapshot (though the x-axis does not appear to scale). For FT and MG, the profiles are 
similar for different system scale except the average power decreases with the number of 
execution nodes; for EP, the power profile is identical for all execution nodes.  

4.2.3 CLUSTER ENERGY-PERFORMANCE EFFICIENCY 

For parallel systems and applications, we would like to use E (see Equation 6) to reflect 
energy efficiency, and use D to reflect performance efficiency. To compare the energy-
performance behavior of different parallel applications such as NPB benchmarks, we use 
two metrics: 1) normalized delay or the speedup (from Equation 3) defined as 

nDD ==  node of #1 node of # ; and 2) normalized system energy, or the ratio of single-node to 

 

(a)             (b) 

Fig. 6. (a) The first 50 seconds of power use on one node of four for the FT benchmark, class 
A workload. For smaller workloads running this application, trends are the same while data 
points are slightly more pronounced since communication to computation ratios have changed 
significantly with the change in workload. (b) Power use for code SP that exhibits 
heterogeneous performance and power behavior across nodes. Note: x-axis is overlaid for 
ease of presentation – repeats 20-30 second time interval for each node.  



 18

multi-node energy consumption, defined 
as 1 node of # node of # == EE n . Plotting these two 
metrics on the same graph with x-axis as 
the number of nodes, we identify 3 
energy-performance categories for the 
codes measured. 

Type I: energy remains constant or 
approximately constant while performance 
increases linearly. EP, SP, LU and BT 
belong to this type (see Figure 7a). 

Type II: both energy and performance 
increase linearly but performance 
increases faster. MG and CG belong to 
this type (see Figure 7b). 

Type III: both energy and performance 
increase linearly but energy consumption 
increases faster. FT and IS belong to this 
type. For small problem sizes, the IS 
benchmark gains little in performance 
speedup using more nodes but consumes 
much more energy (see Figure 7c). 

Since average total system power 
increases linearly (or approximately 
linearly) with the number of nodes, we can 
express energy efficiency as a function of 
the number of nodes and the performance 
efficiency: 

n

1 1 1 1 1 1

n n n n nP D P D n DE
E P D P D D

⋅ ⋅
= = ⋅ ≈

⋅
  (7). 

In this equation, the subscript refers to the 
number of nodes used by the application. 
Equation 8 shows that energy efficiency of 
parallel applications on clusters is strongly 
tied to parallel speedup (D1/Dn). In other 
words, as parallel programs increase in 
efficiency with the number of nodes (i.e. 
improved speedup) they make more 
efficient use of the additional energy. 

Performance and Energy Consumption for EP (class A) code

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Nodes

N
or

m
al

iz
ed

 V
al

ue

Performance Speedup Normalized System Energy

 
(a) 

Performance and Energy Consumption for MG (class A) code

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Nodes

No
rm

al
iz

ed
 V

al
ue

Performance Speedup Normalized System Energy

 
(b) 

Performance and Energy Consumption for FT (class A) code

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Nodes

No
rm

ai
lz

ed
 V

al
ue

Performance Speedup Normalized System Energy

 
(c) 

Fig. 7. Energy Performance Efficiency. 
These graphs use normalized values for 
performance (i.e. speedup) and energy. 
Energy reflects total system energy. (a) EP 
shows linear performance improvement with 
no change in total energy consumption. (b) 
MG is capable of some speedup with the 
number of nodes with a corresponding 
increase in the amount of total system 
energy necessary. (c) FT shows only minor 
improvements in performance for significant 
increases in total system energy. 



 19

4.2.4 APPLICATION CHARACTERISTICS 

The power profiles observed are regular and coincide with the computation and 
communication characteristics of the codes measured. Patterns may vary by node, 
application, component and workload, but the interaction or interdependency among 
CPU, memory, disk and NIC have definite patterns. This is particularly obvious in the FT 
code illustrated in the t1 through t13 labels in Figure 5b. FT phases include computation 
(t1), reduce communication (t2), computation (t3:t4) and all-to-all communication 
(t5:t11). More generally, we also observe the following for all codes: 

1. CPU power consumption decreases when memory power increases. This reflects the 
classic memory wall problem where access to memory is slow, inevitably causing 
stalls (low power operations) on the CPU. 

2. Both CPU power and memory power decrease with message communication. This is 
analogous to the memory wall problem where the CPU stalls while waiting on 
communication. This can be alleviated by non-blocking messages, but this was not 
observed in the Ethernet-based system under study. 

3. For all the codes studied (except EP), the normalized energy consumption decreases 
as the number of nodes increases. In other words, while performance is gained from 
application speedup, there is a considerable price paid in increased total system 
energy. 

4. Communication distance and message size affect the power profile patterns. For 
example, LU has short and shallow power profiles while FT phases are significantly 
longer. This highlights possible opportunities for power and energy savings 
(discussed next). 

4.2.5 RESOURCE SCHEDULING 

We mentioned an application’s energy efficiency is dependent on its speedup or parallel 
efficiency. For certain applications such as FT and MG, we can achieve speedup by 
running on more processors while increasing total energy consumption. The subjective 
question remains as to whether the performance gain was worth the additional resources. 
Our measurements indicate there are tradeoffs between power, energy, and performance 
that should be considered to determine the best resource “operating points” or the best 
configuration in number of nodes (NP) based on the user’s needs. 

For performance-constrained systems, the best operating points will be those that 
minimize delay (D). For power-constrained systems, the best operating points will be 
those that minimize power (P) or energy (E). For systems where power-performance 
must be balanced, the choice of appropriate metric is subjective. The energy-delay 
product (see POWER-PERFORMANCE TRADEOFFS, page 5) is commonly used as a 
single metric to weigh the effects of power and performance. 

Figure 8 presents the relationships between four metrics (normalized D and E, EDP, and 
ED2P) and the number of nodes for the MG benchmark (class A). To minimize energy 



 20

(E), the system should schedule only one node to run the application which corresponds 
in this case to the worst performance. To minimize delay (D), the system should schedule 
32 nodes to run the application or 6 times speedup for more than 4 times the energy. For 
power-performance efficiency, a scheduler using the EDP metric would recommend 8 
nodes for a speedup of 2.7 and an energy cost of 1.7 times the energy of 1 node. Using 
the ED2P metric a smart scheduler would recommend 16 nodes for a speedup of 4.1 and 
an energy cost of 2.4 times the energy of 1 node. For fairness, the average delay and 
energy consumption obtained from multiple runs are used in Figure 8. 

For existing cluster systems, power-conscious resource allocation can lead to significant 
energy savings with controllable impact on performance. Of course, there are more 
details to consider including how to provide the scheduler with application-specific 
information. This is the subject of ongoing research in power-aware cluster computing. 

5 Low Power Computational Clusters 
To address operating cost and reliability concerns, large-scale systems are being 
developed with low power components. This strategy, used in construction of Green 
Destiny [70] and IBM BlueGene/L [8], requires changes in architectural design to 
improve performance. For example, Green Destiny relies on driving the Transmeta 
Crusoe processor [52] development while BlueGene/L uses a version of the embedded 
PowerPC chip modified with additional floating point support. In essence, the resulting 
high-end machines are no longer strictly composed of commodity parts – making this 
approach very expensive to sustain. 

To illustrate the pros and cons of a low power computational cluster, we developed the 
Argus prototype, a high density, low power supercomputer built from an IXIA network 

 

Fig. 8. To determine the number of nodal resources that provides the best rate of return on 
energy usage is a subjective process. Different metrics recommend different configurations. 
For the MG code shown here, minimizing delay means using 32 processors; minimizing 
energy means using 1 processor; the EDP metric recommends 8 processors while the ED2P 
metric recommends 16 processors. Note: y-axis in log. 



 21

analyzer chassis and load modules. The prototype is configured as a diskless cluster 
scalable to 128 processors in a single 9U chassis. The entire system has a footprint of 1/4 
meter2 (2.5 ft2), a volume of 0.09 meter3 (3.3 ft3) and maximum power consumption of 
less than 2200 watts. In this section, we compare and contrast the characteristics of Argus 
against various machines including our 32-node Beowulf and Green Destiny. 

5.1 ARGUS: LOW POWER CLUSTER COMPUTER 

Computing resources may be special purpose (e.g. Earth Simulator) or general purpose 
(e.g. network of workstations). While these high-end systems often provide unmatched 
computing power, they are extremely expensive, requiring special cooling systems, 
enormous amounts of power and dedicated building space to ensure reliability. It is 
common for a supercomputing resource to encompass an entire building and consume 
tens of megawatts of power. 

In contrast low-power, high-throughput, high-density systems are typically designed for a 
single task (e.g. image processing). These machines offer exceptional speed (and often 
guaranteed performance) for certain applications. However, design constraints including 
performance, power, and space make them expensive to develop and difficult to migrate 
to future generation systems. 

We propose an alternative approach augmenting a specialized system (i.e. an Ixia 
network analyzer) that is designed for a commodity marketplace under performance, 
power, and space constraints. Though the original Ixia machine is designed for a single 
task, we have created a configuration that 
provides general-purpose high-end parallel 
processing in a Linux environment. Our system 
provides computational power surpassing Green 
Destiny [30, 70] (another low-power 
supercomputer) while decreasing volume by a 
factor of 3. 

5.1.1 SYSTEM DESIGN 

Figure 9 is a detailed diagram of the prototype 
architecture we call Argus. This architecture 
consists of four sets of separate components: the 
IXIA chassis, the IXIA Load Modules, the multi 
port fast Ethernet switch and an NFS server.  

The chassis contains a power supply and 
distribution unit, cooling system, and runs 
windows and proprietary software (IX server and 
IX router). Multiple (up to 16) Load Modules plug 
into the chassis and communicate with the chassis 
and each other via an IX Bus (mainly used for 
system management, much too slow for message 

P C M

P C M

P C M

P C M

F
P
G
A

P C M

P C M

P C M

P C M

F
P
G
A

IX
 S

er
ve

r
IX

 R
ou

te
r

Load Module #1

Load Module #N

IX
 B

us

IXIA Chassis

M
ul

tip
or

t s
w

itc
h N

FS
 S

er
ve

r
To

 E
xt

er
na

l N
et

w
or

k

 

Fig. 9. The Hardware Architecture 
Argus. Up to 16 Load Modules are 
supported in a single IXIA 1600T 
chassis. A single bus interconnects 
modules and the chassis PC while 
external disks and the cluster front-
end are connected via an Ethernet 
switch. P=processor, C=Cache, 
M=Memory. 



 22

transfer). Each Load Module provides up to 8 RISC processors (called port processors) in 
a dense form factor and each processor has its own operating system, cache (L1 and L2), 
main memory and network interface. Additional FPGA elements on each Load Module 
aid real-time analysis of network traffic. Though the performance abilities of these 
FPGAs have merit, we omit them from consideration for two reasons: 1) reprogramming 
is difficult and time consuming, and 2) it is likely FPGA elements will not appear in 
succeeding generation Load Modules to reduce unit cost. 

There is no disk on each Load Module. We allocate a small portion of memory at each 
port to store an embedded version of the Linux OS kernel and application downloaded 
from the IX Server. An external Linux machine running NFS file server is used to 
provide external storage for each node. A possible improvement is to use networked 
memory as secondary storage but we did not attempt this in the initial prototype. Due to 
cost considerations, although the Load Modules support 1000 Mbps Ethernet on copper, 
we used a readily available switch operating at 100 Mbps. 

The first version of the Argus prototype is implemented with one IXIA 1600T chassis 
and 4 LM1000TXS4 Load Modules (See http://www.ixiacom.com/library/catalog/ for 
specification) [20] configured as a 16-node distributed memory system, i.e., each port 
processor is considered as an individual node. 

Another option is to configure each Load Module as an SMP node. This option requires 
use of the IxBus between Load Modules. The IxBus bus (and the PowerPC 750CXe 
processor) does not maintain cache coherence and has limited bandwidth. Thus, early on 
we eliminated this option from consideration since software-driven cache coherence will 
limit performance drastically. We opted to communicate data between all processors 
through the Ethernet connection. Hence one recommendation for future implementations 
is to significantly increase the performance and capabilities of the IX Bus. This could 
result in a cluster of SMPs architecture allowing hybrid communications for improved 
performance. 

Each LM1000TXS4 Load Module provides four 1392 MIPS PowerPC 750CXe RISC 
processors [45] and each processor has one 128MB memory module and one network 
port with auto-negotiating 10/100/1000 Mbps Copper Ethernet interface. The 1392 MIPS 
PowerPC 750CXe CPU employs 0.18 micrometer CMOS copper technology, running at 
600 MHz with 6.0W typical power dissipation. This CPU has independent on-chip 32K 
bytes, eight-way set associative, physically addressed caches for instructions and data. 
The 256KB L2 cache is implemented with on-chip, two-way set associative memories 
and synchronous SRAM for data storage. The external SRAM are accessed through a 
dedicated L2 cache port. The PowerPC 750CXe processor can complete two instructions 
per CPU cycle. It incorporates 6 execution units including one floating-point unit, one 
branch processing unit, one system register unit, one load/store unit and two integer units. 
Therefore, the theoretical peak performance of the PowerPC 750CXe is 1200 MIPS for 
integer operations and 600 MFLOPS for floating-point operations. 

In Argus, message passing (i.e. MPI) is chosen as the model of parallel computation. We 
ported gcc3.2.2 and glib for PowerPC 750 CXe to provide a useful development 



 23

environment. MPICH 1.2.5 (the MPI implementation from Argonne National Lab and 
Michigan State University) and a series of benchmarks have been built and installed on 
Argus. Following our augmentation, Argus resembles a standard Linux-based cluster 
running existing software packages and compiling new applications. 

5.1.2 LOW POWER CLUSTER METRICS 

According to design priorities, general-purpose clusters can be classified into four 
categories: 

Performance: These are traditional high-performance systems (e.g. Earth Simulator) 
where performance (GFLOPS) is the absolute priority.  

Cost: These are systems built to maximize the performance/cost ratio (GFLOPS/$) using 
commercial-off-the-shelf components (e.g. Beowulf). 

Power: These systems are designed for reduced power (GFLOPS/Watt) to improve 
reliability (e.g. Green Destiny) using low-power components. 

Density: These systems have specific space constraints requiring integration of 
components in a dense form factor with specially designed size and shape (e.g. Green 
Destiny) for a high performance/volume ratio (GFLOPS/ft3).  

Though high performance systems are still a majority in the HPC community; low cost, 
low power, low profile and high density systems are emerging. Blue Gene/L (IBM) [1] 
and Green Destiny (LANL) are two examples designed under cost, power and space 
constraints. 

Argus is most comparable to Green Destiny. Green Destiny prioritizes reliability (i.e. 
power consumption) though this results in a relatively small form factor. In contrast, the 
Argus design prioritizes space providing general-purpose functionality not typical in 
space-constrained systems. Both Green Destiny and Argus rely on system components 
targeted at commodity markets. 

Green Destiny uses the Transmeta Crusoe TM5600 CPU for low power and high density. 
Each blade of Green Destiny combines server hardware, such as CPU, memory, and the 
network controller into a single expansion card. Argus uses the PowerPC 750CXe 
embedded microprocessor which consumes less power but matches the sustained 
performance of the Transmeta Crusoe TM5600. Argus’ density comes at the expense of 
mechanical parts (namely local disk) and multiple processors on each load module (or 
blade). For perspective, 240 nodes in Green Destiny fill a single rack (about 25 ft3); 
Argus can fit 128 nodes in 3.3 ft3. This diskless design makes Argus more dense and 
mobile yet less suitable for applications requiring significant storage. 

TCO Metrics. As Argus and Green Destiny are similar, we use the total cost of 
ownership (TCO) metrics proposed by Feng et al [30] as the basis of evaluation. For 
completeness, we also evaluate our system using traditional performance benchmarks. 



 24

OCACTCO +=       (8). 

AC HWC SWC= +       (9). 

OC SAC PCC SCC DTC= + + +     (10). 

TCO refers to all expenses related to acquisition, maintaining and operating the 
computing system within an organization. Equations (8-10) provide TCO components 
including acquisition cost (AC), operations cost (OC), hardware cost (HWC), software 
cost (SWC), system-administration cost (SAC), power-consumption cost (PCC), space-
consumption cost (SCC) and downtime cost (DTC). The ratio of total cost of ownership 
(TCO) and the performance (GFLOPS) is designed to quantify the effective cost of a 
distributed system. 

According to a formula derived from Arrhenius’ Law2, component life expectancy 
decreases 50% for every 10º C (18º F) temperature increase. Since system operating 
temperature is roughly proportional to its power consumption, lower power consumption 
implies longer component life expectancy and lower system failure rate. Since both 
Argus and Green Destiny use low power processors, the performance to power ratio 
(GFLOPS/watt) can be used to quantify power efficiency. A high GFLOPS/watt implies 
lower power consumption for the same number of computations, and hence lower system 
working temperature and higher system reliability (i.e. lower component failure rate). 

Since both Argus and Green Destiny provide small form factors relative to traditional 
high-end systems, the performance to space ratio (GFLOPS/ft2 for footprint and 
GFLOPS/ft3 for volume) can be used to quantify computing density. Feng et al propose 
the footprint as the metric of computing density [30]. While Argus performs well in this 
regard for a very large system, we argue it is more precise to compare volume. We 
provide both measurements in our results. 

Benchmarks. We use an iterative benchmarking process to determine the system 
performance characteristics of the Argus prototype for general comparison to a 
performance/cost design (i.e. Beowulf) and to target future design improvements. 
Benchmarking is performed at two levels: 

Micro-benchmarks: Using several micro benchmarks such as LMBENCH [57], 
MPPTEST [37], NSIEVE [49] and Livermore LOOPS [56], we provide detailed 
performance measurements of the core components of the prototype CPU, memory 
subsystem and communication subsystem. 

Kernel application benchmarks: We use LINPACK [25] and the NAS Parallel 
Benchmarks [5] to quantify performance of key application kernels in high performance 

                                                 
2 Reaction rate equation of Swedish physical chemist and Nobel Laureate Svante Arrhenius (1859-1927) is used to derive time to 
failure as a function of e-Ea/KT, where Ea is activation energy (eV), K is Boltzman’s constant, and T is absolute temperature in Kelvin. 



 25

scientific computing. Performance bottlenecks in these applications may be explained by 
measurements at the micro-benchmark level. 

For direct performance comparisons, we use an on-site 32-node Beowulf cluster called 
DANIEL. Each node on DANIEL is a 933MHZ Pentium III processor with 1 Gigabyte 
memory running Red Hat Linux 8.0. The head node and all slave nodes are connected 
with two 100M Ethernet switches. We expect DANIEL to out-perform Argus generally, 
though our results normalized for clock rate (i.e. using machine clock cycles instead of 
seconds) show performance is comparable given DANIEL is designed for 
performance/cost and Argus for performance/space. 

For direct measurements, we use standard UNIX system calls and timers when applicable 
as well as hardware counters if available. Whenever possible, we use existing, widely-
used tools (e.g. LMBENCH) to obtain measurements. All measurements are the average 
or minimum results over multiple runs at various times of day to avoid outliers due to 
local and machine-wide perturbations. 

5.1.3 ANALYZING A LOW POWER CLUSTER DESIGN 

Measured Cost, Power and Space Metrics. We make direct comparisons between 
Argus, Green Destiny and DANIEL based on the aforementioned metrics. The results are 
given in Table 1. Two Argus systems are considered: Argus64 and Argus128. Argus64 is 
the 64-node update of our current prototype with the same Load Module. Argus128 is the 
128-node update with the more advanced IXIA Application Load Module (ALM1000T8) 
currently available [20]. Each ALM1000T8 load module has eight 1856 MIPS PowerPC 
processors with Gigabit Ethernet interface and 1GB memory per processor. Space 
efficiency is calculated by mounting 4 chassis' in a single 36U rack (excluding I/O node 
and Ethernet switches to be comparable to Green Destiny). The LINPACK performance 
of Argus64 is extrapolated from direct measurements on 16-nodes and the performance 
of Argus128 is predicted using techniques similar to Feng et al. as 2×1.3 times the 
performance of Argus64. 

All data on the 32-node Beowulf, DANIEL is obtained from direct measurements. There 
is no direct measurement of LINPACK performance for Green Destiny in the literature. 
We use both the Tree Code performance as reported [70] and the estimated LINPACK 
performance by Feng [29] for comparison denoted with parenthesis in Table 1.  

We estimated the acquisition cost of Argus using prices published by IBM in June 2003 
and industry practice. Each PowerPC 750Cxe costs less than $50. Considering memory 
and other components, each ALM Load Module will cost less than $1000. Including 
software and system design cost, each Load Module could sell for $5000-$10000. 
Assuming the chassis costs another $10,000, the 128-node Argus may cost $90K-170K in 
acquisition cost (AC). Following the same method proposed by Feng et al., the operating 
cost (OC) of Argus is less than $10K. Therefore, we estimate the TCO of Argus128 is 
below $200K. The downtime cost of DANIEL is not included when computing its TCO 
since it is a research system and often purposely rebooted before and after experiments. 



 26

The TCO of the 240-node Green Destiny is estimated based on the data of its 24-node 
system. 

Though TCO is suggested as a better metric than acquisition cost, the estimation of 
downtime cost (DTC) is subjective while the acquisition cost is the largest component of 
TCO. Though, these three systems have similar TCO performance, Green Destiny and 
Argus have larger acquisition cost than DANIEL due to their initial system design cost. 
System design cost is high in both cases since the design cost has not been amortized 
over the market size – which would effectively occur as production matures. 

The Argus128 is built with a single IXIA 1600T chassis with 16 blades where each blade 
contains 8 CPUs. The chassis occupies 44.5×39.9×52 cm3 (about 0.09 m3 or 3.3 ft3). 
Green Destiny consists of 10 chassis; each chassis contains 10 blades; and each blade has 
only one CPU. DANIEL includes 32 rack-dense server nodes and each node has one 
CPU. 

Table 1. Cost, Power, and Space Efficiency. For Green Destiny, the first value corresponds to 
its Tree Code performance; the second value in parenthesis is its estimated LINPACK 
performance. All other systems use LINPACK performance. The downtime cost of DANIEL is 
not included when computing its TCO since it is a research system and often purposely 
rebooted before and after experiments. The TCO of the 240-node Green Destiny is estimated 
based on the data of its 24-node system. 

Machine DANIEL Green Destiny ARGUS64 ARGUS128 

CPUs 32 240 64 128 

Performance 
(GFLOPS) 17 39 (101) 13 34 

Area (foot2) 12 6 2.5 2.5 

TCO ( $K) 100 350 100-150 100-200 

Volume(foot3) 50 30 3.3 3.3 

Power(kW) 2 5.2 1 2 

GFLOPS/proc 0.53 0.16 
(0.42) 0.20 0.27 

GFLOPS 
Per Chassis 0.53 3.9 13 34 

TCO Efficiency 
(GFLOPS/K$) 0.17 0.11 

(0.29) 0.08~0.13 0.17~0.34 

Computing Density 
(GFLOPS/foot3) 0.34 1.3 (3.3) 3.9 10.3 

Space 
Efficiency 

(GFLOPS/foot2) 
1.4 6.5 (16.8) 20.8 54.4 

Power Efficiency 
(GFLOPS/foot3) 8.5 7.5 

(19.4) 13 17 

  



 27

Due to the large difference in system 
footprints (50 ft3 for DANIEL, 30 ft3 for 
Green Destiny and 3.3 ft3 for Argus) and 
relatively small difference in single 
processor performance (711 MFLOPS for 
DANIEL, 600 MFLOPS for Green 
Destiny and 300 MFLOPS for Argus), 
Argus has the highest computing density, 
30 times higher than DANIEL, and 3 
times higher than Green Destiny. 

Table 1 shows Argus128 is twice as 
efficient as DANIEL and about the same 
as Green Destiny. This observation 
contradicts our expectations that Argus 
should fair better against Green Destiny in 
power efficiency. However upon further 
investigation we suspect either 1) the 
Argus cooling system is less efficient (or 
works harder given the processor density), 
2) our use of peak power consumption on 
Argus compared to average consumption 
on Green Destiny is unfair, 3) the Green 
Destiny LINPACK projections (not 
measured directly) provided in the 
literature are overly optimistic, or 4) some 
combination thereof. In any case, our 
results indicate power efficiency should be 
revisited in succeeding designs though the 
results are respectable particularly given 
the processor density. 

Performance results. A single RLX 
System 324 chassis with 24 blades from Green Destiny delivers 3.6 GFLOPS computing 
capability for the Tree Code benchmark. A single IXIA 1600T with 16 Load Modules 
achieves 34 GFLOPS for the LINPACK benchmark. Due to the varying number of 
processors in each system, the performance per chassis and performance per processor 
are used in our performance comparisons. Table 1 shows DANIEL achieves the best 
performance per processor and Argus achieves the worst. Argus has poor performance on 
double MUL operation (discussed in the next section) which dominates operations in 
LINPACK. Argus performs better for integer and single precision float operations. Green 
Destiny outperforms Argus on multiply operations since designers were able to work 
with Transmeta engineers to optimize the floating point translation of the Transmeta 
processor. 

Memory hierarchy performance (latency and bandwidth) is measured using the 
lat_mem_rd and bw_mem_xx tools in the LMBENCH suite. The results are summarized 

Table 3. Instruction Performance. IPC: 
Instructions per clock, MIPS: Millions of 
instructions per second, I: Integer, F: Single 
precision floating point; D: Double precision 
floating point. 

ARGUS DANIEL  
Instruction Cycles IPC MIPS Cycles IPC MIPS

I-BIT 1 1.5 900 1 1.93 1771 
I-ADD 1 2.0 1200 1 1.56 1393 
I-MUL 2 1.0 300 4 3.81 880 
I-DIV 20 1.0 30 39 1.08 36 

I-MOD 24 1.0 25 42 1.08 24 
F-ADD 3 3.0 600 3 2.50 764 
F-MUL 3 3.0 600 5 2.50 460 
F-DIV 18 1.0 33 23.6 1.08 42 

D-ADD 3 3.0 600 3 2.50 764 
D-MUL 4 2.0 300 5 2.50 460 
D-DIV 32 1.0 19 23.6 1.08 42 

 

Table 2. Memory System Performance 

Parameters ARGUS DANIEL 

CPU Clock Rate 600MHz 922MHz 

Clock Cycle Time 1.667ns 1.085ns 

L1 Data Cache Size 32KB 16KB 

L1 Data Cache Latency 3.37ns?2 cycles 3.26ns?3 cycles 

L2 Data Cache Size 256KB 256KB 

L2 Data Cache Latency 19.3ns?12cycles 7.6ns ? 7 cycles 

Memory Size 128MB 1GB 

Memory Latency 220ns?132 cycles 153ns?141 cycles

Memory Read Bandwidth 146~2340MB/s 514~3580MB/s 

Memory Write Bandwidth 98~2375MB/s 162~3366MB/s 



 28

in Table 2. DANIEL, using its high-power, 
high-profile off-the-shelf Intel technology, 
outperforms Argus at each level in the 
memory hierarchy in raw performance 
(time). Normalizing with respect to cycles 
however, shows how clock rate partially 
explains the disparity. The resulting 
"relative performance" between DANIEL 
and Argus is more promising. Argus 
performs 50% better than Daniel at the L1 
level, 6% better at the main memory level, 
but much worse at the L2 level. Increasing 
the clock rate of the PowerPC processor 
and the L2 implementation in Argus 
would improve raw performance 
considerably. 

IPC is the number of instructions executed 
per clock cycle. Throughput is the number 
of instructions executed per second (or 
IPC x clock_cycle). Peak throughput is the 
maximum throughput possible on a given 
architecture. Peak throughput is only 
attained when ideal IPC (optimal 
instruction-level parallelism) is sustained 
on the processor. Memory accesses, data 
dependencies, branching, and other code 
characteristics limit the achieved 
throughput on the processor. Using microbenchmarks, 
we measured the peak throughput for various 
instruction types on the machines under study. 

Table 3 shows the results of our throughput 
experiments. Integer performance typically 
outperforms floating point performance on Argus. For 
DANIEL (the Intel architecture) floating point (F-xxx 
in Table 3) and double (D-xxx in Table 3) 
performances are comparable for ADD, MUL, and 
DIV respectively. This is not true for Argus where F-
MUL and D-MUL are significantly different as 
observed in our LINPACK measurements. We expect 
the modified version of the PowerPC architecture 
(with an additional floating point unit) present in IBM 
Bluegene\L will equalize the performance difference with the Intel architecture in future 
systems. CPU throughput measurements normalized for clock rates (MIPS) show Argus 
performs better than DANIEL for integer ADD/DIV/MOD, float ADD/MUL and double 
ADD instructions, but worse for integer MUL and double DIV instructions. 

Table 4. Livermore Loops. NORM: 
normalized performance, obtained by 
dividing MFLOPS by CPU clock rate 

ARGUS DANIEL 
 

MFLOPS NORM. MFLOPS NORM.

Maximum Rate 731.5 1.22 1281.9 1.37 

Quartile Q3 225.0 0.38 377.6 0.40 

Average Rate 174.5 0.29 278.9 0.30 

Geometric Mean 135.5 0.23 207.2 0.22 

Median Q2 141.6 0.24 222.2 0.24 

Harmonic Mean 106.6 0.18 133.6 0.14 

Quartile Q1 66.4 0.11 132.6 0.14 

Minimum Rate 46.2 0.08 20.0 0.02 

Standard Dev 133.8 0.22 208.5 0.22 

Average Efficiency 18.52%  16.16%  

Mean Precision (digits) 6.24  6.35  

 

Table 5. Linpack Results on Argus 

NP Problem Size GFLOPS GFLOPS/proc Speedup
1 3000 0.297 0.297 1.00 
2 3000 0.496 0.248 1.67 
4 5000 0.876 0.219 2.95 
8 8000 1.757 0.221 5.91 

16 12000 3.393 0.212 11.42 

 

Table 6. Parallel Benchmark 
Results on Argus 

Performance (MOP/second) 

CODE NP=1 NP=4 NP=16

CG 19.61 46.04 88.12 

EP 1.69 6.75 24.08 

IS 4.06 3.62 18.02 

LU 48.66 188.24 674.62 

MG 45.50 84.51 233.36 

BT 40.04 131.76 436.29 

SP 28.72 90.99 299.71 

 



 29

The performance of message communication is critical to overall parallel system 
performance. We measured memory communication latency and bandwidth with the 
MPPTEST tool available in the MPICH distribution. Results show that Argus 
performance is slightly worse yet comparable to DANIEL. MPI point-to-point latency is 
104ns (about 62 CPU cycles) on Argus and 87ns (about 80 CPU cycles) on DANIEL. 
Both systems use 10/100 Mbps Ethernet so this is somewhat expected. However, we 
observed larger message injection overhead on Argus as message size approaches typical 
packet size. This is most likely due to the memory hierarchy disparity already described. 

For further comparison, we measured the performance of two additional sequential 
benchmarks: NSIEVE and Livermore Loops. NSIEVE is a sieve of Eratosthenes program 
that varies array sizes to quantify the performance of integer operations. Livermore loops 
is a set of 24 DO-loops extracted from operational code used at Lawrence Livermore 
National Laboratory. 

The NSIEVE benchmark results show that for small array size, Argus has a higher MIPS 
rating (980) than DANIEL (945). However, as array sizes increase, the relative 
performance of Argus decreases versus DANIEL. This reflects the differences in L2 
cache performance between Argus and DANIEL. 

The performance results from Livermore loops are summarized in Table 4. We observe 
DANIEL achieves 1.5-2 times higher MFLOPS rating than Argus for most statistical 
values, Argus achieves the best, worst-case execution time for this benchmark. For 
instance, in real time codes where worst-case performance must be assumed, Argus may 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# of processors

N
or

m
al

iz
ed

 M
O

P/
se

co
nd

/p
ro

ce
ss

or

CG EP IS LU MG SP BT
 

Fig. 10. Argus Scalability. These curves show the varying scalability of parallel benchmarks 
from the NPB 2.4.1 release (Class W). Main limitations on performance in the prototype 
include memory bandwidth and FP operation throughput. However, the result is a low power 
cluster capable of computing scientific applications. 



 30

be a better choice. However, examining performance normalized for clock rates (NORM) 
on this benchmark, the two systems perform similarly. 

The Argus prototype architecture can execute both commercial and scientific 
applications. In this paper, we focus on scientific applications and provide results for two 
benchmark suites: LINPACK [25] and the NAS parallel benchmarks [5]. Since we 
already established the performance difference between Argus and DANIEL for single 
node (see previous section), here we only discuss the parallel performance of Argus. 

LINPACK is arguably the most widely used benchmark for scientific applications and its 
measurements form the basis for the Top500 list [63] of fastest supercomputers in the 
world. Our measurements use HPL, a parallel version of the linear algebra subroutines in 
LINPACK that solve a (random) dense linear system in double precision (64-bit) 
arithmetic on distributed-memory computers. HPL provides the ability to scale workloads 
for better performance by adjusting array sizes. To ensure good performance, we 
compiled and installed the BLAS libraries with the aid of ATLAS (Automatically Tuned 
Linear Algebra Software). Table 5 shows the LINPACK benchmark results on the 16-
node Argus prototype. The prototype achieves 3.4 GFLOPS, about 210 MFLOPS each 
node or 70% peak throughput of “double MUL” operations.  

The NAS Parallel Benchmark (NPB) is a set of 8 programs designed to help evaluate the 
performance of parallel supercomputers. This benchmark suite consists of five 
application kernels and three pseudo-applications derived from computational fluid 
dynamics applications. These benchmarks are characterized with different 
computation/communication ratios described in [5]. The raw performance of NPB 2.4.1 
with a problem size of W on Argus is shown in Table 6. To better identify the 
performance trends, Figure 10 provides the scalability of Argus under strong scaling (i.e. 
fixed problem size and increasing number of processors). 

For 16 nodes, EP and LU show the best scalability. The embarrassingly-parallel code 
(EP) should achieve linear speedup since little communication is present. LU achieves 
super-linear speedup that appears to be levelling off. As working set size remains fixed 
with increases in the number of processors, communication is minimal (i.e. strong or 
fixed-size scaling). Super-linear performance is achieved as the working set gets smaller 
and smaller on a per node basis. 

The curve of IS initially drops but then grows with the number of nodes. These codes 
stress communication performance. The levelling off of performance indicates the 
communication costs are not saturating the Ethernet interconnect up to 16 nodes.  

The other four curves (SP, BT, CG and MG) have similar trends but different slopes. The 
performance of these codes reflects the communication to computation ratio. EP and LU 
are dominated by computation. IS and FT are dominated by communication. These codes 
sit somewhere in between. Trends here are similar (though less pronounced) than the 
communication-bound codes. These codes (SP, BT, CG, and MG) are more sensitive to 
the number of nodes as it affects the number of communications. Performance then is 
likely to move downward with the number of nodes until a plateau is reached prior to 



 31

network saturation (i.e. similar to the plateau in IS and FT performance). At some later 
point all of these codes will reach the limits of either the input data set size (Amdahl’s 
Law) or the interconnect technology (saturation) where performance will drop drastically 
again. Our system is too small to observe these types of problems, so this is the subject of 
future work. 

5.1.4 LESSONS FROM A LOW POWER CLUSTER DESIGN 

Argus exemplifies an architectural design with trade-offs between performance, cost, 
space and power. The Argus prototype is a new approach to cluster computing that uses 
the aggregate processing elements on network analysis Load Modules for parallel 
computing. The analysis shows this architecture has advantages such as high scalability, 
small volumetric footprint, reduced power, high availability, and ultra-high processor 
density.  

Argus achieves higher computing efficiency than Green Destiny, a comparable system 
with similar power efficiency. Argus is capable of packing more processors per blade 
than Green Destiny at present though future versions of both machines will undoubtedly 
address this. 

The benchmarking measurements and comparisons with DANIEL indicate that the 
current Argus prototype has two major performance limitations due to the architectural 
characteristics of the embedded PowerPC processor: L2 cache latency and hardware 
support for double precision. Also the communication overhead on the processing node 
should and could be improved through system-specific hardware and software tuning of 
MPI. Furthermore, results from a larger prototype with a faster interconnect would allow 
more comprehensive scalability analyses. 

There are two concerns with the low power cluster design approach highlighted by our 
experiments with Argus. First, performance is not considered a critical design constraint. 
In all low power approaches including Argus, Green Destiny and IBM BlueGene \L, 
performance is sacrificed to reduce the power consumption of the machine. BlueGene \L 
has been the most successful at overcoming this constraint by 1) redesign of the PowerPC 
embedded architecture to support double precision floating point operations, and 2) 
custom design of a 130,000+ processor system. 

Second, the low power approach is limited since it assumes all applications suffer from 
poor power efficiency. This contradicts our earlier findings that the power needs of 
applications vary significantly over time. Together, these observations motivate the need 
for power-conscious approaches in high-performance that adapt to the performance 
phases of applications. 

6 Power-aware Computational Clusters 
Recently, power has become a critical issue for large data centers. Studies of power 
consumption and energy conservation on commercial servers have emerged. Bohrer et al 
[9] found dynamic voltage and frequency scaling (DVFS) for processors is effective for 



 32

saving energy in web servers. Carrera et al [17] found multi-speed disks can save energy 
up to 23% for network servers. Zhu et al [72, 73] combines several techniques including 
multi-speed disks and data migration to reduce energy consumption while meeting 
performance goals. 

Power reduction becomes critical in high-performance computing to ensure reliability 
and limit operating cost. Two kinds of systems are now built to accommodate these 
goals: systems with low power components (discussed in the previous section [8, 31, 32]) 
and systems with power-aware components [43]. Energy reduction using power-aware 
technologies had not been exploited in high-performance computing until our research 
was launched in 2004 [15]. 

In contrast to Argus, Green Destiny and BlueGene/L, our power-aware approach for HPC 
uses off-the-shelf DVS technologies3 in server-class systems to exploit scientific 
workload characteristics. Power-aware clusters include components that have multiple 
power/performance modes (e.g. CPU’s with DVS). The time spent within and 
transitioning to/from these power/performance modes determines the delay (cost in 
performance) and energy (cost in power, heat, etc.). 

There are two ways to schedule DVS transitions. External distributed DVS scheduling 
techniques are autonomous and control DVS power/performance modes in a cluster as 
processes separate from the application under study. External schedulers may be system-
driven (e.g. the cpuspeed daemon) or user-driven (e.g. setting DVS from the command 
line). Internal distributed DVS scheduling techniques use source-level performance 
profiling to direct DVS power/performance modes with source-code instrumentation. 

6.1 USING DVS IN HIGH-PERFORMANCE CLUSTERS 

Dynamic Voltage Scaling (DVS) is a technology now common in high-performance 
microprocessors [3, 46]. DVS works on a very simple principal: decreasing the supply 
voltage to the CPU consumes less power. 

As shown in Equation 4, the dynamic power consumption (P) of a CMOS-based 
microprocessor is proportional to the product of total capacitance load (C), frequency (f), 
the square of the supply voltage (V2), and percentage of active gates (A) or P≈ACV2f. As 
shown in Equation 6, energy consumption (measured in joules) is reduced by lowering 
the average power (Pavg) consumed for some duration or delay (D) or E=Pavg x D. 

                                                 
3 DVS capabilities are now available in server-class architectures including Intel Xeon (SE7520 chipset) and AMD Opteron (Tyan 
s2882 board) dual processor nodes.  



 33

There are two reasons for using DVS 
to conserve energy in HPC server 
clusters. The first reason is to exploit 
the dominance of CPU power 
consumption on the system node (and 
thus cluster) power consumption. 
Figure 3b shows the breakdown of 
system node power obtained using 
direct measurement [33]. This figure 
shows percentage of total system 
power for a Pentium III CPU (35%) 
under load. This percentage is lower 
(15%) but still significant when the 
CPU is idle. While the Pentium III can 
consume nearly 45 watts, recent 
processors such as Itanium 2 consume 
over 100 watts and a growing 
percentage of total system power. 
Reducing the average power consumed 
by the CPU can result in significant 
server energy savings magnified in 
cluster systems. 

The second reason for using DVS to conserve energy in HPC server clusters is to save 
energy without increasing execution time. DVS provides the ability to adaptively reduce 
power consumption. By reducing CPU power when peak speed is not needed (e.g. idle or 
slack periods) a DVS scheduling algorithm can reduce energy consumption. To minimize 
the impact on execution time we must ensure 1) supply voltage is reduced during CPU 
times when peak speed is not necessary, and 2) period duration outweighs voltage state 
transition costs4. 

Figure 11 shows the use of DVS on a single node to exploit CPU slack due to memory 
stalls. In this example we run swim from the SPEC 2000 benchmark suite on a DVS-
enabled node at various fixed voltages shown as the resulting frequency5 on the x-axis in 
increasing order. Lower frequency (i.e. lower voltage) means lower CPU performance. 
The values plotted on the y-axis are normalized to the highest (i.e. fastest) frequency 
respectively for energy and delay (execution time). This energy-delay “crescendo” for 
swim shows when reducing CPU frequency (from right to left) the delay (execution time) 
increase varies from almost no increase at 1200 MHz to about 25% increase at 600 MHz. 
The corresponding total system energy decreases steadily with lower frequencies. Simply 

                                                 
4 In our AMD Opteron-based systems transition costs vary from 20-30 microseconds. Manufacturers set lower bounds (~10 
microseconds) to achieve system stability following mode transitions. 

5 To be precise, DVS affects both voltage and frequency. Voltage and frequency are not independent as shown in Table 1. However 
for ease of discussion, we describe measurements in terms of the resulting frequency. 

Normalized Delay and Energy for Swim

0

0.2

0.4

0.6

0.8

1

1.2

1.4

600 800 1000 1200 1400
CPU Frequency (MHz)

N
or

m
al

iz
ed

 V
al

ue
s

Normalized Energy
Normalized Delay

Normalized Delay and Energy for Swim

0

0.2

0.4

0.6

0.8

1

1.2

1.4

600 800 1000 1200 1400
CPU Frequency (MHz)

N
or

m
al

iz
ed

 V
al

ue
s

Normalized Energy
Normalized Delay

Fig. 11: The energy-delay crescendo for swim 
shows the effect of application-dependent 
CPU slackness on (node) energy and 
performance measured at a single NEMO 
node. For swim, energy conservation can be 
achieved with (at times) reasonable 
performance loss.  



 34

put, the memory stalls in swim produce enough slack periods for DVS to save energy 
(e.g. 8% at 1200 MHz) with almost no impact on execution time (<1%). 

In the rest of this section, we will analyze the tradeoffs of various DVS scheduling 
techniques designed to exploit CPU slack time in computational clusters. For parallel 
codes, idle CPU periods will be workload dependent and result from both memory and 
remote communication stalls. 

6.2 DISTRIBUTED DVS SCHEDULING STRATEGIES 

Now that we have established DVS as a viable approach to conserving energy while 
maintaining performance for HPC applications, we turn our attention to describing 
several approaches to schedule DVS transitions over the duration of a parallel code. Our 
goal in this section is not to explore every possible alternative in distributed DVS 
scheduling, but to provide detail on three techniques that differ in complexity and 
efficiency. 

The scheduling techniques studied can be characterized as follows: 1) user- or system-
driven, 2) internal or external to the application. The techniques can be evaluated by 
directly measuring the amount of total system energy consumed and the amount of 
execution time required to solution. Figure 12 provides an overview of the three 
scheduling methods studied. 

6.2.1 CPUSPEED DAEMON 

Strategy #1: Using the CPUSPEED Daemon. System-driven, external control of 
distributed DVS scheduling can be implemented as a system process or Daemon. The 
daemon we study is the CPUSPEED program included in the latest Fedora Core 
releases6. CPUSPEED schedules the DVS modes of a single node according to the CPU 
utilization information recorded by the system in the /proc directory of Linux. Other 
operating systems (e.g. Windows running on a laptop) provide comparable daemons for 
scheduling CPU, disk, and monitor power modes when the system is underutilized. These 
processes run autonomously and typically use saturation-based counters (or thresholds) 
and simple history-based information (e.g. CPU utilization) to migrate components 
between power modes. 

Assuming a power aware node supports m operating points (voltage steps or frequencies) 
and the current operating point is S, the basic algorithm for CPUSPEED is as follows: 

                                                 
6 See http://carlthompson.net/Software/CPUSpeed 



 35

EXTERNAL 

Strategy #2: Scheduling from the command-line. User-driven, external control can be 
implemented as a program invocation from the command line or as a system-call from a 
process external to the application. This is the approach used to save energy on a single 
node for the swim code shown in Figure 2. In the distributed version of this approach, the 
user synchronizes and sets the frequency for each node statically7 prior to executing the 
application. For distributed applications that are memory/communication bound or 
imbalanced applications with large amounts of CPU slack or idle time, this approach is 
simple and effective. Performance profiling can be used to determine the amount of time 
the application spends stalled on the CPU for a given node configuration. Individual 
nodes can then be set to different DVS speeds appropriate to their share of the workload. 

The process of DVS scheduling using external control is as follows: First we run a series 
of microbenchmarks to determine the effect of DVS on common types of code blocks 
including computationally intensive, memory intensive and communication intensive 
sequences. Next, we profile the performance of the application under study as a black 
box. We then determine which power mode settings are appropriate for the entire 
application running on a single node. Prior to execution, we set the individual nodes 
accordingly. 

while( true ) 
{ 
   poll %CPU-usage from “/proc/stat” 
   if %CPU-usage < minimum-threshold 
      S = 0 
   else if %CPU-usage > maximum-threshold 
      S = m 
   else if %CPU-usage < CPU-usage-threshold 
      S = max( S-1, 0) 
   else 
      S = min( S+1, m) 
   set-cpu-speed ( speed[S] ) 
   sleep (interval) 
} 

CPUSPEED DAEMON control 
 
[example $ start_cpuspeed 
[example]$ mpirun –np 16 ft.C.16 

 

EXTERNAL control 
 

[example]$ psetcpuspeed 600 
[example]$ mpirun –np 16 ft.C.16 

INTERNAL control 
 
MPI_Init(); 
setspeed(1000); 
... code segment 1 
setspeed(600); 
… code segment  2  
setspeed(1400); 
… code segment  3 
setspeed(600); 
MPI_Finalize(); 

Fig. 12. Illustrations of the usage of three distributed DVS control 
strategies. 



 36

6.2.2 INTERNAL 

Strategy #3: Scheduling within application. User-driven, internal control can be 
implemented using an API designed to interface with the power-aware component in the 
node. By controlling DVS from within an application, we can control the granularity of 
DVS mode transitions. The appropriate level of granularity depends on the amount of 
slack time and the overhead for mode transitions. For some codes with intensive loop-
based computation, transitions between power modes around basic blocks may be 
appropriate. For other codes, function-level granularity may be more useful. At the 
extreme end, we can resort to external scheduling at node granularity. 

Application-level control requires an API. We created such an API as part of our 
PowerPack framework discussed earlier. The insertion of API DVS control commands 
can be implemented by a compiler, middleware, or manually. 

The process of DVS scheduling using internal API control is as follows: First we run a 
series of microbenchmarks to determine the effect of DVS on common types of code 
blocks including computationally intensive, memory intensive and communication 
intensive sequences. Next, we profile the performance of the application under study at a 
fine granularity identifying code sequences that share characteristics with our 
microbenchmarks. We then determine which power mode settings are appropriate for a 
given code sequence and insert the appropriate API calls around the code blocks. For 

                                                                                                                                                 
7 Dynamic settings are more appropriate for internal control from within the application (discussed next). 

AC Power from outlet

DC Power from ATX power supply
Multi-meter

BaytechPowerstrip

Multi-meter Multi-meter

Baytech
management

unit

ATX Power supply

Hardware profiling

MM Thread MM Thread MM Thread

Multi-meter Control Thread
Applications

PowerPacklibraries (profile/control)

Microbenchmarks

Software profiling

Power Data
Repository

Power
Data Log

Power
Data Analysis

Data collection

Node Hardware (CPU, disk, NIC, memory)

AC Power from outlet

DC Power from ATX power supply
Multi-meter

BaytechPowerstrip

Multi-meter Multi-meter

Baytech
management

unit

ATX Power supply

Hardware profiling

MM Thread MM Thread MM Thread

Multi-meter Control Thread
Applications

PowerPacklibraries (profile/control)

Microbenchmarks

Software profiling

Power Data
Repository

Power
Data Log

Power
Data Analysis

Data collection

Node Hardware (CPU, disk, NIC, memory)

 
Fig. 13. The PowerPack Framework. This software framework is used to measure, profile, and control 
several power-aware clusters including the cluster under study. Measurements are primarily obtained 
from the ACPI interface to the batteries of each node in the cluster and the Baytech Powerstrips for 
redundancy. The PowerPack libraries provide an API to control the power modes of each CPU from 
within the applications. Data is collected and analyzed from the Baytech equipment and the ACPI 
interface. 



 37

now we do this manually. As part of future work we plan to integrate this into a compiler 
or run-time tool. 

Figure 12 provides an example using each of the three strategies described. In the rest of 
this chapter, we use CPUSPEED DAEMON to refer to strategy #1, EXTERNAL to refer 
to strategy #2, and INTERNAL to refer to strategy #3. Using CPUSPEED DAEMON, 
users execute their application after the daemon is running. Using EXTERNAL, users 
determine a suitable operating frequency and set all the nodes to this operating point8 
(such as 600MHz in the example in Figure 12) before executing the application. Using 
INTERNAL, users insert DVS function calls into the source code, and execute the re-
compiled application. When either external or internal scheduling is used, CPUSPEED 
must be turned off. 

6.3 EXPERIMENTAL FRAMEWORK  

Our experimental framework is composed of five components: experimental platform, 
performance and energy profiling tools, data collection and analysis software, 
microbenchmarks, and metrics for analyzing system power-performance. 

6.3.1 NEMO: POWER-AWARE CLUSTER 

To better understand the impact of DVS technologies on 
future high performance computing platforms with DVS, 
we built a scalable cluster of high-performance, general 
purpose CPU’s with DVS capabilities. Our experimental 
framework is shown in Figure 13.  It interacts with 
NEMO, a 16-node DVS-enabled cluster9, Baytech power 
management modules and a data workstation. 

NEMO is constructed with 16 Dell Inspiron 8600 laptops 
connected by 100M Cisco System Catalyst 2950 switch. Each node is equipped with a 
1.4 GHz Intel Pentium M processor using Centrino mobile technology to provide high-
performance with reduced power consumption. The processor includes on-die 32KB L1 
data cache, on-die 1 MB L2 cache, and each node has 1 GB DDR SDRAM. Enhanced 
Intel SpeedStep technology allows the system to dynamically adjust the processor among 
five supply voltage and clock frequency settings given by Table 7. The lower bound on 
SpeedStep transition latency is approximately 10 microseconds according to the 
manufacturer [47].  

                                                 
8 For now we focus on a homogeneous implementation of the EXTERNAL scheduling algorithm. Heterogeneous (different nodes at 
different speeds) is straightforward but requires further profiling which is actually accomplished by the INTERNAL approach. 

9 We use this system prototype to compare and contrast the scheduling policies discussed. Our techniques are general and equally 
applicable to emergent server-based clusters with DVS enabled dual AMD Opterons and Intel Xeon processors. This cluster was 
constructed prior to the availability of such nodes to the general public. 

Table 7: Pentium M 1.4GHz 
operating points 

Frequency Supply voltage 
1.4GHz 1.484V 
1.2GHz 1.436V 
1.0GHz 1.308V 
800MHz 1.180V 
600MHz 0.956V 

 



 38

We installed open-source Linux Fedora Core 2 (version 2.6) and MPICH (version 1.2.5) 
on each node and use MPI (message passing interface) for communication. We use 
CPUFreq as the interface for application-level control of the operating frequency and 
supply voltage of each node. 

6.3.2 POWER, ENERGY AND PERFORMANCE PROFILING ON NEMO 

For redundancy and to ensure correctness, we use two independent techniques to directly 
measure energy consumption. 

The first direct power measurement technique is to poll the battery attached to the laptop 
for power consumption information using ACPI. An ACPI smart battery records battery 
states to report remaining capacity in mWh (1 mWh=3.6Joules). This technique provides 
polling data updated every 15-20 seconds. The energy consumed by an application is the 
difference of remaining capacity between execution beginning and ending when the 
system is running on DC battery power. To ensure reproducibility in our experiments, we 
do the following operations prior to all power measurements: 

1. Fully charge all batteries in the cluster; 

2. Disconnect (automatically) all laptops from wall outlet power remotely; 

3. Discharge batteries for approximately 5 minutes to ensure accurate 
measurements; 

4. Run parallel applications and record polling data.  

The second direct power measurement technique uses specialized remote management 
hardware available from Bay Technical (Baytech) Associates in Bay St. Louis, MS. With 
Baytech proprietary hardware and software (GPML50), power related polling data is 
updated each minute for all outlets. Data is reported to a management unit using the 
SNMP protocol. We additionally use this equipment to connect and disconnect building 
power from the machines as described in the first technique. 

To correlate the energy and performance profile, we also generate profiles of tested 
applications automatically by using an instrumented version of MPICH. We do 
application performance and energy profiling separately due to the overhead incurred by 
event tracing and recording.  

6.3.3 POWERPACK SOFTWARE ENHANCEMENTS 

While direct measurement techniques are collectively quite useful, it was necessary to 
overcome two inherent problems to use them effectively. First, these tools may produce 
large amounts of data for typical scientific application runs. This data must be collected 
efficiently and analyzed automatically (if possible). Second, we must coordinate power 
profiling across nodes and account for hardware polling rates within a single application. 
As in the original PowerPack suite of applications, this includes correlating energy data 
to source code. 



 39

To overcome these difficulties, we enhanced our PowerPack tool suite. As we discussed 
earlier in this chapter, PowerPack automates power measurement data collection and 
analysis in clusters. We added portable libraries for (low-overhead) timestamp-driven 
coordination of energy measurement data and DVS control at the application-level using 
system calls. ACPI data is also obtained and collated using this new library (libbattery.a). 
Lastly, we created software to filter and align data sets from individual nodes for use in 
energy and performance analysis and optimization. The data shown herein is primarily 
obtained using our ACPI-related libraries; however all data is verified using the Baytech 
hardware. 

6.3.4 ENERGY-PERFORMANCE MICROBENCHMARKS 

We measure and analyze results for a series of microbenchmark codes (part of our 
PowerPack tool suite) to profile the memory, CPU, and network interface energy 
behavior at various static DVS operating points. These microbenchmarks are grouped 
into three categories: 

I. Memory-bound microbenchmark 

II. CPU-bound microbenchmark 

III. Communication-bound microbenchmark 

We leave disk-bounded microbenchmarks for 
future study, though disk-bound applications 
will provide more opportunities for energy 
saving. 

I. Memory-bound microbenchmark. Figure 
14 presents the energy consumption and delay 
of memory accesses under different CPU 
frequencies. The measured code reads and 
writes elements from a 32MB buffer with stride of 128Bytes, which assures each data 
reference is fetched from main memory. At 1.4 GHz, the energy consumption is at its 
maximum, while execution time is minimal. The energy consumption decreases with 
operating frequency, and it drops to 59.3% at the lowest operating point 600MHz. 
However, execution time is only minimally affected by the decreases in CPU frequency; 
the worst performance at 600 MHz shows a decrease of only 5.4% in performance. The 
conclusion is memory-bound applications offer good opportunity for energy savings 
since memory stalls reduce CPU efficiency. 

Using our weighted power-performance efficiency metrics (EDP), we can further explain 
this phenomenon. The best energy operating point is 600 MHz which is 40.7% more 
efficient than the fastest operating point (1.4 GHz). More pointedly, in our context this 
memory behavior explains the single node behavior of codes such as the swim 
benchmark (see Figure 11). 

 

Fig. 14. Normalized energy and delay for 
a memory bound microbenchmark. 
Memory bound code phases provide 
opportunities for energy savings without 
impacting performance. 



 40

Normalized energy and delay for L2 cache access

0.00

0.50

1.00

1.50

2.00

2.50

1400 1200 1000 800 600

CPU frequency (MHz)

N
or

m
al

iz
ed

 v
al

ue

energy

delay

 

Fig. 15. Normalized energy and 
delay for a CPU bound 
microbenchmark. CPU bound code 
phases DO NOT provide 
opportunities for energy savings. To 
maximize performance, maximum 
CPU speed is needed. 

II. CPU-bound microbenchmark. Figure 15 
shows energy consumption and delay using 
DVS for a CPU-intensive micro benchmark. 
This benchmark reads and writes elements in a 
buffer of size 256Kbytes with stride of 
128Bytes, where each calculation is has an L2 
cache access. Since L2 cache is on-die, we can 
consider this code CPU-intensive. The energy 
consumption for a CPU-intensive phase is 
dramatically different from a memory bound 
code phase in that the CPU is always busy and 
involved in computation. 

As we expect, the results in Figure 15 do not 
favor energy conservation. Delay increases with 
CPU frequency near-linearly. At the lowest 
operating point, the performance loss can be 
134%. On the other hand, energy consumption 
decreases initially, and then goes up. Minimum 
energy consumption occurs at 800 MHz (10% 
decrease). Energy consumption then actually 
increases at 600 MHz. The dramatic decrease in 
performance by the slow down to 600 MHz cancels 
out the reduced power consumption. That is, while 
average power may decrease, the increased 
execution time causes total energy to increase. If we 
limit memory accesses to registers thereby 
eliminating the latency associated with L2 hits the 
results are even more striking. The lowest operating 
point consumes the most energy and takes 245% 
longer to complete. The computationally bound 
SPEC code mgrid exhibits behavior that reflects this 
data. For the parallel benchmarks we studied we 
rarely observe this exact behavior. Computational 
phases for parallel codes are normally bound to 
some degree by memory accesses. 

III. Communication-bound microbenchmark. 
Figure 16 shows the normalized energy and 
execution time for MPI primitives. Figure 16a is the 
round trip time for sending and receiving 256 
Kbytes of data. Figure 16b is the round trip time for 
a 4 Kbyte message with stride of 64 btyes. 
Compared to memory load latency of 110ns, simple 
communication primitives MPI_Send and 
MPI_Recv take dozens of microseconds, and 
collective communication takes several hundreds of 

N
or

m
al

iz
ed

 v
al

ue

 

(a) 

 

(b) 

Fig. 16. Normalized energy and 
delay for a communication bound 
microbenchmark. Round trip 
delay is measured for (a) 256KB 
non-strided message, and (b) 
4KB message with 64 byte 
stride. Communication bound 
code phases provide 
opportunities for energy savings. 



 41

microseconds for two nodes, both present more CPU slack time than memory access. 

As we expect, the crescendos in Figure 16a and 16b are favorable to energy conservation 
for both types of communication. For the 256K round trip, energy consumption at 
600MHz decreases 30.1% and execution time increases 6%. For 4KB message with stride 
of 64Bytes, at 600 MHz the energy consumption decreases 36% and execution time 
increases 4%.  

The energy gains apparent during communications are related to the communication to 
computation ratio of the application. As this ratio decreases, so should the impact of 
communication on the effectiveness of DVS strategies. 

6.3.5 ENERGY-PERFORMANCE EFFICIENCY METRICS 

When different operating points (i.e. frequency) are used, both energy and delay vary 
even for the same benchmark. A fused metric is required to quantify the energy-
performance efficiency. In this section, we use ED2P ( 2DE × ) and ED3P ( 3DE × ) to 
choose “optimal” operating points (i.e., the CPU frequency that has the minimum ED2P 
or ED3P value for given benchmarks) in DVS scheduling for power-aware clusters. 
ED2P is proportional to Joules/MIPS2, and ED3P is proportional to Joules/MIPS3. Since 
the ED3P metric emphasizes performance, smaller performance loss is expected for 
scheduling with ED3P in contrast to scheduling with ED2P. As before, both energy and 
delay are normalized with the values at the highest frequencies. 

6.4 ANALYZING AN ENERGY-CONSCIOUS CLUSTER DESIGN 

This section presents our experimental results for the NAS parallel benchmarks (NPB) 
[6] using three DVS scheduling strategies. The benchmarks, which are derived from 
computational fluid applications, consist of five parallel kernels (EP, MG, CG, FT and 
IS) and three pseudo-applications (LU, SP and BT). These eight benchmarks feature 
different communication patterns and communication to computation ratios. We note 
experiments as XX.S.# where XX refers to the code name, S refers to the problem size, 
and # refers to the number of nodes. For example, LU.C.8 is the LU code run using the C 
sized workload on 8 nodes. In all our figures, energy and delay values are normalized to 
the highest CPU speed (i.e. 1400 MHz). This corresponds to energy and delay values 
without any DVS activity.  

To ensure accuracy in our energy measurements using ACPI, we collected data for 
program durations measured in minutes. In some cases we used larger problem sizes to 
ensure application run length was long enough to obtain accurate measurements. In other 
cases we iterate application execution. This ensures the relatively slow ACPI refresh rates 
(e.g. 15-20 seconds) accurately record the energy consumption of the battery for each 
node. Additionally, we repeated each experiment at least 3 times or more to identify 
outliers. 



 42

6.4.1 CPUSPEED DAEMON SCHEDULING 

Figure 17 shows NAS PB results using CPUSPEED daemon to control DVS scheduling 
on our distributed power-aware cluster. We evaluate the effect of two versions of 
CPUSPEED: one is version 1.1 included in Fedora 2 and the other is version 1.2.1 
included in Fedora 3. In version 1.1, the default minimum CPU speed transition interval 
value is 0.1 second; in version 1.2.1, the default interval value has been changed to 2 
seconds. Since we have observed that CPUSPEED version 1.1 always chooses the 
highest CPU speed for most NPB codes without significant energy savings [36], only 
results of the improved CPUSPEED 1.2.1 are shown in Figure 17. 

The effects of CPUSPEED vary with different codes. For LU and EP, it saves 3~4% 
energy with 1~2% delay increase in execution time. For IS and FT, it reduces 25% 
energy with 1~4% delay. For SP and CG, it reduces 31~35% energy with 13~14% delay 
increase. However, for MG and BT, it reduces 21% and 23% energy at the cost of 32% 
and 36% delay increase. 

The original version of CPUSPEED 1.1 was equivalent to no DVS (our 1400 MHz base 
data point) since threshold values were never achieved. CPUSPEED version 1.2.1 
improves energy-performance efficiency for scientific codes significantly by adjusting 
the thresholds. We intend to study the affects of varying thresholds for applications that 
perform poorly even under the improved version in future work. 

Overall, CPUSPEED 1.2.1 does a reasonable job of conserving energy. However, for 
energy conservation of significance (>25%) 10% or larger increases in execution time are 
necessary, which is not acceptable to the HPC community. The history-based prediction 
of CPUSPEED is the main weakness of the CPUSPEED DAEMON scheduling approach. 
This motivates a study of scheduling 
techniques that incorporate application 
performance profiling in the prediction of 
slack states. 

6.4.2 EXTERNAL SCHEDULING 

We now examine coarse-grain, user-driven 
external control which assumes users know the 
overall energy-performance behavior of an 
application but treat the internals of the 
application as a black box. 

We previously described the steps necessary to 
create a database of microbenchmark 
information for use in identifying DVS 
settings appropriate to an application. 
Applications with communication/computation 
or memory/computation ratios that match 
micro-benchmark characteristics allow a priori 

Normalized Energy and Delay of DAEMON (CPUSPEED)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

LU.C.8 EP.C.8 IS.C.8 FT.C.8 SP.C.9 CG.C.8 MG.C.8 BT.C.9

Normalized Delay

Normalized Energy

Normalized Energy and Delay of DAEMON (CPUSPEED)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

LU.C.8 EP.C.8 IS.C.8 FT.C.8 SP.C.9 CG.C.8 MG.C.8 BT.C.9

Normalized Delay

Normalized Energy

Fig. 17. Energy-performance efficiency 
of NPB codes using CPUSPEED version 
1.2.1. The results are sorted by 
normalized delay. Normalized delay is 
total application execution time with DVS 
divided by total application execution 
time without DVS. Values < 1 indicate 
performance loss. Normalized energy is 
total system energy with DVS divided by 
total system energy without DVS. Values 
< 1 indicate energy savings. 



 43

selection of DVS settings. Here, our goal is to analyze this DVS scheduling approach for 
the power mode settings in our system.  

Table 8 gives raw figures for energy and delay for all the frequency operating points 
available on our system over all the codes in the NAS PB suite. As is evident, such 
numbers are a bit overwhelming to the reader. Furthermore, selecting a “good” frequency 
operating point is a subjective endeavor. For instance, BT at 1200 MHz has 2% 
additional execution time (delay) with 7% energy savings. Is this “better” or “worse” than 
BT at 1000 MHz with 4% additional execution time and 20% energy savings? Such 
comparisons require a metric to evaluate. 

Figure 18 shows the energy-performance efficiency of NPB benchmarks using external 
control with the ED3P (ED3) metric to weight performance significantly more than 
energy savings. This figure is obtained as follows: For each benchmark, compute the ED3 
value at each operating point using corresponding normalized delay and normalized 
energy, and use the operating point which has the smallest ED3 value as the scheduling 
point thereafter. If two points have the same ED3 value, choose the point with best 
performance. External DVS scheduling shown reduces energy with minimum execution 
time increase and selects an operating frequency that is application dependent – thus 
overcoming the weakness of CPUSPEED. 

The effects of external DVS scheduling can be classified in three categories:  

Table 8. Energy-performance profiles of NPB benchmarks. Only partial results are shown here. In 
each cell, the number on the top is the normalized delay and the number at the bottom is the 
normalized energy. The column “auto” means scheduling using CPUSPEED. The columns “XXX 
MHz” refer to the static external setting of processor frequency. 

CPU Speed 
Code 

auto 600 
MHz 

800 
MHz 

1000 
MHz 

1200 
MHz 

1400 
MHz 

1.36 1.52 1.27 1.14 1.05 1.00 BT.C.9 
0.89 0.79 0.82 0.87 0.96 1.00 
1.14 1.14 1.08 1.04 1.02 1.00 CG.C.8 
0.65 0.65 0.72 0.80 0.93 1.00 
1.01 2.35 1.75 1.40 1.17 1.00 EP.C.8 
0.97 1.15 1.03 1.02 1.03 1.00 
1.04 1.13 1.07 1.04 1.02 1.00 FT.C.8 
0.76 0.62 0.70 0.80 0.93 1.00 
1.02 1.04 1.01 0.91 1.03 1.00 IS.C.8 
0.75 0.68 0.73 0.75 0.94 1.00 
1.01 1.58 1.32 1.18 1.07 1.00 LU.C.8 
0.96 0.79 0.82 0.88 0.95 1.00 
1.32 1.39 1.21 1.10 1.04 1.00 MG.C.8 
0.87 0.76 0.79 0.85 0.97 1.00 
1.13 1.18 1.08 1.03 0.99 1.00 SP.C.9 
0.69 0.67 0.74 0.81 0.91 1.00 



 44

• Energy reduction with minimal performance impact. For FT, EXTERNAL saves 
30% energy with 7% delay increase in execution time. For CG, EXTERNAL 
saves 20% energy with 4% delay increase in execution time.  

• Energy reduction and performance improvement10. For SP, EXTERNAL saves 
9% energy and also improves execution time by 1%. For IS, EXTERNAL saves 
25% energy with 9% performance improvement. 

• No energy savings and no performance loss. BT, EP, LU, MG fall into this 
category. 

                                                 
10 These results are repeatable. Similar phenomena have been observed by other researchers. Our explanation is message 
communication is not sensitive to frequency above a certain threshold. Higher communication frequency (common to IS and SP) 
increases the probability of traffic collisions and longer waiting times for retransmission. 

Normalized Delay and Energy Using EXTERNAL control (ED3P)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

IS.C.8 SP.C.9 BT.C.9 EP.C.8 LU.C.8 MG.C.8 CG.C.8 FT.C.8

Normalized Delay
Normalized Energy

Normalized Delay and Energy Using EXTERNAL control (ED3P)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

IS.C.8 SP.C.9 BT.C.9 EP.C.8 LU.C.8 MG.C.8 CG.C.8 FT.C.8

Normalized Delay
Normalized Energy

 
Fig. 18. Energy-performance efficiency of NPB codes using EXTERNAL DVS control. ED3P is 
chosen as the energy-performance metric in this figure. The results are sorted by normalized 
delay. 

Normalized Delay and Energy Using EXTERNAL Control (ED2P)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

IS.C.8 BT.C.9 EP.C.8 LU.C.8 MG.C.8 SP.C.9 CG.C.8 FT.C.8

Normalized Delay
Normalized Energy

Normalized Delay and Energy Using EXTERNAL Control (ED2P)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

IS.C.8 BT.C.9 EP.C.8 LU.C.8 MG.C.8 SP.C.9 CG.C.8 FT.C.8

Normalized Delay
Normalized Energy

 

Fig. 19. Energy-performance efficiency of NPB codes using EXTERNAL control. ED2P is 
chosen as the energy-performance metric in this figure. The results are sorted by normalized 
delay. 



 45

If users allow slightly larger performance impact for more energy saving, ED2P (ED2) or 
EDP (ED) can be used as the energy-performance metric. Figure 19 shows the effects of 
ED2P metrics on external DVS scheduling. The trend is the same as Figure 18, but the 
metric may recommend frequency operating points where energy savings have slightly 
more weight than execution time delays. For example, ED2P would recommend different 
operating points for FT corresponding to energy savings of 38% with 13% delay 
increase; for CG, it selects 28% energy with 8% delay increase. For SP, it selects 19% 
energy with 3% delay increase. 

We can use energy-delay crescendos to observe the effects on delay and energy visually 
for comparison to our microbenchmark results (Figure 20). These figures indicate we can 
classify the NPB benchmarks as follows: 

Type I (EP): near zero energy benefit, linear performance decrease when scaling down 
CPU speed. This is similar to the observed effects of CPU bound codes. The EP code 
performs very little communication and is basically computationally bound to the 
performance of any given node. Thus, reducing the CPU speed hurts performance and 
energy conservation for HPC is unlikely. 

Type II (BT, MG and LU): near linear energy reduction and near linear delay increase, 
the rate of delay increase and energy reduction is about same. The results for these codes 
fall between CPU bound and memory or communication bound. The effects overall can 
lead to some energy savings, but EXTERNAL control means phases cannot adapt to 
changes in communication to computation ratio. In this case the overall effect is 
performance loss for energy savings, not acceptable in HPC.  

Type III (FT, CG and SP): near linear energy reduction and linear delay increase, where 
the rate of delay increase is smaller than the rate of energy reduction. These codes can 
use DVS to conserve energy effectively. Communication or memory to computation ratio 
is quite high in many phases of these codes. However, the EXTERNAL control course 
granularity means parts of the code suffer performance loss. In some cases, the 
performance is minimal, in others it is not. 

Type IV (IS): near zero performance decrease, linear energy saving when scaling down 
CPU speed. This code is almost completely communication bound (integer parallel sort). 
Thus frequency of the processor has little effect on performance and running at low 
frequency will save energy. Codes in this category can be run at low frequency and meet 
HPC users’ needs. 

This classification reveals the inherent limitations to external control. First, the energy-
performance impact is a function of an application’s performance phases. Yet, the 
granularity of EXTERNAL control is to try a best-fit operating point for the entire 
application. This causes additional performance delay and does not meet the dynamic 
criteria we described as characteristic of a good DVS scheduler for HPC applications. 
Second, the homogeneity of setting all processors to the same frequency limits 
effectiveness to homogeneous applications. Workload imbalance, common to scientific 
application such as adaptive mesh refinement, is not exploited using external control. 



 46

6.4.3 INTERNAL SCHEDULING 

We use FT.C.8 and CG.C.8 as examples to illustrate how to implement internal 
scheduling for different workloads. Each example begins with performance profiling 
followed by a description of the DVS scheduling strategy derived by analyzing the 
profiles. 

EP.C.8

0.00

0.50

1.00

1.50

2.00

2.50

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

EP.C.8

0.00

0.50

1.00

1.50

2.00

2.50

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

BT.C.9

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

BT.C.9

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

 
MG.C.8

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

MG.C.8

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

LU.C.8

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

LU.C.8

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

 
FT.C.8

0.00
0.20

0.40

0.60

0.80

1.00
1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

FT.C.8

0.00
0.20

0.40

0.60

0.80

1.00
1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

CG.C.8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

CG.C.8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

 
SP.C.9

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

SP.C.9

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

IS.C.8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

IS.C.8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

 
Fig. 20. Energy-delay crescendos for the NPB benchmarks. For all diagrams, X-axis is 
CPU speed, Y-axis is the normalized value (delay and energy). The effects of DVS on 
delay and energy vary greatly. 



 47

FT Performance. Figure 21 shows the performance profile of FT generated with the 
MPICH trace utility by compiling the code with “–mpilog” option. The following 
observations are drawn from this profile: 

• FT is communication-bound and its communication to computation ratio is about 
2:1. 

• Most execution time is consumed by all-to-all type communications. 

• The execution time per communication phase is large enough to compensate for 
the CPU speed transition overhead (20-30 microseconds observed). 

• The workload is almost homogeneous 
and balanced across all nodes. 

An internal DVS schedule for FT. Based on 
these observations, we divide time into all-to-
all communication phases and other phases. 
We will schedule the CPU for low speed 
during all-to-all communication phases and high speed elsewhere. Figure 22 shows how 
we use our PowerPack API to control DVS from within the source code of the FT 
application. 

Energy savings for FT. Figure 23 shows the energy and delay using internal scheduling. 
We are not limited to using only the highest and lowest processor frequencies. However, 
using the highest and lowest frequency settings between the phases of FT provided better 
results than all other combinations. Hence, in INTERNAL results for FT we use 600 
MHz for the all-to-all communication phase and 1400 MHz for all other phases. The best 
overall result for FT is 36% energy without noticeable delay increase (<1%). This is a 
significant improvement over both external control and CPUSPEED. External control at 

 
 

 
Fig. 21. A performance trace of FT.C.8 using the MPI profiling tool 
(MPE) in MPICH. Traces are visualized with Jumpshot. X-axis is 
execution time, Y-axis is processor number involved in computation; 
graph shows work by processor. 

… 
call set_cpuspeed( low_speed) 
call mpi_alltoall( … ) 
call set_cpuspeed( high_speed) 
… 
 
 

Fig. 22. INTERNAL control for FT  



 48

600MHz saves 38% energy but at a cost of 13% delay increase. CPUSPEED saves 24% 
energy with 4% delay increase. This shows internal scheduling is preferred when the 
application contains obvious CPU-bound phases and non-CPU bounded phases and each 
phase lasts long enough to compensate for the CPU speed transition overhead. 

CG Performance: Figure 24 shows the performance profile of CG generated with the 
MPICH trace utility by compiling the code with “–mpilog” option. The following 
observations are drawn from this profile: 

• CG is communication intensive and synchronizes all nodes between phases. 

• Wait and Send are major communication events that dominate execution time. 

• The execution time of each phase is relatively small, the message communications 
are frequent and CPU speed transition may impact delay significantly. 

• Nodes exhibit heterogeneous behavior. Nodes 4-7 have larger communication-to-
computation ratio than nodes 0-3. 

An internal schedule for CG. Based on the performance observations, we found it 
challenging to improve power-performance efficiency in CG. Thus, we implemented two 
distinct phase-based dynamic scheduling policies within CG. The first policy (applied to 
nodes 4-7) scales down the CPU speed during any communication. The second policy 
(applied to nodes 0-3) scales down CPU speed only during the MPI_Wait phases. Both 
policies increase energy and delay (1~3%). Since the performance behavior on each node 
is asymmetric, we can set different speeds for each execution node. The DVS controls are 
applied to CG as shown in Figure 25.  

Energy Savings for CG. Figure 26 shows the energy and delay using internal 
scheduling. We provide results for two configurations: internal I which uses 1200 MHz 
as high speed and 800 MHz as low speed and internal II which uses 1000 MHz as high 
speed and 800 MHz as low speed. Experiments show that internal I saves 23% energy 

Normalized Energy and Delay of INTERNAL Control for FT.C.8 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400 INTERNAL

normalized delay
normalized energy

Normalized Energy and Delay of INTERNAL Control for FT.C.8 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400 INTERNAL

normalized delay
normalized energy

 
Fig. 23. Normalized energy and delay of INTERNAL, EXTERNAL and CPUSPEED 
scheduling. In INTERNAL control, high speed and low speed are set as 1400 and 600 MHz 
respectively. All EXTERNAL control’s decisions (600MHZ-1400MHz) are given on the x-axis. 
CPUSPEED is shown as auto in this figure. Normalized delay is total application execution 
time with DVS divided by total application execution time without DVS. Values < 1 indicate 
performance loss. Normalized energy is total system energy with DVS divided by total system 
energy without DVS. Values < 1 indicate energy savings. 



 49

with 8% delay increase and internal II saves 16% energy with 8% delay increase. Both 
internal I and II scheduling for CG do not provide significant advantages over external 
scheduling at 800MHZ. The frequency of communication phases in CG requires more 
transitions per unit time than FT. The overhead for frequency transition is more costly in 
CG. Thus, while energy savings are possible, the additional overhead adds to the 
observable delay for CG. Since external scheduling does not incur overhead after the 
initial transition, the performance it is able to perform as well as the internal scheduling.  

 
 

(a) Profile visualized at iteration granularity 
 

 
 

(b) Profile visualized at message granularity 
 

 
 

Fig. 24. Performance trace of CG.C.8 using MPE tool provided with MPICH. The traces are 
visualized with Jumpshot. X-axis is execution time, Y-axis is processor number involved in 
computation; graphs show work by processor; arrows indicate message source and 
destination. (a) Iteration granularity shows the application is regular and can be partitioned into 
phases. (b) Message granularity reveals different communication types and workloads on 
different processors. 



 50

Overall: Internal scheduling provides 
DVS control with finer granularity than 
external scheduling. Internal scheduling 
achieves better (or at least as good) 
energy-performance efficiency. FT 
shows the benefit of phased-based 
internal scheduling; CG shows the 
benefit of heterogeneous internal scheduling. 

6.5 LESSONS FROM POWER-AWARE CLUSTER DESIGN 

High-performance power-aware distributed computing is viable. DVS scheduling policies 
are critical to automating middleware that alleviates users from thinking about power and 
energy consumption. Our results indicate given user-defined energy-performance 
efficiency metrics, our schedulers can reduce energy and guarantee performance. Our 
experiments all indicate that no single scheduling strategy fits all scientific codes. 

Our contributions to power-aware HPC were the first of their kind [16]. One of the big 
hurdles early on was convincing the HPC community that power was indeed a problem 
and not something the microarchitecture community would solve single-handedly. Early 
work by Rutgers [17] and IBM [26] highlighted the power issues in commercial servers. 
However, while the problems were similar, the techniques used to conserve power and 
energy in commercial server farms would simply not work in the 24/7 all-performance-
all-the-time systems commonplace in HPC. We’ve now shown conclusively that the 
power issue is critical to HPC and power-aware techniques can be adapted to address 
power without killing performance. 

Since the first appearance of our work, others have joined the fray. Our initial techniques 
were entirely manual. Our colleagues at the University of Georgia and North Carolina 
State University showed how to automate DVS transitions by filtering the MPI 
communication library functions [35]. Others at Los Alamos National Laboratory use 
performance prediction to identify slack in parallel codes and set DVS transitions 
accordingly [42]. 

   … 
   if ( myrank .ge. 0 .and. myrank .le. 3) 
       call set_cpuspeed( high_speed) 
   else 
       call set_cpuspeed( low_speed) 
   endif 
   … 

Fig. 25. INTERNAL control for CG  

Normalized Energy and Delay of INTERNAL Control for CG 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400 INTERNAL
I

INTERNAL
II

normalized delay
normalized energy

Normalized Energy and Delay of INTERNAL Control for CG 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400 INTERNAL
I

INTERNAL
II

normalized delay
normalized energy

 
Fig. 26. Normalized energy and delay of INTERNAL scheduling, EXTERNAL control and 
CPUSPEED scheduling for CG. For INTERAL I, high speed is 1200, and low speed is 800; for 
INTERNAL II, high speed is 1000 and low speed is 800. 



 51

Of course, there is still work to be done. The CPU is but one of many devices in the 
system. Depending on the workload, other system components may dominate the power 
usage. Disks in particular can consume and enormous amount of power for applications 
with extremely large data sets. In the codes we observed, memory was a significant 
consumer of power. Since scientific codes often use as much memory as available, so for 
large-memories (or fat nodes) power-aware memory could save significant amounts of 
power in clusters. Lastly, there has been little work on holistic approaches to energy 
conservation. Power-aware techniques are mostly localized and independent. Little is 
known about the effects of multiple power-aware components on total system power. 

7 Conclusions 
Power is now a critical design constraint in clusters built for high-performance 
computing. Profiling techniques pinpoint exactly where power and energy are consumed 
in clusters. Low-power approaches use hardware design to reduce the power profiles of 
cluster systems and applications. Power-aware techniques provide dynamic control to 
reduce power and energy consumption in clusters. For benchmarks applications, energy 
savings of 30% are possible with less than 1% performance impact. 

 

References 

 

[1] N. Adiga, G. Almasi, R. Barik, et al., "An Overview of the BlueGene/L 
Supercomputer," proceedings of IEEE/ACM SC 2002, Baltimore, MD, 2003. 

[2] G. Allen, T. Dramlitsch, I. Foster, et al., "Supporting Efficient Execution in 
Heterogeneous Distributed Computing Environments with Cactus and Globus," 
proceedings of SC 2001, Denver, CO, 2001. 

[3] AMD, "Mobile AMD Duron Processor Model 7 Data Sheet," 2001, 
http://www.amd.com/usen/assets/content_type/white_papers_and_tech_docs/2406
8.pdf,, last accessed. 

[4] A. M. Bailey, "Accelerated Strategic Computing Initiative (ASCI): Driving the 
need for the Terascale Simulation Facility (TSF)," proceedings of Energy 2002 
Workshop and Exposition, Palm Springs, CA, 2002. 

[5] D. Bailey, T. Harris, W. Saphir, et al., "The NAS Parallel Benchmarks 2.0," 
NASA Ames Research Center Technical Report #NAS-95-020 December 1995. 

[6] D. H. Bailey, E. Barszcz, J. T. Barton, et al., "The Nas Parallel Benchmarks," 
International Journal of Supercomputer Applications and High Performance 
Computing, 5 (3), pp. 63-73, 1991. 



 52

[7] F. Bellosa, "The Benefits of Event-Driven Energy Accounting in Power-Sensitive 
Systems," proceedings of Proceedings of 9th ACM SIGOPS European Workshop, 
Kolding, Denmark, 2000. 

[8] BlueGene/LTeam, "An overview of the BlueGene/L supercomputer," 
Supercomputing 2002 Technical Papers, 2002. 

[9] P. Bohrer, E. N. Elnozahy, T. Keller, et al., "The Case For Power Management in 
Web Servers," in Power Aware Computing, R. Graybill and R. Melhem, Eds. 
IBM Research, Austin TX 78758, USA.: Klewer Academic, 2002. 

[10] S. Borkar, "Low power design challenges for the decade " proceedings of 
Proceedings of the 2001 conference on Asia South Pacific design automation, 
Yokohama, Japan, 2001. 

[11] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: A Framework for 
Architectural-Level Power Analysis and Optimizations," proceedings of 27th 
International Symposium on Computer Architecture, Vancouver, BC, 2000. 

[12] D. M. Brooks, P. Bose, S. E. Schuster, et al., "Power-Aware Microarchitecture: 
Design and Modeling Challenges for Next-Generation Microprocessors," IEEE 
Micro, 20 (6), pp. 26-44, 2000. 

[13] D. C. Burger and T. M. Austin, "The SimpleScalar Toolset, Version 2.0," 
Computer Architecture News, 25 (3), pp. 13-25, 1997. 

[14] G. Cai and C. Lim, " Architectural Level Power/Performance Optimization and 
Dynamic Power Optimization," proceedings of Cool Chips Tutorial at 32nd 
ISCA, 1999. 

[15] K. W. Cameron, R. Ge, X. Feng, D. Varner, and C. Jones, "POSTER: High-
performance, Power-aware Distributed Computing Framework," proceedings of 
Proceedings of 2004 ACM/IEEE conference on Supercomputing (SC 2004) 2004. 

[16] K. W. Cameron, R. Ge, X. Feng, D. Varner, and C. Jones, "[Poster] High-
performance, Power-aware Distributed Computing Framework," proceedings of 
IEEE/ACM SC 2004, Pittsburgh, PA, 2004. 

[17] E. V. Carrera, E. Pinheiro, and R. Bianchini, "Conserving Disk Energy in 
Network Servers," proceedings of 17th International Conference on 
Supercomputing, 2003. 

[18] S. Chandra, Wireless network interface energy consumption implications of 
popular streaming formats. Multimedia Computing and Networking (MMCN'02), 
vol. 4673. San Jose, CA: The International Society of Optical Engineering, 2002. 



 53

[19] P. Chaparro, J. Gonzalez, and A. Gonzalez, "Thermal-Effective Clustered 
Microarchitectures," proceedings of First Workshop on Temperature-Aware 
Computer Systems, Munich Germany, 2004. 

[20] I. Company, "IXIA Product Catalog." 

[21] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: a 
hardware/software approach. San Fancisco, CA: Morgan Kaufmann Publishers, 
1999. 

[22] A. Dhodapkar, C. H. Lim, G. Cai, and W. R. Daasch, "TEM2P2EST: A Thermal 
Enabled Multi-model Power/Performance ESTimator," proceedings of the First 
International Workshop on Power-Aware Computer Systems, 2000. 

[23] J. Dongarra, "An Overview of High Performance Computing," 2005, 
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hpcasia-1105.pdf, last 
accessed. 

[24] J. Dongarra, "Present and Future Supercomputer Architectures," 2004, 
http://www.netlib.org/utk/people/JackDongarra/SLIDES/HK-2004.pdf, last 
accessed. 

[25] J. J. Dongarra, J. R. Bunch, C. B. Moller, and G. W. Stewart, LINPACK User's 
Guide. Philadelphia, PA: SIAM, 1979. 

[26] M. Elnozahy, M. Kistler, and R. Rajamony, "Energy Conservation Policies for 
Web Servers," proceedings of 4th USENIX Symposium on Internet Technologies 
and Systems, Seattle, WA, 2003. 

[27] X. Fan, C. S. Ellis, and A. R. Lebeck, "Memory controller policies for DRAM 
power management," proceedings of International Symposium on Low Power 
Electronics and Design (ISLPED), 2001. 

[28] X. Fan, C. S. Ellis, and A. R. Lebeck, "The synergy between power-aware 
memory systems and processor voltage scaling," Department of Computer 
Science Duke University, Durham TR CS-2002-12, 2002. 

[29] W. Feng, "Making a Case for Efficient Supercomputing," ACM Queue, 1 (7), pp. 
54-64, 2003. 

[30] W. Feng, M. Warren, and E. Weigle, "The Bladed Beowulf: A Cost-Effective 
Alternative to Traditional Beowulfs," proceedings of IEEE International 
Conference on Cluster Computing (CLUSTER'02), Chicago, Illinois, 2002. 

[31] W. Feng, M. Warren, and E. Weigle, "Honey, I Shrunk the Beowulf!," 
proceedings of 2002 International Conference on Parallel Processing (ICPP'02), 
Vancouver, B.C., Canada, 2002. 



 54

[32] X. Feng, Rong Ge, Cameron Kirk, "ARGUS: Supercomputing in 1/10 Cubic 
Meter," Parallel and Distributed Computing and Networks (PDCN 2005), 2005. 

[33] X. Feng, Rong Ge, Kirk Cameron, "Power and Energy Profiling of Scientific 
Applications on Distributed Systems," proceedings of 19th International Parallel 
and Distributed Processing Symposium (IPDPS 05), Denver, CO, 2005. 

[34] J. Flinn and M. Satyanarayanan, "Energy-aware adaptation for mobile 
applications," proceedings of 17th ACM Symposium on Operating Systems 
Principles, Kiawah Island Resort, SC, 1999. 

[35] V. W. Freeh, D. K. Lowenthal, R. Springer, F. Pan, and N. Kappiah, "Exploring 
the Energy-Time Tradeoff in MPI Programs. ," proceedings of 19th IEEE/ACM 
International Parallel and Distributed Processing Symposium (IPDPS), Denver, 
CO, 2005. 

[36] R. Ge, X. Feng, and K. W. Cameron, "Improvement of Power-Performance 
Efficiency for High-End Computing," proceedings of 1st Workshop on High-
Performance, Power-Aware Computing (HPPAC 2005), in conjunction with 
IPDPS'2005, Denver, Colorado, 2005. 

[37] W. Gropp and E. Lusk, "Reproducible Measurements of MPI Performance," 
proceedings of PVM/MPI '99 User's Group Meeting, 1999. 

[38] D. Grunwald, P. Levis, and K. I. Farkas, "Policies for Dynamic Clock 
Scheduling," proceedings of 4th Symposium on Operating System Design & 
Implementation, San Diego, California, 2000. 

[39] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, and M. 
Kandemir, "Using Complete Machine Simulation for Software Power Estimation: 
The SoftWatt Approach," proceedings of Eighth International Symposium on 
High-Performance Computer Architecture (HPCA'02), Boston, Massachusettes, 
2002. 

[40] HECRTF, "Federal Plan for High-End Computing: Report of the High-End 
Computing Revitalization Task Force,"  2004. 

[41] J. L. Hennessy and D. A. Patterson, Computer Architecture: A quantitative 
approach, 3rd ed. San Fancisco, CA: Morgan Kaufmann Publishers, 2003. 

[42] C.-H. Hsu and W.-C. Feng, "A Power-aware Run-time System for High-
performance Computing," proceedings of IEEE/ACM Supercomputing (SC|05), 
Seattle, WA, 2005. 

[43] C.-H. Hsu and U. Kremer, "The design, implementation, and evaluation of a 
compiler algorithm for CPU energy reduction," proceedings of ACM SIGPLAN 
Conference on Programming Languages, Design, and Implementation (PLDI'03), 
San Diego, CA, 2003. 



 55

[44] http://www.spec.org, "The SPEC benchmark suite," Standard Performance 
Evaluation Corporation, 2002. 

[45] IBM, "PowerPC 604e user's manual," 1998. 

[46] Intel, "Developer's manual: Intel 80200 Processor Based on Intel XScale 
Microarchitecture.," 1989, 
http://developer.intel.com/design/iio/manuals/273411.htm, last accessed. 

[47] Intel, "Intel Pentium M Processor datasheet," 2004. 

[48] C. Isci and M. Martonosi, "Runtime Power Monitoring in High-End Processors: 
Methodology and Empirical Data," proceedings of the 36th annual IEEE/ACM 
International Symposium on Microarchitecture 2003. 

[49] G. J, "A High-Level Language Benchmark," BYTE, 6 (9), pp. 180-198, 1981. 

[50] R. Joseph, D. Brooks, and M. Martonosi, "Live, runtime power measurements as 
a foundation for evaluating power/performance tradeoffs," proceedings of 
Workshop on Complexity-effective Design, Goteborg, Sweden, 2001. 

[51] T. Kurita and M. Takemoto, "Design of low power-consumption LSI," Oki 
technical review, 68 (4), 2001. 

[52] D. Laird, "Crusoe Processor Products and Technology," 2000, 
http://www.transmeta.com/press/download/pdf/laird.pdf, last accessed. 

[53] LBNL, Data Center Energy Benchmarking Case Study, 2003. 

[54] J. R. Lorch and A. J. Smith, "PACE: A new approach to dynamic voltage 
scaling," Ieee Transactions on Computers, 53 (7), pp. 856-869, 2004. 

[55] J. R. Lorch and A. J. Smith, "Software Strategies for Portable Computer Energy 
Management," in IEEE Personal Communications Magazine, vol. 5, 1998, pp. 
60-73. 

[56] F. H. McMahon, "The Livermore Fortran Kernels: A Computer Test of Numerical 
Performance Range," Lawrence Livermore National Laboratory UCRL-53745, 
December 1986. 

[57] L. McVoy and C. Staelin, "lmbench: Portable tools for performance analysis," 
proceedings of USENIX 1996 Annual Technical Conference, San Diego, CA, 
1996. 

[58] T. Mudge, "Power: A first class design constraint for future architectures," 
Computer, 34 (4), pp. 52-57, 2001. 



 56

[59] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale, "NAMD: Biomolecular 
Simulation on Thousands of Processors," proceedings of 14th International 
Conference on High Performance Computing and Communications (SC 2002), 
Baltimore, Maryland, 2002. 

[60] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta., "Complete Computer 
Simulation: The SimOS Approach," IEEE Parallel and Distributed Technology, 
Fall 1995, 1995. 

[61] H. Sakagami, H. Murai, Y. Seo, and M. Yokokawa, "TFLOPS three-dimensional 
fluid simulation for fusion science with HPF on the Earth Simulator " proceedings 
of SC2002, 2002. 

[62] J. E. Smith, "Characterizing Computer Performance with a Single Number," 
Comm. ACM, 32 (10), pp. 1202-1206, 1988. 

[63] U. Tennessee, U. Manheim, and NERSC, "Top 500 Supercomputer list," SC|05, 
2005, http://www.top500.org/, last accessed  (1/6)2006. 

[64] V. Tiwari, D. Singh, S. Rajgopal, et al., "Reducing Power in High-Performance 
Microprocessors," proceedings of Proceedings of the 35th Conference on Design 
Automation, San Francico, California, 1998. 

[65] top500, "27th Edition of TOP500 List of World’s Fastest Supercomputers 
Released: DOE/LLNL BlueGene/L and IBM gain Top Positions," 2006. 

[66] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I. August, 
"Microarchitectural Exploration with Liberty," proceedings of 35th International 
Symposium on Microarchitecture (Micro-35), 2002. 

[67] E. Vargas, "High Availability Fundamentals," 2000, 
http://www.sun.com/blueprints/1100/HAFund.pdf, last accessed. 

[68] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye, "Energy-driven 
integrated hardware-software optimizations using SimplePower," proceedings of 
27th International Symposium on Computer Architecture, Vancouver, British 
Columbia, 2000. 

[69] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, "Orion: A Power-Performance 
Simulator for Interconnection Networks," proceedings of 35th Annual 
IEEE/ACM International Symposium on Microarchitecture (MICRO-35), 
Istanbul, Turkey, 2002. 

[70] M. S. Warren, E. H. Weigle, and W.-C. Feng, "High-Density Computing: A 240-
Processor Beowulf in One Cubic Meter," proceedings of IEEE/ACM SC 2002 
Baltimore, Maryland, 2002. 



 57

[71] A. Weissel and F. Bellosa, "Process Cruise Control-Event-Driven Clock Scaling 
for Dynamic Power Management," proceedings of Proceedings of the 
International Conference on Compilers, Architecture and Synthesis for Embedded 
Systems (CASES 2002), Grenoble, France, 2002. 

[72] Q. Zhu, Z. Chen, L. Tan, et al., "Hibernator: Helping disk array sleep through the 
winter," proceedings of the 20th ACM Symposium on Operating Systems 
Principles (SOSP'05), 2005. 

[73] Q. Zhu and Y. Zhou, "Power Aware Storage Cache Management," IEEE 
Transactions on Computers (IEEE-TC), 54 (5), pp. 587-602, 2005. 

 

 


