
Flite: a small, fast speech synthesis engine
System documentation

Edition 1.4, for Flite version 1.4
4th January 2009

by Alan W Black and Kevin A. Lenzo



Copyright c© 2001-2009 Carnegie Mellon University, all rights reserved.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Carnegie Mellon University



Chapter 1: Abstract 1

1 Abstract

This document provides a user manual for flite, a small, fast run-time speech synthesis
engine.

This manual is nowhere near complete.
Flite offers text to speech synthesis in a small and efficient binary. It is designed for

embedded systems like PDAs as well large server installation which must serve synthesis
to many ports. Flite is part of the suite of free speech synthesis tools which include Edin-
burgh University’s Festival Speech Synthesis System http://www.festvox.org/festival
and Carnegie Mellon University’s FestVox project http://festvox.org, which provides
tools, scripts, and documentation for building new synthetic voices.

Flite is written in ANSI C, and is designed to be portable to almost any platform,
including very small hardware.

Flite is really just a synthesis library that can be linked into other programs, it includes
two simple voices with the distribution, an old diphone voice and anb example limited
domain voice which uses the newer unit selection techniques we have been developing.
Neither of these voices would be considered production voices but server as examples, new
voices will be released as they are developed.

The latest versions, comments, new voices etc for Flite are available from its home page
which may be found at

http://cmuflite.org

http://www.festvox.org/festival
http://festvox.org
http://cmuflite.org




Chapter 2: Copying 3

2 Copying

Flite is free software. It is distributed under an X11-like license. Apart from the few
exceptions noted below (which still have similarly open lincenses) the general license is

Language Technologies Institute
Carnegie Mellon University
Copyright (c) 1999-2009
All Rights Reserved.

Permission is hereby granted, free of charge, to use and distribute
this software and its documentation without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of this work, and to
permit persons to whom this work is furnished to do so, subject to
the following conditions:
1. The code must retain the above copyright notice, this list of

conditions and the following disclaimer.
2. Any modifications must be clearly marked as such.
3. Original authors’ names are not deleted.
4. The authors’ names are not used to endorse or promote products

derived from this software without specific prior written
permission.

CARNEGIE MELLON UNIVERSITY AND THE CONTRIBUTORS TO THIS WORK
DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL CARNEGIE MELLON UNIVERSITY NOR THE CONTRIBUTORS BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.





Chapter 3: Acknowledgements 5

3 Acknowledgements

The initial development of flite was primarily done by awb while travelling, perhaps the
name is doubly appropriate as a substantial amount of the coding was done over 30,000ft).
During most of that time awb was funded by the Language Technologies Institute at
Carnegie Mellon University.

Kevin A. Lenzo was involved in the design, conversion techniques and representations
for the voice distributed with flite (as well as being the actual voice itself).

Other contributions are:
• Nagoya Institute of Technology The MLSA, MLPG code comes directly NITECH’s hts

engine code, though we have done some optimizations.
• Marcela Charfuelan (DFKI) For the mixed-excitation techniques (but no direct code).

These originally came from NITECH but we understood the technqiues from Marcela’s
Open Mary Java code and implemented them in our optimized version of MLSA.

• David Huggins-Daines: much of the very early clunits code, porting to multiple plat-
forms, substantial code tidy up and configure/autoconf guidance (up to 2001).

• Cepstral, LLC (http://cepstral.com): For supporting DHD to spend time on flite
and passing back the important fixes and enhancements while on a project funded by
the Portuguese Foundation for Science and Technology (FCT) Praxis XXI program.

• Willie Walker <william.walker@sun.com> and the Sun Speech Group: lots of low level
bugs (and fixes).

• Henry Spencer: For the regex code
• University of Edinburgh: for releasing Festival for free, making a companion runtime

synthesizer a practical project, much of the design of flite relies on the architecture
decisions made in the Festival Speech Synthesis Systems and the Edinburgh Speech
Tools.
The duration cart tree and intonation (accent and F0) models for the US English voice
were derived from the models in the Festival distribution. which in turn were trained
from the Boston University FM Radio Data Corpus.

• Carnegie Mellon University The included lexicon is derived from CMULEX and the
letter to sound rules are constructed using the Lenzo and Black techniques for building
LTS decision graphs.

• Craig Reese: IDA/Supercomputing Research Center and Joe Campbell: Department
of Defense who wrote the ulaw conversion routines in src/speech/cst wave utils.c

http://cepstral.com




Chapter 4: Installation 7

4 Installation

Flite consist simple of a set of C files. GNU configure is used to configure the engine and
will work on most major architectures.

In general, the following should build the system
tar zxvf flite-XXX.tar.gz
cd flite-XXX
./configure
make

However you will need to explicitly call GNU make gmake if make is not GNU make on
your system.

The configuration process build a file ‘config/config’ which under some circumstances
may need to be edited, e.g. to add unusual options or dealing with cross compilation.

On Linux systems, we also support shared libraries which are useful for keeping space
down when multiple different application are linked to the flite libraries. For development
we strong discourage use of shared libraries as it is too easy to either not set them up
correctly or accidentally pick up the wrong version. But for installation they are definitely
encouraged. That is if you are just going to make and install they are good but unless you
know what LD LIBRARY PATH does, it may be better to use static libraries (the default)
if you are changing C code or building your own voices.

./configure --enable-shared
make

This will build both shared and static versions of the libraries but will link the executables
to the shared libraries thus you will need to install the libraries in a place that your dynamic
linker will find them (cf. /etc/ld.so.conf) or set LD LIBRARY PATH appropriately.

make install

Will installe the binaries (‘bin/flite*’), include files and libraries in appropriate sub-
directories of the defined install directory, ‘/usr/local’ by default. You can change this at
configure time with

./configure --prefix=/opt

4.1 Windows Support

4.2 Window CE Support

Flite has been successfully compiled by a number of different groups under Windows CE.
The system should compile under Embedded Visual Studio but we not have the full details.

The system as distributed does compile under the gcc ‘mingw32ce’ toolchain available
from http://cegcc.sourceforge.net/. The current version can be compiled and run
under WinCE with a primitive application called ‘flowm’. ‘flowm’ is a simple application
that allows playing of typed-in text, or full text to speech on a file. Files should be a
simple ascii text files *.txt. The application allows the setting of the byte position to start
synthesis from.

Assuming you have ‘mingw32ce’ installed you can configure as

http://cegcc.sourceforge.net/


8 Flite: a small, fast speech synthesis engine

./configure --target=arm-wince
make

The resulting binary is given in ‘wince/flowm.exe’. If you copy this onto your Windows
Mobile device and run it, it should allow you to speak typed-in text and any ‘*.txt’ files
you have on your device.

The application uses cmu_us_kal as the voice for default. Although it is possible to
include the clustergen voices, they may be too slow to be really practical. An 8KHz clus-
tergen voice with a reduced order to 13 gives a voices that runs acceptably on an hp2755
(624MHz) but still marginal on an AT&T Tilt (400MHz).

Building 8KHz clustergen voices is currently a bit of hack. We take the standard wave-
forms and resample them to 8KHz, then relabel the sample rate to be 16KHz. Then build
the voice as normal (as if the speaker spoke twice as fast. You may need to have tune the F0
parameters in ‘etc/f0.params’. This seems to basically work. Then after the waveform is
synthesized (still in the "chipmunk” domain) we then playit back at 8KHz. This effectively
means we generate half the number of samples and the frames are really at 10ms. A sec-
ond reduction is an option on the basic ‘build_flite’ command. A second argument can
specify order reduction, thus instead of the standard 25 static parameters (plus its deltas)
we can reduce this to 13 and still get acceptable results

./bin/build_flite cg 13
cd flite
make

Importantly this uses less space, and uses less time to synthesis. These SPEECH_HACKS
in ‘src/cg/cst_mlsa.c’ are switched on by default when UNDER_CE is defined.

The reduced order properly extracts the statics (and stddev) and deltas (and stddev)
from the predicted parameter clusters and makes it as if those were the sizes of parameters
that were used to the train the voice.

4.3 PalmOS Support

Starting with 1.3 we have initial support for PalmOS using the free development tools. The
compilation method assumes the target device is running PalmOS 5.0 (or later) on an ARM
processor. Following convention in the Palm world, the app that the user interacts with is
actually a m68k application compiled with the m68 gcc cross compiler, the resulting code
is interpreted by the PalmOS 5.0 device. The core flite code is in native ARM, and hence
uses the ARM gcc cross compiler. An interesting amout of support code is required to get
all this work properly.

The user app is called flop (FLite on Palm) and like most apps written by awb, is
functional, but ugly. You should not let a short-sighted Scotsman, who still thinks command
line interfaces are cool, design a graphical app. But it does work and can read typed-in
text. The ‘armflite.ro’ resources are designed with the idea that proper applications will
be written using it as a library.

The ‘flop.prc’ application is distributed separately so it can be used without having to
install all these tools. But if you want to PalmOS development here is what you need to
do to compile Flite for PalmOS and the flop application.

There are number of different application development environments for Palm, here I
only describe the Unix based one as this is what was used. You will need the PalmOS



Chapter 4: Installation 9

SDK 5.0 from palmOne http://www.palmone.com/us/developers/. This is free but does
require registration. Out of the lots of different files you can get for palmOne you will
eventually find ‘palmos-sdk-5.0r3-1.noarch.rpm’, install that on your linux machine

rpm -i palmos-sdk-5.0r3-1.noarch.rpm

You will also need the various gcc based cross compilers http://prc-tools.sourceforge.net/
prc-tools-2.3-1.i386.rpm
prc-tools-arm-2.3-1.i386.rpm
prc-tools-htmldocs-2.3-1.noarch.rpm

The Palm Resource compiler http://pilrc.sourceforge.net/
pilrc-3.1-1.i386.rpm

And maybe the emulator http://www.palmos.com/dev/tools/emulator/
pose-3.5-2.i386.rpm
pose-skins-1.9-1.noarch.rpm
pose-skins-handspring-3.1H4-1.noarch.rpm

Though as POSE doesn’t support ARM code, ‘Simulator’ does but that only works
under Windows, POSE is only useful for debugging the m68k parts of the app.

Install these
rpm -i prc-tools-2.3-1.i386.rpm
rpm -i prc-tools-arm-2.3-1.i386.rpm
rpm -i prc-tools-htmldocs-2.3-1.noarch.rpm
rpm -i pilrc-3.1-1.i386.rpm
rpm -i pose-3.5-2.i386.rpm
rpm -i pose-skins-1.9-1.noarch.rpm
rpm -i pose-skins-handspring-3.1H4-1.noarch.rpm

We also need the prc-tools to know which SDK is available
palmdev-prep

In addition we use Greg Parker’s PEAL http://www.sealiesoftware.com/peal/ ELF
ARM loader. You need to download this and compile and install it yourself, so that peal-
postlink is in your path. Greg was very helpful and even added support for large data
segments for this work (though in the end we don’t actually use them). Some peal code
is in our distribution (which is valid under his licence) but if you use a different version of
peal you may need to ensure they are matched, by updating the peal code in ‘palm/’. We
used version ‘peal-2004-12-29’.

The other palm specific function we require is par http://www.djw.org/product/palm/par/
which is part of the prc.tgz distribution. We use par to construct resources from raw
binary files. There are other programs that can do this but we found this one adequate.
Again you must compile this and ensure par is in your path. Note no part of par ends up
in the distributed system.

Given all of the above you should be able to compile the Palm code and the flop
application.

./configure --target=arm-palmos
make

The resulting application should be in ‘palm/flop/flop.prc’ which can then be installed
on your Plam device

http://www.palmone.com/us/developers/
http://prc-tools.sourceforge.net/
http://pilrc.sourceforge.net/
http://www.palmos.com/dev/tools/emulator/
http://www.sealiesoftware.com/peal/
http://www.djw.org/product/palm/par/


10 Flite: a small, fast speech synthesis engine

pilot-xfer -i palm/flop/flop.prc

Setting up the tools, and getting a working Linux/Palm conduit is not particularly
easy but it is possible. Although some attempt was made to use the Simulator, (PalmOS
5.0/ARM simulator) under Windows, it never really contributed to the development. The
POSE (m68k) emulator though was use to develop the flop application itself.

4.3.1 Some notes on the PalmOS port

Throughout the PalmOS developer documentation they continually remind you that a Palm
device is not a full computer, its an extention of the desktop. But seeing devices like the
Treo 600 can easily make one forget and want the device to do real computational work.
PalmOS is designed for small light weight devices so it is easy to start hitting the boundaries
of its capabilities when trying to port larger aplications.

PalmOS5.0 still has interesting limitations, in the m68k domain, int’s are 16 bit and
using memory segments greater than 65K require special work. Quaint as these are, they
do significantly affect the port. At first we thought that only the key computationally
expensive parts would be in ARM (so-called armlets) but trying to compile the whole flite
code in m68k with long/short distinctions and sub-64K code segment limitations was just
too hard.

Thus all the Flite code, USEnglish, Lexicon and diphone databases actually are compiled
in the ARM domain. There is however no system support in the ARM domain so call backs
to m68k system functions are necessary. With care calls to system functions can be signifi-
cantly limited so only a few call backs needed to be written. These are in ‘palm/pocore/’. I
believe CodeWarrior has better support for this, but in this case we rolled our own (though
help from other open source examples was important).

We manage the m68k/ARM interface through PEAL, which is basically a linker for
ARM code and calling mechanism from m68k. PEAL deals with globals and spliting the
code into 65K chunks automatically.

Flite does however have a number of large data segments, in the lexicon and the voice
database itself. PEAL can deal with this but it loads large segments by copying them into
the dynamic heap, which on most Palm device is less than 2M. This isn’t big enough.

Thus we changed Flite to restrict the number of large data sgements it used (and also
did some new compression on them). The five segments: the lts rules, the lexical entries,
the voice LPC coefficients, the voice residuals and the voice residual index are now treated
a data segments that are split into 65400 sized segments and loaded into feature memory
space, which is in the storage heap and typically much bigger. This means we do need
about 2-3 megabyte free on the device to run. We did look into just indexing the 65400
byte segments directly but that looked like being too much work, and we’re only going to
be able to run on 16M sized Palms anyway (there aren’t any 8M ARM Palms with audio,
expect maybe some SmartPhones).

Using Flite from m68k land involves getting a flite_info structure from flite_init().
This contains a bunch of fields that be set and sent to the ARM domain Flite synthesizer
proper within which other output fields may be set and returned. This isn’t a very general
structure, but is adequate. Note the necessary byte swapping (for the top level fileds) is
done for the this structure, before calling the ARM native arm_flite_synth_text and
swapped back again after returning.



Chapter 4: Installation 11

Display, playing audio, pointy-clicky event thingies are all done in the m68K domain.

4.3.2 Using the PalmOS

There are three basic functions that access the ARM flite functions: flite_init(), flite_
synth_text() and flite_end().





Chapter 5: Flite Design 13

5 Flite Design

5.1 Background

Flite was primarily developed to address one of the most common complaints about the
Festival Speech Synthesis System. Festival is large and slow, even with the software bloat
common amongst most products and that that bloat has helped machines get faster, have
more memory and large disks, still Festival is criticized for its size.

Although sometimes this complaint is unfair, it is valid and although much work was
done to ensure Festival can be trimmed and run fast it still requires substantial resources per
utterance to run. After some investigation to see if Festival itself could be trimmed down it
became clear because there was a core set of functions that were sufficient for synthesis that
a new implementation containing only those aspects that were necessary would be easier
than trimming down Festival itself.

Given that a new implementation was being considered a number of problems with
Festival could also be addressed at the same time. Festival is not thread-safe, and although
it runs under Windows, in server mode it relies on the Unix-centric view of fast forks with
copy-on-write shared memory for servicing clients. This is a perfectly safe and practical
solution for Unix systems, but under Windows where threads are the more common feature
used for servicing multiple events and forking is expensive, a non-thread safe program can’t
be used as efficiently.

Festival is written in C++ which was a good decision at the time and perfectly suitable
for a large program. However what was discovered over the years of development is that
C++ is not a portable language. Different C++ compilers are quite different and it takes
significant amount of work to ensure compatibility of the code base over multiple compilers.
What makes this worse is that new versions of each compiler are incompatible and changes
are required. At first this looked like we were producing bad quality code but after 10 years
it is clear that it is also that the compilers are still maturing. Thus it is clear that Festival
and the Edinburgh Speech Tools will continue to require constant support as new versions
of compilers are released.

A second problem with C++ is the size and efficiency of the code produced. Proponents
of C++ may rightly argue that Festival and the Edinburgh Speech Tools aren’t properly
designed, but irrespective if that is true or not, it is true that the size of the code is much
larger and slower than it need be for what it does. Throughout the design there is a constant
trade-off between elegancy and efficiency which unfortunately at times in Festival requires
untidy solutions of copying data out of objects processing it and copying back because direct
access (particularly in some signal processing routines) is just too inefficient.

Another major criticism of Festival is the use of Scheme as the interpreter language.
Even though it is a simple to implement language that is adequate for Festival’s needs and
can be easily included in the distribution, people still hate it. Often these people do learn
to use it and appreciate how run time configurability is very desirable and that new voices
may be added without recompilation. Scheme does have garbage collection which makes
leaky programs much harder to write and as some of the intended audience for developing
in Festival will not be hard core programmers a safe programming language seems very
desirable.



14 Flite: a small, fast speech synthesis engine

After taking into consideration all of the above it was decided to develop Flite as a new
system written in ANSI C. C is much more portable than C++ as well as offering much
lower level control of the size of the objects and data structure it uses.

Flite is not intended as a research and development platform for speech synthesis, Festival
is and will continue to be the best platform for that. Flite however is designed as a run-time
engine when an application needs to be delivered. It specifically addresses two communities.
First as a engine for small devices such as PDAs and telephones where the memory and
CPU power are limited and in some cases do not even have a conventional operating system.

The second community is for those running synthesis servers for many clients. Here
although large fixed databases are acceptable, the size of memory required per utterance
and speed in which they can be synthesized is crucial.

However in spite of the decision to build a new synthesis engine we see this as being
tightly coupled into the existing free software synthesis tools or Festival and the FestVox
voice building suite. Flite offers a companion run-time engine. Our intended mode of
development is to build new voices in FestVox and debug and tune them in Festival. Then
for deployment the FestVox format voice may be (semi-)automatically compiled into a form
that can be used by Flite.

In case some people feel that development of a small run-time synthesizer is not an
appropriate thing to do within a University and is more suited to commercial development,
we have a few points which they should be aware of that to our mind justify this work.

We have long felt that research in speech and language should have an identifiable link
to ultimate commercial use. In providing a platform that can be used in consumer products
that falls within the same framework as our research we can better understand what research
issues are actually important to the improvement our work.

In considering small useful synthesizers it forces a more explicit definition of what is
necessary in a synthesizer and also how we can trade size, flexibility and speed with the
quality of synthesized output. Defining that relationship is a research issue.

We are also advocates of speech technology within other research areas and the ability
to offer support on new platforms such as PDAs and wearables allows for more interesting
speech applications such as speech-to-speech translation, robots, and interactive personal
digital assistants, that will prove new and interesting areas of research. Thus having a
platform that others around us can more easily integrate into their research makes our
work more satisfying.

5.2 Key Decisions

The basic architecture of Festival is good. It is well proven. Paul Taylor, Alan W. Black and
Richard Caley spent many hours debating low level aspects of representation and structure
that would both be adequate for current theories but also allow for future theories too. The
heterogeneous relation graphs (HRG) are theoretically adequate, computationally efficient
and well proven. Thus both because HRGs have such a background and that Flite is to
be compatible with voices and models developed in Festival, Flite uses HRGs as its basic
utterance representation structure.

Most of a synthesizer is in its data (lexicons, unit database etc), the actual synthesis
code it pretty small. In Festival most of that data exists in external files which are loaded on



Chapter 5: Flite Design 15

demand. This is obviously slow and memory expensive (you need both a copy on the data
on disk and in memory). As one of the principal targets for Flite is very small machines
we wanted to allow that core data to be in ROM, and be appropriately mapped into RAM
without any explicit loading (some OS’s call this XIP – execute in place). This can be done
by various memory mapping functions (in Unix its called mmap) and is the core technique
used in shared libraries (called DLLs in some parts of the world). Thus the data should be
in a format that it can be directly accessed. If you are going to directly access data you
need to ensure the byte layout is appropriate for the architecture you are running on, byte
order and address width become crucial if you want to avoid any extra conversion code at
access time (like byte swapping).

At first is was considered that synthesis data would be converted in binary files which
could be mmap’ed into the runtime systems but building appropriate binaries files for
architectures is quite a job. However the C compiler does this in a standard way. Therefore
the mode of operation for data within Flite is to convert it to C code (actually C structures)
and use the C compiler to generate the appropriate binary structures.

Using the C compiler is a good portable solution but it as these structures can be very
big this can tax the C compiler somewhat. Also because this data is not going to change
at run time it can all be declared const. Which means (in Unix) it will be in the text
segment and hence read only (this can be ROM on platforms which have that distinction).
For structures to be const all their subparts must also be const thus all relevant parts must
be in the same file, hence the unit databases files can be quite big.

Of course, this all presumes that you have a C compiler robust enough to compile
these files, hardware smart enough to treat flash ROM as memory rather than disk, or an
operating system smart enough to demand-page executables. Certain "popular" operating
systems and compilers fail in at least one of these respects, and therefore we have provided
the flexibility to use memory-mapped file I/O on voice databases, where available, or simply
to load them all into memory.





Chapter 6: Structure 17

6 Structure

The flite distribution consists of two distinct parts:
• The flite library containing the core synthesis code
• Voice(s) for flite. These contain three sub-parts

• Language models: text processing, prosody models etc.
• Lexicon and letter to sound rules
• Unit database and voice definition

6.1 cst val

This is a basic simple object which can contain ints, floats, strings and other objects. It also
allows for lists using the Scheme/Lisp, car/cdr architecture (as that is the most efficient
way to represent arbitrary trees and lists).

The cst_val structure is carefully designed to take up only 8 bytes (or 16 on a 64-bit
machine). The multiple union structure that it can contain is designed so there are no
conflicts. However it depends on the fact that a pointer to a cst_val is guaranteed to
lie on a even address boundary (which is true for all architectures I know of). Thus the
distinction between between cons (i.e. list) objects and atomic values can be determined
by the odd/evenness of the least significant bits of the first address in a cst_val. In some
circles this is considered hacky, in others elegant. This was done in flite to ensure that the
most common structure is 8 bytes rather than 12 which saves significantly on memory.

All cst_val’s except those of type cons are reference counted. A few functions generate
new lists of cst_val’s which the user should be careful about as they need to explicitly delete
them (notably the lexicon lookup function that returns a list of phonemes). Everything that
is added to an utterance will be deleted (and/or dereferenced) when the utterance is deleted.

Like Festival, user types can be added to the cst_vals. In Festival this can be done on
the fly but because this requires the updating of some list when each new type is added,
this wouldn’t be thread safe. Thus an explicit method of defining user types is done in
‘src/utils/cst_val_user.c’. This is not as neat as defining on the fly or using a regis-
tration function but it is thread safe and these user types wont changes often.





Chapter 7: APIs 19

7 APIs

Flite is a library that we expected will be embedded into other applications. Included with
the distribution is a small example executable that allows synthesis of strings of text and
text files from the command line.

7.1 flite binary

The example flite binary may be suitable for very simple applications. Unlike Festival its
start up time is very short (less that 25ms on a PIII 500MHz) making it practical (on larger
machines) to call it each time you need to synthesize something.

flite TEXT OUTPUTTYPE

If TEXT contains a space it is treated as a string of text and converted to speech, if it
does not contain a space TEXT is treated as a file name and the contents of that file are
converted to speech. The option -t specifies TEXT is to be treat as text (not a filename)
and -f forces treatment as a file. Thus

flite -t hello

will say the word "hello" while

flite hello

will say the content of the file ‘hello’. Likewise

flite "hello world."

will say the words "hello world" while

flite -f "hello world"

will say the contents of a file ‘hello world’. If no argument is specified text is read from
standard input.

The second argument OUTPUTTYPE is the name of a file the output is written to, or if it is
play then it is played to the audio device directly. If it is none then the audio is created but
discarded, this is used for benchmarking. If it is stream then the audio is streamed through
a call back function (though this is not particularly useful in the command line version. If
OUTPUTTYPE is omitted, play is assumed. You can also explicitly set the outputtype with
the -o flag.

flite -f doc/alice -o alice.wav

7.2 Voice selection

All the voices in the distribution are collected into a single simple list in the global variable
flite_voice_list. You can select a voice from this list from the command line

flite -voice awb -f doc/alice -o alice.wav

And list which voices are currently supported in the binary with

flite -lv

The voices which get linked together are those listed in the VOICES in the
‘main/Makefile’. You can change that as you require.



20 Flite: a small, fast speech synthesis engine

7.3 C example

Each voice in Flite is held in a structure, a pointer to which is returned by the voice
registration function. In the standard distribution, the example diphone voice is cmu_us_
kal.

Here is a simple C program that uses the flite library

#include "flite.h"

register_cmu_us_kal();

int main(int argc, char **argv)
{

cst_voice *v;

if (argc != 2)
{

fprintf(stderr,"usage: flite_test FILE\n");
exit(-1);

}

flite_init();

v = register_cmu_us_kal(NULL);

flite_file_to_speech(argv[1],v,"play");

}

Assuming the shell variable FLITEDIR is set to the flite directory the following will
compile the system (with appropriate changes for your platform if necessary).

gcc -Wall -g -o flite_test flite_test.c -I$FLITEDIR/include -L$FLITEDIR/lib
-lflite_cmu_us_kal -lflite_usenglish -lflite_cmulex -lflite -lm

7.4 Public Functions

Although, of course you are welcome to call lower level functions, there a few key functions
that will satisfy most users of flite.

void flite_init(void);
This must be called before any other flite function can be called. As of Flite 1.1,
it actually does nothing at all, but there is no guarantee that this will remain
true.

cst_wave *flite_text_to_wave(const char *text,cst_voice *voice);
Returns a waveform (as defined in ‘include/cst_wave.h’) synthesized from
the given text string by the given voice.



Chapter 7: APIs 21

float flite_file_to_speech(const char *filename, cst_voice *voice, const char
*outtype);

synthesizes all the sentences in the file ‘filename’ with given voice. Output
(at present) can only reasonably be, play or none. If the feature file_start_
position with an integer, that point is used as start position in the file to be
synthesized.

float flite_text_to_speech(const char *text, cst_voice *voice, const char
*outtype);

synthesizes the text in string point to by text, with the given voice. outtype
may be a filename where the generated waveform is written to, or "play" and it
will be sent to the audio device, or "none" and it will be discarded. The return
value is the number of seconds of speech generated.

cst_utterance *flite_synth_text(const char *text,cst_voice *voice);
synthesize the given text with the given voice and returns an utterance from it
for further processing and access.

cst_utterance *flite_synth_phones(const char *phones,cst_voice *voice);
synthesize the given phones with the given voice and returns an utterance from
it for further processing and access.

cst_voice *flite_voice_select(const char *name);
returns a pointer to the voice named name. Will retrurn NULL if there is not
match, if name == NULL then the first voice in the voice list is returned.

int flite_voice_add_lex_addenda(cst_voice *v, const cst_string *lexfile);
loads the pronunciations from lexfile into the lexicon identified in the given
voice (which will cause all other voices using that lexicon to also get this new
addenda list. An example lexicon file is given in ‘flite/tools/examples.lex’.
Words may be in double quotes, an optional part of speech tag may be give. A
colon separates the headword/postag from the list of phonemes. Stress values
(if used in the lexicon) must be specified. Bad phonemes will be complained
about on standard out.

7.5 Streaming Synthesis

In 1.4 support was added for streaming synthesis. Basically you may provided a call back
function that will be called with waveform data immediately when it is available. This
potentially can reduce the dealy bewteen sending text to the synthesized and having audio
available.

The support is through a call back function of type

int audio_stream_chunk(const cst_wave *w, int start, int size,
int last, void *user)

If the utterance feature streaming_info is set (which can be set in a voice or in an
utterance). The LPC or MLSA resynthesis functions will call the provided function as
buffers become available. The LPC and MLSA waveform synthesis functions are used for
diphones, limited domain, unit selection and clustergen voices. Note explicit support is
required for streaming so new waveform synthesis function may not have the functionality.



22 Flite: a small, fast speech synthesis engine

An example streaming function is provided in ‘src/audio/au_streaming.c’ and is used
by the example flite main program when stream is given as the playing option. (Though
in the command line program the function it isn’t really useful.)

In order to use streaming you must provide call back function in your particualr thread.
This is done bay adding features to the voice in your thread. Suppose your function was
declrared as

int example_audio_stream_chunk(const cst_wave *w, int start, int size,
int last, void *user)

You can add this function as the streaming function through the statement
cst_audio_streaming_info *asi;

...
asi = new_audio_streaming_info();
asi->asc = example_audio_stream_chunk;
feat_set(voice->features,

"streaming_info",
audio_streaming_info_val(asi));

You may also optionally include your own pointer to any information you additionally
want to pass to your function. For example

typedef my_callback_struct {
cst_audiodev *fd;
int count;

};
cst_audio_streaming_info *asi;

...

mcs = cst_alloc(my_callback_struct,1);
mcs->fd=NULL;
mcs->count=1;

asi = new_audio_streaming_info();
asi->asc = example_audio_stream_chunk;
asi->userdata = mcs;
feat_set(voice->features,

"streaming_info",
audio_streaming_info_val(asi));



Chapter 8: Converting FestVox Voices 23

8 Converting FestVox Voices

As of 1.2 initial scripts have been added to aid the conversion of FestVox voices to Flite. In
general the conversion cannot be automatic. For example all specific Scheme code written
for a voice needs to be hand converted to C to work in Flite, this can be a major task.

Simple conversion scripts are given as examples of the stages you need to go through.
These are designed to work on standard (English) diphone sets, and simple limited domain
voices. The conversion technique will almost certainly fail for large unit selection voices
due to limitations in the C compiler (more discussion below). In 1.4 we have also added
support for converting clustergen voices too (which is a little easier, see section below).

8.1 Cocantenative Voice Building

Conversion is basically taking the description of units (clunit catalogue or diphone index)
and constructing some C files that can be compiled to form a usable database. Using the
C compiler to generate the object files has the advantage that we do not need to worry
about byte order, alignment and object formats as the C compiler for the particular target
platform should be able to generate the right code.

Before you start ensure you have successfully built and run your FestVox voice in Festival.
Flite is not designed as a voice building/debugging tool it is just a delivery vehicle for
finalized voices so you should first ensure you are satisfied with the quality of Festival voices
before you start converting it for Flite.

The following basic stages are required:
• Setup the directories and copy the conversion scripts
• Build the LPC files
• Build the MCEP files (for ldom/clunits)
• Convert LPC (MCEP) into STS (short term signal) files
• Convert the catalogue/diphone index
• Compile the generated C code

The conversion assumes the environment variable FLITEDIR is set, for example
export FLITEDIR=/home/awb/projects/flite/

The basic flite conversion takes place within a FestVox voice directory. Thus all of the
conversion scripts expect that the standard files are available. The first task is to build some
new directories and copy in the build scripts. The scripts are copied rather than linked from
the Flite directories as you may need to change these for your particular voices.

$FLITEDIR/tools/setup_flite

This will read ‘etc/voice.defs’, which should have been created by the FestVox build
process (except in very old versions of FestVox).

If you don’t have a ‘etc/voice.defs’ you can construct one with
festvox/src/general/guess_voice_defs in the Festvox distribution, or gener-
ate one by hand making it look like

FV_INST=cmu
FV_LANG=us



24 Flite: a small, fast speech synthesis engine

FV_NAME=ked_timit
FV_TYPE=clunits
FV_VOICENAME=$FV_INST"_"$FV_LANG"_"$FV_NAME
FV_FULLVOICENAME=$FV_VOICENAME"_"$FV_TYPE

The main script build building the Flite voice is ‘bin/build_flite’ which will
eventually build sufficient C code in ‘flite/’ that can be compiled with the constructed
‘flite/Makefile’ to give you a library that can be linked into applications and also an
example ‘flite’ binary with the constructed voice built-in.

You can run all of these stages, except the final make, together by running the the build
script with no arguments

./bin/build_flite

But as things may not run smoothly, we will go through the stages explicitly.

The first stage is to build the LPC files, this may have already been done as part of the
diphone building process (though probably not in the ldom/clunit case). In our experience
it is very important that the records be of similar power, as mis-matched power can often
cause overflows in the resulting flite (and sometimes Festival) voices. Thus, for diphone
voices, it is important to run the power normalization techniques described int he FestVox
document. The Flite LPC build process also builds a parameter file of the ranges of the
LPC parameters used in later coding of the files, so even if you have already built your LPC
files you should still do this again

./bin/build_flite lpc

For ldom, and clunit voices (but not for diphone voices) we also need the Mel-frequency
Cepstral Coefficients. These are assumed to have been cleared and are in ‘mcep/’ as they
are necessary for running the voice in Festival. This stage simply constructs information
about the range of the mcep parameters.

./bin/build_flite mcep

The next stage is to construct the STS files. Short Term Signals (STS) are built for each
pitch period in the database. These are ascii files (one for each utterance file in the database,
with LPC coefficients, and ulaw encoded residuals for each pitch period. These are built
using a binary executable built as part of the Flite build (‘flite/tools/find_sts’.

./bin/build_flite sts

Note that the flite code expects waveform files to be in Microsoft RIFF format and
cannot deal with files in other formats. Some earlier versions of the Edinburgh Speech
Tools used NIST as the default header format. This is likely to cause flite and its related
programs not work. So do ensure you waveform files are in riff format (ch wave -info wav/*
will tell you the format). And the following fill convert all you wave files

mv wav wav.nist
mkdir wav
cd wav.nist
for i in *.wav
do

ch_wave -otype riff -o ../wav/$i $i
done



Chapter 8: Converting FestVox Voices 25

The next stage is to convert the index to the required C format. For diphone
voices this takes the ‘dic/*.est’ index files, for clunit/ldom voices it takes the
‘festival/clunit/VOICE.catalogue’ and ‘festival/trees/VOICE.tree’ files.
This process uses a binary executable built as part of the Flite build process
(‘flite/tools/flite_sort’) to sort the indices into the same sorting order required for
flite to run. (Using unix sort may or may not give the same result due to definitions of
lexicographic order so we use the very same function in C that will be used in flite to
ensure that a consistent order is given.)

./bin/build_flite idx

All the necessary C files should now have been built in ‘flite/’ and you may compile
them by

cd flite
make

This should give a library and an executable called ‘flite’ that can run as

./flite "Hello World"

Assuming a general voice. For ldom voices it will only be able to say things in its
domain. This ‘flite’ binary offers the same options as standard the standard ‘flite’
binary compiled in the Flite build but with your voice rather than the distributed voices.

Almost certainly this process will not run smoothly for you. Building voices is still a
very hard thing to do and problems will probably exist.

This build process does not deal with customization for the given voices. Thus you
will need to edit ‘flite/VOICE.c’ to set intonation ranges and duration stretch for your
particular voice.

For example in our ‘cmu_us_sls_diphone’ voice (a US English female diphone voice).
We had to change the default parameters from

feat_set_float(v->features,"int_f0_target_mean",110.0);
feat_set_float(v->features,"int_f0_target_stddev",15.0);

feat_set_float(v->features,"duration_stretch",1.0);

to

feat_set_float(v->features,"int_f0_target_mean",167.0);
feat_set_float(v->features,"int_f0_target_stddev",25.0);

feat_set_float(v->features,"duration_stretch",1.0);

Note this conversion is limited. Because it depends on the C compiler to do the final
conversion into binary object format (a good idea in general for portability), you can easily
generate files too big for the C compiler to deal with. We have spent a some time investi-
gating this so the largest possible voices can be converted but it is still too limited for our
larger voices. In general the limitation seems to be best quantified by the number of pitch
periods in the database. After about 100k pitch periods the files get too big to handle.
There are probably solutions to this but we have not yet investigated them. This limitation
doesn’t seem to be an issue with the diphone voices as they are typically much smaller than
unit selection voices.



26 Flite: a small, fast speech synthesis engine

8.2 Statistical Voice Building

The process of building from a clustergen (cg) voice is also supported. It is assumed the
environment variable FLITEDIR is set

export FLITEDIR=/home/awb/projects/flite/

After you build the clustergen voice you can convert by first setting up the skeleton files
in the ‘flite/’ directory

$FLITEDIR/tools/setup_flite

Assuming ‘etc/voice.defs’ properly identifies the voice the cg templates will be com-
pied in.

The conversion itself is actually much faster than a clunit build (there is less to actually
convert).

./bin/build_flite cg

Will convert then necessary models into files in the ‘flite/’ directory. The you can
compile it with

cd flite
make
./flite_cmu_us_awb "Hello world"

Note that the voice that is to be converted *must* be a standard clustergen voice with f0,
mceps, delta mceps and voicing in its combined coeffs files. The method could be changed
to deal with other possibilities but it will only work for default build method.

The generated library ‘libflite_cmu_us_awb.a’ may be linked with other programs
linkle any other flite voice. The binary generated flite_cmu_us_awb links in only one
voice (unlike the flite binary in the full flite distribution.

8.3 Lexicon Conversion

As of 1.3 the script for converting the CMU lexicon (as distributed as part of Festival)
is included. ‘make_cmulex’ will using the version of CMULEX unpacked in the current
directory to build a new lexicon. Also in 1.3. a more sophisticated compression technique
is used to reduce the lexicon size. The lexicon is pruned, removing those words which the
letter to sound rule models get correct. Also the letters and phones are separately huffman
coded to produce a smaller lexicon.

8.4 Language Conversion

This is by far the weakest part as this is the most open ended. There are basic tools in the
‘flite/tools/’ directory that include Scheme code to convert various Scheme structures
to C include CART tree conversion and Lisp list conversion. The other major source of
help here is the existing language examples in ‘flite/lang/usenglish/’.



Chapter 9: Porting to new platforms 27

9 Porting to new platforms

byte order, unions, compiler restrictions





Chapter 10: Future developments 29

10 Future developments





i

Table of Contents

1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Windows Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Window CE Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 PalmOS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.1 Some notes on the PalmOS port . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.2 Using the PalmOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Flite Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Key Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1 cst val . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1 flite binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Voice selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 C example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4 Public Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.5 Streaming Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Converting FestVox Voices . . . . . . . . . . . . . . . . . . . 23
8.1 Cocantenative Voice Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 Statistical Voice Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3 Lexicon Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.4 Language Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Porting to new platforms . . . . . . . . . . . . . . . . . . . . . 27

10 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . 29




	Abstract
	Copying
	Acknowledgements
	Installation
	Windows Support
	Window CE Support
	PalmOS Support
	Some notes on the PalmOS port
	Using the PalmOS


	Flite Design
	Background
	Key Decisions

	Structure
	cst_val

	APIs
	flite binary
	Voice selection
	C example
	Public Functions
	Streaming Synthesis

	Converting FestVox Voices
	Cocantenative Voice Building
	Statistical Voice Building
	Lexicon Conversion
	Language Conversion

	Porting to new platforms
	Future developments

