Cadena 2.0: Manual

Jesse Greenwald
Todd Wallentine

Cadena 2.0;: Manual

Jesse Greenwald
Todd Wallentine
Copyright © 2007 The SAnToS Laboratory, K-State

Table of Contents

Lo OVEIVIBIW ottt ettt ettt e n e enaa s 1
L0r= 0 = 1 - TS PSP P PP PUPPPTRPPPPIN 1
Component Based DEVEIOPIMENTuuuiiiiiiei ittt e e e e e eeeans 1
ECHIPSE OVEIVIEBW ..ot ettt e et e e e et e e enta e eeens 2
Cadena INSLAIBLIONcceeiiee et et 2

2. A CAOENA PrOJECLceeiiieeeee et 3
OVEIVIBIV .ottt e ettt e et be e e et et e e et ab e e e et e e e ena s 3
The NeW ProjeCt WIZardiiiiiiiiiiiii ettt 3
ConfigUIiNGg @ PrOJECT ...ceeuieiieii e et 3

PLNS ... e 3
Project DEPENUENCIESu ittt ettt 4

S 1 [T L= O PP TOUPPTR 5
The NEW SEYIE WIZAIcoooviiiiii et 5
THE SEYIE EQITON ..ottt ettt e e e 5
Providing the ViSUal SEYIEccoiiiii e 5
1116 TP PPPPT 6

INEEITACE KNGS ...eeeee ettt 7
COMPONENT KNGS ...eeve et ettt e et e e e e e e eeri e eeees 7
CONNECLON KINGS ...ttt ettt e e et e e e e et e e e enb e eees 8
ATITTDULES <.ttt ettt e e e e 10
BaSiC PrOPErtY TYPES ..eeiiieieiii ettt ettt ettt ettt 10
User Defined PrOPErtY TYPES ..oovuuiiiiii ettt ettt e e e e eeees 11
Property ValUES ...ttt 11
INNEITTAINCE ...ttt ettt e et e s 12

N Lo To U= 1= PP TPPPTTR 13
The New MOdUIE WIZArdooouniiiiiii et 13
The MOQUIE EQITOF ...cceeeiiiei ettt et e e e e 13
Providing the VisUal SEYIEoooiiii e 13
L 1 T PP PPN 14

INEEITACE TYPES .ttt ettt e e e et e e e 15
COMPONENE TYPES vttt ettt e e e e e e e e e e enes 15
IMPOIEA MOTUIES ...ttt et e e et e e aaan s 16

S o= 0= o L= PP UPPT TP PPPPTTRUPPIN 17
The New SCenario WIZardco.uuiiiiiiiei e 17
The SCENAITO EQITONeevuiiiiiii et e e e e eaeans 17
Providing the VisUal SEYIEcooiiii e 17
IMPOIEA MOTUIES ...t ettt et e e et e e e e 18
COMPONENE TNSEANCESuierieiei e e e e e e e e e e enes 18
1600]010 1 ol (o]0 NPT P PRSPPI 19
Tips on Navigating the Scenario EAITOroooviiiiiiiiii e e 19

6. PYENON SCIIPLING ... ettt e ettt ettt e e e et e e e e et e e e eeb e eeees 21
BaCKGIOUNG ...t ettt et e 21

ENVITONIMENT ..ottt et e et e e 21
L0 o PP PP 21
OBJECE MOEL ... ettt e e et e e e e e eees 22
Python Enhancements to Object Modeloooiiiiiiiiii e 23
Modifying the MOElcooiiii e 26
PULtiNG it @l TOGEINEN ...t 26
THE PraMISE ...t ettt et e 27
PrOCEOUNE ...ttt ettt e ettt e e e et e e e eeba e eeees 27
RUNNING e ettt e e et e e e et e e e enb e eeees 29

Cadena 2.0: Manual

A8 10 o T 1 I (o T O o (= - 30
L@ N = PR 30
Create a New Platformoi e 30

Create the SEYIE . eee i 30
Create the Eclipse PlUgin PrOJECEoiiiiiiii e 33
Add the SEYIE e 35
Testing the Platform PlUGINiiiic e e e e 37
Add the ViSUal SEYIE ..uniii e 37
Prototype the GENEIatOrccuuiiiiiiei e e eaaes 37
Add aNew GENErator ACHONviiieiiie it e e e e e e e 41
(00011 g (VTR (o T D=V o] o 41
L 105 S 42

[T o] oo r="o] o /R 45

List of Figures

1.1. The Cadena meta-modeling [aNQUAGEcovuuiiiiii et 1
3.1. Property Value HIErarChYooiiiiii et 12
7.1, eNeSC INErface KINGScoouuuiiiiiiie et 31
7.2. eNESC CONNECLOr KINGScevtieiiiiie ettt e et e e 32
7.3. eNesC Connector Kinds in the Cadena Style EQITOroveviiiiiiiiiiiiici e 32
7.4. eNesC Component Kinds in the Cadena Style Editoroooviiiiiiiiiiii e, 33
7.5. MeNUS tO Create @ NEW PIOJECTcevvuneeiiii ettt ettt ettt e et e et e e e e e ene s 33
7.6. New Plugin Project: NaIME [To.uuiiiiii e e e e eai e eees 34
7.7. New Plugin ProjeCt: 1D [......iiiiiiiecie ettt 34
7.8. New Plugin Project: COMPIELE Tiiiiieeee e 35
7.9. The New Style in the New Plugin ProJECEviiiiiiiiiiii e 36
7.10. Complete Style Extension point in Eclipse Plugin-in Manifest Editorccccooeveeiennnnnn. 37
7.11. eNeSC EXample MOQUIE ...ttt et 38
7.12. eNeSC EXaMPIE SCENAITO ...oevuieiiiiiieee ettt 38
7.13. eNesC Example Scenario - ErfOr MESSAgESuuuiieiiiieieiii et 39
7.14. eNesC Example SCenario - PrOPEItiESuuiiiiiiieeiiii ettt 39
7.15. eNesC Example Scenario - Python SCript RESUITSoviviiieiiiiieece e 41

Vi

List of Tables

3.1 Visual Styl€ Color VAIUBScoeeiieieii ettt et e e 6
3.2, MEtarKinG PrOPEITIES ... ettt et e 6
3.3. KNG PIrOPEITIES ..ottt ettt ettt e e ettt e e et et e e et e e e ab s 7
3.4, POI-SPEC PrOPEITIESeieeei ettt ettt ettt e et e et e et e e e et e eeeba s 8
3.5. Port-spec Dinding ProPertiesooouuui i 8
3.6, ROIE PIOPEITIES ...ttt ettt e et e et e et e e 9
3.7. Interface type variable Propertiesoovveiiiiiie e 9
3.8. Role/Interface type-variable binding properties ... 10
3.9. Attribute SPecifiCation PrOPEITIESiiieeii e 10
3.10. BBSIC PrOPEITY TYPES ...ueieiiieeteii ettt ettt ettt ettt e et e et e e e e 11
311, TYPEAEf PIrOPEITIES . .eevei ettt ettt ettt e et e et e e e ae s 11
4.1, Visual Style Color VAIUEScouuuiiiiii ettt e 14
A.2. TYPE PIOPEITIES ...eeetieeeeite ettt e ettt ettt e e et e et et e et et e et e e et e e a et e b e e enaa s 14
4.3. COoMPONENt TYPE PrOPEITIES ... eeeiti ettt ettt e e et e e ettt e e e e et e e e e et e e e entaeaees 15
4.4. COMPONENE POIT PrOPEITIES ...eevtieeeii ettt ettt e et e et et e et e e e e et e e e aea s 15
5.1. Visual Style Color VAIUEBSccoouiiieiiiii ettt e eens 18
6.1. Supplementary Attributes in Python ENVIrONMeNtooovviiiiiiiiiieiii e 25
7.1, eNeSC INErface KiNGSccouuuiiiiiiie et 31
7.2. eNESC CONNECLOr KINGSoeviieiiiiie ettt r e e 31

Vii

Chapter 1. Overview

The Cadena 2.0: Manual was created as a complete reference manual for the Cadena devel opment
environment. It has a feature-centric focus meaning that it describes features and how they are used. This
isdlightly different than the Cadena tutorials which provide atask-centric focus meaning that it describes
tasks and how they can be accomplished using features avail able in the Cadena devel opment environment.

Cadena

Cadena is an Eclipse-based extensible integrated modeling and development framework for component-
based systems. Cadena's models are type-centric in that multi-level type systems are used to specify and
enforce avariety of architectural constraints relevant to development of large-scale systems and software
product lines.

Cadena provides the following capabilities to system architects, infrastructure developers, and system
developers:

» Define modeling environments for widely-used component models: Cadena's meta-modeling
capabilities can be used to formally capture the definition of widely used component models such as
the CORBA Component Model (CCM), Enterprise Java Beans (EJB), and nesC (a component model
for sensor networks built on TinyOS). Meta-models can include attributes that represent settings and
parameters for underlying middleware frameworks on which systems will be deployed.

* Define domain-specific component models: Cadena meta-modeling can also be applied to specify new
component models, including domain-specific component model sthat are tailored to the characteristics
of a particular domain or underlying middleware capabilities.

* Flexibly combine and extend multiple component models in a single system: Cadena meta-models
(called styles) can be directly manipulated using style operations. This provides a variety of powerful
and useful capabilities to system architects.

* Styles can be extended through inheritance. This enables reuse of meta-model definitions, and
facilities refinement of platform definitions (multi-step platform-independent to platform-specific
model refinement).

» Multiple styles can be combined within the same architecture model environment to support
development of systems of systems that incorporate multiple component models.

» Define end-to-end model-driven development environments. Cadena's base set of capabilities can
be extended using plug-in mechanisms based on the Eclipse plug-in architecture. This enables
infrastructure developers to build end-to-end model-driven development environments that include
facilitiesfor editing component implementations, model-level configuration of middleware capabilities,
code generation, simulation, verification, and creating system builds. Plug-ins can also be developed
to link other development tools including tools for requirements capture and down-stream class-level
modeling tools such as Rational Rose or Modeler or iLogix Rhapsody.

Figure 1.1. The Cadena meta-modeling language

Component Based Development

TODO: Give an overview of component based development here. Talk about how components provide
interfaces which are connected by connectors.

Overview

Eclipse Overview

TODO: A short description of Eclipse here

Cadena Installation

Thismanual assumesthat you have Cadenainstalled properly. For moreinformation on installing Cadena
please read the Cadena 2.0: Install Guide.

Chapter 2. A Cadena Project

Overview

A project serves as the basic organizational unit of Cadena. Related artifacts can be stored and grouped
within projects. Artifacts of one project may be made visible to another project by creating a project
dependency between the two projects.

The New Project Wizard

Before any Cadena artifacts can be created, a project must be created to contain them. To create a new
project:

» Select "File# New # Project..." from the main menu.

» The new project dialog should appear. From the tree on the left, select " Cadena # Cadena Project” and
then click the "Next" button.

» TheCadena Project page of thewizard should appear. To continue, avalid project name must be entered.
Once avalid project name has been entered, the "Finish" button may be clicked to create the project.

The new project should now show up within the resource navigator view.

Configuring a Project
Paths

Within aproject, paths are used to specify what directories artifacts must be placed in to be visible to other
artifacts. Separate directory lists are maintained for each type of Cadena artifact. When a new project is
created, a default set of specification paths are configured: specification/style, specification/module, and
specification/scenario for styles, modules and scenarios respectively.

To view the specification paths for a project:

* Right-click on the project within the resource navigator view and select "Properties’ from the main
menu.

* The project properties dialog should appear. From the tree on the left, select "Cadena Specification
Paths'. The specification paths page should appear to the right.

Thereis a separate tab for each type of Cadena artifact. The specification path of each type of artifact can
be set through these tabs. The list within each tab shows the currently defined paths.

A path can be removed by selecting it from the list and clicking the "Remove" button. Clicking the "Add
Folder..." button will cause a folder selection dialog to be displayed which allows additional paths to be
added to thelist.

If a path specified in Cadena configuration cannot be resolved it will still be listed. When this happens it
will be denoted in that dialog with a RED X. You can remove this path from the list by selecting it and
pressing the "Remove" button. You can also remove all bad (or errorneous) paths from the list using the
Cleanup button.

A Cadena Project

Project Dependencies

By default, artifacts within one project are not visible to artifacts within other projects. However, these
artifacts can be made visible by creating a project reference. Once a reference to a project is established,
artifacts that are contained within the referenced project will be visible within the project that created the

reference. 1.
To view aproject's references:

 Right-click on the project within the resource navigator view and select "Properties’ from the main
menu.

» The project properties dialog should appear. From the tree on the | eft, select "Project References'. The
references page should appear to the right.

Referencesto projectsareindicated by the checkboxeslocated next to the name of each project. A reference
can be added or removed by clicking on the checkbox of a project.

! For the artifacts of one project to be visible to the artifacts of a referencing project, the artifacts must be located on the referenced project's
specification paths.

Chapter 3. Style Tier

Inside a Cadena style, the shapes (or structures) of the architectural elements are described (i.e., the
vocabulary of aplatform is introduced). Another way to look at thisis that the style-tier is the factory for
the congtituent parts of an architecture.

The New Style Wizard

To create anew style:

e Use the navigator view to browse to a folder within a Cadena project where the style will be placed.
The folder that is chosen should be a part of the style path for the project.

* Right click on the chosen folder and select " New # Other " from the pop-up menu.

» The new resource dialog should appear. From the tree on the left, select " Cadena# Cadena Style" and
then click the "Next" button.

» The Cadena Syle wizard page of the wizard should appear. To continue, a valid style name must be
entered. Once avalid style name has been selected, click the "Finish" button to create the style.

If the styleis succesfully created, a style editor for the new style will be opened.

The Style Editor

The style editor is used to view and modify Cadena styles. The editor has two tabs: the Overview tab, and
the Tabletab. The Overview tab isused to view and modify general aspects of the stylewhilethe Tabletab
provides atable based view for viewing and modifying the individual elements that comprise the model.

Providing the Visual Style

The Cadena Style editor allows the user to configure visual properties of the editor so that the user can
have aricher experience. The customizations are rudimentary at thistime but should be sufficient for most
users. If more customizations are necessary, a plugin should be created for the style.

To make changes to the visual style a user must create a file with a name that follows this pattern:
<styleFileName>.visuas (where <styleFileName> is the name of the stylefile before the .style). Thiswill
be a simple text file that uses the Java properties format. Each property provides the Style editor with
configurations that can enhance the look-n-feel of the editor to match user expectations. Therefore, the
property names and values are important.

The first configurable item is the icon used for interface kinds. The naming scheme that is used is
based upon the name of the kind followed by .icon. For example, if we have an interface kind named
testInterfaceKind, we can set the icon that is used to denote it by setting testlnterfaceKind.icon=test.gif.
We suggest you use an icon that whose sizeis 16x16 (pixels).

The second configurable item is the color used for component kinds (as well as meta-kinds).
The naming scheme that is used is based upon the name of the kind followed by .color. For
example, if we have a component kind named testComponent, we can set the color that is used to
testComponent.color=red. Thevaluesthat can be used must bein the set of Eclipse Draw2d color constants
(org.eclipse.draw2d.Col orConstants) or aproper HEX value (e.g., #7FF0000 isred and #CCEEFF isbluish).
This set of colorsislisted in Table 3.1, “Visual Style Color Values’.

Style Tier

Table 3.1. Visual Style Color Values

blue darkBlue lightBlue

gray darkGray lightGray
green darkGreen lightGreen
black white cyan
orange red yellow

Kinds

The starting point of a Cadena architectural specification isthe definition of kinds (sometimes referred to
as platform types or architectural types) in a Cadena style to describe a meta-model of the architectural
elements that can be used in the construction of a system. The kinds available in Cadena fall into the
three categories fundamental to component-based systems. components, interfaces, and connectors. Each
kind definition (e.g., acomponent kind) in a Cadena style defines alanguage of types (e.g., alanguage of
component types) that can be used in the construction of a system.

For the construction of a kind for an architectural element, Cadena offers the concept of meta-kinds,
intuitively atoolkit to build shapes, or structures, which form the vocabulary for the types. Unlike concrete
kinds, meta-kinds are allowed to extend from one another. For one meta-kind to inherit from another means
that al of the features that are defined in the parent meta-kind are also present in the child meta-kind.
Three root meta-kinds are present in the core style: mComponent, minterface, and mConnector. All kinds
and meta-kinds must inherit either directly or indirectly from the appropriate root meta-kind.

To create akind or meta-kind:
» Changeto the Table tab of the style editor.

 Right click within the main table to bring up the pop-up menu. To create a kind or meta-kind, select
one of the options from the "New * Kind" or "New * Meta-Kind" submenus, respectively. The "New
Kind" wizard should appear.

* A unigue name that no other kind or meta-kind uses must be chosen. A parent meta-kind—either one
of the core meta-kinds, or another user- created meta-kind—must also be selected. Click the "Finish"
button to create the new kind or meta-kind.

If the kind or meta-kind was successfully created, it should now show up in the table. Double-clicking on
it will bring up the properties view allowing some of the item's properties to be manipulated.

Meta-kinds have the following properties that may be changed:

Table 3.2. Meta-kind properties

Name Description

name The name of the component meta-kind. It should be unique among kinds and
meta-kinds.

exposed If set to true, it can be used as a parent meta-kind within styles that extend
from the containing style. See below for more information about meta-kind
inheritance.

parent The parent of the meta-kind. See below for more information about meta-
kind inheritance.

Style Tier

Kinds have the following properties that may be changed:

Table 3.3. Kind properties

Name Description
name The name of the component meta-kind. It should be unique among kinds and
meta-kinds.

ComponentMetaKind | The meta-kind that the kind finalizes.
/ InterfaceMetaKind /
ConnectorMetaKind

Interface Kinds

The first kind category is the interface-kinds category. Interface-kinds categorize interaction points of
platform components and check compatibility between component and connector.

Component Kinds

The second kind category is the component-kinds category. Component-kinds describe the software-unit
primitivesof aplatform. Each component kind may be instantiated as zero or more component typeswithin
the moduletier. Each of those component types may be further instantiated as component instances within
the scenario tier.

Component meta-kinds expose possible interaction-points through port-options. Port-options are used to
declare and constrain the kinds of ports that a component type may contain. Port-options are also used to
constrain the connections that are allowed to ports of a component instance. Port-options are declared in
component meta-kinds and then finalized within component kinds. To add a port-option to a component
meta-kind:

» Changeto the Table tab of the style editor.

* Right click on the component meta-kind to bring up the pop-up menu. Select "Add Port-Option” from
the menu.

* A new port-option should now be present as a child to the component meta-kind and it should
automatically be selected. To complete the port option's specification, a few properties must be set. If
the properties view is not already visible, double-click on the port-option to make the properties-view
visible.

Style Tier

Table 3.4. Port-spec properties

Name Description
name A keyword to uniquely identify the kind of a port.
interfaceM etaKind Theinterface meta-kind of the port-spec. When a component kind is created,

an interface kind needs to be specified for each port-spec that is present in
the component kind's meta-kind. The interface kind must inherit from the
interface meta-kind that is specified here.

parity The parity of the port-spec. In order to connect the port of a component
instance to a connector, the parity of the port's port-spec must match the
parity of the connector'srole. The parity can be set to either USES or
PROVIDES.

minimumMultiplicity | The minimum multiplicity of the port-spec. This property restricts the
minimum number of ports that a component type may contain of this port-

Spec.
maximumMultiplicity | The maximum multiplicity of the port-spec. This property restricts the
maximum number of ports that a component type may contain of this port-
spec.

minimumMultiplexity | The minimum multiplexity of the port-spec. This property restricts the
minimum number of connections that may be made to a port of thiskind
within a component instance.

maximumMultiplexity | The maximum multiplexity of the port-spec. This property restricts the
maximum number of connections that may be made to a port of this kind
within a component instance.

Within a concrete component kind, a port-option binding must be present for each of the port-options
present in the component kind's meta-kind. For each of these bindings, a concrete interface kind must
be chosen. The concrete interface kind must inherit from the interface meta-kind that was chosen for the
port-option.

When a component kind is created, bindings are automatically created for all of the port-specs. However,
if acomponent kind already exists and a port-spec is added to or removed from its meta-kind, the bindings
must manually be fixed by right-clicking on the component-kind and selecting "Fix Bindings' from the
pop-up menu.

Port-spec bindings have the following properties:

Table 3.5. Port-spec binding properties

Name Description

interfaceKind Theinterface kind that the port-spec is bound to. Only interface kinds that
inherit from the port-spec's chosen interface meta-kind may be used.

Connector Kinds

Connector-kinds are the final category of kinds. Connectors model the services provided by the
platform. The chosen platform may include a variety of middleware services, supporting inter-component
communication, distribution, persistence, and state-replication among others. These services are modeled
through connectors, where a connector represents a distinct service of the platform. Since connectors
represent services provided by the platform, there is no need to create connector types within the module
tier. Instead, connector kinds are instantiated directly as connections within the scenario tier.

Style Tier

Each connector definition consists of a number of role declarations, much like the port-options
in component-kinds. Single-role connectors abstract services such as timeout-generators; multi-role
connectors model inter-component communication-services. When a connector kind is instantiated as
a connection within the scenario tier, each of the connection's roles must be connected to a port of a
component instance.

Rolesare created in the same way that port-options are created, by right-clicking on a connector meta-kind

and selecting "Add Role" from the pop-up menu. The rol€'s properties can be modified by double clicking
on the role to display the properties view. A role has the following properties:

Table 3.6. Role properties

Name Description
name A keyword to uniquely identify the name of arole.
interfaceMetaKind The interface meta-kind constrains the kinds, and possibly the types, of

interfaces that arole may be connected to. The value must be either an
interface meta-kind or an interface-type-variable.

If an interface meta-kind is used, the role must be bound to a concrete
interface kind when the connector meta-kind is finalized as a connector kind.
When a connector is instantiated as a connection in the scenario tier, the

role must be connected to a port of the same interface kind. Thisis useful

for single-role connectors where the compatibility of multiple roles does not
need to be enforced.

If an interface-type-variable is used instead, the role not only needs to be
connected to a port of the same interface kind as the type variable, but it must
also be connected to a port of the same interface type as all of the other roles
which share the interface-type-variable.

parity The parity of the role constrains the kinds of ports that the role may be
connected to. Roles may only be connected to ports where the parity of the
role matches.

Connector meta-kinds may al so contain interface-type-variables. | nterface type-variablesare used toinsure
that agroup of roleswithin aconnection areall connected to portsof the sametype. Interfacetype-variables
have the following properties:

Table 3.7. Interface type variable properties

Name Description

name A uniqueidentifer of the interface-type-variable. The name must not be
reused by other interface-type-variables.

interfaceM etaKind The interface meta-kind of the interface-type-variable. It is used to constrain
the interface kind of an interface type variable binding.

When a connector meta-kind is finalized as a connector kind, a binding must exist for each of the roles
and interface-type-variables contained in the parent metakind. A binding has the following properties:

Style Tier

Table 3.8. Role/Interface type-variable binding properties

Name Description

interfaceKind Theinterface kind that this binding is bound to. (Note: this property is not
present if the binding isfor arole and the role specified is an interface-type-
variable asit'sinterface constraint). Only interface kinds that inherit from the
role's chosen interface meta-kind may be used.

Attributes

While kinds and kind features are useful for creating the functional aspects of a model, it is often useful
to attach non-functional data in the form of non-stateful attributes. Attributes are useful in configuring
the underlying middleware and service infrastructure of a system. The attribute values can then be
used for many things including schedulability analysis, code generation, configuration management, and
deployment configuration generation.

Attribute specifications may be attached to any meta-kinds. To add an attribute specification, right-click

on ameta-kind and select "Add Property Type". The new attribute specification should show up asachild
of the meta-kind. An attribute specification has the following properties:

Table 3.9. Attribute specification properties

Name Description

name The unique identifier of the attribute. Attribute values are named according
to their specification’'s name

kind The binding time of the attribute. This binding time determines at what tier in
the model a value can be assigned to the attribute.

theType The type of the attribute. The following attribute types are supported:
string, integer, boolean, enum, struct, and collection. The attribute types are
described in more detail below.

defaultValue The default value of the attribute. Thisis an optional property. If no valueis
specified for an attribute by the user, the value of the attribute is then equal to
the default value.

Basic Property Types

The following basic property types are supported:

10

Style Tier

Table 3.10. Basic Property Types

Name

Description

string

A sequence of characters.

integer

A numerical integer.

boolean

An enumerated domain corresponding to the usual notion of the
mathematical Boolean field. Thetwo legal literalsin this enumerated type
aretrue andf al se.

enum

A user defined enumerated value. To use this property, one or more

enum members need to be added. To add a member, expand the attribute
specification so that the "<enum-type>" child isvisible. Right click on the
child and select "Add Enum Member" from the menu. The new member
should show up as a child of the "<enum-type>" child. Double-click on the
new enum member and set its name.

struct

A struct is a composite type that allows one more nested named child
properties (called struct members). To add a child struct member, expand
the attribute specification so that the "<struct-type>" child isvisible. Right
click on the child and select "Add Struct Member" from the menu. The new
member should show up as a child of the "<struct-type>" child. Double-click
on the new struct member to set its name and type.

collection

A collection alows multiple values to be specified for an attribute value.

A collection type must specify the type of the elementsit may contain,

the minimum and maximum number of elements it may contain, and the
collection type. The collection type may be either "BAG", "SEQUENCE", or
"SET". To set these properties, expand the attribute specification so that the
"<collection-type>" child isvisible and double click on it.

User Defined Property Types

Reusable user defined types, or typedefs, may be created as well. Type defs may be used by multiple
attribute specifications. This feature can be especially useful when a complex struct needs to be reused.

To create a typedef, change to the table and right-click anywhere within the main table. Select "New
Type Def" from the pop-up menu. Double click on the typedef to change it's properties. A typedef has

the following properties:

Table 3.11. Typedef properties

Name

Description

name

The unique identifier of the typedef.

type

The type of the typedef. The type can be any one of the basic types described
above, or the type can be another typedef.

Property Values

Property values may be attached at several points along the Cadena model hierarchy. Properties remain
open along the hierarchy until a property value is attached. At the point that a value is specified for the
property, the property becomesfinalized. Once aproperty isfinalized, values can no longer be specified for
the property at alower point in the hierarchy (meaning that values may not be overridden). See Figure 3.1,
“Property Value Hierarchy” for adiagram of the property value hierarchy.

11

Style Tier

Figure 3.1. Property Value Hierarchy

N Initial

(" Interface Meta-Kind) Specification of (‘Component Meta-Kind) (_ Connector Meta-Kind)
B B the Property B B -
—_— - x N - x
V\ Interface Kind : (__ ComponentKind) (___ Connector Kind
/” Connector Kind " /* Connector Kind_ N/~ ComponentKind

__Role Binding / _Interface Type Variable BiQding/ ___Port Option Binding

- ~
/ (" Interface Type)
: « =y ~N P Y
/ (ComponentType \ et openty ("~ Component Type)
_ Port / parent -)
— component
v types may be
'/(m\\ finalized by
(= = JF”) child e ~
/ Pt) conpanen (__Component Type)
/ R — types
Y
/Connedior / Gomponent Instance ; o v
{__Roe J Component Instance) Connector
__Role J _ Pot - J -

Inheritance

Cadena allows for structural inheritance in two different ways. The first way is meta-kind inheritance.
When one meta-kind inherits from another, all of the features (port-options, roles, & interface-type-
variables) of the the parent meta-kind are present in the child meta-kind. It is also possible to refine, or
specialize features from the parent meta-kind within the child meta-kind. For instance, a child connector
meta-kind may refine an interface-type-variable such that it requires a more specialized interface meta-
kind than was required by the parent connector meta-kind.

In the editor, these inherited features are shown with gray text to indicate that they are not declared within
the child meta-kind but at a higher level in the meta-kind's inheritance hierarchy. The feature can be
specialized by double clicking on it to display the properties view and then setting a value to one of the
properties. Once afeature has been specialized, it will be shown with green text.

The second form of structural inheritance Cadena allows is inheritance of styles. For one style to inherit
from another means that the contents of the parent style are also present in the child-style. Meta-kinds are
allowed to inherit from either meta-kinds declared within the same style, or meta-kinds that are declared
in parent styles. Combined, these two forms of inheritance allow not only for the meta-kinds of a single
platform to specialize each other, but meta-kinds of aplatform to specialize meta-kinds of aparent platform
to create a specialized platform.

Furthermore, multiple inheritance of styles allows multiple unrelated styles to be bridged together as
a hybrid style. This hybrid style can then contain component kinds that act as trandlators between the
component kinds of the parent styles, thus allowing scenarios to be created containing interconnected
components from multiple unrelated platforms.

To add or remove a parent style:
» Change to the Overview tab of the style editor.

» Toremoveaparent style, select a style from the parent style list within the "Parent Styles® section and
click the "Remove..." button.

» To add a parent style, click on the "Add..." button within the "Parent Styles' section. A dialog should
appear which allows for the selection of the parent style.

12

Chapter 4. Module Tier

Once an architecture or platform has been described in a style (see Chapter 3, Style Tier), a module
using that style can be created. Inside a module users can create component types and interface types
corresponding to the component kinds and interface kinds described within the style.

The New Module Wizard

To create a new module;

e Usethe navigator view to browse to afolder within a Cadena project where the module will be placed.
The folder that is chosen should be a part of the module path for the project. The standard location for
thisisin the specification/modul e folder.

* Right click on the chosen folder and select " New # Other " from the pop-up menu.

» The new resource dialog should appear. From the tree on the left, select " Cadena # Cadena Module "
and then click the "Next" button.

e The Cadena Module wizard page should appear. To continue, a valid module name must be entered.
The desired style of the module must also be selected. Once a valid module name and style have been
selected, the "Finish" button must be clicked to create the module.

If the moduleis succesfully created, a module editor for the new module will be opened.

The Module Editor

The module editor is used to view and modify Cadenamodules. The editor hastwo tabs: the Overview tab,
and the Table tab. The Overview tab is used to view and modify general aspects of the module while the
Table tab provides a table based view for viewing and modifying the individual elements that comprise
the model.

Providing the Visual Style

The Cadena Modul e editor allows the user to configure visual properties of the editor so that the user can
have aricher experience. The customizations are rudimentary at thistime but should be sufficient for most
users. If more customizations are necessary, a plugin should be created for the style.

To make changes to the visual style a user must create a file with a name that follows this pattern:
<modul eFileName>.visuals (where <moduleFileName> is the name of the style file before the .module).
Thiswill beasimpletext filethat usesthe Javapropertiesformat. Each property providesthe Module editor
with configurations that can enhance the look-n-feel of the editor to match user expectations. Therefore,
the property names and values are important.

The first configurable item is the icon used for interface types. The naming scheme that is used is
based upon the name of the type followed by .icon. For example, if we have an interface type named
testInterfaceType, we can set the icon that is used to denote it by setting testInterfaceType.icon=test.gif.
We suggest you use an icon that whose sizeis 16x16 (pixels).

The second configurable item is the color used for component types. The naming scheme that isused is
based upon the name of the type followed by .color. For example, if we have a component kind named
testComponentType, we can set the color that is used to testComponentType.color=red. The values that

13

Module Tier

can be used must be in the set of Eclipse Draw2d color constants (org.eclipse.draw2d.Col orConstants) or
aproper HEX value (e.g., #7FF0000 isred and #CCEEFF isbluish). This set of colorsislistedin Table 4.1,
“Visual Style Color Values'.

Table4.1. Visual Style Color Values

blue darkBlue lightBlue
gray darkGray lightGray
green darkGreen lightGreen
black white cyan
orange red yellow

The third configurable item is the location of the port on the component type. This is specified
using the component type name and the port name. For example, if we have a port named myPort
on a component type named myComponent you could specify the location using a property like
myComponent.myPort.side=top. The possible values are top, bottom, left, and right.

The fourth configurable item is the icon used for the port on the component. This is specified
using the component type name and port name. For example, if we have a port named myPort
and a component type named myComponent you could specify the icon using a property like
myComponent.myPort.icon=test.gif. We suggest you use an icon whose size is 16x16 (pixels).

Y ou should note that inheritance of these propertieswill occur. So if you define aproperty in the style-tier,
it will beinherited at the module tier. For example, if you set the color of akind at the style-tier, you will
get this color at the moduletier if you don't override it with a more specific color.

Types

TODO: give some text describe the roles of typesin a cadena model
To create anew type:
» Changeto the Table tab of the module editor.

» Right click within either the "Component Types' or the "Interface Types' table to bring up the pop-up
menu. Either the"Add Interface Type" or "Add Component Type" submenu should appear as an option,
depending on which table was right clicked in. The submenu contains separate menu options for each
of the interface kinds or component kinds that are declared in the style. Select one of the options. The
new type wizard should appear.

A unigque namethat no other type uses must be chosen. Once anameis chosen, click the"Finish" button
to create the new type.

If the type was succesfully created, it will now show up in the table. Double-clicking on it will bring up
the properties view allowing some of item's properties to be manipul ated.

All types have the following properties that may be changed:

Table4.2. Type properties

Name Description

name The name of the type. It should not be reused by any other type.

14

Module Tier

Interface Types

Each port of acomponent designates oneinterface type asthe shapetowhichit conforms. A connector kind
may use the interface types of ports to insure that only ports of compatible interface types are connected
together by a connector.

If an interface type is selected, all of the ports of that interface type will be selected in the component
typestable.

Component Types

Each component kind created within the modul€'s style may be instantiated as zero or more component
types within the module. Each of these component types may be further instantiated as zero or more
component instances within the scenario tier.

Component types have the following additional properties:

Table 4.3. Component Type properties

Name Description

parent The parent component type of the component type. A child component type
of aparent component type inherits al of the ports of it's parent component
type.

abstract If acomponent typeis abstract, it can not be instantiated as a component
instance. The value is either true or false.

Component types may contain ports. Ports are used to expose concrete interaction-points. Each port must
be associated with a port-option declared by the style. Each port must also be associated with an interface-
type. The combination of the port-option and interface type of the port helps determine its compatibility
with roles of a connector within the scenario tier. To add a port to a component type:

» Changeto the Table tab of the module editor.

 Right click on the component type to bring up the pop-up menu. Select the "Add Port" submenu. In the
submenu, there are separate options for each of the port-options that are declared in the style. Select
one and the new port wizard should appear.

* A unigue name that no other port in this component type uses must be chosen. An interface-type
belonging to the port-option's kind must also be chosen. Once a name and interface type are chosen,
click the "Finish" button to create the new port. If the new port was successfully created, it should now
show up as a child of the component type.

Component ports have the following properties:

Table 4.4. Component port properties

Name Description

name The name of the port. The name should be unique with respect to the other
ports contained within the component type.

interface Theinterface type of the component port. The port should belong to the same
interface kind as specified by the port's port-option.

15

Module Tier

Imported Modules

In order for a child component type to extend another parent component type, the parent component type
must be visible. In order for a component port to use an interface type as its type, the interface type must
also be visible. Types declared within a module are automatically visible to al of the other types within
the same module. To make atype declared in one module visible to types declared in another module, the
module where the type is declared must be imported by the other module. To view and modify amodule's
import list:

e Change to the Overview tab of the module editor. The "Imported Modules" section of the overview
page shows the list of currently imported modules (by default, thislist is empty).

» Toadd amoduletotheimport list, click the"Add..." button to the right of thelist. A dialog will appear
alowing modules to be selected for import. Select the modules for import and click the "OK" button.
Theimport list should now be updated to show the newly imported modules.

» To remove a module from the import list, select the module from the list and click the "Remove..."
button. Theimport list should now be updated.

16

Chapter 5. Scenario Tier

Once an architecture or platform has been described in a style (see Chapter 3, Syle Tier) and a module
with component types has been created (see Chapter 4, Module Tier), ascenario can be created. Scenarios
contain instances of component types, instances of other scenarios (as nested scenarios), and connectors
which tie the instances together.

The New Scenario Wizard

To create a new scenario:

» Usethe navigator view to browse to afolder within a Cadena project where the scenario will be placed.
The folder that is chosen should be a part of the scenario path for the project. The standard location for
thisisin the specification/scenario folder.

* Right click on the chosen folder and select " New # Other " from the pop-up menu.

» The new resource dialog should appear. From the tree on the left, select " Cadena # Cadena Scenario
" and then click the "Next" button.

» The Cadena Scenario wizard page of the wizard should appear. To continue, avalid scenario name must
be entered. The desired style of the scenario must also be selected. Once avalid scenario name and style
have been selected, the "Finish" button may be clicked to create the scenario.

If the scenario is succesfully created, a scenario editor for the new scenario will be opened.

The Scenario Editor

The scenario editor is used to view and modify Cadena scenarios. The editor has three tabs: the Overview
tab, the Table tab, and the Graph tab. The Overview tab is used to view and modify general aspects of the
scenario. The Tabletab providesatable based view for viewing and modifying theindividual elementsthat
comprise the model. The Graph tab provides agraph based view for viewing and modifying theindividual
elements of the model aswell.

Providing the Visual Style

The Cadena Scenario editor allows the user to configure visual properties of the editor so that the user can
have aricher experience. The customizations are rudimentary at thistime but should be sufficient for most
users. If more customizations are necessary, a plugin should be created for the style.

To make changes to the visual style a user must create a file with a name that follows this pattern:
<scenarioFileName>.visuals (where <scenarioFileName> isthe name of the stylefile beforethe .scenario).
This will be asimple text file that uses the Java properties format. Each property provides the Scenario
editor with configurations that can enhance the look-n-feel of the editor to match user expectations.
Therefore, the property names and values are important.

Thefirst configurable item is the color used for component instances. The naming scheme that isused is
based upon the name of the instance followed by .color. For example, if we have a component instance
named testComponent, we can set the color that is used to testComponent.color=red. The values that can
be used must be in the set of Eclipse Draw2d color constants (org.eclipse.draw2d.ColorConstants) or a
proper HEX value (e.g., #FF0000 is red and #CCEEFF is bluish). This set of colorsislisted in Table 5.1,
“Visual Style Color Values'.

17

Scenario Tier

Tableb5.1. Visual Style Color Values

blue darkBlue lightBlue
gray darkGray lightGray
green darkGreen lightGreen
black white cyan
orange red yellow

The second configurable item is the location of the port on the component instance. This is specified
using the component instance name and the port name. For example, if we have a port named myPort
on a component instance named myComponent you could specify the location using a property like
myComponent.myPort.side=top. The possible values are top, bottom, left, and right.

Y ou should note that inheritance of these properties will occur. So if you define a property in the style- or
module-tier, it will be inherited in the scenario-tier. For example, if you set the color of a kind at the
style-tier, you will get this color at the scenario tier if you don't override it with a more specific color.

Imported Modules

Before any component instances can be created, component types must be made visible to the scenario.
This is done in the same way that modules must be imported by other modules in order to make types
visible to other modules. Modules must be imported by a scenario in order to make the module's types
visible within the scenario. To view and modify a scenario's import list:

» Change to the Overview tab of the scenario editor. The "Imported Modules' section of the overview
page shows the list of currently imported modules (by default, thislist is empty).

e Toadd amoduleto theimport list, click the"Add..." button to the right of thelist. A dialog will appear
alowing modules to be selected for import. Select the modules for import and click the "OK" button.
Theimport list should now be updated to show the newly imported modules.

» To remove a module from the import list, select the module from the list and click the "Remove..."
button. The import list should now be updated.

Component Instances

Once one or more modules containing component types are imported by the scenario, instances of the
component types can be created. To create a new component instance:

» Switch to either the "Table" view, or the "Graph" view.

« If the table view is visible, right-click within the "Instances' table to make the pop-up menu visible.
If the graph view is visible right-click anywhere within the main editor area. The "Add Component
Instance" submenu should be available as an option within the pop-up menu. The submenu contains
separate menu options for each of the component kinds that are declared in the style. Select the desired
component kind. The new component instance wizard should appear.

A unique name that no other instance uses must be chosen. A component type must also be chosen by
clicking on the "Browse..." button and selecting a component type from the dialog. Once a name and
component type have been chosen, click the "Finish" button to continue.

The new component should show up in both the "Graph" tab, and the "Table" tab. Within the graph view,
the component can be dragged around and dropped in a different location.

18

Scenario Tier

Connections

Tips

Once one or more instances have been created, connections may be created to connect the instances
together. Connections may be made afew different ways. The first way to make a connection is described
below:

» Switch to either the "Table" view, or the "Graph" view.

« If thetableview isvisible, right-click within the "Instances" or "' Connections" tablesto make the pop-up
menu visible. If the graph view is visible right-click anywhere within the main editor area. The "Add
Connector" submenu should be available as an option within the pop-up menu. The submenu contains
separate menu options for each of the connector kinds that are declared in the style. Select one of the
options. The new connection wizard should appear.

» Themaintablein the wizard displays each role of the selected connector kind. Each role must be bound
to atype-correct port. To bind arole, select the binding from the table and choose an instance and port
combination from the binding drop down box. Once a type-correct binding has been chosen for each
role, click the "Finish" button to create the connection.

The new connection should show up in both the "Graph" tab, and the "Table" tab. Within the graph view,
the connection can be dragged around and dropped in a different location.

To limit the available options displayed in the binding drop down box, multiple instances or ports may
be selected before opening the wizard. For instance if two separate instances are selected, only ports from
those two instances will be available as options in the bindings drop down. If an instance and a port from
another instance are selected, only ports from the selected instance, and the selected port will be displayed
in the drop down box.

Connections can also be created in the following way:
» Switch to the "Table" view.

* Right click on an instance's port within the "Instances’ table to display the pop-up menu. The "New
Connection for Port" submenu should be available as an option within the pop-up menu. The submenu
contains separate menu options for each of the connector kind/role combinations that the port may be
bound to. Select the desired connector kind/role combination. The new connection wizard should be
displayed. The selected role should already be bound to the port that wasright clicked on. The remaining
roles need to be bound to ports in the same way as above.

Once a connection has been created, the roles can be bound to different ports two different ways. The
first way is by using the properties view. The role must be selected either in the "Connections' table in
the "Table" view, or by selecting the role in the graphical view (the role is visualized as a line between
the connection and the component/port). Once the role is selected, it's "instanceRole" property may be
changed in the properties view.

The second way is by using the "Graph" view. If role is selected in the "Graph" view, drag points will
displayed on itstwo end points. The end of therole that is connected to acomponent's port can be dragged
to another component's port using this drag point. If the new component port can be bound to the role, a
cursor that looks like a"+" will be displayed. If the new component port can not be used, a circle with
aline through it will be displayed.

on Navigating the Scenario Editor

There are many ways to use the Scenario Editor to get the job done. Below you will find alist of tipson
using the Scenario Editor in an efficient manner.

19

Scenario Tier

When using scenario instances in a scenario the user can use the Ctl key along with double-clicking on
the instance to open up the sub-scenario in a new Scenario Editor.

When using component instances in a scenario the user can use the Ctl key along with double-clicking
on the instance to open up the component type in a new Module Editor.

For all instancesin a scenario the user can double-click on the instance to open up the Propertiew View
that will show the properties associated with that instance.

The Graph and Table views are connected in two ways:. 1) the underlying model and 2) the graphical
user interface (GUI) state. Specicially, when you are in the Graph view and you have an instance or
connector selected you can switch to the Table view and see that instance of connector selected aswell.

20

Chapter 6. Python Scripting

Background

Environment

Cadenaincludesasdlightly modified version of the Jython [http://www.jython.org/] library to provide users
with a Python interpreter to facilitate rapid development and easily shareable units of businesslogic. This
interpreter allowsthe devel oper to exploit the very terse syntax of Python while still maintaining full access
to Javaclass libraries; the outcome is a powerfully expressive scripting framework.

A short example conveys the concept of using Java objects inside a Python environment:

usual Python inport syntax
fromjava.util inport *
fromjava.math i nport Bi gl nteger

call constructor as usual in Python
list = LinkedList()
list.add(Biglnteger.valueO(1))
list.add(Biglnteger.valued(2))
list.add(Biglnteger.val ued(3))

native Python iteration across Java coll ections
for element in |list:
print "% (%)" % (el enment, elenent.getC ass())

Usage

Python scripts are launched by right-clicking inside the Table or Graph tabs of a Cadena editor, then
choosing " Jython # Run Jython Script ." A file selector dialog appears; after choosing the script (afile
ending with the . py extension), it isimmediately executed. A short history of recently executed scripts
is maintained inside the Jython menu for easy repetitive launching.

When the interpreter for the script isinitialized, the identifier sel ect i on isbound to the current set of
Cadena model objects selected/highlighted in the user interface. It isa Java object implementing the JFace
interface 1Selection [http://help.eclipse.org/help3L/topic/org.eclipse.platform.doc.isv/reference/api/org/
eclipse/jfacelviewers/| Selection.html] . Each element (if sel ecti on is an IStructuredSelection) is a
Cadena model object; that is, a CamObject [http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadenal
core/specification/base/CalmObject.html] .

Thus, the usua idiom for a Python script to find the Java object for each current selection is asfollows:

Eclipse APl inports
fromorg.eclipse.jface.viewers inport |StructuredSel ection

Current set of objects selected in user interface is held

21

http://www.jython.org/
http://www.jython.org/
http://help.eclipse.org/help31/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/viewers/ISelection.html
http://help.eclipse.org/help31/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/viewers/ISelection.html
http://help.eclipse.org/help31/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/jface/viewers/ISelection.html
http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadena/core/specification/base/CalmObject.html
http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadena/core/specification/base/CalmObject.html
http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadena/core/specification/base/CalmObject.html

Python Scripting

by "selection" container
if isinstance(sel ection, |StructuredSel ection):
for selectedObject in selection.toList():
do sonme work on the nodel el ement
print sel ectedbj ect

Object Model

A Cadenamodel isexposed to the Pythoninterpreter simply asthe underlying Javaobjects used to represent
the model inside Cadena (listed at http://cadena.projects.cis.ksu.edu/api/index.html). The Cadena object
model itself isimplemented using the Eclipse Modeling Framework [http://www.eclipse.org/lemf/] ; asa
conseguence, every Cadena model object (CalmObject) has extensive metadata available, including its
position in parent/child relationships (viathe eCont ai ner and eCont ent s methods, respectively).

In general, a Python script writer will use these Javadoc references to learn what properties (bean-style
get /set pairs) and children are available on each Cadenamodel element. All methods available on the
public statement of the metamodel's API are callable from Python. For instance, displaying the name of
each component instance in a scenario could be done as follows:

Core Cadena APl inports
from edu. ksu. ci s. cadena. speci fi cation.scenario inport Scenario
from edu. ksu. ci s. cadena. speci fi cation. scenario i nport Conponentl nstance

Eclipse APl inports
fromorg. eclipse.jface.viewers inport |StructuredSel ection

#

Main procedure; assumes that currently sel ected el enent
is the top-level scenario container

#

if isinstance(selection, |StructuredSelection):

scenari o = sel ection. getFirstEl enment()

use the bean-style abbreviati on of getConponentl nstances()
for c in scenario.conponentlnstances:
assert isinstance(c, Conponentlnstance)
print "Scenario % contains component %" % (
scenari 0. namne,
c. hane)

If the developer is interested only in running a script across the entire model (let us
suppose a Scenario [http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadenalcore/specification/
scenario/Scenario.html]), then it suffices to trace the containment relation from just the first selected
element:

Eclipse APl inports
fromorg. eclipse.enf.ecore inmport EObject
fromorg.eclipse.jface.viewers inport |StructuredSel ection

22

http://cadena.projects.cis.ksu.edu/api/index.html
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadena/core/specification/scenario/Scenario.html
http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadena/core/specification/scenario/Scenario.html
http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadena/core/specification/scenario/Scenario.html

Python Scripting

Iterate up through containment relation, eventually finding

the top top of the nodel.
def findRoot(elem:

while not elemis None and not el em eCont ai ner ()

el em = el em eCont ai ner ()
return elem

if not selection.isEnpty() and isinstance(sel ection,
scenario = findRoot (sel ection.getFirstEl ement())

Python Enhancements to Object Model

i's None:

| Struct uredSel ection):

Some common tasksfor writers of scripts (for example, "fetch the value of aninteger-typed attributeat t r
on aComponentlnstance ¢ ") are conceptually simple, but somewhat verbose to accomplish when directly
using the Java APl to Cadena's metamodel. The Javacodeto accomplish thiswould look like thefollowing:

public | ong getAttrVal ue(Conmponent | nstance c,

String attrNane)

{
for (PropertyDeclaration pd : c.getAll PropertyDeclarations())
if (pd.getNane().equals("attr"))
{
Direct Property val ue = c. getPropertyVal ue(pd, false);
if (value !'= null)
{
return ((IntegerVal ue) val ue. getVal ue())
. get Val ue();
}
Property defaul tVal ue = pd. get Def aul t Val ue() ;
if (defaultValue !'= null)
{
return ((IntegerVal ue) defaultVal ue. getVal ue())
. get Val ue();
}
return null;
}
}
t hr ow new NoSuchEl enent Excepti on(
"No such property declared on conmponent");
}

This is somewhat disappointing, given that the concept encoded would normally be written in a

specification language as this elegant fragment:

23

Python Scripting

c.attr

To avoid requiring script authors to essentially translate the Java code listing above into Python functions
which then are invoked using the stylex = get AttrVal ue(c, "attr") , the Cadena Python
interpreter has been enhanced to attach "helper" functions at severa points in the Cadena metamodel
API. These helper functions are accessed simply by requesting a particular field name on the metamodel
object. For example, the Componentl nstance object is augmented to invoke a helper method very similar
toget At t r Val ue abovewhenever someattribute analogousto at t r isrequested. Thusone can simply
write c. at t r in Cadena-Python to fetch the value of a property named "attr" on a component instance.
Table 6.1, “Supplementary Attributes in Python Environment” gives a full listing of all these various
syntax-sugar attributes.

24

Python Scripting

Table 6.1. Supplementary Attributesin Python Environment

Java Type

Additional Attribute

Description

Componentlnstance

any port option name n

If n isthe name of a port-option on the component
kind from which the Component| nstance derives,
then the attribute n yields a map whose keys are
the names of the ports declared inside that port
option, and whose values are PortProxy instances
(detailed below). If no such port-option n exists,
then aNameError is raised.

any property name n

If n isthe name of a property declared to exist

on the kind or type from which the component
instance is derived, then the value of that property.
If no such property is declared, then a NameError
israised.

Scenariol nstance

any port name n

A PortProxy (detailed bel ow) representing the port
named n on the subassembly instance. If no port
named n exists, then a NameError is raised.

any property namen

If n isthe name of a property declared to exist on
the subassembly from which the Scenariol nstance
is derived, then the value of that property. If no
such property is declared, then a NameError is
raised.

PortProxy (not in the
core object model)

instance

The instance (either ComponentInstance or
Scenariol nstance) which owns the port.

port

The port as declared inside the component type
from which the instance is instantiated.

connectors

Fetches ajava.util.Collection whose elements are
the Connectors hooked onto the instance's port.

any property name n

If n isthe name of a property declared on either
the port or the port option from which it is derived,
then the value of that property. If no such property
is declared, then a NameError israised.

Connector

any role namer

If the connector has arole named r , thenr
evaluates to the PortBinding for that role;
otherwise a NameError israised.

any property name p

If p isthe name of a property declared on the
connector's kind, then the value of that property. If
no such property is declared, then a NameError is
raised.

PortBinding

instance

The instance (either Componentl nstance or
Scenariol nstance to which the connector'sroleis
attached.

port

The port (itself either located on a
Componentlnstance or a Scenariol nstance) to
which the connector'sroleis attached.

any property name p

If p isthe name of a property declared on the
connector, then the value of that property. If no
such property exists, then a NameError is raised.

25

Python Scripting

Modifying the Model

Because the Java types which implement the Cadena metamodel are built using the Eclipse Modeling
Framework, the pattern and style of methods used to change features of a model is very predictable: if
an object has some attribute at t r , then amethod set At t r will exist on its Java class. Modifications
to the model usually consist of nothing more than calling this mutator method with the new value passed
as an argument.

Cadena imposes one extra requirement on changes to a model, though: all changes must be performed
by adedicated thread. One requests the model-change thread to execute a change by submitting a worker
object into a queue, then optionally blocking until the modification has been finished.

The model-change queue requires that changes executed by ther un method of an IModelChangeAction
[http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadenalcore/queue/| M odel ChangeA ction.html] object.
The usual practice (in the Java universe) is to use instances of anonymous extensions of the adapter
AbstractModel ChangeAction class.

CadenakEcl i psePl ugi n. enqueueMdel ChangeAct i on(
new Abstract Model ChangeAction() {
public void run() {
el emrent . set Attr (newal ue)
}
1)

A similar thing can be done in the Python environment:

Cadena APl inports
from edu. ksu. ci s. cadena. core. queue i nmport Abstract Mbdel ChangeActi on
from edu. ksu. ci s. cadena. ecl i pse i nport CadenaEcli psePl ugin

cl ass SomeMbdel ChangeAct i on(Abst ract Model ChangeActi on):

def __init_ (self, elenent, newval ue)
self. element = el ement
sel f.__newval ue = newal ue

def run(self):
self. element.setAttr(self.__newval ue)

element = # fetch object to be nodified
action = SormeModel ChangeAction(el ement, newal ue)
CadenaEcl i psePl ugi n. enqueueModel ChangeActi on(acti on)

Putting it all Together

To this point, various idioms for accomplishing isolated tasks inside a Cadena Python script have been
introduced. This section will present an example stitching all these techniques together, to accomplish a
real task.

26

http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadena/core/queue/IModelChangeAction.html
http://cadena.projects.cis.ksu.edu/api/edu/ksu/cis/cadena/core/queue/IModelChangeAction.html

Python Scripting

The Premise

Suppose that a given Cadena scenario exists which has undergone incremental changes over an extended
time. As component instances have been added and removed, the component integrators have not been
careful always to remove those connectors which have unbound roles. This leaves a scenario which is
probably malformed. Although this sort of misconfiguration will probably already be reported asillegal by
the system type-checker, a script capable of excising the offending (not-fully-attached) connectors could
be useful.

Procedure

To begin, create anew file to hold the Python script:
» Choose" File# New # File" from the menu.

» Createanew filecl eanConnect or s. py inside the project containing the scenario. In principle, this
script could exist anywhere on the filesystem. It is convenient, however, to include it inside a folder
managed by Eclipse; by doing so, one can share scripts over version control and keep the script in close
proximity to the artifact on which it operates.

In general, compl ete Cadenascript will need to accomplish thefollowing tasks: extract the current selection
from the JFace | Selection wrapper object; (possibly) trace the selection backward to find the root model
element; iterate across the contents of the model; and perform some modifications on the model.

cl eanConnect or s. py will begin by importing some libraries needed (1) to interrogate the current
JFace selection and (2) to make the Java typenames of various Cadena metamodel elements visible:

Cadena APl inports

from edu. ksu. ci s. cadena. core. specification.scenario inmport Connector
from edu. ksu. ci s. cadena. core. queue i nmport Abstract Mbdel ChangeActi on
from edu. ksu. ci s. cadena. ecl i pse i nport CadenaEcl i psePl ugin

Eclipse APl inports
fromorg.eclipse.jface.viewers import |StructuredSel ection

After this, a utility function to find the root container (in the present case, a Scenario) is added just as
before:

lterate up through containnent relation, eventually finding
the top top of the nodel.
def findRoot (elemn:
while not elemis None and not el em eContainer() is None:
el em = el em eCont ai ner ()
return elem

Because the main task of the script isto repeatedly ask whether a proferred connection is fully attached,
it will prove convenient to define a Python function which returns this verdict:

Check whether every role on a connector is attached to some port
def isFullyAttached(connection):

27

Python Scripting

sanity check on paraneter
assert isinstance(connection, Connector)

the netakind lists all the roles on the connector
nmet aki nd = connecti on. ki nd. connect or Met aKi nd

make sure that each role has a correspondi ng bi ndi ng
on the connector instance
for ps in metakind. getAllPortSpecs(True):

found = Fal se

for pb in connection. getPortBindings():
i f pb.portSpec != ps:
conti nue
if pb.instanceRole is None:
conti nue
i f pb.instanceRol e.instance is None:
conti nue
if pb.instanceRol e.port is None:
conti nue
found = True

if not found:
return Fal se

return True

Next, an IModelChangeAction object will be needed to encapsulate the work of removing malformed
connectors from the scenario:

I npl ementati on of | Mbdel ChangeAction used to renove the specified
connector fromthe specified scenario
cl ass RenmoveConnect or Job(Abst r act Mbdel ChangeActi on):

def _ init__ (self, scenario, connector):
self. __scenario = scenario
sel f. __connector = connector

def run(self):
sel f.__scenario. get Connectors().renmove(self.__connector)

Finally, some driver code will iterate across the model and submit model-change jobs for each bad
connector:

#

Main procedure

#

if not selection.isEnpty() and isinstance(selection, |StructuredSel ection):
scenario = findRoot (sel ection.getFirstEl ement())

28

Python Scripting

connsToRenove = []

for ¢ in scenario.connectors:
if not isFullyAttached(c):
connsToRenove. append(c)

for ¢ in connsToRenmove:

j ob = RenmpbveConnect or Job(scenari o, c)
CadenakEcl i psePl ugi n. enqueueMdel ChangeActi on(j ob)

Running

After entering all the Python code listings from the section called “Procedure” into the file
cl eanConnect or s. py , the script isready to execute:

» Open the model to be cleaned.

Switch to the Table or Graph tab of the model's editor.

Right-click and choose " Jython # Run Jython Script ."
» Browseto and select cl eanConnect or s. py .

Asthe script runs (parsing and loading it may take afew moments; please be patient), the model will shrink
as any connectors having roles not attached to some port are progressively removed.

29

Chapter 7. Plug-In to Cadena

Overview

Cadenais built using the Eclipse environment and framework. Because of that, it is very easy to enhance
and extend the features that Cadena currently has. Thisis done through the use of Eclipse plugins.

This section will try to explain and show how a developer can plug into Cadena using the Eclipse plugin
framework. This section is not complete but should give developers a start.

In addition to this section of the manual, developers should also look into the sample projects that are
available with each Cadenarelease. For example, we rel ease the source for the OpenCCM/CCM and nesC
platform plugins for Cadena. In those two plugins, developers will find examples of styles, visual styles,
actions, wizards, code generators, and much more.

Create a New Platform

One of the ways that Cadena can be extended is by developing plugins for new platforms. For example,
if a developer wants to deploy his application to a J2EE/EJB platform, a platform plugin would need
to be written to facilitate that. The following section will provide some details on how this could be
accomplished.

This section will walk through creating a platform independent model (PIM) for use with sensor networks.
The details of the language are as follows:

» Thereisasingle component kind which has a single property named location.

» Each component instance will have alocation associated with it.

» nesC Code will be generated that uses the location.

» There are three kinds of connectors.

» There are three kinds of interfaces.

» ThePIM isvery closely related to the nesC model so that it is easily translated to nesC.
With that in mind, we will walk through the following steps:

 Create a style that represents the specifications detail above.

* Create an Eclipse plugin for the platform.

Add the style to the platform plugin.

Add avisual style to the platform plugin.

Prototype the code generation with a Jython script.

* Add an action to the platform plugin that will generate nesC code.

Create the Style

The first step in creating a new Cadena platform is to create a style that describes the possibilities. Put
another way, you must describe the kinds of things available in this platform. This is done by describing
what component, connector, and interface kinds that make up this platform. As mentioned before, we are

30

Plug-In to Cadena

trying to stay as close to the nesC model as possible so we will have 1 component kind, 3 connector kinds,
and 3 interface kinds.

As you create the kinds keep in mind that Cadena expects each kind to have a meta-kind as a parent.
Therefore, you should create the meta-kinds first and then create the kinds.

The details of how to create anew style are availablein Chapter 3, Style Tier. Using that asaguide, create
the following interface kinds listed in Table 7.1, “eNesC Interface Kinds’.

Table7.1. eNesC Interface Kinds

Name Parent MetaKind?
mMyCommandinterface minterface Y
MyCommandinterface mMyCommandlnterface N
mMyEvent| nterface minterface Y
MyEventinterface mMyEventInterface N
mMyBundlel nterface minterface Y
MyBundlelnterface mMyBundlelnterface N

Figure7.1. eNesC Interface Kinds

mInterface

Once the interface kinds are created you should move on to create the connector kinds listed in Table 7.2,
“eNesC Connector Kinds”.

Table 7.2. eNesC Connector Kinds

Name Parent MetaKind?
mMyCommandConnector mConnector Y
MyCommandConnector mMyCommandConnector N
mMyEventConnector mConnector Y
MyEventConnector mMyEventConnector N
mMyBundleConnector mConnector Y
MyBundleConnector mMyBundleConnector N

When creating the connector kinds, create two role-options. One role-option should be a USES and be
named client while the other role-option should be aPROVIDES and be named server. Use the appropriate

31

Plug-In to Cadena

interface kinds (for the MyEventConnector kind, use the MyEventInterface kind). A graphical view of
these can be seenin Figure 7.2, “eNesC Connector Kinds’. And aview of them in the Cadena Style Editor
can be seein Figure 7.3, “eNesC Connector Kindsin the Cadena Style Editor”.

Figure 7.2. eNesC Connector Kinds

mConnector

l

mMyEventConnector mMyCommandConnector mMyBundl eConnector

Figure 7.3. eNesC Connector Kindsin the Cadena Style Editor

Connector (Meta) Kinds

Name Category Parent Meta Kind / Interface (Meta) Kind
P MyBundleConnector ® connector mMyBundleConnector
I MyCommandConnector = connector mMyCommandConnector
~ MyEventConnector = connector mMyEventConnector
client interface ki MyEwventinterface
server interface ki MyEwventinterface
I mMyBundleConnector = meta conm mConnector

=~

mMyCommandConnector = meta conm mConnector

~ mMyEventConnector = meta conm mConnector
server PROVIDES mMyEventinterface
client USES mMyEventinterface

Once the connector kinds are created you should move on to create the component kind and name it
MyComponent. It will need 6 port options for the 6 types of connections that it can make.

 usesBundle

* providesBundle

* usesEvent

* providesEvent

* usesCommand

* providesCommand

The MyComponent will also have a single property type named location with an integer type.

32

Plug-In to Cadena

Figure 7.4. eNesC Component Kindsin the Cadena Style Editor

Component (Meta) Kinds

Marme Category Parent Meta Kind / Interface (Met:

~ MyComponent O component mMyComponent
providesBundle interface kind bindini MyBundlelnterface
providesCommand interface kind bindini MyCommandinterface
providesEvent interface kind bindini MyEventinterface
useBundle interface kind bindini MyBundlelnterface
usesCommand interface kind bindini MyCommandinterface
usesEvent interface kind bindini MyEventinterface

~ mMyComponent 0 meta component mComponent

= location property declaration
<integer-type= integer

providesBundle PROVIDES mMyBundlelnterface
providesCommand PROWVIDES mMyCommandinterface
providesEvent PROWVIDES mMyEventinterface
useBundle USES mMyBundlelnterface
usesCommand USES mMyCommandinterface
usesEvent USES mMyEventinterface

The styleisnow created and should be saved. To save, open the File menu and select Save CadenaModel.
To continue the journey of creating a new platform for use in Cadena move on to the next section, the
section called “ Create the Eclipse Plugin Project”.

Create the Eclipse Plugin Project

Anytime you want to create a new Eclipse plugin you will likely follow the same steps. For more detail
on this, please see the Eclipse documentation that is available online (hel p.eclipse.org) or in Eclipse (Help
| Help Contents).

In short, you will use a New Project Wizard to create a new plugin project where your style, visual style,
and other extensions will be stored. To start the wizard, select the File menu then the New sub-menu and
finally the Project menu item. A new dialog will be shown and you should select Plugin-in Project and
press Next.

Figure 7.5. Menusto create a new project

Edit MNavigate Search Project Run Window Help
& e
Package
& Class
& Interface
& Enum
@ Annotation
&% source Folder
(5 Folder
¥ File
= Untitled Text File
EY Junit Test Case
Revert Cadena Model

4 other...
Sawve Cadena Madal

At this point you should name it and accept the rest of the defaults on this page (unless you
know better already). We suggest naming it similar to our naming convention. The name starts

33

Plug-In to Cadena

with your domain name in reverse (in our case, edu.ksu.cis) and you append cadenaplatform
so that it is obviousy a plugin for Cadena and that it is a platform. Finaly, append a name
for the platform. In this case, we will name our platfform sensorNetwork. This results in a
plugin named edu.ksu.cis.cadena.platform.sensorNetwork. Althought it might be something like
com.wallentine.cadena.platform.sensorNetwork or net.tinyos.cadena.platform.sensorNetwork.

Figure 7.6. New Plugin Project: Name It

New Plug-in Project

Plug-in Project —
Create a new plug-in project /

Project name: |edu.cis.cadena.platform.sensorNetwork]]

Use default location

Project Settings

Create a |ava project

Source folder: [src 1

Output folder: [bin 1

Target Platform
This plug-in is targeted to run with:

@ Eclipse version: 33 |¢

O an 05Gi framewark:

=

< Back Next = Cancel

The next screen alows you to configure some plugin options that describe the plugin to users. Feel freeto
accept the defaults or change them as you see fit. We suggest you at least leave the Plug-in ID and Plug-in
Version alone. This can be seen in Figure 7.7, “New Plugin Project: ID It”. After you are satisfied with
your changes, click Next to continue the wizard.

Figure7.7. New Plugin Project: 1D It

I% New Plug-in Project

Plug-in Content = 3
Enter the data required to generate the plug-in. 4

Plug-in Preperties

Plug-in |D: edu.cis.cadena.platform sensorMetwork

Plug-in Version: |1.0.0

Plug-in Provider: | SANToS Lab|

(
[
Plug-in Name: [SensurNetwurk Plug-in
[
[

Classpath:

Plug-in Options

Generate an activator, a Java class that controls the plug-in's life cycle

Activator: |edu.cis.cadena.platform.sensornetwork Activator

This plug-in will make contributions to the UI

Rich client Application

Would you like to create a rich client application? O Yes @ Ne

@ < Back ” Next = l I Einish I [Cancel

Plug-In to Cadena

The next screen provides an easy way to create certain types of plugins using project templates. In this
case, we don't want to use any of the templates so you should unselect the checkbox for "Create a plug-in
using one of the templates". This can be seen in Figure 7.8, “New Plugin Project: Complete It”. Once you
unselect click Finish and the new project will be created for you.

Figure 7.8. New Plugin Project: Complete It

[-% New Plug-in Project il

Templates e] -

[Create a plug-in using one of the temp\ates?

Available Templates:

@ | <pgack | Einish | [cancel |

The new plugin project is now created and ready for the style, the visua style, and the new generator.
To continue the journey of creating a new platform for use in Cadena move on to the next section, the
section called “ Add the Style”.

Add the Style

Once you have created the style and the plugin project you are ready to move the style into the plugin.
Thisinvolves changes to the file system as well as changes to the plugin.

First, you will need to create a location in the file system where the style will reside. The Cadena team
typically uses asingle directory name specification in the root of the plugin project. There are many ways
to create a new folder in Eclipse so choose one and create the specification folder. Then copy the new
style file from the Cadena project created in the section called “Create the Style” into the newly created
specification folder. An example of this can be seen in Figure 7.9, “The New Style in the New Plugin
Project”.

35

Plug-In to Cadena

Figure 7.9. The New Style in the New Plugin Project

{2 Package Explorer &2 - e Hierarchy| = O
= & v
v 12 comwallentine.cadena.platform.enesc
P sre
P =4 JRE System Library [sun-jdk-1.5.0.13]
> =i Plug-in Dependencies
b = META-INF
< [= specification
A eMesC style
|5l eNesC .style.view
[sth build.properties

&% pluginxml

b @ eNesC

al [

Now that the plugin project contains the stylefile, you can tell Cadena about this. This means that you will
need to declare an extension to Cadena using the edu.ksu.cis.cadena.core.specifications extension point.
To do this, open the plugin.xml file using the Eclipse Plug-in Manifest Editor. Once opened switch to the
Extensions view and add the extension (use the Add button to bring up the wizard dialog). In the dialog be
sure to un-select the checkbox labeled " Show only extension points from the required plug-ins'. Y ou can
then select the specified extension point and press Finish. Thiswill bring you back to the Manifest Editor
and will add this extension to the list of All Extensions.

Now that the extension is added you will need to configure it. In this case, you will need to add a style
node and specify the URI and resource for that node. In this case, enter the relative path to the style file
(e.g., specification/eNesC.style) in the resource text field (or click Browse to locate it on the file system).
Next, you will need to enter aURI that will provide auniqueidentifier for this style. The Cadenateam uses
a naming scheme similar to the one we use for plugin names. First, we use http as the protocol (so each
URI startswith http://). Next, we use the main web site URL, cadena.projects.cis.ksu.edu. Finaly, we use
the name of the style file. In this case, the style is named eNesC.style. So your URI might look something
like http://cadena.projects.cis.ksu.edu/eNesC.style or even http://cadena.wallentine.com/eNesC.style. An
exampl e of thiscompleted can beseenin Figure 7.10, “ Compl ete Style Extension point in Eclipse Plugin-in
Manifest Editor”.

36

Plug-In to Cadena

Figure 7.10. Complete Style Extension point in Eclipse Plugin-in Manifest Editor

i1t com wallentine.cadena.platform.enesc &2 =g
“ Extensions ® A
All Extensions 5 B Extension Element Details
Define extensions for this plug-in in the following section. Set the properties of "style". Required fields are denoted by "+,
type filter text R http:ffcadena.wallentine.com/eNesC style

. A |Add..‘ | resource*: specificationfeMescC . style | Browse...|
+ 4= edu.ksu.cis.cadena.core.specifications =

[<]

Overview | Dependencies |Runtime |Extensions | Extension Points | Build | MANIFEST.MF | plugin.xml| build.properties

Once you have added the URI and resource you can save the changes. Y ou have now added your new
style to your new platform plugin. Y ou are now ready to add the visual style which is described in the
section called “Add the Visual Style”.

Testing the Platform Plugin

Now that you have a platform plugin you may want to test to make sure you have done everything correct
up to this point. Thisis very easy using Eclipse's built-in facilities for debugging Eclipse plug-ins. Y ou
simply need to run it as an Eclipse Application (a.k.a., a runtime workbench).

Once you start up the new Eclipse instance you can create a new Cadena project. In that new project, you
can create anew Module. When creating that module, you should be able to select your newly create style
fromthelist. If it isn't available, you have a problem that needs to be debugged.

You can now continue the development of this plugin by developing a visua style, prototyping a code
generator, or building a code generator as an Eclipse action.

Add the Visual Style

This section is not yet complete, please continue on to the section called “ Prototype the Generator”.

Prototype the Generator

You now have a working platform plugin that uses your new style. One way to start using that style is
to prototype the code generator that we described before. This can be done using the Cadena scripting
functionality (which is described in Chapter 6, Python Scripting).

To do this, you should start up a runtime workbench with your platform plugin. Once it is started you
should create a new Cadena project. Within that project, you should create new Cadena modules and
scenarios. Those modules and scenarios will be used to demonstrate the scripting capabilities. In this case,
we will walk you through creating 1 Cadena module and 1 Cadena scenario.

You first task is creating a Cadena module (for details on this see Chapter 4, Module Tier). In this new
Module you should create 1 Interface Type and 1 Component Type. Y ou should name the Interface Type
MyServices and make it a MyBundlel nterface. Further, name the Component Type MyServer. MyServer
should now use and provide this interface by adding ports (useBundle and providesBundle) and naming

37

Plug-In to Cadena

them usesMyServices and providesMyServices. An example of what the Module Editor would look like
(aswell aswhat the Outline view) is shown in Figure 7.11, “eNesC Example Modul€”.

Figure7.11. eNesC Example Module

#51+Fo0 £2
Module Detail View
Component Types Interface Types
MName Kind Parent Type [Po Name Kind

= MyServer 0 MyComponent MyServices O myBundleinterface

providesMyServices providesBundle MyServices

useMyServices = useBundle MyServices

5= outline 52 =0

MyServer

useMyServices =
=+ providesMyServices

Overview Table

Now that you have created the Module you should create a new Scenario (details on this can be found in
Chapter 5, Scenario Tier). In this Scenario, you should make sure to import the module you just created.
Once that is done, switch to the Graph or Table view and cregate 2 instances of the MyServer component
type. And to makeit dightly moreinteresting, connect them. Y ou can see an example of thisin Figure 7.12,

“eNesC Example Scenario”.
Figure 7.12. eNesC Example Scenario

451 *#Foo 2 *Foo 2

Graph View

Serverl Serverd

useMyServices 'P—l_ .
= | providesMyServices = | providesMyServices

Overview Table | Graph

If you had the Problems view open you should have seen 2 errors show up (asseenin Figure 7.13, “eNesC
Example Scenario - Error Messages”). Thisisareminder that you have not set the location property which
isrequired. Todothis, switch tothe Propertiesview and select aninstance. Thiswill popul atethe Properties
view with the properties associated with that instance. Y ou should notice that the location property is unset
(as seen in Figure 7.14, “eNesC Example Scenario - Properties’). To set it, double-click it and then set
avalid value. Do this for each instance and the errors should disappear. This is important for this demo
since we will be using the value of this location to generate code.

38

Plug-In to Cadena

Figure 7.13. eNesC Example Scenario - Error M essages

[Z Problems 2 @ |avadoc | [&, Declaration
2 errors, 0 warnings, 0 infos

Description

! - 0
g2 =

Resource @ Path

V %= Errors (2 items)

@ property "location" is unset and is not bound to an open property

@ property "location” is unset and is not bound to an open property

Figure 7.14. eNesC Example Scenario - Properties

451 +Fpo L *Foo B2

Graph View

Foo.scenar Foo/fspe

Foo.scenar Foofspe

[>]

Searverl Server2

= | providesMyServices

useMyServices = —1 useMyServices =+
= | providesMyServices

Overview Table | Graph

[Zi Problems | @ Javadoc | [2 Declaration E Properties &3

Property Value

=~ Core
location <integer= =unset : double click to set=
name Serverl

Now that you have created the module and scenario you are prepared to write the prototype script. To do
this, you will need to familiar with Python and the Cadena core API. For this demo, it should be enough

that you copy-n-paste and follow the directions.

To start, create a new File in the scenario sub-directory named generate.py. Make sure to open it in the
Eclipse Text Editor (depending on what plug-ins you have installed and how you have it configured, it
may open up an external application - like emacs, vi, or notepad). Once opened, enter the following code

which prints the names of the instances and the associated |ocation.

User Interface APl inports

from edu. ksu. ci s. cadena. ecl i pse i mport CadenaEcl i psePl ugi n
from edu. ksu. ci s. cadena. core. queue i mport Abstract Mbdel ChangeActi on

39

Plug-In to Cadena

Eclipse APl inports
fromorg. eclipse.enf.ecore inmport EObject
fromorg.eclipse.jface.viewers inport |StructuredSel ection

M scel | aneous Java library inports
fromjava.lang i nport Runnabl e, Thread

#
Fetch the root EObject fromthe JFace current selection
#
def fetchRoot (sel ection):
if selection is None or selection.isEmty():
return None
elif not isinstance(selection, |IStructuredSelection):
return None
elif isinstance(selection.firstEl ement, EObject):
root = selection.firstE enment

while not root is None and not root.eContainer() is None:
root = root.eContainer()

return root

CGet the location property value fromthe given instance. It is
assuned that the nane of the property is location and it has
a type of IntegerValue. Therefore, the return type is Long (java.lang).
def getLocation(instance):
propertyDecl arati on = fetchPropertyDecl aration(instance, "l ocation")
i f(propertyDeclaration != None):
direct Property = instance. get PropertyVal ue(propertyDecl aration, 0)
i f(directProperty != None):
propertyVal ue = directProperty. getVal ue()
i f(propertyVal ue !'= None):
return propertyVal ue. get Val ue()
return None

Fetch the property declaration fromthe given instance that has
the given property name. The type of the returned object wll
a PropertyDecl aration (edu. ksu. ci s.cadena. core.specification. property).
def fetchPropertyDecl aration(instance, nane):
for propertyDeclaration in instance.getAllPropertyDeclarations():
i f nanme == propertyDecl aration. get Nane():
return propertyDecl aration
return None

Main Logic: Wal k through the scenario and print the name of the instance
and what location it should be depl oyed to.

first, we need to get the scenario

scenario = fetchRoot (sel ection)

next, we will collect up the conponent and scenari o instances
for instance in scenario.alllnstances:
| ocation = getlLocation(instance)

40

Plug-In to Cadena

print 'Instance: %nane)s, Location: %l ocation)d %\
{"name': instance.name, 'location': |ocation}

Once you have entered the text into the new Python script you should save it. Once saved you can use
it from within the Scenario. Switch to the Scenario Editor that has your Scenario open. If you are in the
Table or Graph view, right-click to bring up the context menu. In that menu there is a Jython sub-menu
that has a menu item named Run Jython Script. Select it and use the dialog to select your newly created
Python script. It should run and print the instance names and | ocationsto the console view (see Figure 7.15,
“eNesC Example Scenario - Python Script Results’ for an example of what this should look like).

Figure 7.15. eNesC Example Scenario - Python Script Results

L Foo 3 [Z generate.py = 5
Graph View
Serverl 1 Serverd
useMyServices -b—l— _ useMyServices =
= | providesMyServices =+ | providesMyServices

Overview | Table | Graph

[£ Problems | @ |avadec |[E, Declaration | &l Properties | Bl Console 32 =08
Jython w BA | = B~ i~

Instance: Serwverl, Location: 1
Instance: Server2, Location: 2

You have now created your first Python script that works with the Cadena API. You can continue to
experiment in thisway to query, modify, and create model elements. Once you complete your experiments,
you can transition thislogic into a part of your platform plugin (so everyone can use your code generation
when they use your platform). For more on that see the section called “ Add a new Generator Action”.

Add a new Generator Action

This section is not yet complete, please continue on to the section called “Continue to Develop”.

Continue to Develop

Y ou have now completed the creation of a platform plugin for Cadena. Y ou can now explore the Eclipse
documentation to see how you can extend Eclipse more as well as how to distribute this plugin to others.

41

Glossary

Cadena

TinyOS

nesC

Eclipse

workspace

project

Module File
Scenario File

Scenario

Module

Style

nesC Interface

nesC Module

nesC Configuration

An Eclipse-based extensible integrated modeling and devel opment framework for
component-based systems.

An open-source operating system designed for wireless embedded sensor
networks. It features a component-based architecture which enables rapid
innovation and implementation while minimizing code size as required by the
severe memory constraints inherent in sensor networks.

An extension to the C programming language designed to embody the structuring
concepts and execution model of TinyOS.

An open source community whose projects are focused on building an open
development platform comprised of extensible frameworks, toolsand runtimesfor
building, deploying and managing software across the lifecycle.

When we refer to Eclipse it is usualy as an IDE or platform and not the project
or community.

An Eclipse term that refers to the central hub for all user data. Thisis a specific
folder/directory. A good quote from the Eclipse website is "you can think of the
platform workbench as atool that allows the user to navigate and manipulate the
workspace".

An Eclipse term that refers to a specific type of resource in the workspace. To
be more specific, a workspace contains a collection of projects. Projects contain
filesand folders.

A Cadenaterm that refersto afile that contains a Cadena Module.
A Cadenaterm that refersto afile that contains a Cadena Scenario.

A Cadenaterm that refers to a collection of instances (component, scenario, and
connector) that define a modeled application.

A Cadenaterm that refers to the description of the types available in the model
which will be used at the Scenario tier. Modules contain definitions of Types that
are used to define Scenario instances.

A Cadenaterm that refers to the description of the platform that will be modeled
at the other tiers of Cadena (module and scenario tiers). In other words, the style
helps define a language to use in the Module tier. Styles contain definitions of
Kinds (and Meta-Kinds) that are used to define Module Types.

A TinyOS/nesC term that refersto a collection of methods (or method signatures)
with aname. In nesC, components (modules and configurations) provide and use
interfaces.

A TinyOS/nesC term that refers to a component that holds logic. This uses and
providesinterfaces, commands, and events. It also holdsthelogic that mapsto the
defined interfaces, commands, and events.

A TinyOS/nesC term that refers to a component that does not hold logic. A
configuration defines a collection of components (modules and configurations)

42

Glossary

Nature

Specification Path

Interface Type

Component Type
Component Instance
Scenario Instance

TinyOS Module

TinyOS Scenario
Architectura Definition
Language (ADL)
Product-Line Development
Software Product Lines (SPL)
Middleware

Type

Service

Meta Model

Component

Interface

Connector

MetaKind

Kind

Platform

Port Option

Role

Interface Kind

and connectors as well as an optional collection of interfaces, commands, and
events that it uses and provides. This holds no logic.

An Eclipse term that refers to flags set on Eclipse projects. These flags help
Eclipse behave in a prescribed way. For example, certain actions, features, and
builders are only available in projects with certain natures. For example, the
Cadena Specification Path can only be defined in a project with a Cadena nature.

A Cadenaterm that refersto the path Cadena usesto find the model specifications
available in a project. This includes three distinct paths for styles, modules, and
scenarios.

A Cadena/nesC term that refers to a Cadena Module that is set to use the nesC
style.

A Cadena/nesC term that refers to a Cadena Scenario that is set to use the nesC
style.

43

Glossary

Component Kind
Connector Kind
Instance

Level

Layer

Assembly

Bibliography
[Eclipse:URL] Eclipse. “{ Eclipse} Website”. 2001.
[nesC:URL] “nesC Web Site".

[TinyOS:URL] “TinyOS Web Site”.

[CadenaURL] “{\sc Cadena} Web Site”.

45

