
PSZ 19:16 (Pind. 1/07)

 DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

 Author’s full name : MOHAMAD SYAFEEQ AZRAIN BIN SHAZLI

 Date of birth : 23 SEPTEMBER 1988

 Title : ROBOTIC ARM FUNCTIONING USING IMAGE

 PROCESSING

 Academic Session: 2010/2011

 I declare that this thesis is classified as :

 I acknowledged that Universiti Teknologi Malaysia reserves the right as follows :

1. The thesis is the property of Universiti Teknologi Malaysia.

2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose

of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

 Certified by :

 SIGNATURE SIGNATURE OF SUPERVISOR

 880923-56-5009 DR. AHMAD ‘ATHIF BIN MOHD FAUDZI
 (NEW IC NO. /PASSPORT NO.) NAME OF SUPERVISOR

Date : 13 MAY 2011 Date : 13 MAY 2011

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from

the organisation with period and reasons for confidentiality or restriction.

UNIVERSITI TEKNOLOGI MALAYSIA

√

CONFIDENTIAL (Contains confidential information under the Official Secret

Act 1972)*

RESTRICTED (Contains restricted information as specified by the

organisation where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(full text)

“I hereby declare that I have read the content of this thesis and according to my

opinion, this thesis is sufficient in term of scope and quality for the purpose of

awarding a Bachelor of Engineering (Electrical-Mechatronics).”

Signature : ………………………………………………….

Name of Supervisor : DR. AHMAD ‘ATHIF BIN MOHD FAUDZI

Date : 13 MAY 2011

i

ROBOTIC ARM FUNCTIONING USING IMAGE PROCESSING

MOHAMAD SYAFEEQ AZRAIN BIN SHAZLI

A thesis submitted in partial fulfillment

of the requirements for degree award

of Bachelor of Engineering (Electrical-Mechatronics)

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNOLOGI MALAYSIA

MAY 2011

ii

I declare that this thesis entitled “Robotic Arm Functioning Using Image Processing”

is the result of my own research except as cited in the references. The thesis has not

been accepted for any degree and is not concurrently submitted in candidate of any

other degree

Signature : ……………………………………………………..

Name of Supervisor : MOHAMAD SYAFEEQ AZRAIN BIN SHAZLI

Date : 13 MAY 2011

iii

Specially dedicated to:

My lovely single mother, Rahmah Ali, my sisters, lecturers and all my friends for

their support, inspiration and encouragement throughout my education in Universiti

Teknologi Malaysia.

May ALLAH bless us.

iv

ACKNOWLEDGMENT

Alhamdulillah, thanks to ALLAH S.W.T because blessing me to complete

and finish my final year project successfully.

Secondly, I would like to express my deepest gratitude to my supervisor, Dr.

Ahmad „Athif Bin Mohd Faudzi for his guidance, support and well organize schedule

throughout the process to complete this difficult project. Without his help this

project will be much difficult. Not to forget also my former supervisor, Mr.

Mohamad Shukri Bin Zainal Abidin for his guide at the beginning of this project.

Next, my confidence also goes to my lovely and supportive family for giving

me confident throughout the entire project. Their support they gave me has fires me

up to successfully finish this project working until the objective achieved.

Lastly, I also want to give thanks credit to my friends for supporting me

directly or indirectly during the project development. I could not have done it

without all of their support. There is no beautiful word other than “thank you”.

v

ABSTRACT

 Robotic arm is programmable machine that consist of joint that contribute to

certain degree of freedom built base on the objective or purpose of usage of the

robotic arm. The degree of movement of each joint of the robotic arm is calculated

in the inverse kinematics formula. As for this project, the control of the robotic arm

is aid by the data obtains in the image processing for which the input is the video

image and the output is the certain parameter such as object detection, color

detection and so on. The image processing will help the movement of the

manipulator to do pick and place routines by object color detection. Hopefully this

thesis will help for those who are interested in knowing about this project

application.

vi

ABSTRAK

Tangan robotik adalah satu mesin yang disambung oleh sendi-sendi yang

terdiri daripada beberapa darjah kebebasan. Darjah kebebasan dalam tangan robotic

ini dibina berdasarkan objectif dan tujuan penggunaan tangan robot itu sendiri.

Darjah untuk pergerakan sendi-sendi ini ditentukan dari pengiraan melalui formula

teori kinematik. Untuk projek ini, kawalan untuk tangan robot ini dibantu oleh data

yang diperolehi dari pemprosesan gambar. Pemprosesan gambar dimaksudkan

sebagai proses yang mempunyai masukan gambar video dan keluaran oleh beberapa

pembolehubah seperti kesan object, kesan warna dan sebagainya. Pemprosesan

gambar ini akan membantu pergerakan sendi-sendi untuk melakukan kerja angkat

dan letak object melalui proses kesan warna. Tesis ini diharapkan dapat membantu

sesiapa yang berminat untuk mengetahui lebih mendalam tentang projek ini.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xiii

 LIST OF APPENDICES xiv

1 INTRODUCTION 1

1.1 Project Background 1

1.1.1 Robotic Arm 1

1.1.2 Computer vision 2

1.2 Problem Statement 2

1.3 Objective of Project 3

1.4 Scope of Project 3

1.5 Thesis Structure 3

2 LITERATURE REVIEW AND THEORY 5

2.1 Introduction 5

2.2 Literature Review 6

viii

2.2.1 Lynx-5 Programmable 6

Robotic Arm Kit for PC

2.2.2 Control of a Mitsubishi Arm 7

Using Fiducial Tracking

2.2.3 Cabbage Harvester 8

2.3 Theory 10

2.3.1 Inverse Kinematics 10

2.3.2 Servo Motor Analysis 11

3 METHODOLOGY AND APPROACH 13

3.1 Introduction 13

3.2 Hardware Development 14

3.2.1 Robotic Arm Design 14

3.2.1.1 RC Servo Motor 15

3.2.2 Robotic Arm Workspace 17

3.3 Circuit Development 18

3.3.1 Microcontroller 18

3.3.1.1 PIC16F877A 18

3.3.1.2 External UART Connection 20

3.3.2 Servo Motor Controller(SC16A) 21

3.3.2.1 Current Booster Circuit 23

3.3.3 USB to UART Converter(UCOOA) 24

3.4 Software Development 26

3.4.1 MPLAB IDE 27

3.4.1.1 External UART 27

Programming

3.4.1.2 SC16A programming 29

3.4.2 RoboRealm 31

3.4.2.1 Image Processing 33

3.4.2.2 VB script 36

3.4.2.3 Serial Communication 38

4 RESULT AND DISCUSSION 39

4.1 Robotic Arm and Its Workspace 39

ix

4.2 Robot Inverse Kinematics 41

4.3 Circuitry 42

4.4 Pick and Place Routines 43

5 CONCLUSION AND RECOMMENDATION 44

5.1 Conclusion 44

5.2 Recommendation 45

REFERENCES 46

APPENDICES 48

x

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 The specific value for each byte 29

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Lynx-5 Programmable Robotic Arm 6

2.2 Overview of experimental workspace including 8

 camera, arm and controller

2.3 Cabbage Harvester 9

2.4 Cabbage recognition process 10

2.5 Side view for two degrees of freedom manipulator 10

2.6 Signal pulse for signal wire 12

2.7 Short pulse width, neutral position and 12

 wider pulse width

3.1 Completed system design 14

3.2 Selected servo motor 16

3.3 Horizontal reach and vertical reach 17

3.4 Complete schematic for microcontroller 21

3.5 SC16A board layout and explanation 22

3.6 Connection between SC16A and microcontroller 23

3.7 The Current Booster schematic circuit 24

3.8 Connection for USB to UART converter 25

3.9 Project programming flowchart 26

3.10 Position for uart_io.h and uart_io.c 28

3.11 standard protocol flowchart of external UART 28

3.12 RoboRealm Window 32

3.13 Initial view of video image 33

3.14 Blob size result 34

xii

3.15 Smoothing process result 34

3.16 Complete object color detection 35

3.17 Results for Image Processing 36

3.18 VB script Window 37

3.19 The Serial Communication window 38

4.1 Complete robot arm and its workspace 40

4.2 Before and After Gripping 40

4.3 The arm robot with it free body diagram 41

4.4 The complete circuit system 42

4.5 Result on pick and place routines of the robot arm 43

xiii

LIST OF ABBREVIATIONS

RIOS - Robotic arm Interactive Operating System

PC - Personal computer

ASCII - American Standard Code for Information Interchange

RC - Radio Control

s - Second

ms - Millisecond

µs - microsecond

UART - Universal Asynchronous receiver transmission

V - Volt

A - Ampere

PWM - Pulse Width Modulation

I2C - 2 wire Inter Integrated Circuit

A/D - analog to digital

Cm - centimeter

DC - Direct Current

USB - Universal serial bus

GND - ground

VSS - ground

VDD - 5V supply

VB - visual basic

xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Main source code for PIC16F877A 48

B Header file code for external UART 53

 in PIC16F877A

C Additional source code for external UART 54

 programming in PIC16F877A

D ROBO files for RoboRealm 56

1

CHAPTER 1

INTRODUCTION

1.1 Project Background

1.1.1 Robotic Arm

A robotic arm is a robot manipulator, usually programmable, with similar

functions to a human arm. The links of such manipulator are connected by joints

allowing either rotational motion (such as in an articulated robot) or translational

(linear) displacement. The links of the manipulator can be considered to form a

kinematic chain. The final end of the kinematic chain of the joint manipulator is

called the end-effector and it is similar to the human hand. The end-effector can be

designed to perform many desired task such as welding, gripping, spinning, pick and

place application, welding, spray painting, polishing, material handling, palletizing,

water jet cutting and many more. Generally all application above using almost the

same design robot arm but the different is the software programming depending on

the applications.

2

1.1.2 Computer Vision

Computer vision is the science and technology of machines that see.

Computer vision is concerned with the theory for building artificial system that

extracts information from images. The data obtained can be from many form of

image such as a video sequences, views from multiple cameras, or multi-dimension

data from a medical scanner.

Computer vision can also be described as a complement (but not necessarily

the opposite) of biological vision. In biological vision, the visual perception of

humans and various animals are studied, resulting in models of how these systems

operate in terms of physiological process. Computer vision, on the other hand,

studied and describes artificial vision systems that are implemented in software

and/or hardware. Interdisciplinary exchange between biological and computer vision

has proven increasingly fruitful for both fields.

1.2 Problem Statement

Nowadays, robotic arm is widely used to do task in the industrial. For

example pick and place robotic arm. It works base on single programmable routines

starting from only one initial point to the final point. By using computer vision,

multiple movements can be done.

3

1.3 Objective of Project

The objective of this project is to build 3 degrees of freedom arm robot with a

gripper as an end-effector to do pick and place routines of a ball to its target aided by

image processing.

1.4 Scope of Project

The control movement is accomplished through robotic arm kinematics aided

by data obtained from image processing. Kinematics will be used to compute each

robotic arm joint position, whereas the image processing deals with the coordinates

of the object that will use in the kinematics. The scopes of the project are as shown

below:

i. Complete 3 degrees of freedom arm robot consist of 1 rotational base,

2 links and 1 end-effector.

ii. The image processing will obtain the coordinate of the ball and

coordinate of the place where the ball need to be place.

iii. Robot should be able to grasp, hold the ball and put it at the desired

place helped by the data obtained in image processing.

1.5 Thesis Structure

This thesis will discuss about the construction of robotic arm and its control

from image processing. First chapter discusses on the introduction of the project.

Second chapter present about the literature review and kinematic of robot

4

manipulator while chapter three will focus on the research methodology detail on

mechanical, electronic, and software design. Chapter four present result and

discussion while finally chapter five will explain about conclusion and future

recommendation.

5

CHAPTER 2

LITERATURE RIVIEW AND THEORY

2.1 Introduction

This chapter will be discussing about previous project related to this project.

There is lots of relevant information and technical papers published on the internet

and will be discussed over in this chapter. The information obtained is useful as

reference to complete the project. This chapter will also be discussing the theory of

the robot inverse kinematics and also about servo motor working theory.

6

2.2 Literature Review

2.2.1 Lynx 5 Programmable Robotic Arm Kit for PC

The Lynx 5 robotic arm can make fast and smooth movement, very high

accuracy and high rate of repeatability. This robot consists of rotational base,

shoulder, elbow and wrist motion, and a functional gripper that almost similar to

human arm movement. The arm includes five Hitec HS-422 servo motors, one for

the base, two for the shoulder, and one each for the elbow and wrist. An HS-81 is

included for the gripper. It was built in such solid design made from ultra-tough laser

cut Lexan structural component, black anodized aluminum servo brackets and

custom injection molded components. The assembly of this robot is easy only by

following the kit manual. This robot kit includes Lynx 5 Arm, A-base, A-Gripper

Kit, mini SSC-II Servo Controller, serial data cable, RoboMotion Software and Lynx

5 regulated Wall Pack. The image of robot is shown as figure 2.1.

Figure 2.1 Lynx 5 Programmable Robotic Arm.

The control of the robotic arm is done by using RIOS (Robotic arm

Interactive Operating System) program with the pre-assembled Mini SSC-II servo

controller. The Mini SSC-II receives positioning commands from a PC and provides

the control pulses to the servos. The DOS software is written in Quick BASIC

version 4.5. It allows user to move the arm via the keyboard, save positions to a

7

script file, single step and play the scripts back, save and load the scripts to disk. The

source code is included in ASCII so user can modify it. The RoboMotion for

Windows program allows user to teach the robot from the keyboard or joystick. The

arms gripper is positioned in an X, Y, Z grid in inches, and the moves are stored in a

spreadsheet format for easy editing [1].

2.2.2 Control of a Mitsubishi Arm Using Fiducial Tracking

This project is being done by Martin S. Mason and Laurent Coudert [2]. This

project uses a computer vision system to detect and track objects and control a

robotic arm to pickup objects routines. In industrial, the integration of computer

vision with industrial robotic arms is one of the backbones of industrial robotics.

The purpose of the vision system is to identify the object and determine its

position and orientation relative to workspace of the robotic arm. The position and

orientation output from the vision system are transformed into the workspace of the

industrial arm and then the controller of the robotic arm is used to generate a set of

joint angles for the arm.

The specification of the project include Mitsubishi RV-2AJ Robotic Arm,

Custom fiducials which can be printed from this document, Python 2.6 with pyserial

and wxwidgets, Logitech Quickcam Fusion or equivalent camera, Roborealm Vision

API and Microsoft Windows Platform (98, ME, XP or Vista). A VGA resolution

camera is required since it has fixed focus and is placed above and at an angle from

the workspace as shown in figure 2.2.

8

Figure 2.2 Overview of experimental workspace including camera, arm and

controller.

2.2.3 Cabbage Harvester

Harvesting heavy vegetables (cabbage, radish, etc.) is a labor intensive,

tedious operation. Moreover, mechanical harvesting is expected to be automated due

to a decrease in the farmer population. Some previous papers have reported about

mechanical cabbage harvesters [3] as shown as figure 2.3 in Japan (Karahashi, et al.,

1977; Kanemitsu, et al., 1993). However, due to the high standards in the Japanese

fresh markets which asks for a standard cabbage size as well as the difficulty to crop,

at the same time. The harvesters are hardly used in Japan. The aim of this research is

to automate selective harvesting by robotics approach.

The first tested prototype robot was constructed in the 1993 and tested

between 1993 and 1994 (Murakami, et al., 1995). The robot consists of a 4-link

hydraulic drive manipulator and a gripper to harvest efficiently without degrading the

quality of the product, and a machine vision system to measure the size and location

of cabbages in the field. It used to operates along the row and stops at each batch of

cabbages. Targets are evaluated by diameter of their heads which are measured by

http://profmason.com/wp-content/uploads/2009/12/mituarmwithlabels.jpg

9

image processing, and the robot arm harvests them individually. The possibility of

selective harvesting using the robotic harvester was confirmed, however, some

problems such as operation speed, accuracy and stem processing must be improved.

It is difficult to recognize the head of the cabbages because the color of the head and

leaves are almost the same, Leaves often cover the head and light conditions vary in

the field making it difficult to keep the image consistent.

Figure 2.3 Cabbage Harvester

They solved the problems by developing high speed-processing algorithm

used to recognize the cabbage heads by processing the color image which is taken

under unstable light conditions in the field. The algorithm uses Neural Network to

extract the cabbage heads of the HIS transferred image, and two templates of model

cabbage. Image processing speed is enhanced by optimizing the algorithm and using

parallel processor. Figure 2.4 depict binalize and matching procedures. The location

and diameter of heads are estimated by correlation with the second template.

10

Figure 2.4 Cabbage recognition process

2.3 Theory

2.3.1 Inverse Kinematics

Inverse kinematics is the problem to determine the joint angles in term of

placing the position and orientation of the end-effecter to desired coordinates.

Consider figure 2.5 of two degrees of freedom shows below.

Figure 2.5 Side view for two degrees of freedom manipulator

(x,y)

11

The diagram is needed to derive the inverse kinematic formula for three

degree of freedom robot manipulator. Two values for angles, 𝜃1,𝜃2 are produced

when the coordinate position,(𝑥, 𝑦) are inserted into the equations. The equations are

derived using geometric approach. This approach requires a trigonometric function to

obtain the solution of the angle. To evaluate the angle 𝜃 for−𝜋 ≤ 𝜃 ≤ 𝜋, an

arctangent function,𝑎 tan 2(𝑥, 𝑦) which returns tan−1 𝑥/𝑦 adjusted to appropriate

quadrant. Base on the theory of trigonometric, sin and cosine law used in the

diagram in Figure 2.5 equation (2.1), (2.2) and (2.3) are obtain as shown below. The

obtained equations will be use for obtaining joint1 and joint2 angle of the robot arm

in this project [4].

 𝜃1 = atan 2 𝑥, 𝑦 − atan 2 (a1, + a2 × 𝐷 , a2 × (± 1 − 𝐷2)) (2.1)

 𝜃2 = atan 2 𝐷 , ± 1 − 𝐷2 (2.2)

 Where

 𝐷 =
𝑥2+𝑦2− a1

2− a2
2

2 a1a2
 (2.3)

2.3.2 Servo Motor Analysis

Servo such as Radio Control (RC) servos usually used for remotely operating

model vehicles such as cars, airplanes, and boats. Nowadays, servos are constantly

widely used in robotics field, building humanoid robot, biologically moved robot,

robotic arm and etc. The ability of this gadget to rotates and maintains at certain

location, position or angle according to control pulses from a single wire. Inside a

typical servo contains a small motor and gearbox to make it run, a potentiometer to

measure the position of the output gear, and an electronic circuit that controls the

motor to make the output gear move to the desired position. The best part is the

entire component built is compact and cheap made it great to implement as robot

actuator.

12

RC servo position is controlled by signal wire. The control signal through this

signal wire is a continuous stream of pulses that are 1 to 2 milliseconds long,

repeated approximately fifty times per second, as shown in figure 2.6.

Figure 2.6 Signal pulse for signal wire

The position to determine the position of the servo motor is by giving certain

pulse width to the signal wire. The servo moves to its neutral, or middle, position

when the signal pulse width is 1.5 ms as in figure 2.7 (2). The wider pulse as in

figure 2.7 (3) will turn the servo one way and as in figure 2.7 (1) for the shorter pulse

will lead the servo turn another way. Typically, a servo will move approximately 90

degrees for a 1 ms change in pulse width. However, the exact correspondence

between pulse width and servo are difference from one servo manufacturer to

another. Figure 2.7 show difference positions when difference pulse width is injected

into the servo motor signal wire.

Figure 2.7 (1), (2), (3) short pulse width, neutral position and wider pulse width

(3) Shorter pulse width (2) Neutral position (1) Wider pulse width

13

CHAPTER 3

METHODOLOGY AND APPROACH

3.1 Introduction

This project is divided into three parts. First part is the hardware development

that consist of the building the 3 degrees of freedom arm robot and the workspace of

the arm robot. Second part is the circuit development where this part is about the

PIC16F877A microcontroller with multi UART, servo motor controller (SC16A),

power distribution circuit and the interface device for the project. Lastly, the third

part is the software development that consists of the software programming of the

microcontroller and the image processing software process of the project. Figure 3.1

shows the complete design of the system.

14

Figure 3.1 Completed system design

3.2 Hardware Development

3.2.1 Robotic Arm Design

The robotic arm structure will emulate industrial robotic arm. The initial

concept in hardware design is based on the market available small robotic arm design

as shown in topic 2.2.1 of literature review. The difference is for this particular of

project, the robotic arm will consist only have 3 joints, 2 links and end-effecter. That

makes it a 3 degrees of freedom robotic arm compare to the arm robot in figure 2.1 in

topic 2.2.1 that got 5 degrees of freedom. This robotic arm is built so that it has a

15

right arm configuration so that it match for the equations that been discuss in inverse

kinematic topic 2.3.1.

The robotic arm will be made so that in can do a pick and place routines that

mean it can grip an object and move around it joints. The components used in the

hardware structure construction are made cheap and affordable. This structure of the

links of the robot arm will be constructed using simple materials which is Perspex

that are easy to fabricate and worked on. Perspex also knows as acrylic is a hard

plastic base material that is suitable for hardware use. However as for the gripper, the

material use is “U” shape aluminum. The actuator used in every joint for this robot

arm is RC servo motor.

3.2.1.1RC Servo Motor

Servo is an automatic device that uses error-sensing feedback to correct the

performance of a mechanism. For this project, RC servo has been chosen to be used

as actuator for the robot manipulator. The reasons for choosing RC servo motor are

due to their affordability, reliability, and simplicity of control by microprocessors,

RC servos are often used in small scale robotics applications. Moreover, this small

type of actuator got very powerful torque to do heavy duty lifting.

These RC servos are composed of an electric motor mechanically linked to a

potentiometer. Pulse-width modulation (PWM) signals sent to the servo are

translated into position commands by electronics inside the servo. When the servo is

commanded to rotate, the motor is powered until the potentiometer reaches the value

corresponding to the commanded position. Figure 3.2 shows the type of selected

servo motor.

16

Figure 3.2 Selected servo motor

The specifications of this servo motor are:

i. Full Metal Gear and heavy duty

ii. Speed (sec/60deg): 0.22/4.8V, 0.20/6.0V, 0.17/7.2V

iii. Torque (Kg-cm): 9.0/4.8V, 11.0/6.0V, 13.0/7.2V (maximum 7.2V)

iv. Pulse width range: 0.582ms to 2.5ms (estimation)

v. 2 Ball Bearings Designed for "closed feedback".

vi. Able to control the position of the motor

vii. Size (mm): 40.8x20.18x36.5 and Weight 55g

There are 5 servos used for this project robotic arm. All five servos are used

for the robot manipulator control. The first servo is attached at the base of the

manipulator. This servo will control the rotating base the arm robot. Two servos are

used for the first joint. This is because the robot manipulator is quite heavy and need

more torque to support joint2 that used 1 servo and the gripper of the robotic arm that

also used 1 servo motor.

17

3.2.2 Robotic Arm Workspace

 In industrial, robot that entirely automated and semi-automated operation

often got it workspace call as “robot work cell. All the devices in the work place

have to be adjusted when the robot introduced into the workspace. The workspace is

created because it may be dangerous if the robot is in operating mode in case if there

is failure occurs.

For this project, the robot arm itself will be place in its own workspace

together with an overhead webcam camera. The workspace is design base on the

horizontal and vertical reach of the robotic arm. The horizontal reach is determined

by inner reach and outer reach of the arm robot. Inner reach mean the minimum

reach of the robot arm can go and etcetera for the outer reach for the robot arm. As

for the vertical reach, it determines by the size of the ball that the robot arm will be

picking in this project. The ball will be place only on the floor of the workspace.

Base on the horizontal, vertical, inner and outer reach of the robot arm, the space for

the arm robot workspace is in spherical plane type. The plane is shown in figure 3.3

(1), (2).

(1)

18

(2)

Figure 3.3 (1)(2) Horizontal reach and Vertical reach

 The overhead webcam will be placed above the workspace of the robotic arm

so that it can capture the whole sector of the robot arm spherical type plane. The

height of the webcam positioned above the workspace is universal depending on the

wide angle of the camera, the pixel of the camera and also quality type of the image

the camera can capture as long as the whole workspace can be seen.

3.3 Circuit Development

3.3.1 Microcontroller

3.3.1.1 PIC16F877A

This powerful 200 nanosecond instruction execution yet easy-to program

CMOS FLASH-based 8-bit microcontroller produce by Microchip Technology Inc

[6] provided a seamless migration path of software code to higher levels of hardware

integration. The PIC 16F877A features a 'C' compiler friendly development

environment, 256 bytes of EEPROM, Self programming, an ICD, 2

19

capture/compare/PWM functions, 5 channels of 10-bit Analog-to-Digital (A/D)

converter, the synchronous serial port can be configured as either 3-wire Serial

Peripheral Interface (SPI™) or the 2-wire Inter-Integrated Circuit (I2C™) bus and

Universal Asynchronous Receiver Transmitter (UART).

All of these features make it ideal for manufacturing equipment,

instrumentation and monitoring, data acquisition, power conditioning, environmental

monitoring, telecom and consumer audio/video applications. The microcontroller has

five port namely Port A, Port B, Port C, Port D and Port E. All ports are bidirectional

I/O port, meaning that each port can be used as input or output port depending on the

user. Port B can also be software programmed for internal weak pull-up on all input.

The features of PIC16F877A are:

i. 40pin package(PDIP)

ii. 14bit core – 35 instructions

iii. 200ns instruction time(20Mhz)

iv. 8k 14bit FLASH program memory

v. 368 8bit data memory or register (“File registers”)

vi. 256 8bit EEPROM (nonvolatile) data registers

vii. 8 level hardware stack (interrupts enabled)

viii. 33 GPIO (20mA source / 25mA 7sink)

ix. Peripherals: 5ch 10bit ADC, UART/I2C/SPI, PWM, 16bitand 8bit

timers/counters

x. ICSP and Bootloader capability

The reason for choosing this PIC microcontroller is because of the existence

of the UART terminal. The terminal is very important for this project because the

terminals play the most important part in purpose of moving the robot arm servo

motor actuator. The UART terminals which are PORTC6 and PORTC7 are used as

communication platform with Servo Controller 16 Channels (SC16A) by sending

and receive servo pulse width. This servo controller is used to control the angle of

the servo for the robot manipulator.

PIC16F877A only got single UART terminal that can be used. If we look

back in figure 3.1 in introduction topic 3.1, this project used another one UART

20

terminal where it is used for communication between the microcontroller and the

computer. It is for receive and sending the data from the image processing part in the

computer. However, this problem can be solved by adding one programmable

external UART terminal that is program into the microcontroller. This multi UART

configuration will be discussed in the next topic.

3.3.1.2 External UART Connection

The start board for this PIC16F877A in this project is done by using a start-up

kit call SK40C produce by Cytron Technologies Inc [7]. This kit is an enhanced 40

pins PIC microcontroller used to interface between applications by directly plugging

in the I/O in whatever way that is convenient. However for this project, it has been

modified for the use of another one UART configuration that used PORTC2 and

PORTC3 as the external UART.

This external UART is created based on programming to make it functions as

UART characteristic. The external UART is designed for interface using a standard

system protocol programming and it will be discuss later in Software development

topic. This method also can be learned through document done by Cytron

Technologies Inc [8]. Figure 3.4 shows the schematic for the complete

microcontroller circuit with external UART.

21

Figure 3.4 Complete schematic for microcontroller

3.3.2 Servo Motor Controller (SC16A)

SC16A in figure 3.5 (1), (2) have offers reliable yet user friendly RC Servo

motor controller to hobbyist and students. It is designed to control 16 independent

standard RC (Remote Control) servo motors simultaneously in a single board. For

this project, it is used for drive the servo motor movement by receiving command

from the microcontroller. All five actuators in the robotic arm will be control by this

drive circuit board. Each servo signal pin is able to generate servo pulses from 0.5 ms

to 2.5 ms, which is greater than the range of most servos, further allows for servos to

operate 180 degrees controlling the servo motor angle. The host of SC16A is

connected through microcontroller with UART interface. This UART interface

presents a flexible, fast and easy to use feature. It is designed with capabilities and

features of:

i. 16 channels: Servo driven independently.

Crystal 20Mhz

Internal UART

5 Volt voltage

regulator.

External UART

22

ii. Extendable to 32 Channels: Two controller linked together to drive 32

servos.

iii. Optional Position Reporting: User may request position of an

individual servo.

iv. Optional Servo Ramping: Choose one of 63 ramp rate (speed rate) for

each servo.

v. Resolution: 1.367us.

vi. Servo pulse: 0.5ms to 2.5ms.

vii. Dimension: 8.2cm x 4.7cm

Figure 3.5 (1) Board layout of SC16A

Figure 3.5 (2) Explanation for the SC16A

In order to connect SC16A to Microcontroller, the minimum requirements are

the microcontroller must have Universal Asynchronous Receiver and Transmitter

(UART Terminal) and 5 Volt. 5V will not be an issue since most of embedded or

microcontroller system is 5V powered, tapping the 5V from host system will be

reasonably easy. As for UART, a minimum of Transmit pin is required to send

23

command to SC16A. Figure 3.6 below show the connection between microcontroller

and SC16A.

Figure 3.6: Connection between SC16A and Microcontroller

3.3.2.1 Current Booster Circuit

 This current booster circuit is main one of the main part in this project [9]. It

is used to supply voltage and also current to each of servo motor in the actuator.

Voltage regulators used is LM7806 that provide output voltage of 6 volt sometimes

need to provide a little bit more current then they actually can handle.

A power transistor such as the TIP2955 is used to boost the extra needed current

above the maximum allowable current provided via the regulator. Current up to

1500mA (1.5ampere) will flow through the regulator, anything above that makes the

regulator conduct and adding the extra needed current to the output load. Both

regulator and power transistor must be mounted on an adequate heat sink because

actuator such as RC servo motor consumed very high current to operate thus make

both these component really hot. The input for this circuit will be from 12V and 2A

adapter DC source. While the output of 6V and approximate 3A current will be

24

connect to SC16A servo motor power source. The schematic of the circuit is shown

in figure 3.7.

Figure 3.7 The Current Booster schematic circuit

3.3.3 USB to UART Converter (UC00A)

The interface between device such as between microcontroller and computer

nowadays is widely being used known as Serial communication. UART is one of

those serial interfaces. In past days, most serial interface from microcontroller to

computer is done through serial port (DB9). However, since computer serial port

used RS232 protocol and microcontroller used TTL UART, a level shifter is needed

between these interfaces. But nowadays, serial port of computer have been phase out,

it have been replaced with USB. Of course most developer chooses USB to serial

converter to obtain virtual serial port. The level shifter is still necessary for UART

interface. Thus, Cytron Technologies Inc decided to develop a USB to UART

converter which offers USB plug and play, direct interface with microcontroller and

it provide low current 5V supply from USB port [10].

25

This project needs this kind interface because data need to be send and

receive between computer and microcontroller. At the microcontroller part,

connection will be connecting to the external UART terminal that is discuss in topic

3.3.1.2 while the other side will be connect to the USB port of the computer.UC00A

connection is visualized in figure 3.8.

Figure 3.8 Connection for USB to UART converter

It has been designed with capabilities and features of:

i. Develop low cost USB to UART converter

ii. Easy to use USB to UART converter, aiming development between

computer and microcontroller, 5V logic.

iii. USB powered, no external source is required to use this converter

iv. 5V from USB port is available for user.

v. Configurable for 5V UART interface.

vi. Easy to use 4 pin interface: Tx, Rx, Gnd and 5V.

vii. CTS, RTS, DTR and DSR is pull out to standard 2x5 header pin

solder able PCB pad.

viii. Plug and Play

ix. Dimension: 4.6cm x 1.8cm

26

3.4 Software Development

The system software plays an important role in this system. Without it, the

whole project cannot operate. Thus, the program flowchart of the system is as shown

in figure 3.9.

Figure 3.9 Project programming flowchart

 The program mostly focuses on 2 parts which is in computer part and

microcontroller part. Computer part consists of image processing, calculating the

inverse kinematics and data sending and receive protocol. While microcontroller act

as intermediate system to receive data from computer and send it to servo motor

controller after that data being process. It also sends feedback to computer after each

set data is done processed.

27

3.4.1 MPLAB IDE

MPLAB Integrated Development Environment (IDE) is a free, integrated

gcc-based toolset for the development of embedded applications employing

Microchip's PIC. The MPLAB IDE runs as a 32-bit application on Microsoft

Windows, and includes several free software components for application

development, hardware emulation and debugging. MPLAB IDE also serves as a

single, unified graphical user interface for additional Microchip and third-party

software and hardware development tools.

Both Assembly and C programming languages can be used with MPLAB

IDE. Others may be supported through the use of third party programs. Support for

MPLAB IDE, along with sample code, tutorials, and drivers can be found on

Microchip's website. MPLAB IDE does not support Linux, UNIX, or Macintosh

based operating systems.

The microcontroller used in this project is being program using C-language.

Programming in this part is consist of external UART programming and servo motor

controller (SC16A) programming.

3.4.1.1 External UART Programming

 Once again, the microcontroller is already modified by adding 1 external

UART terminal. The external UART terminal needs to be program so that it can

function as UART terminal. The programming consists of special library to function.

Some header files call “uart_io.h” and source files call “uart_io.c” need to be

included inside the programming structure before this external UART protocol can

be used. Please refer to appendix for better understanding. Figure 3.10 shows the

location to of the 2 special library codes.

28

Figure 3.10 Position for uart_io.h and uart_io.c

Standard protocol for interfaces sending and receive data is used to interface

between computer and microcontroller. It is very simple and easy to implement. This

part of the code is being written in the main source code of the programming. Figure

3.11 shows the standard protocol flowchart of external UART.

Figure 3.11 Standard protocol flowchart of external UART

 Please compare above figure 3.11 with the one in figure 3.9 for better

understanding the next explanation. From the flowchart, the microcontroller will

receive the first byte from computer which it will choose case inside the

microcontroller. There are 12 cases to microcontroller that have different type of

command to make the arm robot move. The command fill inside the case is about the

Main source code

Special library codes

29

protocol to send data to servo motor controller. This is the part when the second

bytes of data being send as in this case the type of data send is in form of the angle of

the joint that will be process to be sent to the servo motor controller. Lastly, the

microcontroller will write to the computer a byte of data just for confirm that the

routines in the case already done. This process will be process until no sending and

receive data being made.

3.4.1.2 SC16A Programming

The SC16A will control movement of the servo motor base on the right

protocol. The protocol is important to send command to SC16A which will control a

particular servo to a position with a defined speed. Second protocol is for host to

request the current position of servo. The second protocol is alternative to user, if

position reporting is not a requirement. In this project it can be ignored. A packet of

4 bytes must be sent in order to control each servo. The four bytes are:

i. First byte: Start byte + Servo motor number.

ii. Second byte: Position (Higher 6 bit)

iii. Third byte: Position (Lower 6 bit)

iv. Fourth byte: Speed

Table 3.1 The specific value for each byte.

30

The SC16A will translate four bytes of data into three parameters:

i. First byte is combination of start bit and servo number. The 6th bit must be

“1” to indicate this byte is first byte of SC16A command.

ii. Second and third byte combined to provide 12 bit data of servo position. 0-

1463 equivalent to 0-180 degrees. The microcontroller will receive data in

term of angle from the microcontroller. So the microcontroller must convert

this value to servo position value. The resolution of SC16A is 1.367us. It will

start from 0.5ms and increase the duty cycle of pulses to the maximum till

2.5ms. That mean the pulse width is equal to 2.5ms minus 0.5ms makes that

2.0ms. The maximum angle is depending on servo motor used that is

180degrees. All this information is base on characteristic of RC servo motor

that being used in this project. Thus, following formula show the derivation

for servo position to angle relationship:

Servo pulse = (resolution x servo position) + (min servo pulse) (3.1)

Servo pulse = (min servo pulse) +
((angle)x(pu lse width))

(maximum angle movement)
 (3.2)

Compare both (3.1) and (3.2) equation

Servo position =
2(angle)

1.367μ(180°)
 ≈ 8 x angle (3.3)

31

iii. Forth byte represents the speed of servo rotation.

Forth byte determines the speed of servo rotation for each servo

independently. The higher value, the faster servo will rotate to its Position. However,

value of „0‟ will disable the speed, thus provide normal speed, the servo motor will

rotate according to its own maximum speed. 63 ramp rates allow the user to set the

speed of each servo. Decimal value „1‟ indicates that the servo will run at slowest

speed and decimal value „63‟ will run at fastest speed. At each 20ms interval, the

current servo position will increase or decrease with the speed value depending on

whether the position is greater or lesser than the new position.

3.4.2 RoboRealm

RoboRealm is an application for use in computer vision, image analysis, and

robotic vision systems [12]. It is easy to be obtained and install to the computer

system. Just by using an easy point and click interface RoboRealm simplifies vision

programming. There is no need to write such long code for process the image and it

can save much time. Using RoboRealm user can create a low cost vision software

solution with a standard webcam that allows user to explore the very complex world

of image analysis and image processing. Through an easy to use analysis pipeline

user can add image processing filters to translate an image into robotic movements or

computer actions for user vision-guided robotic projects. Figure 3.12 show window

of RoboRealm software:

32

Figure 3.12 RoboRealm Window

From the window in figure 3.12, many modules contain in this RoboRealm

application software and it can be used just by choosing the modules that place at the

left of the window. These module description can be refer in RoboRealm website and

there is much more documentation about each module. The module that has been

chosen will appear in sequence at below of the window. When done, just click the

run button and the program is up and running. Furthermore, more modules can be

add even the program is running. But before that the webcam has to be switched on

by clicking the camera button in the window. The output of the image processing

will appear in image window.

In this project, RoboRealm is being used for three difference part. First part is

the image processing part which will process the image to detect the object and

obtain its position coordinate. The next part is the VB script module part which

explains simple coding to calculate the arm robot inverse kinematic and also the

system protocol to send and receive data from computer to the microcontroller.

Lastly is the serial communication module part. Each part will be explained in the

next section.

Modules. Modules that

being choose.

Video image

window (output)

33

3.4.2.1 Image Processing

Image processing is the part that acts as the “Robotic Arm” eyes caught from

the overhead webcam. First step in this image processing is to detect the object

which is an orange ball. The ball needs to be griped by the arm robot and to detect

the placed in a blue target. Figure 3.13 shows the initial image of the system caught

by the overhead webcam camera before being processed.

Figure 3.13 Initial view of video image

This process will be done one step at a time starting from the ball detection

followed by the target through object color detection. The RGB filter module will be

used to filter the base color for the ball and target. In this case, RGB yellow base and

RGB blue base is being filter from the image. The RGB filter yellow base is used to

filter the ball color while RGB filter blue base is used to filter the target color.

To make sure the color detection is smooth, several modules are being used

after the RGB filtering such as blob size, erode, fill and lastly the smooth hull

module. Blob size is a process where the image will only capture the biggest area of

Target

Ball

34

object being filtered. The same procedure will be carried for the target image

processing. Figure 3.14 shows the result after the blob size module process.

Figure 3.14 Blob size result

Next, erode module will deduct 1 pixels at the edge of the detected image to

make it smoother. Then fill module will filled the hole in the detect object image.

Finally smooth hull module will produce the perfect image of detected object. Figure

3.15 shows step by step result for smoothing the image.

Figure 3.15 Smoothing process result

35

This process is repeated once again toward the target object. Hence the

complete results of color object detection shown in figure 3.16.

Figure 3.16 Complete object color detection

Second step for the image processing is to obtain below data such as:

i. The coordinate of the ball and place object.

ii. Angle for base rotation angle 𝜃3and 𝜃4

It is being done by obtaining the center of gravity of the each object. Next, the

distance from the origin to center of gravity of each detect is calculated. But before

that, the origin is determined in the image by using display point modules in

RoboRealm. To get the distance in the image, Roborealm calculate distance module

are provides to calculate the distance between two points in the image. Thus, the

distance calculated is indicated as the x coordinates value for the objects. As for the y

coordinates the value is constant because the size of the ball is always fix and same

goes with the place and both of it is always being put on the floor. Hence, the vertical

reach of the arm robot remain constant as discuss in chapter 3 topic 3.2.2.

36

To obtain the angle 𝜃3and 𝜃4 the blue line and also the line between origin

and each object is done by using display line module in RoboRealm. Then, the

calculate angle modules is used to calculate the angle between the lines. Figure

3.17(1) show complete image processing result and figure 3.17 (2) shows the 3

dimensional results in real world view.

Figure 3.17(1), (2) Results for Image Processing

3.4.2.2 VB script

This is one of the RoboRealm applications where the VB Script module

provides a way to create custom Visual Basic scripts that can be used to process

image statistics and map then toward servo/motor values. This module is intended to

be used as a way to quickly perform custom operations without needing to

implement a Plugin or use the API which typically requires external tools.

 This VB script list all the data obtained in the image processing and process

as variables. In this project, the script mainly consists of two major parts. First part is

to calculate the inverse kinematic to obtain each joint angle 𝜃1,𝜃2. The second part is

the main function of the programming that acts as the protocol to send and receive

data from computer to the microcontroller.

37

 The inverse kinematics is being calculated just by typing the formula into this

VB script and then defines the variables obtained in the image processing to be the

variables obtain in the inverse kinematic formula. In this case we define the

coordinate (x,y) from the image processing to be the variables for the inverse

kinematics formula. Figure 3.18 shows the VB script window with inverse

kinematics formula.

Figure 3.18 VB script Window

 Another part for the VB script is about programming protocol send and

receive data form computer to microcontroller. The protocol is the same as discuss in

topic 3.4.1.1 for the external UART programming because these two systems must

have the same protocol to interface with each other.

Inverse kinematics

formula and

protocol

programming for

the system

Modified variable.

(result)

Variables from

image processing.

38

3.4.2.3 Serial Communication

The serial module is used to communicate from RoboRealm to serial based

controllers. This module actually the part where send and receive data happens

between the computer and microcontroller. In other word, it connect computer to the

microcontroller. The angles obtained in VB script is send to the microcontroller via

this serial communication. The sequence data send depends on the protocol in the

VB script. Figure 3.19 shows the window of the serial communication.

Figure 3.19 The Serial Communication window

 The green line number indicate the data being send to the microcontroller

while the red line number is the feedback data receive from the microcontroller to

indicate that the routines is already done in the microcontroller. The green line has

two numbers for instance “1 1” because according to the protocol, the first number is

the first byte being send as case number and the second number is the second byte

being send as joint angles. After that the red number appears means the

microcontroller send back the feedback.

39

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Robotic Arm and Its Workspace

 The robotic arm and its workspace after completion are shown in figure 4.1.

The robotic arm has 3 degrees of freedom that consist of three joints, 2 links and 1

end-effecter. Each of the joints has limit of 180 degrees of rotational angle based on

the RC servo motor limit angle that have been used. This arm robot used 5 RC servo

motor to drive it that is 1 RC servo at joint1, joint3 and gripper while 2 RC servos at

joint2. The workspace of the robotic arm was developed base on the maximum and

minimum reach of the robotic arm. The overhead webcam is placed above the

workspace for viewing the whole system workspace and act as the eyes of the robot

arm.

40

Figure 4.1 Complete robot arm and its workspace

The gripper for the arm robot made of aluminum that consists of 2 fingers to

grip an object. Its mechanical movement is base on pulls methods in this case the

spring will be used to pull the gripper back into its initial condition. While for the

gripper to move into gripping position, the string attach to the RC servo will pull

against the spring force for the gripper open to grip an object. Figure 4.2 (1), (2) will

show clearly the movement of the gripper before and after its grip.

(1) Before Grip (2) After Grip

Figure 4.2 (1), (2) Before and after gripping

Springs is pull to

keep the gripper

close

String is pull by the

RC servo to keep the

gripper open.

41

After the completion of the robotic arm hardware, there exist some limitations

and problems that can hinder further development of the robotic arm in the future.

The problems are:

i. The RC servo motor angle movements are not accurate enough to move to

the desire angle.

ii. The gripper built is quite heavy for the joint of the arm robot making the

movement is not so smooth.

4.2 Robot Inverse Kinematics

For the robot kinematics, the equation used is same as the equations discussed

in robot inverse kinematics in topic 2.3.1. But the only different is this arm robot

used elbow up configuration. Coordinates of (x,y) is insert into the formula to obtain

the angles 𝜃1,𝜃2 of each joints. Figure 4.3 shows the arm robot with its free body

diagram.

Figure 4.3 The arm robot with it free body diagram

42

4.3 Circuitry

 The circuit system used in this project is the microcontroller board with servo

motor controller that drive the RC servo motor that power by the current booster

circuit. This microcontroller circuit used 2 UART terminals that is internal UART

terminal and external UART terminal. The internal UART terminal used to send and

receive data from or to the servo motor controller. While external UART terminal

that is programmable UART terminal is used to send and receive data from or to

computer using USB to UART converter as intermediate device between the

computer and microcontroller. The external UART terminal is made because for this

type of PIC16F877A only have 1 UART configuration in it. Figure 4.4 shows the

complete circuit for the system:

Figure 4.4 The complete circuit system

Servo motor

controller(SC16A).

Microcontroller with

PIC16F877A.

Internal UART

to SC16A.

Current booster to

supply the servo

motor.

External UART to

computer using

USB to UART

converter.

43

4.4 Pick and Place Routines

 When the hardware and circuits are assembles to complete the system, the

RoboRealm software will be set up and run. Now the real result can be obtained. The

system will be in initialize position as long as there is no ball being put in the robot

workspace or the ball is already inside the place object. By the time the ball is put

separate from the place object; the system will run the pick and place routines as

shown in figure 4.5.

Figure 4.5 Result on pick and place routines of the robot arm

In Figure 4.5(1) the robotic arm is in initial position will calculate the angle of

every joint for both ball and the place to put the ball. Then the base of the robot arm

will rotate to face the ball as shown in Figure 4.5(2) to pick the ball and stay in initial

position shown in Figure 4.5(3) and Figure 4.5(4) respectively. After complete the

pick routine, Figure 4.5(5) and Figure 4.5(6) shows that the robot doing its placing

the ball routines by first facing the place object and then put the ball inside it. The

routines end with the arm robot being back into the initial position as shown in

Figure 4.5(7). The same result will be obtained if the ball and the place object being

put in others area as long as it still in the robot workspace area.

1 2 3 4

5 6 7

44

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Overall of the project objective has success and provides a good testing

background for academic learning such as robot kinematics, programming and

hardware assembly. This is partially due to the limited resources available in the

laboratory for the student to implement such systems. There lots of knowledge

obtained in doing this project as well as practical hands-on involved during the

process.

Further research need to be done so that there will be improvement in our

industrial throughout the country because as we can know our technology are far

behind compare to the developed country that have lot robotics arm used in large

manufacturing plant.

45

5.2 Recommendation

There are numbers of possible improvements to be carried out in the future:

i. For hardware design. The use of RC servo cause inaccuracy in

moving angles in kinematics. Some modification can be implemented

such as using advanced motor that more flexible, accurate and precise

in its movement (digital servo, stepper).

ii. More advanced image processing. Color detection implementation is

still classified as simple task. The host application can be improved to

add more functionality such as object recognition.

iii. Simple circuitry usage. This project used microcontroller as

intermediate part of the system. The system perhaps can be improved

by sending data straight from computer to servo motor controller or

other motor operating drive system to reduce the cost of the project.

iv. The supply source for the system. A stable and high current source

can make this system operating much smoother.

46

REFERENCES

[1] HOBBYTRON, http://www.hobbytron.com/lynx-arm.html

[2] profmason.com, http://profmason.com/?p=1173

[3] http://www.cryo.affrc.go.jp/sougou/kikai/member.files/97biorobotics.pdf

[4] Dr. Johari Halim Shah Osman, 2009, Brief Note On Robotic 4
th

Edition.Faculty of Electrical Engineering, Universiti Teknologi Malaysia.

[5] RC Servo C36R, C40R, C55R User's Manual V1.0,Apr 2009,Cytron

Technologies Inc

[6] PIC16F87XA Data Sheet, 2003. Microchip Technology Inc

[7] SK40C Enhanced 40 pins PIC Start-up Kit V1.2,Dec 2010,Cytron

Technologies Inc

[8] Multi UART Interface V1.0, July 2009, cytron Technologies Inc

[9] http://www.extremecircuits.net/2009/08/ampere-or-current -booster-

circuit.html

[10] Cytron USB to UART Converter UC00A User's Manual V1.1,August

2009,Cytron Technologies Inc

http://www.hobbytron.com/lynx-arm.html
http://profmason.com/?p=1173
http://www.cryo.affrc.go.jp/sougou/kikai/member.files/97biorobotics.pdf

47

[11] SC16A Servo Controller User’s Manual V2.1, 2008. Cytron Technologies Inc

[12] RoboRealm, http://www.roborealm.com/index.php

http://www.roborealm.com/index.php

48

APPENDIX A

Main source code for PIC16F877A

// include

//===

#include <pic.h>

// configuration

//===

__CONFIG (0x3F32); //configuration for the microcontroller

#include "uart_io.h"

// define

//===

#define SW1 RB0

#define SW2 RB1

#define led1 RB6 //led 1 (active high)

#define led2 RB7 //led 2 (active high)

#define servo1a 0x42 //1st link //chanel = 2

#define servo1b 0x45 //1st link //chanel = 5

#define servo2 0x48 //2nd link //chanel = 8

#define servo3 0x4B //gripper //chanel = 11

#define servo4 0x4F //base //chanel = 15

// global variable

//===

static volatile unsigned int received_servo_position[0x11];

int k=0;

int m=0;

//functionprototype

//===

void init(void);

void send_cmd(unsigned char num, unsigned int data, unsigned char ramp); //UART transmit 4 bytes:

servo number, higher byte position, lower byte position and speed

void delay(unsigned long data); //delay function, the delay time

void uart_send(unsigned char data); //UART transmit

unsigned char uart_rec(void); //UART receive

//initialization

//===

void init()

{

 //set IO port for led and switch

 TRISC = 0b00000000; //set input or output

 TRISB = 0b00000011; //1=input,0=output

 TRISD = 0b00000000;

 ADCON1 = 0x06; //set port A as digital I/O

 //setup UART

 BRGH = 1; //baud rate low speed option

 SPBRG = 129; //set boud rate to 9600bps, 64 for 10Mhz crystal; 129 for 20MHz crystal

 SPEN = 1; //enable serial port

 RX9 = 0; //8-bit reception

 TX9 = 0;

 CREN = 1; //enable reception

49

 TXEN = 1; //enable transmission

 //initial condition

 led1=0; //led1 is off

 led2=0; //led2 is off

 send_cmd(servo1a, 1100, 63);

 send_cmd(servo1b, 1100, 63);

 delay(200000);

 send_cmd(servo2, 213, 63);

 delay(200000);

 send_cmd(servo4, 731, 63);

 delay(200000);

 send_cmd(servo3,1454, 63);

 delay(200000);

 send_cmd(servo3,800, 63);

 delay(200000);

 send_cmd(servo3,1454, 63);

 delay(200000);

 uart_init(1); //initialize UART1

 unsigned char data_to_read=0;

 unsigned char j;

 uart_write(1,9);

}

// main function (main fucntion of the program)

//===

void main(void)

{

 init();

 //uart_init(1); //initialize UART1

 unsigned char data_to_read=0;

 //unsigned char j;

 //uart_write(1,0);

 while(1)

 {

 //if function

 data_to_read=uart_read(1); //read first byte from UART1

 switch(data_to_read)

 {

 case 1:

 data_to_read=uart_read(1);//read second byte from UART1

 if(data_to_read==0)

 {

 led1=0; //detect to ON or OFF led1

 send_cmd(servo3,1454, 63);

 delay(200000);

 send_cmd(servo3,800, 63);

 delay(200000);

 send_cmd(servo3,1454, 63);

 delay(400000);

 }

 else if(data_to_read==1)

 {

 led1=1;

 send_cmd(servo3,1454, 63);

50

 delay(200000);

 send_cmd(servo3,800, 63);

 delay(200000);

 send_cmd(servo3,1454, 63);

 delay(400000);

 }

 uart_write(1,0);

 break;

 case 2:

 data_to_read=uart_read(1);

 if(data_to_read==0)

 {

 led2=0; //detect to ON or OFF led2

 init();

 delay(300000);

 }

 else if(data_to_read==1)

 {

 led2=1;

 init();

 delay(300000);

 }

 uart_write(1,'a');

 break;

 case 3:

 data_to_read=uart_read(1);

 send_cmd(servo4 , data_to_read*8 , 63); //base

 delay(200000);

 uart_write(1,1);

 break;

 case 4:

 data_to_read=uart_read(1);

 send_cmd(servo2 , data_to_read*8 , 63); //joint2

 delay(200000);

 uart_write(1,2);

 break;

 case 5:

 data_to_read=uart_read(1);

 send_cmd(servo1a , data_to_read*8 , 63); //joint1

 send_cmd(servo1b , data_to_read*8 , 63);

 delay(200000);

 uart_write(1,3);

break;

 case 6:

 data_to_read=uart_read(1);

 send_cmd(servo3 , data_to_read*8 , 63);//gripper 630 to grip

 delay(200000);

 uart_write(1,4);

 break;

 case 7:

 data_to_read=uart_read(1);

 send_cmd(servo1a, 731, 63);

 send_cmd(servo1b, 731, 63);

 delay(200000);

 send_cmd(servo4, 110, 63);

 delay(200000);

51

 send_cmd(servo2, 520, 63);

 delay(200000);

 send_cmd(servo1a, 250, 63);

 send_cmd(servo1b, 250, 63);

 delay(200000);

 send_cmd(servo3,1454, 63);

 delay(200000);

 uart_write(1,5);

 break;

 case 8:

 data_to_read=uart_read(1);

 send_cmd(servo1a, 1200, 63);

 send_cmd(servo1b, 1200, 63);

 delay(200000);

 send_cmd(servo2, 213, 63);

 delay(200000);

 send_cmd(servo4, 731, 63);

 delay(200000);

 uart_write(1,5);

 break;

 case 9:

 data_to_read=uart_read(1);

 send_cmd(servo4 , data_to_read*8 , 63); //base

 delay(200000);

 uart_write(1,6);

 break;

 case 10:

 data_to_read=uart_read(1);

 send_cmd(servo2 , data_to_read*8 , 63); //joint2

 delay(200000);

 uart_write(1,7);

 break;

 case 11:

 data_to_read=uart_read(1);

 send_cmd(servo1a , data_to_read*8 , 63); //joint1

 send_cmd(servo1b , data_to_read*8 , 63);

 delay(200000);

 uart_write(1,8);

 break;

 case 12:

 data_to_read=uart_read(1);

 send_cmd(servo3 , data_to_read*8 , 63);//gripper 630 to grip

 delay(200000);

 uart_write(1,9);

 break;

 }

 }

}//main loop

//subroutine

//===

//servo subroutines

void send_cmd(unsigned char num, unsigned int data, unsigned char ramp) //send 4 bytes of

command to control servo's position and speed

{

 unsigned char higher_byte=0, lower_byte=0;

 //servo channel should start with 0b01XX XXXX

52

 //therefore needs to change to 0x41-0x60

 num=num|0b01000000;

 //position value from 0-1463 are greater than a byte

 //so needs two bytes to send

 higher_byte=(data>>6)&0x003f; //higher byte = 0b00xxxxxx

 lower_byte=data&0x003f; //lower byte = 0b00xxxxxx

 uart_send(num);

 //First byte is the servo channel 0x41-0x60

 uart_send(higher_byte);

 //second byte is the higher byte of position 0b00xxxxxx

 uart_send(lower_byte);

 //third byte is the lower byte of position 0b00xxxxxx

 uart_send(ramp);

 //fourth byte is the speed value from 0-63

}

//UART subroutines

unsigned char uart_rec(void) //receive uart value

{

 unsigned char rec_data;

 while(RCIF==0); //wait for data

 rec_data = RCREG;

 return rec_data; //return the received data

}

void uart_send(unsigned char data)

{

 while(TXIF==0); //only send the new data after

 TXREG=data; //the previous data finish sent

}

//delay subroutine

void delay(unsigned long data) //delay function, the delay time

{ //depend on

the given value

 for(;data>0;data-=1);

}

53

APPENDIX B

Header file code for external UART in PIC16F877A

// include

//===

#include <pic.h>

// define system crystal frequency

//===

#define _XTAL_FREQ 20000000 //frequency of the crystal

//UART configuration

//===

#define UART_1_tx RC2 //define which pin is used for build TX

of UART1

#define UART_1_tx_tris TRISC2

#define UART_1_rx RC3 //define which pin is used for build RX

of UART1

#define UART_1_rx_tris TRISC3

#define UART_1_baudrate 9600 //define the baudrate of this UART channel

// function prototype

//===

===

//the function of initialize UART

void uart_init(unsigned char channel);

//the function of write

void uart_write(unsigned char channel,unsigned char data);

//the function of read

unsigned char uart_read(unsigned char channel);

54

APPENDIX C

Additional source file code for external UART in PIC16F877A

// include

//===

#include "uart_io.h"

// unused uart channel handler

//===

unsigned char dummy_byte=0;

#ifndef UART_1_tx

 #define UART_1_tx dummy_byte

#endif

#ifndef UART_1_tx_tris

 #define UART_1_tx_tris dummy_byte

#endif

#ifndef UART_1_rx

 #define UART_1_rx dummy_byte

#endif

#ifndef UART_1_rx_tris

 #define UART_1_rx_tris dummy_byte

#endif

#ifndef UART_1_baudrate

 #define UART_1_baudrate 9600

#endif

// baudrate cycle definition

//===

#define UART_1_baudrate_cycle (_XTAL_FREQ/4)/UART_1_baudrate

// functions

//===

void uart_init(unsigned char channel)

{

 switch(channel)

 {

 case 1:

 UART_1_tx=1; //set tx pin to '1'

 UART_1_tx_tris=0; //set tx pin as output

 UART_1_rx=1; //set rx pin to '1'

 UART_1_rx_tris=1; //set rx pin as input

 break;

 }

}

void uart_write(unsigned char channel,unsigned char data)

{

 unsigned char i;

 switch(channel)

 {

 case 1:

 UART_1_tx=0;

 _delay(UART_1_baudrate_cycle-15);

 for(i=1;i>0;i=i<<1)

 {

 if((data&i)==0)

55

 {

 UART_1_tx=0;

 _delay(UART_1_baudrate_cycle-21);

 }

 else

 {

 UART_1_tx=1;

 _delay(UART_1_baudrate_cycle-20);

 }

 }

 _delay(8);

 UART_1_tx=1;

 _delay(UART_1_baudrate_cycle-3);

 break;

 }

}

unsigned char uart_read(unsigned char channel)

{

 unsigned char i;

 unsigned char result=0;

 unsigned char dummy_mask=0x00;

 switch(channel)

 {

 case 1:

 while(UART_1_rx); //wait for start bit

 _delay(UART_1_baudrate_cycle-10); //delay for 1 and half bit

 _delay(UART_1_baudrate_cycle/2);

 for(i=1;i>0;i=i<<1)

 {

 if(UART_1_rx==1)

 {

 result|=i;

 }

 else

 {

 result|=result;

 }

 _delay(UART_1_baudrate_cycle-20);

 }

 _delay(UART_1_baudrate_cycle/2);

 break;

 }

return result;

}

56

APPENDIX D

ROBO file for RoboRealm

<head><version>2.37.16</version></head>

<RGB_Filter>

 <hue_value>79</hue_value>

 <hysteresis>0</hysteresis>

 <min_value>100</min_value>

 <channel>64</channel>

</RGB_Filter>

<Blob_Size>

 <limit>1</limit>

 <min_area>5</min_area>

 <treat_as_color_image>FALSE</treat_as_color_image>

 <mask>FALSE</mask>

 <threshold>5</threshold>

 <max_area>0</max_area>

</Blob_Size>

<Erode>

 <count>1</count>

 <erode_borders>FALSE</erode_borders>

 <kernal_shape>4</kernal_shape>

</Erode>

<Fill>

 <four_pixel_connectivity>TRUE</four_pixel_connectivity>

 <size>0</size>

 <check_border>FALSE</check_border>

 <fill_with_average_color>FALSE</fill_with_average_color>

</Fill>

<Smooth_Hull>

 <window_size>40</window_size>

</Smooth_Hull>

<Center_of_Gravity>

 <show_coord>TRUE</show_coord>

 <threshold>3</threshold>

 <display_as_annotation>FALSE</display_as_annotation>

 <density>2</density>

 <size_index>5</size_index>

 <show_cog>TRUE</show_cog>

 <overlay_image>Source</overlay_image>

 <box_size>10</box_size>

 <shape_index>3</shape_index>

 <connect_line>FALSE</connect_line>

 <use_subpixel>FALSE</use_subpixel>

 <color_index>3</color_index>

 <show_box>TRUE</show_box>

</Center_of_Gravity>

<Display_Point>

 <display_as_annotation>FALSE</display_as_annotation>

 <color_index>6</color_index>

 <y_coord>23</y_coord>

 <size_index>2</size_index>

 <y_variable>centerY</y_variable>

 <x_variable>centerX</x_variable>

 <clear_image>FALSE</clear_image>

 <shape_index>4</shape_index>

 <x_coord>337</x_coord>

</Display_Point>

<Display_Point>

 <display_as_annotation>FALSE</display_as_annotation>

57

 <color_index>6</color_index>

 <y_coord>441</y_coord>

 <size_index>2</size_index>

 <y_variable>upY</y_variable>

 <x_variable>upX</x_variable>

 <clear_image>FALSE</clear_image>

 <shape_index>4</shape_index>

 <x_coord>337</x_coord>

</Display_Point>

<Display_Point>

 <display_as_annotation>FALSE</display_as_annotation>

 <color_index>6</color_index>

 <y_coord>26</y_coord>

 <size_index>2</size_index>

 <y_variable>sideY</y_variable>

 <x_variable>sideX</x_variable>

 <clear_image>FALSE</clear_image>

 <shape_index>4</shape_index>

 <x_coord>636</x_coord>

</Display_Point>

<Display_Point>

 <display_as_annotation>FALSE</display_as_annotation>

 <color_index>6</color_index>

 <y_coord>100</y_coord>

 <size_index>2</size_index>

 <y_variable>sideY2</y_variable>

 <x_variable>sideX2</x_variable>

 <clear_image>FALSE</clear_image>

 <shape_index>4</shape_index>

 <x_coord>100</x_coord>

</Display_Point>

<Display_Line>

 <x_end_map>sideX</x_end_map>

 <x_start>327</x_start>

 <display_as_annotation>FALSE</display_as_annotation>

 <y_start_map>centerY</y_start_map>

 <y_end>37</y_end>

 <y_end_map>sideY</y_end_map>

 <x_end>630</x_end>

 <thickness>-1</thickness>

 <x_start_map>centerX</x_start_map>

 <clear_image>FALSE</clear_image>

 <display_mode>1</display_mode>

 <y_start>37</y_start>

 <color_index>1</color_index>

</Display_Line>

<Display_Line>

 <x_end_map>COG_X</x_end_map>

 <x_start>0</x_start>

 <display_as_annotation>FALSE</display_as_annotation>

 <y_start_map>centerY</y_start_map>

 <y_end>0</y_end>

 <y_end_map>COG_Y</y_end_map>

 <x_end>0</x_end>

 <thickness>-1</thickness>

 <x_start_map>centerX</x_start_map>

 <clear_image>FALSE</clear_image>

 <display_mode>1</display_mode>

 <y_start>0</y_start>

 <color_index>2</color_index>

58

</Display_Line>

<Display_Line>

 <x_end_map>sideX2</x_end_map>

 <x_start>0</x_start>

 <display_as_annotation>FALSE</display_as_annotation>

 <y_start_map>centerY</y_start_map>

 <y_end>0</y_end>

 <y_end_map>sideY2</y_end_map>

 <x_end>0</x_end>

 <thickness>-1</thickness>

 <x_start_map>centerX</x_start_map>

 <clear_image>FALSE</clear_image>

 <display_mode>1</display_mode>

 <y_start>0</y_start>

 <color_index>1</color_index>

</Display_Line>

<Display_Line>

 <x_end_map>upX</x_end_map>

 <x_start>0</x_start>

 <display_as_annotation>FALSE</display_as_annotation>

 <y_start_map>centerY</y_start_map>

 <y_end>0</y_end>

 <y_end_map>upY</y_end_map>

 <x_end>0</x_end>

 <thickness>-1</thickness>

 <x_start_map>centerX</x_start_map>

 <clear_image>FALSE</clear_image>

 <display_mode>1</display_mode>

 <y_start>0</y_start>

 <color_index>7</color_index>

</Display_Line>

<Calculate_Distance>

 <result>CALCULATE_DISTANCE2</result>

 <x_start>centerX</x_start>

 <x_end>COG_X</x_end>

 <y_start>centerY</y_start>

 <y_end>COG_Y</y_end>

</Calculate_Distance>

<Calculate_Distance>

 <result>CALCULATE_DISTANCE</result>

 <x_start>centerX</x_start>

 <x_end>upX</x_end>

 <y_start>centerY</y_start>

 <y_end>upY</y_end>

</Calculate_Distance>

<Calculate_Angle>

 <result>ANGLE</result>

 <x_start>sideX</x_start>

 <y_middle>centerY</y_middle>

 <x_end>COG_X</x_end>

 <y_start>sideY</y_start>

 <y_end>COG_Y</y_end>

 <x_middle>centerX</x_middle>

</Calculate_Angle>

<VBScript_Program>

 <tab_size_index>1</tab_size_index>

 <script>cogX = GetVariable("COG_X")

cogY = GetVariable("COG_Y")

59

SetVariable "COG_X1", cogX

SetVariable "COG_Y1", cogY

cogBoxSize = GetVariable("COG_BOX_SIZE")

SetVariable "COG_BOX_SIZE1", cogBoxSize

</script>

 <source_mode>gui</source_mode>

</VBScript_Program>

<Marker>

 <include_graphics>FALSE</include_graphics>

 <name>ball</name>

 <revert_to>Source</revert_to>

</Marker>

<RGB_Filter>

 <hue_value>1</hue_value>

 <hysteresis>3</hysteresis>

 <min_value>110</min_value>

 <channel>4</channel>

</RGB_Filter>

<Blob_Size>

 <limit>1</limit>

 <min_area>5</min_area>

 <treat_as_color_image>FALSE</treat_as_color_image>

 <mask>FALSE</mask>

 <threshold>5</threshold>

 <max_area>0</max_area>

</Blob_Size>

<Erode>

 <count>1</count>

 <erode_borders>FALSE</erode_borders>

 <kernal_shape>4</kernal_shape>

</Erode>

<Fill>

 <four_pixel_connectivity>FALSE</four_pixel_connectivity>

 <size>0</size>

 <check_border>FALSE</check_border>

 <fill_with_average_color>FALSE</fill_with_average_color>

</Fill>

<Smooth_Hull>

 <window_size>50</window_size>

</Smooth_Hull>

<Center_of_Gravity>

 <show_coord>TRUE</show_coord>

 <threshold>-1</threshold>

 <display_as_annotation>FALSE</display_as_annotation>

 <density>-1</density>

 <size_index>4</size_index>

 <show_cog>TRUE</show_cog>

 <overlay_image>ball</overlay_image>

 <box_size>9</box_size>

 <shape_index>3</shape_index>

 <connect_line>FALSE</connect_line>

 <use_subpixel>FALSE</use_subpixel>

 <color_index>4</color_index>

 <show_box>TRUE</show_box>

</Center_of_Gravity>

60

<Display_Line>

 <x_end_map>COG_X</x_end_map>

 <x_start>0</x_start>

 <display_as_annotation>FALSE</display_as_annotation>

 <y_start_map>centerY</y_start_map>

 <y_end>0</y_end>

 <y_end_map>COG_Y</y_end_map>

 <x_end>0</x_end>

 <thickness>2</thickness>

 <x_start_map>centerX</x_start_map>

 <clear_image>FALSE</clear_image>

 <display_mode>1</display_mode>

 <y_start>0</y_start>

 <color_index>3</color_index>

</Display_Line>

<Calculate_Distance>

 <result>CALCULATE_DISTANCE3</result>

 <x_start>centerX</x_start>

 <x_end>COG_X</x_end>

 <y_start>centerY</y_start>

 <y_end>COG_Y</y_end>

</Calculate_Distance>

<Calculate_Angle>

 <result>ANGLE1</result>

 <x_start>sideX</x_start>

 <y_middle>centerY</y_middle>

 <x_end>COG_X</x_end>

 <y_start>sideY</y_start>

 <y_end>COG_Y</y_end>

 <x_middle>centerX</x_middle>

</Calculate_Angle>

<Marker>

 <include_graphics>FALSE</include_graphics>

 <name>place</name>

 <revert_to>Current</revert_to>

</Marker>

<Display_Variables>

 <display_as_annotation>FALSE</display_as_annotation>

 <font_size_index>2</font_size_index>

 <display_value_only>FALSE</display_value_only>

 <dim_background>TRUE</dim_background>

 <border_color_index>5</border_color_index>

</Display_Variables>

<Calculate_Distance>

 <result>CALCULATE_DISTANCE4</result>

 <x_start>COG_X1</x_start>

 <x_end>COG_X</x_end>

 <y_start>COG_Y1</y_start>

 <y_end>COG_Y</y_end>

</Calculate_Distance>

<VBScript_Program>

 <tab_size_index>1</tab_size_index>

 <script>'IMAGE PROCESSING

SetVariable "centerX" , 337

SetVariable "centerY" , 23

61

SetVariable "sideX" , 636

SetVariable "sideY" , 23

SetVariable "sideX2" , 2

SetVariable "sideY2" , 23

SetVariable "upX" , 337

SetVariable "upY" , 441

SetVariable "OUTER" , 380

calculateDistance = GetVariable("CALCULATE_DISTANCE")

calculateDistance2 = GetVariable("CALCULATE_DISTANCE2")

calculateDistance3 = GetVariable("CALCULATE_DISTANCE3")

Angle = (GetVariable("ANGLE"))+6

angle1 = (GetVariable("ANGLE1"))+6

SetVariable "Factor" , factor 'vertical line

realworld length = 37.7cm = 14.84249inch

factor = 14.84249/calculateDistance „to reset just OFF and reload then ON it back and reload this

line

SetVariable "ballrealdist" ,ball

ball = calculateDistance2*factor 'green line real world length

SetVariable "placerealdist" ,place

place = calculateDistance3*factor 'green line real world length

'KINEMATICS

SetVariable "A1" , a1

a1 = 5.68424 'length link1 in inch

 'ball diameter = 2.55905inch

SetVariable "A2" , a2

 'from joint1 to ground =

5.5inch

a2 = 8.46455 'length link2 in inch

SetVariable "X" , x

x = ball 'ball real world distance from center

SetVariable "Y" , y

62

y = -4.220475 'from joint1 to floor minus ball radius

SetVariable "X1" , x1

x1 = place 'place real world distance from center

SetVariable "Z" , z

z = -0.8

SetVariable "D1" , d1

d1 = 0.8

'calculate base angle

SetVariable "G" , g

g = atan2(z,x)

SetVariable "H" , h

h = atan2((-sqrt((z*z)+(x*x)-(d1*d1))),-d1)

SetVariable "DEG0pi" , deg0pi

deg0pi = (g+h)

SetVariable "DEG0" , deg0

deg0 = -deg0pi*180/3.14159 'joint1 angle

'calculate for joint2 angle(ball)

SetVariable "D" , d

d = (((x*x)+(y*y)-(a1*a1)-(a2*a2))/(2*a1*a2))

SetVariable "SQRT" , sqroot

sqroot = sqrt(1-(d*d))

SetVariable "DEG2pi" , deg2pi

deg2pi = atan2(d,sqroot)

SetVariable "DEG2" , deg2

deg2 = 90+((-90)+(deg2pi*180/3.14159))+4 'joint2 angle

'calculate for joint1 angle(ball)

SetVariable "J" , j

j = atan2((a1+(a2*d)),(a2*-(sqroot)))

SetVariable "K" , k

k = atan2(x,y)

63

SetVariable "DEG1pi" , deg1pi

deg1pi = (k-j)

SetVariable "DEG1" , deg1

deg1 = (-deg1pi*180/3.14159)+18 'joint1 angle

if deg2 < 0 then

 deg1 = deg1-15

 deg2 = 3

end if

'calculate for joint2 angle(place)

SetVariable "D2" , d2

d2 = (((x1*x1)+(y*y)-(a1*a1)-(a2*a2))/(2*a1*a2))

SetVariable "SQRT2" , sqroot2

sqroot2 = sqrt(1-(d2*d2))

SetVariable "DEG4pi" , deg4pi

deg4pi = atan2(d2,sqroot2)

SetVariable "DEG4" , deg4

deg4 = 90+((-90)+(deg4pi*180/3.14159))+4 'joint2 angle

'calculate for joint1 angle(place)

SetVariable "J2" , j2

j2 = atan2((a1+(a2*d2)),(a2*-(sqroot2)))

SetVariable "K2" , k2

k2 = atan2(x1,y)

SetVariable "DEG5pi" , deg5pi

deg5pi = (k2-j2)

SetVariable "DEG5" , deg5

deg5 = (-deg5pi*180/3.14159)+18 'joint1 angle

if deg4 < 0 then

 deg5 = deg5-15

 deg4 = 3

end if

64

'MAIN FUNCTIONS

SetVariable "ROUTINE" , routine

SetVariable "DATA" , data

cogBoxSize1 = GetVariable("COG_BOX_SIZE1")

SetVariable "CogBoxSize1" ,cogBoxSize1*1

calculateDistance4 = GetVariable("CALCULATE_DISTANCE4")

feedback = GetVariable("feedback") 'feedback

value

 If (calculateDistance4 > 110 AND CogBoxSize1 > 0) then

 routine = 1

 data =1

 end if

 If feedback = 0 then

 routine = 3

 data = Angle

 end if

 If feedback = 1 then

 routine = 4

 data = deg2

 end if

 If feedback = 2 then

 routine = 5

 data = deg1

 end if

 If feedback = 3 then

 routine = 6

 data = 57 'grip

 end if

 If feedback = 4 then

 routine = 8

65

 data = 100

 end if

 If feedback = 5 then

 routine = 9

 data = angle1

 end if

 If feedback = 6 then

 routine = 10

 data = deg4

 end if

 If feedback = 7 then

 routine = 11

 data = deg5

 end if

 If feedback = 8 then

 routine = 12

 data = 180 full grip=0

 end if

 If feedback = 9 then

 routine=2

 data=1

 end if

</script>

 <source_mode>gui</source_mode>

</VBScript_Program>

<Serial>

 <enable_send_sequence>TRUE</enable_send_sequence>

 <flow_control_cts>FALSE</flow_control_cts>

 <send_frequency_index>7</send_frequency_index>

 <send_only_on_change>FALSE</send_only_on_change>

 <console_mode_index>1</console_mode_index>

 <baud>6</baud>

 <data_bits>7</data_bits>

 <port>1</port>

 <send>\[ROUTINE]\[DATA]</send>

 <flow_control_dsr>FALSE</flow_control_dsr>

 <receive>\[feedback]</receive>

 <flow_control_out_x>FALSE</flow_control_out_x>

66

 <flow_control_in_x>FALSE</flow_control_in_x>

 <remember_as_default>TRUE</remember_as_default>

</Serial>

	1st
	2nd
	3rd
	4th

