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Abstract 

 

The ever increasing advances in the integrated circuit technology during the past decade has 
made it possible for electronic system designers to assemble complete systems-on-chips (SoC).  
As these System on chips have found their use in more and more computer, graphics, and 
networking hardware systems the level and complexity of functionality within them have 
dramatically increased.   At the same time shrinking time to market leaves little room for errors 
in the design.  Hence functional verification has become one of the major tasks in committing 
chips to fabrication.   Just as designs are pushing more towards reusable and portable 
environment so must the verification components and environment.  Also, more technologically 
advanced and high-pin packages allow each chip to have multiple bus interfaces, each of which 
may share internal resources in parallel and increase the possible concurrent operations.  
Therefore there has arisen a real and pressing need in the electronic design process for stand-
alone, pre-verified and built-in verification infrastructure, which can be easily plugged in the 
simulation-based validation tests.  The Verification Intellectual Property (Verification IP) is an 
integral and important component of such infrastructure and provides such mechanisms.   

 

In this technical document we present a foundation of a modeling architecture for the structured 
development of such verification components.  The architecture is based on the concept of 
layered methodology, which can be applied to general abstract and advanced testbench 
development for ASICS and SoC and systems.  In this paper the psuedo-code examples based 
on OpenVera Hardware Verification Language are provided to show the fundamentals of the 
modeling methodology.  In addition, general usability guidelines related to development of 
structured and re-usable code for verification IP, verification platform and infrastructure are 
highlighted.  
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Chapter 1: Introduction to Verification IP 
The Verification Intellectual Property (Verification IP) is the verification model and overall environment, 
which aids designers and verification engineers in the task of validating the functionality of their design. The 
Verification IP (VIP) is used in all levels of simulation-based verification. The Verification Intellectual 
Properties are based on standard protocols used in Networking, computer and system designs, such as 
PCI/PCIx, USB, Ethernet.  These components are pre-verified to the standard protocols and contain the 
necessary infrastructure for testbench generation and checking mechanisms as well as all the appropriate 
routines to create individual protocols, commonly known as Bus Functional Models (BFM).    

Verification IP components provide enhanced productivity to the system and ASIC designers by reducing the 
time to create the verification infrastructure and testbench environment including the required models.  The 
verification IP based on OpenVera Hardware Verification Language (HVL) allows verification and design 
teams to quickly and easily create random scenarios.  They also allow users to easily create directed test 
scenarios and test sequences for their designs.  These test cases greatly aid users in finding functional bugs 
early in design cycle, hence reducing the overall verification time.   

 

A typical SoC and verification IP with representation of testbench environments is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This technical document provides guidelines for structured development of such Verification IP.  It discusses 
requirements for modeling generators and checkers of standard protocols for a verification IP based on 
OpenVera Hardware Verification Language 1 using a layered testbench methodology.   

The modeling guideline is based on the layered architecture, which defines four basic layers for each 
Verification IP component. 

  
1. The readers are referred to “OpenVera User Manual” for full syntax and feature explanation of the language which also contains 
important information and guidelines on usage. Please refer to www.open-vera.com site. However for any questions and inquiries you 
can send email to vera-support@synopsys.com for immediate response. 

Figure 1: A Typical SOC with Vera testbench 
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Modeling Architecture Fundamentals  
A Verification IP defines the environment for simulating and testing the logical functionality of a given 
protocol and connects at the physical (logic) levels to the design under test. These models may handle timing 
checks for input/output signals. 

The modeling architecture is based on the layered testbench methodology.   Each Verification IP primarily 
consists of four layers as follows.   

Layer 0: Signal:          Pin Interface. 

Layer 1: Command:     Protocol Command and Data Packets. 

Layer 2: Transaction:   High-level Transactions and Traffic Generation and Checking. 

Layer 3: Application:    Test Scenario Generation mechanism  

 

Figure 2 shows the overall picture of these four layers mentioned with a pseudo-code example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Layering types 
In general software development the there are two basic types of layering: Strict and Loose layering.  The 
concept of strict layering enforces the fact that the communications among elements within each layer be 
moderated in such a way that there is a fixed and strict channel of access between each layer. This means that 
there are only selected functions and tasks are allocated for passing information between layers.  On the other 
hand loose layering allows freer access within each layer.   

Figure 2:  Representation of Layers in Verification IP with an example 
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In the Verification IP architecture a hybrid approach is modeled.  Wherever possible strict layering should be 
implemented, however, if there is a need to allow calls to be made amongst layers to make modeling more 
user-friendly, it should be done with care.  For example, accessing pin interfaces from the top layer, layer 3 or 
the main program is allowed.  

 

Layer 0: Signal Layer 
Layer 0, signal layer or physical layer, allows direct access to Design-Under-Test (DUT) signals at the 
physical boundary.  

•  Provides signal and task level connectivity into the physical representation of the DUT. Each DUT 
or modules of the system under test could be written in HDL, HVL, C/C++, or other languages.  

•  Interfaces between the test environment (including other Layers) and the DUT.  

For example, if the DUT is implemented in HDL and the rest of the testbench in OpenVera, then this 
representation layer would simply consist of the interface file (.if file), the virtual port and bind 
declarations, and the task declarations statements between DUT and Vera.   

Another example would be if an emulation engine represents the DUT, then this layer would consist 
of C-code that would connect OpenVera testbench to an emulation engine over the computing 
network.  

•  Monitors the design signals for physical interface checking and correctness.  These can also be used 
in upper layers. 

 

Layer 1: Command Layer   [protocol command and data packets] 
The command layer implements the BFMs, protocol generation, checking routines, and monitor methods at 
the most primitive levels.   

•  It provides calls to BFM commands and contains the basic command for the standard protocol.  

•  This layer can be controlled and configured per user application from layer1and the upper layers, 
i.e., methods can be called in a directed environment if desired by users.   

•  Provides for monitoring routines, checkers and self-checking components within the BFM.    

•  Provides appropriate data-packet, data structure in the primitive classes with their corresponding 
randomizeable parameters and built-in constraint mechanisms 

•  Also provides initialization methods for the verification environment and design under test.  

•  As an example, in the case of PCI Verification IP, this layer would consist of basic local  pci_read 
and pci_write commands. 

 
Layer 2: Transaction Layer   [Traffic and checking] 
The transaction layer implements a high-level transaction generation.  At this level, sequences of BFM 
commands can be generated in a directed and automatic randomized fashion and checked for correctness.  

•  Users can identify the order of the sequences and the distribution of sequence of transactions and 
data packets at this layer.  

•  For example in a PCI Verification IP, this can be a Read_back_to_back command or a 
Read_write_seq command, where the command itself contains a sequence of lower level simple 
pci_read or pci_write commands. Another example can be a burst read/write or 
memory_write_multiple sequence.  

•  The self-checking components provided in this level will use the lower layer commands, as well as 
creating specialized formats for command generation, which gets mapped to routines and methods in 
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lower layers. For example, the data for  pci_read and pci_write commands/transaction can be 
compared with the expected data at layer 2.   

•  The checking of results can also be done through a checker routine, i.e, a scoreboard or validation 
mechanism that checks the actual output(s) against the expected value.  This is usually accomplished 
by feeding the generated data patterns to a checker engine, which then compares it with the value it 
snoops from the output points.   

•  This layer also handles proper logging of the results and statistics, usually to a file.  Note that the 
checking mechanisms, logging and statistics gathering can reside in this and the upper layer. 

We also recommend the object-oriented paradigm for the structure of base classes and usage of extension to 
the class and its methods.  In this flow the main classes in the component are defined virtual requiring the 
extension(s) to be defined and declared.  This will maximize flexibility for re-use of verification IP.  

 
Layer 3:  Application Layer [Test scenario Generation and Checking Mechanisms] 
The application layer is the highest-level abstraction in the Verification IP, where application specific test 
scenarios can be generated in pseudo-random and full-directed environments.  

•  The configuration of all the lower layers can be controlled from layer3.  

•  Actual application services are reflected in this layer. In the PCI example, users should be able to 
specify the number of Masters, Slaves and distribution of specific transactions per initiator or 
Targets with test scenarios and sequences of transactions related to each Master and Slave.  

•  This layer contains the intelligence to decode the scenarios to call appropriate lower level methods 
and routines upon execution of transactions. 

•  The checking mechanisms in this layer depend mainly on the routines/methods in lower layers. 
These mechanisms can use scoreboard/checking engines in this layer in conjunction with the lower 
layer routines and compare expected values with sampled values at appropriate outputs.   

•  This layer provides proper logging and statistics gathering for the tests and scenarios. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3: A top-down view of Verification IP layered object formation 
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Bus Functional Model, Protocol Checking, Monitor and Functional Coverage 
In conjunction with the layers described in the previous sections, let us note that the bulk of BFMs, the 
protocol generators as well as protocol checking and monitoring scheme is intended to be embedded in the 
signal and command layers.  The functional coverage routines and methods will allow users to gather 
information about tests, most importantly about standard protocols’ functionality coverage.  As such, these 
coverage methods should be accessible from higher layers and can act as templates for users to add their own 
in the higher layers.   

 

BFMs generate the input stimuli to the DUT. The methods described by BFM commands directly relate to the 
functionality of protocol and would be configurable to users specific input.  
Protocol checks and monitors are used to ensure the standard compliancy and monitor the correct bus 
activities. Monitors are developed as integral part of verification IP and should be dynamic and include 
specific and descriptive error messages that are user controllable.  OpenVera technology allows protocol 
checkers to be developed as an embedded part of the verification IP or as a standalone checker module.   

 

The Verification IP embedded Checkers and Monitors are usually included in Layer1 and can be accessed by 
all the layers.  The OpenVera Assertions (OVA) as part of OpenVera HVL provide a clear, concise and 
highly abstract mechanisms to describe sequences of events and to test for their occurrence.  The OVA can 
also be used to specify functionality to simulate and measure functional coverage.  The template and macro 
capability built in OVA allows creation of pre-verified stand-alone abstract checker modules and IP that will 
be easily used and re-used in a simulation-based environment.  Please refer to chapters 6 and 7 for more 
explanation and example usage. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

We also note that the testbench and Verification IP configuration is to be provided at higher layers, for 
examples at layers 2 and 3. In this way a user can configure the Verification IP and allow the commands 
and proper stimulus to be generated for exercising the DUT. 

Figure 4: Representative verification environment with Verification IP 
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Fully directed and pseudo-random tests 
The Verification IP environment uses the capabilities in OpenVera to allow creation of fully directed test 
suites and random test cases from the same base with ease.  The randomized test and sequence generation is 
orchestrated through the constraint blocks.  These blocks can be dynamically manipulated throughout the 
simulation. The information about routines and parameters at each layer should be clearly documented to 
allow users to create directed and focused test cases. 

 

In the following chapters, we will first provide a brief description of the Verification IP layers followed by 
a more detailed discussion of each layer.  In this light, we provide pseudo-code as examples as well as 
expected deliverables for such Verification IP.  
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Chapter 2: Layer0, Signal Layer  

Layer0 provides a signal level interface between the OpenVera Verification IP, its testbench infrastructure 
and design under test (DUT), mainly assumed to be in a Verilog or VHDL representation.  Note that in this 
layer, template wrapper files are also provided between Vera environment and design under test.  Interface 
files (*.if.vrh) will provide a clean and manageable way to determine how OpenVera drives and samples 
signals, defines the clock to which the signals are tied, and identifies a set of signals through which 
OpenVera communicates with the HDL (DUT) environment.  The recommended method for DUT signals 
and internal nodes to be accessed is through virtual ports and its corresponding binding routines.  Taking 
PCI signal information as an example, we show the basic construct in the following paragraphs. 

Virtual Ports and Bind constructs 

It is most suitable to use the ports and bind features in OpenVera, where a virtual port contains a set of 
signal members grouped together under a given name. Port signal members are arbitrary placeholders that 
are then linked to the actual interface signals via binding. Example 1 shows an interface structure for PCI 
protocol.   

Example1: Interface file for a PCI BFM 
interface PCI {
inout [63:0] AD PSAMPLE PCI_SAMPLE_SKEW PHOLD PCI_DRIVE_SKEW depth 1 ;
inout [7:0] C_BE_ PSAMPLE PCI_SAMPLE_SKEW PHOLD PCI_DRIVE_SKEW ;
inout PAR PSAMPLE PCI_SAMPLE_SKEW PHOLD PCI_DRIVE_SKEW ;
inout FRAME_ PSAMPLE PCI_SAMPLE_SKEW PHOLD PCI_DRIVE_SKEW ;
inout TRDY_ PSAMPLE PCI_SAMPLE_SKEW PHOLD PCI_DRIVE_SKEW ;
inout IRDY_ PSAMPLE PCI_SAMPLE_SKEW PHOLD PCI_DRIVE_SKEW ;
. . . }

 

In example 2 a representative port and bind description are provided. 

Example2: Ports and Binds to connect PCI signals to VERA interface signals: 
port pci_port {
ad ;
c_be_ ;
par ;
frame_ ;
trdy_ ;
irdy_ ;
. . . }

bind pci_port PCI_BIND {
ad PCI.AD ;
c_be_ PCI.C_BE_ ;
par PCI.PAR ;
frame_ PCI.FRAME_ ;
trdy_ PCI.TRDY_ ;
irdy_ PCI.IRDY_ ;
. . . }

Static and dynamic signal connections 

Every Verification IP should contain static connection routines for use in the testbench, which can be 
accomplished through directly incorporating hdl_nodes or through configuration (.vcon) file.  In 
conjunction with this ability to dynamically connect signals can be provided through signal_connect 
methods.  This method is a more reusable approach.  The following example shows sample code for 
signal_connect. 

Example3: dynamic connection with signal_connect() 
…..
signal_connect (pci_port.$ad, PCI.AD);
signal_connect (pci_port.$c_be_, PCI.C_BE_);
signal_connect (pci_port.$frame_, PCI.FRAME_);
……
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Here we also show an example of direct connection using configuration “.vcon” file.  For multiple 
modules/mains, users can employ project-based configuration mechanism. VERA’s multiple module 
support is based on its implementation of project-based methodology. There are three major components to 
this approach: 

A configuration (.vcon) file for each module 
The VERA object (.vro) files for each module type 
An overall project (.proj) file specifying VERA source code 
 

The .vcon file’s “connect” statement can override an interface signal specification in the VERA program. 
This includes changing port-connected interface signals to direct connect interface signals (and vice-versa), 
and changing the HDL path to which signals are connected. Please refer to the OpenVera User Manual 
for more details. The following sample code is an example of a .vcon file for PCI Verification IP. 

 

Example 4:  Sample OpenVera .vcon file for a PCI master 
timescale 100ns/10ns
clock SystemClock period 100
connect input pcimaster.PCLK=testbench.u1.PCLK
connect output pcimaster.PIDSEL=testbench.u1.PIDSEL
connect output pcimaster.PGNTNN=testbench.u1.PGNTNN
connect output pcimaster.PRSTNN=testbench.u1.PRSTNN
connect output pcimaster.PSBONN=testbench.u1.PSBONN
connect output pcimaster.PSDONE=testbench.u1.PSDONE
. . .}

Verilog and VHDL top level test and Vera shell wrapper files 

Since the Verification IP can be used in any mixed HDL environment, appropriate set of templates of top 
test files and Vera shell wrapper files should be supplied with the model.   The wrapper files and top-test 
files will be modified by users in an SoC testbench environment since other models and interface 
connections are needed and will be added as appropriate. 
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Chapter 3: Layer1, Command [BFM, protocol, data] Layer 

All primitive access methods for BFMs, monitors, checkers and packet data structures are implemented in 
this layer. These BFM commands and activities at the input and output boundaries, as well as signal levels, 
are also monitored at this level.  

BFM and commands will be discussed in this chapter.  There will be a more detailed review of functional 
coverage, checking and monitors in chapter 6. 

It is a requirement that the description of the BFM’s individual methods be encapsulated in OpenVera 
Classes, following the object-oriented paradigm.  Given that most standard protocols are sufficiently 
complex, one can create low-level primitive methods (tasks and functions), which are used to create more 
complex and complete full cycle transactions corresponding to specified protocols.  Using a PCI standard 
protocol, we will show sample pseudo code examples to highlight the modeling architecture.

Therefore in layer 0 and 1, we can define the lowest layers of the connection to device under test as well as 
some combination of the functionality to create higher-level objects.  For example in the PCI/PCIX case, 
one may create the layers of object as follows: (Here the structure/header of arbiter class is shown. The 
more detailed code is inserted in Appendix A)

Example 5: A psuedo-code for a pci_arbiter_model class 

//include appropriate header files
// for example extern for SynPCIprnt object
class Syn_Pci_arbiter_model {

pci_port devPrt, // binds to the PCI bus
integer type, // priority rule (Round_Robin or Two_Level_Round_Robin)
integer parking // 0: do not park, 1:park to the last winner

task new (pci_port inPrt, integer type, integer parking, … );
task pci_arbiter_start(..);
…
} //end of class Syn_Pci_arbiter_model

task Syn_Pci_arbiter_model::new (pci_port inPrt,..)
{

devPrt = inPrt; // make the object binding singals
…..
} // end of new task

task Syn_Pci_arbiter_model::pci_arbiter_start(..)
{
integer rstlast, lastwinner, lastwinner2, winner, curwinner, granted;
bit [7:0] req_, gnt_, gnt_l;
bit frame_, irdy_, rst_;
if( (type != Two_Level_Round_Robin && type != Round_Robin) || (parking > 1) )
SynPCIprnt.SynPrint("Illegal argument for pci_arbiter_model()\n");

…..
} // end of task pci_arbiter_start

In this layer, appropriate classes must be developed to allow creation of devices specific to the standard 
protocol.  For example, for an Ethernet design, a receiver class and a transmitter class should be defined.  
For the above example of PCI, one defines a master_device class as well as target, etc. The following 
header code shows the class for a PCI master device.  This class will have methods, which use primitive 
bus functional methods to interact with the design under test.  Note that these primitive sets can be hidden 
from the users and only be used to define a PCI master device. 

Example 6: a class describing PCI Master device 
class Syn_pci_master_device {

pci_port devPrt, // binds to the PCI bus
integer mid // Master id, which REQ to be used (0-7)

...
task new (pci_port inPrt, integer inMid); // binds to the PCI port

task pci_master_burst(..);
task pci_master_arb (..);
…
} // end of the class Syn_pci_master_device
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Here we also show an example of data structure for an Ethernet packet definition, which can be used as a 
template for similar packet data description.  The following shows a partial Ethernet Mac packet frame 
description.  Note that the randomization and serialization attributes have been inserted here for use in this 
and upper layers to automatically randomize fields with a given set of constraints.  Usually this set of 
constraints can be defined as template so that users can then add more according to their specific design 
implementation. 

Example 7:  Example of an Ethernet data packet class with randomization 
virtual class Syn_Ether_packet {
integer Pkt_Id; // for purpose of keeping track of pkt
rand {
packed bit [47:0] dest;
packed bit [47:0] srce;
packed bit [15:0] type;

bit [15:0] length;
packed bit [7:0] data [] assoc_size lenght;
…..
}
packed bit [31:0] crc; // calculated after randomization

// can describe constraints which are controlled from higher
// layers by accessing the string name of each constraint
constraint srce_range {

srce < MAX_SRC;
srce > MIN_SRC;

}
constraint dest_range {

dest == (type_set) ? void : srce);
}
constraint Pkt_lengths {

length dist {
RANGE_1 :/ dist_1,
RANGE_2 :/ dist_2,

..}

task new(..);
task pre_randomize(..);
task calculate_crc(..);
task post_randomize(..);
...
} //end of class Syn_Ether_packet

We noted the fact that primitive methods maybe required in complex standards to form higher abstract 
objects.   For our PCI example, one can create a set of primitive routines that access the PCI bus as a 
master.  Therefore the combination of primitive tasks completes a full bus command for PCI protocol. 
Example 8 shows a pseudo-code sample for a master burst read through sequences of primitive methods. 

Example 8: sample code for bus command by combining the primitive methods 
task Syn_pci_master_device::pci_master_burst (

....
pci_master_arb( .. ) ; // get bus arbitration
pci_master_rd_init( .. ) ; // initiate master read
repeat ( number_of_burst_cycles - 1 )
pci_master_rd_sub( .. ) ; // subsequent master read
//end of pci_master_burts method

)
// Another example of method
task Syn_pci_master_device::pci_master_arb(
integer dly, // Number of cycles to delay before asserting REQ.
integer mid, // Master id, which REQ to be used (0 - 7).
integer max_latency, // Maximum latency to wait for grant.
bit lock, // = 1 means the master wants lock ownership.
var integer ret_status, // Return status, 0:success, -1:failed
(bit keep_request = 1'b0) // = 0 request is released with grant

// = 1 request is held asserted even after grant
.......

)
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A similar class can be created for pci_target_core_device with appropriate methods to properly respond to 
activities on the bus according to the protocol.   

Example 9:  An example of pci_target_core_device  
class Syn_pci_target_device {
pci_port devPrt // binding the signals
.....

// local paramters for device manipulation
bit [15:0] device_id;
local bit [15:0] vendor_id;
local bit [7:0] revision_id;
local bit [7:0] mem_space[];
local bit [7:0] iom_space[];
local bit [7:0] cfg_space[];

task new ( pci_port inPrt, ...);
task terminate_target(..);
task device_config(..);
task pci_target_rd_init(..);
task pci_target_rd_sub(..);
task target_rd(..);
task target_burst_rd(..);
task start_target_model(..);

...
} // end of class

task Syn_pci_target_device::new(pci_port inPrt,..){
..

devPrt = inPrt; //binds to the PCI signals.
// device is instantiated
...

}

Note that because of the complexity of the protocol set of primitive routines (atomic activities which allow 
full bus commands) a class is formed by combining the target driver primitives. Example 10 below shows a 
sample code for PCI target burst read method. 

Example 10: Sample code combination for Target Burst Read method 
task Syn_pci_target_device::trgt_burst_rd (

....
pci_target_rd_init (..); // initiate target read wait
repeat (number_of_burst_cycles -1)
pci_target_rd_sub(...); // subsequent target read

)
task Syn_pci_target_device::trget_rd (

...
pci_target_rd_init(..);
pci_target_rd_sub(..);
... )

}

The following shows a typical sequence of primitives for running a target model, which comes alive and 
responds correctly to actions.

Example 11:  Sample code for a PCI Target using primitives 
task Syn_pci_target_device::start_target_model(

....
pci_target_rd_addr(...); // With TCTL_MONITOR on

// Check the returned address and command to see if we should repond
if (respond)
{
if (read_response)
{ pci_target_rd_devsel(...); // Respond with a device select
pci_target_rd_sub(...); // Do a read data transfer.

...}
else
{ pci_target_wr_devsel(...); // Respond with a device select
pci_target_wr_sub(...); // Do a write data transfer.

...}

 

Initialization routines 

Proper device initialization routines and register and pin setups must be carefully crafted, so that upon start 
of test, no unknown behavior is seen and the test suite and design are in a known and correct state.
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Chapter 4: Layer2, Transaction and Traffic Generation and Checking  
 
At this level, the Verification IP must provide an abstraction layer through objects and classes with its own 
specific and appropriate randomization/constraint methods that allow creation of fully directed and pseudo-
random sequences of higher-level transactions to stimulate the DUT.  Implementation of result checking 
through self-checking mechanisms are embedded and used here.  The checks can be accomplished using an 
engine or scoreboard methods that compare sampled outputs with expected values, which are provided by 
the traffic/data/transaction generation routine. 

For generation methods, the guideline is to place the overall structure in classes, which use automatic 
randomization routines to assemble a legal sequence of transaction and data packets.  Each sequence must 
then be decoded and dispatch appropriate routines in lower layers to drive and sample data to the DUT.  

In a sample example using the PCI environment, we show a simple structure, which can be used as a base 
to create sequences of activities on the bus.  

Note that the functional coverage routines for BFM command activities should be connected in this layer to 
provide for reporting and statistics gathering.   We also note that each transaction can be defined in a task 
or class method.  Constraint setting and automatic randomization of fields within each transaction must be 
appropriately defined and declared according to each specific standard protocol requirements. 

Below is an example of setting constraints to some of the fields of PCI I/O read and I/O write commands, 
which are all defined in a Class called “Syn_Pci_cmd_operation”. 

Example 12:  Sample code for a PCI command Operation Class 
class Syn_Pci_cmd_operation {

rand bit [31:0] addr; // Address for 32 bit PCI accesses
rand bit [63:0] data[20]; // PCI data
rand integer byte_cnt; // Number of bytes to transfer

….
constraint c_io_wr { // Constraint for I/O Writes
byte_cnt dist {1 :/ 30, 2:16 :/ 70};
addr > IO_L_0;
addr < IO_U_0 - (byte_cnt * 4);

}

constraint c_io_rd { // Constraint for I/O Reads
byte_cnt dist {1 :/ 100, 2:16 :/ 100};
addr > IO_L_0;
addr < IO_U_0 - (byte_cnt * 4);

}
task new(..);
task get_opr(integer icommand);
task do_cmd (..);
..
} //end of class definition

task Syn_Pci_cmd_operation::new(..) {
void=constraint_mode(OFF,”c_io_rd”);
void=constraint_mode(OFF,”c_io_wr”);
} //end of task new!

task Syn_Pci_cmd_operation::get_opr(integer icommand) {
string constr;
bit [32:0] max_addr;
bit [36:0] addr_index;

case(icommand) {
IO_RD : constr = “c_io_rd”;
IO_WR : constr = “c_io_wr”;

}
void=constraint_mode(ON,constr);
void=randomize();
void=constraint_mode(OFF,constr);

} //end of get_opr task
task Syn_Pci_cmd_operation::do_cmd (..// decode the above and call appropriate
//bfm routines from master/target device
} // end of Pci_cmd_operation
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Note that in the example above, the c_io_rd and c_io_wr methods could be defined in a separate class or in 
the same class, or be part of the BFM class itself. 

One other advanced method to introduce a higher level of randomization is to use Vera sequence 
generation feature in conjunction with the above mentioned class structure, in this case the cmd_operation 
class.  A sample code follows: 

Example 13: Example of Vera Sequence Generator (VSG), randomizing PCI  commands 
….
class Syn_Pci_cmd_generator
{
….
Syn_Pci_cmd_operation opr;
….//other variables
task new(…);
task set_dist_param(..);
task set_cmd_seq(..);
..
}
..
..
task Syn_Pci_cmd_generator::set_cmd_seq (..)
// other parameter settings
..
// here use the appropriate vsg style
randseq()

{
commands: io_rd_prod | io_wr_prod |

mem_rd_multi_prod;
io_rd_prod: &(io_rd_cmd_w) io_rd_cmd;
io_rd_cmd: {

opr.get_opr(IO_RD);
do_cmd(2, mstr);

};
io_wr_prod: &(io_wr_cmd_w) io_wr_cmd;
io_wr_cmd: {

opr.get_opr(IO_WR);
do_cmd(3, mstr);

};
mem_rd_multi_prod: &(mem_rd_multi_cmd_w) mem_rd_multi_cmd;
mem_rd_multi_cmd: {

opr.get_opr(MEM_RD_MULTI);
do_cmd(12, mstr);

};

} // end of randseq
)
…..//other routines.

 
Resultant data and response from the design should be checked through check engine and appropriate self-
checking routines in this layer. 
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Chapter 5: Layer3, Test Scenario or Application Layer 
 
This layer is the highest level of interaction with the DUT for test suite creation.  At this level, users will 
have control over creating a combination of different test scenarios based on the specific application.  
Through setting parameters either in the constraint segments of the class or parameters for the sequence 
generation, psuedo-random test suites can be generated.   

Checking the results is of course more domain specific.  For example for a PCI test, one may want to 
follow memory access of a master device with a follow-on transaction that checks the validity of the data.  
For a networking design, a packet or frame received at the receiver side can be checked via a mini-
reference mechanism at the transmit side.  In this layer, a Verification IP must also provide facilities to 
allow checking of all transactions at the end of the simulation.  In a networking testbench environment, one 
can use this to check that all packets and frames have arrived at their destination sides.  The following is an 
example of a class for test scenario, using the psuedo-code for PCI. This class is responsible for holding a 
user-defined scenario, and executing the test, stimulating the design and checking the response as specified 
in the scenario. 

Example 14: A sample code for test environment class 
class Syn_Pci_test_gen {

// local variables for control of test -- distribution
// and random sequences
integer test_seq;
bit directed; // can be used to bypass all randomization
string test_flow_name; // for identification purposes
// instantiate targets/masters/monitors/checkers/
// and coverage elements object holders
Syn_Pci_master_device sPciM[];
Syn_Pci_targer_device sPciT[];
Syn_Pci_monitor sPciMntr[];
Syn_Pci_arbiter_model sPciArb;
Syn_Pci_coverage_core sPciCvrg;

Syn_Pci_Prtcl_Check sPciChk;
Syn_Pci_cmd_generator sPciCmd;

task new(string test_flow_name);
// initialize all objects with appropriate parameters

task setup_config(..);
task setup_test_seq(..);
task start_test_seq(..);
..

} //end of class definition

task Syn_Pci_test_gen::setup_test_seq (..)
{

while (Syn_Pci_not_end_of_test) {
// setup parameters here
randseq () {
// ..
PCI_TESTS:
&(memory_dist) MEMORY_SEQ |
&(io_dist) IO_SEQ |
&(complx_dist) INTERLEAVED_SEQ |
&(directed) TEST_SUITE_DIRECT;

MEMORY_SEQ:
&(parma1) {sPciCmd.set_dist_param(..);

sPciCmd.set_cmd_seq(..);} |
&(rpt_factor) MEMORY_SEQ;

IO_SEQ:
&(parma3) {sPciCmd.set_dist_param(..);

sPciCmd.set_cmd_seq(..);} |
&(rpt_factor) IO_SEQ;
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//..
TEST_SUITE_DIRECT:
//.. Directly and easily setting parameters and calling
// routines to generate desired and controlled sequences
// without constraint manipulation and with ease.
// Or calling a sequence generated or test-vectors created in
// advance for specific compliancy test.

}

We can now see what a sample test would consist of.  The following code segment shows the basic 
structure of the main test program.  Note that parameters for the lower modules and layers can be set from 
this main highest level.  In a typical SoC environment, instances of other verification IP such as USB, 
Ethernet, will be instantiated in this main test program level.  The interaction between the device under test 
and verification IP through user-defined scenarios, which are executed, by the verification IP should be 
carefully monitored and recorded to validate the design. 

 

Example 15: A sample code for main program test routine 
….
#include <vera_defines.vrh>
// include appropriate header files as well as
// external custom HDL and/or c/c++ routines.
#include “pci_master.vrh”
#include “pci_slave.vrh”

program main_test {
// instantiate individual masters/targets
// or call the test scenario generator for example.
Syn_Pci_test_gen test1Seq;
// ..
test1Seq = new(..); //proper objects
test1Seq.setup_config();
test1Seq.setup_test_seq();
test1Seq.start_test_seq();
test1Seq.start_check_engine();
test1Seq.generate_report();

..

..
}
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Chapter 6: Monitors, Checkers, Functional Coverage 
In this chapter, a basic guideline and methodology is discussed for developing the monitors, checkers, and 
functional coverage modules for the verification IP. 

Monitors 
As described in previous chapters, monitor routines should be embedded in class structures.  Users can 
define a virtual base class for monitor objects, which act as a template and will be extended to define 
additional methods.  These monitor objects can be called from different layers independent of how many 
BFM are actually instantiated by users.  In our PCI example, where many master and target devices can be 
instantiated in the testbench environment, users should be able to use one set of monitor object to handle 
the bus activity monitoring.  Here is an example of two PCI monitor class. 

Example 16: PCI Initiator and Target Monitors 
virtual class Syn_Pci_monitor
{
pci_port devPrt; // binding the signals
.....

// local paramters for device manipulation
bit [15:0] device;

task new ( pci_port inPrt, ...);
task pci_monitor(..);
task print_status(..);
….
} //end class Syn_Pci_monitor

task Syn_Pci_monitor::pci_monitor()
{
fork
while(Syn_Pci_not_end_of_test)
{
bit [3:0] ret_cmd;
bit [63:0] ret_addr;
integer ret_status;

pci_rd_addr (..);
// ..
print_status(ret_status);
}
join none

}

class Syn_PCI_Mon extends Syn_Pci_monitor()
{
// specific information required per monitor
// paramters for device manipulation
bit [15:0] Mon_device;

task new ( pci_port inPrt, ...);
task Special_pci_monitor(..);
task Special_print_status(..);

} //end class Syn_PCI_Mon

task Syn_PCI_Mon::Special_pci_monitor()
{

//set appropriate parameters
pci_monitor(..); // call routine

}

Functional Coverage 
The functional coverage routines and methods will allow users to gather information about the stimulus as 
well as the standard protocols. Users of VIP will use the provided coverage object as template and add their 
own coverage definitions.  The same approach as described for monitors can be used in this case. That 
means creating a virtual based class that could be extended by users’ defined-classes. Coverage objects can 
be defined in this virtual based class and can be turned “OFF” by default. All Verification IP layers should 
be able to access these objects through appropriate methods.  Sample coverage module is shown below. 
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Example 17:  Sample coverage definitions for PCI Commands, address modes, Transaction 

coverage_def Syn_pci_cmd_cov (bit[4:0] addr_cmd)
{
coverage_option = LO;

state Int_Ack_32 (5'b1_0000);
state Spec_Cyc_32 (5'b1_0001);
state IO_Rd_32 (5'b1_0010);
state IO_Wr_32 (5'b1_0011);
…..}

coverage_def Syn_pci_term_cov (bit[4:0] ctrl_sig)
{
/*** check for PCI control signals and define valid transactions ***/
state cycle_start (5'b01111),

mstr_rdy_b (5'b00111),
mstr_rdy_s (5'b10111),
data_xfer (5'b00001)….;

/*** Define all valid states of control signals ***/
trans vld_cyc_start (

"mstr_rdy_b" -> "cycle_start",
"mstr_rdy_s" -> "cycle_start",
"data_xfer" -> "cycle_start",
"trgt_abort" -> "cycle_start",…..;

…..}
coverage_def Syn_pci_tx_cov (bit[8:0] pci_tx_type)
{

coverage_option = LO;
/*** I/O Read and Writes***/

state IO_Rd_32_S_Norm (9'h041),
IO_Rd_32_B_Norm (9'h042),
IO_Rd_32_MAbt (9'h043),…..;

state IO_Wr_32_S_Norm (9'h061),
IO_Wr_32_B_Norm (9'h062),
IO_Wr_32_MAbt (9'h063),….;

coverage_goal = 100;
} // end of pci_tx_cov coverage definition

These coverage definitions can be encapsulated in a coverage class as shown below.  

Example 18: Sample code for PCI Coverage Class 
class Syn_Pci_coverage_core
{
pci_port devPrt; // bind the pci connection
bit [15:0] supported_cmd;
bit global_coverage;
bit accumulate_cov;
Syn_pci_cmd_cov cmd_cov;
Syn_pci_term_cov term_cov;
Syn_pci_tx_cov tx_cov;
event start_cmd_cov;
event start_term_cov;

event start_tx_cov;
task new(..);
task coverage_monitor(..);
task coverage_report(..);
…….

}// end of class definition
task Syn_Pci_coverage_core::coverage_monitor(..)

{ …….
cmd_cov = newcov(addr_cmd, sync(ALL,start_cmd_cov));
term_cov = newcov(ctrl_sig, sync(ALL,start_term_cov));
tx_cov = newcov(pci_tx_type, sync(ALL,start_tx_cov));

……} //end of task Syn_Pci_coverage_core::coverage_monitor
task Syn_Pci_coverage_core::coverage_report(..)

{..

    //control reporting mechanism for coverage commands 
}
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Protocol Checkers 
The function of protocol checkers is to insure that the logical activities on the I/O bus comply with the 
standard protocol definition for the bus architecture.  The checkers would be able to flag any violation from 
the protocol standards.  The functionality of checker should be organized in a base class which can be 
extended on a need basis.    

Example 19:  Sample code for PCI protocol check class 
class Syn_Pci_Prtcl_Check
{

pci_port devPrt; // bind the pci connection
..
task new(..);
task pci_mstr_ret_status(..);
task pci_check_reset(..);
task pci_check_interrupt(..);
task pci_check_perr(..);
task pci_check_dpar(..);
task pci_cache_snoop(..);
…….

}// end of class definition
task Syn_Pci_Prtcl_Check::pci_mstr_ret_status( bit [31:0] errormask,

var integer Syn_Pci_ret_status
)
{
bit [31:0] status;
status = Syn_Pci_ret_status;
status = status & ~(errormask|MSTR_FATAL);
if (status)
{
if (status & MSTR_NORMAL)
SynPCIprnt.SynPrint ("MSTR: Unexpected NORMAL termination from target occurred\n");

if (status & MSTR_RETRY)
SynPCIprnt.SynPrint ("MSTR: Unexpected RETRY from target occurred\n");

if (status & MSTR_DISCON)
SynPCIprnt.SynPrint ("MSTR: Unexpected DISCONNECT from target occurred\n");

..

..);
if (!flag(OFF))
{
SynPCIprnt.SynPrint ("MSTR: Internal error, unknown error status found\n");
flag(OFF);}

Syn_Pci_ret_status |= MSTR_FATAL; // Mark that a fatal error has occurred.
}

task Syn_Pci_Prtcl_Check::check_dpar(
bit [7:0] ben,
bit [63:0] data,
bit dt_par_err, // pretend data parity error
bit err_dperr,
bit err_dperr64,
bit [63:0] ad,
bit [7:0] c_be_,
bit mode64

)
{
bit par, par64, epar, epar64;
epar = ^ { ad[31:0], c_be_[3:0] };
epar64 = ^ { ad[63:32], c_be_[7:4] };
@(posedge devPrt.$clk);
par = devPrt$par; par64 = devPrt.$par64;
// Print out error messages if enabled
if (err_dperr && par !== epar)
SynPCIprnt.SynPrint("TARG-WR: Data parity error got PAR = %0b expected = %0b

(data=%0h,ben=%0h)\n", par, epar, data, ben);
if (mode64 && err_dperr64 && par64 !== epar64)
SynPCIprnt.SynPrint ("TARG-WR: Data parity error got PAR64 = %0b expected = %0b

(data=%0h,ben=%0h)\n", par64, epar64, data, ben);

}



 Verification IP Modeling Architecture  version 1.1  

© Synopsys, Inc. 2001-2002 May 2002 Page 23 of 32  
  

Chapter 7: OVA based Protocol Rule Checkers 
 
As discussed in chapter 1, OpenVera Assertion (OVA) provides a highly abstract and concise declarative 
mechanism to code the specification of the sequences of events and activities of a standard bus protocol.  

The Assertion based verification component embodied in OVA protocol rule checker can work in a stand-
alone mode, i.e, can be plugged in any design verification environment, which uses the standard protocol 
without disturbing the structure.  The function of protocol rule checkers is to insure that activities on the 
I/O bus do not deviate from standard protocol definition and report any violation from the standard 
operation.   

For example, a PCI compliance protocol checker can be developed using the abstraction in OVA syntax 
that is used in dynamic simulation of a PCI based SoC.  Note that the same OVA checks and assertions can 
also be used in formal verification environment for the standard protocol. The following example shows 
psuedo-code segments of a protocol rules check. 

    

Example 19:  Sample code for OVA based PCI compliance rule checker  

// include appropriate header files for macros
// and template use
module Syn_Pci_MstrSlv_check (…) {
…
Syn_PciMaster_check(…);
Syn_PciSlave_check(…);
}

template Syn_PciMaster_check(…):{
…
Syn_Pci_BusOptn_Rule_8_b(…);
Syn_Pci_BusOptn_Rule_8_c(…);
…
}

template Syn_Pci_BusOptn_Rule_8_b (clk): {

// Once FRAME has been de-asserted, it cannot reassert in the same
// transaction. If FRAME is de-asserted and the cycle is not yet over
// (i.e. IRDY is still asserted), then FRAME must not be re-asserted.

clock posedge clk {
event Syn_Pci_BusOptn_rule_8_b :
if( matched SynPciFrame_deassert_and_transact_not_over)
then #1 inv( SynPci_frame_asserted);
}
assert SynPciOp_8_b_frame_not_reassert_in_same_transact :
check( Syn_Pci_BusOptn_rule_8_b);
}

template Syn_Pci_BusOptn_Rule_8_c (clk): {

// FRAME cannot be deasserted unless IRDY is asserted

clock posedge clk {
event Syn_Pci_BusOptn_rule_8_c :
if( matched SynPciFrame_deassert)
then SynPci_irdy_asserted;
}
assert SynPciOp_8_c_frame_deassert_only_if_irdy_assert :
check( Syn_Pci_BusOptn_rule_8_c);
}
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Chapter 8: Result Logging and reporting  
It is recommended that a central facility be provided for specific verification IP for log and print messages.   
All files and objects in the verification IP would then share an object to log the results.  Methods in the log 
object should clearly identify the object and method that is printing or logging the information, such as 
coverage object or arbiter object, etc.  This facility can also control option setting for debug printing.   The 
required feature is to provide a consistent printing/logging utility to the user. 
 
Example 21: Sample code for log-print Class 

class Syn_Pci_print_obj
{
pci_port devPrt; // bind the pci connection
string print_string;
..

task new(..);
task SynPrint(..);
task SynPCIsetDebugLevel(..);
...
…….

}

Chapter 9: Verification IP Directory structure recommendation 
In this chapter, we discuss a recommended directory structure and file naming convention.  All the source 
codes which are independently compiled use  *.vr extension.  File names should also contain a unique 
prefix or postfix.  Using the same recommendation for global naming, for our PCI example, we can use the 
Syn_ for file name identification (Syn_Pci_models.vr, Syn_Pci_signal.if.vrh, Syn_Pci_cvrg.vr, etc.). 
Files, which are included in other files, should be named with  .vri extension for clarity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VIP_Directory

include lib test sim docdesign under test 

.vrl 
Scripts 
.ini 

User 
guide 
Manual 
AppNotes 

.vr

.vro 
Source 
.vri 

.vrh
Headers 
interface 
ports/binds 

Verilig 
VHDL 
Design 
examples 
Top-test files 
Shell wrappers

Figure 5: A typical Verification IP directory structure 
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Chapter 10: Usability guidelines 
 
In this chapter we will highlight guidelines to ensure robust usability of the verification IP and models.  The 
following items will enhance re-use methodology and allow verification teams to incorporate the layered 
verification IP in the testbench infrastructure. 

Configuration management 
The Verification IP code must take care of all default setting.  For example, log files and coverage report 
files must have default strings.  Through appropriate mechanism such as plus argument, passing the 
defaults can be overruled.  This will allow users to customize the VIP environment. 

Naming convention 
In general the verification IP files and codes will be used in conjunction with other Vera testbenches.  This 
can potentially cause collision on names of data structures and methods.  It is required that global variables 
and data_types and structures such as classes use appropriate prefix or post-fixes.  This also allows easy 
identification of modules for debugging purposes.  In this document all classes and global variables have 
used a Syn_ prefix as an indication that they belong to Synopsys, Inc. library.  For example, look at class 
Syn_Pci_arbiter_model. 

Script and simulation control 
The verification IP contains appropriate make files, run-command files and scripts. These scripts must be 
tested for the environment settings as well compilation and running a simulation with standard Verilog and 
VHDL simulator such as VCS and Scirocco.  The Verification IP users may choose to use the provided 
scripts or modify them to incorporate in their system simulation scripts. 

Debug control level 
It is customary to use print statements to aid in debugging both the verification IP and testbench code.  The 
requirement is to use debugging level identifiers that can be controlled, say from a plus argument or set of 
variables, by users.   Refer to logging and reporting section for more information.  

Array and list manipulation 
List structures within Vera and dynamic associative arrays are used for storage purposes.  The associative 
arrays should be handled properly.  For example, the structures which are not needed should be deleted 
using appropriate assoc_array(DELETE) routines, etc.  Another method to reduce the chance of allocating 
more storage/memory when packets/frames/data structures are created is to use appropriate default 
allocation limits for input queues of data packets.   

Packet, Transaction Sequence and Device identification 
For statistic gathering as well as finer control of the test suites, data generation and checking, sequence 
identification and packet identification such as packet_id, sequence_id, device_id, etc should be part of 
each object and properly manipulated  (incremented and registered in the logs and checks). 

Error generation and handling 
The verification IP model contains capability to easily create and generate error conditions and injection to 
the DUT. It also should allow for checking the correct design response to the errors generated. 

Synchronization and concurrency 
The synchronization construct and features of Vera such as semaphores, mailboxes, regions and events 
must be used for accurate handling of any thread manipulation.  Please note the naming convention 
discussed above for the identification of these constructs.  For example arbitration mechanism most likely 
would use a set of semaphore keys for control purposes. 
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Verification IP version and identification 
Each verification IP shall be registering its appropriate name and identify in a print statement the developer 
information for identification purposes.  Information regarding code version and standard compliancy 
levels must also be available in the verification IP code. 

Verification IP modules and object model diagrams with UML 
Unified Modeling Language (UML) is a language used mainly in software design for creating models of 
object-oriented systems. Since UML is a graphical entry language and environment it can assist developers 
of verification IP with specification, documentation and visualization of the objects and their interactions.  
 
Most UML diagrams and some complex symbols are graphs containing nodes connected by paths.  The 
information is mostly in the topology.  Data object and class diagram, along with activity diagram would be 
helpful to the users of the verification IP, as it can provide a visual description and overview of the system 
and class methods and data2.  The associations and aggregation, interaction between classes can also be 
represented in the UML diagrams.  The following figure is a sample representation of data object model, 
using Vera extension to Rational Rose package. 
 
 
 

 

 

 

 
 
 

Documentation, data-sheet and application notes 
A concrete and all-encompassing data-sheet and a manual, a user guide should accompany verification IP 
package.  The user guide must detail how one would deploy the model in verification environment.  
Application note(s) are customary for more clarification and expanded explanation.  There should be a 
quick-start section with a typical small test case at the minimum for a Verilog and VHDL environments 
that shows the verification IP usage in each case. 

Verification IP licensing and delivery mechanisms 
The Verification IP code can be provided as object and protected format or complete source code.  If the 
objects are provided for use, then proper licensing and delivery mechanisms should be part of the 
verification IP and its usage clearly documented.  The simplest method is to use user-defined-function 
mechanism to embed license checking and manipulation.   
 
 
 
 

2. For more discussion on UML and object modeling readers can refer to following book and technical papers among many:        
James Martin, James J. Odell, ‘Object-Oriented Methods, A foundation’.                                                                                          
“Mapping Objects to Data Models with UML” http://www.rational.com/media/whitepapers/tp185.pdf                                            
“UML and Data Modeling”  http://www.rational.com/media/whitepapers/Tp180.PDF 

Figure 6: A sample data object model in UML 

UML data objects diagram model 

http://www.rational.com/media/whitepapers/tp185.pdf
http://www.rational.com/media/whitepapers/Tp180.PDF
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Appendix A:  A PCI arbiter psuedo-code example  
An expanded psuedo-code segments for a PCI arbiter and coverage class is shown in this appendix.  These 
are fragments of code to show the flow; this code is not a complete implementation.  
//
// assumption that all required header files have been included properly
// and external objects/parameters have declare.
// example: extern Syn_pci_print_obj SynPCIprnt

class Syn_Pci_arbiter_model {
pci_port devPrt, // binds to the PCI bus
integer type, // priority rule (Round_Robin or Two_Level_Round_Robin)
integer parking // 0: do not park, 1:park to the last winner

task new ( pci_port inPrt, integer type, integer parking);
local function integer RR_winner( integer last, bit[7:0] req_ );
local function integer Two_Level_RR_winner( integer last, integer last2, bit[7:0] req_ );
task pci_arbiter_start();
..
} // end of class Syn_Pci_arbiter_model definition

task Syn_Pci_arbiter_model::new( pci_port inPrt, integer inType, integer inParking)
{ devPrt = inPrt;

type =inType;
parking = inParking;
SynPCIprnt.SynPrint(" PCI arbiter model is instantiated \n");
pci_arbiter_start();

} // end of new task

// define what the RoundRobin winner method function
local function integer Syn_Pci_arbiter_model::RR_winner(integer last, bit[7:0] req_ )
{
integer i;
for( i = 0; i < 8; i++ )
{
if( req_[(last+i+1)%8]==1'b0 )
{
RR_winner = (last+i+1)%8; // set return value
return;

}
}

} // end of RR_winner function

// Some comments on the code for function described below.
// This is an example of 2Level Round Robin arbitration. Even number requests
// are higher in priority with the last winner having lower priority among the same
// priority level. If there is no request, it returns X.
local function integer Syn_Pci_arbiter_model::Two_Level_RR_winner(

integer last, integer last2, bit[7:0] req_ )
{
integer i, j;
integer current1, current2;
// if last was 2nd (odd) level, then scan 1st (even) level requests first.
//
current1 = (last & 1) ? 0 : (last + 2) % 10;
for( i = 0; i < 5; i++, current1 = (current1+2)%10 ) // scan 1st level
{
if( current1 == 8 ) // 2nd level's turn
{
current2 = (last2 + 2) % 8;
for( j = 0; j < 4; j++, current2 = (current2+2)%8 ) // scan 2nd level
{
if( req_[current2]==1'b0 )
{
Two_Level_RR_winner = current2; // set return value
return;

}
}

}
else if( req_[current1]==1'b0 ) // test for 1st level request
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{
Two_Level_RR_winner = current1; // set return value
return;

}
}

} // end of function Two_Level_RR_winner

task Syn_Pci_arbiter_model::pci_arbiter_start ()
{
integer rstlast, lastwinner, lastwinner2, winner, curwinner, granted;
bit [7:0] req_, gnt_, gnt_l;
bit frame_, irdy_, rst_;
if( (type != Two_Level_Round_Robin && type != Round_Robin) || (parking > 1) )
SynPCIprnt.SynPrint("Illegal argument for pci_arbiter_model()\n");

lastwinner = 7; // last winner
lastwinner2 = 7; // last winner from level 2
rstlast = 0; // "reset previous clock" flag
curwinner = -1; // holds the last state of the granted when frame_ = 1
granted = -1; // see note below
// Note: Variable ‘granted’ reflects the current state of the grant lines
// (-1 means no-grant else holds value of master with the grant).
//
fork
while(Syn_Pci_not_end_of_test)
{
@( posedge devPrt.$clk ); // wait for clock edge
// sample data
req_ = devPrt.$req_;
frame_ = devPrt.$frame_;
irdy_ = devPrt.$irdy_;
gnt_ = devPrt.$gnt_;
rst_ = devPrt.$rst_;

if( rst_ == 1'b0 )
{
lastwinner = 7;
lastwinner2 = 7;
rstlast = 1;
curwinner = -1;
granted = -1;
@0 devPrt.$gnt_ <= 8'hzz; // Grant signals go tristate.

}
else
{ // not a reset

if( frame_==1'b1 )
{
curwinner = granted;

}
else
{
if( curwinner < 0 ) error("Frame asserted with master unknown\n");
lastwinner = curwinner;
if( curwinner & 1) lastwinner2 = curwinner;

}

if( req_ !== SYN_PCI_ALL_ACTIVE ) // one or more requests are active
{
case (type)
{
Round_Robin:
winner = RR_winner( lastwinner, req_ );

Two_Level_Round_Robin:
winner = Two_Level_RR_winner( lastwinner, lastwinner2, req_ );

}
gnt_l = 8'hff; gnt_l[winner] = 1'b0; // setup grant array
if( (gnt_==8'hff) || (frame_==1'b0) || (irdy_==1'b0) )
{
// if no grant or not idle state then generate new grant immediately
@0 devPrt.$gnt_ <= gnt_l;
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granted = winner;
}
else if (granted != winner)
{
// disable all grants first; grant will be applied next cycle
@0 devPrt.$gnt_ <= 8'hff;
granted = -1;

}
}
else
{ // no one's requesting bus
if( parking==0 ) { @0 devPrt.$gnt_ <= 8'hff; granted = -1; }
else if( rstlast ) { @0 devPrt.$gnt_ <= 8'hfe; granted = 0; }

}
rstlast = 0;

}
}
join none // return without waiting

} // end of task that is continuously running after instantiation

 
Here is what a core of the coverage class would look like for the PCI example. 
 

// Note: appropriate header files to be included
class Syn_Pci_coverage_core
{
pci_port devPrt, // binds to the PCI bus
bit [15:0] supported_cmd;
bit global_coverage;
bit accumulate_cov;
bit [3:0] cmd;
bit [4:0] addr_cmd;
bit [4:0] ctrl_sig;
bit [8:0] pci_tx_type;
pci_cmd_cov cmd_cov;
pci_term_cov term_cov;
pci_tx_cov tx_cov;
event start_cmd_cov;
event start_term_cov;
event start_tx_cov;

task new(pci_port inPrt, bit [15:0] new_supported_cmd,
bit new_global_coverage, bit new_accumulate_cov);

task coverage_monitor (..);
task coverage_report();

..
} //end of class Syn_Pci_coverage_core definition

task Syn_Pci_coverage_core::new(pci_port inPrt,
bit [15:0] new_supported_cmd,

bit new_global_coverage, bit new_accumulate_cov)
{
devPrt = inPrt;
global_coverage = new_global_coverage;
accumulate_cov = new_accumulate_cov;

if (global_coverage == ON)
{
supported_cmd = new_supported_cmd;

trigger(OFF, start_cmd_cov);
trigger(OFF, start_term_cov);
trigger(OFF, start_tx_cov);
fork
coverage_monitor(supported_cmd);

join none
}

}
}
task Syn_Pci_coverage_core::coverage_report(..)
{
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if (global_coverage == ON)
{
sync(ALL,mstr[21]);
trigger(OFF,mstr[21]);
// coverage(SAVE, tx_cov, "pci_tx_cov.save");
coverage(REPORT, tx_cov, "pci_tx_cov_final.report");
trigger(ON,mstr[20]);

}
}
task Syn_Pci_coverage_core::coverage_monitor (..)
{
cmd_cov = newcov(addr_cmd, sync(ALL,start_cmd_cov));
term_cov = newcov(ctrl_sig, sync(ALL,start_term_cov));
coverage(OFF, term_cov);
tx_cov = newcov(pci_tx_type, sync(ALL,start_tx_cov));
/*** This block enables the control signal coverage for the current ***/
/*** command, and turned off after the cycle completes. ***/

fork
{
while(Syn_Pci_not_end_of_test)
{
@(negedge devPrt.$frame_);
cmd = devPrt.$c_be_; /*** only use lower 4 bits ***/
addr_cmd = { devPrt.$req64_,cmd};
if (addr_cmd[3:0] == 13) /*** Dual Address Cycle ***/
{ @(negedge devPrt.$clk);}
trigger(HAND_SHAKE, start_cmd_cov);
@(negedge devPrt.$clk);

}
}
{
while (Syn_Pci_not_end_of_test)
{ while (devPrt.$frame_ == 0 | devPrt.$irdy_ == 0)
{
coverage(ON, term_cov);
ctrl_sig = { devPrt.$frame_, devPrt.$irdy_, devPrt.$trdy_,

devPrt.$devsel_, devPrt.$stop_};
trigger(HAND_SHAKE, start_term_cov);
@(negedge devPrt.$clk);
coverage(OFF, term_cov);

..
}

}
join all

} //end of task
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Appendix B:  Guideline and Methodology Checklist 

The following table presents a matrix for the major aspects of the Vera Verification IP guideline discussed 
in this document. The checklist table should be used in conjunction with the discussions in previous 
chapters and not as a direct replacement. 
Item 
Number 

Category Guideline and Methodology Description Incorporation 
in IP 

1 Signals 
[Layer 0] 

Interface and signal definitions encapsulated for VIP and Design Under 
Test connection. 

 

2 “ Port and bind definitions and usage for VIP.  
3 “ Static connection routines for use in testbench and their appropriate 

wrappers.  Dynamic connection methods examples in the code. 
 

4 HDL wrappers Appropriate shell files for Verilog and VHDL connection must be 
provided. 

 

5 Monitor Monitoring the design signals for physical interface checking and 
correctness. 

 

6 Command 
[Layer 1] 

Set of Bus Functional Commands, basic transactions for the standard 
protocol. 

 

7 Access 
methods 

Primitive access methods for BFM, monitors and packet data structures.  

8 Checking Provides monitoring routines and self-checking components within the 
BFM and commands. 

 
 

9 Random 
attributes 

Provides appropriate random attributes for data structures and 
corresponding constraint sets. 

 

10 Initialization Default initialization and methods with configuration files and appropriate 
reset conditions. 

 

11 Transactions  
[Layer 2] 

Structures and classes for generating directed and random sequences of 
commands. 

 

12 Checking Score-boarding and checking engine with appropriate methods for the 
sequences of transactions. 

 

13 Logging Appropriate logging and messaging routine.  
14 Functional 

Coverage 
Coverage of transactions, commands and data flow.  

15 Random 
generation 

Sequence generation and distribution setting through usage of VSG and 
the constraint mechanisms in appropriate classes. 

 

16 Application 
[Layer 3] 

Structures and classes encapsulating test scenario in both random and 
directed environments. 

 

17 Configuration Methods allowing setting proper configuration of testbench VIP elements 
as well as calls to set proper design properties. 

 

18 Coverage 
statistics 

Coverage monitoring and statistics gathering.  

19 Checkers 
monitors 

Protocol checks and monitors on the standard bus, controllable from top 
layer and main program. 

 

20 Directed 
Random test 

Easily create fully directed tests as well as pseudo-random tests  

21 OO methods Proper base class definition, and extension methods with clear definition 
how to use them at all layers. 

 

22 Usability 
Guidelines 

Logging: Logging and message printing/status through appropriate 
objects. 

 

23 “  Documentation: Data sheets, application notes, user manual and a 
quick-start document. 

 

24 “ Directory structure: A simple and useful directory structure.  
25 “ Licensing: Proper licensing mechanism and files, through UDFs 

delivered with the verification IP package. 
 

26 “ Name Space: Avoid collision by appropriate prefix-postfix naming.  
27 " Scripts: Make files, scripts, run-command and log-file generations.  
28 “ Debug Levels: Debug level controls mechanisms.  
29 “ Error Generation: Error generation and handling properly implemented.  
30 “ UML Diagrams: Use UML for object diagrams, relationships, and 

aggregation of the models. 
 

31 “ Verification IP version: Registering correct name and version.  
32 “ HDL wrappers: Verilog and VHDL test case with appropriate shell files   
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