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Abstract

The ever increasing advances in the integrated circuit technology during the past decade has
made it possible for electronic system designers to assemble complete systems-on-chips (SoC).
As these System on chips have found their use in more and more computer, graphics, and
networking hardware systems the level and complexity of functionality within them have
dramatically increased. At the same time shrinking time to market leaves little room for errors
in the design. Hence functional verification has become one of the major tasks in committing
chips to fabrication. Just as designs are pushing more towards reusable and portable
environment so must the verification components and environment. Also, more technologically
advanced and high-pin packages allow each chip to have multiple bus interfaces, each of which
may share internal resources in parallel and increase the possible concurrent operations.
Therefore there has arisen a real and pressing need in the electronic design process for stand-
alone, pre-verified and built-in verification infrastructure, which can be easily plugged in the
simulation-based validation tests. The Verification Intellectual Property (Verification IP) is an
integral and important component of such infrastructure and provides such mechanisms.

In this technical document we present a foundation of a modeling architecture for the structured
development of such verification components. The architecture is based on the concept of
layered methodology, which can be applied to general abstract and advanced testbench
development for ASICS and SoC and systems. In this paper the psuedo-code examples based
on OpenVera Hardware Verification Language are provided to show the fundamentals of the
modeling methodology. In addition, general usability guidelines related to development of
structured and re-usable code for verification IP, verification platform and infrastructure are
highlighted.
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Chapter 1: Introduction to Verification IP

The Verification Intellectual Property (Verification IP) is the verification model and overall environment,
which aids designers and verification engineers in the task of validating the functionality of their design. The
Verification IP (VIP) is used in all levels of simulation-based verification. The Verification Intellectual
Properties are based on standard protocols used in Networking, computer and system designs, such as
PCI/PCIx, USB, Ethernet. These components are pre-verified to the standard protocols and contain the
necessary infrastructure for testbench generation and checking mechanisms as well as all the appropriate
routines to create individual protocols, commonly known as Bus Functional Models (BFM).

Verification IP components provide enhanced productivity to the system and ASIC designers by reducing the
time to create the verification infrastructure and testbench environment including the required models. The
verification IP based on OpenVera Hardware Verification Language (HVL) allows verification and design
teams to quickly and easily create random scenarios. They also allow users to easily create directed test
scenarios and test sequences for their designs. These test cases greatly aid users in finding functional bugs
early in design cycle, hence reducing the overall verification time.

A typical SoC and verification IP with representation of testbench environments is shown below:

CPU Memory Serial
Core IP Controller Ports

Control Parallel
Logic Ports

Ethernet
Controller

USB
controller

PCIx Prop. Bus
Controller Controller

Figure 1: A Typical SOC with Vera testbench

This technical document provides guidelines for structured development of such Verification IP. It discusses
requirements for modeling generators and checkers of standard protocols for a verification IP based on

OpenVera Hardware Verification Language ! using a layered testbench methodology.

The modeling guideline is based on the layered architecture, which defines four basic layers for each
Verification IP component.

1. The readers are referred to “OpenVera User Manual” for full syntax and feature explanation of the language which also contains
important information and guidelines on usage. Please refer to ite. However for any questions and inquiries you

can send email to rera-support@synopsys.com for immediate response.
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Modeling Architecture Fundamentals

A Verification IP defines the environment for simulating and testing the logical functionality of a given
protocol and connects at the physical (logic) levels to the design under test. These models may handle timing
checks for input/output signals.

The modeling architecture is based on the layered testbench methodology. Each Verification IP primarily
consists of four layers as follows.

Layer 0: Signal: Pin Interface.
Layer 1: Command: Protocol Command and Data Packets.
Layer 2: Transaction: High-level Transactions and Traffic Generation and Checking.

Layer 3: Application: Test Scenario Generation mechanism

Figure 2 shows the overall picture of these four layers mentioned with a pseudo-code example.

Layer3: Application

High-level test -
Scenario Layer2: Transaction

Generator Layerl:

Transactions : Signal
Data for test Generators/checking Colhand. Design
scenarios Generation Physical Sigeae= >
Sequence of [BEM]: oulati Under
transactions [traffic] : manipulation €=

random-based and [BFM] <> Test

directed infrastructure : Local_read
Random/directed Local_write

Domain Sepecific information

Communication Checkers

Figure 2: Representation of Layers in Verification IP with an example

Layering types

In general software development the there are two basic types of layering: Strict and Loose layering. The
concept of strict layering enforces the fact that the communications among elements within each layer be
moderated in such a way that there is a fixed and strict channel of access between each layer. This means that
there are only selected functions and tasks are allocated for passing information between layers. On the other
hand loose layering allows freer access within each layer.
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Verification IP Modeling Architecture version 1.1

In the Verification IP architecture a hybrid approach is modeled. Wherever possible strict layering should be
implemented, however, if there is a need to allow calls to be made amongst layers to make modeling more
user-friendly, it should be done with care. For example, accessing pin interfaces from the top layer, layer 3 or
the main program is allowed.

Layer 0: Signal Layer
Layer 0, signal layer or physical layer, allows direct access to Design-Under-Test (DUT) signals at the

physical boundary.

Provides signal and task level connectivity into the physical representation of the DUT. Each DUT
or modules of the system under test could be written in HDL, HVL, C/C++, or other languages.

Interfaces between the test environment (including other Layers) and the DUT.

For example, if the DUT is implemented in HDL and the rest of the testbench in OpenVera, then this
representation layer would simply consist of the interface file (.if file), the virtual port and bind
declarations, and the task declarations statements between DUT and Vera.

Another example would be if an emulation engine represents the DUT, then this layer would consist
of C-code that would connect OpenVera testbench to an emulation engine over the computing
network.

Monitors the design signals for physical interface checking and correctness. These can also be used
in upper layers.

Layer 1: Command Layer [protocol command and data packets]
The command layer implements the BFMs, protocol generation, checking routines, and monitor methods at
the most primitive levels.

It provides calls to BFM commands and contains the basic command for the standard protocol.

This layer can be controlled and configured per user application from layerland the upper layers,
i.e., methods can be called in a directed environment if desired by users.

Provides for monitoring routines, checkers and self-checking components within the BFM.

Provides appropriate data-packet, data structure in the primitive classes with their corresponding
randomizeable parameters and built-in constraint mechanisms

Also provides initialization methods for the verification environment and design under test.

As an example, in the case of PCI Verification IP, this layer would consist of basic local pci_read
and pci_write commands.

Layer 2: Transaction Layer [Traffic and checking]
The transaction layer implements a high-level transaction generation. At this level, sequences of BFM
commands can be generated in a directed and automatic randomized fashion and checked for correctness.

Users can identify the order of the sequences and the distribution of sequence of transactions and
data packets at this layer.

For example in a PCI Verification IP, this can be a Read_back_to_back command or a
Read_write_seq command, where the command itself contains a sequence of lower level simple
pci_read or pci_write commands. Another example can be a burst read/write or
memory_write_multiple sequence.

The self-checking components provided in this level will use the lower layer commands, as well as
creating specialized formats for command generation, which gets mapped to routines and methods in

© Synopsys, Inc. 2001-2002 May 2002 Page 7 of 32
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lower layers. For example, the data for pci_read and pci_write commands/transaction can be
compared with the expected data at layer 2.

The checking of results can also be done through a checker routine, i.e, a scoreboard or validation
mechanism that checks the actual output(s) against the expected value. This is usually accomplished
by feeding the generated data patterns to a checker engine, which then compares it with the value it
snoops from the output points.

This layer also handles proper logging of the results and statistics, usually to a file. Note that the
checking mechanisms, logging and statistics gathering can reside in this and the upper layer.

We also recommend the object-oriented paradigm for the structure of base classes and usage of extension to
the class and its methods. In this flow the main classes in the component are defined virtual requiring the
extension(s) to be defined and declared. This will maximize flexibility for re-use of verification IP.

Layer 3: Application Layer [Test scenario Generation and Checking Mechanisms]
The application layer is the highest-level abstraction in the Verification IP, where application specific test
scenarios can be generated in pseudo-random and full-directed environments.

The configuration of all the lower layers can be controlled from layer3.

Actual application services are reflected in this layer. In the PCI example, users should be able to
specify the number of Masters, Slaves and distribution of specific transactions per initiator or
Targets with test scenarios and sequences of transactions related to each Master and Slave.

This layer contains the intelligence to decode the scenarios to call appropriate lower level methods
and routines upon execution of transactions.

The checking mechanisms in this layer depend mainly on the routines/methods in lower layers.
These mechanisms can use scoreboard/checking engines in this layer in conjunction with the lower
layer routines and compare expected values with sampled values at appropriate outputs.

This layer provides proper logging and statistics gathering for the tests and scenarios.

Test suites
1-n Random

& directed

Configuration Coverage objects

Control Traffic

Sequence
Generator

generation

Of adresses Data/protocol checks
and data Monitor
Scoreboards

IR e OVA Checker IP

S

tens?@ BFMs, and Signal layer methods

Figure 3: A top-down view of Verification IP layered object formation
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Bus Functional Model, Protocol Checking, Monitor and Functional Coverage

In conjunction with the layers described in the previous sections, let us note that the bulk of BFMs, the
protocol generators as well as protocol checking and monitoring scheme is intended to be embedded in the
signal and command layers. The functional coverage routines and methods will allow users to gather
information about tests, most importantly about standard protocols’ functionality coverage. As such, these
coverage methods should be accessible from higher layers and can act as templates for users to add their own
in the higher layers.

BFMs generate the input stimuli to the DUT. The methods described by BFM commands directly relate to the
functionality of protocol and would be configurable to users specific input.

Protocol checks and monitors are used to ensure the standard compliancy and monitor the correct bus
activities. Monitors are developed as integral part of verification IP and should be dynamic and include
specific and descriptive error messages that are user controllable. OpenVera technology allows protocol
checkers to be developed as an embedded part of the verification IP or as a standalone checker module.

The Verification IP embedded Checkers and Monitors are usually included in Layerl and can be accessed by
all the layers. The OpenVera Assertions (OVA) as part of OpenVera HVL provide a clear, concise and
highly abstract mechanisms to describe sequences of events and to test for their occurrence. The OVA can
also be used to specify functionality to simulate and measure functional coverage. The template and macro
capability built in OVA allows creation of pre-verified stand-alone abstract checker modules and IP that will
be easily used and re-used in a simulation-based environment. Please refer to chapters 6 and 7 for more
explanation and example usage.

Design
Under Test

Figure 4: Representative verification environment with Verification IP

We also note that the testbench and Verification IP configuration is to be provided at higher layers, for
examples at layers 2 and 3. In this way a user can configure the Verification IP and allow the commands
and proper stimulus to be generated for exercising the DUT.
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Fully directed and pseudo-random tests

The Verification IP environment uses the capabilities in OpenVera to allow creation of fully directed test
suites and random test cases from the same base with ease. The randomized test and sequence generation is
orchestrated through the constraint blocks. These blocks can be dynamically manipulated throughout the
simulation. The information about routines and parameters at each layer should be clearly documented to
allow users to create directed and focused test cases.

In the following chapters, we will first provide a brief description of the Verification IP layers followed by
a more detailed discussion of each layer. In this light, we provide pseudo-code as examples as well as
expected deliverables for such Verification IP.

© Synopsys, Inc. 2001-2002 May 2002 Page 10 of 32
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Chapter 2: LayerO, Signal Layer

Layer0 provides a signal level interface between the OpenVera Verification IP, its testbench infrastructure
and design under test (DUT), mainly assumed to be in a Verilog or VHDL representation. Note that in this
layer, template wrapper files are also provided between Vera environment and design under test. Interface
files (*.if.vrh) will provide a clean and manageable way to determine how OpenVera drives and samples
signals, defines the clock to which the signals are tied, and identifies a set of signals through which
OpenVera communicates with the HDL (DUT) environment. The recommended method for DUT signals
and internal nodes to be accessed is through virtual ports and its corresponding binding routines. Taking
PCI signal information as an example, we show the basic construct in the following paragraphs.

Virtual Ports and Bind constructs

It is most suitable to use the ports and bind features in OpenVera, where a virtual port contains a set of
signal members grouped together under a given name. Port sighal members are arbitrary placeholders that
are then linked to the actual interface signals via binding. Example 1 shows an interface structure for PCI
protocol.

Examplel: Interface file for a PClI BFM
interface PCl {

inout [63:0] AD PSAMPLE PCl _SAMPLE_SKEW PHOLD PCI _DRI VE_SKEW depth 1 ;
inout [7:0] CBE_ PSAVPLE PCI _SAMPLE_SKEW PHOLD PCl _DRI VE_SKEW :

i nout PAR PSAMPLE PCl _SAMPLE_SKEW PHOLD PCl _DRI VE_SKEW :

i nout FRAME_  PSAMPLE PCl _SAMPLE_SKEW PHOLD PCl _DRI VE_SKEW :

i nout TRDY__ PSAMPLE PCl _SAMPLE_SKEW PHOLD PCl _DRI VE_SKEW ;

i nout IRDY_  PSAMPLE PCl _SAMPLE_SKEW PHOLD PClI _DRI VE_SKEW :

P

In example 2 a representative port and bind description are provided.

Example2: Ports and Binds to connect PCI signals to VERA interface signals:

port pci_port {
ad ;

c_be_ ;
par ;
frame_ ;
trdy_ ;
irdy_ ;
-

bi nd pci_port PCl _BIND {
ad PCl . AD ;
c_be_ PCl . C_BE_
par PCl . PAR ;
frame_ PCl . FRAMVE_ ;
trdy_ PCl . TRDY_ ;
irdy_ PCl .| RDY_ ;
R

Static and dynamic signal connections

Every Verification IP should contain static connection routines for use in the testbench, which can be
accomplished through directly incorporating hdl_nodes or through configuration (.vcon) file. In
conjunction with this ability to dynamically connect signals can be provided through signal_connect
methods. This method is a more reusable approach. The following example shows sample code for
signal_connect.

Example3: dynamic connection with signal_connect()

si Qnal _connect (pci_port.$ad, PC .AD);
si gnal _connect (pci_port.$c_be_, PCl.C BE));
si gnal _connect (pci_port.$frame_, PCl.FRAME);

© Synopsys, Inc. 2001-2002 May 2002 Page 11 of 32
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Here we also show an example of direct connection using configuration “.vcon” file. For multiple
modules/mains, users can employ project-based configuration mechanism. VERA’s multiple module
support is based on its implementation of project-based methodology. There are three major components to
this approach:

A configuration (.vcon) file for each module

The VERA object (.vro) files for each module type

An overall project (.proj) file specifying VERA source code
The .vcon file’s “connect” statement can override an interface signal specification in the VERA program.
This includes changing port-connected interface signals to direct connect interface signals (and vice-versa),
and changing the HDL path to which signals are connected.  Please refer to the OpenVera User Manual
for more details. The following sample code is an example of a .vcon file for PCI Verification IP.

Example 4: Sample OpenVera .vcon file for a PCI master

ti mescal e 100ns/ 10ns
cl ock SystentC ock period 100

connect i nput pci mast er . PCLK=t est bench. ul. PCLK

connect out put pci mast er. Pl DSEL=t est bench. ul. P| DSEL
connect out put pci mast er . PGNTNN=t est bench. ul. PGNTNN
connect out put pci mast er . PRSTNN=t est bench. ul. PRSTNN
connect out put pci mast er . PSBONN=t est bench. ul. PSBONN
conne}ct out put pci mast er . PSDONE=t est bench. ul. PSDONE

Verilog and VHDL top level test and Vera shell wrapper files

Since the Verification IP can be used in any mixed HDL environment, appropriate set of templates of top
test files and Vera shell wrapper files should be supplied with the model. The wrapper files and top-test
files will be modified by users in an SoC testbench environment since other models and interface
connections are needed and will be added as appropriate.

© Synopsys, Inc. 2001-2002 May 2002 Page 12 of 32
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Chapter 3: Layerl, Command [BFM, protocol, data] Layer

All primitive access methods for BFMs, monitors, checkers and packet data structures are implemented in
this layer. These BFM commands and activities at the input and output boundaries, as well as signal levels,
are also monitored at this level.

BFM and commands will be discussed in this chapter. There will be a more detailed review of functional
coverage, checking and monitors in chapter 6.

It is a requirement that the description of the BFM’s individual methods be encapsulated in OpenVera
Classes, following the object-oriented paradigm. Given that most standard protocols are sufficiently
complex, one can create low-level primitive methods (tasks and functions), which are used to create more
complex and complete full cycle transactions corresponding to specified protocols. Using a PCI standard
protocol, we will show sample pseudo code examples to highlight the modeling architecture.

Therefore in layer 0 and 1, we can define the lowest layers of the connection to device under test as well as
some combination of the functionality to create higher-level objects. For example in the PCI/PCIX case,
one may create the layers of object as follows: (Here the structure/header of arbiter class is shown. The
more detailed code is inserted in Appendix A)

Example 5: A psuedo-code for a pci_arbiter_model class

//include appropriate header files

/1 for exanple extern for SynPClprnt object

class Syn_Pci _arbiter_nodel
pci _port devPrt, // binds to the PCl bus
I nt eger type, /1 priority rule (Round_Robin or Two_Level _Round_Robi n)
integer parking // 0: do not park, 1l:park to the |ast w nner

task new (pci_port inPrt, integer type, integer parking, ..);
task pci_arbiter_start(..);

}“//end of class Syn_Pci _arbiter_nodel

task Syn_Pci _arbiter_nodel::new (pci_port inPrt,..)
devPrt = inPrt; // make the object binding singals

}")/ end of new task

task Syn_Pci_arbiter_nodel::pci_arbiter_start(..)

teger rstlast, lastw nner, |astw nner2, w nner, curw nner, granted;
[7:0] reqg_, gnt_, gnt_I;
frame_, irdy_, rst_;
(type !'= Two_Level _Round_Robin && type != Round_Robin) || (parking > 1) )

t
t
(
SynPCl prnt. SynPrint ("Il egal argument for pci_arbiter_nodel ()\n")

”}.// end of task pci_arbiter_start

In this layer, appropriate classes must be developed to allow creation of devices specific to the standard
protocol. For example, for an Ethernet design, a receiver class and a transmitter class should be defined.
For the above example of PCI, one defines a master_device class as well as target, etc. The following
header code shows the class for a PCI master device. This class will have methods, which use primitive
bus functional methods to interact with the design under test. Note that these primitive sets can be hidden
from the users and only be used to define a PCI master device.

Example 6: a class describing PCI Master device
cl ass Syn_pci _master_device {
pci _port devPrt, // binds to the PCl bus
Integer md /1 Master id, which REQto be used (0-7)
t ask nevill(lpci _port inPrt, integer inMd); // binds to the PCl port
task pci_master_burst(..);
task pci_master_arb (..);

}”// end of the class Syn_pci_master_device
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Here we also show an example of data structure for an Ethernet packet definition, which can be used as a
template for similar packet data description. The following shows a partial Ethernet Mac packet frame
description. Note that the randomization and serialization attributes have been inserted here for use in this
and upper layers to automatically randomize fields with a given set of constraints. Usually this set of
constraints can be defined as template so that users can then add more according to their specific design
implementation.

Example 7: Example of an Ethernet data packet class with randomization

virtual class Syn_Ether_packet {

integer Pkt_ld; /1 for purpose of keeping track of pkt
rand {
packed bit [47:0] dest;
packed bit [47:0] srce;
packed bit [15:0] type
bit [15:0] length
[7:0] data [] assoc_size |enght;

packed bit

packed bit [31:0] crc; // calculated after random zation

/1 can describe constraints which are controlled from hi gher
/1 layers by accessing the string name of each constraint
constraint srce_range {

srce < MAX_SRC,

srce > M N_SRC,

}
constraint dest_range {
dest == (type_set) ? void : srce);
}
constraint Pkt_lengths {
length dist {
RANGE_1 :/ dist_1,
RANGE_2 :/ dist_2,
-}
task new(..);

task pre_randoni ze(..);
task calculate_crc(..);
task post_random ze(..);

.}.)/end of class Syn_Et her_packet

We noted the fact that primitive methods maybe required in complex standards to form higher abstract
objects. For our PCI example, one can create a set of primitive routines that access the PCI bus as a
master. Therefore the combination of primitive tasks completes a full bus command for PCI protocol.
Example 8 shows a pseudo-code sample for a master burst read through sequences of primitive methods.

Example 8: sample code for bus command by combining the primitive methods

task Syn_pci _master_device:: pci _master_burst (

pci _master_arb( .. ) ; // get bus arbitration

pci _master_rd_init( .. ) ; // initiate master read
repeat ( nunber_of _burst_cycles - 1)

pci _master_rd_sub( .. ) ; // subsequent master read

/1 end of pci_master_burts nethod

)
/1 Anot her exanpl e of nethod
task Syn_pci_master_devi ce: : pci _master_arb(

integer dly, /1 Nunber of cycles to delay before asserting REQ
integer md, /1 Master id, which REQto be used (0 -

i nteger max_| at ency, /1 Maximum | atency to wait for grant.

bit |ock, /1 =1 neans the naster wants | ock ownership.

var integer ret_status, /! Return status, 0:success, -1:failed

(bit keep_request = 1'b0) // 0 request is released with grant

/1 =1 request is held asserted even after grant
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A similar class can be created for pci_target_core_device with appropriate methods to properly respond to
activities on the bus according to the protocol.

Example 9: An example of pci_target_core_device

class Syn_pci _target_device {
pci _port devPrt /1 binding the signals
/1 local paranters for device nmanipul ation
bit [15:0] devi ce_i d;
local bit [15:0] vendor _id;
local bit [7:0] revision_id;

local bit [7:0] nmemspace[];

local bit [7:0] iomspace[];

local bit [7:0] «cfg_space[];
task new ( pci_port inPrt, ...);

task termnate_target(..);

task device_config(..);

task pci_target_rd_ |n|t( L)
task pci_target_rd sub(..);
task target _rd(..);

task target _ bur st rd(

task start_target deeI( L)

}// end of class
task Syn_pci_target_device::newpci_port inPrt,..){

devPrt = inPrt; //binds to the PCl signals.
/1 device is instantiated

}

Note that because of the complexity of the protocol set of primitive routines (atomic activities which allow
full bus commands) a class is formed by combining the target driver primitives. Example 10 below shows a
sample code for PCI target burst read method.
Example 10: Sample code combination for Target Burst Read method

task Syn_pci_target_device::trgt_burst_rd (

'pbllltarget rd_init (..); /1 initiate target read wait
r epeat (nunber _of bur st _cycles -1)
pci _target _rd_sub(...); /'l subsequent target read

task Syn_pci_target_device::trget_rd (

bi:i_target_rd_i nit(..);
pci _target _rd_sub(..);

The following shows a typical sequence of primitives for running a target model, which comes alive and
responds correctly to actions.
Example 11: Sample code for a PCI Target using primitives
task Syn_pci_target_device::start_target_nodel (
pci _target_rd_addr(...): // Wth TCTL_MONI TOR on
/'l Check the returned address and command to see if we should repond
if (respond)

if (read_response)

{ pci_target_rd_devsel (...); /1l Respond with a device sel ect
pci _target_rd_sub(...); /! Do a read data transfer.
el se

Respond with a device sel ect

{ pci_target_w _devsel (...);
Do a wite data transfer.

pci _target _wr_sub(...);

~—
~—

Initialization routines

Proper device initialization routines and register and pin setups must be carefully crafted, so that upon start
of test, no unknown behavior is seen and the test suite and design are in a known and correct state.
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Chapter 4. Layer2, Transaction and Traffic Generation and Checking

At this level, the Verification IP must provide an abstraction layer through objects and classes with its own
specific and appropriate randomization/constraint methods that allow creation of fully directed and pseudo-
random sequences of higher-level transactions to stimulate the DUT. Implementation of result checking
through self-checking mechanisms are embedded and used here. The checks can be accomplished using an
engine or scoreboard methods that compare sampled outputs with expected values, which are provided by
the traffic/data/transaction generation routine.

For generation methods, the guideline is to place the overall structure in classes, which use automatic
randomization routines to assemble a legal sequence of transaction and data packets. Each sequence must
then be decoded and dispatch appropriate routines in lower layers to drive and sample data to the DUT.

In a sample example using the PCI environment, we show a simple structure, which can be used as a base
to create sequences of activities on the bus.

Note that the functional coverage routines for BFM command activities should be connected in this layer to
provide for reporting and statistics gathering. We also note that each transaction can be defined in a task
or class method. Constraint setting and automatic randomization of fields within each transaction must be
appropriately defined and declared according to each specific standard protocol requirements.

Below is an example of setting constraints to some of the fields of PCI 1/0 read and 1/0O write commands,
which are all defined in a Class called “Syn_Pci_cmd_operation”.

Example 12: Sample code for a PCI command Operation Class

class Syn_Pci _cnd_operation {

rand bit [31:0] addr; /1 Address for 32 bit PCl accesses
rand bit [63:0] data[?20]; /1 PCl data
rand i nteger byte_cnt; /1 Nunber of bytes to transfer
constraint c_iow { /! Constraint for I/O Wites
byte_cnt dist {1 :/ 30, 2:16 :/ 70};
addr > 10OL_O;
addr < 1OUO - (byte cnt * 4);
}
constraint c_io_rd /! Constraint for I/O Reads

_ {
t {1 :/ 100, 2:16 :/ 100};
addr > 1OL_O;
addr < IO U0 - (byte_cnt * 4);
}
task new(..);

task get opr(| nt eger iconmand);
task do_cmd (..);

byte_cnt dis

} //end of class definition

task Syn_Pci_crd_operation::new(..) {
voi d=constrai nt _nmode(OFF, "c_io_rd");
voi d=constrai nt _nmode(OFF, "c_io_w");

} //end of task new

task Syn_Pci _cnd_operation::get_opr(integer icommand) {
string constr;

bit [32:0] max_addr;

bit [36:0] addr_i ndex

case(i command) {
1 O_RD constr “c
10O WR . oconstr “c

voi d=const rai nt _node( ON, constr);
voi d=r andomi ze() ;
voi d=constrai nt m)de((]:F constr);
} /1end of get_opr task
task Syn_Pci _cnd_operation::do_cnmd (..// decode the above and call appropriate
//bfmroutines from mast er/target devi ce
} /1 end of Pci_cnd_operation
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Note that in the example above, the ¢_io_rd and ¢_io_wr methods could be defined in a separate class or in
the same class, or be part of the BFM class itself.

One other advanced method to introduce a higher level of randomization is to use Vera sequence
generation feature in conjunction with the above mentioned class structure, in this case the cmd_operation
class. A sample code follows:

Example 13: Example of Vera Sequence Generator (VSG), randomizing PClI commands

cl ass Syn_Pci _cnd_gener at or

{

Syn_Pci _cnd_operation opr;
.../l other variables

task new(.);

task set_dist_paran(..);
task set_cnd_seq(..);

}
i.ask Syn_Pci _cnd_generator::set_cnmd_seq (..)
/1 other paraneter settings

// here use the appropriate vsg style
randseq()

conmands: io_rd_prod | io_w_prod |
mem rd_mnul ti_prod;
io_rd_prod: &io_rd_cnd_w) io_rd_cnd,
io_rd_cnd: {
opr.get_opr(1ORD);
do_cnd(2, nstr);

io_w _prod: &io_w_cnd_w io_w_cnd,
io_w _cnd: {
opr.get_opr(1OWR);
do_cnd(3, nstr);

memrd_multi_prod: & nmemrd_nulti_cnd_w) nemrd_nulti_cnd,
memrd_multi_cmd: {

opr.get_opr (MEM_RD _MULTI);

do_cnd(12, nstr);
b

} /1 end of randseq

....//other routines.

Resultant data and response from the design should be checked through check engine and appropriate self-
checking routines in this layer.
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Chapter 5: Layer3, Test Scenario or Application Layer

This layer is the highest level of interaction with the DUT for test suite creation. At this level, users will
have control over creating a combination of different test scenarios based on the specific application.
Through setting parameters either in the constraint segments of the class or parameters for the sequence
generation, psuedo-random test suites can be generated.

Checking the results is of course more domain specific. For example for a PCI test, one may want to
follow memory access of a master device with a follow-on transaction that checks the validity of the data.
For a networking design, a packet or frame received at the receiver side can be checked via a mini-
reference mechanism at the transmit side. In this layer, a Verification IP must also provide facilities to
allow checking of all transactions at the end of the simulation. In a networking testbench environment, one
can use this to check that all packets and frames have arrived at their destination sides. The following is an
example of a class for test scenario, using the psuedo-code for PCI. This class is responsible for holding a
user-defined scenario, and executing the test, stimulating the design and checking the response as specified
in the scenario.

Example 14: A sample code for test environment class

class Syn_Pci _test_gen {
/1] local variables for control of test -- distribution
/1 and random sequences
i nteger test_seq;
bi t directed; /1 can be used to bypass all random zation
string test_flow name; // for identification purposes
/1 instantiate targets/ masters/nonitors/checkers/
/1 and coverage el enents object hol ders
Syn_Pci _mast er _device sPciM];
Syn_Pci _targer_device sPci T[];
Syn_Pci _noni tor sPcivnitr[];
Syn_Pci _arbi ter_nodel sPci Arb;
Syn_Pci _coverage_core sPci Cvrg;

Syn_Pci _Prtcl _Check sPci Chk;
Syn_Pci _cnmd_gener at or sPci Cnd;

task new(string test_flow nane);
/1 initialize all objects with appropriate paraneters
task setup_config(..);
task setup_test_seq(..);
task start_test_seq(..);

} /}énd of class definition
task Syn_Pci_test_gen::setup_test_seq (..)
while (Syn_Pci_not_end_of _test) {

/! setup paraneters here
randseq () {

..
PCl _TESTS:
& menory_di st) MEMORY_SEQ |
&(io_dist) 1 O_SEQ |
&(conpl x_di st) | NTERLEAVED_SEQ |
&(directed) TEST_SU TE DI RECT;
MEMORY_SEQ

& parmal) {sPci Cnd. set_dist_paran(..);
sPci Cd. set _cmd_seq(..);} |
&(rpt_factor) MEMORY_SEQ

| O_SEQ
& parma3) {sPci Crd. set_dist_paran(..);
sPci Cd. set _cnmd_seq(..);} |
&rpt_factor) I O_SEQ
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/..

TEST_SUl TE_DI RECT:

. Directly and easily setting parameters and calling

11 routines to generate desired and controll ed sequences

11 wi t hout constraint nmanipulation and with ease.

/1 O calling a sequence generated or test-vectors created in
11 advance for specific conpliancy test.

We can now see what a sample test would consist of. The following code segment shows the basic
structure of the main test program. Note that parameters for the lower modules and layers can be set from
this main highest level. In a typical SoC environment, instances of other verification IP such as USB,
Ethernet, will be instantiated in this main test program level. The interaction between the device under test
and verification IP through user-defined scenarios, which are executed, by the verification IP should be
carefully monitored and recorded to validate the design.

Example 15: A sample code for main program test routine

#i ncl ude <vera_defines. vrh>

/1 include appropriate header files as well as
/] external custom HDL and/or c/c++ routines.
#i ncl ude “pci _naster.vrh”

#i ncl ude “pci_slave.vrh”

program mai n_test {
/1 instantiate individual nasters/targets
/1 or call the test scenario generator for exanple.
Syn_Pci _test_gen test1Seq;
..

test1Seq = new..); //proper objects
test 1Seq. setup_config();

test 1Seq. setup_test_seq();

test1Seq. start_test_seq();

test 1Seq. st art _check_engi ne();

test 1Seq. generate_report();
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Chapter 6: Monitors, Checkers, Functional Coverage

In this chapter, a basic guideline and methodology is discussed for developing the monitors, checkers, and
functional coverage modules for the verification IP.

Monitors

As described in previous chapters, monitor routines should be embedded in class structures. Users can
define a virtual base class for monitor objects, which act as a template and will be extended to define
additional methods. These monitor objects can be called from different layers independent of how many
BFM are actually instantiated by users. In our PCI example, where many master and target devices can be
instantiated in the testbench environment, users should be able to use one set of monitor object to handle
the bus activity monitoring. Here is an example of two PCI monitor class.

Example 16: PCI Initiator and Target Monitors

virtual class Syn_Pci _nonitor

pci _port devPrt; /1 binding the signals

/1 local paranters for device nmanipul ation
bit [15:0] devi ce;

task new ( pci port |nPrt )

task pci _nonitor(.

task print status( )

} “Ilend cl ass Syn_Pci _noni t or
task Syn_Pci _nonitor::pci_nonitor()

fork
whi | e(Syn_Pci _not _end_of _test)

bit [3:0] ret_cnd,;

bit [63:0] ret_addr;
integer ret_status;

pci _rd_addr (..);

..
print_status(ret_status);

join none

class Syn_PCl _Mon extends Syn_Pci _nonitor()

/1 specific infornation required per nonitor
/1 paranters for device nanipul ation
bit [15:0] Mon_devi ce;

task new ( pci_port inPrt, ...);
task Special _pci _nonitor(..);
task Special _print_status(. )

} //end class Syn_PCl _Mon

task Syn_PCl _Mon:: Speci al _pci _nonitor()

//set appropriate paramat ers
pci _nmonitor(..); // call routine

Functional Coverage

The functional coverage routines and methods will allow users to gather information about the stimulus as
well as the standard protocols. Users of VIP will use the provided coverage object as template and add their
own coverage definitions. The same approach as described for monitors can be used in this case. That
means creating a virtual based class that could be extended by users’ defined-classes. Coverage objects can
be defined in this virtual based class and can be turned “OFF” by default. All Verification IP layers should
be able to access these objects through appropriate methods. Sample coverage module is shown below.
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Example 17: Sample coverage definitions for PCI Commands, address modes, Transaction

coverage_def Syn_pci_cnd_cov (bit[4:0] addr_cnd)
{

coverage_option = LO

state Int_Ack_32 (5'b1_0000);
state Spec_Cyc_32 (5'b1_0001);
state | O_Rd_32 (5'b1_0010);
state 1O W_32 (5'b1_0011);

R
coverage_def Syn_pci_termcov (bit[4:0] ctrl_sig)

/*** check for PCl control signals and define valid transactions ***/

state cycle_start (5'b01111),
nmstr_rdy_b (5'b00111),
metr_rdy_s (5'b10111),
dat a_xfer (5' b00001) ...;
/*** Define all valid states of control signals *xk )

trans vld_cyc_start (
"metr_rdy_b" -> "cycle_start",
"mstr_rdy_s" -> "cycle_start",
"data_xfer" -> "cycle_start",
"trgt_abort" -> "cycle_start", ...;

-}
cover age_def Syn_pci_tx_cov (bit[8:0] pci_tx_type)
{

coverage_option = LO
[*** |[O Read and Wites***/

state 10O Rd_32_S Norm (9'h041),
IO Rd_32_B Norm (9'h042),
1 O_Rd_32_MAbt (9'h043), ....;
state IO W_32_S Norm (9'h061),
IOW_32_B Norm (9" h062),
I O_W _32_MAbt (9' h063),
coverage_goal = 100;

} /] end of pci_tx_cov coverage definition

These coverage definitions can be encapsulated in a coverage class as shown below.

Example 18: Sample code for PCI Coverage Class

cl ass Syn_Pci _coverage_core

pci _port devPrt; /1 bind the pci connection

bit [15: 0] supported_cnd;

bi t gl obal _cover age;

bi t accunul ate_cov;

Syn_pci _cnd_cov crmd_cov;

Syn_pci _termcov termcov;

Syn_pci _t x_cov tx_cov;

event start_cnd_cov;

event start_termcov;
event start_tx_cov;

task new(..);

task coverage_nonitor(..);

task coverage_report(..);

}//m'énd of class definition
task Syn_Pci _coverage_core::coverage_nonitor(..)

{
crmd_cov = newcov(addr_cnd, sync(ALL,start_cnd_cov));
termcov = newcov(ctrl_sig, sync(ALL,start_termcov));
tx_cov = newcov(pci_tx_type, sync(ALL,start_tx_cov));
...4 Ilend of task Syn_Pci_coverage_core::coverage_nonitor
task Syn_Pci _coverage_core::coverage_report(..)
{..
/[control reporting mechanism for coverage commands
}
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Protocol Checkers

The function of protocol checkers is to insure that the logical activities on the 1/0 bus comply with the
standard protocol definition for the bus architecture. The checkers would be able to flag any violation from
the protocol standards. The functionality of checker should be organized in a base class which can be
extended on a need basis.

Example 19: Sample code for PCI protocol check class
{cl ass Syn_Pci _Prtcl _Check

pci _port devPrt; /1 bind the pci connection

task new(..);
task pci_mstr_ret_status(..);
task pci_check_reset(..);
task pci_check_interrupt(..);
task pci_check_perr(..);
task pci_check_dpar(..);
task pci_cache_snoop(..);
}// end of class definition
task Syn_Pci_Prtcl _Check::pci_mstr_ret_status( bit [31:0] error mask,
var integer Syn_Pci _ret_status
)
(.
bit [31:0] st at us;
status = Syn_Pci _ret_status;
status = status & ~(errormask| MSTR_FATAL);
if (status)

if (status & MSTR_NORVAL)

SynPCl prnt. SynPrint ("MSTR Unexpected NORMAL termination fromtarget occurred\n");
if (status & MSTR_RETRY)

SynPCl prnt. SynPrint ("MSTR Unexpected RETRY fromtarget occurred\n");
if (status & MSTR DI SCON)

SynPCl prnt. SynPrint ("MSTR Unexpected DI SCONNECT from target occurred\n");

)

if (!flag(OFF))

{
SynPCl prnt. SynPrint ("MSTR Internal error, unknown error status found\n");
flag(OFF);}

Syn_Pci _ret_status | = MSTR_FATAL; // Mark that a fatal error has occurred.

}
task Syn_Pci _Prtcl _Check: : check_dpar (
bit [7:0] ben,
bit [63:0] data,
bit dt_par_err, /1 pretend data parity error
bit err_dperr,
bit err_dperr64,
bit [63:0] ad,
bit [7:0] c_be_,
bit node64

~——

bit par, par64, epar, epar64;
epar =~ { ad[31:0], «c_be [3:0] };
epar64 = ~ { ad[63:32], c_be [7:4] };
@ posedge devPrt. $clk);
par = devPrt$par; par64 = devPrt. $par64;
/1 Print out error nessages if enabled
if (err_dperr &% par !== epar)
SynPCl prnt. SynPrint ("TARGWR Data parity error got PAR = %9b expected = %b
(dat a=%®h, ben=%®h)\ n", par, epar, data, ben);
if (mode64 && err_dperr64 &% par64 ! == epar64)
SynPCl prnt. SynPrint ("TARGWR Data parity error got PAR64 = %b expected = %0b
(dat a=9%®h, ben=%®0h)\ n", par64, epar64, data, ben);

}
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Chapter 7: OVA based Protocol Rule Checkers

As discussed in chapter 1, OpenVera Assertion (OVA) provides a highly abstract and concise declarative
mechanism to code the specification of the sequences of events and activities of a standard bus protocol.

The Assertion based verification component embodied in OVA protocol rule checker can work in a stand-
alone mode, i.e, can be plugged in any design verification environment, which uses the standard protocol
without disturbing the structure. The function of protocol rule checkers is to insure that activities on the
1/0 bus do not deviate from standard protocol definition and report any violation from the standard
operation.

For example, a PCI compliance protocol checker can be developed using the abstraction in OVA syntax
that is used in dynamic simulation of a PCI based SoC. Note that the same OV A checks and assertions can
also be used in formal verification environment for the standard protocol. The following example shows
psuedo-code segments of a protocol rules check.

Example 19: Sample code for OVA based PCI compliance rule checker

/1 include appropriate header files for macros
/1 and tenpl ate use
modul e Syn_Pci _MstrSlv_check (.) {

éyn_Pci Mast er _check(..);
Syn_Pci Sl ave_check(..);
}

tenpl ate Syn_Pci Mast er_check(..):{

é)'/n_Pci _BusOptn_Rul e_8_b(.);
Syn_Pci _BusOptn_Rule_8 c(..);

}
tenplate Syn_Pci _BusOptn_Rule_8 b (clk): {
/1l Once FRAME has been de-asserted, it cannot reassert in the sane
/1 transaction. |If FRAME is de-asserted and the cycle is not yet over
/1 (i.e. IRDY is still asserted), then FRAME nust not be re-asserted.
cl ock posedge clk {

event Syn_Pci _BusOptn_rule_8_b :

if( matched SynPci Frame_deassert_and_transact _not _over)

then #1 inv( SynPci _frame_asserted);

assert SynPci Op_8_b_frane_not _reassert_in_sanme_transact

check( Syn_Pci _BusOptn_rule_8_b);

}

tenplate Syn_Pci _BusOptn_Rule_8 ¢ (clk): {
/1l FRAME cannot be deasserted unless |RDY is asserted

cl ock posedge clk {

event Syn_Pci _BusOptn_rule_8 c :

if( matched SynPci Frame_deassert)

then SynPci _irdy_asserted;

assert SynPci Op_8_c_franme_deassert_only_if_irdy_assert
check( Syn_Pci _BusOptn_rule_8_c);
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Chapter 8: Result Logging and reporting

It is recommended that a central facility be provided for specific verification IP for log and print messages.
All files and objects in the verification IP would then share an object to log the results. Methods in the log
object should clearly identify the object and method that is printing or logging the information, such as
coverage object or arbiter object, etc. This facility can also control option setting for debug printing. The
required feature is to provide a consistent printing/logging utility to the user.

Example 21: Sample code for log-print Class
class Syn_Pci _print_obj

pci _port devPrt; /1 bind the pci connection
string print_string;

task new(..);
task SynPrint(..);
task SynPCl set DebugLevel (..);

Chapter 9: Verification IP Directory structure recommendation

In this chapter, we discuss a recommended directory structure and file naming convention. All the source
codes which are independently compiled use *.vr extension. File names should also contain a unique
prefix or postfix. Using the same recommendation for global naming, for our PCI example, we can use the
Syn_ for file name identification (Syn_Pci_models.vr, Syn_Pci_signal.if.vrh, Syn_Pci_cvrg.vr, etc.).
Files, which are included in other files, should be named with .vri extension for clarity.

VIP_Directory

design under test include lib doc test sim
Verilig .vrh vr User

VHDL Headers vro guide vrl
Design interface Source  Manual Scripts
examples ports/binds  .vri AppNotes AN

Top-test files
Shell wranners

Figure 5: A typical Verification IP directory structure
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Chapter 10: Usability guidelines

In this chapter we will highlight guidelines to ensure robust usability of the verification IP and models. The
following items will enhance re-use methodology and allow verification teams to incorporate the layered
verification IP in the testbench infrastructure.

Configuration management

The Verification IP code must take care of all default setting. For example, log files and coverage report
files must have default strings. Through appropriate mechanism such as plus argument, passing the
defaults can be overruled. This will allow users to customize the VIP environment.

Naming convention

In general the verification IP files and codes will be used in conjunction with other Vera testbenches. This
can potentially cause collision on names of data structures and methods. It is required that global variables
and data_types and structures such as classes use appropriate prefix or post-fixes. This also allows easy
identification of modules for debugging purposes. In this document all classes and global variables have
used a Syn_ prefix as an indication that they belong to Synopsys, Inc. library. For example, look at class
Syn_Pci_arbiter_model.

Script and simulation control

The verification IP contains appropriate make files, run-command files and scripts. These scripts must be
tested for the environment settings as well compilation and running a simulation with standard Verilog and
VHDL simulator such as VCS and Scirocco. The Verification IP users may choose to use the provided
scripts or modify them to incorporate in their system simulation scripts.

Debug control level

It is customary to use print statements to aid in debugging both the verification IP and testbench code. The
requirement is to use debugging level identifiers that can be controlled, say from a plus argument or set of
variables, by users. Refer to logging and reporting section for more information.

Array and list manipulation

List structures within Vera and dynamic associative arrays are used for storage purposes. The associative
arrays should be handled properly. For example, the structures which are not needed should be deleted
using appropriate assoc_array(DELETE) routines, etc. Another method to reduce the chance of allocating
more storage/memory when packets/frames/data structures are created is to use appropriate default
allocation limits for input queues of data packets.

Packet, Transaction Sequence and Device identification

For statistic gathering as well as finer control of the test suites, data generation and checking, sequence
identification and packet identification such as packet_id, sequence_id, device_id, etc should be part of
each object and properly manipulated (incremented and registered in the logs and checks).

Error generation and handling

The verification IP model contains capability to easily create and generate error conditions and injection to
the DUT. It also should allow for checking the correct design response to the errors generated.

Synchronization and concurrency

The synchronization construct and features of Vera such as semaphores, mailboxes, regions and events
must be used for accurate handling of any thread manipulation. Please note the naming convention
discussed above for the identification of these constructs. For example arbitration mechanism most likely
would use a set of semaphore keys for control purposes.
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Verification IP version and identification

Each verification IP shall be registering its appropriate name and identify in a print statement the developer
information for identification purposes. Information regarding code version and standard compliancy
levels must also be available in the verification IP code.

Verification IP modules and object model diagrams with UML

Unified Modeling Language (UML) is a language used mainly in software design for creating models of
object-oriented systems. Since UML is a graphical entry language and environment it can assist developers
of verification IP with specification, documentation and visualization of the objects and their interactions.

Most UML diagrams and some complex symbols are graphs containing nodes connected by paths. The
information is mostly in the topology. Data object and class diagram, along with activity diagram would be
helpful to the users of the verification IP, as it can provide a visual description and overview of the system
and class methods and data”. The associations and aggregation, interaction between classes can also be
represented in the UML diagrams. The following figure is a sample representation of data object model,
using Vera extension to Rational Rose package.

UML data objects diagram model
L] S ST,
E',-_r_:cl_rr-:-::m_uuﬂ:p _ ’.-'-'.'\-_J:-_!::'grl_duq::- Byn_Elrer packel
BhdePri © por_poit SdePrt © poi_pord girtager Pl _|d
Bpdesica_ o Bil[150] Sdnsl - bi[47-0]
’pl.l masier_bwsli) ﬁ:hvm]l.u_ld bie[15:00) gsrce  bi47-0]
*niat) Bsnevision i bil[15.0] Bsiyps - bil| 150
T¥pci_masier_whi) mam_space|] - bil| 10|
w e Bsiom_spacal] : bt{150] LT
Yocly_spacel]  bi[150] ¥ pre_randomized]
calculate_orci)
"'mgl-u_'l . L]
THerminale_lamsf)
¥ deic e_configl)
L]

Figure 6: A sample data object model in UML

Documentation, data-sheet and application notes

A concrete and all-encompassing data-sheet and a manual, a user guide should accompany verification IP
package. The user guide must detail how one would deploy the model in verification environment.
Application note(s) are customary for more clarification and expanded explanation. There should be a
quick-start section with a typical small test case at the minimum for a Verilog and VHDL environments
that shows the verification IP usage in each case.

Verification IP licensing and delivery mechanisms

The Verification IP code can be provided as object and protected format or complete source code. If the
objects are provided for use, then proper licensing and delivery mechanisms should be part of the
verification IP and its usage clearly documented. The simplest method is to use user-defined-function
mechanism to embed license checking and manipulation.

2. For more discussion on UML and object modeling readers can refer to following book and technical papers among many:
James Martin, James J. Odell, ‘Object-Oriented Methods, A foundation’.

“Mapping Objects to Data Models with UML” pttp://www.rational.com/media/whitepapers/tp185.pdf

“UML and Data Modeling” :
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Appendix A: A PCl arbiter psuedo-code example

An expanded psuedo-code segments for a PCI arbiter and coverage class is shown in this appendix. These
are fragments of code to show the flow; this code is not a complete implementation.

/1

/1 assunption that all required header files have been included properly
/1 and external objects/paranmeters have decl are.

/1 exanple: extern Syn_pci_print_obj SynPCl prnt

class Syn_Pci _arbiter_nodel {
pci _port devPrt, // binds to the PCl bus
i nteger type, [/ priority rule (Round_Robin or Two_Level _Round_Robi n)
integer parking // 0: do not park, 1l:park to the |ast w nner
task new ( pci_port inPrt, integer type, integer parking);
local function integer RR winner( integer last, bit[7:0] req_ );
local function integer Two_Level RR winner( integer last, integer last2, bit[7:0] req_ );
task pci_arbiter_start();

} // end of class Syn_Pci_arbiter_nodel definition

task Syn_Pci _arbiter_nodel::new pci_port inPrt, integer inType, integer inParking)
{ devPrt = inPrt;

type =i nType;

par ki ng = i nParki ng;

SynPCl prnt. SynPrint(" PCl arbiter nodel is instantiated \n");

pci _arbiter_start();
} // end of new task

/1 define what the RoundRobin wi nner nethod function
local function integer Syn_Pci_arbiter_nodel::RR w nner(integer last, bit[7:0] req_ )

{
integer i;
for( i =0; i <8, i++)

if( reg_[(last+i +1)9%8]==1"b0 )

RR wi nner = (last+i+1)%8; // set return val ue
return;

}
} // end of RR w nner function

/1 Some comments on the code for function described bel ow.
/1l This is an exanple of 2Level Round Robin arbitration. Even nunber requests
/1 are higher in priority with the last winner having lower priority anong the sane
/Il priority level. If there is no request, it returns X
local function integer Syn_Pci _arbiter_nodel:: Two_Level _RR w nner (
integer last, integer last2, bit[7:0] req_)
{

integer i, j;

integer currentl, current2;

/1 if last was 2nd (odd) |evel, then scan 1st (even) |level requests first.
/1

currentl = (last & 1) ?2 0 : (last + 2) % 10;

for( i =0; i <5; i++ currentl = (current1+2)%0 ) // scan 1st |evel
{
if( currentl == 8 ) // 2nd level's turn
{
(last2 + 2) %8;

current2 = (I

for( j =0; j <4; j++, current2 = (current2+2)9% ) // scan 2nd | evel
if( reg_[current2]==1"b0 )

{

Two_Level _RR winner = current2; // set return value
return;
}
}

else if( reqg_[currentl]==1"b0 ) // test for 1st |evel request
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Two_Level _RR winner = currentl; // set return value
return;

}
} // end of function Two_Level _RR w nner

task Syn_Pci _arbiter_nodel::pci_arbiter_start ()
{
integer rstlast, lastw nner, |astw nner2, w nner, curw nner, granted;
bit [7:0] req_, gnt_, gnt_I;
bit frame_, irdy_, rst_;
if( (type !'= Two_Level _Round_Robin & type != Round_Robin) || (parking > 1) )
SynPCl prnt. SynPrint("Il11egal argument for pci_arbiter_nodel ()\n");

lastwinner = 7; // last w nner
lastwinner2 = 7; // last winner fromlevel 2

rstlast = 0; /1 "reset previous clock" flag

curwinner = -1; // holds the last state of the granted when frame_ =1
granted = -1, /1 see note bel ow

/1 Note: Variable ‘granted’ reflects the current state of the grant lines
/1 (-1 neans no-grant else holds value of master with the grant).
11

fork

whi | e(Syn_Pci _not _end_of _test)

@ posedge devPrt.$clk ); // wait for clock edge
/1 sanple data
req_ = devPrt. $req_;

frame_ = devPrt. $frane_;
irdy_ = devPrt.S$irdy_;
gnt _ = devPrt. $gnt_;
rst_ = devPrt.$rst_;
if( rst_==1'b0)

| astwi nner = 7;

| astwinner2 = 7;

rstlast = 1;

curw nner = -1;

granted = -1,

@ devPrt.$gnt_ <= 8'hzz; // Gant signals go tristate.
}
el se
{ /! not a reset

if( frame_==1'bl )

{ curwi nner = granted,

}

el se

{
if( curminner < 0 ) error("Frane asserted with master unknown\n");
| astwi nner = curw nner;
if( curwinner & 1) |astwi nner2 = curwi nner;

}

if( reg_ !== SYN_PCl _ALL_ACTIVE ) // one or nore requests are active

case (type)

Round_Robi n:
wi nner = RR winner( |astw nner, req_ );
Two_Level _Round_Robi n:
wi nner = Two_Level _RR wi nner( |astwi nner, |lastwi nner2, req_ );

}

gnt | = 8 hff; gnt_I[winner] = 1'b0; // setup grant array
if( (gnt_==8"hff) || (frame_==1'b0) || (irdy_==1'b0) )

{

/1 if no grant or not idle state then generate new grant immedi ately
@ devPrt.$gnt_ <= gnt_|I;
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granted = wi nner;
else if (granted != w nner)

/1 disable all grants first; grant will be applied next cycle
@ devPrt.$gnt_ <= 8'hff;
granted = -1,
}
}

el se

{ /! no one's requesting bus
if( parking==0 ) { @ devPrt.$gnt_ <= 8 hff; granted = -1; }
else if( rstlast ) { @ devPrt.$gnt_ <= 8' hfe; granted = 0; }

rstlast = 0;
}
b . L
join none // return w thout waiting
} // end of task that is continuously running after instantiation

Here is what a core of the coverage class would look like for the PCI example.

/1 Note: appropriate header files to be included
class Syn_Pci _coverage_core
{
pci _port devPrt, // binds to the PCl bus
bit [15:0] supported_cnd;
bit gl obal _coverage;
bit accumrul ate_cov;
bit [3:0] cnd;
bit [4:0] addr_cnd,
bit [4:0] ctrl_sig;
bit [8:0] pci_tx_type;
pci _cnd_cov cnd_cov;
pci _termcov termcov;
pci _tx_cov tx_cov;
event start_cnd_cov;
event start_termcov;
event start_tx_cov;

task new(pci _port inPrt, bit [15:0] new_ supported_cnd,
bit new_ gl obal _coverage, bit new accunul ate_cov);

task coverage_nonitor (..);

task coverage_report();

} //end of class Syn_Pci_coverage_core definition
task Syn_Pci _coverage_core::new pci_port inPrt,

bit [15:0] new supported_cnd,
bit new_gl obal _coverage, bit new accumnul ate_cov)

{
devPrt = inPrt;
gl obal _coverage = new_gl obal _cover age;
accunul ate_cov = new_accunul ate_cov;
if (global _coverage == ON)
{
supported_cnd = new_supported_cnd;
trigger(OFF, start_cnmd_cov);
trigger(OFF, start_termcov);
trigger(OFF, start_tx_cov);
fork
cover age_noni t or (supported_cnd);
join none
}
}
task Syn_Pci _coverage_core::coverage_report(..)
{
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if (global _coverage == ON)

{
sync(ALL, nstr[21]);
trigger(OFF, mstr[21]);
/1 coverage(SAVE, tx_cov, "pci_tx_cov.save");
cover age( REPORT, tx_cov, "pci_tx_cov_final.report");
trigger(ON, mstr[20]);

}

task Syn_Pci _coverage_core::coverage_nonitor (..)

{

crmd_cov = newcov(addr_cnd, sync(ALL,start_cnd_cov));
termcov = newcov(ctrl_sig, sync(ALL,start_termcov));
coverage(OFF, termcov);

tx_cov = newcov(pci_tx_type, sync(ALL,start_tx_cov));

/*** This bl ock enables the control signal coverage for the current ***/
/*** command, and turned off after the cycle conpletes. *kx
fork
whi | e(Syn_Pci _not _end_of _test)
@ negedge devPrt. $frane_);
cmd = devPrt. $c_be_; [*** only use |ower 4 bits ***/
addr_cnmd = { devPrt.$req64_, cnd};
if (addr_cnd[3:0] == 13) /*** Dual Address Cycle ***/

{ @negedge devPrt. $clk);}
trigger (HAND_SHAKE, start_cnd_cov);
@negedge devPrt. $clk);

whil e (Syn_Pci _not_end_of _test)
{ while (devPrt.$frame_ == 0 | devPrt.$irdy_ == 0)
{

coverage(ON, termcov);
ctrl_sig = { devPrt.$frame_, devPrt.$irdy_, devPrt.$trdy_,
devPrt. $devsel _, devPrt.$stop_};
trigger (HAND SHAKE, start_termcov);
@ negedge devPrt. $clk);
coverage(OFF, termcov);

}

join all
} //lend of task
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Appendix B: Guideline and Methodology Checklist

version 1.1

The following table presents a matrix for the major aspects of the Vera Verification IP guideline discussed
in this document. The checklist table should be used in conjunction with the discussions in previous
chapters and not as a direct replacement.

Item Category Guideline and Methodology Description Incorporation
Number inIP
1 Signals Interface and signal definitions encapsulated for VIP and Design Under
[Layer O] Test connection.
2 “ Port and bind definitions and usage for VIP.
3 “ Static connection routines for use in testbench and their appropriate
wrappers. Dynamic connection methods examples in the code.
4 HDL wrappers | Appropriate shell files for Verilog and VHDL connection must be
provided.
5 Monitor Monitoring the design signals for physical interface checking and
correctness.
6 Command Set of Bus Functional Commands, basic transactions for the standard
[Layer 1] protocol.
7 Access Primitive access methods for BFM, monitors and packet data structures.
methods
8 Checking Provides monitoring routines and self-checking components within the
BFM and commands.
9 Random Provides appropriate random attributes for data structures and
attributes corresponding constraint sets.
10 Initialization Default initialization and methods with configuration files and appropriate
reset conditions.
11 Transactions Structures and classes for generating directed and random sequences of
[Layer 2] commands.
12 Checking Score-boarding and checking engine with appropriate methods for the
sequences of transactions.
13 Logging Appropriate logging and messaging routine.
14 Functional Coverage of transactions, commands and data flow.
Coverage
15 Random Sequence generation and distribution setting through usage of VSG and
generation the constraint mechanisms in appropriate classes.
16 Application Structures and classes encapsulating test scenario in both random and
[Layer 3] directed environments.
17 Configuration Methods allowing setting proper configuration of testbench VIP elements
as well as calls to set proper design properties.
18 Coverage Coverage monitoring and statistics gathering.
statistics
19 Checkers Protocol checks and monitors on the standard bus, controllable from top
monitors layer and main program.
20 Directed Easily create fully directed tests as well as pseudo-random tests
Random test
21 OO methods Proper base class definition, and extension methods with clear definition
how to use them at all layers.
22 Usability Logging: Logging and message printing/status through appropriate
Guidelines objects.
23 “ Documentation: Data sheets, application notes, user manual and a
guick-start document.
24 “ Directory structure: A simple and useful directory structure.
25 “ Licensing: Proper licensing mechanism and files, through UDFs
delivered with the verification IP package.
26 “ Name Space: Avoid collision by appropriate prefix-postfix naming.
27 " Scripts: Make files, scripts, run-command and log-file generations.
28 “ Debug Levels: Debug level controls mechanisms.
29 “ Error Generation: Error generation and handling properly implemented.
30 “ UML Diagrams: Use UML for object diagrams, relationships, and
aggregation of the models.
31 “ Verification IP version: Registering correct name and version.
32 “ HDL wrappers: Verilog and VHDL test case with appropriate shell files
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