
 INSTITUT FÜR INFORMATIK
DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Diplomarbeit

MagicDraw-Plugin zur Modellierung und Generierung
von Web-Anwendungen

Petar Blagoev
blagoev@cip.ifi.lmu.de

Aufgabensteller: Prof. Dr. Alexander Knapp
Betreuer: Dr. Nora Koch

Abgabetermin: 9.11.2007

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

II

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

III

Acknowledgments:

I would like to sincerely thank Prof. Dr. Alexander Knapp for coaching me and
supporting me in writing this diploma thesis.
I would also like to express a special gratitude to my supervisor Mrs. Dr. Nora Koch for
her help and support.
Finally, a very special thank-you goes to Petya, for her continuous support throughout
the writing of my thesis.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

IV

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

V

Zusammenfassung:

In dieser Arbeit wurde ein UWE Plug-in (eine Erweiterung) für das MagicDraw Program
entwickelt. Dieses Plug-in implementiert die UWE Methode, die einen systematischen
Ansatz für die Entwicklung von Webanwendungen darstellt.

UWE beruht auf einer konservativen Erweiterung des UML und umfasst das getrennte
Modellieren der Konzept-, Navigation- und Präsentationsschicht einer Webanwendung.
Dieses Plug-in ist für die MagicDraw Software mittels der bereitgestellten Open API
Schnittstelle implementiert worden.

MagicDraw integriert völlig das UML2 Metamodel und ermöglicht es, seine
grundlegenden modellierenden Funktionalitäten mit Hilfe von Drittentwicklern zu
erweitern. Außerdem es ist ein Modellierungs- und CASE-Werkzeug für die
Visualisierung von UML Diagrammen, das viele verschiedene Entwicklungs-
Mechanismen für zahlreiche objektorientierte Programmiersprachen, Modellierung von
Datenbank Schemata, rückwärts Entwicklung etc. ermöglicht.

Die Implementierung von einem UWE Plug-in für ein so populäres Modellierungs- und
Entwicklungswerkezeug wie MagicDraw bietet einen reibungslosen Einstieg für alle,
die sich mit dem UWE-Ansatz beschäftigen möchten.

Abstract:

In this work an UWE plug-in (an extension) was developed for the MagicDraw software.
This plug-in implements the UWE methodology which provides a systematic approach
for the development of Web applications.

UWE is based on a conservative extension of the UML and comprises of the separate
modelling of the conceptual, navigational and presentational aspect of Web
applications. This plug-in is implemented for the MagicDraw software using its Open
API developing interface.

MagicDraw fully integrates the UML2 metamodel and gives a great opportunity to
enhance its basic modelling functionalities with third party plug-ins. Furthermore it is a
visual UML modelling and CASE tool and provides versatile development mechanisms
for different kinds of Object Oriented programming languages, databases schema
modelling, reverse engineering facilities and more.

Implementing a plug-in for such a popular modelling and developing tool as
MagicDraw, makes it very easy for everyone, who is interested in using the UWE
modelling approach, to work with it.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

VI

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

VII

„Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt, alle Zitate
als solche kenntlich gemacht sowie alle benutzten Quellen und Hilfsmittel angegeben
habe.“

München, den 9.11.2007 ___________________
 Petar Blagoev

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

VIII

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

IX

Contents

1 Introduction .. 1

2 UWE .. 3

2.1 UWE Overview ... 3

2.2 UWE Metamodel ... 4

2.2.1 UWE Metamodel Package Structure ... 4

2.2.2 Consistency Rules ... 8

2.3 UWE Profile .. 9

2.4 UWE Development Process ... 9

2.5 UWE by Case Study ... 10

3 UWE CASE Tool Requirements .. 14

3.1 Usability Requirements ... 15

3.2 GUI requirements ... 16

3.3 Functionality requirements .. 17

4 Design Decisions for the UWE CASE Tool .. 19

4.1 MagicDraw .. 19

4.2 Design Decisions .. 20

4.2.1 UWE Profile and Template .. 21

4.2.2 UWE Main Menu ... 22

4.2.3 UWE Diagram Toolbar Menu .. 24

4.2.4 UWE Diagram Context Menu .. 26

5 Implementation .. 27

5.1 Writing a plug-in .. 27

5.2 MagicDraw Open API ... 28

5.3 UWE Plug-in Design and Architecture .. 29

5.3.1 The UWE Profile and Template ... 34

5.3.1.1 Creating a Profile .. 35

5.3.2 The UWE Template ... 37

5.3.3 The UWE Core System and Main Classes .. 38

5.3.3.1 UWE Plug-in Actions .. 41

5.3.3.2 UWE Plug-in Transformation .. 42

5.4 Problems During the Development ... 43

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

X

5.4.1 Concrete Examples of Implementation Problems 44

5.4.1.1 Understanding the Module Loading Mechanism 44

5.4.1.2 Hiding of the Class and Association Stereotypes 45

5.4.1.3 Usage of the State Actions .. 47

5.4.1.4 Transformation Package Browser ... 48

5.4.1.5 Inserting of Query and Index ... 50

6 Modelling with the UWE-Plug-in .. 52

6.1 Preparations before Modelling ... 52

6.2 Modelling by Example .. 52

6.2.1 Use Case Diagram ... 53

6.2.2 Content Diagram ... 54

6.2.3 Navigation Diagram .. 55

6.2.4 Navigation Diagram with Integrated Processes 56

6.2.5 Presentation Diagram ... 57

6.2.6 Transformations .. 58

6.2.7 Exporting the Model .. 59

7 Future Work and Conclusion ... 60

7.1 Unresolved Issues ... 60

7.2 Conclusion ... 60

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

XI

Table Index

Table 1 Mapping of MagicDraw Classes to GUI Elements ... 33

Table 2 Transformation Rules ... 59

Table 3 UWE Plug-in Files and Directories ... 69

Figure Index

Figure 1 UWE Metamodel Overview ... 5

Figure 2 UWE Navigation Metamodel ... 6

Figure 3 UWE Presentation Metamodel .. 6

Figure 4 UWE UI Elements Metamodel .. 7

Figure 5 Relationships of Presentation Elements ... 7

Figure 6 UWE Content Metamodel ... 8

Figure 7 UWE Process Metamodel ... 8

Figure 8 Example of OCL Constraint .. 9

Figure 9 Navigation Use Case Diagram .. 10

Figure 10 Content Diagram – Structure .. 11

Figure 11 Navigation Diagram .. 11

Figure 12 Navigation Diagram - Enhanced by Access Structures 12

Figure 13 Process Diagram .. 12

Figure 14 Presentation Diagram ... 13

Figure 15 MagicDraw Overview .. 20

Figure 16 UWE Profile in MagicDraw .. 21

Figure 17 MagicDraw with integrated UWE .. 22

Figure 18 UWE Main Menu Submenus ... 23

Figure 19 UWE under Diagrams ... 24

Figure 20 UWE Transformation Actions .. 24

Figure 21 UWE Diagram Toolbar Actions ... 25

Figure 22 Plug-ins Manager Process Flow ... 30

Figure 23 plugin.xml .. 31

Figure 24 PluginManager init() Method ... 31

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

XII

Figure 25 MD Actions Hierarchy .. 32

Figure 26 getSubmenuActions() Method .. 34

Figure 27 Loading of the UWE Profile through UWE Template 35

Figure 28 loadUWEProfile() Method .. 36

Figure 29 Reference of the UWE Profile in UWE.mdzip .. 38

Figure 30 UWE Plug-in Architecture Overview .. 39

Figure 31 UWE Diagram Actions ... 41

Figure 32 Transformation Implementation ... 43

Figure 33 ProjectListener loadUweProfile() .. 44

Figure 34 Properties Set .. 45

Figure 35 Hide Stereotypes Property ... 46

Figure 36 Hide Rowe View Stereotype .. 46

Figure 37 UWE State Actions ... 47

Figure 38 State Actions Implementation .. 48

Figure 39 Elements Package Browser ... 49

Figure 40 Elements Browser Window Implementation ... 49

Figure 41 UWE Diagram Context Menu ... 50

Figure 42 Computation of the Place of Insertion .. 51

Figure 43 Navigation Use Case Diagram of the Example .. 53

Figure 44 Content Diagram of the Example ... 55

Figure 45 Navigation Diagram of the Example ... 56

Figure 46 Process Integration into Navigation Diagram ... 57

Figure 47 Presentation Model of Artist Navigation Node ... 58

Figure 48 Transformation Actions .. 59

Figure 49 UWE Installer - Packages Dialog ... 68

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

XIII

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

1

1 Introduction

Web applications are getting more important in our daily use of information
technologies than ever before. Starting with static Web pages in the past, through
dynamic presentation of the page content afterwards and nowadays the attempt to use
Web 2.0 [1] techniques everywhere in the Internet had transformed the Web into a
platform for more and more complex and popular Web applications. Because of the
rapidly growing new Web techniques and the complexity of the Web applications,
design and modelling tools supporting the Web applications engineering are in
demand.

The objective of this thesis is to develop a Computer-Aided Software Engineering
(CASE) tool supporting the UML-based Web Engineering (UWE) [2] methodology. The
Web engineering field is rich in design methods supporting the task of designing Web
applications. One of the usability requirements to such methods is to provide tool
support for the model-driven design and generation of Web applications.[3] The well
known standard used for modelling is the Unified Modelling Language.[@1]

The design methodology of UWE is based on a metamodel that is defined as a
lightweight extension of the UML metamodel in form of a profile. Furthermore UWE
tends to use of standards in the systematic design followed by a semi-automatic
generation of Web applications. The developed UWE CASE tool in this work implies
the employment of the UWE methodology.

The UWE CASE tool developed in this thesis was built as an extension of MagicDraw
CASE tool.[@5] The main advantage of using an already existing CASE tool is the fact
that such a tool supports already existing modelling standards and some of the Web
engineering modelling methods. Besides that, MagicDraw provides a UML profile
support which gives the opportunity to map the UWE metamodel into such a profile and
easy integrate it into the modelling process. The developed tool has extended
MagicDraw to support the UWE methodology. The tool provides tailored visual editors
for an UWE model for modelling of Web applications. Furthermore it supports semi-
automated transformations that are defined in the UWE development process. The
developed tool is implemented as a Plug-in for MagicDraw and it fully integrates the
UWE metamode l[4].

The UWE approach is already supported by ArgoUWE [3] CASE tool which is an
extension of the open source ArgoUML [@6] modelling tool. Because ArgoUWE is
supporting only UML version 1.5 the goal was to develop a new UWE CASE tool to
support the new UML version 2.0 and above. That’s way the modelling tool used in our
case as basis had to satisfy this requirement. Another point for implementing a new
UWE CASE tool is to take advantage on the use of an already established modelling
tool with great functionalities for modelling and designing of Web and Object Orientated
applications. The support of different interchange formats such as XMI [@7] was also
from importance. We chose the MagicDraw for CASE tool to be extended, because it
fulfils all specified criteria, providing an easy way to define a UWE profile and
integrating an extension as a Plug-in through provided Open API interface.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

2

The structure of this thesis is the following: chapter two provides an overview of the
UWE metamodel and approach and how UWE methodology supports the Web
application development demonstrated by a small example. Chapter three describes
the UWE CASE tool relevant requirements. Chapters four to six are the core of this
work and describe the design decisions that have been made during the
implementation, the implementation of the tool itself pointing on interesting problems
and solutions, and a step by step modelling example using the newly developed tool.
Finally, in the last chapter seven some concluding marks and the future work is
outlined.

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

3

2 UWE

The UML-based Web Engineering (UWE) is a software engineering approach for the
development of Web applications that has been continuously extended since
1999.[5][6] UWE supports the development of Web applications with special focus on
systematization.[7]

UWE is a methodology for the development of Web systems. The two key aspects that
distinguish UWE from other approaches are its reliance on standards and its support
by an open source tool [@8].

UWE offers Web-domain specific aids for the three pillars of software engineering:

• visual notation

• process

• tool support

Furthermore UWE is defined as a model-driven development (MDD) [8] process, i.e.
models are not built in isolation, but they are rather the basis for both the model-to-
model and model-to-code transformations. UWE provides tool support for the design of
models, model consistency checks and semi-automatic generation of Web systems.[9]

Thus the UWE components, such as: metamodel definition, profile definition,
transformations definitions, constraints definitions and more, are defined in many
previous works (see UWE home page for publications [@2]) and are beyond the scope
of this thesis. Summarized overview of them will be given in the following sections of
this chapter.

2.1 UWE Overview

While UML is the standard of specifying, modelling, visualizing and designing any kind
of Objects Oriented applications there is no such a standard for the modelling of Web
applications. UML and other established modelling languages do not support such kind
of modelling and UWE is trying to fill this gap. UWE defines such missing elements in
UML as: menu, index, image, text field, navigation paths between different Web sites,
etc.

The UWE approach provides a domain specific development process, a notation and a
tool support for the engineering of Web applications. The notation proposed for the
analysis and the design of Web applications is defined as a "lightweight" extension of
the UML- as a so-called profile.

The UWE profile is based on the extension mechanisms defined by the UML itself. The
advantage of using established notation is obvious as Web applications can be
designed using existing UML CASE tools and the extension has no impact on the

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

4

interchange formats.

UWE uses “pure” UML notation and UML diagram types for the analysis and the design
of Web applications whenever possible, i.e. without extensions of any type. For the
Web specific features, such as nodes and links of the hypertext structure, the UWE
profile includes stereotypes, tagged values and constraints defined for the modelling
elements.

The UWE extension of UML covers content, navigation, and presentation and Web
process aspects. For each aspect a diagram is built following the guidelines provided
by an UWE method for the systematic construction of models. For example, a
navigation model consists of navigation classes, links and a set of indexes, guided
tours and queries.

The UWE design approach for Web business processes consists of the introductions of
specific process classes that are part of a separate process model with a defined
interface to the navigation model. In order to model adaptive features of Web
applications in a non-invasive way, UWE uses techniques of aspect-oriented modelling
(AOM) [@3]. Following the separation of concerns principle UWE proposes to build an
adaptive model for personalized or context-dependant systems and weave the models
afterwards. [13]

2.2 UWE Metamodel

Metamodelling is the core of a model-driven process and plays a fundamental role in
the CASE tool construction. A metamodel is a precise definition of the elements of a
modelling language, their relationships and well-formedness rules needed for creating
syntactically correct models. Metamodels are essential for the definition of model
transformations and semi-automatic code generation.

The UWE Metamodel is designed as a conservative extension of the UML 2.0
metamodel. Thus none of the modelling elements of the UML metamodel are modified.
All new UWE modelling elements are related by inheritance to at least one modelling
element of the UML metamodel. Additional features and relationships for those new
elements are defined in the UWE metamodel. Analogously to the well-formedness
rules in the UML, OCL constraints are used in UWE to specify the additional static
semantic of the newly defined elements.

Furthermore UWE is compatible with the MOF (Meta Object Facility) interchange
metamodel, which can take an advantage of using metamodelling tools based on the
corresponding XML interchange format XMI (XML Metadata Interchange).

The resulting UWE metamodel could be mapped to a UML profile, so called profileable.
In this way standard UML CASE tools with a support for UML profiles or the UML
extension mechanism, i.e. stereotypes, tagged values and OCL constraints, can be
used to create UWE models of a Web application. If such CASE tools were designed to
be further extended, the UWE metamodel can be integrated to them by creating a
UWE profile.

2.2.1 UWE Metamodel Package Structure
The UWE extension of the UML metamodel is created by adding two top-level
packages Core and Adaptivity to the UML as shown in Figure 1. The separation of
concerns of Web applications is reflected by the package structure of Core. The
adaptation cross-cutting is reflected by the packages dependency of Adaptivity on
Core. [9] The Core package contains all elements needed to model non-adaptive Web

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

applications with UWE- such as: a Content, a Navigation, a Presentation and a
Process model. At least one type of UML diagrams is proposed by UWE for the
visualization of each model.

Figure 1 UWE Metamodel Overview

All UWE models: Content, Navigation, Presentation, etc. are subclasses of the UML
Core class Model.

Figure 2 shows the UWE metamodel for Navigation with a relationship between the
abstract classes Node and Link, which are the basic elements in the Navigation model.
Their subclasses are NavigationClass and NavigationLink respectively. Because the
NavigationClass is a Node it can be directly reached from all other nodes of the
application with the isLandmark attribute. Furthermore, the NavigationClass consists of
NavigationProperties (derived from the UML Core element Property).
Figure 2 also illustrates how access primitive classes, such as Index, are aggregated to
a Node. Note that Menu is a specialization of the NavigationClass.

The Presentation package of the UWE metamodel can be described analogously to the
Navigation package. Figure 3 shows the UWE metamodel of Presentation. Obviously,
the PresentationClass is a specialization of the abstract PresentationElement class. All
owned class attributes by a PresentationClass element are PresentationProperties.

The PresentationGroup and Page are Subclasses of the PresentatonClass. The user
interface element abstract class UIElement is specialized through a plenty of UI
interaction elements like Button, TextInput, Image, Form, etc. A closer detail of the
UWE metamodel’s UI elements are shown in Figure 4. Besides that, the last figure
shows also that Form and AnchoredCollecten classes are specializations of the
UIContainer which can have one or more user interface elements like TextInput or
Image.

As we can, see the Presentation package of the UWE metamodel specifies all required
user interface unique elements of a Web application.

5

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

GuidedTour
sortExpression : String

Index Query
filterExpression : String

Node
isLandmark : Boolean
isHome : Boolean

Link
isAutomatic : Boolean

1 *
+/source
1

+/outLinks
*

1 *

+/target
1

+/inLinks

*

AccessPrimitiveNavigationProperty

*

+accessedProperties

* {ordered}

NavigationLinkNavigationClass

**

{ordered,
subsets ownedAttribute}

Menu

+navigationProperties

+navigationClass
{subsets class}

Figure 2 UWE Navigation Metamodel

UIElement

Page

Presentation
Element

Presentation
Class

Presentation
Group

Presentation
Property

1

+type{redefines type}

1

*

+presentationProperties

*

{ordered, subsets
ownedAttributes}

+presentationClass

{subsets class}

0..1+default 0..1

Figure 3 UWE Presentation Metamodel

6

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Image
url : String = [0..1]

Text

UIElement

UIContainer

1..*1..*

TextInput Button

Form

1..*1..*

Anchor
format : String = [0..1]

Anchored
Collection

2..*2..*

Figure 4 UWE UI Elements Metamodel

The association between Navigation and Presentation modelling elements can be
understood by the diagram shown in Figure 5. These relationships specified in the
previous diagram are needed later on for enabling semi-automated model
transformations, in particular from Navigation diagram into Presentation diagram. More
about transformation will be explained in the following chapters.

P resentation
Class

0..1

7

Node
(from Navig a tio n)

+node

0..1

NavigationP roperty
(fro m Na vig a tio n)

P resentation
P roperty

*

+pres entat io nClass {subsets c las s}

+presentationP roperties *

{ordered, subsets
ownedAttributes}

0..1

+navigatio nProperty

0..1

Figure 5 Relationships of Presentation Elements

There are two more UWE metamodel packages, used by now as a stub, reflecting the
fact that the modeller can use all UML features while designing their models.

The first one is the Content package. The model of which can contain all UML base
elements whereas no further specialisation of those elements is needed as shown in
Figure 6.

The second and the last package of the UWE metamodel is the Process. This package
has two important specialisations of the Node and Link classes from the Navigation
package. These are the ProcessCalss and ProcessLink. Again all own attributes of
ProcessClass elements are ProcessProperties. Figure 7 details the Process package.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Class
(f rom Ke rne l)

ContentModel

**

Association
(f rom Ke rne l)

**

ContentModel

UWE Model
(from UWE)

Model
(f rom M od els)

Figure 6 UWE Content Metamodel

ProcessLinkProcessModel

Node
(f rom Navigation)

Link
(from Navigation)*1

+/outLinks

*

+/source
1

*1
+/inLinks

*

+/target
1

UWE Model
(from UWE)

ProcessProperty
rangeExpression[0..1] : String

ProcessClass

*

+processClass

+processProperties

{subsets class}

* {ordered, subsets ownedAttribute}

Figure 7 UWE Process Metamodel

2.2.2 Consistency Rules
Following the UML, UWE uses OCL to state more precisely the static semantics of
UWE’s new metamodel elements as well as the dependencies of metamodel elements
both within a single metamodel package and between packages.

The following example shown in Figure 8 is example of the OCL constraints that are a
part of the UWE metamodel. This constraint is specifying stereotype Dependency for
the association between AccessPrimiteve and NavigationProperty (see Figure 2) and
the association between NavigationClass and Menu. Were the end of the relationship
are denote true client and supplier. [9]

8

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

9

context: Dependency

inv: self.stereotypes ->

 includes(“Primitive2Property”) implies

 (self.client.stereotypes ->

 includes(“AccessPrimitive”) and

 self.supplier.stereotypes ->

 includes(“NavigationProperty”))

Figure 8 Example of OCL Constraint

2.3 UWE Profile
The UWE metamodel is the basis for the UWE profile. The UML profile of UWE is using
UML extending mechanisms, called light weighted profile. Basically these UML
mechanisms can define new profiles by using a custom stereotypes, tagged values,
constraints for specializing UML and associations. Never the less such a profile can be
standardized by the Object Management Group (OMG).[@4]

The UWE profile is used for modeling of Web applications. In UWE, generally model
elements, especially Classes and Associations, are extended in e.g. via stereotyping.
Moreover, UWE profile is separated into following stereotypes groups: Content,
Navigation, Presentation, Process and Web Requirements Engineering (WebRE).
These groups are corresponding to the UWE metamodel package structure.

To map the UWE metamodel to UWE profile the following systematic rules were
applied: [10]

• classes to elements with stereotypes

• attributes to tagged values

• inheritance to inheritance among stereotypes repeated

 mapping of attributes and associations

• associations to tagged values or associations (for classifiers)

2.4 UWE Development Process
The process of software engineering and in particular the development of Web
applications is being continuously optimized in coherency of ever changing technology
and user requirements. That’s why models designed in any phase of the development
process have to be easily adaptable to these requirements. UWE implements a Model-
Driven Development (MDD) process on the basis of the separation of concerns in the
early phases of development process. This UWE development process is based on the
construction of models and model transformations.

MDD approve the use of models for every phase of Web engineering and even more, it
stresses on the need of transformations in each of these phases of development
process. UWE development process is driven by the separate modeling of concerns
describing the different views of the same Web application during this process. The
different concerns can be: content, navigation, structure, and presentation and their
models are built at different phases (requirements engineering, analysis, design,

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

implementation) of the development process.[9]

The UWE development process can be easily described as: model-transformation-
model-transformation-code, whereas the amount of models can be various.

In the following section some of the main model views of the development process will
be shown on a case study.

2.5 UWE by Case Study
The following case study describes briefly Web development with the UWE approach.
Whereas the models of design concerns of different views of an e-shop are presented.
Only some of the basis diagram views are shown here, for whole case study model
please refer to the following work reference [10].

In the UWE analysing process the first what the modeller should concern are the
functionality requirements of the Web application. These Web application functionalities
are described using a UML use case diagrams. In the Figure 9 two actors are shown:
non registered user and registered (customer) user of the e-shop Web application.
UWE distinguishes between normal and navigation use case. Navigation use cases are
used when modelling typical user behaviour when interacting with a Web application,
such as browsing through the application content, searching information by keywords,
etc.

Figure 9 Navigation Use Case Diagram

The next step of the modelling process could be refining of the requirements done in
the use case diagram before. Especially all business logic processes should be refined
using activity diagrams. In particular UML activity diagrams are used for visual
presentation of workflows. For example such workflows could be registering of new
user, buying a product, etc. In general the level of refinement of the requirement
specifications depends on the application project complexity and risk.[9]

10

After specifying the requirements and refining it with business process flows the next
step is to create the content model. The main goal there is to model the problem
domain and to separate content from navigation (hypertext) structure and presentation.
Furthermore a UML class diagrams are used for the structure and UML sequence
diagrams or state charts are used for the behaviour. Figure 10 shows such a structure
content diagram, whereas classes are used to represent units of textual information
and multimedia elements. Associations and aggregations are used to show

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

relationships between classes and inheritances are used to specify their hierarchies.

Figure 10 Content Diagram – Structure

To represent nodes and links of the hypertext structure of the Web application a
Navigation model has to be created. Furthermore navigation path are also presented
into this type of UWE diagram. The goal there is to avoid disorientation and cognitive
overload.

Figure 11 Navigation Diagram

Figure 11 shows such a Navigation diagram. Once again also for the navigation model
class diagrams are used. Furthermore there are Navigation Classes, which specify the
hypertext nodes. These nodes could be visited by the user through browsing and
should become the same name as their mapped node. Association between navigation
classes are Navigation Links. Such a link specifies that the target navigation (node)
object is accessed by navigation from the source navigation object.

11

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Navigation classes should be enhanced with additional navigation elements through
the modelling process. In Figure 12 the same navigation diagram is enhanced by the
following access primitives: Menus (MainMenu, AccountInfo), Queries
(SearchProducts), Indexes (BookRcommendationm, SelectedResults, OrderList, etc.),
and Quided Tours (not included).

Figure 12 Navigation Diagram - Enhanced by Access Structures

Figure 13 Process Diagram

12

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Next step in the UWE modelling process is to model the process of the workflow driven
Web application. First step at this place is to define the process classes. These classes
are all non-navigation use cases from the first diagram. After that the process structure
model should be constructed. Then all process classes should be integrated into the
navigation structure model. Besides that UML activity diagrams should be used for the
description of the process flow and object flow of the application. Figure 13 shows the
process classes integration into the navigation diagram. The navigation diagram is at
this place without the access primitives defined above. This figure above shows also
process classes, such as: SignIn, CheckOut, AddToCart, etc. which were integrated
into the existing navigation diagram. Process classes are such type of classes which
instances are needed by the user during process execution. In turn the process links
are associations between navigation classes and process classes. Furthermore they
indicate the entry and exit points of the process within the navigation structure.

At the end of the UWE modelling process a presentation of the structure and the
behaviour of the user interface should be modelled. This is done by creating of
presentation diagrams, as shown in Figure 14. Furthermore pages as a hierarchical
composition of presentation elements have to be defined. Again class diagrams (in
UML container notation) are used for the structure of the presentation and sequence
diagrams for the behaviour. Further presentation elements are defined and used in the
presentation model. For instance the presentation group Page contains all elements
that will be presented together on the screen as response to one request. In turn
Presentation class consists of set of interface elements which are representing the
logic unit of the presentation. All other user interface elements such as: Anchor, Text,
Image, Button; are also defined in the presentation model.

Figure 14 Presentation Diagram

13

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

14

3 UWE CASE Tool Requirements

As mentioned in the beginning of this diploma thesis new Computer-Aided Software
Engineering (CASE) tools for supporting the Web development process are still being
developed or enhanced to satisfy the new Web techniques and overall requirements.
But there is no support of modelling tools yet, like for example for the standard
modelling language UML. It is so primarily, because there is no a widely established
modelling language for Web engineering like for example UML for Object Oriented
development.

CASE tools have to be built on a precisely specified metamodel of the modelling
construct used in the design activities.[4] These tools have to provide sufficient
flexibility in case modelling requirements change in the future. Tool-supported design
and model-based system generation has become essential in the development process
of Web systems due to the need of rapid production of new Web presences and Web
applications.

UWE is trying to address Web software developers and designers through its build-up
models over UML. Furthermore UWE uses at least one UML diagram for every model
view of the Web application and there are no new visualization elements defined.
Further it means also, that established UML techniques can be used in the UWE
modelling process.

The distinguishing feature of the UWE is its UML compliance since the model elements
of the UWE are defined in terms of a UML profile and as an extension of the UML
metamodel. [14] In particular UWE uses the following UML diagram types:

• use case diagrams

• class diagrams

• state and activity diagrams

Based on the UWE profile mapping definitions specified in the previous chapter UWE
uses also the following UML modelling elements:

• stereotypes

• tagged values

• classes

• associations

From the list above it is obvious that the UWE CASE tool will have to cover all these
UML modelling functionalities. Furthermore the tool has to support also the UWE
development process. In particular it means besides the diagram support also the
model to model transformations, model to code transformation, semi-automated
elements insertion, etc have to be supported.

Moreover the newly created UWE CASE tool has to be in compliance with the already

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

15

existing UWE CASE tools. Such an existing tool is e.g. ArgoUWE [11]. ArgoUWE
already supports the UWE methodology and was designed as an extension of the
open source CASE tool ArgoUML. ArgoUWE is compatible only with UML version 1.5.
However it has been used as a comparing tool during the development of the new
UWE CASE tool.

Based on the conclusions made previously, a UWE CASE tool should build up upon
UML CASE tool functionalities, such as modelling of use case diagrams, class
diagrams, using of stereotypes, etc. Besides these “base” UML modelling
functionalities, all further UWE-specific modelling techniques will be newly integrated.

Based on these conclusions the easiest way to develop a new UWE CASE tool is to
use an already existing UML CASE tool and to enhance it. Some important aspects
have to be considered while selecting the UML tool to be enhanced. In particular such
a tool has to support the UML profiling so that a UWE profile can be created and
integrated into the tool. It is also important to consider how such a tool can be
extended as well as whether, the tool provides a good documentation and powerful
plug-in support through an Open API. From importance are also already integrated
tool functionalities that may be used in UWE.

The UWE extension of such a tool will have to build upon and enhance its UML
modelling techniques to integrate UWE. Normally the CASE tool extension mechanism
is based on the UML extension mechanism, which is used to define stereotypes that
are utilized for the representation of Web constructs such as nodes and links. In
addition, tag definitions and constraints written in OCL (Object Constraint Language)
can be integrated.

3.1 Usability Requirements
In order to design a good and usable modelling tool, we need criteria for determining
what usable means and we have to prioritize which of those criteria are essential for
the UWE CASE tool. Some general important usability criteria are:

• flexibility and efficiency of use

• learn ability

• model generation

• (semi-) automated mechanisms

• consistency and standard

• user control and freedom

• aesthetic and minimalist design

• help and documentation

In following those criteria will be discussed which are most important for the UWE
CASE tool usability.

We shall start with the highly important requirements of good usable software: flexibility
and efficiency of use.

As the UWE CASE tool builds on UML functionalities and techniques provided by the
hosting tool, the main aim is to make the modelling of Web processes easer and at the
same time more efficient. There is a substantial risk potential to make the modelling
tool too complex and difficult to use, when implementing new functionalities. Therefore
the selection of the hosting UML CASE tool determines how the UWE plug-in will be
implemented to achieve flexibility and high efficiency during the modelling process. In

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

16

general the UWE extension has to merge with the hosting tool and shall be intuitive to
use.

Another requirement is the learn ability of the UWE CASE tool. Of course this is again
connected with the fact that the developed tool enhances an already existing modelling
tool. Besides that the UWE CASE tool has to be designed in such a manner that it is
easy to learn and work with.

The standards and consistency requirements are of importance as the UWE CASE tool
has to support UML and the UWE metamodel in the form of a UWE profile. The
developed tool shall be able to check the created UWE models for consistency with the
defined rules (those can be OCL rules).

The model (and also the code) generation and semi-automated mechanisms are
crucial making the CASE tool usable. Not only because the model generation is a part
of the UWE development process (see MDD in section 2.4), but also because of the
goal to rise the efficiency during the modelling process. A semi-automated mechanism
can be for instance an insertion of elements into a UWE diagram.

Finally, the last three criteria listed above denote that the user has to be able to control
every step of the modelling process and shall, have the freedom to design any kind of
diagrams. The use shall also be well informed about which modelling functionalities the
CASE tool supports.

All these criteria and requirements are in a smaller or greater extent for creating a good
usable UWE CASE tool.

3.2 GUI requirements
The Graphical User Interface (GUI) of a UML CASE tool consists of various diagrams,
UML presentation elements, dialogs, frames and windows, message boxes, different
menus, toolbars, etc. All these visualization building blocks are generally components
of modelling tools and most of them will be used when creating a new UWE CASE tool.
Since UWE enhances the UML metamodel without specifying new visualization
elements no special modelling GUI elements have to be created.

UWE models consist of UML diagrams (see the beginning of this chapter) containing
UWE modelling elements. These elements are in turn UML classes or associations
which can have a specified UWE stereotype. Because the UWE CASE tool in this case
extends an existing UML modelling tool, all UML visualization elements are part of the
software, otherwise will have to be created and integrated into the tool.

The new GUI components of the UWE CASE tool or in the case of this thesis extension
(plug-in) are simply several types of menus and menu items or buttons representing
UWE modelling actions. Through these menus and actions the user interacts with the
UWE CASE tool. Such a menu items could be an action to execute a transformation, to
create a new UWE diagram, to draw a UWE element, to insert a UWE element, and
etc. Therefore it is important to decide where the menus (or buttons) are placed, how
the actions are grouped, and what types of menus are used. All these design decisions
will be discussed in chapter 4.

Interaction between the user and the modelling tool can be achieved also through
dialogs. Such a dialog can appear when the tool wants to signalize an error, or just to
inform the user after an action was fired. The UWE CASE tool should provide such
dialogs with meaningful error or message declaration where necessary.

In this case, when a UWE CASE tool is developed as a plug-in enhancing an already
existing software, it might be necessary to create own windows or frames containing

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

17

such an information (elements, files, etc.), which cannot be accomplish through the
Open API of the hosting tool.

All further UWE CASE tool GUI requirements should be the same as any another
CASE tool.

3.3 Functionality requirements
The UWE CASE tool has to fulfil all modelling functionalities of the UWE approach. As
stated in the chapters before, UWE extends the UML 2.0 metamodel, so UWE CASE
tool shall support this version of UML. Furthermore the tool should have a UML general
graph editing framework, as well as featuring extendable module (profile) architecture.
Other fundamental UML modelling functionalities have to be part of the UWE modelling
tool.

Since the tool developed for this diploma thesis is not a standalone software, both the
hosting tool and the UWE extension (plug-in) will be considered. When combining both
of them, the whole domain of UWE CASE tool functionality requirements should be
achieved.

First of all we have to be able to specify a UWE profile (module) and afterwards to load
it in any UWE project. UWE profile is a UML lightweight extension of UML and it’s an
important part of the UWE CASE tool, as it specifies all UWE elements needed for
further modelling of the Web applications. For more details of what kind of elements
UWE provides, please refer to section 2.2 where the UWE metamodel is described.

In general there are the following main functionality groups in the UWE development
process:

• Creating and modelling of UWE diagrams.

• Transformations

• Semi-automatic insertion of elements

• Verification of the model trueness

• Code generation

We shall take a closer look at which further functionalities are included in each of those
groups.

Each UWE CASE tool has to be able to create UWE models. Normally an UWE model
consists of minimum one UML diagram, as stated in chapter two. The user of the tool
shall be able to draw UWE Use Case, Content, and Navigation, Presentation, and
Process diagrams during the development process. The user shall also be able to
create (UWE) elements into these diagrams. It shall also be possible to assign
stereotypes to those elements, in particularly stereotypes defined trough the UWE
profile mentioned above. The user shall be able also to manipulate and modify these
elements and diagrams. It shall be possible to create (UWE) associations between the
classes. Moreover all UML diagram and element functionalities shall be a part of the
UWE CASE tool. In our case these UML modelling functionalities are provided by the
hosting UML CASE tool.

Beyond the modelling functionalities provided by the hosting tool a default assignment
of stereotypes shall be possible. In particular, UWE stereotypes shall be assigned to
classes and associations depending on the diagram type and other specified rules.

The next functionality group comprises the transformations, which can be divided into:

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

18

• transforming Content diagram to Navigation diagram

• transforming Navigation diagram to Presentation diagram

The main difference between these two transformations is the type of elements that will
be transformed during the transformation process. This depends on the source
diagram type, the stereotype of the explored elements from the source diagram, and
the type of the executed transformation. These diagram transformations are strictly
defined by the UWE metamodel.[12] It is necessary to logically examine, which
elements (classes and associations) with defined stereotypes from one diagram type
can be transformed into new elements in the new diagram type with a proper
stereotype. However, these transformations are a semi-automatic help feature provided
by the UWE CASE tool and the user will have to complete or to adjust the newly
created diagram.

Next functionality group is the insertion of some UWE elements (UML classes with
assigned UWE stereotype). This feature is also a UWE specific functionality during the
UWE development process so it has to be provided in the CASE tool. The user shall be
able to insert UWE elements, Query or Index, between two other elements considering
UWE metamodel rules.

The last group of functionalities is the UWE model consistency check. By default the
UWE CASE tool shall allow the user to draw and create any type of diagrams with
diverse types of elements in each of them. During the application modelling process
inaccuracy may occur - either unwished or on purpose. The system shall be able to
automatically check for such model inaccuracies after the modelling process is
finalised, or on action taken from the user. To find out what the modelling inaccuracies
in designed models are, UWE model consistency check functionality in the UEW CASE
tool is required.

Finally the last functionality of the UWE CASE tool shall be the automatic code
generation which is also a part of the UWE development process. This feature is
corresponding with the previous function, the model consistency check. Only if a model
is consistent, can an automated code generation be executed. The UWE CASE tool
shall support code generation to Java (e.g. Java Server Pages) or other developing
language for Web applications. [13]

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

19

4 Design Decisions for the UWE CASE Tool

This chapter provides an overview of what design decisions were made during the
implementation of the UWE CASE tool. As already stated, the tool developed during
this work is an extension (plug-in) of the already existing UML CASE tool. At the
beginning of this chapter an overview of the general strategy for designing a GUI of a
plug-in will be given. Later concrete GUI decisions that were made will be described
based on examples.

To integrate a plug-in into existing software, some design decisions on where to place
the GUI elements are required. These GUI elements have to match as good as
possible the already existing GUI elements structure of the hosting system such as:
Menu, submenu, toolbar menu, context menu, buttons, and etc. If we would just place
one extra custom menu for our extension to collect all menu actions needed for the
plug-in, the intuition that the user has learned while using the hosting software would
be lost for the newly integrated plug-in. Furthermore the modeller would be slowed
down in the modelling process when using combined features of the CASE tool
including the new plug-in functionalities.

Before starting with the analysis, designing and developing a new UWE CASE tool as
an extension, an already existing UML CASE tool has to be selected. UML has been a
fundamental part of the software development process since many years, so there is a
big variety of CASE tools supporting UML and in particular UML 2.0. The use of the
UML CASE tool MagicDraw as a hosting software was predetermined in this work, so
there was no need to specify criteria and requirements for selecting a UML CASE tool.

Based on the requirements and conclusions made in chapter three, we know that the
UWE CASE tool in general does not have any specific visualization components.
Furthermore the UWE functions can be achieved through GUI elements such as
menus, buttons, dialogs, etc. Because the GUI of software should be independent of
the used technology, platform and implementing language, at this point it is not
important how exactly the hosting tool is implemented. The only matter that is essential
at this point is the GUI design, meaning the “look and feel” of the hosting tool. After
analysing the hosting tool design, the UWE GUI components can be designed whereas
the requirements specified in the previous chapter are considered. Besides that, the
UWE plug-in should be effectively integrated into the GUI of the hosting tool.

In the following sections a brief overview of the hosting tool will be given and some
important examples of UWE plug-in GUI design decisions will be outlined.

4.1 MagicDraw

This section provides a brief overview of the MagicDraw software and its featured
functionalities.

Some basic facts about MagicDraw shall be outlined first. MagicDraw is a product of

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

No Magic Company, which was founded in July 1995 in Lithuania. The first version of
MagicDraw UML was released in July 1998. Since then MagicDraw has won several
prestigious software awards. For further information of the No Magic Company and
history of MagicDraw software please visit the following link [@10].

MagicDraw is a visual UML modelling and CASE tool with teamwork support. This tool
supports many modelling and developing standards, such as UML, support for J2EE,
C#, C++ and other techniques, as well as database scheme modelling and reverse
engineering facilities.[@9] This tool can be used on different platforms like Windows,
Linux, or MacOS.

MagicDraw can be used as a modelling tool for Object Oriented (OO) languages and
databases based on the UML. Its UML diagram creating, editing and manipulating tools
are easy to learn and intuitive to use. It also provides a plug-in interface through an
OpenAPI for third party software and profiling features for the integration of new UML
profiles and modules (see previous chapters on UWE profile). This plug-in interface
allows adding new menus, buttons and other elements into the GUI of the software.
Besides that, new functionalities can be implemented as needed for the plug-in and
integrated into MagicDraw. More about its OpenAPI will be discussed in section 5.2.

MagicDraw is being continuously developed and upgraded. The version used in this
work is 12.0.

4.2 Design Decisions

Figure 15 MagicDraw Overview

This section describes the most important design decisions that were made during the
development process of the UWE CASE tool in the form of a plug-in for MagicDaraw
UML. The Plug-in is designed for MagicDraw version 12.0 and above. To be able to
20

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

implement a usable UWE extension into the GUI of MagicDraw first we had to get
familiar with the structure and design of its existing GUI.

 The main window of MagicDaraw is separated into main menu, main toolbar, side
elements package browser and custom diagram toolbar. The main menu consists of
submenus and menu items. The main toolbar consist of buttons and a view dropdowns.
The diagram toolbar depends on the diagram type, so it can contain different kinds of
toolbar actions (menu items or buttons) for each type of a UML diagram. There is a
message output window on the bottom of the main window. Actually the “look and feel”
of the program can be customized according to the preferences of the user. The user
can specify what kind of menu toolbar actions shall be displayed, what kind of diagram
actions, etc. For further information on how to do this, please refer to the MagicDraw
manual included in every installation of the product.

Figure 15 shows an overview of MagicDraw. All GUI parts discussed above can be
viewed. The main menu is on the top, below it there is the main tool bar, on the left
hand side - the containment browser and in the middle - the diagram editing window
with the diagram tool bar on its left. Finally the messages window is on the bottom.

4.2.1 UWE Profile and Template
MagicDraw normally works with so called profiles. In those profiles all metamodel
elements and stereotypes used for modelling are specified. The default MagicDraw
profile is the UML Standard Profile. This profile is automatically loaded to every kind of
project that the user can create. UML Standard Profile contains stereotypes that are
necessary for working with various parts of MagicDraw, primitive data types, and
constraints, and UML 2.0 metamodel elements. The following data types are specified
in Magic Draw: Boolean, byte, char, date, double, float, int, Integer, long, short, void,
and String.

Figure 16 UWE Profile in MagicDraw

21

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

To integrate the UWE metamodel through mapped stereotypes into a modelling
project, a UWE Profile has been created. Like the Standard UML Profile, all the
necessary UWE stereotypes are defined in this profile. The UWE Profile is divided into
five profile packages: Content, Navigation, Presentation, Process, WebRe. Each of
these packages contains the stereotypes and relations defined in the UWE metamodel
(see chapter 2.2). For example, Navigation contains the following stereotypes: Access
Primitive, External Ling, Navigation Class, Guided Tour, External Node, etc. Figure 16
shows the crated UWE Profile and its structure with the packages outlined above. The
UWE profile is by default visible in the containment browser on the left hand side, when
loaded.

4.2.2 UWE Main Menu
After starting MagicDraw and before creating a new project, only the main menu and
toolbar are visible to the user. There is also a UWE menu item in the main menu called
UWE. As you can see in Figure 17 this menu item is between the Analyze and Window
main menus.

Figure 17 MagicDraw with integrated UWE

This UWE main menu is one of the starting points - the basis, where all UWE relevant
main functionalities are integrated in the form of submenus. It contains Diagrams,
Transformation and About UWE submenu items as shown on Figure 18.

The Transformation submenu item is unavailable by now, because there is no new
project created yet. The Open API of MagicDraw gives us the opportunity to enable or
disable almost any kind of action (like main menus, submenus, diagram actions, etc.)
depending on predefined MagicDraw states (like new project was created, or class
diagram was opened, etc.). In the next chapter further details about the specific
implementation will be given. For now it is interesting that through enabling and
disabling GUI elements we can easily navigate and accompany the user step by step in
creating a UWE project and model.

22

As displayed in the previous figure it is obvious that the main menu item UWE comes
out between the remaining generic MagicDraw main menus. There is no other plug-in
menu in this top menu navigation. First design decision was to integrate UWE GUI
elements only in the appropriate submenus, for example UWE diagrams under the
Diagrams main menu (see the following description about the diagrams). Later, when

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

the UWE diagram functionalities were implemented the next step was to implement the
UWE transformations and integrate those into the GUI. At this point it was decided to
put both the transformation and diagram actions into this UWE main menu. That allows
the user to receive a quick overview of the main UWE functionalities at a first sight.
The user can execute those main UWE functionalities from here. Secondly, we wanted
to have a compact UWE starting point including the main features of the plug-in. This
UWE main menu can be later on extended by other items (actions), like code
generation, help, automatic update, and so on.

Figure 18 UWE Main Menu Submenus

It was already mentioned that the UWE main menu is one of the starting points for
modelling with the UWE Plug-in. The second one is more integrated into the default
MagicDraw main menu structure.

When taking a closer look at Figure 12, one can see that the item name Diagrams
appears twice. There is a default main menu item and another one, as a submenu of
the UWE main menu item both called Diagrams.

That is reasonable, since various types of diagrams are integrated in any UML
modelling and CASE tool. Therefore to enhance the usability and the intuition, that a
user might have built using the MagicDraw products, we decided to integrate all UWE
specific diagrams also under the default Diagrams main menu item of MagicDraw. For
that reason a UWE Diagrams submenu is included into the default Diagrams containing
the same diagram actions as under the Diagrams submenu of the UWE main menu.
This is visible on Figure 19. These UWE Plug-in design decisions are a good example
of how the plug-in is effectively integrated into the hosting program.

23

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Figure 19 UWE under Diagrams

One can admit that only one menu item is enough for the same group of functionalities
or actions. But the example above gives more flexibility and conformance in using the
UWE Plug-in. On the one side there are all new plug-in actions and functions grouped
in one UWE menu item and on the other side, important functionalities are integrated
deeper in the existing MagicDraw GUI structure so the user can still use his old habits
of working with MagicDraw. For example, the user can look for any diagrams under the
default MagicDraw Diagrams main menu.

The UWE main menu encompasses another important submenu and this is the
Transformations item. As shown on Figure 20 there are two, already mentioned UWE
transformations. The first one is Content2Navigation and the second one is
Navigation2Presentation. Opposite to the diagram actions described above, the UWE
transformations are placed only at this submenu in the GUI of the tool.

Figure 20 UWE Transformation Actions

For further consideration of implementing the UWE code generation in the future,
maybe the UWE main menu will be the right place to integrate this functionality.
Decisions have to be made whether the code generation belongs to the
transformations or a new submenu, for example Code Generation will be created.

4.2.3 UWE Diagram Toolbar Menu
Next group of GUI UWE menu items and actions are created into the diagram toolbar.
24

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

As the name says, this toolbar is shown only when a diagram is opened. By now the
UWE menu items (actions) integrated into this toolbar are visible every time a diagram
of type class diagram is opened and not only when one of the UWE diagrams (Content,
Navigation, Process, and Presentation) is opened.

The UWE Plug-in creates its own diagram toolbar menu group called UWE. The UWE
actions included into this group are in turn grouped into three groups depending on the
UWE package they belong to. The first group includes actions from Navigation
package; the second includes actions from Presentation package, and the last one
includes action from Process package. Figure 21 shows the UWE item diagram toolbar
structure.

Because these functionalities are explicit diagram actions, putting them all in the
already existing UWE main menu will be confusing for the users of the tool.
Furthermore it will destroy the systematic GUI design of the hosting tool.

Alternatively we tried to put all these actions under already existing toolbar menu items,
more precisely into the toolbar menu item Class and Association from the Class
Diagram group (see Figure 21). The reason behind is that all UWE actions create UML
elements (classes or associations) with assigned UWE stereotype. So logically classes
should be integrated into Class and associations should be integrated into Association
(compare with the decisions made by the transformations).

After implementing this first solution, it was realised that the UWE diagram actions
should be separated from the default UML modelling items. The main reason for this
decision is that one more time we wanted all UWE diagram actions to be grouped
under one UWE menu and then separated depending on their definitions. Furthermore
after using the first solution, we found out that it is not so intuitive to look for UWE
actions under the default UML Class Diagram group.

Figure 21 UWE Diagram Toolbar Actions

25

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

26

Another UWE diagram toolbar menu that is integrated into MagicDraw with the UWE
Plug-in is the UWE Use Case diagram toolbar group shown as well in Figure 21. This
diagram menu is displayed when a class diagram is opened as well as when a use
case diagram is opened. By now this group consist of only one UWE use case action
called Navigation. Because this action is relevant only for the UWE use case diagrams
we decided to separate it from the rest of UWE diagram (class diagram) actions.

4.2.4 UWE Diagram Context Menu
The semi-automated insertion of UWE elements functionality is placed into the diagram
context menu of a diagram. As shown on Figure 41 there is again a menu group called
UWE and two actions: Insert Query and Insert Index. Because the user has to click on
an association for selecting it before one of these actions can be executed, the best
solution was to create diagram context menu items for this type of actions. The user
has simply to click once with the left button, the association is selected, then once with
the right button and has to choose the desired context action. There is no need to
move the mouse pointer to the diagram toolbar or main menu.

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

27

5 Implementation

The implementation of the UWE CASE tool as an extension (plug-in) for MagicDraw
will be discussed in this chapter.

Although MagicDraw is a close-source application the UWE extension is implemented
as Plug-in into it using its Open API interface. This interface is written in Java just like
MagicDraw. The Open API provides also the opportunity to write and develop Plug-ins
also in JPython [@11] scripting language.

JPython is actually a Python written in Java, and seamlessly integrated with Java. It
thus allows to run Python on every Java platform [@12]. This possibility was not used
in the UWE Plug-in, which became a pure Java application.

The UWE application (Plug-in) was implemented from scratch without using any
existing UWE products or code. Basically only the GUI functionalities of the already
existing ArgoUWE were inspected to better understand the typology and structure of
the UWE approach. ArgoUWE is an extension for the open source tool ArgoUML for
the UWE approach. More information about ArgoUWE can be found in the following
reference [@13].

Because the Plug-in was implemented not only as a prototype of a UWE CASE tool, it
should be capable to do all steps of modelling described in previous chapters and
some more features which came out during the development process. Some of them
are the following:

• Loading of the UWE Profile to every UML project

• Creating a new project through UWE Template file

• Integration of the Plug-in in the GUI of MagicDraw

• Be able to create any of the four types of UWE diagrams and automatically to
load the UWE Profile if it hasn’t done yet

• Default assignment of model elements stereotypes on the basis of defined rules

• Configuration of some stereotypes values through application properties file

• Transformations form one diagram type to another on the basis of defined rules

• Consistency checking of the created UWE model

5.1 Writing a plug-in
A plug-in is a piece of software that extends an existing software application or platform
in numerous of ways. The main purpose of a plug-in is to add new functionality and
features to some existing application, whereas there might be some limited ability to
remove already existing functionalities for some reason or another.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

28

In our case the goal is only to add new functionalities while fully using the default
spectrum of functionalities provided by MagicDaraw modelling tool. Creating a plug-in
is the only possibility how to enhance closed-source software with new features that
the user wishes for. The plug-in developer has the power to suit that software to his
needs limited only by the Open API interface provided by the existing program.

Before starting to create a new plug-in the first thing to do is to search various plug-in
repositories or Internet sites and see whether there already exists a plug-in for the
software that suits the project’s needs. Of course in our case there is no such a plug-in
for MagicDraw that implements the UWE approach.

Next step is to get familiar with the plug-in interface of the hosting program. This is the
so called Open Application Programming Interface (API) which is provided by any
extendible software. It assumes that the user is also familiar with the programming
language of the Open API. In our case the programming language is Java. In some
cases the documentation of the interface can be very accurate. In other cases the
examples provided with the software or other open-source plug-ins for that program are
even more useful.

The first task in creating a plug-in is to analyse what the plug-in will do, and create a
unique name for this plug-in. Existing plug-ins and other places (repositories, internet
sites) need to be checked to verify that the name is unique. Most common way to
choose a plug-in name is to use names that somehow describe what the plug-in does.
For instance a time related plug-in would probably have the word “time” in the name.
The name given to the UWE Plug-in is “uweMDPlugin”. The name means “UWE
MagicDraw Plug-in”. More about the plug-in structure and Open API for MagicDraw will
be discussed in the next chapters.

5.2 MagicDraw Open API
Plug-ins are the only way to change the functionality of MagicDraw. The plug-in
typically creates some GUI elements and adds them to the MagiDraw graphical user
interface. The plug-in is capable of reacting to user interaction - “listening” for some
changes in the project - without using GUI elements and thus reacting to the user
behaviour only.

A MagicDraw plug-in has to contain the following resources: [15]

• Plug-in directory

• Compiled Java files, packaged into jar file

• Plug-in descriptor file

• Optional files used by the plug-in

The first file contains information on where to find all necessary MacigDraw OpenAPI
documentation files. All needed files are located in <MagicDraw installation
directory>/openapi/docs. One of the files is the “MagicDraw OpenAPI UserGuide.pdf”.
This file is the documentation and user guide of the OpenAPI interface of MagicDraw.
Here the user can find step by step examples and information on how to write a plug-in,
what can be integrated into a plug-in, etc.

The second file is generated JavaDoc file with details of classes, attributes and
operations. Although the Open API contains a huge number of classes the most of
them are very poorly commented in the JavaDoc. Basically there are only the names of
the classes and their constructors and methods with their attribute names, but the
description what exactly the class or method is doing is absent. The user can only

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

29

guess the functionality by their names and inherited abstract classes and interfaces.

Every installation of MagicDraw provides also a set of samples of the functionalities of
the Open API interface. These samples can be found in <MagicDraw installation
directory>/openapi/samples. Sometimes samples are the best way to find out how to
use some Open API, especially when no sufficient documentation is available.

The last possibility to figure out a solution to an issue related to the implementation is
to write directly to the creators of the application. Generally the creators run various
types of internet forums where groups of plug-in developers can exchange knowledge
among each other. You can find all necessary information about the forums on the
MagicDraw home page at [@5].

The steps above describe the main resources of information about plug-in
implementation. In some cases (depending on how good the documentation of the
OpenAPI interface is) the plug-in developer has to anticipate increased time
expenditure for the implementation process. The MagicDraw OpenAPI documentation
itself describes only insufficiently its functionality, thus many problems have been
solved only after contacting the creators in the internet forum.

There is one more step to be performed before starting with coding: the necessary
Open API classes have to be loaded into the plug-in project have to be specified.
These classes are packed in jar files which have to be imported into the plug-in project
into the integrated development environment (IDE). Here are the jars needed for
implementation of a plug-in: [15]

• <MagicDraw installation directory>/lib/md.jar

• <MagicDraw installation directory>/lib/uml2.jar

• <MagicDraw installation directory>/lib/javax_jmi-1_0-fr.jar

• <MagicDraw installation directory>/lib/cmof14.jar

• <MagicDraw installation directory>/lib/y.jar

5.3 UWE Plug-in Design and Architecture
This section will describe the main software architecture and design basic essentials of
the UWE Plug-in. First of all we have to understand how plug-ins in MagicDraw works.
As shown in Figure 22 MagicDraw on every start-up scans the plug-ins directory and
searches there for subdirectories with the following rules:

• If subdirectory contains plug-in descriptor file, than the Plug-ins Manager reads
the descriptor file

• If requirement specified in descriptor file is fulfilled, plug-ins Manager loads
specified class from the given jar file. Specified class must be derived from
com.nomagic.magicdraw.plugins.Plugin class. At this moment the init()
method of loaded class is called.

The method init() from the plug-in called while initializing the application should add
GUI components using actions architecture or do other activities and return from the
method. In the same plug-in subclass derived from Plugin there is one more method
that has to be overwritten: the method close(). This method in turn is called from the
Plug-ins Manager on MagicDraw shutdown. Furthermore the close() method has to
return true, if the plug-in is ready to close or false if not and the shutdown process will
be cancelled.

Well so easy can be plug-in creating, let’s see how are these methods implemented in

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

the UWE Plug-in and which further files and steps are necessary before running
MagicDraw with it.

Figure 22 Plug-ins Manager Process Flow

As stated at the beginning of this section the Plug-ins Manager starts searching for a
descriptor file in the plug-in directory. Such a descriptor file is a proper XML (Extensible
Markup Language) [@15] file, defining some information about the plug-in itself. The
descriptor file is called plugin.xml for any plug-in and contains properties of the plug-in.
Descriptor file should contain only one “plugin” element definition. All names of the
elements and their attributes are defined in the MagicDraw OpenApi UserGuide.

The UWE Plug-in directory is called as the plug-in itself: <MagicDraw installation
directory>/plugins/uweMDPlugin.

The directory contains two files: the plugin.xml and the uweMDPlugin.jar. Let’s look at
the descriptor file plugin.xml in Figure 23. Besides the elements that describe the
name, version, and version of the used Open API there are two important attributes
giving the names of the plug-in library: uweMDPlugin.jar and of the main plug-in class:
de.lmu.ifi.pst.plugin.uwe.manager.PluginManager. It means that MagicDraw at start-up
will look for the PluginManager into the library uweMDPlugin.jar. The PluginManager
class is a subclass of represented above Plugin class and implements the both
methods: init() and close();

30

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

31

<?xml version="1.0" encoding="UTF-8"?>
<plugin
 id="uwe"
 name="UWE Project"
 version="1.0b"
 provider-name="LMU – Institute for Informatics"
 class="de.lmu.ifi.pst.md.plugin.uwe.manager.PluginManager">
 <requires>
 <api version="1.0"/>
 </requires>
 <runtime>
 <library name="uweMDPlugin.jar"/>
 </runtime>
</plugin>

Figure 23 plugin.xml

The PluginManager class is the main class that constructs the UWE Plug-in. In its init()
method all configurations, GUI actions elements, and other functionalities are created
which later are called from the MagicDraw user interface trough the user interaction.

Let’s see a small code snippet of init() method. Figure 24 displays the beginning of the
method and how action elements are added to the GUI of MagicDraw. First obvious
thing that could be noticed is the ActionsConfiguratorsManager object called in this
case manager. The ActionsConfiguratorsManager class is a part of the Open API. It is
a singleton class for adding or removing configurations of actions managers in
MagicDraw application.

…
public void init() {
 …
 //initialize project listener
 projectListener = new ProjectListener(projectsManager);
 Application.getInstance().addProjectEventListener(projectListener);
 ActionsConfiguratorsManager manager = ActionsConfiguratorsManager.getInstance();

 // adding submenu
 manager.addMainMenuConfigurator(new MenuConfigurator(getSubmenuActions()));
 // adding actions with separator
 manager.addMainMenuConfigurator(new MenuConfigurator(getSeparatedActions()));
 // add browser item
 manager.addContainmentBrowserContextConfigurator(new BrowserMenuItem());
 // add submenu to Diagrams main menu
 manager.addMainMenuConfigurator(new
DiagramsMenuConfigurator(getDiagramsMenuAction()));
 // add class diagram toolbar actions
 manager.addDiagramToolbarConfigurator(DiagramType.UML_CLASS_DIAGRAM, new
ClassDiagramToolbarConfigurator(getDiagramToolbarProcessActions()));

…
Figure 24 PluginManager init() Method

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

At this place I would like to explain in a little bit more detail the structure of the
MagicDraw Open API architecture, before continuing with the explanation of the code
fragment.

As written before, MagicDraw is implemented in the Java programming language using
the Swing toolkit for its GUI. However the MagicDraw Open API provides its own
actions mechanism to add new functionality to the application and the way to invoke
them trough interaction with the GUI. The exact MagicDraw actions hierarchy can be
viewed in Figure 25.

Figure 25 MD Actions Hierarchy

The first step in adding new functionality is to create a custom action class. This action
class comprises the functionality which will be later fired from the interaction of the user
with the application. Furthermore the class must be a subclass of the MDAction class
from the Open API. There are already few predefined action classes for different
purposes, so one can use them as needed. Every action class has also to describe its
properties like: id, name, shortcut, icon, etc.

Every action must be added to some actions category. This step can be seen as the
second level of the action implementation. The ActionsCategory class is used to group
the actions. It can be also represented as a separator or submenu.

Categories in turn are added into actions manger using the ActionsManager class. This
can be explained as some kind of container holding the groups of actions. There are
different kinds of ActionsManager, each of them representing one GUI element: menu
32

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

33

bar, context menu or toolbar.

 Table 1 explains how MagicDraw classes map into GUI elements.

 Action Category Actions Manager
Context Manu Menu Item Submenu Context Menu

Toolbar Button One Toolbar All Toolbars

Menu Menu Item Menu Menu Bar
Table 1 Mapping of MagicDraw Classes to GUI Elements

All actions included in actions managers are configured by numerous Configurators.
These Configurators are responsible for adding or removing an action. Furthermore
they can be added only into some strictly defined place and positioned between other
actions. The Open API provides three types of Configurators:

• AMConfigurator – for general purpose. Used for menus, toolbars, browser, and
diagrams shortcuts.

• BrowserContextAMConfigurator – for configuring managers for browser context
menu.

• DiagramContextAMConfigurator – for configuring context menus in diagrams.

At this place it is very important to notice, that actions managers for the main menu and
all toolbars are created and configured once on the start-up. Thus actions later can be
only disabled but not removed. Context menus in turn are created in every invoking.
Therefore actions managers are created every time and actions can be added and
removed any time.

After this brief introduction to adding new functionalities into MagicDraw, let us have a
look one more time at the example in Figure 24. I think the code shown there is now
more readable and some elements discussed before could be found.

Beholding the first actions that are added as submenu actions, exactly the steps
described above could be seen. The method getSubmenuActions() returns all
submenu action objects. These are passed to the MenuConfigurator and in turn the
Configurator is passed to the actions manager and created at the proper place. The
same scenario is applied also for all other UWE actions for different types of menus. As
already discussed above, each action is added to an actions category. This step is not
shown at this code example but it is done in the getSubmenuActions() method. Figure
26 shows this method where an ActionsCategory is created: category. The next move
is to add all newly created actions into this category. At the end, the method returns the
category with all actions in it.

This example shows what is necessary to be done in order to add and to register new
actions to MagicDraw. Of course all other functionalities are specified in every type of
action classes.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

34

/**
 * Creates action which is submenu (when represented in menu).
 * Separator is added for group of actions in actions category.
 */
private NMAction getSubmenuActions(){
 ActionsCategory category = new
ActionsCategory(GlobalConstants.DIAGRAMS_SUB_MENU_NAME,
GlobalConstants.DIAGRAMS_SUB_MENU_NAME, null,
ActionsGroups.PROJECT_OPENED_RELATED);
 // this call makes submenu.
 category.setNested(true);
 category.addAction(new DiagramAction(null, GlobalConstants.CONTENT_DIAGRAM,
projectListener));
 category.addAction(new DiagramAction(null,
GlobalConstants.NAVIGATION_DIAGRAM, projectListener));
 category.addAction(new DiagramAction(null, GlobalConstants.PROCESS_DIAGRAM,
projectListener));
 category.addAction(new DiagramAction(null,
GlobalConstants.PRESENTATION_DIAGRAM, projectListener));
 return category;
}

Figure 26 getSubmenuActions() Method

For more details of all named Open API classes above please refer to the Open API
Java Doc included with every installation of MagicDraw.

5.3.1 The UWE Profile and Template
After knowing how to define new actions we will have to be able also to assign the
UWE defined stereotypes to model elements. As mentioned in this document at many
places, we need a UWE Profile where all UWE metamodel elements (stereotypes) are
defined. In MagicDraw there is a predefined approach how to add a custom stereotype.
Even more, when once a profile is created, it can be reused in any MagicDraw project.
The UWE plug-in provides such a profile file, which is installed during the installation
process.

The UWE Profile is actually a standalone file that can be exported as a “Packed
MagicDraw File Format” (*.mdzip), “MagicDraw File Format” (*.mdxml), or to XML file
format (*.xml). Once creating the UWE Profile users and modellers can redistribute and
reuse this profile in any MagicDraw program (depending on the MagicDraw version
from which it was exported). All default and custom profiles are stored in the profiles
directory of the MagicDraw root directory.

As stated before, once created a profile can be used in any modelling project. By
modelling with the UWE approach the UWE Profile has to be loaded into the project.
This can be done manually or the UWE Plug-in will recognize that the user is starting a
new UWE diagram and the UWE Profile will be loaded automatically.

As a matter of fact there are two possibilities to load the UWE Profile into the project.
The bottom line is that both have also a slight design difference effect. The first method
is just to start a new standard project and then to create any of the UWE specific
diagrams. At this moment the UWE Profile will be loaded into the project.

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

The second method is to start a new project from a template and to choose the UWE
template from the available templates menu. At this moment the new UWE project will
be created with the UWE Profile loaded in it and additional four data packages in the
data root directory. As shown in Figure 27 these packages are: Content, Navigation,
Presentation and Process.

Figure 27 Loading of the UWE Profile through UWE Template

The creation of those predefined four model packages was made to show the
difference between starting a UWE template and just loading the UWE Profile in some
project. More about designing and modelling with the UWE Plug-in will be discussed in
chapter 6.

The following sections describe how such a profile is created and what specifics shall
be considered when creating a profile in MagicDraw.

5.3.1.1 Creating a Profile
To define a profile in MagicDraw a new default project has to be created first. After the
new project is opened, the model element browser tree window is displayed on the left
side. As default in every project there is automatically the UML Standard Profile loaded
and included into the project. Now a new package has to be created (to see how to
create a package, please refer to the MagicDaraw User Guide) and a name has to be
given (equals the name of the new profile). At this point a package has been created
where all UWE stereotype elements will be added. Let us say this is the root of the new
profile.

To be more precise the UWE Profile has five packages: Content, Navigation,
Presentation, Process and WebRE. They build the same structure as described in the
UWE metamodel before. At this place the proper UWE stereotypes have to be created
and added into those packages. To do so a click with the right mouse button on the
package name has to be done and New Element from the context menu window has to
be chosen. After that the type of the new element has to be chosen, in this case it is a
stereotype. Now the name, the metaclass, and other attributes of this newly created
stereotype can be set. In the same manner all UWE profile packages are filled with the
necessary UWE stereotypes. For instance there are the following stereotypes in the
Navigation package: Navigation Class, Index, Menu, Navigation Link, Navigation
Property, Node, etc. In the Presentation package in turn there are: Presentation Class,

35

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

36

Form, Page, Image, Anchor, Text, Text Input, etc.

We have now all required stereotypes and packages for the UWE profile but sill they
remain in a normal MagicDraw project. There are further actions to be performed
before the UWE profile is ready to use.

These newly created UWE stereotypes have to be shared in order to be available for
usage in any MagicDraw project (after loading the UWE profile). This means, that the
stereotype elements form the shared profile or module can be used in any other
project. To do this the UWE root package has to be chosen and clicked with the right
mouse button. From the opened context menu, it has to be scrolled down till the
Modules menu item and clicked on Share Packages inside it. Now the root UWE
package has to be selected and finally OK has to be clicked to proceed.

At this moment there is only one last step to be made. The project has to be exported
as a Modul, and saved. This means, that this newly created file could be loaded as a
profile in any MagicDraw project in the future. (Please refer to the MagicDraw User
Guide to see how to export a project.) While exporting the module, also the name of
the profile file has to be specified, in our case the name is: UWE Profile. Depending on
the file format settings a profile file with the specified name is created. In our case it is
called “UWE Profile.mdzip”. Last thing to do now is to move the UWE profile file into
the profiles directory of MagicDraw. After restarting MagicDraw the created UWE
profile can now be loaded into any project through the Use Module submenu of the File
main menu.

Because a UWE Profile is provided with the installation of the UWE Plug-in the user of
does not have to perform the steps described above. The pug-in is “clever” enough, so
it will assist the user when a new project is created. The plug-in is implemented to
check automatically if the UWE profile is already loaded when the user is trying to
create one of the UWE’s diagrams. If the profile is not yet loaded, it will be
automatically loaded into the project. This step is necessary because all defined UWE
stereotypes have to be defined (loaded) before starting to draw some classes and links
into the UWE diagrams. This mechanism is implemented through the loadUweProfile()
method of the ProjectListener class. Figure 28 shows a code fragment of this method.
As can be seen the MountTable class is responsible for manipulation of module
(profile) files in MagicDraw and the ProjectDescriptor represents the profile file.

/**
 * loads the uwe profile file from the profile directory
 * and returns true if successful
 */
public boolean loadUweProfile(){
 ProjectDescriptor module =
ProjectDescriptorsFactory.createProjectDescriptor(moduleProfileFile.toURI());
 MountTable mountTable = activeProject.getMountTable();
 boolean done = false;
 synchronized (this) {
 try{
 ModuleDescriptor moduleDescriptor = mountTable.mountModule(module);
 moduleDescriptor.setEditable(false);
 mountTable.loadModule(moduleDescriptor, new SimpleProgressStatus());
 mountTable.importModule(moduleDescriptor);
 done = true;
…

Figure 28 loadUWEProfile() Method

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

37

Even more the UWE profile file name can be set in the uwePlugin.properties file in the
plug-in sources through the uweProfileName property. This can be useful if there are
more than one defined profiles and the user would to be able to choose which one to
use in his project.

The UWE Profile is mandatory for the UWE Plug-in to work properly because of the
references of stereotypes defined in the profile. If the profile is damaged or missing, it
has to be reinstalled or a new one has to be created.

There is one more possibility how to load all necessary UWE stereotypes (included in
the profile) into a MagicDraw project. This topic will be described in the next section.

5.3.2 The UWE Template
MagicDraw allows also for creating a new project from an already existing template.
The newly created project will contain specific model elements and stereotypes.
Because the UWE plug-in has to support also this feature of the application, a UWE
template is necessary.

Let us see how a template is created. Normally there are almost the same steps
needed as for creating a profile. The only difference is that the project that contains all
defined stereotypes has to be exported as a Template and not as a Module like when
creating a profile. After the template is exported new files are created in a directory with
the template name that was given during the exporting process. In this case the name
of the template directory is UWE. This directory has to be moved into the templates
folder of MagicDraw. After restarting MagicDraw the user can choose to create a
project from template, and the UWE template will be listed in the templates tree
browser under the name UWE.

In our case there is no need to define the UWE stereotypes one more time. Creating a
UWE template as described above will create only a second type of UWE profile
containing exactly the same stereotypes like those the UWE Profile already contains. In
this plug-in UWE Template has the same functionality as the UWE Profile.
Furthermore it means that there has to be a way how to define the profile once and use
it in the both cases. Let us see how this is achieved.

As the aim was to have the same functionalities like when importing the UWE profile, a
decision was made that the template has to load automatically the same UWE profile
file defined in the previous section. To achieve this, a tricky approach was needed for
modifying the exported UWE template file.

After exporting the template (without defining any stereotypes) a file called UWE.mdzip
is created. Its file extension is actually a MagicDraw XML file packed through the zip
method. To be able to modify the packed file, UWE.mdzip has to be extracted
(unzipped). Newly extracted file can be opened with any text or XML editor, because
the file is a regular XML file. The next step is to add an entry that refers to the UWE
profile file in the profiles directory of MagicDraw. This entry is shown in Figure 29.

As shown on the previous figure there is an element called module which is exactly
referencing to the UWE profile file. After adding this element to the existing file
definitions, the file has to be saved and packed (zipped) again. Finally the file has to be
renamed back into UWE.mdzip. After these modifications are made, when starting
MagicDraw again and choosing to create new project from the UWE template the UWE
Profile will be loaded automatically.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

38

…
<xmi:Extension xmi:Extender="MagicDraw UML 12.0" xmi:ExtenderID="MagicDraw UML
12.0">
 <shareTable/>
 <mountTable>
 <module resource="file:/D:/MD_115/profiles/UML_Standard_Profile.xml"
autoloadType="ALWAYS_LOAD" readOnly="true" loadIndex="false" requiredVersion="-1">
 <mount mountPoint="magicdraw_uml_standard_profile_v_0001"
mountedOn="eee_1045467100313_135436_1"/>
 </module>
 <module resource="file:/D:/MD_115/profiles/UWE%20Profile.mdzip"
autoloadType="ALWAYS_LOAD" readOnly="true" loadIndex="false" requiredVersion="-1">
 <mount mountPoint="uwe_profile_v_0001"
mountedOn="_12_0_6610220_1173265770454_852159_250"/>
 </module>
 </mountTable>
</xmi:Extension>

..

Figure 29 Reference of the UWE Profile in UWE.mdzip

There is one more specific thing of using the UWE template stated already in the
previous sections. After a project is created from the UWE template, the following four
packages will be automatically created in that project: Content, Navigation,
Presentation and Process.

The user can now load the UWE Profile in all possible ways supported by MagicDraw.
Furthermore this gives flexibility by using the UWE approach, as the modeller can
either start a UWE project from scratch (using the UWE template) or load the UWE
Profile only when it is really needed (by loading the UWE module (profile) or just
opening a UWE diagram).

Please note that it is not possible to have only the UWE template without the UWE
profile file, because the template is referencing to the profile file, and will throw an
exception if the file is missing. Besides that, the UWE plug-in will also not work without
the UWE profile. So if the UWE profile file gets corrupt or is missing it has to be
restored (reinstalled) or created a new one. Furthermore if the name of the profile is
changed, the maintainer of the plug-in has to adjust manually the template file specified
above, otherwise the application would not be able to find the referenced profile file and
an exception will be thrown.

5.3.3 The UWE Core System and Main Classes
The last two sections described how the UWE stereotypes are created. Actually the
UWE profiles as well as the template are separated definitions files that are copied in
the proper target directories during the installation of the UWE Plug-in.

All further files with all the necessary functionalities of the plug-in are packed in the
UWE jar file in the plug-ins directory of MagicDraw. This section describes the main
classes and methods of the plug-in.

Section 5.3 described how a plug-in is initialized and which methods are called during
this process. Since then we know that the PluginManager class is the starting point
where all GUI elements are registered in the MagicDraw application.

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

To understand better the interaction between the UWE plug-in on the one side and the
Open Application Programming Interface of MagicDraw on the other, let us take a look
at Figure 30. The UWE Plug-in is designed to fit best to the architecture of the Open
API it means that there are three big component sections of the plug-in:

• Manager – consisting of plug-in main creator class: PluginManager

• Listeners – consisting of all kind of application listeners

• Configurators and Actions – consisting of all kind of Configurators and actions
(GUI elements) and secondary classes needed for some specified actions such
as transforming.

A Manager component member, de.lmu.ifi.pst.md.plugin.uwe.manager.PluginManager
is straightforward subclass of com.nomagic.magicdraw.plugins.Plugin. The
PluginManager init() method is the first plug-in method invoked from the application
while initializing the MagicDraw application. As said before, at this place all GUI objects
of the UWE plug-in are created and registered in MagicDraw through its Open API.

UWE Plug-in

Manager

Listeners
Configurators

Actions

MagicDraw Java OpenAPI

Figure 30 UWE Plug-in Architecture Overview

Members of the Listeners component group are the ProjectListener and the
ProjectEventChangeListener classes. Both of them are in the same plug-in package
de.lmu.ifi.pst.md.plugin.uwe.core. ProjectListener class is a straightforward subclass of
com.nomagic.magicdraw.core.project.ProjectEventListenerAdapter class. Furthermore
this class defines what actions are executed when project relevant actions are fired.
Such actions can be: project opened, project closed, project saved, project deactivated,
project replaced. This class is also responsible for the loading mechanism of the UWE
Profile file. The method checkIfloaded() returns true if the profile is already loaded.

39

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

40

The second member of this group is the ProjectEventChangeListener class which
implements the java.beans.PropertyChangeListener class. This class is the main event
listener of the plug-in. Every time when a new project is opened an object of this class
is instantiated through the projectOpened() method of the ProjectListener. All effects of
model and diagram manipulations in the application are observed exactly from this
class. Furthermore all default stereotypes of classes and associations are also set
here. If we can apply the Model View Controller paradigm, this will be exactly the
controller of the plug-in.

The last and the biggest components group contain all Configurators and actions of the
plug-in. There are the following Configurator types:

• MenuConfigurator – creates the UWE main menu

• DiagramsMenuConfigurator - creates the Diagrams main menu

• DiagramTransformersConfigurator – creates the Transformations submenu of
the UWE main menu

• ClassDiagramToolbarClassConfigurator – creates the UWE diagrams toolbar
menu for the class element stereotypes

• ClassDiagramToolbarAssociationConfigurator – creates the UWE diagrams
toolbar menu for the association element stereotypes

• UseCaseToolbarConfigurator – creates the UWE Use Case diagram toolbar
menu

Every class of these configruators implements or extends a different type of MagicDraw
configurator classes, depending on where exactly in the GUI the configuration will be
placed.

There are also different types of UWE action classes, some of the most important are:

• DiagramAction – action for creating a UWE diagram, there are four different
types of diagrams

• DrawClassAction – creates a class instance into the UWE diagram

• DrawAssociationAction – creates an association instance between two UML
classes

• TransformatorAction – transforms elements from one diagram type into another

This components separation of the plug-in classes is also logically underlined with the
package structure of the plug-in. The UWE plug-in contains the following Java
packages: manager, core, actions, configurators, transformation, and properties. In the
previous class examples there were mentioned classes from all these packages except
for the properties package.

In this package there are two important classes, first of them is the GlobalConstants
class. All plug-in constants with their values are defined in this class. The constants
placed in this class are reused in more than one class of the plug-in, so it is more
efficient and more accurate to place them in this class. Such a constant can be a UWE
main menu name, a UWE diagram action, the UWE profile name and so on.

The second class in the properties package is DefaultProperties class. This class is
responsible for reading the values of property attributes from the uwePlugin.properties
file. The main properties defined there are: the UWE profile file name, the name of the
default process association stereotype, and the name of the default navigation
association stereotype. The values of these properties could be changed according to
the comments written in the properties file itself.

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Generally the goal of designing and implementing the plug-in was to design the
architecture to be easy to maintain and to extend in the future.

5.3.3.1 UWE Plug-in Actions
One more topic in the UWE plug-in implementation is the use of action classes. Open
API of MagicDraw predefines all possible actions that can be used in the application.
As written in the previous chapters, all actions used in MagicDraw have to be a
subclass of MDAction class. This declaration is not valid if we want to add an action
into the toolbar menu of any type diagram. For this purpose we have to implement a
custom class extending the DefaultDiagramStateAction which in turn extends
MDStateAction class. Let us take a look at Figure 31. It is obvious that both,
MDStateAciton and MDAction are subclasses of NMAction. Thus both of them have the
same functionality base but are specified for a different disposal in MagicDraw.
Because the actions used from the diagram toolbar menu are state actions we cannot
use the “normal” MDAction to place our custom action somewhere in the toolbar,
especially if several actions need to be grouped into one action name.

Figure 31 UWE Diagram Actions

A state action means that the action returns also some Boolean state, true if selected
and false otherwise. Moreover in the figure above all UWE diagram actions can be
seen. Whereas ClassDiagramToolbarAction is used for UWE class elements,
ClassDiagramToolbarAssociationsActions is used for UWE association elements, and
UseCaseDiagramToolbarActions class is used for the UWE use case element. More
about the UWE diagram actions in the plug-in will be discussed in section 5.4.1.3 of
this chapter.

41

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

42

5.3.3.2 UWE Plug-in Transformation
One of the most important issues of the UWE Plug-in is its semi-automated
transformation mechanism. There are two types of transformation implemented in the
plug-in depending on their specification in the metamodel and these are:

• Content diagram elements to navigation diagram elements,

• Navigation diagram elements to presentation diagram elements.

Both transformations are defined in the DiagramTransformator class of the package
de.lmu.ifi.pst.md.plugin.uwe.transformation.

In order to illustrate how this class transforms the elements first I would like to explain
how the UML elements are specified in MagicDraw. There are two kinds of elements:

• UML model elements, called model elements

• Presentation elements, called element views.

Usually there is an element view for each model element, displaying that element on a
diagram. Actually the view element is a graphical element shown on the screen to
visualize the model element. However, not every presentation element (view) must
have a model element. Such example can be the presentation element Text Note.

It is complicated to find out which presentation element belongs to which model
element, because they are associated only in one direction. It means that it could be
found out which model element belongs to a view but not vice versa. To do so, the
getElement() method of any presentation element should be called.

The implementation of the UWE transformation collects all presentation elements of the
source diagram and then identifies their model elements. After that it creates new
model elements applying the converted stereotypes of the source model elements.
Some transformation rules are applied when choosing which elements, from which
source diagram can be transformed and displayed in the target diagram. Furthermore
there are some elements that are not transformed but only copied into the target
diagram depending on the source diagram type and their own stereotype.

Maybe the most interesting and complicated part of used transformation algorithm is
the moment when an association has to be transformed and connected to its new
transformed supplier and client. The problem here is how to find out which new
classes in the target diagram are the correct supplier and client.

First we need three hash maps to store the information that will be needed later. In the
first one: transformedClassElements all pairs of old (source) element and transformed
(target) element during the transformation process are stored, whereas the key is
always the old element from the source diagram. The second hash map:
path2origSuplier stores the path element of the source (original) association and it
supplier. The key is the path element. The final map: path2origClient is analogous to
previous map and stores the original path element with its client. Again the key is the
path element.

Now the whole needed information is stored and the class and association elements
can be transformed. After the classes are transformed (new class elements are created
in the target diagram), comes the turn of their association. A new (transformed)
association is created, whereas its presentation element (the path element of the new
association) can be created only when a supplier and client exists and can be
assigned.

At this point filled up with information hash maps above have to be used. Simply the
source association will be used to find out the source supplier and client from
path2origSuplier and path2origClient. Next the transformed (new created in the target

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

43

diagram) class elements will be holed from the third hash map,
transformedClassElements using previous got source supplier and client as a key.
Finally the transformed supplier and client are assigned to the new created
(transformed) association. Shown in Figure 32 code fragment is a part of the whole
algorithm described above. This part is the final part when the new association and its
path element: newAssPath with supplier and target is created.

…
 Relationship relationship = newAss;
 logger.debug("relationship: " + relationship);
 PathElement pathEl = (PathElement) origAss;
 logger.debug("pathEl: " + pathEl);
 // get the new client
 PresentationElement origClient = path2origClient.get(pathEl);
 logger.debug("origClient: " + origClient);
 PresentationElement newClient = transformedClassElements.get(origClient);
 logger.debug("newClient: " + newClient);
 //get the new suplier
 PresentationElement origSuplier = path2origSuplier.get(pathEl);
 logger.debug("origSuplier: " + origSuplier);
 PresentationElement newSuplier = transformedClassElements.get(origSuplier);
 logger.debug("newSuplier: " + newSuplier);
 //one of them can be null due of the restrictions made in isElemenent4transformation!
 if(relationship != null && origClient != null && newClient != null && origSuplier
!= null && newSuplier != null){
 //set the association client
 ModelHelper.setClientElement(relationship, newClient.getElement());
 //set the association suplier
 ModelHelper.setSupplierElement(relationship, newSuplier.getElement());
 //create new path element for the new association with its client and suplier
 PathElement newAssPath = presentationElementsManager.createPathElement(
relationship, newClient, newSuplier);
…

Figure 32 Transformation Implementation

5.4 Problems During the Development
As in any software development there are some smaller and bigger problems that
occur during the implementation process. In this case, while implementing the UWE
Plug-in the main problem was the insufficient or even missing documentation of a large
number of classes and methods in the Open API documentation provided with
MagicDraw. Thus after the quick start into the Open API and plug-in environment,
bigger problems have appeared, when solving complex implementation tasks.

The first way how to find a solution on such undocumented functionalities or
approaches of the Open API is to inspect the already existing code. Generally with the
MagicDraw installation there are several plug-in samples for almost all scopes of the
plug-in installation. For example, there are samples showing how to add different types
of actions into MagicDraw, also how to draw shape elements such as classes or text
boxes, how to use configurators and which of them for what purpose, how to use

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

44

selection actions, and so on.

Unfortunately as there are only few of those examples provided by default, the next
possible way how to move forward is to use online MagicDraw Open API forums and
newsgroups. The official newsgroups that are provided by the Magicdraw developing
company can be found on the MagicDraw homepage: [@14]. The most important
newsgroup for implementing a MagicDraw plug-in is called “MagicDraw OpenAPI
related questions and discussions”. The most helpful information for solving the
implementation questions and problems was found exactly in this newsgroup. The
other side of the coin is that the process of resolving a problem can cost a lot of time till
some other developer gives more information or even resolves the issue.

5.4.1 Concrete Examples of Implementation Problems
In this section an overview of the main problems and their solutions are described. Of
course some of their solutions are “elementary”, while others are more complex, but
each of those was quite a problem depending on the implementation phase of its
appearance.

5.4.1.1 Understanding the Module Loading Mechanism
After creating the UWE Profile actually the implementation phase of the plug-in started.
The first step was to get reassured that the newly created profile can be used and also
to find out if exactly the UWE Profile is loaded into a MagicDraw project. The loading of
the profile is a very important step of the plug-in, because if the UWE Profile cannot be
loaded all other functionalities of the plug-in cannot be used.

/**
 * loads the uwe profile file from the profile directory
 */
public boolean loadUweProfile(){
 ProjectDescriptor module =
ProjectDescriptorsFactory.createProjectDescriptor(moduleProfileFile.toURI());
 logger.debug("module: " + module);
 MountTable mountTable = activeProject.getMountTable();
 logger.debug("mountTable: " + mountTable);
 boolean done = false;
 synchronized (this) {
 try{
 ModuleDescriptor moduleDescriptor = mountTable.mountModule(module);
 moduleDescriptor.setEditable(false);
 mountTable.loadModule(moduleDescriptor, new SimpleProgressStatus());
 mountTable.importModule(moduleDescriptor);
 done = true;
 loaded = true;
 }

…

Figure 33 ProjectListener loadUweProfile()

To load a profile into an opened project, first a ProjectDescriptor object has to be
created using the URI of the profile file (module). Figure 33 shows a code fragment of

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

the loadUweProfile() method of the ProjectListener class. After the module is created, it
has to be mounted to the MountTable of the opened project. By doing so, a new
ModuleDescriptor object including the UWE profile file is created and can be loaded
and imported into the active project in the application.

The mechanism of loading and collecting all loaded modules (profiles) gives the
flexibility to check at any place in the plug-in whether the UWE profile is already loaded
or not. Based on the UWE diagram the plug-in can automatically check whether the
required profile file is loaded and to load it in case it is not yet loaded. Furthermore this
feature prevents from exceptions and the user is not expected to load the UWE profile
every time prior opening a diagram.

5.4.1.2 Hiding of the Class and Association Stereotypes
Another main issue of the implementation was the requirement to add default
stereotypes to all created UWE elements on the diagram. In addition these default
stereotypes have to be hidden. That means that the stereotypes are assigned to the
model and presentation elements but are not shown in the GUI with the typical <<>>
stereotypes brackets. Normally MagicDraw shows all stereotypes by default and the
user can switch them off by setting the flag “Show Stereotypes” in the Properties
window of every presentation element on a diagram. To open the Properties window of
an element just select the element and press the combination of Alt and Enter keys.

MagicDraw Open API provides the opportunity to set any kind of predefined property of
an element to some suitable value. The comprehensive set of properties is shown in
Figure 34. Every property has two attributes: id and value. The property id identifies a
specific property in the properties set. Every specific property has a value of specific
type. For example value of BooleanProperty is java.lang.Boolean. The collections of
properties are grouped by PropertyManagers. [16]

Figure 34 Properties Set

To achieve the task specified above the UWE Plug-in has to cover the stereotype
manipulation on several places where presentation elements are created, modified of
inspected. The first place is when creating a UWE element from the UWE Menu
actions. These elements are with predefined specific UWE stereotypes which are
corresponding to those stereotypes defined in the UWE Profile. Creating such a
element can be done by using one of the following classes:

45

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

46

• de.lmu.ifi.pst.md.plugin.uwe.actions.DrawClassAction

• de.lmu.ifi.pst.md.plugin.uwe.actions.DrawAssociationAction

These classes are responsible for creating a shape element for custom UWE class
elements (such as Navigation Class, Query, Index, etc) or path element for custom
UWE association elements (such as Navigation Link, External Link, and Process Link).
After that specific model element properties are set such as proper stereotype,
properties to show class attributes and operations for classes, properties to set a
navigable property for associations, etc. Once created, the element is immediately
inspected by a ProjectEventChangeListener object. In its overwritten method
propertyChange(PropertyChangeEvent event) all stereotypes of the newly created
presentation element are hidden. Furthermore in this method also the default
stereotypes of all presentation elements on any UWE diagram are created and hidden.

These above actions are taken when the event “Selection Changed” is passed. To
minimize the overload of objects and to be able to show again switched off stereotypes
references of once inspected objects are stored in collections. Next time when the
same object of a presentation element is inspected no more actions (such as set
default stereotype, hide stereotype, set navigable, etc) will be taken on this object. The
concept behind this implementation is to permit the user to change the elements
properties at any time after the default values were set.

There is one more place where element properties have to be set and this is when a
transformation is invoked. In the tranformOriginal(..) method in the
de.lmu.ifi.pst.md.plugin.uwe.transformation.DiagramTransformator class.

In Figure 35 a code fragment shows how the “Show Stereotypes” property of an
association path element is set. Other properties are set in the same way.

…
//hide stereotypes of the presentation element
PropertyManager propertyManager = new PropertyManager();
propertyManager.addProperty(new BooleanProperty(PropertyID.SHOW_STEREOTYPE,
false));
presentationElementsManager.setPresentationElementProperties(newAssPath,
propertyManager);

…
Figure 35 Hide Stereotypes Property

At this point it is important to state that to be able to hide also the role stereotypes of an
association element, first all its own presentation elements have to be collected. Then
the hide stereotypes property has to be applied on its RoleView child presentation
elements. How to retrieve all child presentation elements of an association is shown in
Figure 36.

…
//need to hide also the role view
List<PresentationElement> childPresElements = assPresEl.getPresentationElements();
for(PresentationElement childPres: childPresElements){
 if(childPres instanceof RoleView){
 hideAllStereotypes(childPres);
 }
}
…

Figure 36 Hide Rowe View Stereotype

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

5.4.1.3 Usage of the State Actions
The most used type of custom action class in the UWE Plug-in is the
de.lmu.ifi.pst.md.plugin.uwe.actions.ClassDiagramToolbarAction. This action class is a
subclass of DefaultDiagramStateAction which in turn is a sub-subclass of NMAction.
Unfortunately there is no information about the state actions in the documentation
provided by the MagicDraw software. [15] Therefore the only resource to find some
information about them is the Javadoc of the MagicDraw Open API.[17] In general
state actions are used in MagicDraw for changing some Boolean state. In our case all
ClassDiagramToolbarActions are packed together in view action groups. These
groups are respectively corresponding to the defined packages in UWE metamodel:

• Navigation actions group

• Presentation actions group

• Process actions group

• UWE Use Case actions group

Furthermore these groups are added into the diagram toolbar menu, and actually all
actions used in the diagram toolbar menus are such state actions. As already stated, a
state action returns a true or false, depending on whether an action is selected or not.
This behaviour of the actions is the reason why also the UWE custom diagram toolbar
actions are structured in groups. Thus only one action of each group can be selected at
the same time. Furthermore the action groups can have only actions in their first level
submenu, it means there is no possibility to add another subgroup consisting of other
kind of actions into the already existing state action group. Such nested subgroups
(submenus) for example can be created in the main menu (see UWE main menu).
Figure 37 shows such UWE state actions grouped in the Navigation action group.

Figure 37 UWE State Actions

Actually the problem is not in the implementation of state actions itself, but to know and
understand where what actions can be used. Furthermore it is crucial, to implement

47

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

48

such type of GUI elements (accurate actions) that make the Plug-in usable and
efficient. The code fragment in Figure 38 shows how the described actions above are
implemented in the configure() method of ClassDiagramToolbarClassConfigurator
class. This configurator is created from the PluginManagerClass with collection of
ClassDiagramToolbarActions stored in the actions class variable. As shown in the
previous figure, first the UWE diagram toolbar configuration is created in case it does
not exist yet.

//check if there is allready uwe toolbar menu existing if not create it
DiagramInnerToolbarConfiguration category = (DiagramInnerToolbarConfiguration)
mngr.getCategory("UWE");
if(category== null){
 category= new DiagramInnerToolbarConfiguration("UWE", null, "UWE", true);
 category.setNested(true);
 mngr.addCategory(category);
}

ActionsCategory actionsCategory= new ActionsCategory("","");
actionsCategory.setNested(true);
category.addAction(actionsCategory, 0);

// add the actions
Iterator it = actions.iterator();
while(it.hasNext()){
 DefaultDiagramStateAction action = (DefaultDiagramStateAction)it.next();
 actionsCategory.addAction(action);
 logger.debug("action added: " + action);
}

Figure 38 State Actions Implementation

Then an actions category with no name is created and added to the newly created
UWE configuration. This no name actions category is exactly the separation in groups
discussed above, because for every diagram toolbar action group created in the
PluginManager the ClassDiagramToolbarClassConfigurator is called, or respectively
its configure() method.

Final step implemented in this code example is adding the concrete custom state
actions objects into the no name ActionGroup passed from the PluginManager for each
group done by iteration through all passed actions.

5.4.1.4 Transformation Package Browser
One of the features of the UWE Plug-in is that after transformation is executed a data
and elements package browser window is shown, so the user can choose where the
new transformed elements will be stored. This browser view is displayed in Figure 39.
After selecting the target package the user will confirm with clicking on the “Select”
button and all new created elements will be moved into the selected package. Of
course only folders (packages) can be selected as a target, otherwise an error
message will be displayed on the screen.

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Figure 39 Elements Package Browser

private void setUpTheTreeBrowser(){
 //get the model browser
 Browser browser = Application.getInstance().getMainFrame().getBrowser();
 //get the active browser tree
 Tree activeTree = browser.getActiveTree();
 logger.debug("activeTree: " + activeTree);
 //Create a tree that allows one selection at a time.
 DefaultMutableTreeNode top = activeTree.getRootNode();
 tree = new JTree(top);
 tree.getSelectionModel().setSelectionMode (TreeSelectionModel.
SINGLE_TREE_SELECTION);
 logger.debug("tree: " + tree);
 //Listen for when the selection changes.
 tree.addTreeSelectionListener(this);
 //Create the scroll pane and add the tree to it.
 JScrollPane treeView = new JScrollPane(tree);
 …

Figure 40 Elements Browser Window Implementation

The implementation is done in the de.lmu.ifi.pst.md.plugin.uwe.actions.
TransformatorAction class. To display the actual structure of the elements tree as it is
shown on the default containment tree window of MagicDraw the application active tree

49

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

of the Browser object has to be called. After that a DefaultMutableTreeNode is created
and added into the custom tree object. Figure 40 shows this above implementation.
Furthermore the class TransformatorAction implements the following listeners:
TreeSelectionListener, ActionListener. That means that both of them have listener
methods that have to be overwritten. In the first one,
valueChanged(TreeSelectionEvent event) the actual selected node from the displayed
elements tree is set. The second method, actionPerformed(ActionEvent event) is called
when a button is clicked. Depending on the selected node on the tree before, all new
transformed elements are moved into the package. If the selected node is not a
package element a proper exception is thrown.

5.4.1.5 Inserting of Query and Index
Another important feature is the possibility to insert a Query or Index UWE element into
an existing diagram considering some UWE metamodel rules. These functions are
implemented into the diagram context menu under the menu item UWE shown in
Figure 41. This item is active only when an element from the active diagram is
selected, otherwise the user can not click on it. To use the automatic element insertion,
an association of type Composition has to be selected first. After that either Insert
Query or Index can be clicked and the selected association will be split into two parts
and the new element will be added between them. The implementation of this
functionality is made in the DiagramContextAction class. Objects of this class are
created in the PluginManager while initializing the Plug-in. DiagramContextAction class
extends the DefaultDiagramAction class and implements its actionPerformed() method.

Figure 41 UWE Diagram Context Menu

This method is called every time when the actions Insert Query or Index are clicked.
This method also contains all tests whether an element can be inserted in place of the
actually selected presentation element from the diagram. After the test is performed the
method insertElement(…) is called and the new model element with its presentation
element is created and added into the actual diagram in the proper place.

Difficult moment in the implementation of this functionality was to place the newly
inserted element in the proper place between the already existing classes of the split
association. The current solution calculates the middle point of the association and
50

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

51

inserts exactly there the new element. The problem is that if the association is not long
enough the newly inserted element would overlap with the already existing one. To
avoid that, further optimization of the used algorithm is necessary. The described
algorithm is shown in Figure 42. The whole implementation will not be described here
due to its large size. Please inspect the DiagramContextAction class implementation
for more details.

//set the proper display location in the niew diagram
Rectangle bounds = origSuplier.getBounds();
int x = 0;
if(origClient.getMiddlePointX() > origSuplier.getMiddlePointX()){
 x = origClient.getMiddlePointX() - ((origClient.getMiddlePointX()-origSuplier.
getMiddlePointX())/2);
}
else{
 x = origSuplier.getMiddlePointX() - ((origSuplier.getMiddlePointX() - origClient.
getMiddlePointX())/2);
}
bounds.x = x;
int y = 0;
if(origClient.getMiddlePointY() > origSuplier.getMiddlePointY()){
 y = origClient.getMiddlePointY() - ((origClient.getMiddlePointY()-origSuplier.
getMiddlePointY())/2);
}
else{
 y = origSuplier.getMiddlePointY() - ((origSuplier.getMiddlePointY() - origClient.
getMiddlePointY())/2);
}
bounds.y = y;
presentationElementsManager.reshapeShapeElement(newShape, bounds);

Figure 42 Computation of the Place of Insertion

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

52

6 Modelling with the UWE-Plug-in

This chapter describes how to install and use the UWE Plug-in for MagicDraw. After
the installation instructions in the first section of this chapter a detailed modelling
example with the Plug-in is discussed in the next sections. This example is based on
an existing online web application. This example is structured in dedicated sections for
each diagram type so that a better readability is ensured.

6.1 Preparations before Modelling

This section describes all necessary steps for using the UWE Plug-in in a project of
MagicDraw. In general some knowledge of using the MagicDraw software is expected;
otherwise a starting source of useful information can be the MagicDraw User Manual
document. [18]

After successful installation of the Plug-in described in the previous section MagicDraw
can be launched in the usual way. Now the UWE modelling functionalities are
implemented in the core software and the UWE main menu is shown between other
main menu items. To use these functionalities the UWE Profile has to be loaded into
the opened project. This can be achieved through three different approaches:

• Starting a new project from a template and choosing the UWE template

• Starting a new default project, clicking on “Use Module…” from the “File” main
menu and selecting the UWE Profile file from profiles directory

• Starting a new default project and clicking on one of the UWE diagram types
from the “UWE” main menu. The UWE Profile will be loaded automatically into
the opened project

Now the MagicDraw environment is ready to work with all defined UWE Stereotypes
from the UWE Profile and these UWE elements can be referenced in any diagram from
the project.

In the next section a concrete step by step example will be examined.

6.2 Modelling by Example

In this section a step by step example of modelling with the UWE plug-in will be
described. The popular web application www.mp3.com is used as a source for the
example. The page is simple and intuitive to use, its purpose is to bring easily songs
from different singers to the user. The user can search songs by the song’s title,

http://www.mp3.com/

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

singer’s name or album’s title. Furthermore the user can view singers and songs
grouped by their music genres. Songs, albums and singers can be also provided with
comments by other users. The user than can read these comments (called reviews),
can rate the songs, albums and signers, can vote for all these items, etc. Furthermore
users who register via email and password can download songs or whole albums for
free, or can buy some credit and download any kind of music and also video content
from this page. There are other additional functionalities such as video clips, daily news
and charts, podcasts, forums, photos of singers and bands, etc. that are not included in
the example bellow.

Let us now focus on how such a website is modelled by the UWE approach starting
with the UWE use case. As the functionalities of this webpage are numerous and
complex, the example concentrates only on the main user and music content
functionalities.

6.2.1 Use Case Diagram
In addition to the UML features, UWE distinguishes between three types of use cases:
navigation, process and personalized use cases. In our example in Figure 43
Navigation use case diagram is shown. Navigation UWE use case diagram models
typical user behaviour when interacting with the Web application.[19] Use cases can be
e.g. searching content on the page, browsing through the Web page, registering and
filling out forms, downloading some files, etc.

Figure 43 Navigation Use Case Diagram of the Example

53

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

54

To draw a UWE use case diagram a standard MagicDraw use case diagram has to be
created. It can be started from the “Diagrams” main menu. Besides the default use
case diagram toolbar menu items also the Plug-in “UWE Use Case” menu item is
available from the diagram toolbar. This new menu item includes new UWE action
called Navigation. Selecting the Navigation action from there, the user can draw use
cases with assigned stereotype of type Navigation. The UWE Profile has to be loaded
to assign the stereotype; otherwise a message will be displayed on the message
window prompting the user to load the profile.

In Figure 43 – the Navigation use case model - also two actors on the diagram are
displayed. The first one is the User actor, which represents a normal user browsing the
www.mp3.com webpage. The second actor, Registered Free User extends the User
actor and it represents a registered user of the page. There is one more type of user
actor, a user that is registered and has loaded some money credit on his account. This
last actor is unaccounted for the example discussed here. In this figure there are also
all main use cases for both actors. Registered Free User inherits all use cases from the
extended User actor and has some additional ones such as: Pay, Download Songs and
Albums. The both actors can search for content on the webpage, can register or login
when already registered, can write reviews of a song, singer or album, etc.

The next step of modelling by the UWE approach can be a more detailed use case
diagram. This type of diagram will include notes with comments, more detailed use
cases and relations. It depends on the complexity of the web application and project
risk if some more detailed diagrams will be drawn. Very often a requirement
specification based on use cases is not enough.[19]

6.2.2 Content Diagram
The aim of the content model is to provide a visual specification of the domain relevant
information for the Web system that mainly comprises the content of the Web
application. Figure 44 shows the content diagram of the example. Content diagram is
graphically represented as UML class diagram.[20]

No UWE stereotypes are defined for the Content diagram elements, but the user can
use any available stereotypes if he wants to point out a detail of the diagram. It shall be
admitted, that only relevant elements can be transformed from Contend diagram into
Navigation diagram when the semi-transformation action is launched. In particular only
elements with no stereotype at all or with stereotypes Navigation Class, External Link
and Navigation Link will be transformed automatically.

The example of the Content model diagram shows that an Artist has zero or more
Videos, Photos or Albums. In turn an Album has Songs and both Albums and Songs
can have Reviews.

http://www.mp3.com/

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Figure 44 Content Diagram of the Example

6.2.3 Navigation Diagram
Based on the requirement analysis (use case diagram and other diagrams if
necessary) and the content modelling, the navigation structure of a Web application is
modelled. Navigation classes represent navigable nodes of the hypertext structure.
Navigation Links showing direct links between Navigation classes and alternative
navigation paths are handled by Menus. Access primitives are used to reach multiple
instances of Navigation Class: Index or Guided Tour, or to select items: Query.[21]

All elements with assigned navigation diagram stereotypes are integrated into the
MagicDraw diagram toolbar menu and can be directly used from there as shown in
Figure 37 earlier. For producing a Navigation diagram from an already existing Content
diagram the integrated semi-automated UWE Content-to-Navigation transformation can
be used. The action for starting this transformation is located in the UWE main menu
under the Transformation submenu item and is called Content2Navigation. After
clicking on this action a new Navigation diagram from the actual Content model is
created. All classes from the source Content model will be copied into the newly
created Navigation diagram and will be automatically converted into Navigation
Classes depending on their original stereotype.

The next step is to add Menus, Indexes and Queries into the navigation model. Index
and Queries can be easily inserted by selecting a composite association between two
classes and clicking with the right mouse button. From the displayed context menu the
UWE item shall be chosen and the type of insertion shall be selected. After that the
newly chosen element will be inserted between these two classes. See section 5.4.1.5
for more detailed information about the automated element insertion.

55

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Figure 45 Navigation Diagram of the Example

There are numerous new navigation elements added in the Navigation diagram
example shown in Figure 45 compared to the previous diagram of type Content. The
most new elements are Indexes representing multiple instances of a Navigation Class
such as: AlbumsIndex to Album or SongsIndex to Song. There is also the MainMenu of
type Menu representing the navigation paths of the main menu of the webpage. There
is also a Query element called Search, which represents the search field for any type of
media content on this webpage.

There is also one very important element of type Process Class shown on the diagram
called Login. In general, in web applications that contain business logic the business
process must be integrated into the navigation structure. The entry and exit points of
the business processes are modelled by Process Class.[21]

6.2.4 Navigation Diagram with Integrated Processes
In the next step, the navigation structure can now be extended with Process classes
which represent the entry and exit points of business processes. These Process
classes are derived from the non-navigational use cases.[21]

In the Process diagram shown in Figure 46 the business processes Register,
CreateProfile, Login, ManageMyFavorits, BuyIt have been added. The integration of
these classes into the navigation model is done via the main menu (MainMenu) which
provides links to Register, Login, etc. The user can only create a profile if he has been
registered and the same user can manage his favourites (songs, videos, photos, etc.)
only after logging in first. Finally a user can buy songs or all albums by the process
BuyIt.

Like the previous diagram type elements, all process elements can be accessed from
the diagram toolbar menu called UWE.

56

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

A single Navigation structure and Process diagram for the whole Web application
would inevitably lead to cognitive overload. Different views to the navigation structure
with integration of related business processes should be produced. In turn each
Process class of navigation model is refined into a process model.[22]

Figure 46 Process Integration into Navigation Diagram

6.2.5 Presentation Diagram
The presentation model provides an abstract view on the user interface (UI) of a Web
application. It describes the basic structure of the UI, i.e. which UI elements are used to
present the navigation nodes. Such UI elements can be: text, images, anchors, forms.
The relationship between presentation classes and UI elements is of type
composition.[23] Furthermore each attribute of navigation class is represented with an
appropriate UI element. For example, a text element is used for the title attribute and
an image element is used for the photo attribute.

The building process of a Presentation diagram from a Navigation diagram is similar to
building a Navigation diagram from a Content diagram. It is triggered by choosing the
main menu item UWE, then Transformation and finally the Navigation2Presentation
action. All the Navigation Classes are copied and converted into the new Presentation
diagram and their stereotypes are set to Presentation Class.

In the example described in this chapter, only one Navigation class will be represented
with Presentation model, the rest of them are produced analogously. In Figure 47 the

57

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Artist Navigation class is converted into its Presentation model. All class attributes now
are represented with their own presentation elements and all of them are connected
with association of type composition with their own presentation class, in our case the
Artist class

Figure 47 Presentation Model of Artist Navigation Node

6.2.6 Transformations
As described in the sections before the UWE Plug-in has a semi-automated
transformation functionality. There are two types of transformations: from Content
diagram into Navigation diagram (Content2Navigagtion action), and from Navigation
Diagram into Presentation diagram (Navigation2Presentation action). The both actions
are shown in Figure 48. Their implementation and functionalities were already
discussed in section 5.3.3.2. This section describes when these transformations are
beneficial to use in the UWE modelling process.

The UWE Plug-in is designed to affect minimally the work of the user during modelling.
Furthermore the user is allowed to draw any kind of diagrams with any kind of
elements. The UWE transformations are mainly usable when diagrams with a large
amount of UWE elements are created, thus the process of producing the next UWE
model will be much faster than drawing it manually. Here is to admit, that not all of the
elements from the source diagram will be transformed into the new target diagram. All
elements of the source diagram (the active diagram from where the transformation is
launched) are examined during the transformation based on the rules shown on Table
2. All elements with assigned stereotypes different than those shown on Table 2 will
not be considered and will remain only in the source diagram. For every considered
element a new element will be created in the target diagram. The name of newly
created element will be the same as the source element only its stereotype will be
transformed.

58

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Figure 48 Transformation Actions

The association type of transformed association will be preserved, so if an association
of type composition or aggregation is transformed the new association element in the
target diagram will be of the same type. Furthermore the opposite end of the newly
created association will be set to navigable.

 Content to Navigation Navigation to Presentation

Stereotype of the
elements that will be
considered for
transformation

- Without assigned
Stereotype

- Navigation Class

- Navigation Link

- External Link

- Navigation Class

- Navigation Link

- External Link

- Presentation Class

Table 2 Transformation Rules

6.2.7 Exporting the Model
MagicDraw allows by default to export all created diagrams and models from a project.
Selected elements, diagrams or the whole project can be exported in several formats.

Perhaps the most usable model exporting file format is the XML Metadata Interchange
(XMI). MagicDraw allows model export to EMF based on UML 2.0 compatible XMI. It
allows interchange of UML 2.0 models with popular Model Driven Architecture (MDA)
tools such as AndroMDA, OpenArchitectureWare, and others.[@5]

Another way to export created diagrams in MagicDraw is to export them into an image
files. There are several file formats that can be chosen for such an exported image e.g.
jpeg, png, svg, eps, emf etc.

59

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

60

7 Future Work and Conclusion

7.1 Unresolved Issues
This section describes the main issues that have not been implemented yet in the
current version 1.0b of the UWE Plug-in.

One of the important unimplemented tasks is the UWE model consistency check. This
functionality has to check automatically the actual UWE diagram elements for model
consistency with selected UWE metamodel rules. For activation of this checking
mechanism a menu item action has to be placed on an adequate place into the
MagicDraw GUI. After this action is activated, all elements and their relationships from
the active diagram will be collected and inspected for consistency. If some of the
elements are not correct, they should be displayed in red bounds and a meaningful
message will be shown in the message window.

Another complex functionality to be implemented is the automatic code generation.
After the modelling of a Web application is finished, the user should be able to launch
an automatic code generation. It shall be examined what kind of technology shall be
used. As the Plug-in itself is developed with Java implementing language, perhaps the
most suitable technology to use is to combine Java Server Pages (jsp) with other
useful frameworks.

Another interesting issue is the code refactoring and optimization. Here is to focus on
the ProjectEventChangeListener class, particularly on the default stereotype
assignment and how they are hidden from the diagram. The problem here is that these
steps are made in several places and cannot be joined to one place, due to the session
and events listener mechanisms of MagicDraw. The aim should be to find a point when
to assign the default stereotypes and to make them invisible in the diagram and thus
reduce the implementation complexity and improve the performance.

A list of resolved and unresolved implementation tasks can be found in the ToDo class
of the UWE Plug-in sources.

7.2 Conclusion

The purpose of this diploma thesis was to develop a functional extension for the
computer aided design and engineering of Web applications using UML-based Web
Engineering (UWE) methodology. The UWE Plug-in is built as a flexible extension of
the MagicDraw software based on the OpenAPI interface provided by MagicDraw
version 12.0. The focus of this diploma thesis is to show how the UWE Plug-in was
designed and implemented on one side to fulfil the UWE approach requirements, and
on the other side to be integrated effectively into the MagicDraw environment.

The first chapter of the thesis presented the basics of the Web engineering and
introduced the UWE methodology. Besides, already existing tools supporting the UWE

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

61

approach were presented and the main goals of the UWE Plug-in were briefly
described.

A detailed overview of the UWE methodology was provided in chapter two. Afterwards,
UWE CASE tool requirements were defined in chapter three, whereas a special
attention was paid to the usability, GUI, and functionality requirements.

The last three chapters are the core part of this diploma thesis. This main part begins
with the UWE Plug-in design decisions in chapter four, continues with the
implementation of the Plug-in in chapter five, and finishes with the example using the
UWE Plug-in in chapter six. In chapters four and five the aim was to stress the most
important goals and to point out main issues and their solutions. Finally the Plug-in
functionalities were explained in chapter six.

The UWE Plug-in for MagicDraw developed during this diploma thesis has built a
significant foundation stone for the integration of UWE methodology into MagicDraw.
However, further functionalities need to be implemented considering the UWE
approach to complete the Plug-in. Those are briefly outlined in sub-chapter 7.1.

Furthermore the UWE approach is continuously evolving so the UWE Plug-in has to be
continuously adapted and maintained.

Nevertheless the developed UWE Plug-in is ready to use.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

62

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

63

References:

[1] Gottfried Vossen. Unleashing Web 2.0: From Concepts to Creativity. Morgan Kaufmann
Publishers, ISBN: 978-0-12-374034-2, 2007

[2] Nora Koch and Andreas Kraus. The expressive Power of UML-based Web Engineering.
Second Int. Worskhop on Web-oriented Software Technology (IWWOST´02), May 2002.

[3] Alexander Knapp, Nora Koch, Flavia Moser and Gefei Zhang. ArgoUWE: A Case Tool for
Web Applications. First Int. Workshop on Engineering Methods to Support Information
Systems Evolution (EMSISE´03), Sept. 2003.

[4] Nora Koch and Andreas Kraus. Towards a Common Metamodel for the Design of Web
Applications. Third Int. Conference on Web Engineering (ICWE´03), LNCS 2722,
©Springer Verlag,July 2003.

[5] Hubert Baumeister, Nora Koch, and Luis Mandel. Toward a UML extension for hypermedia
design. In UML´99 The Unified Modeling Language - Beyond the Standard, LNCS 1723,
Fort Collins,USA, 614-629, Springer Verlag, October 1999.

[6] Nora Koch and Andreas Kraus. Towards a Common Metamodel for the Development of
Web Applications. In Juan Manuel Cueva Lovelle, Bernardo Martín González Rodríguez,
Luis Joyanes Aguilar, José Emilio Labra Gayo, and María del Puerto Paule Ruíz, editors,
Proc. 3rd Int. Conf. Web Engineering (ICWE 2003), volume 2722 of LNCS, pages 497-506.
Springer Verlag, 2003.

[7] Nora Koch and Andreas Kraus. The expressive Power of UML-based Web Engineering. In
D. Schwabe, O. Pastor, G. Rossi, and L. Olsina, editors, Second International Workshop
on Web-oriented Software Technology (IWWOST02). CYTED, 105-119, June 2002.

[8] Sami Beydeda, Matthias Book, Volker Gruhn. Model-Driven Software Development. ISBN
354025613X, Springer Verlag, 2005

[9] Nora Koch, Alexander Knapp, Gefei Zhang, and Hubert Baumeister. UML-Based Web
Engineering: An Approach Based on Standards. In Luis Olsina, Oscar Pastor, Gustavo
Rossi, and Daniel Schwabe, editors, Web Engineering: Modelling and Implementing Web
Applications, volume 12 of Human-Computer Interaction Series, Chapter 7. Springer-
Verlag, 2007. To appear.

[10] Nora Koch, joint work with Gefei Zhang, Martin Wirsing, Andreas Kraus, Alexander Knapp,
Rolf Hennicker, Hubert Baumeister. UML-Based Web Engineering. Presentation. Web
Engineering Group, Ludwig-Maximilians-Universität München. Sevilla, 21.4.2005

[11] Alexander Knapp, Nora Koch, Flavia Moser and Gefei Zhang: ArgoUWE: A Case Tool for
Web Applications. Ludwig-Maximilians-Universität München, Germany

[12] Alexander Knapp and Gefei Zhang. Model Transformations for Integrating and Validating
Web Applications Models. In Heinrich C. Mayr and Ruth Breu, editors, Proc. Modellierung
2006 (MOD'06), volume P-82 of Lect. Notes Informatics, pages 115-128. Gesellschaft für
Informatik, 2006.

[13] Andreas Kraus, Alexander Knapp and Nora Koch. Model-Driven Generation of Web
Applications in UWE. Proc. of 3rd International Workshop on Model-Driven Web
Engineering, MDWE 2007, Como, Italy, July 17, 2007

[14] Koch, Nora and Kraus, Andreas (2003). Towards a Common Metamodel for the
Development of Web Applications. In Lovelle, Juan Manuel Cueva, Rodriguez, Bernardo
Martin Gonzalez, Aguilar, Luis Joyanes, Gayo, Jose Emilio Labra, and del Puerto Paule

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

64

Ruiz, Maria, editors, Proc. Int. Conf. Web Engineering (ICWE’03), volume 2722 of Lect.
Notes Comp. Sci., pages 495-506. Springer, Berlin.

[15] No Magic, Inc. Magic Draw OpenAPI UserGuide. Magic Draw UML Version: 12.0,
Documentation provided with the installation of MagicDraw software. 2006

[16] No Magic, Inc. Magic Draw OpenAPI UserGuide. Magic Draw UML Version: 12.0. Chapter
8, Properties. 2006

[17] No Magic, Inc., Magic Draw OpenAPI Javadoc. Magic Draw UML Version: 12.0, Javadoc
provided with the installation of MagicDraw software. 2006

[18] No Magic, Inc., MagicDraw UserManual, Version 12.0, December 2006, Document
provided with the installation of MagicDraw software. 2006

[19] Nora Koch, Alexander Knapp, Gefei Zhang, Hubert Baumeister: UML-Based Web
Engineering, An Approach Based on Standards. In Luis Olsina, Oscar Pastor, Gustavo
Rossi, and Daniel Schwabe, editors, Web Engineering: Modelling and Implementing Web
Applications, volume 12 of Human-Computer Interaction Series, , Chapter 7, Section 2.1
Starting with Requirements Specification. Springer-Verlag, 2007.

[20] Nora Koch, Alexander Knapp, Gefei Zhang, Hubert Baumeister: UML-Based Web
Engineering, An Approach Based on Standards. In Luis Olsina, Oscar Pastor, Gustavo
Rossi, and Daniel Schwabe, editors, Web Engineering: Modelling and Implementing Web
Applications, volume 12 of Human-Computer Interaction Series, , Chapter 7, Section 2.2
Defining the Content. Springer-Verlag, 2007.

[21] Nora Koch, Alexander Knapp, Gefei Zhang, Hubert Baumeister: UML-Based Web
Engineering, An Approach Based on Standards. In Luis Olsina, Oscar Pastor, Gustavo
Rossi, and Daniel Schwabe, editors, Web Engineering: Modelling and Implementing Web
Applications, volume 12 of Human-Computer Interaction Series, , Chapter 7, Section 2.3
Laying Down the Navigation Structure, 2007.

[22] Nora Koch, Alexander Knapp, Gefei Zhang, Hubert Baumeister: UML-Based Web
Engineering, An Approach Based on Standards. In Luis Olsina, Oscar Pastor, Gustavo
Rossi, and Daniel Schwabe, editors, Web Engineering: Modelling and Implementing Web
Applications, volume 12 of Human-Computer Interaction Series, , Chapter 7, Section 2.4
Refining the Process, 2007.

[23] Nora Koch, Alexander Knapp, Gefei Zhang, Hubert Baumeister: UML-Based Web
Engineering, An Approach Based on Standards. In Luis Olsina, Oscar Pastor, Gustavo
Rossi, and Daniel Schwabe, editors, Web Engineering: Modelling and Implementing Web
Applications, volume 12 of Human-Computer Interaction Series, , Chapter 7, Section 2.5
Sketching the Presentation, 2007.

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

65

Web References:

[@1] Unified Modelling Language UML home page, http://www.uml.org/, 30.09.2007
[@2] UWE Approach project home page, http://www.pst.informatik.uni-

muenchen.de/projekte/uwe/uwe.shtml 09.09.2007
[@3] Aspect Oriented Modelling home page, http://www.aspect-modeling.org/, 30.10.2007
[@4] OMG home page, http://www.omg.org/, 1.11.2007
[@5] MagicDraw home page, http://www.magicdraw.com/, 20.09.2007
[@6] ArgoUML home page, http://argouml.tigris.org/ , 25.09.2007
[@7] XML Metadata Interchange (XMI), http://www.omg.org/technology/documents/formal/

xmi.htm, 25.09.2007
[@8] ArgoUWE project home page, http://www.pst.ifi.lmu.de/projekte/uwe/argouwe.shtml,

30.09.2007
[@9] MagicDraw, What is MagicDraw,

http://www.magicdraw.com/main.php?ts=navig&NMSESSID=9f6735dacd552437406a88a
d449d981d&cmd_show=1&menu=what_is&NMSESSID=9f6735dacd552437406a88ad44
9d981d, 30.09.2007

[@10] No Magic, http://www.nomagic.com/dispatcher.php , 30.09.2007
[@11] Jython (JPython) project home, http://www.jython.org/Project/index.html, 1.10.2007
[@12] Java project home, http://java.sun.com/, 1.10.2007
[@13] ArgoUWE project home, http://www.pst.informatik.uni-

muenchen.de/projekte/uwe/argouwe.shtml, 1.10.2007
[@14] MagicDraw Newsgroups,

http://www.magicdraw.com/main.php?ts=navig&NMSESSID=73b19c78d15e30ee67ceb7
37f8ac9fef&cmd_show=1&menu=newsgroups&NMSESSID=73b19c78d15e30ee67ceb73
7f8ac9fef, 5.10.2007

[@15] XML project home, http://www.w3.org/XML/, 30.10.2007
[@16] IzPack Java Installer, http://izpack.org/, 20.10.2007

http://www.uml.org/
http://www.pst.informatik.uni-muenchen.de/projekte/uwe/uwe.shtml
http://www.pst.informatik.uni-muenchen.de/projekte/uwe/uwe.shtml
http://www.aspect-modeling.org/
http://www.omg.org/
http://www.magicdraw.com/
http://argouml.tigris.org/
http://www.omg.org/technology/documents/formal/%20xmi.htm
http://www.omg.org/technology/documents/formal/%20xmi.htm
http://www.pst.ifi.lmu.de/projekte/uwe/argouwe.shtml
http://www.magicdraw.com/main.php?ts=navig&NMSESSID=9f6735dacd552437406a88ad449d981d&cmd_show=1&menu=what_is&NMSESSID=9f6735dacd552437406a88ad449d981d
http://www.magicdraw.com/main.php?ts=navig&NMSESSID=9f6735dacd552437406a88ad449d981d&cmd_show=1&menu=what_is&NMSESSID=9f6735dacd552437406a88ad449d981d
http://www.magicdraw.com/main.php?ts=navig&NMSESSID=9f6735dacd552437406a88ad449d981d&cmd_show=1&menu=what_is&NMSESSID=9f6735dacd552437406a88ad449d981d
http://www.nomagic.com/dispatcher.php
http://www.jython.org/Project/index.html
http://java.sun.com/
http://www.pst.informatik.uni-muenchen.de/projekte/uwe/argouwe.shtml
http://www.pst.informatik.uni-muenchen.de/projekte/uwe/argouwe.shtml
http://www.magicdraw.com/main.php?ts=navig&NMSESSID=73b19c78d15e30ee67ceb737f8ac9fef&cmd_show=1&menu=newsgroups&NMSESSID=73b19c78d15e30ee67ceb737f8ac9fef
http://www.magicdraw.com/main.php?ts=navig&NMSESSID=73b19c78d15e30ee67ceb737f8ac9fef&cmd_show=1&menu=newsgroups&NMSESSID=73b19c78d15e30ee67ceb737f8ac9fef
http://www.magicdraw.com/main.php?ts=navig&NMSESSID=73b19c78d15e30ee67ceb737f8ac9fef&cmd_show=1&menu=newsgroups&NMSESSID=73b19c78d15e30ee67ceb737f8ac9fef
http://www.w3.org/XML/
http://izpack.org/

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

66

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

67

Appendix

Installation of the UWE Plug-in
To be able to work with the UWE Plug-in all it components have to be installed to an
existing MagicDraw application. Exactly to say, there are a couple of Plug-in files that
have to be copied in the proper MagicDraw directories. One possibility to copy the
necessary Plug-in files is to do it manually and to copy each of the files to the target
MagicDraw directory from existing Plug-in binaries. This approach is very insufficient,
because the user doesn’t has to know anything about the MagicDraw plug-in file
structure and it will cause only unnecessary overhead for installing the UWE Plug-in.
For that reason an automatic installer is used. At the end only one file with jar
extension is produced which comprises all necessary plug-in files. The installation of
the UWE Plug-in can be done either by double clicking on this file or true command line
prompt. Furthermore to be able to install the Plug-in only a Java runtime environment is
required.

 Used open source application installer is called IzPack.[@16] IzPack is installer
generator for Java platform. It is designed around modularity and flexibility and is
configurable through xml based configuration files called install.xml. In this file it could
be defined how the installer will looks like, what components from the application will
be installed by default and what components (for example source codes, etc.) the user
can choose to install optional. After configuring and compiling the installer a single
installation jar file is created. This installation file can be launched through double click
or from the shell using the java command. For understanding how to configure and
compile custom application installer please refer to the documentation file provided with
IzPack or check the homepage. In general IzPack is listed under the terms of liberal
open source Apache Software Licence version 2.0.

The UWE installation file is called UWE_MD_Plugin_Installer.jar. To be able to launch
the installation process a Java Virtual Machine has to be already installed on the
operating system. It is also necessary to install MagicDraw before launching the Plug-in
installation, because the user will be prompt to choose the MagicDraw installation
directory during the installation process. The Plug-in was made and tested for
MagicDraw version 12.0. It should work properly with all later versions of the software.
After launching the installation file just follow the instructions displayed on the screen.
Once the Plug-in is installed it can be also easy uninstalled by clicking on the
uninstallUWEPlugin.jar created in the MagicDraw directory after the installation process
is finished. In Figure 49 one of the dialogs during the installation process is shown.
Concrete at this step the user can choose if some do not required program files will be
also installed or not. The “Base” package includes all necessary Plug-in files to work
with it and can’t be deselected.

MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

Figure 49 UWE Installer - Packages Dialog

Directories and Files Created during the Installation

This section describes which files and directories are created during the installation
process of the MagicDraw Plug-in.

During the installation process all necessary files are copied into appropriate target
MagicDraw directory and subdirectories. This directory structure has to retain
unchanged, otherwise the Plug-in or some of it parts will not work correctly. The files
and their structure are included in the installation jar file and from there are copied into
the following directories:

• MAGIC_DRAW_HOME/plugins/uweMDPlugin

• MAGIC_DRAW_HOME/profiles

• MAGIC_DRAW_HOME/templates/UWE

• MAGIC_DRAW_HOME/Uninstaller

The files copied into the specified directories above are included in Table 3. Some of
the UWE custom directories are created during the installation if they do not exist yet.
Otherwise only the UWE files are overwritten and all other already existing files will
remain unchanged in the target directories. After launching the uninstallUWEPlugin.jar
all described UWE files in the previous table will be removed and the previous
MagicDraw state will be restored. The optional subfolders doc and src in the
uweMDPlugin directory are filled only if their checkboxes during the installation dialog
shown in Figure 49 are checked.

68

 MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

69

Directory Name Included Files and Subdirectories
plugins/uweMDPlugin plugin.xml, uweMDPlugin.jar, Licence.txt,

(optional subfolders: doc, src)

profiles UWE Profile.mdr, UWE Profile.mdzip,
UWE Profile.xml

templates/UWE description.html, UWE.html, UWE.mdr,
UWE.mdzip

Uninstaller uninstallUWEPlugin.jar
Table 3 UWE Plug-in Files and Directories

The UWE Plug-in installation file can be downloaded from the following URL:

www.cip.ifi.lmu.de/~blagoev/UWE_MD_Plugin_1.0b_Installer.jar

http://www.cip.ifi.lmu.de/%7Eblagoev/UWE_MD_Plugin_1.0b_Installer.jar

	MagicDraw-Plugin zur Modellierung und Generierung von Web-Anwendungen

