
LogiCORE IP
Reed-Solomon
Encoder v8.0
Product Guide

PG025 January 18, 2012

Reed-Solomon Encoder v8.0 www.xilinx.com 2
PG025 January 18, 2012

Chapter 1: Overview
Standards Compliance . 4
Licensing . 4
Performance . 5
Resource Utilization. 6

Chapter 2: Core Interfaces
Port Descriptions. 8

Chapter 3: Customizing and Generating the Core
Parameter Values in the XCO File . 15
Output Generation . 20
System Generator for DSP Graphical User Interface . 20

Chapter 4: Designing with the Core
Functional Description . 21
Block Code Settings . 22

Chapter 5: Detailed Example Design
Demonstration Test Bench . 25

Appendix 6: Migrating
Parameter Changes in the XCO File. 27
Port Changes . 28

Appendix 7: Additional Resources
Xilinx Resources . 29
Solution Centers . 29
References . 29
Technical Support. 29
Ordering Information . 30
Revision History . 30
Notice of Disclaimer . 30

Table of Contents

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 3
PG025 January 18, 2012 Product Specification

Introduction
The Reed-Solomon Encoder is used in many Forward
Error Correction (FEC) applications and in systems
such as communications systems and disk drives
where data is transmitted and subject to errors before
reception.

Features
• Implements many different Reed-Solomon coding

standards, including all ITU-T J.83 and CCSDS
codes

• Automatically configured by user-entered
parameters

• Efficiently handles multiple channels

• Fully synchronous design using a single clock

• Supports continuous output data with no gap
between code blocks

• Symbol width from 3 bits to 12 bits

• Code block length variable up to 4095 symbols
with up to 256 check symbols

• Block length can be changed in real time

• The number of check symbols can be changed in
real time

• Supports shortened codes

• Supports any primitive field polynomial for a
given symbol width

• User-configured generator polynomial

• AXI4-Stream compliant interfaces

• Use with Xilinx CORE Generator™ software and
Xilinx System Generator for DSP 13.4

LogiCORE IP
Reed-Solomon Encoder v8.0

LogiCORE™ IP Facts Table

Core Specifics

Supported
Device
Family(1)

Zynq™-7000, Artix™-7, Virtex®-7, Kintex™-7,
Virtex-6, Spartan®-6

Supported User
Interfaces AXI4-Stream

Resources See Table 1-1.

Provided with Core

Design Files Netlist

Example
Design Not Provided

Test Bench VHDL

Constraints File Not Applicable

Simulation
Model Verilog, VHDL

Supported S/W
Driver(2) N/A

Tested Design Tools

Design Entry
Tools

CORE Generator tool 13.4
System Generator for DSP 13.4

Simulation()

 Mentor Graphics ModelSim
Cadence Incisive Enterprise Simulator (IES)

Synopsys VCS and VCS MX
ISim

Synthesis
Tools() XST 13.4

Support

Provided by Xilinx @ www.xilinx.com/support

1. For a complete listing of supported devices, see the release notes
for this core.

2. Standalone driver details can be found in the EDK or SDK directory
(<install_directory>/doc/usenglish/xilinx_drivers.htm). Linux OS and driver
support information is available from http://wiki.xilinx.com.

3. For the supported versions of the tools, see the ISE Design Suite
13: Release Notes Guide.

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://wiki.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf

Reed-Solomon Encoder v8.0 www.xilinx.com 4
PG025 January 18, 2012 Product Specification

Chapter 1

Overview

Reed-Solomon codes are usually referred to as (n,k) codes, where n is the total number of
symbols in a code block and k is the number of information or data symbols. This core
generates systematic code blocks where the complete code block is formed from the k
information symbols, followed by the (n-k) check symbols. The maximum number of
symbol errors in a block that can be guaranteed to be correct is t = (n-k)/2. A symbol error
can contain any number of bit errors.

Normally n = 2(Symbol_Width)-1. If n is less than this, the code is referred to as a “shortened
code.” The encoder core handles both full-length and shortened codes.

The parameters n, k, and (n-k) are optionally variable from block to block. The current code
block settings for n, k, and (n-k) are referred to as n_block, k_block, and r_block, respectively.

A Reed-Solomon code is also characterized by two polynomials: the field polynomial and
the generator polynomial. The field polynomial defines the Galois field, of which the
symbols are members. The generator polynomial defines how the check symbols are
generated. Both of these polynomials are usually defined in the specification for any
particular Reed-Solomon code. The core GUI allows both of these polynomials to be
configured.

The core synchronous input control signals are not registered inside the core. It is assumed
these are registered external to the core if required.

Standards Compliance
The Reed-Solomon IP core adheres to the AMBA® AXI4-Stream standard.

Licensing

Evaluation
An evaluation license is available for this core. The evaluation version of the core operates
in the same way as the full version for several hours, dependent on clock frequency.
Operation is then disabled and the data output does not change. If you notice this behavior
in hardware, it probably means you are using an evaluation version of the core. The Xilinx
tools warn that an evaluation license is being used during netlist implementation. If a full
license is installed for the core to run on hardware, delete the old XCO file and recreate the
core from new.

http://www.xilinx.com
www.xilinx.com/ipcenter/ip_license/ip_licensing.htm

Reed-Solomon Encoder v8.0 www.xilinx.com 5
PG025 January 18, 2012 Product Specification

Chapter 1: Overview

Ordering Information
This Xilinx LogiCORE IP product is provided under the terms of the SignOnce IP Site
License. To evaluate this core in hardware, generate an evaluation license, which can be
accessed from the Xilinx IP Evaluation page.

After purchasing the core, you will receive instructions for registering and generating a full
core license. The full license can be requested and installed from the Xilinx IP Center for
use with the Xilinx CORE Generator™ software 13.4. The CORE Generator software is
bundled with the ISE® Design Suite software 13.4 at no additional charge.

Contact your local Xilinx sales representative for pricing and availability on Xilinx
LogiCORE products and software.

Performance

Latency
For this core, latency is defined as the number of rising clock edges from sampling
s_axis_input_tdata to the sampled value appearing on m_axis_output_tdata.
The basic latency of the core is (2 + number of channels). For example, the latency in
Figure 1-1 is 3.

• Selecting CCSDS increases the latency of the encoder by 2.

• Selecting ITU J.83 Annex B increases the latency by 1.

• Selecting m_axis_output_tready increases the latency by a further 2, but also
makes latency variable due to the presence of a FIFO to accommodate backpressure
inherent in the AXI4-Stream protocol.

Throughput
The maximum raw data input rate in Mb/s can be calculated as:

Fmax (MHz) * Symbol_Width (bits) * k/n

X-Ref Target - Figure 1-1

Figure 1-1: Latency

aclk

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tvalid

m_axis_output_tdata

D0 D1 D2 D3 D4

D0 D1

Latency=3

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
www.xilinx.com/ipcenter/ipevaluation/index.htm
http://www.xilinx.com/ipcenter/
http://www.xilinx.com/company/contact.htm
http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 6
PG025 January 18, 2012 Product Specification

Chapter 1: Overview

Resource Utilization
The area of the core increases with (n-k) and Symbol_Width. Some example
implementations are shown in Table 1-1.

When a variable number of check symbols is not required, the check symbol generator is
implemented efficiently as a fixed architecture. When a variable number of check symbols
is required, the check symbol generator must be either optimized for area, where the
implementation area is increased by a factor of approximately 3, or optimized for flexibility,
where the implementation area is increased by a factor of approximately 5.

The option to map primary I/O registers into IOB flip-flops should be selected if the core
I/Os are to be connected directly onto a PCB using the FPGA package pins. This gives
lower output clock-to-out times and predictable setup and hold times. Remember the
control signal inputs are used unregistered inside the core, so these should be registered
external to the core.

Performance Characteristics
In general, performance increases as n-k and Symbol_Width decrease. The clock
frequencies given in Table 1-1 can be achieved when the corresponding period constraint is
specified for the core clock input.

The area and speed values were obtained with map and par effort level set to high. Apart
from this, default implementation tools options were used. It might be possible to improve
slightly on these values by trying different options for the place and route software.

An implementation where a variable number of check symbols is required results in a
lower maximum speed. The cases in Table 1-1 are with output_tready enabled.
Disabling output_tready reduces the LUT and FF counts by approximately twice the
Symbol_Width and can increase achievable performance.

The cases in Table 1-1 have marker_bits disabled. Use of marker_bits adds
approximately 2 LUTS and 2 FFs per marker_bit. The last case (Var Check Symbs) has
both variable block length and number of check symbols. The part used in all cases was
XC7VX330T-FFG1157. The speedfile used was ADVANCED 1.02c 2011-11-28. This core
does not use XtremeDSP™ slices.

Table 1-1 provides resource and performance data for Virtex®-7 FPGAs. For other devices,
the user should generate a core and consult a map report to determine device utilization.

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 7
PG025 January 18, 2012 Product Specification

Chapter 1: Overview

Table 1-1: Example Implementations

DVB 1 DVB 2 ATSC G.709 ETSI-
BRAN

ITU J.83
Annex B CCSDS

Var
Check
Symbs

Symbol Width 8 8 8 8 8 8 7 8

Generator Start 0 0 0 0 0 112 1 0

h 1 1 1 1 1 11 1 1

k 188 188 187 239 239 223 122 239

n 204 204 207 255 255 255 127[1] 255

Field Polynomial 285 285 285 285 285 391 137 285

Number of Channels 1 16 1 1 1 1 1 1

Variable Block Length No No No No Yes No No Yes

LUT/FF Pairs[2] 240 390 288 240 290 132 381 848

LUTs[3] 226 382 272 225 271 120 362 824

FFs 197 339 229 197 224 117 327 362

Block RAMs (36k) 0 0 0 0 0 0 0 0

Block RAMs (18k) 0 0 0 0 0 0 1 0

Max Clock Freq[2][4] 405/599 360/517 402/503 388/598 335/441 447/612 230/320 266/402

Notes:
1. There are actually 128 symbols per block, but n is set to 127. The core automatically generates the 128th

symbol if the spec is set to J.83 Annex B.
2. Area and max clock frequencies are provided as a guide. They might vary with new releases of the

Xilinx implementation tools.
3. LUT count includes route-thrus and might vary when the core is packed with other logic. Resource

information is for -1 speed grade.
4. Maximum clock frequencies are shown in MHz for -1/-3 parts. The clock frequency does not take clock

jitter into account and should be derated by an amount appropriate to the clock source jitter
specification.

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 8
PG025 January 18, 2012

Chapter 2

Core Interfaces

This chapter provides detailed descriptions for each interface.

Port Descriptions

Pinout
Port names for the core module are shown in Figure 2-1 and described in Table 2-1.

X-Ref Target - Figure 2-1

Figure 2-1: Core Schematic Symbol

Table 2-1: Core Signal Pinout

Signal Direction Optional Description

aclk INPUT No Rising edge clock

aclken INPUT Yes Active High clock enable

aresetn
INPUT Yes Active Low synchronous clear (overrides

aclken). aresetn must be asserted for at least
2 clock cycles.

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 9
PG025 January 18, 2012

Chapter 2: Core Interfaces

aclken
The clock enable input (aclken) is an optional pin. When aclken is deasserted (low), all
the other synchronous inputs are ignored, except aresetn, and the core remains in its
current state. This pin should be used only if it is genuinely required because it has a high
fan out within the core and can result in lower performance.

aclken is a true clock enable and causes the entire core to freeze state when it is low.

An example of aclken operation is shown in Figure 2-2. In this case, the core ignores
symbol D4 as input to the block, and the current m_axis_output_tdata value remains
unchanged. (The decoder still samples n symbols.) As D4 is not included in the code block,
the output sequence ...D0,D1,D2,D3,D5... appears on m_axis_output_tdata during the
output stage of this block.

s_axis_input_tvalid INPUT No TVALID for S_AXIS_INPUT channel. See
AXI4-Stream Protocol for protocol.

s_axis_input_tready OUTPUT No TREADY for S_AXIS_INPUT

s_axis_input_tdata INPUT No Input data and erase flag, if applicable

s_axis_input_tuser INPUT Yes User bits, passed through core unmodified,
with same latency as s_axis_input_tdata

s_axis_input_tlast
INPUT No Marks last symbol of input block. Only used

to generate event outputs. Can be tied Low
or High if event outputs not used.

s_axis_ctrl_tvalid
INPUT Yes TVALID for S_AXIS_CTRL channel. This

channel is only present if core has variable
block length or number of check symbols

s_axis_ctrl_tready OUTPUT Yes TREADY for s_axis_ctrl_channel

s_axis_ctrl_tdata INPUT Yes Block length and number of check symbols,
if applicable

m_axis_output_tvalid OUTPUT No TVALID for M_AXIS_OUTPUT channel

m_axis_output_tready INPUT Yes TREADY for M_AXIS_OUTPUT channel. Tie
High if downstream slave is always able to
accept data from M_AXIS_OUTPUT

m_axis_output_tdata OUTPUT No Corrected data output

m_axis_output_tuser OUTPUT Yes s_axis_input_tuser delayed by core latency

m_axis_output_tlast OUTPUT No High when last symbol of last channel is on
m_axis_output_tdata

event_s_input_tlast_missing OUTPUT No Flags that s_axis_input_tlast was not
asserted when expected. Leave
unconnected if not required.

event_s_input_tlast_
unexpected

OUTPUT No Flags that s_axis_input_tlast was asserted
when not expected. Leave unconnected if
not required.

event_s_ctrl_tdata_invalid OUTPUT No Flags that values provided on
s_axis_ctrl_tdata were illegal. Core must be
reset if this is asserted. Leave unconnected
if not required.

Table 2-1: Core Signal Pinout (Cont’d)

Signal Direction Optional Description

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 10
PG025 January 18, 2012

Chapter 2: Core Interfaces

aresetn
The synchronous reset (aresetn) input is an optional pin. It can be used to re-initialize the
core at any time, regardless of the state of aclken. aresetn needs to be asserted low for
at least two clock cycles to initialize the circuit. The core becomes ready for normal
operation two cycles after aresetn goes high. This pin should be selected with caution, as
it increases the size of the core and can reduce performance.

The timing for the aresetn input is illustrated in Figure 2-3. Note that some outputs are
not reset by aresetn.

S_AXIS_INPUT Channel

s_axis_input_tdata

Data to be processed is passed into the core on this port. To ease interoperability with
byte-oriented buses, TDATA is padded with zeros, if necessary, to fit a bit field which is a
multiple of 8 bits. The padding bits are ignored by the core and do not result in additional
resource use. The structure is shown in Figure 2-4.

X-Ref Target - Figure 2-2

Figure 2-2: Clock Enable Timing

aclk

aclken

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tdata

D0 D1 D2 D3 D4 D5 D6

X-Ref Target - Figure 2-3

Figure 2-3: Synchronous Reset Timing

aclk

aclken

aresetn

s_axis_input_tready

s_axis_ctrl_tready

m_axis_output_tdata

m_axis_output_tuser

m_axis_output_tvalid

m_axis_output_tlast

event_s_input_tlast_missing

event_s_input_tlast_unexpected

event_s_ctrl_tdata_invalid

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 11
PG025 January 18, 2012

Chapter 2: Core Interfaces

DATA_IN Field

This is the input bus for the incoming uncoded data. The width of the DATA_IN portion of
the field is set by the Symbol Width parameter in the GUI.

s_axis_input_tuser

This optional input is used to pass information through the core with exactly the same
latency as s_axis_input_tdata. This could be used to tag each symbol sampled on
DATA_IN with marker bits, for example. The number of TUSER bits is parameterizable and
set by the Number of Marker Bits parameter in the GUI. The TUSER bits are delayed with
the same latency as DATA_IN to DATA_OUT and output on m_axis_output_tuser. For
example, if “5” is sampled on s_axis_input_tuser at the same time as the first symbol
on s_axis_input_tdata, then “5” is output on m_axis_output_tuser at the same
time the first symbol is output on m_axis_output_tdata.

This feature can be used to mark special symbols within a frame or to tag data from
different blocks with block identification numbers.

s_axis_input_tlast

This input can be tied low or high if the event outputs
(event_s_input_tlast_missing and event_s_input_tlast_unexpected) are
not used. It is present purely to provide a check that the system and core are in sync with
block sizes. If the event outputs are used then s_axis_input_tlast must be asserted
high when the last symbol of a block is sampled on s_axis_input_tdata. In the
multichannel case it must be asserted when the last symbol of the last channel of the block
is sampled on s_axis_input_tdata. The core maintains its own internal count of the
symbols, so it knows when the last symbol is being sampled. If s_axis_input_tlast is
not sampled high when the last input symbol is sampled then
event_s_input_tlast_missing is asserted until the next input sample is taken.
Similarly, if s_axis_input_tlast is sampled high when the core is not expecting it,
event_s_input_tlast_unexpected is asserted until the next input sample is taken.
If either of these events occurs then the system and the core are out of sync and the core,
and possibly the system, should be reset.

S_AXIS_CTRL Channel

s_axis_ctrl_tdata

If the S_AXIS_CTRL channel is present, control data for each block is passed into the core
on this port. The port is composed of a number of subfields, depending on parameter
settings. Each subfield is padded to make it a multiple of 8 bits. The padding bits are
ignored by the core and do not result in additional resource use. The structure is shown in
Figure 2-5. Care should be taken to ensure only valid combinations of N_IN and R_IN are
provided, as the core might need to be reset if invalid values are written.

X-Ref Target - Figure 2-4

Figure 2-4: Input Channel TDATA Structure

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 12
PG025 January 18, 2012

Chapter 2: Core Interfaces

N_IN Field

This field is only present if “Variable Block Length” is selected in the GUI. This allows the
block length to be changed every block. Unless there is an R_IN field, the number of check
symbols is fixed, so varying n automatically varies k.

For example, if N_IN is set to 255 and R_IN is set to 16 in the control word C1 in Figure 2-7,
the next input block (starting D1) is treated as a (n=255, k=239) codeword. If C2 has N_IN
equal to 64 and R_IN is equal to 8, then the next input block (starting DN) is treated as a
(n=64, k=56) codeword. For this example, n should be set to 255 and k to 239 in the GUI, as
the largest expected R_IN value is 16. This would give an R_IN field width of 5 bits (plus 3
padding bits).

R_IN Field

This field is only present if “Variable Number of Check Symbols” is selected in the GUI. It
allows the number of check symbols to be changed every block. Selecting this input
significantly increases the size of the core.

The width of the R_IN field is the minimum number of bits required to represent the
maximum n value minus the minimum k value, padded with unused inputs to round up to
the nearest multiple of 8.

M_AXIS_OUTPUT Channel

m_axis_output_tdata

Uncoded data sampled on s_axis_input_tdata is encoded and output from the core
on this port. The port is composed of a number of subfields, depending on parameter
settings. All output fields are padded with zeroes to fit a bit field which is a multiple of 8
bits. The structure is shown in Figure 2-6.

DATA_OUT Field

This is the output field for the corrected symbols. This field always has the same width as
DATA_IN.

Corrected symbols start to appear a number of clock cycles after the first symbol is
sampled on DATA_IN. This delay is termed the latency of the decoder and is explained in

X-Ref Target - Figure 2-5

Figure 2-5: Control Channel TDATA Structure

X-Ref Target - Figure 2-6

Figure 2-6: Output Channel TDATA Structure

DATA_OUTINFOPAD PAD
X12369

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 13
PG025 January 18, 2012

Chapter 2: Core Interfaces

Latency, page 5. Latency can vary if the block size is dynamically varied with the N_IN
field or if the output is stalled by deassertion of a TREADY input.

INFO Field

This optional output field contains a single information bit, INFO, which is high when data
symbols are on DATA_OUT and low when check symbols are on DATA_OUT (that is, the
last n-k symbols of the block).

m_axis_output_tuser

This optional output is s_axis_input_tuser delayed by the same latency as
s_axis_input_tdata to m_axis_output_tdata. The width is the same as
s_axis_input_tuser. As only k values are sampled on the input, only k values can be
output.

m_axis_output_tlast

This output is High when the last symbol of a block is on m_axis_output_tdata (the
nth symbol). In the multichannel case, m_axis_output_tlast is only asserted High
when the last symbol of the last channel is present on m_axis_output_tdata. This is
shown in Figure 2-8.

X-Ref Target - Figure 2-7

Figure 2-7: Block Input to Output Timing

aclk

s_axis_ctrl_tdata

s_axis_ctrl_tvalid

s_axis_ctrl_tready

s_axis_input_tdata

s_axis_input_tuser

s_axis_input_tvalid

s_axis_input_tlast

s_axis_input_tready

m_axis_output_tready

m_axis_output_tvalid

m_axis_output_tlast

m_axis_output_tdata

m_axis_output_tuser

C1 C2

D1 D2 D3 DK-2 DK-1 DK

U1 U2 U3 UK-2 UK-1 UK

D1 D2 D3 DN-2 DN-1 DN

U1 U2 U3

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 14
PG025 January 18, 2012

Chapter 2: Core Interfaces

event_s_input_tlast_missing
This output is asserted high if s_axis_input_tlast is not sampled high when the last
symbol of a block is sampled. It should be left unconnected if not required and the logic
used to generate it is optimized away. This output is only asserted until the next input
sample starts to be processed inside the core, so care must be taken not to miss a pulse on
this output. This output can be used to interrupt the system and possibly instigate a reset
sequence.

event_s_input_tlast_unexpected
This output is asserted high if s_axis_input_tlast is sampled high when an input
symbol that is not the last symbol of a block is sampled. Its timing and operation are the
same as event_s_input_tlast_missing.

event_s_ctrl_tdata_invalid
This output is asserted high if the core has an S_AXIS_CTRL channel and values are
sampled on N_IN or R_IN that are outside the absolute limits the core can handle. The
limits are computed at core generation time, based on the parameters selected. When
asserted, this output remains asserted until the core is reset. The core must be reset if this
output is asserted, as invalid N_IN or R_IN values can cause the core to malfunction for
subsequent blocks and not recover. Control values should be within the limits defined in
Table 3-1.

X-Ref Target - Figure 2-8

Figure 2-8: TLAST Output Timing for 3 Channel Example

aclk

m_axis_output_tlast

m_axis_output_tdata

m_axis_output_tvalid

m_axis_output_tready

AN-1 BN-1 CN-1 AN BN CN

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 15
PG025 January 18, 2012

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Parameter Values in the XCO File
The core GUI provides a number of parameter values for several common Reed-Solomon
standards. It also allows the user to define the following parameters:

Table 3-1: Parameter Values

GUI Name Default Value Valid Range XCO Parameter

Component Name rs_encoder_v8_0 Component_Name

Code Specification Custom Custom, DVB, ATSC,
G_709, ETSI_BRAN,
CCSDS, ITU_J_83_Annex_B,
IESS_308_126,
IESS_308_194,
IESS_308_208,
IESS_308_219,
IESS_308_225

Variable Number of
Check Symbols

false false, true Variable_Number_Of_Check_Symbols

Variable Block Length false false, true Variable_Block_Length

Symbol Width 8 3 to 12 Symbol_Width

Field Polynomial 0 0 to 8191 Field_Polynomial

Scaling Factor (h) 1 1 to 65535 Scaling_Factor

Generator Start 0 0 to 1023 Generator_Start

Symbols Per Block (n) 255 4 to 2Symbol_Width-1 Symbol_Per_Block

Data Symbols (k) 239 2 to 2Symbol_Width-3
2 < n-k < 256

Data_Symbols

Check Symbol
Generator
Optimization

Fixed_Architecture Fixed_Architecture,
Optimized_For_Area,
Optimized_For_Flexibility

Check_Symbol_Generator

Memory Style Automatic Automatic,
Block,
Distributed

Memory_Style

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 16
PG025 January 18, 2012

Chapter 3: Customizing and Generating the Core

Code Specification
The GUI aids creation of cores for a number of common Reed-Solomon specifications.
After a particular specification has been chosen, the GUI automatically selects the values
necessary to meet the specification.

Most of the standards listed just result in particular values being set and then greyed out
for most of the parameters in the GUI. However, some of the standards result in additional
logic being added to the core. These are described in the following sections.

CCSDS

When implementing the CCSDS specification, the core automatically implements the
dual-basis conversions defined in the CCSDS specification. This is illustrated in Figure 3-1.
If the dual-basis conversions are not required, select custom specification instead of CCSDS
and enter all the code parameters manually. Selecting CCSDS increases the latency of the
encoder by 2.

Number Of Channels 1 1 to 128 Number_Of_Channels

Clock Enable false false, true aclken

Synchronous Reset false false, true aresetn

m_axis_output_tready false false, true m_axis_output_tready

Info bit false false, true info

Marker Bits false false, true Marker_Bits

Number Of Marker Bits 1 1 to 16 Number_Of_Marker_Bits

Notes:
1. Parameter valid ranges are adjusted in the GUI to be consistent with other parameter settings.

Table 3-1: Parameter Values (Cont’d)

GUI Name Default Value Valid Range XCO Parameter

X-Ref Target - Figure 3-1

Figure 3-1: CCSDS Encoder

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 17
PG025 January 18, 2012

Chapter 3: Customizing and Generating the Core

ITU J.83 Annex B

This standard is unusual in that it calls for a (128,122) code. This suggests that n is greater
than 2(Symbol_Width)-1, as the Symbol Width is only 7 bits. However, the standard specifies
that the first 127 symbols are generated as a normal RS code. A special 128th symbol is then
appended to the end of the block. If ITU J.83 Annex B is selected, then the core includes the
logic required to generate this 128th symbol.

Selecting ITU J.83 Annex B increases the latency of the encoder by 1. The other RS codes
specified in the ITU J.83 standard do not require this additional symbol, and the custom
code specification should be selected for them.

Variable Number of Check Symbols
The R_IN field is added when a variable number of check symbols is required.

• Whenever a block is started, the new number of check symbols, r_block, is read from
the internal CTRL data FIFO.

• The number of check symbols in the new block is independent of the block length, so
varying R_IN also changes the number of data symbols in the block, k_block, by
negative the same amount.

• The n parameter must be set to 2(Symbol_Width)-1. The k parameter should be set such
that (n-k) equals the maximum number of check symbols required. The width of R_IN
port is the number of bits required to represent (n-k) in unsigned binary format.

• A multichannel implementation is not available if a variable number of check symbols
is required.

• The value sampled on R_IN must be in the range given for r_block in Table 4-1.

For full details on the variable block code settings k_block and r_block, see Block Code
Settings, page 22.

Variable Block Length
The N_IN field is added when a variable block length is required.

• Whenever a block is started, the new block length, n_block, is read from the internal
CTRL data FIFO.

• The number of check symbols in the new block is independent of the block length, so
varying n_block also changes the block’s number of data symbols, k_block, by the same
amount.

• The n parameter must be set to 2(Symbol_Width)-1, and the k parameter should be set
such that (n-k) equals the number of check symbols required.

• For multichannel implementations, n_block is the same for all channels.

• The value sampled on N_IN must be in the range given for n_block in Table 4-1.

For full details on the variable block code settings n_block and k_block, see Block Code
Settings, page 22.

Symbol Width
This is the width of the N_IN, DATA_IN and DATA_OUT fields.

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 18
PG025 January 18, 2012

Chapter 3: Customizing and Generating the Core

Field Polynomial
This is used to generate the Galois field for the code. It is entered as a decimal number
where the bits of the binary equivalent correspond to the polynomial coefficients. For
example,

x8 + x4 + x3 + x2 + 1 => 100011101 => 285

A value of zero causes the default polynomial for the given Symbol Width to be selected. If
Field Polynomial is not primitive, the core GUI highlights it in red. Table 3-2 shows the
default field polynomial.

Scaling Factor (h)
The scaling factor for the generator polynomial root index. Normally, h is 1.

To ensure correct operation of the Reed-Solomon decoder, the value of h must be chosen so
that the greatest common divisor of h and 2(Symbol_Width)-1 is 1, that is, h and 2(Symbol_Width)-1
must be relative primes.

GeneratorStart
This is the Galois field logarithm of the first root of the generator polynomial.

Normally, GeneratorStart is 0 or 1; however, it can be any positive integer up to 1023.

Symbols per Block (n)
The number of symbols in a fixed length code block. If this is a shortened code, n should be
the shortened number.

Table 3-2: Default Polynomials

Symbol Width Default Polynomial Decimal Representation

3 x3+x+1 11

4 x4+x+1 19

5 x5+x2+1 37

6 x6+x+1 67

7 x7+x3+1 137

8 x8+x4+x3+x2+1 285

9 x9+x4+1 529

10 x10+x3+1 1033

11 x11+x2+1 2053

12 x12+x6+x4+x+1 4179

g x() x αh GeneratorStart i+()×
–()

i 0=

n k– 1–

∏=

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 19
PG025 January 18, 2012

Chapter 3: Customizing and Generating the Core

When a variable block length is required, the n parameter is defaulted to 2(Symbol_Width)-1
and the block length, n_block, is set to the value sampled on the N_IN field.

Data symbols (k)
The number of information or data symbols in a fixed length code block.

When a variable block length and a fixed number of check symbols are required, the
block’s number of data symbols, k_block, is set to the value sampled on N_IN minus
parameter (n-k).

When a variable number of check symbols is required, the block’s number of data symbols,
k_block, is set to the value sampled on N_IN minus the value sampled on the R_IN field.

Check Symbol Generator Optimization
If a variable number of check symbols is not required, then Check Symbol Generator
Optimization must be set to Fixed Architecture.

• Fixed Architecture – The check symbol generator is implemented using a highly
efficient fixed architecture.

If a variable number of check symbols is required, the Check Symbol Generator
Optimization must be set to one of the following:

• Optimized for Flexibility – The check symbol generator implementation is optimized to
maximize the range of input field, N_IN.

• Optimized for Area – The check symbol generator implementation is optimized for area
and speed efficiency. The range of input field, N_IN, is reduced.

Memory Style
If the target device architecture supports block memory, the following options are
available:

• Distributed – Core should not use any block memories if possible. This is useful if they
are required elsewhere in the design.

• Block – Core should use block memories wherever possible. This keeps the number of
CLBs used to a minimum, but might use block memory wastefully.

• Automatic – This allows the core to use the most appropriate style of memory for each
case, based on required memory depth.

Number of Channels
The core can process multiple input channels simultaneously with only a small increase in
area. This is much more efficient than instantiating multiple RS Encoder cores.

When a new block is started for one channel, a new block is started for all the other
channels as well. The code settings n_block, k_block and r_block are the same for all channels.
The multichannel configuration is not available when a variable number of check symbols
is required.

The latency is increased by 1 for each additional channel.

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 20
PG025 January 18, 2012

Chapter 3: Customizing and Generating the Core

With multiple channels, there is still only one DATA_IN port. Incoming symbols for the
channels are interlaced so the core samples the first symbol of channel 1 on the first rising
clock edge, then the first symbol of channel 2 on the second rising clock edge, and so on.
Symbols (both information and check) are output on DATA_OUT in the same sequence. An
example with three channels is shown in Figure 3-2.

A new block is started for all three channels when s_axis_input_tvalid is asserted.
A1, B1 and C1 are the first symbols of the new block for channels A, B and C.
s_axis_input_tvalid can be deasserted at any time. For example, no value is
sampled at the start of clock cycle 8.

Symbols on m_axis_output_tdata are interlaced in the same way as symbols on
s_axis_input_tdata.

Output Generation
Several files are produced when a core is generated, and customized instantiation
templates for Verilog and VHDL design flows are provided in the .veo and .vho files,
respectively. For detailed instructions, see the CORE Generator™ software documentation.

System Generator for DSP Graphical User Interface
The Reed-Solomon Encoder core is available through Xilinx System Generator for DSP, a
design tool that enables the use of the model-based design environment Simulink® for
FPGA design. The Reed-Solomon Encoder core is one of the DSP building blocks provided
in the Xilinx blockset for Simulink. The core can be found in the Xilinx Blockset in the
Communication section. The block is called “Reed-Solomon Encoder 8.0." See the System
Generator User Manual for more information.

The controls in the System Generator GUI work identically to those in the CORE Generator
GUI. See Parameter Values in the XCO File, page 15, for detailed information about all
other parameters.

X-Ref Target - Figure 3-2

Figure 3-2: Multi-Channel Operation

aclk

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tdata

m_axis_output_tvalid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A1 B1 C1 A2 B2 C2

A1 B1 C1 A2 B2 C2

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 21
PG025 January 18, 2012

Chapter 4

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier.

Functional Description

AXI4-Stream Protocol
The use of AXI4-Stream interfaces brings standardization and enhances interoperability of
Xilinx IP LogiCORE™ solutions. Other than general control signals such as aclk, aclken
and aresetn, and event outputs, all inputs and outputs to the core are conveyed using
AXI4-Stream channels. A channel consists of TVALID and TDATA always, plus several
optional ports and fields. In the RS Encoder core, the additional ports used are TREADY,
TLAST and TUSER. Together, TVALID and TREADY perform a handshake to transfer a
value, where the payload is TDATA, TUSER and TLAST. The payload is indeterminate
when TVALID is deasserted.

The RS Encoder core operates on the values contained in the S_AXIS_INPUT channel
TDATA fields and outputs the results in the TDATA fields of the M_AXIS_OUTPUT
channel. The RS Encoder core does not use inputs TUSER and TLAST as such, but the core
provides the facility to convey TUSER with the same latency as TDATA. This facility of
passing TUSER from input to output is intended to ease use of the core in a system. TLAST
is provided purely as a check that the core is in sync with the system and its use is optional.

For further details on AXI4-Stream Interfaces see [Ref 1] and [Ref 2].

Basic Handshake

Figure 4-1 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the
source (master) side of the channel and TREADY is driven by the receiver (slave). TVALID
indicates that the value in the payload fields (TDATA, TUSER and TLAST) is valid.
TREADY indicates that the slave is ready to receive data. When both TVALID and
TREADY are true in a cycle, a transfer occurs. The master and slave set TVALID and
TREADY respectively for the next transfer appropriately.

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 22
PG025 January 18, 2012

Chapter 4: Designing with the Core

The full flow control of AXI4-Stream aids system design because the flow of data is
self-regulating. Data loss is prevented by the presence of back pressure (TREADY), so that
data is only propagated when the downstream datapath is ready to process it.

The core has two input channels: S_AXIS_INPUT and S_AXIS_CTRL. If any of the block
parameters, such as block length, have been selected to be run time configurable then a
block cannot be processed until the control values for that block have been loaded on
S_AXIS_CTRL. A new control value must be loaded for every new block or the core will
stall the S_AXIS_INPUT channel by deasserting s_axis_input_tready. Some data can
be input without a control value until the input FIFO fills. It is recommended to write
control values before the data is supplied. To guarantee that the input channel is not stalled
due to lack of control information, the control value should be written no later than one
clock cycle before the first data symbol is sampled. Control values are stored in a FIFO
inside the core and used when a new input block is started. Up to 16 control values can be
stored before any input data is provided. After the control FIFO fills,
s_axis_ctrl_tready is deasserted.

The core has one output channel: M_AXIS_OUTPUT. If the output is prevented from
off-loading data because m_axis_output_tready is low then data accumulates in the
core. When the core’s internal buffers are full the core stops further operations. This
prevents the input buffers from off-loading data for new operations so the input buffers fill
as new data is input. When the input buffers fill, their respective TREADYs
(s_axis_input_tready and s_axis_ctrl_tready) are deasserted to prevent further
input. This is the normal action of back pressure.

Block Code Settings
The RS Encoder generates a systematic (n_block, k_block) block code, where the output
block is n_block symbols long, comprised from k_block data symbols followed by r_block
check symbols. The block code settings n_block, k_block and r_block are optionally variable
on a block-by-block basis. For multichannel configurations, all channels have the same
settings for n_block, k_block and r_block. See Table 4-1.

X-Ref Target - Figure 4-1

Figure 4-1: Data Transfer in an AXI-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 23
PG025 January 18, 2012

Chapter 4: Designing with the Core

n_block
The block code setting n_block specifies the total number of symbols in the current code
block.

• When a variable block length is not required, n_block is set to the parameter n for
every code block.

• When a variable block length is required, n_block is set to the value written for the
current block on the CTRL channel N_IN field.

k_block
The block code setting k_block specifies the number of data symbols in the current code
block.

• When a variable block length is not required, k_block is set to the parameter k for every
block.

• When a variable block length is required and a variable number of check symbols is
not required, k_block is set to the value written for the current block on the CTRL
channel N_IN field minus the parameter (n-k).

• When a variable number of check symbols is required, k_block is set to the value
written for the current block on the CTRL channel N_IN field minus the value
sampled on R_IN.

Table 4-1: Block Code Settings – Value and Range

Block Code Settings Value Range Min Range Max

Fixed Block Length

n_block n 4 2(Symbol_Width)-1

k_block k 2 2(Symbol_Width)-3

r_block (n-k) 2 min(n-k, 256)

Variable Block Length. Fixed Number of Check Symbols

n_block N_IN 4 2(Symbol_Width)-1

k_block N_IN - (n-k) 2 2(Symbol_Width)-3

r_block (n-k) 2 min(n-k, 256)

Variable Number of Check Symbols (optimized for flexibility)

n_block N_IN 5 2(Symbol_Width)-1

k_block N_IN - R_IN 3 2(Symbol_Width)-3

r_block R_IN 2 min(n-k, 128)

Variable Number of Check Symbols (optimized for area)

n_block N_IN 2*(n-k) 2(Symbol_Width)-1

k_block N_IN - R_IN 3 2(Symbol_Width)-3

r_block R_IN 2 min(n-k, 128)

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 24
PG025 January 18, 2012

Chapter 4: Designing with the Core

r_block
The block code setting r_block specifies the number of check symbols in the current code
block.

• When a variable number of check symbols is not required, r_block is set to parameter
(n-k) for every block.

• When a variable number of check symbols is required, r_block is set to the value
written for the current block on the CTRL channel R_IN field.

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 25
PG025 January 18, 2012

Chapter 5

Detailed Example Design

Demonstration Test Bench
When the core is generated using CORE Generator™, a demonstration test bench is
created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: <component_name>/
demo_tb/tb_<component_name>.vhd in the CORE Generator output directory. The
source code is comprehensively commented.

Using the Demonstration Test Bench

The demonstration test bench instantiates the generated RS Encoder core. Either the
behavioral model or the netlist can be simulated within the demonstration test bench.

• Behavioral model: Ensure that the CORE Generator project options are set to generate
a behavioral model. After generation, this creates a behavioral model wrapper named
<component_name>.vhd. Compile this file into the work library (see your
simulator documentation for more information on how to do this).

• Netlist: If the CORE Generator project options were set to generate a structural model,
a VHDL or Verilog netlist named <component_name>.vhd or
<component_name>.v was generated. If this option was not set, generate a netlist
using the netgen program, for example:

netgen -sim -ofmt vhdl <component_name>.ngc
<component_name>_netlist.vhd

Compile the netlist into the work library (see your simulator documentation for more
information on how to do this). Then compile and simulate the demonstration test bench.
View the test bench's signals in your simulator's waveform viewer to see the operations of
the test bench.

The Demonstration Test Bench in Detail

The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates an input codeblock consisting of a sinusoid

• Generates a clock signal

• Drives the core's input signals to demonstrate core features

• Checks that the core's output signals obey AXI protocol rules (data values are not
checked in order to keep the test bench simple)

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 26
PG025 January 18, 2012

Chapter 5: Detailed Example Design

• Provides signals showing the separate fields of AXI TDATA and TUSER signals

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The operations performed by the demonstration test bench
are appropriate for the configuration of the generated core and are a subset of the
following operations:

1. An initial phase where the core is initialized and no operations are performed.

2. Encode a codeblock.

3. Use a different codeblock configuration, with fewer symbols and fewer check symbols,
as appropriate to the core.

4. Encode 20 codeblocks, streaming data continuously as fast as the core can process it.

5. Encode 10 more codeblocks which demonstrating the AXI control signals’ use and
effects.

6. If clock enable is present: Demonstrate the effect of toggling aclken.

7. If reset is present: Demonstrate the effect of asserting aresetn.

Customizing the Demonstration Test Bench

It is possible to modify the demonstration test bench to use different codeblock data or
different control information.

Input data is pre-generated in the create_ip_table function and stored in the IP_DATA
constant. Data from this constant is driven into the core by the
drive_input_codeblock procedure.

For cores with an S_AXIS_CTRL control channel, control information is generated and
driven into the core by the ctrl_stimuli process. Ensure that control information is
provided for each data codeblock to prevent the core stalling.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 27
PG025 January 18, 2012

Appendix 6

Migrating

This appendix describes migrating from older versions of the IP to the current IP release.

Parameter Changes in the XCO File
The CORE Generator™ core update functionality can be used to update an existing XCO
file from v7.1 to v8.0, but the update mechanism alone does not create a core compatible
with v7.1. Table 6-1 shows the changes to XCO parameters from v7.1 to v8.0.

Table 6-1: XCO Parameter Changes from v7.1 to v8.0

Version v7.1 Version v8.0 Notes

component_name component_name Unchanged

code_specification code_specification Unchanged

symbol_width symbol_width Unchanged

field_polynomial field_polynomial Unchanged

scaling_factor scaling_factor Unchanged

generator_start generator_start Unchanged

variable_block_length variable_block_length Unchanged

symbols_per_block symbols_per_block Unchanged

data_symbols data_symbols Unchanged

variable_number_of_check_
symbols

variable_number_of_check_
symbols

Unchanged

memory_style memory_style Unchanged

number_of_channels number_of_channels Unchanged

check_symbol_generator check_symbol_generator Unchanged

output_has_tready true if output channel has a TREADY
input

clock_enable aclken Name change

synchronous_reset aresetn Name change. aresetn is active Low.

info true if info field is present in
m_axis_output_tdata

marker_bits Controls whether TUSER port is
included

number_of_marker_bits Width of optional TUSER port

nd Replaced with AXI control signals

rdy Replaced with AXI control signals

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 28
PG025 January 18, 2012

Appendix 6: Migrating

Port Changes

rfd Replaced with AXI control signals

rffd Replaced with AXI control signals

Table 6-1: XCO Parameter Changes from v7.1 to v8.0

Version v7.1 Version v8.0 Notes

Table 6-2: Port Changes from v7.1 to v8.0

Version v7.1 Version v8.0 Notes

CLK aclk Rename only

CE aclken Rename only

SCLR aresetn Rename and change on sense (now active Low). Must now
be asserted for at least 2 cycles.

START v8.0 does not require a pulse at the start of each block.
s_axis_input_tvalid is used to detect this automatically.

BYPASS Not available in v8.0 core

DATA_IN Now exists as a field within s_axis_input_tdata

N_IN Now exists as a field within s_axis_ctrl_tdata

R_IN Now exists as a field within s_axis_ctrl_tdata

DATA_OUT Now exists as a field within m_axis_output_tdata

INFO Now exists as a field within m_axis_output_tdata

ND s_axis_input_tvalid

RFD s_axis_input_tready

RFFD Control data can be written when s_axis_ctrl_tready is
asserted in v8.0 core. Input data stream can be sampled
when s_axis_input_tready is asserted.

RDY m_axis_output_tvalid

http://www.xilinx.com

Reed-Solomon Encoder v8.0 www.xilinx.com 29
PG025 January 18, 2012

Appendix 7

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
1. Xilinx AXI Design Reference Guide (UG761)

2. AMBA AXI4-Stream Protocol Specification

3. Synthesis and Simulation Design Guide (UG626)

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/solcenters.htm
www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://www.xilinx.com
www.xilinx.com/support/documentation/dt_ise13-3_userguides.htm

Reed-Solomon Encoder v8.0 www.xilinx.com 30
PG025 January 18, 2012

Appendix 7: Additional Resources

Ordering Information
Contact your local Xilinx sales representative for pricing and availability of Xilinx
LogiCORE IP modules and software. Information about additional Xilinx LogiCORE IP
modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. Simulink
is a registered trademark of The MathWorks, Inc. AMBA and ARM are trademarks of ARM in the EU and other
countries. All other trademarks are the property of their respective owners.

Date Version Revision

01/18/12 1.0 Initial Xilinx release. Previous data sheet for this core
(non-AXI) is DS251.

www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP Reed-Solomon Encoder v8.0
	Table of Contents
	Overview
	Standards Compliance
	Licensing
	Evaluation
	Ordering Information

	Performance
	Latency
	Throughput

	Resource Utilization
	Performance Characteristics

	Core Interfaces
	Port Descriptions
	Pinout
	aclken
	aresetn
	S_AXIS_INPUT Channel
	S_AXIS_CTRL Channel
	M_AXIS_OUTPUT Channel
	event_s_input_tlast_missing
	event_s_input_tlast_unexpected
	event_s_ctrl_tdata_invalid

	Customizing and Generating the Core
	Parameter Values in the XCO File
	Code Specification
	Variable Number of Check Symbols
	Variable Block Length
	Symbol Width
	Field Polynomial
	Scaling Factor (h)
	GeneratorStart
	Symbols per Block (n)
	Data symbols (k)
	Check Symbol Generator Optimization
	Memory Style
	Number of Channels

	Output Generation
	System Generator for DSP Graphical User Interface

	Designing with the Core
	Functional Description
	AXI4-Stream Protocol

	Block Code Settings
	n_block
	k_block
	r_block

	Detailed Example Design
	Demonstration Test Bench
	Using the Demonstration Test Bench
	The Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Migrating
	Parameter Changes in the XCO File
	Port Changes

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

