
COLLEGE OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
BERKELEY, CALIFORNIA 94720

U N I V E R S I T Y O F C A L I F O R N I A AT B E R K E L E Y
A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868•

LE
T THE R E BE

LIG H T
The
Almagest

The
Almagest
Vol. 2 - Ptolemy 0.7 Programmer’s Manual

ian L.
Chris-
 Lee,
eekie,

ker
(T.U.
Luis
ai-
tian

Inc.),
las

RL),
vens

Gre-
ndria

 fees,
y pur-
r in all

-

Primary Authors
Shuvra Bhattacharyya, Joseph T. Buck, Wan-Teh Chang, Michael J. Chen, Br

Evans, Edwin E. Goei, Soonhoi Ha, Paul Haskell, Chih-Tsung Huang, Wei-Jen Huang,
topher Hylands, Asawaree Kalavade, Alan Kamas, Allen Lao, Edward A. Lee, Seungjun
David G. Messerschmitt, Praveen Murthy, Thomas M. Parks, José Luis Pino, John R
Gilbert Sih, S. Sriram, Mary P. Stewart, Michael C. Williamson, Kennard White.

Other contributors
Raza Ahmed, Egbert Amicht (AT&T), Sunil Bhave, Anindo Banerjea, Neal Bec

(Comsat), Jeff Bier, Philip Bitar, Rachel Bowers, Andrea Cassotto, Gyorgy Csertan
Budapest), Stefan De Troch (IMEC), Rolando Diesta, Martha Fratt, Mike Grimwood,
Gutierrez, Eric Guntvedt, Erick Hamilton, Richard Han, David Harrison, Holly Heine, W
Hung Ho, John Hoch, Sangjin Hong, Steve How, Alireza Khazeni, Ed Knightly, Chris
Kratzer (U. Stuttgart), Ichiro Kuroda (NEC), Tom Lane (Structured Software Systems,
Phil Lapsley, Bilung Lee, Jonathan Lee, Wei-Yi Li, Yu Kee Lim, Brian Mountford, Doug
Niehaus (Univ. of Kansas), Maureen O’Reilly, Sunil Samel (IMEC), Chris Scannel (N
Sun-Inn Shih, Mario Jorge Silva, Rick Spickelmier, Eduardo N. Spring, Richard S. Ste
(NRL), Richard Tobias (White Eagle Systems Technology, Inc.), Alberto Vignani (Fiat),
gory Walter, Xavier Warzee (Thomson), Anders Wass, Jürgen Weiss (U. Stuttgart), A
Wong, Anthony Wong, Mei Xiao, Chris Yu (NRL).

Copyright © 1990-1997
The Regents of the University of California

All rights reserved.
Permission is hereby granted, without written agreement and without license or royalty
to use, copy, modify, and distribute the Ptolemy software and its documentation for an
pose, provided that the above copyright notice and the following two paragraphs appea
copies of the software and documentation.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMEN
TATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CAL-
IFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
Ptolemy Last updated: 8/27/97

gency
Alta

muni-

ology

marks

 at the
s. The
Current Sponsors
The Ptolemy project is supported by the Defense Advanced Research Projects A

(DARPA), the State of California MICRO program, and the following companies: The
Group of Cadence Design Systems, Hewlett Packard, Hitachi, Hughes Space and Com
cations, LG Electronics, NEC, Philips, and Rockwell.

The Ptolemy project is an ongoing research project focusing on design method
for heterogeneous systems. Additional support for further research is always welcome.

Trademarks
Sun Workstation, OpenWindows, SunOS, Sun-4, SPARC, and SPARCstation are trade
of Sun Microsystems, Inc.

Unix is a trademark of Unix Systems Laboratories, Inc.

PostScript is a trademark of Adobe Systems, Inc.

About the Cover
The image on the cover is from a fourteenth century Provençal illuminated manuscript
British Library. It depicts angels cranking a celestial gear that activates planetary sphere
earth is motionless, at the center.

1. Extending Ptolemy — Introduction .. 1-1
1.1 Introduction . 1-1
1.2 File Organization. 1-1

Ptolemy environment variables 1-2
Directory Structure 1-3

1.3 Creating Custom Versions of pigiRpc 1-6
Creating a pigiRpc that includes your own stars 1-7
Creating a pigiRpc with more extensive customizations 1-8

1.4 Using mkPtolemyTree to create a custom Ptolemy trees. 1-9
mkPtolemyTree example 1-9
How mkPtolemyTree works 1-10
Combining mkPtolemyTree and pigiExample 1-11
Known Bugs in mkPtolemyTree 1-11

1.5 Using csh aliases to create a Parallel Software Development Tree
1-12

Aliases for Managing Symbolic Links 1-12
Creating a Duplicate Hierarchy 1-16
Source Code Control 1-18

1.6 Building standalone programs that use Ptolemy libraries.1-19
Standalone example using StringList 1-19
Standalone example that tests a Scheduler 1-20

1.7 Debugging Ptolemy and Extensions Within Pigi 1-21
A quick scan of the stack 1-22
More extensive debugging 1-23
Debugging hints 1-25

2. Writing Stars for Simulation.. 2-1
2.1 Introduction . 2-1
2.2 Adding stars dynamically to Ptolemy 2-1
2.3 The Ptolemy preprocessor language (ptlang) 2-3

Invoking the preprocessor 2-4
An example 2-4
Items that appear in a defstar 2-5

2.4 Writing C++ code for stars . 2-16
The structure of a Ptolemy star 2-17
Reading inputs and writing outputs 2-17
States 2-21
Array States 2-23

2.5 Modifying PortHoles and States in Derived Classes. . . . 2-26
2.6 Programming examples . 2-26
2.7 Preventing Memory Leaks in C++ Code 2-28

3. Infrastructure for Star Writers... 3-1
Ptolemy Last updated: 10/17/97

3.1 Introduction . 3-1
3.2 Handling Errors . 3-1
3.3 I/O Classes . 3-2

Extended input and output stream classes 3-2
Generating graphs using the XGraph class 3-3
Classes for displaying animated bar graphs 3-4
Collecting statistics using the histogram classes 3-5

3.4 String Functions and Classes. 3-8
3.5 Iterators . 3-10
3.6 List Classes . 3-11
3.7 Hash Tables . 3-13
3.8 Sharing Data Structures Across Multiple Stars 3-14
3.9 Using Random Numbers . 3-17

4. Data Types... 4-1
4.1 Introduction . 4-1
4.2 Scalar Numeric Types . 4-1

The Complex data type 4-1
The fixed-point data type 4-3

4.3 Defining New Data Types . 4-14
Defining a new Message class 4-15
Use of the Envelope class 4-17
Use of the MessageParticle class 4-18
Use of messages in stars 4-18

4.4 The Matrix Data Types . 4-21
Design philosophy 4-21
The PtMatrix class 4-22
Public functions and operators for the PtMatrix class 4-22
Writing stars and programs using the PtMatrix class 4-29
Future extensions 4-33

4.5 The File and String Types . 4-34
The File type 4-34
The String type 4-35

4.6 Writing Stars That Manipulate Any Particle Type 4-35
4.7 Unsupported Types . 4-37

Sub-matrices 4-37
Image particles 4-40
“First-class” types 4-41

5. Using Tcl/Tk... 5-1
5.1 Introduction . 5-1
5.2 Writing Tcl/Tk scripts for the TclScript star. 5-1
5.3 Tcl utilities that are available to the programmer 5-6

5.4 Creating new stars derived from the TclScript star. 5-11
5.5 Selecting colors . 5-12
5.6 Writing Tcl stars for the DE domain 5-12

6. Using the Cluster Class for Scheduling................................. 6-1
6.1 Introduction . 6-1
6.2 Basic Classes . 6-1
6.3 Galaxies and their relationship to Adjacency Lists. 6-1
6.4 Clustering . 6-2

Initialization — Flattening the User Specified Graph 6-2
Absorb and Merge 6-3
Cluster Iterator Classes 6-5

6.5 Block state and name scoping hierarchy 6-6
6.6 Resetting an InterpUniverse back to actionList. 6-6
6.7 References. 6-7

7. SDF Domain .. 7-1
7.1 Introduction . 7-1
7.2 Setting SDF porthole parameters . 7-1

8. DDF Domain.. 8-1
8.1 Programming Stars in the DDF Domain 8-1

9. BDF Domain.. 9-1
9.1 Writing BDF Stars . 9-1

10. PN domain... 10-1
10.1 Introduction . 10-1
10.2 Processes . 10-3

The PtThread Class 10-3
The PosixThread Class 10-4
The DataFlowProcess Class 10-6

10.3 Communication Channels . 10-7
PtGate 10-8
PosixMonitor 10-8
CriticalSection 10-8
PtCondition 10-9
PosixCondition 10-9
PNGeodesic 10-10

10.4 Scheduling. 10-12
ThreadList 10-12
PNScheduler 10-12

10.5 Programming Stars in the PN Domain 10-15
Ptolemy Last updated: 10/17/97

11. SR domain ... 11-1
11.1 Introduction . 11-1
11.2 Communication in SR . 11-1
11.3 Strict and non-strict SR stars . 11-2

12. DE Domain... 12-1
12.1 Introduction . 12-1
12.2 Programming Stars in the DE Domain 12-1

Delay stars 12-2
Functional Stars 12-4
Sequencing directives 12-6
Simultaneous events 12-7
Non-deterministic loops 12-8
Source stars 12-8

12.3 Phase-Based Firing Mode . 12-11
12.4 Programming Examples . 12-13

Identity Matrix Star 12-13
Matrix Transpose 12-14

13. Code Generation ... 13-1
13.1 Introduction . 13-1
13.2 Writing Code Generation Stars . 13-2

Codeblocks 13-3
Codeblocks with arguments 13-5
In-line codeblocks 13-7
Macros 13-8
Assembly PortHoles 13-12
Attributes 13-12
Possibilities for effective buffering 13-14

13.3 Targets . 13-16
Single-processor target 13-16
Assembly code streams 13-17
Multiprocessor targets 13-18

13.4 Schedulers . 13-20
Single-processor schedulers 13-20
Multiprocessor schedulers 13-21

13.5 Interface Issues . 13-25

14. CGC Domain... 14-1
14.1 Introduction . 14-1
14.2 Code Generation Methods. 14-1
14.3 Buffer Embedding . 14-2
14.4 Command-line Settable States . 14-3

C code generated to support command line arguments 14-3
Changes in pigiRpc to support command line arguments 14-4
Limitations of command line arguments. 14-5

14.5 CGC Compile-time Speed . 14-6
14.6 BDF Stars. 14-6
14.7 Tcl/Tk Stars . 14-7
14.8 Tycho Target . 14-8

15. CG56 Domain.. 15-1
15.1 Introduction . 15-1
15.2 Data Types. 15-1
15.3 Attributes . 15-1
15.4 Code Streams . 15-2

Sim56Target Code Streams 15-2
S56XTarget/S56XTargetWH Code Streams 15-2

16. C50 Domain... 16-1
16.1 Introduction . 16-1
16.2 Data Types. 16-1
16.3 Attributes . 16-1
16.4 Code Streams . 16-1
16.5 Symbols . 16-2
16.6 Reserved Memory . 16-2

17. Creating New Domains .. 17-1
17.1 Introduction . 17-1
17.2 A closer look at the various classes 17-2

Target 17-3
Domain 17-3
Star 17-3
PortHole 17-3
Geodesic 17-5
Plasma 17-5
Particle 17-5
Scheduler 17-6

17.3 What happens when a Universe is run 17-6
17.4 Recipe for writing your own domain. 17-9

Introduction 17-9
Creating the files 17-9
Required classes and methods for a new domain 17-9
Building an object directory tree 17-10

INDEX .. I-1
Ptolemy Last updated: 10/17/97

o it is

These

 the
who is
imate,

efer
. We
e, as

s the

 also
xcellent
under-
source
Chapter 1. Extending Ptolemy —
Introduction

Authors: Christopher. Hylands
Edward. A. Lee
Thomas. M. Parks
José Luis Pino

1.1 Introduction
Ptolemy is extensible in the following ways:

 • New galaxies can be defined. We do not view this as a programming task, s
explained in theUser’s Manual rather than in thisProgrammer’s Manual.

 • Customized simulation builders and controllers can be created using theptcl inter-
preted command language. This language is also covered in theUser’s Manual.

 • New functional blocks (stars) can be added to any of the Ptolemy domains.
blocks can be dynamically linked with eitherptcl or pigi .

 • New code generation blocks can be added to existing synthesis domains.

 • Stars with customized user interfaces and displays can be created using Tcl/Tk.

 • New simulation and design-flow managers (called targets) can be created.

 • New domains with new models of computation can be created.

This volume explains how to accomplish most of the above. TheKernel Manual, volume 3 of
The Almagest, supplements this volume with a detailed listing of all of the classes in
Ptolemy kernel and in the code generation kernel. The sophisticated user, however,
extending the system in nontrivial ways, will wish to refer to the source code as the ult
most complete documentation.

In this volume, we assume familiarity with the terminology and use of Ptolemy. R
to theUser’s Manual, and particularly to the glossary contained therein for assistance
also assume you are familiar with the overall organization of the Ptolemy softwar
described inUser’s Manual.

1.2 File Organization
Ptolemy is distributed with source code. The complete distribution even include

compiler we use (g++, from the Free Software Foundation), Tcl/Tk, andvem, programs that
were developed quite independently, but upon which Ptolemy relies. The distribution
includes a large number of demonstrations. Perusing the demonstrations can be an e
way to get familiar with the system. Perusing the source code is by far the best way to
stand the system. At a minimum, anyone wishing to write new stars should read the

1-2 Extending Ptolemy — Introduction

 user
my

r
called
lled

 are

er pos-

 non-
e
ould

sh

lemy

f itself.

 do not
riables,

t is

ple, if
code for a few of the built-in stars.

1.2.1 Ptolemy environment variables

The root of the Ptolemy tree is often installed in the home directory of a fictitious
calledptolemy . If the installation follows this model at your site, you can find the Ptole
code with the following command:

cd ~ptolemy

If your installation does not have a user namedptolemy , then you must find out where you
system administrator has installed the system, and set an environment variable
PTOLEMY to point to this directory. For instance, if your system administrator insta
Ptolemy in/users/ptolemy , then you should issue the following command:

setenv PTOLEMY /users/ptolemy

$PTARCH is an environment variable representing the architecture on which you
running, and has one (or more) of the following values:sun4 , sol2 , or hppa , for Sun (under
Sun O/S), Sun (under Solaris 2.X), and HP machines respectively. There are a few oth
sible values for thePTARCH variable as well. There might be variations likesol2.cfront or
hppa.cfront to store an object tree created by the Cfront C++ compiler or some other
g++ compiler.The script$PTOLEMY/bin/ptarch will return the architecture of the machin
on which it is run. For example, if you were on a machine running SunOS4.1.3, you w
type:

setenv PTARCH sun4

You can use the following fragment in your.cshrc file to set $PTOLEMY and
$PTARCH. The $PTOLEMY/.cshrc file contains the fragment below and many other c
setup commands you may find useful.

setenv PTOLEMY /users/ptolemy
if (! $?$PTARCH) setenv $PTARCH ` $PTOLEMY/bin/ptarch`
set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

Note that if you are using a prebuilt Gnu compiler that you obtained from the Pto
project, you must either place the Ptolemy distribution at/users/ptolemy , or you must set
certain environment variables so that the Gnu compiler can find the necessary pieces o
Appendix A, Installation and Troubleshooting of the PtolemyUser’s Manual discusses these
variables in detail. The variables change with different releases of the compilers, so we
document them here. The User’s Manual also documents other useful environment va
such asLD_LIBRARY_PATH.

For every directory under thesrc tree (see figure 1-2) that contains source code tha
compiled, there is a corresponding directory under theobj.$PTARCH tree. Many developers
find it convenient to set the following aliases:

alias srcdir ‘cd `pwd | sed “s?/obj.$PTARCH/?/src/?”`’
alias objdir ‘cd `pwd | sed “s?/src/?/obj.$PTARCH/?”`’

For your convenience, these can be found in the file$PTOLEMY/.alias . They make it easy
to move between the source directory and the corresponding object directory. For exam
you are running on a Sun machine running Solaris 2.4,
U. C. Berkeley Department of EECS

The Almagest 1-3

e as

 is
-

efines
e sub-
xam-
ctory

her
% cd $PTOLEMY/src/kernel
% pwd
/users/ptolemy/src/kernel
% objdir
% pwd
/users/ptolemy/obj.sol2/kernel
% srcdir
% pwd
/users/ptolemy/src/kernel
%

1.2.2 Directory Structure

The documentation (usually) refers to the root of the Ptolemy directory tre
$PTOLEMY, but occasional slips will refer to~ptolemy . Below this root, you can find the
directories indicated in figure 1-1.

The src directory is key to much of what this volume deals with. Its structure
shown in figure 1-2. Within thesrc directory, thekernel directory is most important. It con
tains all the classes that define what Ptolemy is. Second most important is thedomains direc-
tory. Its structure is shown in figure 1-3. This directory contains one subdirectory that d
each of the domains distributed with Ptolemy. Each domain directory contains at least th
directories shown in figure 1-4. If you are going to write stars for the SDF domain, for e
ple, then you would be well advised to look at a few examples contained in the dire
$PTOLEMY/src/domains/sdf/stars .

The directory$PTOLEMY/mk contains master makefiles that are included by ot
makefiles (The makefileinclude directive does this for us).$PTOLEMY/mk/config-
$PTARCH.mk refers to the makefile for the architecture$PTARCH. For instance,$PTOLEMY/
mk/config-sun4.mk is the makefile that contains the sun4 specific details.

$PTOLEMY

src

demo

mk

bin.$PTARCH

root of the source tree (includes all demos and icons)

top-level demo directory, with pointers to demos in src

shared portions of makefiles

platform-dependent executables

documentation (including this manual) in PostScriptdoc

FIGURE 1-1: Structure of the home directory of the Ptolemy installation ($PTOLEMY).

bin platform-independent executables

lib.$PTARCH platform-dependent libraries used for linking

lib platform-independent run-time libraries

octtools a subset of the Berkeley octtools, used by pigi

obj.$PTARCH object files (this appears when Ptolemy is recompiled)

tcltk the installation of Tcl and Tk, used by pigi

tycho the Ptolemy syntax manager
Ptolemy Last updated: 10/10/97

1-4 Extending Ptolemy — Introduction

t

er

asier to

epen-

ec-

 Gnu
When you cd to$PTOLEMY and typemake, $PTOLEMY/makefile contains a rule that
checks to see if the directory$PTOLEMY/obj.$PTARCH exists. If this directory does no
exist, then make runs the commandcsh -f MAKEARCH , whereMAKEARCH is a C shell script
at $PTOLEMY/MAKEARCH. MAKEARCH will create the necessary subdirectories und
$PTOLEMY/obj.$PTARCH for $PTARCH if they do not exist.

We split up the sources and the object files into separate directories in part to make it e
support multiple architectures from one source tree. The directory$PTOLEMY/obj.$PTARCH
contains the platform-dependent object files for a particular architecture. The platform-d
dent binaries are installed into$PTOLEMY/bin.$PTARCH , and the libraries go into
$PTOLEMY/lib.$PTARCH . Octtools, Tcl/Tk, and Gnu tools have their own set of archit
ture-dependent directories.

The makefiles are all designed to be run from theobj.$PTARCH tree so that object
files from different platforms are kept separate (when you runmake in the $PTOLEMY top
level, the appropriateobj.$PTARCH tree is selected for you automatically).

We are able to have separate object and source directories by using themake pro-
gram’sVPATH facility. Briefly, VPATH is a way of tellingmake to look in another directory for
a file if that file is not present in the current directory. For more information, see the
make documentation, in Gnu Info format files in$PTOLEMY/gnu/common/info/make-* .

FIGURE 1-2: The structure of the $PTOLEMY/src directory

$PTOLEMY/src

ptcl

filters

pigiExample

domains

source for ptcl

outside filter design programs

example showing how to make a custom pigi

the code for each of the domains

source for Gnu tools (optional)gnu

compat header files for non-standard configurations

octtools source for our subset of the Berkeley oct tools

kernel the Ptolemy kernel

pigilib source for most of pigi

pigiRpc source for pigiRpc program

ptklib some Tcl/Tk code used in various places

tycho

pxgraph

source for the tysh Tycho/Ptolemy binary

source code for the pxgraph program

ptlang source for the preprocessor for star writing

thread code used by the PN domain

tcltk source for Tcl and Tk (optional)

utils external software package interface libraries

xv image viewer sources (optional)
U. C. Berkeley Department of EECS

The Almagest 1-5

d to

in

hat
There are three primary Ptolemy binaries:

pigiRpc The graphical version that usesvem as a front end.pigiRpc
contains an interface to Octtools, the package that is use
store facets. When you runpigi , you actually run a script
called$PTOLEMY/bin/pigiEnv.csh which callsvem which,
in turn, starts uppigiRpc .

ptcl A prompt version that contains most of the functionality
pigiRpc not including the Tk stars.ptcl does not contain an
interface to Octtools

tysh The Tycho shell version, which is similar topigiRpc , except
that tysh does not contain an interface to Octtools. Note t
Tycho can be run from a basicitkwish binary that contains no
Ptolemy functionality.

FIGURE 1-3: The structure of the $PTOLEMY/src/domains directory.

FIGURE 1-4: The structure of a typical domain directory within $PTOLEMY/src/domains.

$PTOLEMY/

sdf

cg

fsm

bdf

synchronous dataflow (statically scheduled)

the base class domain for all code generation

finite state machine domain

code generation for the Texas Instruments C50

Boolean-controlled dataflow domain

code generation for the Motorola DSP56000cg56

de the discrete-event domain

cgc code generation in C

pn the process network domain

hof higher-order function domain

synchronous reactive domain

vhdl code generation for behavioral modeling in VHDL

src/domains

ddf dynamically scheduled dataflow

demo demonstrations of the domain

stars stars distributed with the domain

kernel the core code defining the domain

icons the oct facets defining the icons used by pigi

targets (optional) additional targets used by the domain

$PTOLEMY/
src/domains/xxx

vhdlb

xxx

code generation for behavioral modeling in VHDL

demonstration of how to define a new domain

sr

c50
Ptolemy Last updated: 10/10/97

1-6 Extending Ptolemy — Introduction

ferent

est

ins

ins

-
-

 galax-
itional
Stars
 add
s well,
ecute

es.

ma-

er more

 even
. This
rating
ere
uture
work
archy.

ld be

ethod
Each of the three binaries above has three different versions that contain dif
functionality. Below we only list the different version ofpigiRpc , butptcl andtysh have
similar versions.

pigiRpc This binary contains all of the domains, so it is the larg
binary.

pigiRpc.ptrim This binary contains SDF, DE, BDF, DDF and CGC doma
only.

pigiRpc.ptiny This binary contains SDF (no image stars) and DE doma
only.

Each of the above versions can also be built as a.debug version that contains debug
ging information. The file$PTOLEMY/mk/ptbin.mk contains rules to build the above bina
ries in combination with debugging and other features. The file$PTOLEMY/mk/stars.mk
contains rules that indicate dependencies between domains and other features.

1.3 Creating Custom Versions of pigiRpc
Ptolemy is an extensible system. Extensions can take the form of universes and

ies, which are viewed by Ptolemy as applications, but they can also take the form of add
code linked to the Ptolemy kernel. New stars can be dynamically linked (see “Writing
for Simulation” on page 2-1). Other additional code has to be linked in statically. If you
many of your own stars to the system, you will want these stars to be statically linked a
so that you do not have to wait for the dynamic linking to complete every time you ex
your applications.

The Ptolemy kernel andvem (the schematic editor) run in separate Unix process
The Ptolemy kernel process is called “pigiRpc ”, while thevem process is called “vem”. You
can create your own version ofpigiRpc that contains your stars and other extensions per
nently linked in.

There are at least three ways to build your ownpigiRpc , depending on the kind of
extensions you are making. The first way usessrc/pigiExample , and it is intended for
users who just need to add new stars. The second and third ways use themkPtolemyTree
script and csh aliases and are for users that are creating new domains or making oth
extensive changes.

If you want to extend Ptolemy by modifying or adding a new scheduler, target, or
an entire domain, it is recommended that you create a duplicate directory hierarchy
allows you to experiment with and fully test any changes separately, rather than incorpo
them into the “official” version of Ptolemy. This way, your experimentation will not interf
with other Ptolemy users at your site, and your changes will not be overwritten by f
installations of Ptolemy releases. It also means that all of the existing makefiles will
without modification because all of the paths specified are relative to the root of the hier

The most direct way to do this is to copy the entire Ptolemy hierarchy. This cou
done with a command such as:

cp -r $PTOLEMY ~/ptolemy

which would create a copy of the hierarchy in your home directory. Because this m
U. C. Berkeley Department of EECS

The Almagest 1-7

elopers

ith

u can
t

 com-

:

ou
ge 1-9

-

requires excessive disk space and makes cooperative development difficult, many dev
prefer to use symbolic links when creating a duplicate hierarchy.mkPtolemyTree and the
csh aliases can help you setup these symbolic links.

1.3.1 Creating a pigiRpc that includes your own stars

For those who just want to statically link in their own stars with minimal hacking w
makefiles, an example showing how to do this is provided in$PTOLEMY/src/pigiExam-
ple.

In the example below, we assume that$PTOLEMY and$PTARCH are set and that you
have write permission to the Ptolemy source tree. If you don’t have write permission, yo
set up a parallel tree with the Unixln -s command. If, for example, the Ptolemy tree was a
/users/ptolemy , but you wanted to build under~/pt , you could do the following to create
the directory and create symbolic links for the dot files, like.cshrc , and create symbolic
links for the other files and directories in the distribution:

mkdir ~/pt
cd ~/pt
ln -s /users/ptolemy/* .
ln -s /users/ptolemy/.??* .
setenv PTOLEMY ~/pt
setenv PTARCH ‘$PTOLEMY/bin/ptarch‘
rm obj.$PTARCH src bin.$PTARCH
mkdir -p src src/pigiExample bin.$PTARCH
cd bin.$PTARCH; ln -s /users/ptolemy/bin.$PTARCH
cd ../src; ln -s /users/ptolemy/src/* .
cd pigiExample; cp /users/ptolemy/src/pigiExample/* .

You also need to be sure that you have your environment set up properly for the
piler that you are using.

Continuing with our example of how to build apigiRpc that includes your own stars

1. Build a basicpigiRpc . PigiRpc depends on.o files under $PTOLEMY/
obj.$PTARCH , so you must do a basic build. To build all the.o files, type:

cd $PTOLEMY; make install

The complete build process can take upwards of three hours. If you use anover-
ride.mk file, you can reduce the build time by building only the functionality y
need. See “Using mkPtolemyTree to create a custom Ptolemy trees” on pa
for more information.

2. Edit $PTOLEMY/src/pigiExample/make.template . Add your stars to
LOCAL_OBJS andPL_SRCS.

3. cd to $PTOLEMY/obj.$PTARCH/pigiExample and type:

make depend

to update themakefile from themake.template . You will see messages some
thing like:
Ptolemy Last updated: 10/10/97

1-8 Extending Ptolemy — Introduction

ly

lt be

ard

l-

, we
makefile remade -- you must rerun make.
exit 1
make: *** [makefile] Error 1

This is normal and you may safely ignore the error message.

4. While still in$PTOLEMY/obj.$PTARCH/pigiExample , type

make

This will create a version of thepigiRpc executable with your own stars statical
linked in. If later you add a new star, you should modify the symbolsOBJS and
PLSRCS in make.template to include it, and repeat the above procedure.

5. If you built yourpigiRpc with SDFMyStar.o , you can test yourpigiRpc by
starting up with:

pigi -rpc $PTOLEMY/obj.$PTARCH/pigiExample/pigiRpc $PTOLEMY/
src/pigiExample/init.pal

and then run the ‘wave’ universe. If you want to have the binary you just bui
the default binary for yourself, you can set yourPIGIRPC environment variable to
the name of the binary you just built:

setenv PIGIRPC $PTOLEMY/obj.$PTARCH/pigiExample/pigiRpc

Next time you startpigi , your new executable will be used instead of the stand
one. To revert to using the installedpigiRpc , just type

unsetenv PIGIRPC

6. If you want yourpigiRpc to be the defaultpigiRpc , you can install it in
$PTOLEMY/bin.$PTARCH , but this will wipe out whateverpigiRpc is in that
directory

With the same makefile, you can make a version of thepigiRpc program that has
debug symbols. Just type:

make pigiRpc.debug

To use this, assuming the Gnu debuggergdb is in your path, specify the executable as fo
lows:

setenv PIGIRPC \
$PTOLEMY/obj.$PTARCH/pigiExample/pigiRpc.debug

assuming your executable is in$PTOLEMY/obj.$PTARCH/pigiExample/ . Then startpigi
as follows:

pigi -debug

To revert to using the installedpigiRpc , just type

unsetenv PIGIRPC

1.3.2 Creating a pigiRpc with more extensive customizations

If you are extending Ptolemy in nontrivial ways, such as writing a new domain
U. C. Berkeley Department of EECS

The Almagest 1-9

bolic
ew
ories,
tolemy
 your

ur
ory
u will

 sure
pt to
u if

m that

s that

are

lemy
p the

tree,

 in
suggest that you create your own copy of the Ptolemy directory tree. You may use sym
links to the “official” directories if you do not need to modify or work on them. Your n
code should be placed in the parallel directory with the other similar Ptolemy subdirect
using the same directory structure. This way you can reuse the makefiles of similar P
directories with minimal modifications. After you create your own Ptolemy tree and add
new directories and files, certain Ptolemy makefiles, typically$PTOLEMY/mk/ptbin.mk and
$PTOLEMY/mk/stars.mk , need to be modified to include your own code. Building yo
ownpigiRpc , ptcl or tysh this way requires extensive knowledge of the Ptolemy direct
tree structure and makefiles, but if you are doing serious development in Ptolemy, yo
need to know this anyway.

Warning: If you have write permission in the directory where Ptolemy is installed, make
to modify the place where “make install” puts the completed executable, or it will attem
overwrite thepigiRpc in the Ptolemy installation, and other users may be upset with yo
you succeed in doing that. (If you are using the makefile from$PTOLEMY/src/pigiExam-
ple , you do not need to worry about this because “make install” has been removed fro
makefile.) The simplest thing to do is to replace the line in themakefile :

install: makefile $(DESTBIN)

with:

install: makefile pigiRpc

This will leave thepigiRpc in whatever directory you make it even if you type:

make install

1.4 Using mkPtolemyTree to create a custom Ptolemy trees
In Ptolemy 0.6 and later, there are two methods of building custom Ptolemy tree

have a user selected set of domains: csh aliases and themkPtolemyTree script. This section
discusses themkPtolemyTree script, see “Using csh aliases to create a Parallel Softw
Development Tree” on page 1-12 for an alternative method of creating a parallel tree.

In Ptolemy 0.6 and later, themkPtolemyTree script and a user suppliedover-
ride.mk file to create an entire custom object tree. The tree will have copies of all Pto
directories on which the customized installation depends. The script will also set u
override.mk files needed to build custompigiRpc , tysh andptcl binaries. SincemkP-
tolemyTree runs very fast, you may avoid having to recompile the entire Ptolemy
which can take 3 hours on a fast workstation.

1.4.1 mkPtolemyTree example

ThemkPtolemytree command usage is:

mkPtolemyTree override.mk_file r oot_pathname_of_new_tree

For example, say that you wanted to build a tree that only has the VHDL domain
~/mypt .

1. One would create a file called~/override.mk that contains:

VHDL=1
DEFAULT_DOMAIN=VHDL
Ptolemy Last updated: 10/10/97

1-10 Extending Ptolemy — Introduction

at

my

ed in
e sys-

s,

 the

ng
VERSION_DESC="VHDL only"

The file $PTOLEMY/mk/ptbin.mk contains a list of the makefile variables th
can be set to bring in the various domains.

2. Set$PTOLEMY to point to the Ptolemy distribution, in this example, the Ptole
distribution is at /users/ptolemy:

setenv PTOLEMY /users/ptolemy

3. Set$PTARCH to the appropriate value:

setenv PTARCH ‘$PTOLEMY/bin/ptarch‘

4. Set the path properly:

set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

5. Execute themkPtolemyTree command so that theoverride.mk file is used to
create a custom tree in the~/mypt directory.

mkPtolemyTree ~/override.mk ~/mypt

In general, you will want to define the variablesTK andHOF. SettingTK indicates that
you want to include Tcl/Tk extensions to the domains. SettingHOF means that you want to
include the higher-order functions domain. The higher-order functions domain is us
many demonstrations to configure stars with multiple portholes and to specify scalabl
tems. So, adding these make variables in the sameoverride.mk file would make it look like
the following:

HOF=1
TK=1
VHDL=1
DEFAULT_DOMAIN=VHDL
VERSION_DESC="VHDL only"

1.4.2 How mkPtolemyTree works

To accumulate a list of the directories necessary to build a custom tree,$PTOLEMY/
src/stars.mk contains a makefile variable namedCUSTOM_DIRS. In stars.mk , each fea-
ture, such asVHDL adds directories toCUSTOM_DIRS. Also a feature can require sub-feature
and the sub-features can add directories toCUSTOM_DIRS. For example,VHDL requiresCG,
andCG adds more directories toCUSTOM_DIRS.

When you run$PTOLEMY/bin/mkPtolemyTree , the following events occur:

1. From theoverride.mk file that the user specifies, the script builds a tree with
directories as specified the value of theCUSTOM_DIRS makefile variable.

2. Next, the files in the$PTOLEMY tree are copied over if the directory exists usi
tar (to save modification times).

3. For each directory specified byCUSTOM_DIRS, we create symbolic links to all the
directories that we have not expanded from the$PTOLEMY tree themake.tem-
plate andmakefile symbolic links in the obj directories are set correctly.
U. C. Berkeley Department of EECS

The Almagest 1-11

g.

a full-

bolic

l, it is
 Data-
e

lity,
ion of

ou are
hould

his
visible
g-

rs” on

-
nment
4. The override.mk file is copied into the new tree asNEW_ROOT/mk/over-
ride.mk , whereNEW_ROOT is the root path name of the tree we are constructin

5. override.mk files are constructed that referenceNEW_ROOT/mk/override.mk
specific totysh , ptcl andpigiRpc .

6. make install is run inNEW_ROOT/obj.$PTARCH/ which creates the hard link
for the libraries inNEW_ROOT/lib.$PTARCH and builds the customtysh , ptcl ,
andpigiRpc .

This new tree has all the symbolic links and directories necessary to act as
fledged Ptolemy tree. You should be able to set yourPTOLEMY environment variable to this
new tree andpigi will run your custompigiRpc binary.

Currently the Tcl libraries and Tycho are not expanded but are accessible via sym
links. To have the utility expand the$PTOLEMY/lib/tcl directory, add the following line to
your override.mk file:

CUSTOM_DIRS += $(CROOT)/lib/tcl

To expand Tycho, consult the Tycho documentation and use thetylndir script.

There is no documentation of the variables to pull in each domain yet. In genera
the standard abbreviation for the domain in capital letter. For example, the Synchronous
flow (SDF) domain isSDF, the Discrete-Event (DE) domain is DE, and so forth. Some of th
domains are split up, the entire domain can be brought in by definingFOOFULL (e.g.,SDF-
FULL or CGCFULL). When defined, they include all of the SDF and CGC functiona
respectively, whereas SDF and CGC include only the basic functionality. The basic vers
the SDF domain does not include the image, matrix, Matlab, DSP, and Tcl/Tk stars. If y
attempting to build a pigi that includes the Process Network (PN) domain, then you s
add the following to youroverride.mk file.

INCLUDE_PN_DOMAIN = yes

For a listing of the possible make variables, refer to the$PTOLEMY/mk/ptbin.mk and
$PTOLEMY/mk/stars.mk files.

1.4.3 Combining mkPtolemyTree and pigiExample

It is possible to use theoverride.mk file used bymkPtolemyTree in thepigiEx-
ample directory to create a custompigiRpc with user added stars. One reason for doing t
would be to that on some platforms, stars that have been incrementally linked are not
from the debugger. Creating a custompigiRpc with the star as a built in star can aid debu
ging.

After running mkPtolemyTree , edit $PTOLEMY/src/pigiExample/make.tem-
plate and add your stars as described in “Creating a pigiRpc that includes your own sta
page 1-7.

1.4.4 Known Bugs in mkPtolemyTree

 • To build a customized pigiRpc, you set makefile variables likeSDF or CG56 to 1 in
your override.mk . If you happen to have an environment variable calledSDF or
CG56, this procedure fails because the rule instars.mk just checks whether the vari
able is defined or not, not what value it has. So, ensure that you have no enviro
Ptolemy Last updated: 10/10/97

1-12 Extending Ptolemy — Introduction

ust.

ly be

oes

ded
ule

evelop-

rar-

 the file

s to
variables that clash with the variables used inoverride.mk .

Suggested fix: Instars.mk , not only check whether a variable likeSDF is defined,
but also check its value.

Hopefully, the value is different from the other definition and the code is more rob

 • If mkPtolemyTree gives you the following message:

Making a customized Ptolemy development tree using the version of
Ptolemy installed in the directory /users/ptolemy
The new customized Ptolemy tree will go in /users/cxh/mypt
mkdir: illegal option -- n
mkdir: usage: mkdir [-m mode] [-p] dirname ...

The try setting your path so that/usr/ucb is before/usr/bin . The problem here is
that in Ptolemy 0.7, themkPtolemyTree script uses the-n option withecho , which
is not portable.

 • mkPtolemyTree cannot add new directories to an already existing tree, it can on
used to create a brand new parallel tree.

 • MAKEARCH may fail when used with a tree that was created withmkPtolemyTree ,
sinceMAKEARCH may follow symbolic links into the master tree, where the user d
not have write permission.

 • mkPtolemyTree requires that the master Ptolemy tree have a fully expan
obj.$PTARCH directory. Otherwise you will get an error about ‘no sources r
found’.

1.5 Using csh aliases to create a Parallel Software Development
Tree

Below is a set of C shell aliases that can be used to create a parallel software d
ment tree.

1.5.1 Aliases for Managing Symbolic Links

Below are severalcsh aliases that can be helpful when managing a duplicate hie
chy that is implemented with symbolic links:

alias pt ’echo $cwd | sed s:${HOME}/Ptolemy:${PTOLEMY}:’
alias ptl ’ln -s `pt`/* .’
alias sw ’mv \!^ swap$$; mv .\!^ \!^; mv swap$$.\!^’
alias exp ’mkdir .\!^; sw \!^; cd \!^; ptl’
alias rml ’\rm -f `\ls -F \!* | sed -n s/@\$//p`’
alias mkl ’rml make*; ln -s `vpath`/make* .’

These are documented below in detail. For convenience, these aliases can be found in
$PTOLEMY/.alias .

The pt Alias

The pt alias returns the name of the “official” Ptolemy directory that correspond
U. C. Berkeley Department of EECS

The Almagest 1-13

at you
f
u
u

 all
he

e

d with

een
sions

s it
 to
the current directory, which is presumably in your personal hierarchy. This assumes th
have the environment variable$PTOLEMY set to the root directory of the “official” version o
Ptolemy, and that your private version is in~/Ptolemy . If this is not the case, then yo
should make suitable modifications to definition of thept alias. This alias is useful when yo
want to make a symbolic link to or otherwise access the “official” version of a file, as in

% cd ~/Ptolemy/src/domains/sdf/kernel
% ln -s `pt`/SCCS .

This will create a symbolic link in your directory~/Ptolemy/src/domains/sdf/kernel
to the directory$PTOLEMY/src/domains/sdf/kernel/SCCS . (For information on source
code control, see below).

The ptl Alias

Theptl alias uses thept alias to create, in the current directory, symbolic links to
the files in the corresponding “official” directory. This is useful for quickly filling in t
branches of a new directory in your private hierarchy.

% pwd
/users/me/Ptolemy/src/domains/ddf
% mkdir stars
% cd stars
% ptl
% ls -F
DDFCase.cc@ DDFLastOfN.cc@ DDFThresh.cc@
DDFCase.h@ DDFLastOfN.h@ DDFThresh.h@
DDFCase.pl@ DDFLastOfN.pl@ DDFThresh.pl@
DDFDownCounter.cc@ DDFRepeater.cc@ SCCS@
DDFDownCounter.h@ DDFRepeater.h@ TAGS@
DDFDownCounter.pl@ DDFRepeater.pl@ ddfstars.c@
DDFEndCase.cc@ DDFSelf.cc@ ddfstars.mk@
DDFEndCase.h@ DDFSelf.h@ make.template@
DDFEndCase.pl@ DDFSelf.pl@ makefile@
%

This creates a directory namedstars and fills it with symbolic links to the contents of th
corresponding directory in the “official” Ptolemy tree. Using the-F option of thels com-
mand, makes it easy to see which files in a directory are symbolic links (they are marke
a trailing “@” sign).

The sw Alias

When experimenting with Ptolemy, you may want to switch back and forth betw
using the official version of some directory and your own version. You can keep two ver
of the same directory (or a file). Thesw alias swaps a file or directoryfilename with another
file or directory.filename . The period at the beginning of the second file name make
invisible unless you use the-a option of thels command. For example, suppose you wish
experiment with making a change to just one file,DDFRepeater.pl , in the directory above,
to fix a bug (and then send the bug fix back to the Ptolemy group):
Ptolemy Last updated: 10/10/97

1-14 Extending Ptolemy — Introduction

red

rather

ype:

lemy
% pwd
/users/me/Ptolemy/src/domains/ddf/stars
% sw DDFRepeater.pl
mv: cannot access .DDFRepeater.pl
% ls -a
./ DDFEndCase.h@ DDFThresh.cc@
../ DDFEndCase.pl@ DDFThresh.h@
.DDFRepeater.pl@ DDFLastOfN.cc@ DDFThresh.pl@
DDFCase.cc@ DDFLastOfN.h@ SCCS@
DDFCase.h@ DDFLastOfN.pl@ TAGS@
DDFCase.pl@ DDFRepeater.cc@ ddfstars.c@
DDFDownCounter.cc@ DDFRepeater.h@ ddfstars.mk@
DDFDownCounter.h@ DDFSelf.cc@ make.template@
DDFDownCounter.pl@ DDFSelf.h@ makefile@
DDFEndCase.cc@ DDFSelf.pl@

Notice thatDDFRepeater.pl was moved to.DDFRepeater.pl . You can now create your
own version ofDDFRepeater.pl . To later reinstate the official version (e.g., you discove
that what you thought was a bug was in fact a feature),

% sw DDFRepeater.pl

The exp Alias

When starting your experimentation, the job of creating the parallel tree can be
tedious. Theexp aliases combines the functions of theptl andsw aliases into one, making
the common task of expanding a branch in the directory hierarchy easy. Suppose you t

% exp stars

This is equivalent to the following sequence of commands:

% mkdir .stars
% sw stars
% cd stars
% ptl

Note that the command leaves you in the new directory ready to issue anotherexp command.
For example, to create a duplicate of the directory$PTOLEMY/src/domains/ddf/stars ,
creating all subdirectories as you go, and linking to all the appropriate files in the Pto
tree,

% cd ~/Ptolemy
% exp src
% exp domains
% exp ddf
% exp stars
U. C. Berkeley Department of EECS

The Almagest 1-15

nt, it

. You

 you

se the
The rml Alias

Therml alias removes symbolic links in the current directory. Without an argume
removes all the visible symbolic links. Any arguments are passed on to thels command. So,
to removeall symbolic links, including those that are invisible, use the-a option:

% rml -a

You can also give file names as arguments to remove just some of the symbolic links:

% rml *.o

The mkl alias

Suppose you wish to compile your change to theDDFRepeater.pl file, as above.
You will need to make an object tree. Assume you are on a Sun Solaris 2.x platform
have created a parallel tree already in~/Ptolemy/src (i.e. ~Ptolemy/src/domains/
ddf/stars exists). Create the corresponding object tree:

% cd ~Ptolemy
% exp obj.sol2
% exp domains
% exp ddf
% exp stars
% pwd
/users/me/Ptolemy/obj.sol2/domains/ddf/stars

The directory in which you are now located contains symbolic links to the.o files and make-
files in the official Ptolemy tree. If you runmake here, your replacementDDFRepeater.pl
star will be compiled in place of the official one. If you run “make install ”, then a library
will be created and installed in the directory~/Ptolemy/lib.sol2 , assuming this directory
exists.

Runningmake as above uses the makefiles in the official Ptolemy tree, because
have symbolic links to them. Suppose you wish to modify themake.template file in
~/Ptolemy/src/domains/ddf/stars . In this case, you should run themkl alias to
replace themakefile symbolic links. If you have followed the above steps, try this:

% pwd
/users/me/Ptolemy/obj.sol2/domains/ddf/stars
% ls -F
DDFCase.o@ DDFRepeater.o@ libddfstars.a@
DDFDownCounter.o@ DDFSelf.o@ make.template@
DDFEndCase.o@ DDFThresh.o@ makefile@
DDFLastOfN.o@ ddfstars.o@

(This assumes that the “official” Ptolemy has been rebuilt after being installed, otherwi
.o and .a files will be missing). Expand the makefile symbolic links:

% ls -l make*
Ptolemy Last updated: 10/10/97

1-16 Extending Ptolemy — Introduction

your

own
ban-
lease

se you
ed a
ffect-
 pri-

“offi-

te
lrwxrwxrwx 1 eal 56 Jul 14 11:30 make.template -> /users/
ptolemy/obj.sol2/domains/ddf/stars/make.template
lrwxrwxrwx 1 eal 51 Jul 14 11:30 makefile -> /users/
ptolemy/obj.sol2/domains/ddf/stars/makefile

Note that they point to the “official” makefiles. To make them point to the versions in
own tree,

% mkl
% ls -l make*
lrwxrwxrwx 1 eal 47 Jul 14 11:31 make.template -> ../../
../../src/domains/ddf/stars/make.template
lrwxrwxrwx 1 eal 42 Jul 14 11:31 makefile -> ../../../../
src/domains/ddf/stars/makefile

Now you can modify themake.template file in your own tree as you need.

Warning

Note that modifying Ptolemy files is risky. You will have essentially created your
version of Ptolemy. You will not be able to install future releases of Ptolemy without a
doning your version. However, if you have modifications that you believe are valuable, p
communicate them to the Ptolemy group atptolemy@eecs.berkeley.edu . The Ptolemy
group welcomes suggestions for changes.

1.5.2 Creating a Duplicate Hierarchy

Let’s look at a complete example to see how these aliases can be used. Suppo
want to modify an existing file that is part of the kernel for the SDF domain. You will ne
private copy of the file that is writable. This allows you to make your changes without a
ing the “official” version of Ptolemy. In order to test your change, you will have to build a
vate version of the interpreterptcl or the graphical interfacepigiRpc .

First, create the root directory for your duplicate hierarchy.

% mkdir ~/Ptolemy

Then go into that directory and create symbolic links to all files in the corresponding
cial” Ptolemy directory.

% cd ~/Ptolemy
% ptl

You will want to have a private version of thelib.$PTARCH directory so that you won’t
modify the “official” version of any library or object files.

% cd ~/Ptolemy
% exp lib.$PTARCH

(This assumes your$PTARCH environment variable is set). You will also want a priva
U. C. Berkeley Department of EECS

The Almagest 1-17

wn to

s

aths

ect
t to

replace

l

cial”
obj.$PTARCH directory for the same reason. In this example, the tree is expanded do
thesdf directory:

% cd ~/Ptolemy
% exp obj.$PTARCH
% exp domains
% exp sdf

If you are modifying code in thesdf/kernel directory, then you will want to expand it a
well. Once expanded, you will want remove themake.template and makefile links
(which point to the “official” Ptolemy files) and replace them with links that use relative p
to refer to your private versions of these files (in case you make changes to them):

% exp kernel
% mkl

If you make changes in thesdf/kernel directory, then there is a good chance that obj
files insdf/dsp and other directories will also have to be recompiled. Thus, you will wan
expand these directories (and any subdirectories below them) as well. Remember to
themake.template andmakefile links as in thesdf/kernel directory.

% exp dsp
% mkl
% exp stars
% mkl

Because of the way symbolic links work, it is important to remove the links for the.o and.a
files in the directories you have just created. You can do this by issuing amake realclean
command in theobj.$PTARCH/domains/sdf directory. This will recursively clean out al
the subdirectories. You could also do this manually by issuing arml *.o *.a command in
each directory.

You will also need a private version of thesrc directory.

% cd ~/Ptolemy
% exp src
% exp domains
% exp sdf
% exp kernel

At any point after this, it is possible to switch back and forth between private and “offi
versions of these directories with thesw alias. In fact, you just used it (as part of theexp alias)
to switch to the private versions of theobj.$PTARCH , lib.$PTARCH , andsrc directories.

To compile your version of the sdf kernel directory,

% cd ~/Ptolemy/obj.$PTARCH/domains/sdf/kernel
% make install

To make a version pigiRpc (or better yet, ptinyRpc) with your changes,
Ptolemy Last updated: 10/10/97

1-18 Extending Ptolemy — Introduction

e con-
called
 own
ssume

are
put this
 version

n num-
it it).
om the

estor-
% cd ~/Ptolemy/obj.$PTARCH
% exp pigiRpc
% mkl
% make ptinyRpc

1.5.3 Source Code Control

At the present time, at Berkeley, the Ptolemy group uses SCCS for source cod
trol. This means that each directory with source code in it contains a subdirectory
SCCS. That subdirectory is not distributed with Ptolemy, but if you are starting your
development expanding on Ptolemy, you may wish to use a similar mechanism. We a
here that you are familiar with SCCS, which is a standard Unix facility.

Recall the command above:

% pwd
/users/me/Ptolemy/src/domains/ddf/stars
% sw DDFRepeater.pl
mv: cannot access .DDFRepeater.pl
% ls -a
./ DDFEndCase.h@ DDFThresh.cc@
../ DDFEndCase.pl@ DDFThresh.h@
.DDFRepeater.pl@ DDFLastOfN.cc@ DDFThresh.pl@
DDFCase.cc@ DDFLastOfN.h@ SCCS@
DDFCase.h@ DDFLastOfN.pl@ TAGS@
DDFCase.pl@ DDFRepeater.cc@ ddfstars.c@
DDFDownCounter.cc@ DDFRepeater.h@ ddfstars.mk@
DDFDownCounter.h@ DDFSelf.cc@ make.template@
DDFDownCounter.pl@ DDFSelf.h@ makefile@
DDFEndCase.cc@ DDFSelf.pl@

Note the symbolic link to the “official” SCCS directory. This will not be present if you
using the distributed Ptolemy and have not created it. Assume, however, that you have
directory under SCCS control (or someone else has). Then you can create an editable
of theDDFRepeater.pl star with the command:

% sccs edit DDFRepeater.pl
1.24
new delta 1.25
76 lines

The sccs utility tells you the latest version number (1.24) and assigns you a new versio
ber (1.25). You can now edit the file safely (nobody else will be allowed by sccs to ed
When you are done and have fully tested your changes (and obtained clearance fr
Ptolemy group if necessary), you can check the file back in:

% sccs delget DDFRepeater.pl
comments?

You should enter an explanation of your changes. If you wish to nullify your changes, r
U. C. Berkeley Department of EECS

The Almagest 1-19

 of the

ons to

in
-

.

tolemy
 make
ent
ing the official version,

% sccs unedit DDFRepeater.pl

and if you wish to create a new file and put it under SCCS control,

% sccs create -fi NewFileName

1.6 Building standalone programs that use Ptolemy libraries.
Sometimes it is necessary to create small standalone programs that use part

Ptolemy libraries.

Examples of this are the desire to use Ptolemy kernel classes such asStringList or
the need to isolate an obscure bug or memory leak. The$PTOLEMY/mk/standalone.mk file
provides the make definitions to make this possible. This file provides make rule definiti
build various binaries some using the Pure Sofware Inc.1 utilities.

The usage for this makefile is:

make -f $PTOLEMY/mk/standalone.mk stars.mk_variable_defs file-
name. suffix

Where stars.mk_variable_defs is zero or more makefile variables used
$PTOLEMY/mk/stars.mk , such asSDF=1. filename is the base name of the file to be com
piled, and the basename of the output file. andsuffix is one of the forms listed in table 1-1

TABLE 1-1: Table of filename suffixes and binary types.

It is possible to use these makefiles to create binaries that do not have any P
code. A reason why you might want to do this is to take advantage of the Pure Software
definitions instandalone.mk . To specify no Ptolemy libraries, use the make argum
NOPTOLEMY=1.

1.6.1 Standalone example using StringList

For example, say you want to use theStringList class in a standalone program

1. Rational (http://www.rational.com) sells tools such as:
Purify, which can be used to find memory leaks and out of bounds memory accesses.
Quantify, which can be used to profile performance.
Purecov, which can be used to provide code coverage information.

Suffix Binary Type

.bin Standard binary

.debug Binary with debug symbols

.purify Binary with Purify and debug
symbols

.quantify Binary with Quantify linked in

.purecov Binary with Pure Coverage linked
in
Ptolemy Last updated: 10/10/97

1-20 Extending Ptolemy — Introduction

omain,
:

ch to

eduler
namedbar.cc :
#include
#include "StringList.h"
main() {

StringList testing = "This is a test\n";
cout << testing;

}

To build it you would type:

make -f $PTOLEMY/mk/standalone.mk bar.bin

If you wanted to make a new standalone program that also uses part of the CG d
just define the domain make variables (as used in stars.mk) on the make command line

make -f $PTOLEMY/mk/standalone.mk CG=1 bar.bin

If you are going to do this often, it may be useful to create a new directory in whi
test this program. In this directory, execute the commands:

ln -s $PTOLEMY/mk/standalone.mk makefile
ln -s $PTOLEMY/mk/standalone.mk make.template

By having these symbolic links, you will not have to supply the make argument
-f $PTOLEMY/mk/standalone.mk as before.

1.6.2 Standalone example that tests a Scheduler

Here is an example of a minimal file that can be used to call the setup in a Sch
for instance. If the filetestAcyLoopSched.cc contains:

#include <iostream.h>
#include "Galaxy.h"
#include "SDFStar.h"
#include "AcyCluster.h"
#include "AcyLoopScheduler.h"
#include "SDFPortHole.h"

main() {
// First create a simple galaxy and some stars.
SDFStar star[3];
Galaxy topGalaxy;
topGalaxy.setDomain("SDF");
topGalaxy.setName("topGalaxy");
topGalaxy.addBlock(star[0],"star0");
topGalaxy.addBlock(star[1],"star1");
topGalaxy.addBlock(star[2],"star2");

// Add ports to stars.
OutSDFPort p0,p1;
InSDFPort p2,p3;

// initialize the ports
p0.setPort("output1",&star[0],FLOAT,2);
star[0].addPort(p0);
p1.setPort("output2",&star[0],FLOAT,3);
star[0].addPort(p1);
p2.setPort("input",&star[1],FLOAT,3);
U. C. Berkeley Department of EECS

The Almagest 1-21

efec-
ected
ere the

 that

e

l. In
p3.setPort("input",&star[2],FLOAT,2);
star[1].addPort(p2);
star[2].addPort(p3);

// Connect ‘em up. The graph is
// star[1] (3) <--- (2) star[0] (3) ---> (2) star[2]
p0.connect(p2,0);
p1.connect(p3,0);

// Scheduling
AcyLoopScheduler sched;
sched.setGalaxy(topGalaxy);
cout << "No problem till now. Calling sched.setup()...\n";
sched.setup();
int i;
for (i = 0 ; i < 3 ; i++) {

cout << star[i].fullName() << "\n";
cout << "Repetitions = " << star[i].reps() << "\n";

}
StringList sch = sched.displaySchedule();
cout << sch;

}

The command to compile this and produce a standalone binary would be:
make -f $PTOLEMY/mk/standalone.mk OPTIMIZER= SDF=1 \

USE_SHARED_LIBS=yes testAcyLoopSched.debug

1.7 Debugging Ptolemy and Extensions Within Pigi
The extensibility of Ptolemy can introduce problems. Code that you add may be d

tive (few people write perfect code every time), or may interact with Ptolemy in unexp
ways. These problems most frequently manifest themselves as a Ptolemy crash, wh
Ptolemy kernel aborts, creating a core file.

The fact thatpigiRpc andvem are separate Unix processes has the advantage
whenpigiRpc aborts with a fatal error,vem keeps running. Yourvem schematic is unharmed
and can be safely saved. Vem gives a cryptic error message something like:

RPC Error: server: application exited without calling
RPCExit
Closing Application /home/ohm1/users/messer/ptolemy/lib/
pigiRpcShell on host foucault.berkeley.edu
Elapsed time is 1538 seconds

The message
segmentation fault (core dumped)

may appear in the window from which you startedpigi . The first line in the above messag
might alternatively read

RPC Error: fread of long failed

Vem is trying to tell you that it is unable to get data from the link to the Ptolemy kerne
either case, it will create a large file in your home directory calledcore . Thecore 1 file is
Ptolemy Last updated: 10/10/97

1-22 Extending Ptolemy — Introduction

ro-
ter-

ssion:

 shared

it”
useful for finding the problem.

1.7.1 A quick scan of the stack

Assuming you are using Gnu tools, and assuming thepigiRpc executable that you
are using is in your path, go to your home directory and type:

gdb pigiRpc

The Gnu symbolic debugger (gdb) will show the state of the stack at the point where the p
gram failed. Note thatgdb is not distributed with Ptolemy, but is available free over the In
net in many places, includingftp://prep.ai.mit.edu/pub/gnu . The most recently
called function might give you a clue about the cause of the problem. Here is a typical se

cxh@watson 197% gdb pigiRpc ~/core
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type “show copying” to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.
GDB 4.15.1 (sparc-sun-solaris2.4),
Copyright 1995 Free Software Foundation, Inc...
(no debugging symbols found)...

Tell gdb to read in the core file.
(gdb) core core
Core was generated by `/users/ptolemy/bin.sol2/pigiRpc :0.0 wat-
son.eecs.berkeley.edu 32870 inet 1 2 3’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from

/users/ptolemy/lib.sol2/libcg56dspstars.so...done.
Reading symbols from

/users/ptolemy/lib.sol2/libcg56stars.so...done.

Since this version of Ptolemy uses shared libraries, we see lots of messages about
libraries, which we’ve deleted here for brevity.

(gdb) where
#0 0xee7a1c20 in _kill ()
#1 0x52b04 in pthread_clear_sighandler ()
#2 0x52cb4 in pthread_clear_sighandler ()
#3 0x53130 in pthread_clear_sighandler ()
#4 0x53320 in pthread_handle_one_process_signal ()
#5 0x55658 in pthread_signal_sched ()
#6 0x554d8 in called_from_sighandler ()
#7 0x535e4 in pthread_handle_pending_signals ()
#8 0x10100c in SimControl::getPollFlag ()
#9 0x101604 in Star::run ()
#10 0xd394c in DataFlowStar::run ()
#11 0xeeca5fb8 in SDFAtomCluster::run (this=0x2bd0b0)
at ../../../../src/domains/sdf/kernel/SDFCluster.cc:1032
#12 0xeeca0f20 in SDFScheduler::runOnce (this=0x2bd050)
at ../../../../src/domains/sdf/kernel/SDFScheduler.cc:121
#13 0xeeca0eac in SDFScheduler::run (this=0x2bd050)
at ../../../../src/domains/sdf/kernel/SDFScheduler.cc:98

1. Note that core files can be large in size, so your system administrator may have setup the csh “lim
command to disable the creation of core files. For further information, see the csh man page.
U. C. Berkeley Department of EECS

The Almagest 1-23

l stack

n of a

 in

ectory

n the

kP-
on.

aliases
rma-

r

#14 0x108358 in Target::run ()
#15 0x109e04 in Runnable::run ()
#16 0xe62ec in InterpUniverse::run ()
#17 0xee9e7f04 in PTcl::run (this=0x20af80, argc=2949528,
argv=0x109fa4)
at ../../src/ptcl/PTcl.cc:521
#18 0xee9e99a4 in PTcl::dispatcher (which=0x27, interp=0x1d4830,
argc=2,

The “where” command shows that state of the stack at the time of the crash. The actua
trace was 72 frames long, the last two frames being:

#71 0xeec06d5c in ptkMainLoop ()
 at ../../src/pigilib/ptkTkSetup.c:192

#72 0x4982c in main ()

Scanning this list we can recognize that the crash occurred during the executio
star. Unfortunately, unless you are running a version ofpigiRpc with the debug symbols
loaded, it will be difficult to tell much more from this.

1.7.2 More extensive debugging

To do more extensive debugging, you need to create or find a version ofpigiRpc
with debug symbols, calledpigiRpc.debug .

The first step is to build apigiRpc that contains the domains you are interested
debugging. There are several ways to build apigiRpc :

a. There may be prebuilt debug binaries on the Ptolemy Web site, check the dir
that contains the latest release.

b. Rebuild the entire tree from scratch. This takes about 3 hours. Appendix A i
Ptolemy User’s Manual has instructions about this.

c. UsemkPtolemyTree to rebuild a subset of the Ptolemy tree. See “Using m
tolemyTree to create a custom Ptolemy trees” on page 1-9 for more informati

d. Use the csh aliases to rebuild a subset of the Ptolemy tree. See “Using csh
to create a Parallel Software Development Tree” on page 1-12 for more info
tion.

The next step is to build thepigiRpc.debug binary:

cd $PTOLEMY/obj.$PTARCH/pigiRpc; make pigiRpc.debug

Then set thePIGIRPC environment variable to point to the binary:

setenv PIGIRPC $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.debug 1

Then run pigi as follows:

pigi -debug

An extra window runninggdb appears. (If this fails, thengdb is probably not installed at you

1. Note that the pigi script will attempt to find pigiRpc.debug binary if the PIGIRPC environment vari-
able is not set. An alternative is that one can avoid setting PIGIRPC and use the pigi -rpc option to
specify a binary.The command would be:
pigi -debug -rpc $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.debug
Ptolemy Last updated: 10/10/97

1-24 Extending Ptolemy — Introduction

o get
ugger

lem.

infor-

um-
y invok-
u can
meth-
nding
ry of

h
k until
site or is not in your path.) Typecont to continue past the initial breakpoint.

Now, if you can replicate the situation that created the crash, you will be able t
more information about what happened. Here is a sample of interaction with the deb
through thegdb window:

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type “show copying” to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.
GDB 4.15.1 (sparc-sun-solaris2.4),
Copyright 1995 Free Software Foundation, Inc...
Breakpoint 1 at 0x39ab4: file ../../src/pigiExample/pigiMain.cc, line
58.
Breakpoint 1, main (argc=-282850408, argv=0x399c0)
at ../../src/pigiExample/pigiMain.cc:58
58 pigiFilename = argv[0];
(gdb) cont
Continuing.

At this point, you are running Ptolemy. Use it in the usual way to replicate your prob
When you succeed, you will get a message something like:

Program received signal SIGSEGV, Segmentation fault.
0xeee81394 in mxRealMax ()
(gdb)

At this point you can again examine the stack. This time, however, there will be more
mation. Here, we examine the top 5 frames of the stack

(gdb) where 5
#0 0xeee81394 in mxRealMax ()
#1 0xe3864 in SimControl::getPollFlag () at ../../src/kernel/SimCon-
trol.cc:271
#2 0xe3e5c in Star::run (this=0x28c908) at ../../src/kernel/
Star.cc:73
#3 0xbacb8 in DataFlowStar::run (this=0x28c908)
at ../../src/kernel/DataFlowStar.cc:94
#4 0xef485fb8 in SDFAtomCluster::run (this=0x278570)
at ../../../../src/domains/sdf/kernel/SDFCluster.cc:1032
(More stack frames follow...)
(gdb)

This particular stack trace is a little strange at the “bottom” (gdb calls the lower n
bers the bottom even though they are at the top of the list) because it was generated b
ing a dynamically linked star, and the symbol information is not complete. However, yo
still find out quite a bit. Notice that you are now told where the files are that define the
ods being called. The file names are all relative to the directory in which the correspo
object file normally resides. The Ptolemy files can all be found in some subdirecto
$PTOLEMY/src .

You can get help fromgdb by typing “help”. Suppose you wish to find out first whic
star is being run when the crash occurs. The following sequence moves up in the stac
the “run” call of a star:

(gdb) up
#1 0xe3864 in SimControl::getPollFlag () at ../../src/kernel/SimCon-
trol.cc:271
U. C. Berkeley Department of EECS

The Almagest 1-25

o

e
s go

est way
o
 much
271 ptBlockSig(SIGALRM);
(gdb) up
#2 0xe3e5c in Star::run (this=0x28c908) at ../../src/kernel/
Star.cc:73
73 go();
(gdb)

At this point, you can see that line 73 of the file$PTOLEMY/src/kernel/Star.cc reads

go();

Odds are pretty good that the problem is in thego() method of the star. You can find out t
which star this method belongs as follows:

(gdb) p *this
$1 = {<Block> = {<NamedObj> = {nm = 0x28ad58 "BadStar1",

prnt = 0x28c878,
myDescriptor = 0x28b658 "Causes a core dump deliberately",
_vptr. = 0xeee91738}, flags = {nElements = 0, val = 0x0},
pTarget = 0x28aa60, scp = 0x0,

ports = {<NamedObjList> = {<SequentialList> =
{lastNode = 0x0, dimen = 0}, }, }, states = {<NamedObjList> =
{<SequentialList> = { lastNode = 0x0, dimen = 0}, }, },

multiports = {<NamedObjList> = {<SequentialList> =
{lastNode = 0x0, dimen = 0}, }, }},
indexValue = -1, inStateFlag = 1}

(gdb)

This tells you that a star with name (nm) BadStar1 and descriptor “Causes a cor
dump deliberately.” is being invoked. This particular star has the following erroneou
method:

go {
char* p = 0;
*p = ’c’;

}

More elaborate debugging requires that the symbols for the star be included. The easi
to do this is to build a version ofpigiRpc.debug that includes your star already linked int
the system. Then repeat the above procedure. The bottom of the stack frame will have
more complete information about what is occurring.

1.7.3 Debugging hints

Below are some hints for debugging.

 • “Using emacs, gdb and pigi” on page 1-26

 • “Gdb and the environment” on page 1-26

 • “Optimization” on page 1-26

 • “Debugging StringLists in gdb” on page 1-26

 • “How to use ptcl to speed up the compile/test cycle.” on page 1-27
Ptolemy Last updated: 10/10/97

1-26 Extending Ptolemy — Introduction

ne

nt

his
uctions
 file by
 • “Miscellaneous debugging hints for gdb” on page 1-28

See also Appendix A of the Ptolemy User’s manual.

Using emacs, gdb and pigi

By default,gdb is started in an X terminal window with its default command li
interface. Many people prefer to interface withgdb throughemacs, which provides much
more sophisticated interaction between the source code and the debugger. To get anemacs
interface togdb (assumingemacs is installed on your system), set the following environme
variable:

setenv PT_DEBUG ptgdb

To find out more about usinggdb from within emacs, start upemacs and type:
M-x info
Then type:
m emacs

Then go down to:

Running Debuggers Under Emacs

* Starting GUD:: How to start a debugger subprocess.
* Debugger Operation:: Connection between the \
debugger and source buffers.
* Commands of GUD:: Key bindings for common commands.
* GUD Customization:: Defining your own commands for GUD.

Gdb and the environment

Note that the documentation forgdb says the following:
Warning: GDB runs your program using the shell indicated by your
`SHELL’ environment variable if it exists (or `/bin/sh’ if not). If
your `SHELL’ variable names a shell that runs an initialization file-
-such as `.cshrc’ for C-shell, or `.bashrc’ for BASH--any variables
you set in that file affect your program. You may wish to move setting
of environment variables to files that are only run when you sign on,
such as `.login’ or `.profile’.

Optimization

By default, Ptolemy is compiled with the optimizer turn up to a very high level. T
can result in strange behavior inside the debugger, as the compiler may evaluate instr
in a different order than they appear in the source file. You may find it easier to debug a
recompiling it with the optimization turned off by removing the corresponding.o file and
doing:

make OPTIMIZER= install

Debugging StringLists in gdb

Ptolemy usesStringList object to manipulate strings. However, usinggdb to view
U. C. Berkeley Department of EECS

The Almagest 1-27

eak-

exit

side

 an

g

a StringList object can be non-intuitive. To print the contents of aStringlist
myStringList as one item per line from withingdb , use:

p displayStringListItems(myStringList)

To print out theStringList as a contiguous string, use:

p displayStringList(myStringList)

How to use ptcl to speed up the compile/test cycle.

If you are spending a lot of time debugging a problem, you may want to useptcl
instead ofpigiRpc , asptcl is smaller and starts up faster. Also, you can keep your br
points between invocations ofptcl , as debuggingptcl does not start up a separateemacs
each time. However,ptcl cannot handle demos that use Tk.

Here’s how to useptcl to debug.

1. RunpigiRpc on the universe, and use compile-facet to generate a
~/pigiLog.pt file. Note the number of iterations for the universe, and then
pigiRpc .

2. Copy~/pigiLog.pt to somewhere. A short file name, like/tmp/tst.tcl will
save time in typing since you may be typing it often. Don’t use something in
your home directory as you can’t easily use~ insideptcl .

3. Edit the file and add arun XXX line and awrapup line at the end. If the demo
should run for 100 iterations, then add:

run 100
wrapup

to the end of the file.

4. Build aptcl.debug that has just exactly the functionality you need by using
override.mk file. Alternatively, you could use eitherptcl.ptrim.debug or
ptcl.ptiny.debug . If your demo is SDF, then try building and usin
ptcl.ptiny.debug .

5. If you useemacs, then you can start upgdb on your binary with:

M-x gdb

6. Then type in the name of the binary. You may have to use the full pathname.

7. Insideemacs, you can then set breakpoints in thegdb window, either by typing a
break command, or by viewing the file and typingControl-X space at the loca-
tion you would like a break point.

8. Typer to start the process, and then source your demo with:

source /tmp/tst.tcl

If you want to recompile your demo outside ofgdb and then reload it into your
gdb session, use thefile command insidegdb :
Ptolemy Last updated: 10/10/97

1-28 Extending Ptolemy — Introduction

a-
t

r

You

our

 gdb,
 func-
file /users/cxh/pt/obj.sol2/ptcl/ptcl.ptiny.debug

Your breakpoints will be saved, which is a big time saver.

Miscellaneous debugging hints for gdb

If you are having problems debugging withgdb , here’s what to check.

1. Verify that your$PTOLEMY is set to what you intended. If you are building bin
ries in your private tree, be sure that$PTOLEMY is set to your private tree and no
~ptdesign or /users/ptolemy .

2. Verify that your $LD_LIBRARY_PATH does not include libraries in anothe
Ptolemy tree. You could type:

 unsetenv $LD_LIBRARY_PATH

3. gdb sources your.cshrc , so your$PTOLEMY and$LD_LIBRARY_PATH could be
different. Insidegdb , use

 show env PTOLEMY

to see what it is set to. This problem is especially common if you are runninggdb
insideemacs via ptgdb .

4. Verify that you are running the right binary by looking at the creation times.
may find it useful to use the-rpc option:

pigi -debug -rpc $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.mine ~ptdesign/
init.pal

5. Recompile the problem files with optimization turned off and relink y
pigiRpc . You can do this with

rm myfile.o; make OPTIMIZER= install

Then rebuild yourpigiRpc

6. Look for weird coding styles that could confuse the line count in emacs and
such as declaring variables in the middle of a block and brackets that open a
tion body on the same line as the function declaration:

int foo(int bar){

vs.

int foo(int bar)
 {

7. Usestepi to step by instructions, rather thanstep .
U. C. Berkeley Department of EECS

 stars
ed by a
n your
 chapter

uent
e bet-
ustom

e exist-
py the

ces-

odify

-

Chapter 2. Writing Stars for
Simulation

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee

Other Contributors: Most of the Ptolemy team

2.1 Introduction
Ptolemy provides rich libraries of stars for the more mature domains. Since the

were designed to be as generic as possible, many complicated functions can be realiz
galaxy. Nonetheless, no star library can possibly be complete; you may need to desig
own stars. The Ptolemy preprocessor language makes this easier than it could be. This
is devoted to the use of the preprocessor language.

Newly designed stars can be dynamically linked into Ptolemy, avoiding freq
recompilation of the system. If the new stars are generic and useful, however, it might b
ter to add them to the list of compiled-in stars and rebuild the system. See “Creating C
Versions of pigiRpc” on page 1-6.

2.2 Adding stars dynamically to Ptolemy
To get a quick sense of what it means to create a new star, you can use one of th

ing stars as a template. Create a new directory in which you have write permission. Co
source code for an existing Ptolemy star. For example,

cd my_directory
cp $PTOLEMY/src/domains/sdf/stars/SDFSin.pl SDFMyStar.pl
chmod +w SDFMyStar.pl

The “.pl ” extensions on the file names stand for “Ptolemy language” or “prepro
sor language.” The file name must be of the formDomainStarname .pl for dynamic linking
and thelook-inside command to work. The last command just ensures that you can m
the file. Edit the file to change the name of the star fromSin to MyStar . This is necessary so
that the name does not conflict with the existingSin star in the SDF domain.

You can now dynamically link your new star. Startpigi , the graphical editor. If you
startpigi in your new directory, you will get a blankinit.pal facet. Place your mouse cur
sor in this facet, and issue the “make-star” command (the shortcut is “* ”). A dialog box like

2-2 Writing Stars for Simulation

t
u
y

, to
ially
e of
ed

e

source
C++
he
eed to
sed

opup

differ-

iler
 vari-

ain.
the following will appear:

Enter the name of the star,MyStar , its domain,SDF, the location of the directory tha
defines it, such as~user_name/my_directory , and the name of palette in which yo
would like its icon to appear,user.pal . The star will be compiled and dynamicall
linked with the Ptolemy executable. An icon for it will appear in the facetuser.pal . Try
using this in a simple system.

Three details about dynamic linking may prove useful:

 • If the name of the star source directory has a/src/ component,pigi will replace
this with /obj.$PTARCH/ depending on the type of machine you are running
get the name of the directory in which to store the object file. This is espec
useful if you are jointly doing development with others who use a different typ
machine. If there is no/src/ component in the name, then the object file is plac
in the same directory with the source file.

 • If there is a file namedMakefile or makefile in the object file directory,pigi
will run themake program, using themakefile to create the object file (or mak
sure it is up to date). If there is nomakefile , pigi will run a make-like proce-
dure on its own, running the preprocessor as needed to produce the C++
files, then running the C++ compiler to create the object file. By default, the
compiler will be told to look for include files in the kernel directory and t
domain-specific kernel and star directories; if this is not adequate, then you n
write a makefile. Once compilation (if any) is complete, the dynamic linker is u
to load the star into the system. Compilation errors, if any, will appear in a p
window.

 • Whenever the definition of a star is changed so that the new definition has
ent I/O ports, the icon must be updated as well. You can do this by callingmake-
star again to replace the old icon with a new one.

If the linking fails, one of the following situations may apply:

 • Whoever installed Ptolemy did not install the compiler.

 • The compiler is not configured correctly. If you are using a prebuilt comp
obtained from the Ptolemy ftp site, you may need to set some environment
ables if your Ptolemy installation is not at/users/ptolemy . See Appendix A of
the PtolemyUser’s Manual for more information.

 • A spuriousmakefile exists in your directory. If amakefile exists in your direc-
tory, Ptolemy will attempt to use it to compile your star. Remove it, and try ag
U. C. Berkeley Department of EECS

The Almagest 2-3

n used
uted
s last

s to

 the

 in the
, you

ut

 float-

 for the

tars

-

l-

cu-
s and

action
rtholes,
ader file
 • The version of the compiler used to build Ptolemy is not the same as the versio
to compile your star. This should not occur if you are using the compiler distrib
with Ptolemy, but can occur if the compiler has been updated since Ptolemy wa
built, or if you are not using the compiler distributed with Ptolemy.

 • You have a/src/ component in the directory name, but the corresponding
/obj.$PTARCH/ directory does not exist or cannot be written. A common error i
put the Ptolemy sources in/usr/local/src/ptolemy , which confuses Ptolemy
since a star might be in/usr/local/src/ptolemy/src/domains/sdf/stars ,
which has two/src/ directories in the path.

You may find it helpful to refer to the Appendix A, Installation and Troubleshooting in
User’s Manual.

The star you just created performs exactly the same function as an existing star
Ptolemy library, and hence is not very interesting. Try modifying the star. For example
could add 1.0 to the sine before producing the output. Find the definition of thego method,
which should look like this:

go {
output%0 << sin (double(input%0));

}

The one line of code is ordinary C++ code, although the “<<” and “%” operators have been
overloaded. This line means that the current value (%0) of the output named “output ” should
be assigned the value returned by thesin function applied to the current value of the inp
named “input ”. The cast todouble indicates that we are not really interested in theParti-
cle object supplied by the input, but rather its value, interpreted as a double-precision
ing point number. Try changing this code to

go {
output%0 << sin (double(input%0)) + 1.0;

}

To recompile and reload the star, place your mouse cursor on any instance of the icon
star, and type “L” (or invoke the “Extend:load-star” command through the menus).

Sometimes, you will wish to dynamically link stars that are derived from other s
that you have dynamically linked. To do this, the base class stars must bepermanently linked.
This can be done with the “Extend:load-star-perm” command (“K”). To do this, place the
mouse over an icon representing the parent star, and type “K”. Once the parent star is perma
nently linked, it cannot be replaced or redefined: you must restartpigi .

The go and all other entries in the.pl file defining the star are explained in the fo
lowing sections.

2.3 The Ptolemy preprocessor language (ptlang)
The Ptolemy preprocessor,ptlang , was created to make it easier to write and do

ment star class definitions to run under Ptolemy. Instead of writing all the class definition
initialization code required for a Ptolemy star, the user can concentrate on writing the
code for a star and let the preprocessor generate the standard initialization code for po
states, etc. The preprocessor generates standard C++ code, divided into two files (a he
Ptolemy Last updated: 8/26/97

2-4 Writing Stars for Simulation

n-
In

e

 the
ly

he file
with a .h extension and an implementation file with a.cc extension). It also generates sta
dardized documentation, in a file with a.html extension, to be included in the manual.
releases before Ptolemy 0.7, Ptolemy used.t files, which conained troff source

2.3.1 Invoking the preprocessor

The definition of a star namedYYY in domainXXX should appear in file with the nam
XXXYYY.pl . The class that implements this star will be namedXXXYYY. Then, running the
command

ptlang XXXYYY.pl

will produce the filesXXXYYY.cc , XXXYYY.h, andXXXYYY.html . Implementation of the
preprocessor

The preprocessor is written inyacc and C. It does not attempt to parse the parts of
language that consist of C++ code (for example,go methods); for these, it simply counts cur
braces to find the ends of the items in question. It outputs#line directives so the C++ com-
piler will print error messages, if any, with respect to the original source file.

2.3.2 An example

To make things clearer, let us start with an example, a rectangular pulse star in t
SDFRect.pl :

defstar {
name { Rect }
domain { SDF }
desc {

Generates a rectangular pulse of height "height" (default 1.0).
with width "width" (default 8).

}
version {%W% %G%}
author { J. T. Buck }
copyright {1993 The Regents of the University of California}
location { SDF main library }
state {

name { height }
type { float }
default { 1.0 }
desc { Height of the rectangular pulse. }

}
state {

name { width }
type { int }
default { 8 }
desc { Width of the rectangular pulse. }

}
state {

name { count }
type { int }
default { 0 }
desc { Internal counting state. }
attributes { A_NONSETTABLE|A_NONCONSTANT }
U. C. Berkeley Department of EECS

The Almagest 2-5

el of

at

 case
hat the

e
 any

d the
}
output { // the output port

name { output }
type { float }
desc { The output pulse. }

}
go { // the run-time function

double t = 0.0;
if (count < width) t = height;
count = int(count) + 1;
output%0 << t;

}
}

Running the preprocessor on the above file produces the three filesSDFRect.h ,
SDFRect.cc andSDFRect.html ; the names are determinednot by the input filename but
by concatenating the domain and name fields. These files define a class namedSDFRect .

At the time of this writing, only one type of declaration may appear at the top lev
a Ptolemy language file, adefstar , used to define a star. Sometime in the future, adefgal-
axy section may also be supported. Thedefstar section is itself composed of subitems th
define various attributes of the star. All subitems are of the form

keyword { body }

where thebody may itself be composed of sub-subitems, or may be C++ code (in which
the Ptolemy language preprocessor checks it only for balanced curly braces). Note t
keywords arenot reserved words; they may also be used as identifiers in the body.

2.3.3 Items that appear in a defstar

The following items can appear in adefstar directive. The items are given in th
order in which they typically appear in a star definition (although they can appear in
order). An alphabetical listing and summary of directives is given in table 2-1.

name

This is a required item, and has the syntax

name { identifier }

It (together with the domain) provides the name of the class to be defined an
names of the output files. Case is important in the identifier.

domain

This is a required item; it specifies the domain, such as SDF. The syntax is:

domain { identifier }

whereidentifier specifies the domain (again, case is important).
Ptolemy Last updated: 8/26/97

2-6 Writing Stars for Simulation
keyword summary required page
acknowl-
edge

the names of other contributors to the star no 2-8

author the name(s) of the author(s) no 2-8

begin C++ code to execute at start time,after the schedulersetup
method is called

no 2-13

ccinclude specify other files to include in the .cc file no 2-15

code C++ code to include in the .cc file outside the class definition no 2-15

codeblock define a code segment for a code-generation star no 13-2

conscalls define constructor calls for members of the star class no 2-13

construc-
tor

C++ code to include in the constructor for the star no 2-12

copyright copyright information to include in the generated code no 2-8

derived alternative form ofderivedFrom no 2-7

derived-
from

the base class, which must also be a star no 2-7

desc alternative form ofdescriptor no 2-7

descriptor a short summary of the functionality of the star no 2-7

destructor C++ code to include in the destructor for the star no 2-13

domain the domain, and the prefix of the name of the class yes 2-5

explana-
tion

full documentation (See also htmldoc). no 2-9

exectime specify the execution time for a code generation star no 13-2

go C++ code to execute when the star fires no 2-14

header C++ code to include in the .h file, before the class definition no 2-15

hinclude specify other files to include in the .h file no 2-15

htmldoc full documentation, optionally using HTML directives

inmulti define a set of inputs no 2-11

inout define a (bidirectional) input and output no 2-11

inoutmulti define a set of (bidirectional) inputs and outputs no 2-11

input define an input to the star no 2-11

location an indication of where a user might find the star no 2-8

method define a member function for the star class no 2-15

name the name of the star, and the root of the name of the class yes 2-5

outmulti define a set of outputs no 2-11

output define an output from the star no 2-11

private define private data members of the star class no 2-14

protected defined protected data members of the star class no 2-14

public define public data members of the star class no 2-14

setup C++ code to execute at start time,before compile-time scheduling no 2-13

state define a state or parameter no 2-9

version version number and date no 2-7

wrapup C++ code to invoke at the end of a run (if no error occurred) no 2-14TABLE 2-1: A summary of the items used to define a star. Additional items are allowed in code
generation stars, as explained in later chapters. A minimal set of the most useful items
are shaded.
U. C. Berkeley Department of EECS

The Almagest 2-7

t-
re-

y

y the

star.

ff for-
gh

nd out-
with a
ent it
 so
derivedfrom

This optional item indicates that the star is derived from another class. Syntax:

derivedfrom { identifier }

whereidentifier specifies the base class. The.h file for the base class is automa
ically included in the output.h file, assuming it can be located (you may need to c
ate a makefile).

For example, theLMS star in theSDF domain is derived from theFIR star. The full
name of the base class isSDFFIR, but thederivedfrom statement allows you to sa
either

derivedfrom { FIR }

or
derivedfrom { SDFFIR }

Thederivedfrom statement may also be writtenderivedFrom or derived .

descriptor

This item defines a short description of the class. This description is displayed b
profile pigi command. It has the syntax

descriptor { text }

wheretext is simply a section of text that will become the short descriptor of the
You may also writedesc instead ofdescriptor . A principal use of the short
descriptor is to get on-screen help, so the descriptor should not include any tro
matting commands. Unlike thehtmldoc (described below), it does not pass throu
troff. The following are legal descriptors:

desc { A one line descriptor. }

or
desc {
A multi-line descriptor. The same line breaks and spacing
will be used when the descriptor is displayed on the screen.
}

By convention, in these descriptors, references to the names of states, inputs, a
puts should be enclosed in quotation marks. Also, each descriptor should begin
capital letter, and end with a period. If the descriptor seems to get long, augm
with thehtmldoc directive, explained below. However, it should be long enough
that it is sufficient to explain the function of the star.

version

This item contains two entries as shown below
Ptolemy Last updated: 8/26/97

2-8 Writing Stars for Simulation

mes.

. The

 us to

e the
 line

 are
version { number MO/DA/YR }

where thenumber is a version number, and theMO/DA/YR is the version date. If you
are using SCCS for version control then the following syntax will work well:

version { %W% %G% }

When the file is checked in by SCCS, the string%W% will be replaced with a string of
the form:@(#) filename num , where num is the version number, and%G% will be
replaced with a properly formatted date.

author

This optional entry identifies the author or authors of the star. The syntax is

author { author1, author2 and author3 }

Any set of characters between the braces will be interpreted as a list of author na

acknowledge

This optional entry attaches an acknowledgment section to the documentation
syntax is

acknowledge { arbitrary single line of text }

copyright

This optional entry attaches a copyright notice to the.h , .cc , and.t files. The syntax
is

copyright { copyright information }

For example, we used to use the following (our lawyers have recently caused
increase the verbosity):

copyright {1994 The Regents of the University of California}

The copyright may span multiple lines, just like a descriptor. In house, we us
SCCS%Q% keyword to update the date when a file is changed. A typical copyright
might look like:

copyright {1990-%Q% The Regents of the University of
California}

location

This item describes the location of a star definition. The following descriptions
used, for example:
U. C. Berkeley Department of EECS

The Almagest 2-9

eases
 0.7

ves.
docu-
t
n
 the

meter

er. The
f

ither
could

zing
ample
location { SDF dsp library }

or
location { directory }

wheredirectory is the location of the star. This item is for documentation only.

explanation

This item is used to give longer explanations of the function of the stars. In rel
previous to Ptolemy 0.7, this item included troff formatting directives. In Ptolemy
and later, this item has been superceded by thehtmldoc item.

htmldoc

This item is used to give longer explanations that include HTML format directi
The Tycho system includes an HTML viewer that can be used to display star
mentation. The HTML output ofptlang can be viewed by any HTML viewer, bu
certain features, such as the<tcl></tcl> directive are only operational whe
viewed with Tycho. For complete documentation for the Tycho HTML viewer, see
HTML viewer Help menu.

state

This item is used to define a state or parameter. Recall that by definition, a para
is the initial value of a state. Here is an example of a state definition:

state {
name { gain }
type { int }
default { 10 }
desc { Output gain. }
attributes { A_CONSTANT|A_SETTABLE }

}

There are five types of subitems that may appear in a state statement, in any ord
name field is the name of the state; thetype field is its type, which may be one o
int , float , string , complex , fix , intarray , floatarray , complexarray ,
precision , or stringarray . Case is ignored for the type argument.

Thedefault item specifies the default initial value of the state; its argument is e
a string (enclosed in quotation marks) or a numeric value. The above entry
equivalently have been written:

default { "1.0" }

Furthermore, if a particularly long default is required, as for example when initiali
an array, the string can be broken into a sequence of strings. The following ex
shows the default for aComplexArray :
Ptolemy Last updated: 8/26/97

2-10 Writing Stars for Simulation

lues
 either

e

 of
s con-
.

t be at

d,
ith the

tes

 you
 the
 the

e
 as the

n
s

nguage
”, and
about

 a star
default {
"(-.040609,0.0) (-.001628,0.0) (.17853,0.0) (.37665,0.0)"
"(.37665,0.0) (.17853,0.0) (-.001628,0.0) (-.040609,0.0)"
}

For complex states, the syntax for the default value is

(real, imag)

wherereal andimag evaluate to integers or floats.

Theprecision state is used to give the precision of fixed-point values. These va
may be other states or may be internal to the star. The default can be specified in
of two ways:

 • Method 1: As a string like “3.2”, or more generally “m.n”, wherem is the number of
integer bits (to the left of the binary point) andn is the number of fractional bits (to th
right of the binary point). Thus length ism+n.

 • Method 2: A string like “24/32” which means 24 fraction bits from a total length
32. This format is often more convenient because the word length often remain
stant while the number of fraction bits changes with the normalization being used

In both cases, the sign bit counts as one of the integer bits, so this number mus
least one.

The desc (or descriptor) item, which is optional but highly recommende
attaches a descriptor to the state. The same formatting options are available as w
star descriptor.

Finally, theattributes keyword specifies state attributes. At present, two attribu
are defined for all states:A_CONSTANT andA_SETTABLE (along with their comple-
ments A_NONCONSTANT and A_NONSETTABLE). If a state has theA_CONSTANT
attribute, then its value is not modified by the run-time code in the star (it is up to
as the star writer to ensure that this condition is satisfied). States with
A_NONCONSTANT attribute may change when the star is run. If a state has
A_SETTABLE attribute, then user interfaces (such aspigi) will prompt the user for
values when directives such asedit-parameters are given. States without this attribut
are not presented to the user; such states always start with their default values
initial value. If no attributes are specified, the default isA_CONSTANT|A_SETTABLE.
Thus, in the above example, theattributes directive is unnecessary. The notatio
“A_CONSTANT|A_SETTABLE” indicates a logical “or” of two flags. Confusingly, thi
means that they both apply (A_CONSTANTandA_SETTABLE).

Code generation stars use a great number of attributes, many specific to the la
model for which code is being generated. Read chapter 13, “Code Generation
the documentation for the appropriate code generation domain to learn more
these.

Mechanisms for accessing and updating states in C++ methods associated with
are explained below, in sections 2.4.3 on page 2-21 and 2.4.4 on page 2-23.
U. C. Berkeley Department of EECS

The Almagest 2-11

 inout
rts

 are
An alternative form for thestate directive isdefstate . The subitems of thestate
directive are summarized in table 2-2, together with subitems of other directives.

input, output, inout, inmulti, outmulti, inoutmulti

These keywords are used to define a porthole, which may be an input, output,
(bidirectional) porthole or an input, output, or inout multiporthole. Bidirectional po
are not supported in most domains (The Thor domain is an exception). Likestate , it
contains subitems. Here is an example:

input {
name { signalIn }
type { complex }
numtokens { 2 }
desc {A complex input that consumes 2 input particles.}

}

Here,name specifies the porthole name. This is a required item.type specifies the
particle type. The scalar types areint , float , fix , complex , message , or any-
type . Again, case does not matter for the type value. The matrix types
int_matrix_env , float_matrix_env , complex_matrix_env , and

item sub-item summary required page
inmulti,
inout,
inoutmulti,
input

name name of the port or group of ports yes 11

type data type of input (& output) particles no

descriptor summary of the function of the input no

numtokens number of tokens consumed by the port (use-
ful only for dataflow domains)

no

method,
virtual method,
inline method,
pure method,
pure virtual method,
inline virtual method

name the name of the method yes 15

access private, protected, or public no

arglist the arguments to the method no

type the return type of the method no

code C++ code defining the method if not pure

outmulti,
output

name name of the port or group of ports yes 11

type data type of output particles no

descriptor summary of the function of the output no

numtokens number of tokens produced by the port (use-
ful only for dataflow domains)

no

state name the name of the state variable yes 9

type data type of the state variable yes

default the default initial value, always a string yes

descriptor summary of the function of the state no

attributes hints to the simulator or code generator no

TABLE 2-2: Some items used in defining a star have subitems. These are described here.
Ptolemy Last updated: 8/26/97

2-12 Writing Stars for Simulation

akes
omit-
 a state,

ration

e doc-

ed in
he

erits
on of

ructor
e

tor is
efore

-

fix_matrix_env . Thetype item may be omitted; the default type isanytype . For
more information on all of these, please see chapter 4, “Data Types”.

The numtokens keyword (it may also be writtennum or numTokens) specifies the
number of tokens consumed or produced on each firing of the star. This only m
sense for certain domains (SDF, DDF, and BDF); in such domains, if the item is
ted, a value of one is used. For stars where this number depends on the value of
it is preferable to leave out thenumtokens specification and to have thesetup
method set the number of tokens (in the SDF domain and most code gene
domains, this is accomplished with thesetSDFParams method). This item is used
primarily in the SDF and code generation domains, and is discussed further in th
umentation of those domains.

There is an alternative syntax for the type field of a porthole; this syntax is us
connection withANYTYPE to specify a link between the types of two portholes. T
syntax is

type { = name }

wherename is the name of another porthole. This indicates that this porthole inh
its type from the specified porthole. For example, here is a portion of the definiti
the SDFFork star:

input {
name{input}
type{ANYTYPE}

}
outmulti {

name{output}
type{= input}
desc{ Type is inherited from the input. }

}

constructor

This item allows the user to specify extra C++ code to be executed in the const
for the class. This code will be executedafter any automatically generated code in th
constructor that initializes portholes, states, etc. The syntax is:

constructor { body }

wherebody is a piece of C++ code. It can be of any length. Note that the construc
invoked only when the class is first instantiated; actions that must be performed b
every simulation run should appear in thesetup or begin methods, not the construc
tor.
U. C. Berkeley Department of EECS

The Almagest 2-13

equire

ply list
, sep-

ctor,
un

he
 star

is

tates.
ains,
n.

is
e

conscalls

You may want to have data members in your star that have constructors that r
arguments. These members would be added by using thepublic , private , or pro-
tected keywords. If you have such members, theconscalls keyword provides a
mechanism for passing arguments to the constructors of those members. Sim
the names of the members followed by the list of constructor arguments for each
arated by commas if there is more than one. The syntax is:

conscalls { member1(arglist), member2(arglist) }

Note thatmember1, andmember2 should have been previously defined in apublic ,
private , or protected section (see page 2-14).

destructor

This item inserts code into the destructor for the class. The syntax is:

destructor { body }

You generally need a destructor only if you allocate memory in the constru
begin method, orsetup method; termination functions that happen with every r
should appear in thewrapup function1. The optional keywordinline may appear
beforedestructor ; if so, the destructor function definition appears inline, in t
header file. Since the destructor for all stars is virtual, this is only a win when the
is used as a base for derivation.

setup

This item defines thesetup method, which is called every time the simulation
started,before any compile-time scheduling is performed. The syntax is:

setup { body }

The optional keywordinline may appear before thesetup keyword. It is common
for this method to set parameters of input and output portholes, and to initialize s
The code syntax for doing this is explained starting on page 2-16. In some dom
with some targets, thesetup method may be called more than once during initiatio
You must keep this in mind if you use it to allocate or initialize memory.

begin

This item defines thebegin method, which is called every time the simulation
started, butafter the schedulersetup method is called (i.e., after any compile-tim
scheduling is performed). The syntax is:

1. Note, however, that wrapup is not called if an error occurs. See page 2-14.
Ptolemy Last updated: 8/26/97

2-14 Writing Stars for Simulation

when
exactly

es
arting

la-

oing

o
in the

ith the

a

begin { body }

This method can be used to allocate and initialize memory. It is especially useful
data structures are shared across multiple instances of a star. It is always called
once when a simulation is started.

go

This item defines the action taken by the star when it is fired. The syntax is:

go { body }

The optional keywordinline may appear before thego keyword. The go method
will typically read input particles and write outputs, and will be invoked many tim
during the course of a simulation. The code syntax for the body is explained st
on page 2-16.

wrapup

This item defines thewrapup method, which is called at the completion of a simu
tion. The syntax is:

wrapup { body }

The optional keywordinline may appear before thewrapup keyword. The wrapup
method might typically display or store final state values. The code syntax for d
this is explained starting on page 2-16. Note that thewrapup method is not invoked if
an error occurs during execution. Thus, thewrapup method cannot be used reliably t
free allocated memory. Instead, you should free memory from the previous run
setup or begin method, prior to allocating new memory, and in the destructor.

public, protected, private

These three keywords allow the user to declare extra members for the class w
desired protection. The syntax is:

protkey { body }

whereprotkey is public , protected , or private . Example, from theXMgraph
star:

protected {
XGraph graph;
double index;

}

This defines an instance of the classXGraph , defined in the Ptolemy kernel, and
U. C. Berkeley Department of EECS

The Almagest 2-15

 their

e that

 sur-

de is
 be
g else.

pear

define

 the
double-precision number. If any of the added members require arguments for
constructors, use theconscalls item to specify them.

ccinclude, hinclude

These directives cause the.cc file, or the.h file, to #include extra files. A certain
number of files are automatically included, when the preprocessor can determin
they are needed, so they do not need to be explicitly specified. The syntax is:

ccinclude { inclist }
hinclude { inclist }

whereinclist is a comma-separated list of include files. Each filename must be
rounded either by quotation marks or by “<” and “>” (for system include files like
<math.h>).

code

This keyword allows the user to specify a section of arbitrary C++ code. This co
inserted into the.cc file after the include files but before everything else; it can
used to define static non-class functions, declare external variables, or anythin
The outermost pair of curly braces is stripped. The syntax is:

code { body }

header

This keyword allows the user to specify an arbitrary set of definitions that will ap
in the header file. Everything between the curly braces is inserted into the.h file after
the include files but before everything else. This can be used, for example, to
classes used by your star. The outermost pair of curly braces is stripped.

method

Themethod item provides a fully general way to specify an additional method for
class of star that is being defined. Here is an example:

virtual method {
name { exec }
access { protected }
arglist { "(const char* extraOpts)" }
type { void }
code {

// code for the exec method goes here
}

}

An optional function type specification may appear before themethod keyword,
which must be one of the following:
Ptolemy Last updated: 8/26/97

2-16 Writing Stars for Simulation

thod
.

nti-
e is

less

to

se and

ade to
virtual
inline
pure
pure virtual
inline virtual

Thevirtual keyword makes a virtual member function. If thepure virtual key-
word is given, a pure virtual member function is declared (there must be nocode item
in this case). The function typepure is a synonym forpure virtual . The inline
function type declares the function to be inline.

Here are themethod subitems:

name: The name of the method. This is a required item.

access : The level of access for the method, one ofpublic , protected , or
private . If the item is omitted,protected is assumed.

arglist : The argument list, including the outermost parentheses, for the me
as a quoted string. If this is omitted, the method has no arguments

type : The return type of the method. If the return type is not a single ide
fier, you must put quotes around it. If this is omitted, the return typ
void (no value is returned).

code : The code that implements the method. This is a required item, un
thepure keyword appears, in which case this itemcannot appear.

exectime

This item defines the optionalmyExecTime() function, which is used in code generation
specify how many time units are required to execute the star’s code. The syntax is:

exectime { body }

The optional keywordinline may appear before theexectime keyword. Thebody
defines the body of a function that returns an integer value.

codeblock

Codeblocks are parametrized blocks of code for use in code generation stars. Their u
format is discussed in detail in the code generation chapters. The syntax is:

codeblock {
code
...

}

2.4 Writing C++ code for stars
This section assumes a knowledge of the C++ language; no attempt will be m
U. C. Berkeley Department of EECS

The Almagest 2-17

pman
 Star
ce it
any of

r in the

 arbi-

ethods
s, and

output
hs, or
 when

-

 some-

es
ns that

 rather
erived
teach the language. We recommend “C++ Primer, Second Edition”, by Stanley Lip
(from Addison-Wesley) for those new to the language. Chapter 3, “Infrastructure for
Writers”, is also highly recommended reading for those who will be writing stars, sin
explains some of the more generic and useful classes defined in the Ptolemy kernel. M
these are useful in stars.

C++ code segments are an important part of any star definition. They can appea
setup , begin , go, wrapup , constructor , destructor , exectime , header , code , and
method directives in the Ptolemy preprocessor. These directives all include a body of
trary C++ code, enclosed by curly braces, “{ ” and “} ”. In all but thecode andheader direc-
tives, the C++ code between braces defines the body of a method of the star class. M
can access any member of the class, including portholes (for input and output), state
members defined with thepublic , protected , andprivate directives.

2.4.1 The structure of a Ptolemy star

In general, the task of a Ptolemy star is to receive input particles and/or produce
particles; in addition, there may be side effects (reading or writing files, displaying grap
even updating shared data structures). As for all C++ objects, the constructor is called
the star is created, and the destructor is called when it is destroyed. In addition, thesetup and
begin methods, if any, are called every time a new simulation run is started, thego method
(which always exists except for stars likeBlackHole andNull that do nothing) is called
each time a star is executed, and thewrapup method is called after the simulation run com
pletes without errors.

2.4.2 Reading inputs and writing outputs

The precise mechanism for references to input and output portholes depends
what on the domain. This is because stars in the domainXXX use objects of classInXXXPort
andOutXXXPort (derived fromPortHole) for input and output, respectively. The exampl
we use here are for the SDF domain. See the appropriate domain chapter for variatio
apply to other domains.

PortHoles and Particles

In the SDF domain, normal inputs and outputs become members of typeInSDFPort
andOutSDFPort after the preprocessor is finished. These are derived from base classPort-
Hole . For example, given the following directive in thedefstar of an SDF star,

input {
name {in}
type {float}

}

a member namedin , of typeInSDFPort , will become part of the star.

We are not usually interested in directly accessing these porthole classes, but
wish to read or write data through the portholes. All data passing through a porthole is d
from base classParticle . Each particle contains data of the type specified in thetype sub-
directive of theinput or output directive.
Ptolemy Last updated: 8/26/97

2-18 Writing Stars for Simulation

r the

ays
 recent
t

ign-
e

g
type
e data
, since

any
The operator “%” operating on a porthole returns a reference to a particle. Conside
following example:

go {
Particle& currentSample = in%0;
Particle& pastSample = in%1;
...

}

The right-hand argument to the “%” operator specifies the delay of the access. A zero alw
means the most recent particle. A one means the particle arriving just before the most
particle. The same rules apply to outputs. Given an output namedout , the same particles tha
are read fromin can be written toout in the same order as follows:

go {
...
out%1 = pastSample;
out%0 = currentSample;

}

This works becauseout%n returns areference to a particle, and hence can accept an ass
ment. The assignment operator for the classParticle is overloaded to make a copy of th
data field of the particle.

Operating directly on classParticle , as in the above examples, is useful for writin
stars that acceptanytype of input. The operations need not concern themselves with the
of data contained by the particle. But it is far more common to operate numerically on th
carried by a particle. This can be done using a cast to a compatible type. For example
in above is of typefloat , its data can be accessed as follows:

go {
Particle& currentSample = in%0;
double value = double(currentSample);
...

}

or more concisely,

go {
double value = double(in%0);
...

}

The expressiondouble(in%0) can be used anywhere that a double can be used. In m
contexts, where there is no ambiguity, the conversion operator can be omitted:

double value = in%0;
U. C. Berkeley Department of EECS

The Almagest 2-19

s, it is

ment

le:

ator
 oper-

 to
tell the
ch out-

d

However, since conversion operators are defined to convert particles to several type
often necessary to indicate precisely which type conversion is desired.

To write data to an output porthole, note that the right-hand side of the assign
operator should be of typeParticle , as shown in the above example. An operator<< is
defined for particle classes to make this more convenient. Consider the following examp

go {
float t;
t = some value to be sent to the output
out%0 << t;

}

Note the distinction between the<< operator and the assignment operator; the latter oper
copies Particles, the former operator loads data into particles. The type of the right-side
and of<< may beint , float , double , Fix , Complex or Envelope ; the appropriate type
conversion will be performed. For more information on theEnvelope andMessage types,
please see the chapter “Data Types” on page 4-1.

SDF PortHole parameters

In the above example, wherein%1 was referenced, some special action is required
tell Ptolemy that past input particles are to be saved. Special action is also required to
SDF scheduler how many particles will be consumed at each input and produced at ea
put when a star fires. This information can be provided through a call tosetSDFParams in
thesetup method. This has the syntax

setup {
name.setSDFParams(multiplicity , past)

}

wherename is the name of the input or output porthole,multiplicity is the number of par-
ticles consumed or produced, andpast is the maximum value thatoffset can take in any
expression of the formname%offset . For example, if thego method referencesname%0 and
name%1, thenpast would have to be at least one. It is zero by default.

Multiple PortHoles

Sometimes a star should be defined withn input portholes orn output portholes, where
n is variable. This is supported by the classMultiPortHole and its derived classes. An
object of this class has a sequential list ofPortHole s. For SDF, we have the specialize
derived classMultiInSDFPort (which containsInSDFPorts) and MultiOutSDFPort
(which containsOutSDFPorts).

Defining a multiple porthole is easy, as illustrated next:
defstar {

...
inmulti {

name { input_name }
Ptolemy Last updated: 8/26/97

2-20 Writing Stars for Simulation

3-10.

holes.
e

 list,
type { input_type }
}
outmulti {

name { output_name }
type { output_type }

}
...

}

To successively access individual portholes in aMultiPortHole , theMPHIter itera-
tor class should be used. Iterators are explained in more detail in “Iterators” on page
Consider the following code segment from the definition of the SDFFork star:

input {
name{input}
type{ANYTYPE}

}
outmulti {

name{output}
type{= input}

}
go {

MPHIter nextp(output);
PortHole* p;
while ((p = nextp++) != 0)

(*p)%0 = input%0;
}

A single input porthole supplies a particle that gets copied to any number of output port
Thetype of the outputMultiPortHole is inherited from the type of the input. The first lin
of thego method creates anMPHIter iterator callednextp , initialized to point to portholes in
output . The “++” operator on the iterator returns a pointer to the next porthole in the
until there are no more portholes, at which time it returnsNULL. So thewhile construct steps
through all output portholes, copying the input particle data to each one.

Consider another example, taken from the SDFAdd star:

inmulti {
name {input}
type {float}

}
output {

name {output}
type {float}

}
go {

MPHIter nexti(input);
PortHole *p;
double sum = 0.0;
U. C. Berkeley Department of EECS

The Almagest 2-21

he

d
en an

ws:
on-
o the

le

lues,
of the

nce, the

r

ently no

e

 types.
while ((p = nexti++) != 0)
sum += double((*p)%0);

output%0 << sum;
}

Again, anMPHIter iterator namednexti is created and used to access the inputs.

Upon occasion, thenumberPorts method of classMultiPortHole , which returns
the number of ports, is useful. This is called simply asportname .numberPorts() , and it
returns anint .

Type conversion

The type conversion operators and “<<” operators are defined as virtual methods in t
base classParticle . There are never really objects of classParticle in the system;
instead, there are objects of classIntParticle , FloatParticle , ComplexParticle ,
andFixParticle , which hold data of typeint , double (not float!),Complex , andFix ,
respectively (there are alsoMessageParticle and a variety of matrix particles, describe
later). The conversion and loading operators are designed to “do the right thing” wh
attempt is made to convert between mismatched types.

Clearly we can convert anint to adouble or Complex , or adouble to aComplex ,
with no loss of information. Attempts to convert in the opposite direction work as follo
conversion of aComplex to adouble produces the magnitude of the complex number. C
version of adouble to anint produces the greatest integer that is less than or equal t
double value. There are also operators to convert to or fromfloat andFix .

Each particle also has a virtualprint method, so a star that writes particles to a fi
can acceptanytype .

2.4.3 States

A state is defined by thestate directive. The star can use a state to store data va
remembering them from one invocation to another. They differ from ordinary members
star, which are defined using thepublic , protected , andprivate directives, in that they
have a name, and can be accessed from outside the star in systematic ways. For insta
graphical interfacepigi permits the user to set any state with theA_SETTABLE attribute to
some value prior to a run, using theedit-params command. The interpreter provides simila
functionality through thesetstate command. The state attributes are set in thestate direc-
tive. A state may be modified by the star code during a run. The attributeA_NONCONSTANT is
used as a pragma to mark a state as one that gets modified during a run. There is curr
mechanism for checking the correctness of these attributes.

All states are derived from the base classState , defined in the Ptolemy kernel. Th
derived state classes currently defined in the kernel areFloatState , IntState , Complex-
State , StringState , FloatArrayState , IntArrayState , ComplexArrayState , and
StringArrayState .

A state can be used in a star method just like the corresponding predefined data
As an example, suppose the star definition contains the following directive:

state {
Ptolemy Last updated: 8/26/97

2-22 Writing Stars for Simulation

e
the
r
he

this

d cast.

 point
 may
tion is

expres-

d a
n for
n
r-
name { myState }
type { float }
default { 1.0 }
descriptor { Gain parameter. }

}

This will define a member of classFloatState with default value 1.0. No attributes ar
defined, soA_CONSTANT andA_SETTABLE, the default attributes, are assumed. To use
value of a state, it should be cast to typedouble , either explicitly by the programmer o
implicitly by the context. For example, the value of this state can be accessed in tgo
method as follows:

go {
output%0 << double(myState) * double(input%0);

}

The references to input and output are explained above. The reference tomyState has an
explicit cast todouble ; this cast is defined inFloatState class. Similarly, a cast toint is
available for IntState , to Complex from ComplexState , and to const char* for
Stringstate). In principle, it is possible to rely on the compiler to automatically invoke
cast. However:

Warning : some compilers (notably some versions of g++) may not choose the expecte
In particular, g++ has been known to cast everything toFix if the explicit cast is omitted in
expressions similar to that above. The arithmetic is then performed using fixed-point
computations. This will be dramatically slower than double or integer arithmetic, and
yield unexpected results. It is best to explicitly cast states to the desired form. An excep
with simple assignment statements, like

double stateValue = myName;

Even g++ gets this right. Explicit casting should be used whenever a state is used in an
sion. For example, from the setup method of theSDFChop star, in whichuse_past_inputs
is an integer state,

if (int(use_past_inputs))
input.setSDFParams(int(nread),int(nread)+int(offset)-1);

else
input.setSDFParams(int(nread),int(nread)-1);

Note that the typeComplex is not a fundamental part of C++. We have implemente
subset of theComplex class as defined by several library vendors; we use our own versio
maximum portability. Using theComplexState class will automatically ensure the inclusio
of the appropriate header files. A member of theComplex class can be initialized and ope
ated upon any number of ways. For details, see “The Complex data type” on page 4-1.

A state may be updated by ordinary assignment in C++, as in the following lines
U. C. Berkeley Department of EECS

The Almagest 2-23

ator

o.
a pre-
 can

lt file-

tabs, or

-

-

double t = expression ;
myState = t;

This works because theFloatState class definition has overloaded the assignment oper
(“=”) to set its value from adouble . Similarly, anIntState can be set from anint and a
StringState can be set from achar* or const char* .

2.4.4 Array States

TheArrayState classes (FloatArrayState , IntArrayState andComplexAr-
rayState) are used to store arrays of data. For example,

state {
name { taps }
type { FloatArray }
default { "0.0 0.0 0.0 0.0" }
descriptor { An array of length four. }

}

defines an array of typedouble with dimension four, with each element initialized to zer
Quotes must surround the initial values. Alternatively, you can specify a file name with
fix <. If you have a file namedfoo that contains the default values for an array state, you
write,

default { "< foo" }

If you expect others to be able to use your star, however, you should specify the defau
name using a full path. For instance,

default { "< ~/user_name/directory/foo" }

For default files installed in the Ptolemy directory tree, this should read:

default { "< $PTOLEMY/directory/foo" }

The format of the file is also a sequence of data separated by spaces (or newlines,
commas). File input can be combined with direct data input as in

default { "< foo 2.0" }
default { "0.5 < foo < bar" }

A “repeat” notation is also supported forArrayState objects: the two value strings

default { "1.0 [5]" }
default { "1.0 1.0 1.0 1.0 1.0" }

are equivalent. Any integer expression may appear inside the brackets[] . The number of ele-
ments in anArrayState can be determined by calling itssize method. The size is not spec
ified explicitly, but is calculated by scanning the default value.

As an example of how to access the elements of anArrayState , supposefState is
a FloatState andaState is aFloatArrayState . The accesses, like those in the follow
Ptolemy Last updated: 8/26/97

2-24 Writing Stars for Simulation

-

ing lines, are routine:

fState = aState[1] + 0.5;
aState[1] = (double)fState * 10.0;
aState[0] = (double)fState * aState[2];

For a more complete example of the use ofFloatArrayState , consider theFIR star defined
below. Note that this is a simplified version of the SDFFIR star that does not permit interpo
lation or decimation.

defstar {
name {FIR}
domain {SDF}
desc {

A Finite Impulse Response (FIR) filter.
}
input {

name {signalIn}
type {float}

}
output {

name {signalOut}
type {float}

}
state {

name {taps}
type {floatarray}
default { "-.04 -.001 .17 .37 .37 .17 -.0018 -.04" }
desc { Filter tap values. }

}
setup {

// tell the PortHole the maximum delay we will use
signalIn.setSDFParams(1, taps.size() - 1);

}
go {

double out = 0.0;
for (int i = 0; i < taps.size(); i++)

out += taps[i] * double(signalIn%i);
signalOut%0 << out;

}
}

Notice thesetup method; this is necessary to allocate a buffer in the inputPortHole large
enough to hold the particles that are accessed in thego method. Notice the use of thesize
method of theFloatArrayState .

We now illustrate anptcl interpreter session using the aboveFIR star. Assume there
is a galaxy calledsingen that generates a sine wave. you can use it with theFIR star, as in:

star foop singen
star fir FIR
star printer Printer
U. C. Berkeley Department of EECS

The Almagest 2-25

hen

that
connect foop output fir signalIn
connect fir signalOut printer input
print fir
Star: mainGalaxy.fir

...
States in the star fir:
mainGalaxy.fir.taps type: FloatArray
initial value: -.040609 -.001628 .17853 .37665 .37665 .17853
-.001628 -.040609
current value:
0 -0.040609
1 -0.001628
2 .17853
3 .37665
4 .37665
5 .17853
6 -0.001628
7 -0.040609

Then you can redefine taps by reading them from a file “foo ”, which contains the data:

1.1
-2.2
3.3
-4.4

The resulting interpreter commands are:

setstate fir taps "<foo 5.5"
print fir
Star: mainGalaxy.fir

...
States in the star fir:
mainGalaxy.fir.taps type: FloatArray
initial value: <foo 5.5
current value:
0 1.1
1 -2.2
2 3.3
3 -4.4
4 5.5
PTOLEMY:

This illustrates thatboth the contents and the size of aFloatArrayState are changed by a
setstate command. Also, notice that file values may be combined with string values; w

< filename

occurs in aninitial value, it is processed exactly as if the whole file were substituted at
Ptolemy Last updated: 8/26/97

2-26 Writing Stars for Simulation

s star.
 derived
 of the
d

 also
move
esired

s
he code

output

 port.
will

rthole
ected
f the

reasing

e
output
point.

2.5 Modifying PortHoles and States in Derived Classes
When one star is derived from another, it inherits all the states of the base clas

Sometimes we want to modify some aspect of the behavior of a base class state in the
class. This is done by placing calls to member functions of the state in the constructor
derived star. Useful functions includesetInitValue to change the default value, an
setAttibututes andclearAttributes to modify attributes.

When creating new stars derived from stars already in the system, you will often
wish to customize them by adding new ports or states. In addition, you may wish to re
ports or states. Although, strictly speaking, you cannot do this, you can achieve the d
effect by simply hiding them from the user.

The following code will hide a particular state namedstatename from the user:

constructor {
statename.clearAttributes(A_SETTABLE);

}

This means that when the user invokes “edit-params” inpigi , statename will not appear a
one of the parameters of the star. Of course, the state can still be set and used within t
defining the star.

The same effect can be achieved with outputs or inputs. For instance, given an
namedoutput , you can use the following code:

constructor {
output.setAttributes(P_HIDDEN);

}

This means that when you create an icon for this star, no terminal will appear for this
This is most useful whenoutput is a multiporthole, because this means simply that there
be zero instances of the individual portholes.

This technique can also be used to hide individual portholes, however, the po
will still be present, so it must be used with caution. Most domains do not allow disconn
portholes, and will flag an error. You can explicitly connect the port within the body o
star (see the kernel manual).

2.6 Programming examples
The following star has no inputs, just an output. The source star generates a linearly inc
or decreasing sequence of float particles on its output. The statevalue is initialized to define
the value of the firstoutput . Each time the stargo method fires, thevalue state is updated
to store the nextoutput value. Hence, the attributes of thevalue state are set so that th
state can be overwritten by the star’s methods. By default, the star will generate the
sequence 0.0, 1.0, 2.0, etc.

defstar {
name { Ramp }
domain { SDF }
desc {
U. C. Berkeley Department of EECS

The Almagest 2-27

uts
Generates a ramp signal, starting at "value" (default 0)
with step size "step" (default 1).

}
output {

name { output }
type { float }

}
state {

name { step }
type { float }
default { 1.0 }
desc { Increment from one sample to the next. }

}
state {

name { value }
type { float }
default { 0.0 }
desc { Initial (or latest) value output by Ramp. }
attributes { A_SETTABLE|A_NONCONSTANT }

}
go {

double t = double(value);
output%0 << t;
t += step;
value = t;

}
}

The next example is theGain star, which multiplies its input by a constant and outp
the result:

defstar {
name { Gain }
domain { SDF }
desc { Amplifier: output is input times "gain" (default 1.0). }
input {

name { input }
type { float }

}
output {

name { output }
type { float }

}
state {

name { gain }
type { float }
default { "1.0" }
desc { Gain of the star. }

}
go {

output%0 << double(gain) * double(input%0);
}

}

Ptolemy Last updated: 8/26/97

2-28 Writing Stars for Simulation

alue
This
ed

allo-

y
 a pro-
e envi-
y (a
The following example of thePrinter star illustrates multiple inputs,ANYTYPE inputs, and
the use of theprint method of theParticle class.

defstar {
name { Printer }
domain { SDF }
inmulti {

name { input }
type { ANYTYPE }

}
state {

name { fileName }
type { string }
default { "<cout>" }
desc { Filename for output. }

}
hinclude { "pt_fstream.h" }
protected {

pt_ofstream *p_out;
}
constructor { p_out = 0;}
destructor { LOG_DEL; delete p_out;}
setup {

delete p_out;
p_out = new pt_ofstream(fileName);

}
go {

pt_ofstream& output = *p_out;
MPHIter nexti(input);
PortHole* p;
while ((p = nexti++) != 0)

output << ((*p)%0).print() << "\t";
output << "\n";

}
}

This star ispolymorphic since it can operate on any type of input. Note that the default v
of the output filename is<cout> , which causes the output to go to the standard output.
and other aspects of thept_ofstream output stream class are explained below in “Extend
input and output stream classes” on page 3-2. The iteratornexti used to scan the input is
explained in “Iterators” on page 3-10.

2.7 Preventing Memory Leaks in C++ Code
Memory leaks occur when new memory is allocated dynamically and never de

cated. In C programs, new memory is allocated by themalloc or calloc functions, and
deallocated by thefree function. In C++, new memory is usually allocated by thenew oper-
ator and deallocated by thedelete or thedelete [] operator. The problem with memor
leaks is that they accumulate over time and, if left unchecked, may cripple or even crash
gram. We have taken extensive steps to eliminate memory leaks in the Ptolemy softwar
ronment by following the guidelines below and by tracking memory leaks with Purif
U. C. Berkeley Department of EECS

The Almagest 2-29

rong
 data
In C

ith-

llowing

mber

in-
tructor
eeing

emory
 which
he case
ges are

d by
uld

nd code

ed by

 have
r func-
r func-
commercial tool from Pure Software Inc.).

One of the most common mistakes leading to memory leaks is applying the w
delete operator. Thedelete operator should be used to free a single allocated class or
value, whereas thedelete [] operator should be used to free an array of data values.
programming, thefree function does not make this distinction.

Another common mistake is overwriting a variable containing dynamic memory w
out freeing any existing memory first. For example, assume thatthestring is a data mem-
ber of a class, and in one of the methods (other than the constructor), there is the fo
statement:

thestring = new char[buflen];

This code should be

delete [] thestring;
thestring = new char[buflen];

Using delete is not necessary in a class’s constructor because the data me
would not have been allocated previously.

In writing Ptolemy stars, thedelete operator should be applied to variables conta
ing dynamic memory in both the star’s setup and destructor methods. In the star’s cons
method, the variables containing dynamic memory should be initialized to zero. By fr
memory in both the setup and destructor methods, one covers all possible cases of m
leaks during simulation. Deallocating memory in the setup method handles the case in
the user restarts a simulation, whereas deallocating memory in the destructor covers t
in which the user exits a simulation. This includes the cases that arise when error messa
generated. For an example implementation, see the implementation of theSDFPrinter star
given in Section 2.6.

Another common mistake is not paying attention to the kinds of strings returne
functions. The functionsavestring returns a new string dynamically allocated and sho
be deleted when no longer used. TheexpandPathName , tempFileName , andmakeLower
functions return new strings, as does theTarget::writeFileName method. Therefore, the
strings returned by these routines should be deleted when they are no longer needed, a
such as

savestring(expandPathName(s))

is redundant and should be simplified to

expandPathName(s)

to avoid a memory leak due to not keeping track of the dynamic memory return
the functionsavestring .

Occasionally, dynamic memory is being used when instead local memory could
been used. For example, if a variable is only used as a local variable inside a method o
tion and the value of the local variable is not returned or passed to outside the method o
tion, then it would be better to simply use local memory. For example,

char* localstring = new char[len + 1];
if (person == absent) return;
strcpy(localstring, otherstring);
delete [] localstring;
Ptolemy Last updated: 8/26/97

2-30 Writing Stars for Simulation

bi-

ave

. A good

e

the
ble to
s

tored,
le, in

ould
return;

could easily return without deallocatinglocalstring . The code should be rewritten
to use either theStringList or InfString class, e.g.,

InfString localstring;
if (person == absent) return;
localstring = otherstring;
return;

Both StringList and InfString can manage the construction of strings of ar
trary size. When a function or method exits, the destructors of theStringList and Inf-
String variables will automatically be called which will deallocate their memory. Casts h
been defined that will convertStringList to aconst char* string andInfString to a
const char* or a char* string, so that instances of theStringList and InfString
classes can be passed as is into routines that take character array (string) arguments
example of using theStringList class is in the functioncompile in the file$PTOLEMY/
src/pigilib/pigiLoader.cc . A simpler example from the same file is thenoPermis-
sion function which builds up an error message into a single string:

StringList sl = msg;
sl << file << ": " << sys_errlist[errno];
ErrAdd(sl);

TheerrAdd function takes aconst char* argument, sosl will converted automatically to
a const char* string by the C++ compiler.

Instead of using the new and delete operators, it is tempting to use constructs lik

char localstring[buflen + 1];

in which buflen is a variable, because the compiler will automatically handle
deallocation of the memory. Unfortunately, this syntax is a Gnu extension and not porta
other C++ compilers. Instead, theStringList andInfString classes should be used, a
the previous example involvinglocalstring illustrates.

Sometimes the return value from a routine that returns dynamic memory is not s
and therefore, the pointer to the dynamic memory gets lost. This occurs, for examp
nested function calls. Code such as

puts(savestring(s));

should be written as

const char* newstring = savestring(s);
puts(newstring);
delete [] newstring;

Several places in Ptolemy, especially in the schedulers and targets, rely on thehash-
string function, which returns dynamic memory. This dynamic memory, however, sh
not be deallocated because it may be reused by other calls tohashstring . It is the responsi-
bility of the hashstring function to deallocate any memory it has allocated.
U. C. Berkeley Department of EECS

 often
rs. Com-

hat are
n stars,
y

) in the
ce as a
 be

an be
ver,
ically

ssary

ut
ss
ct will

type of
f each.
Chapter 3. Infrastructure for Star
Writers

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee

3.1 Introduction
The Ptolemy kernel provides a number of C++ classes that are fairly generic and

prove useful to star writers. Some of these are essential, such as those that handle erro
plete documentation of the kernel classes is given inThe Kernel Manualvolume of The
Almagest. Here, we summarize only the most generic of these classes, i.e., the ones t
generally useful to star programmers. All of the classes described here may be used i
provided that the star writer includes the appropriate header files. For instance, the entr

ccinclude { "pt_fstream.h" }

will permit the star to create instances of the basic stream classes (described below
body of functions that are defined in the star. If the user wishes to create such an instan
private , protected , or public member of the star, then the header file needs to
included in the.h file, specified as done in the line

hinclude { "pt_fstream.h" }

in the Printer star defined on page 2-28.

The source code for most of classes and functions described in this section c
found in $PTOLEMY/src/kernel . The source code is the ultimate reference. Moreo
since this directory is automatically searched for include files when a star is dynam
linked, no special effort is required to specify where to find the include files.

3.2 Handling Errors
Uniform handling of errors is provided by theError class. TheError class provides

four static methods, summarized in table 3-1. From within a star definition, it is not nece
to explicitly include theError.h header file. A typical use of the class is shown below:

Error::abortRun(*this,"this message is displayed");

The notation “Error::abortRun ” is the way static methods are invoked in C++ witho
having a pointer to an instance of theError class. The first argument tells the error cla
which object is flagging the error; this is strongly recommended. The name of the obje
be printed along with the error message. Note that theabortRun call does not cause an
immediate halt. It simply marks a flag that the scheduler must test for.

The table uses standard C++ notation to indicate how to use the methods. The
the return value and the type of the arguments is given, together with an explanation o
When an argument has the annotation “=something,” then this argument is optional. If it is

3-2 Infrastructure for Star Writers

ay to
k” on
d out-

tive dis-

er

r.

es-

es-

es-

es-
omitted from the call, then the value used will besomething.

TABLE 3-1: A summary of the static methods in the Error class. Each method has two tem-
plates, as shown only for the abortRun method. The others are the same.

3.3 I/O Classes
Star programmers often need to communicate with the user. The most flexible w

do this is to build a customized, window-based interface, as described in “Using Tcl/T
page 5-1. Often, however, it is sufficient to plot some data or to just construct strings an
put them to files or to the standard output1. To do the latter, use the classespt_ifstream and
pt_ofstream , which are derived from the standard C++ stream classesifstream and
ofstream , respectively. More sophisticated output can be obtained with theXGraph class,
the histogram classes, and classes that interface to Tk for generating animated, interac
plays. All of these classes are summarized in this section.

3.3.1 Extended input and output stream classes

Thept_ofstream class is used in thePrinter star on page 2-28. Include the head
file pt_fstream.h . Thept_ofstream constructor is invoked in thesetup method with

1. Note that when users run pigi, the standard output may appear on a window that is buried. The
-console option to pigi helps, in that it creates a specific window for the standard output and other
interactions with the user. The standard output is much more useful with ptcl, the textual interprete

 Error class #include "Error.h"

method description

static void abortRun (signal a fatal error, and request a halt to the run
const NamedObj&
obj,

the object triggering the error

const char*, the error message
const char* = 0, optional additional message to concatenate to the error m

sage
const char* = 0) optional additional message to concatenate to the error m

sage
static void abortRun signal a fatal error, and request a halt to the run

const char*, the error message
const char* = 0, optional additional message to concatenate to the error m

sage
const char* = 0) optional additional message to concatenate to the error m

sage
static void error

(...)
signal an error, without requesting a halt to the run

static void message
(...)

output a message to the user

static void warn
(...)

generate a warning message
U. C. Berkeley Department of EECS

The Almagest 3-3

e

r to the

of the

-

the call tonew. It would not do to invoke it in the constructor for the star, since thefileName
state would not have been initialized. Notice that thesetup method reclaims the memory
allocated in previous runs (or previous invocations of thesetup method) before creating a
new pt_ofstream object. Notice that we are not using awrapup method to reclaim the
memory, since this method is not invoked if an error occurs during a run.

The classespt_ifstream and pt_ofstream are only a slight extension of th
classesifstream andofstream. They add the following features:

 • First, certain special file names are recognized as arguments to the constructor o
open method. These file names are<cin> , <cout> , <cerr> , or <clog> (the angle
brackets must be part of the string), then the corresponding standard stream
same name is used for input (pt_ifstream) or output (pt_ofstream). In addition,
C standard I/O fans can specify<stdin> , <stdout> , or <stderr> .

 • Second, the PtolemyexpandPathName (see table3-7 on page 3-8) is applied to
the filename before it is opened, permitting it to start with~user or $VAR.

 • Finally, if a failure occurs when the file is opened,Error::abortRun is called with
an appropriate error message, including the Unix error condition.

These classes can be used for binary character data as well as ASCII.

3.3.2 Generating graphs using the XGraph class

The XGraph class provides an interface to thepxgraph program, used for plotting
data on an X window system display. Thepxgraph program and all its options are docu
mented in theUser’s Manual. An example of the output frompxgraph is shown in figure 3-
1.The most useful methods of the class are summarized in table 3-2.

Using theXGraph class involves an invocation of theinitialize method, some
number of invocations of theaddPoint method, followed by an invocation of thetermi-

FIGURE 3-1: An example of the output from the pxgraph program, which can be accessed using
the XGraph class.
Ptolemy Last updated: 8/26/97

3-4 Infrastructure for Star Writers

each
ak the

odi-
r data
le 3-3.

o
it.

n

nate method. Multiple data sets (currently up to 64) may be plotted together. They will
be given a distinctive color and/or line pattern. Within each data set, it is possible to bre
connecting lines between points by calling thenewTrace method.

3.3.3 Classes for displaying animated bar graphs

TheBarGraph class creates a Tk window that displays a bar graph that can be m
fied dynamically, while a simulation runs. An example with 12 data sets and 8 bars pe
set is shown in figure 3-2. The most useful methods of the class are summarized in tab
This class is directly usable only by stars linked into apigi process, not to stars linked int
the interpreter,ptcl . The reason for this is thatptcl does not have the Tk code linked into
Correspondingly, the class definition source code is in$PTOLEMY/src/pigilib , rather than
the more usual$PTOLEMY/src/kernel .

 XGraph class #include "Display.h"

method description

void initialize (start a fresh plot
Block* parent, pointer to the block using the class
int noGraphs, the number of data sets to plot
const char*
options,

options to pass to the pxgraph program

const char*
title,

title to put on the graph

const char*
saveFile = 0,

name of a file to save data to

int ignore = 0) number of initial points to ignore
void addPoint (add the next point to the first data set with implicit x positio

float y) the vertical position
void addPoint (add a single point to the first data set

float x, the horizontal position of the point to plot
float y) the vertical position of the point to plot

void addPoint (add a single point to a particular data set
int dataSet, the number of the data set (starting with 1)
float x, the horizontal position of the point to plot
float y) the vertical position of the point to plot

void newTrace (start a new trace disconnected from the previous trace
int dataSet = 1) the data set for the new trace

void terminate () plot the data using the pxgraph program

TABLE 3-2: A summary of the most useful methods of the XGraph class, which provides a simple
interface to the pxgraph program, used for plotting data.
U. C. Berkeley Department of EECS

The Almagest 3-5
3.3.4 Collecting statistics using the histogram classes

The Histogram class constructs a histogram of data supplied. TheXHistogram

FIGURE 3-2: An example of an animated bar graph created using the BarGraph class. This class
uses Tk, so it is available under pigi , but not under ptcl .

 BarGraph class #include "BarGraph.h"

method description

int setup (start a fresh plot; return FALSE if setup fails
Block* parent, pointer to the block using the class
char* desc, label for the bar graph
int numInputs, the number of data sets to plot
int numBars the number of bars per data set to show at once
double top, the numerical value that will produce the highest bar
double bottom, the numerical value that will produce the lowest bar
char* geometry, the starting position for the window (e.g. “+0+0” or “-0-0”)
double width, the starting width of the window (in cm)
double height) the starting height of the window (in cm)

int update (modify or add a bar; return FALSE if it fails
int dataSet, the number of the data set (starting with 0)
int bar, the horizontal position of the point to plot
double y) the requested height of the bar

TABLE 3-3: A summary of the most useful methods of the BarGraph class, which creates ani-
mated bar graph charts in a window, and is available to stars running under pigi .
Ptolemy Last updated: 8/26/97

3-6 Infrastructure for Star Writers

rized in

ithin
e same
 0 is
 within
ou

of

ber

m

f

class also constructs a histogram, but then plots it using thepxgraph program. An example of
such a plot is shown in figure 3-3. The most useful methods of both classes are summa
tables 3-4 and 3-5.

TheHistogram class counts the number of occurrences of data values that fall w
each of a number of bins. Each bin represents a range of numbers. All bins have th
width, and the center of each bin will be an integer multiple of this width. Bin number
always that with the smallest center. Bins are added if new data arrives that does not fit
any of the existing bins. ThegetData method is used to read out the contents of a bin. If y
start with bin number 0, and proceed untilgetData returnsFALSE, you will have read all the
bins.

FIGURE 3-3: An example of a histogram generated using the XHistogram class.

 Histogram class #include "Histogram.h"

description

Histogram (constructor
double width =
1.0,

the width of each bin; bins are centered at integer multiples
this

int maxBins =
1000)

since bins are added as needed, it is wise to limit their num

void add (add to the count of the bin within which the given data falls
double x) a data point for the histogram

int numCounts () return the number of data values used so far in the histogra
double mean () return the average value of all observed data so far
double variance () return the variance of the observed data so far
int getData (get the count for a given bin; return FALSE if the bin is out o

range
int binno, starting at 0, the bin number
int& count, place to store the count for the given bin
double& bin-
Center)

place to store the center of the given bin

TABLE 3-4: A summary of the most useful methods of the Histogram class, which creates his-
togram charts in a window, and is available to stars running under pigi .
U. C. Berkeley Department of EECS

The Almagest 3-7

 of

nl

ber

m

 XHistogram class #include "Histogram.h"

method description

void initialize (start a fresh histogram
Block* parent, pointer to the block using the class
double binWidth, the width of each bin; bins are centered at integer multiples

this
const char*
options,

options to pass to the pxgraph program, in addition to -bar -
-brw

const char*
title,

title to put on the histogram

const char*
saveFile,

name of a file to save data to (or 0 if none)

int maxBins =
1000)

since bins are added as needed, it is wise to limit their num

void addPoint (add to the count of the bin within which the given data falls
double y) a data point for the histogram

int numCounts () return the number of data values used so far in the histogra
double mean () return the average value of all observed data so far
double variance () return the variance of the observed data so far
void terminate () plot the histogram using the pxgraph program

TABLE 3-5: A class for displaying histograms.
Ptolemy Last updated: 8/26/97

3-8 Infrastructure for Star Writers

es that
mma-
stem-

summa-
 refer-

 be

e,
3.4 String Functions and Classes
The Ptolemy kernel defines some ordinary functions (not classes) plus two class

are useful for building and manipulating strings. The non-class string functions are su
rized in table 3-6.. These include functions for copying strings, adding strings to a sy

wide hash table, creating temporary file names. The non-class pathname functions are
rized in table 3-7. These functions are for expanding file names that might begin with a
ence to a user’s home directory ("~username") or an shell environment variable
("$VARIABLE"). Also provided is a function for verifying that an external program to
invoked is available, and a function for searching the user’s path.

 ordinary functions for strings #include "miscFuncs.h"

method description

char* savestring (create a new copy of the given text and return a
pointer to it; the caller must eventually delete the
string.

const char* text)

const char* hashstring (save a copy of the text in a system-wide hash tabl
if it isn’t already there, and return a pointer to the
entry.

const char* text)

char* tempFileName () return a new, unique temporary file name; the
caller must eventually delete the string.

const char* expandPathName (return an expanded version of the filename argu-
ment, which may start with “~”, “~user”, or
“$var”; the expanded result is in static storage, and
will be overwritten by the next call.

const char* filename)

TABLE 3-6: Non-class (ordinary) functions available in the Ptolemy kernel for string manipulation

 ordinary functions for path search #include "paths.h"

method description

int progNotFound (flag an error and return TRUE if a program is not
found

const char* program, the name of the program to find in the user’s path
const char* extramsg =
0)

message to add to error message if the program
isn’t found

const char* pathSearch (find a file in a Unix-style path, returning the direc-
tory name

const char* file, file name to find in the path
const char* path = 0) if non-zero, the path to use instead of the user’s

path

TABLE 3-7: Non-class (ordinary) functions available in the Ptolemy kernel for certain pathname
manipulations.
U. C. Berkeley Department of EECS

The Almagest 3-9

-

-

”

Two classes are provided for manipulating strings,InfString , andStringList, these
classes are summarized in figure 3-8.

 StringList class #include "StringList.h"

method description

StringList constructors can take any of the following possible argu-
ments

none return an empty StringList
const StringList&
s

copy s and return a new, identical StringList

char c return a StringList with one string of one character
const char* string copy the string and makes a one element StringList contain

ing it
int i create an ASCII representation of the number and return a

one element StringList with that number as the elementdouble x

unsigned u

StringList& operator =
arg

assignment takes the same types of arguments as the con
structors, except “none”

StringList& operator
<< arg

add one or more elements to a StringList; this takes the
same types of arguments as the constructors, except “none

operator const char* join all elements together and return as a single string;
void initialize () delete all elements, making the StringList empty
int length () return the length in characters (sum of the lengths of the

elements)
int numPieces () return the number of elements
const char* head () return the first element
char* newCopy () return the concatenated elements in a single newly allo-

cated string; the caller must free the memory allocated.

 InfString class #include "InfString.h"

method description

all StringList methods see above
operator char* join all elements together and return as a single string;

TABLE 3-8: A summary of the most useful methods of the StringList and InfString
classes. The InfString class inherits all of the methods from StringList , add-
ing only the cast to char* .
Ptolemy Last updated: 8/26/97

3-10 Infrastructure for Star Writers

es are
about
e, and
erhaps
 string,

 not
ure
ll

at

 to a
 the

oper-
plished

frag-
Although these two classes are almost identical in design, their recommended us
quite different. The first is designed for building up strings without having to be concerned
the ultimate size of the string. New characters can be appended to the string at any tim
memory will be allocated to accommodate them. When you are ready to use the string, p
by passing it to a function that expects the standard character array representation of the
then simply cast the object tochar* .

In fact, InfString is publicly derived fromStringList , adding only the cast to
char* . StringList is implemented as a list of strings, where the size of the list is
bounded ahead of time.StringList is recommended for applications where the list struct
is to be preserved. The cast tochar* in InfString destroys the list structure, consolidating a
its strings into one contiguous string.

The most useful methods for both classes are summarized in table . SinceInfString
differs by only one operator, we show only that one operator.

A word of warning is in order. If a function or expression returns aStringList or
InfString , and that value is not assigned to aStringList or InfString variable or refer-
ence, and the(const char*) or (char*) cast is used, it is possible (likely under g++) th
the StringList or InfString temporary will be destroyed too soon, leaving theconst
char* or char* pointer pointing to garbage. The solution is to assign the returned value
local StringList or InfString before performing the cast. Suppose, for example, that
function foo returns anInfString . Further, suppose the functionbar takes achar* argu-
ment. Then the following code will fail:

bar(foo());

(Note that the cast tochar* is implicit). The following code will succeed:
InfString x = foo();
bar(x);

3.5 Iterators
TheStringList class is one of several list classes in the Ptolemy kernel. A basic

ation on list classes is to sequentially access their members one at a time. This is accom
using an iterator class, companion to the list class. For theStringList class, the iterator is
calledStringListIter . Its methods are summarized in table 3-9. An example program

ment using this is given below:
StringListIter item(myList);
const char* string;

 Str ingListIter class #include "Str ingList.h"

method description

StringList (constructor
StringList& list) the list over which the iterator will iterate

const char* next () return the next string on the list, or 0 if there are no more
const char* operator
++ ()

a synonym for “next”

void reset () reset the iterator to start at the head again

TABLE 3-9: An example of an iterator class, used to access the elements of a list class.
U. C. Berkeley Department of EECS

The Almagest 3-11

with a

sed to
a

e it has
 other
t.

st-in,

n

while ((string = item++) != 0) cout << string << "\n";

In this fragment,myList is assumed to be aStringList previously set up.

3.6 List Classes
The StringList class is privately derived from theSequentialList class, an

extremely useful class used throughout Ptolemy. This class implements a linked list
running count of the number of elements. It uses the generic pointer technique, with

typedef void* Pointer

Thus, items in a sequential list can be pointers to any object, with a generic pointer u
access the object. In derived classes, likeStringList , this generic pointer is converted to
specific type of pointer, likeconst char* . The methods are summarized in table 3-10.

An important point to keep in mind when using aSequentialList is that its
destructor does not delete the elements in the list. It would not be possible to do so, sinc
only a generic pointer. Also, note that random access (by element number, or any
method) can be very inefficient, since it would require sequentially chaining down the lis

SequentialList has an iterator class calledListIter . The++ operator (ornext
member function) returns aPointer .

In table 3-11 are two classes privately derived fromSequentialList , Queue and
Stack . The first of these can implement either a first-in, first-out (FIFO) queue, or a la

TABLE 3-10: The most useful basic list structure defined in the Ptolemy kernel.

 SequentialList class #include "DataStruct.h"

method description

void append (Pointer p) add the element p to the end of the list
Pointer elem (int n) return the n-th element on the list (zero if there are

fewer than n)
int empty () return 1 if empty, 0 if not
Pointer getAndRemove () return and remove the first element on the list

(return zero if empty)
Pointer getTailAndRemove () return and remove the last element on the list (retur

zero if empty)
Pointer head () return the first element on the list (zero if empty)
void initialize () remove all elements from the list
int member (Pointer p) return 1 if the list has a pointer equal to p, 0 if not
void prepend (Pointer p) add the element p to the beginning of the list
int remove (Pointer p) if the list has a pointer equal to p, remove it, and

return 1; 0 if not
int size () return the number of elements on the list
Pointer tail () return the last element on the list (zero if empty)
Ptolemy Last updated: 8/26/97

3-12 Infrastructure for Star Writers

f

f

first-out (LIFO) queue. The second implements a stack, which is also a LIFO queue.

TABLE 3-11: Two classes derived from SequentialList.

 Queue class #include "DataStruct.h"

method description

Pointer getHead () return and remove the first element on the list (return zero i
empty)

Pointer getTail () return and remove the last element on the list (return zero i
empty)

void initialize () remove all elements from the list
void putHead (Pointer
p)

add the element p to the beginning of the list

void putTail (Pointer
p)

add the element p to the end of the list

int size () return the number of elements on the list

 Stack class #include "DataStruct.h"

method description

Pointer accessTop () return the top of the stack without removing it (return zero if
empty)

void initialize () remove all elements from the list
Pointer popTop () return and remove the top element from the stack (zero if

empty)
void pushBottom
(Pointer p)

add the element p to the bottom of the stack

void pushTop (Pointer
p)

add the element p to the top of the stack

int size () return the number of elements on the list
U. C. Berkeley Department of EECS

The Almagest 3-13

com-
re effi-

re

u may
d

e

 of the
 table

his

ses the
xam-
3.7 Hash Tables
Hash tables are lists that are indexed by an ASCII string. A “hashing function” is

puted from the string to make random accesses reasonably efficient; they are much mo
cient, for example, than a linear search over aSequentialList . Two such classes are
provided in the Ptolemy kernel. The first,HashTable , is generic, in that the table entries a
of typePointer , and thus can point to any user-defined data structure. The second,TextTa-
ble , is more specialized; the entries are strings. It is derived fromHashTable .

The HashTable class is summarized in table 3-12 andTextTable class is summa-

rized in table 3-13. Only the most useful (and easily used) methods are described. Yo
want to refer to the source code for more information. TheHashTable class has a standar
iterator calledHashTableIter , where thenext method and++ operator return a pointer to
classHashEntry . This class has aconst char* key() method that returns the key for th
entry, and aPointer value() method that returns a pointer to the entry.TextTable has an
iterator calledTextTableIter , where thenext method and++ operator return typeconst
char* .

Sophisticated users will often want to derive new classes fromHashTable . The rea-
son is that the methods that look up data in the table can be defined to return pointers
appropriate type. Moreover, the deallocation of memory when an entry is deleted or the
itself is deleted can be automated.TextTable is a good example of such a derived class. T
is not possible with the genericHashTable class, because thePointer type does not give
enough information to know what destructor to invoke. Thus, when using the genericHash-
Table class, the user should explicitly delete the objects pointed to by thePointer if they
were dynamically created and are no longer needed. A detailed example that directly u
HashTable class, without defining a derived class, is given in the next section. In that e

 HashTable class #include "HashTable.h"

method description

void clear () empty the table
virtual void cleanup (

Pointer p)
does nothing; in derived classes, this might deallocate
memory

int hasKey (
const char* key)

return 1 if the given key is in the table, 0 otherwise

void insert (insert an entry; any previous entry with the same key is
replaced, and the cleanup method is called so that in
derived classes, its memory can be deallocated.

const char* key,

Pointer data)

Pointer lookup (lookup an entry; in a derived class, this could be over-
loaded to return a pointer of a more specific type.const char* key)

int remove (remove the entry with the given key from the table; note
that the object pointed to by the entry is not deallocated.const char* key)

int size () return the number of entries in the hash table

TABLE 3-12: A summary of the most useful methods of the HashTable class
Ptolemy Last updated: 8/26/97

3-14 Infrastructure for Star Writers

n the
eleted.

ommon
em-
f point-

able to
ple, thePointer entries point to stars in a universe, so they should not be deleted whe
entries in the table are deleted. Their memory will be deallocated when the universe is d

In some future version,HashTable might be reimplemented using templates.

3.8 Sharing Data Structures Across Multiple Stars
It is sometimes desirable to have a set of stars that share and manipulate a c

data structure1. A simple way to accomplish this is to define a star that contains a static m
ber. Suppose, for example, you wish to define a class of stars that create a shared list o
ers, one to each instance of this type of star. Thus, every star of this type would be
access every other star of this type. Consider the following implementation:

defstar {
name { Share }
domain { SDF }
desc { A star with a shared data structure }
hinclude { “DataStruct.h” }
private {
 static SequentialList starList;
}
output {
 name { howmany }
 type { int }
}
code {

1. See the SDFWriteVar and SDFReadVar stars for a similar implementation.

 TextTable class #include "HashTable.h"

method description

void clear () empty the table
void cleanup (

Pointer p)
deallocate the string pointed to by p

int hasKey (
const char* key)

return 1 if the given key is in the table, 0 otherwise

void insert (create an entry containing a copy of string; any previous
entry with the same key is replaced, and the cleanup
method is called to deallocate its memory.

const char* key,

const char* string
)

const char* lookup (lookup an entry with the given key; return 0 if there is no
such entry.const char* key)

int remove (remove the entry with the given key from the table and
deallocated its memory.const char* key)

int size() return the number of entries in the hash table

TABLE 3-13: A summary of the most useful methods of the HashTable and TextTab l
classes.
U. C. Berkeley Department of EECS

The Almagest 3-15

 other
es:

e

e

 runs.
 run.

recreat-

will
s

star to
stars that
r, rather

truc-
xed by

ficient
ify
 and to
 SequentialList SDFShare::starList;
}
begin {
 starList.append(this);
}
go {
 howmany%0 << starList.size();
}
wrapup {
 starList.initialize();
}

}

This star has a static private member of typeSequentialList with namestarList. The
“static ” in C++ ensures that there will be no more than one instance of theSequential-
List object. That instance will be accessible to every instance of the star, but not to any
object (because the member is private). That one instance is actually declared by the lin

code {
 SequentialList SDFShare::starList;
}

The declaration will get put into the fileSDFShare.cc by the preprocessor. Notice that th
class name of the star isSDFShare not justShare . Thebegin method simply adds to the
sequential list a pointer to the star that invoked thebegin method (this). Note that you
should use thebegin method here rather than thesetup method because thebegin method
is always invoked exactly once, while thesetup method might be invoked more than onc
when the simulation starts up. Thego method sends to the output (namedhowmany) the size
of the list. This will be equal to the number of stars of this type in the universe.

Thewrapup method has the only tricky part of this code. It reinitializes theSequen-
tialList so that subsequent runs do not just simply add to a list created by previous
However, note that the wrapup method will not be invoked if an error occurs during the
Pigi ensures correct operation nonetheless by deleting all instances of the stars and
ing them if an error occurred on the previous run. Thus, between invocations of thebegin
method, either thewrapup method or the constructor for the star (and all its members)
be invoked. The constructor forSequentialList also initializes the list, so the list is alway
initialized before the firstbegin method is called.

The above approach is somewhat limited. You may want more than one type of
share a data structure. In this case, you should create a common base class for all the
will share the data structure. The shared data structure should be a protected membe
than a private member, so that it is accessible to derived stars.

Alternatively, you might want arbitrary subsets of stars to share distinct data s
tures, one for each subset. This can be accomplished by defining a static list that is inde
a string, and using a parameter in the star to identify to which subset it belongs. An ef
data structure to use for this is theHashTable . So for example, suppose we wanted to mod
the above star to create lists of stars with common values of a parameter “mySubset”,
output the number of stars in their subset. The above code becomes:

defstar {
Ptolemy Last updated: 8/26/97

3-16 Infrastructure for Star Writers

see
e of the

he star

em-
at
name { BetterShare }
domain { SDF }
desc { A star with a shared data structure }
hinclude { "DataStruct.h" }
hinclude { "HashTable.h" }
output {
 name { howmany }
 type { int }
}
state {
 name { mySubset }
 default { "subset A" }
 type { string }
}
private {
 static HashTable listOfLists;
 SequentialList* myList;
}
code {
 HashTable SDFBetterShare::listOfLists;
}
begin {
 if (listOfLists.hasKey((char*)mySubset)) {

myList = listOfLists.lookup((char*)mySubset);
 } else {

myList = new SequentialList;
listOfLists.insert((char*)mySubset,myList);

 }
 myList->append(this);
}
go {
 howmany%0 << myList->size();
}
wrapup {
 if (listOfLists.hasKey((char*)mySubset)) {

listOfLists.remove((char*)mySubset);
delete myList;

 }
}

}

In addition to the static private memberlistOfLists , we also have a pointermyList to a
SequentialList . Thebegin method is a bit more complicated now. It first checks to
whether an entry in the hash table has already been created with a key equal to the valu
state “mySubset”. If it has, then theSequentialList pointermyList is set equal to the
value of that entry. If it has not, then a newSequentialList is allocated and inserted into
the hash table with the appropriate key. The last action is simply to insert a pointer to t
instance intomyList .

Thego method is similar to before.

Thewrapup method is slightly more complicated, because it needs to free the m
ory allocated when the newSequentialList was allocated. However, it should free th
U. C. Berkeley Department of EECS

The Almagest 3-17

checks

o Vol-
e are
 uni-
er gen-
om

n

mbers;
e an
e
e user
memory only once, and there may be several star instances pointing to it. Thus, it first
the hash table to see whether there exists an entry with key equal tomySubset . If there does,
then it removes that entry and deletes theSequentialList myList .

3.9 Using Random Numbers
Ptolemy uses the Gnu library routines for the random number generation. Refer t

ume II of the Art of Computer Programming by Knuth for details about the method. Ther
built-in classes for some popular distributions: uniform, exponential, geometric, discrete
form, normal, log-normal, and so on. These classes use a common basic random numb
eration routine which is realized in theACG class. Here are some examples of using rand
numbers.

The first example is the part of the DEPoisson star. See the DE chapter for details o
how to write DE stars.

hinclude { <NegExp.h> }
ccinclude { <ACG.h> }
protected {

NegativeExpntl *random;
}
// declare the static random-number generator in the .cc file
code {

extern ACG* gen;
}
constructor {

random = NULL;
}
destructor {

if(random) delete random;
}
setup {

if(random) delete random;
random = new NegativeExpntl(double(meanTime),gen);
DERepeatStar :: setup();

}
go {

// Generate an exponential random variable.
double p = (*random)();

}

The built-in class for an exponentially distributed random numbers isNegativeExpntl .

The Ptolemy kernel provides a single object to generate a stream of random nu
the global variablegen (a poor choice of name, perhaps) is a pointer to it. We creat
instance of theNegativeExpntl class in thesetup method, not in the constructor sinc
Ptolemy allows you to change the seed of the random number generator. When th
changes the seed of the random number generator, the object pointed to bygen is deleted and
re-created, so all objects such as the one pointed to byrandom in this star become invalid.
Ptolemy Last updated: 8/26/97

3-18 Infrastructure for Star Writers

nother
e

Finally, we can read a random number of the specific type by calling operator() of the
NegativeExpnl class.

This example uses a uniformly distributed random number.

hinclude { <Uniform.h> }
ccinclude { <ACG.h> }
protected {

Uniform *random;
}
// declare the extern random-number generator in the .cc file
code {

extern ACG* gen;
}
constructor {

random = NULL;
}
destructor {

if(random) delete random;
}
setup {

if(random) delete random;
random = new Uniform(0,double(output.numberPorts()),gen);

}
go {

......
double p = (*random)();
......

}

You may notice that the two examples above are very similar in nature. You can get a
kind of distribution for the random numbers, by including the appropriate library file in th.h
file and by creating the instance with the right parameters in thesetup method.
U. C. Berkeley Department of EECS

e
ars that
e new

re four
er—

ix type,
ribed in

nd file
d write

ental

plex,
 read
ge 2-

kernel

ch of
resent
Chapter 4. Data Types

Authors: Joseph T. Buck
Michael J. Chen
Alireza Khazeni

Other Contributors: Brian Evans
Paul Haskell
Asawaree Kalavade
Tom Lane
Edward A. Lee
John Reekie

4.1 Introduction
Stars communicate by sending objects of typeParticle . A basic set of types, includ-

ing scalar and array types, built on theParticle class, is built into the Ptolemy kernel. Sinc
all of these particle types are derived from the same base class, it is possible to write st
operate on any of them (by referring only to the base class). It is also possible to defin
types that contain arbitrary C++ objects.

There are currently eleven key data types defined in the Ptolemy kernel. There a
numeric scalar types—complex, fixed-point, double precision floating-point, and integ
described in Section 4.2. Ptolemy supports a limited form of user-defined type—theMessage
type, described in Section 4.3. Each of the scalar numeric types has an equivalent matr
which uses a more complex version of the user-defined type mechanism; they are desc
Section 4.4.

There are two experimental types included in the basic set, containing strings a
references, described in Section 4.5. Ptolemy allows stars to be written that will read an
particles of any type; this mechanism is described in Section 4.6. Finally, some experim
types that are not officially supported by Ptolemy are described in Section 4.7.

4.2 Scalar Numeric Types
There are four scalar numeric data types defined in the Ptolemy kernel: com

fixed-point, double precision floating-point, and integer. All of these four types can be
from and written to portholes as described in “Reading inputs and writing outputs” on pa
17. The floating-point and integer data types are based on the standard C++double andint
types, and need no further explanation. To support the other two types, the Ptolemy
contains aComplex class and aFix class, which are described in the rest of this section.

4.2.1 The Complex data type

TheComplex data type in Ptolemy contains real and imaginary components, ea
which is specified as a double precision floating-point number. The notation used to rep

4-2 Data Types

orre-
y
 stan-

For

,

t (the

nc-
a complex number is a two number pair: (real, imaginary)—for example, (1.3,-4.5) c
sponds to the complex number 1.3− 4.5j. Complex implements a subset of the functionalit
of the complex number classes in the cfront and libg++ libraries, including most of the
dard arithmetic operators and a few transcendental functions.

Constructors:

Complex()
Create a complex number initialized to zero—that is, (0.0, 0.0).
example,
Complex C;

Complex(double real, double imag)
Create a complex number whose value is (real, imag). For example
Complex C(1.3,-4.5);

Complex(const Complex& arg)
Create a complex number with the same value as the argumen
copy constructor). For example,
Complex A(complexSourceNumber);

Basic operators:

The following list of arithmetic operators modify the value of the complex number. All fu
tions return a reference to the modified complex number (*this).

Complex& operator = (const Complex& arg)

Complex& operator += (const Complex& arg)

Complex& operator -= (const Complex& arg)

Complex& operator *= (const Complex& arg)

Complex& operator /= (const Complex& arg)

Complex& operator *= (double arg)

Complex& operator /= (double arg)

There are two operators to return the real and imaginary parts of the complex number:

double real() const

double imag() const

Non-member functions and operators:

The following one- and two-argument operators return a new complex number:

Complex operator + (const Complex& x, const Complex& y)

Complex operator - (const Complex& x, const Complex& y)

Complex operator * (const Complex& x, const Complex& y)
U. C. Berkeley Department of EECS

The Almagest 4-3

.

-
ation,
 fixed
Complex operator * (double x, const Complex& y)

Complex operator * (const Complex& x, double y)

Complex operator / (const Complex& x, const Complex& y)

Complex operator / (const Complex& x, double y)

Complex operator - (const Complex& x)
Return the negative of the complex number.

Complex conj (const Complex& x)
Return the complex conjugate of the number.

Complex sin(const Complex& x)

Complex cos(const Complex& x)

Complex exp(const Complex& x)

Complex log(const Complex& x)

Complex sqrt(const Complex& x)

Complex pow(double base, const Complex& expon)

Complex pow(const Complex& base, const Complex& expon)

Other general operators:

double abs(const Complex& x)
Return the absolute value, defined to be the square root of the norm

double arg(const Complex& x)
Return the value arctan(x.imag()/x.real()).

double norm(const Complex& x)
Return the value x.real() * x.real() + x.imag() * x.imag().

double real(const Complex& x)
Return the real part of the complex number.

double imag(const Complex& x)
Return the imaginary part of the complex number.

Comparison Operators:

int operator != (const Complex& x, const Complex& y)

int operator == (const Complex& x, const Complex& y)

4.2.2 The fixed-point data type

The fixed-point data type is implemented in Ptolemy by theFix class. This class sup
ports a two’s complement representation of a finite precision number. In fixed-point not
the partition between the integer part and the fractional part—the binary point—lies at a
Ptolemy Last updated: 10/10/97

4-4 Data Types

nge. If

 the
point

ed to

alled
tal

n
bits

the

with
st one

nd
es are
ecify

ration

n

position in the bit pattern. Its position represents a trade-off between precision and ra
the binary point lies to the right of all bits, then there is no fractional part.

Constructing Fixed-point variables

Variables of typeFix are defined by specifying the word length and the position of
binary point. At the user-interface level, precision is specified either by setting a fixed-
parameter to a “(value, precision)” pair, or by setting aprecision parameter. The former
gives the value and precision of some fixed-point value, while the latter is typically us
specify the internal precision of computations in a star.

In either case, the syntax of the precision is either“x.y” or “m/n”, wherex is the num-
ber of integer bits (including the sign bit),y andm are the number of fractional bits, andn is
the total number of bits. Thus, the total number of bits in the fixed-point number (also c
its length) is x+y or n. For example, a fixed-point number with precision “3.5” has a to
length of 8 bits, with 3 bits to the left and 5 bits to the right of the binary point.

At the source code level, methods working onFix objects either have the precisio
passed as an “x.y” or “m/n” string, or as two C++ integers that specify the total number of
and the number of integer bits including the sign bit (that is,n andx). For example, suppose
you have a star with a precision parameter namedprecision. Consider the following code:

Fix x = Fix(((const char *) precision));
if (x.invalid())

 Error::abortRun(*this, "Invalid precision");

The “precision” parameter is cast to a string and passed as a constructor argument to Fix
class. The error check verifies that the precision was valid.

There is a maximum value for the total length of aFix object which is specified by the
constantFIX_MAX_LENGTH in the file$PTOLEMY/src/kernel/Fix.h . The current value
is 64 bits. Numbers in theFix class are represented using two’s complement notation,
the sign bit stored in the bits to the left of the binary point. There must always be at lea
bit to the left of the binary point to store the sign.

In addition to its value, eachFix object contains information about its precision a
error codes indicating overflow, divide-by-zero, or bad format parameters. The error cod
set when errors occur in constructors or arithmetic operators. There are also fields to sp

a. whether rounding or truncation should take place when otherFix values are
assigned to it—truncation is the default

b. the response to an overflow or underflow on assignment—the default is satu
(see page 4-6).

Warning

TheFix type is still experimental.

Fixed-point states

State variables can be declared asFix or FixArray . The precision is specified by a
associated precision state using either of two syntaxes:
U. C. Berkeley Department of EECS

The Almagest 4-5

h the
d to
t with

 pre-
g the

ts as

art, 10,

n of the
on of

sed
o the
 • Specifying just a value itself in the dialog box creates a fixed-point number wit
default length of 24 bits and with the position of the binary point set as require
store the integer value. For example, the value 1.0 creates a fixed-point objec
precision 2.22, and the value 0.5 would create one with precision 1.23.

 • Specifying a (value, precision) pair create a fixed-point number with the specified
cision. For example, the value (2.546, 3.5) creates a fixed-point object by castin
double 2.546 to aFix with precision 3.5.

Fixed-point inputs and outputs

Fix types are available in Ptolemy as a type ofParticle . The conversion from an
int or a double to a Fix takes place using theFix::Fix(double) constructor which
makes aFix object with the default word length of 24 bits and the number of integer bi
needed required by the value. For instance, thedouble 10.3 will be converted to aFix with
precision 5.19, since 5 is the minimum number of bits needed to represent the integer p
including its sign bit.

To use theFix type in a star, the type of the portholes must be declared as “fix ”.
Stars that receive or transmit fixed-point data have parameters that specify the precisio
input and output in bits, as well as the overflow behavior. Here is a simplified versi
SDFAddFix star, configured for two inputs:

defstar {
name { AddFix }
domain {SDF}
derivedFrom{ SDFFix }
input {

name { input1 }
type { fix }

}
input {

name { input2 }
type { fix }

}
output {

name { output }
type { fix }

}
defstate {

name { OutputPrecision }
type { precision }
default { 2.14 }

desc {
Precision of the output in bits and precision of the accumulation.
When the value of the accumulation extends outside of the precision,
the OverflowHandler will be called.

}
}

(Note that the realAddFix star supports any number of inputs.) By default, the precision u
by this star during the addition will have 2 bits to the left of the binary point and 14 bits t
Ptolemy Last updated: 10/10/97

4-6 Data Types

tu-
 result

 Then,
sired

s the
e of the
 takes

-

 the
 con-

e

right. Not shown here is the stateOverflowHandler , which is inherited from theSDFFix
star and which defaults tosaturate —that is, if the addition overflows, then the result sa
rates, pegging it to either the largest positive or negative number representable. The
value,sum, is initialized by the following code:

protected {
Fix sum;

}
begin {

SDFFix::begin();

sum = Fix(((const char *) OutputPrecision));
if (sum.invalid())

Error::abortRun(*this, "Invalid OutputPrecision");
sum.set_ovflow(((const char*) OverflowHandler));
if (sum.invalid())

Error::abortRun(*this, "Invalid OverflowHandler");
}

Thebegin method checks the specified precision and overflow handler for correctness.
in thego method, we usesum to calculate the result value, thus guaranteeing that the de
precision and overflow handling are enforced. For example,

go {
sum.setToZero();
sum += Fix(input1%0);
checkOverflow(sum);
sum += Fix(input2%0);
checkOverflow(sum);
output%0 << sum;

}

(ThecheckOverflow method is inherited fromSDFFix .) The protected membersum is an
uninitializedFix object until thebegin method runs. In thebegin method, it is given the
precision specified byOutputPrecision . The go method initializes it to zero. If thego
method had instead assigned it a value specified by anotherFix object, then it would acquire
the precision of that other object—at that point, it would beinitialized.

Assignment and overflow handling

Once aFix object has been initialized, its precision does not change as long a
object exists. The assignment operator is overloaded so that it checks whether the valu
object to the right of the assignment fits into the precision of the left object. If not, then it
the appropriate overflow response is taken and set the overflow error bit.

If a Fix object is created using the constructor that takes no arguments, as in thepro-
tected declaration above, then that object is an uninitializedFix ; it can accept any assign
ment, acquiring not only its value, but also its precision and overflow handler.

 The behavior of aFix object on an overflow depends on the specifications and
behavior of the object itself. Each object has a private data field that is initialized by the
structor; when there is an overflow, theoverflow_handler looks at this field and uses th
U. C. Berkeley Department of EECS

The Almagest 4-7

alled

table

o-

preci-

ith a
t;
on,

s

specified method to handle the overflow. This data field is set tosaturate by default, and
can be set explicitly to any other desired overflow handling method using a function c
set_ovflow(<keyword>) . The keywords for overflow handling methods are:saturate
(default),zero_saturate , wrapped , warning . saturate replaces the original value is
replaced by the maximum (for overflow) or minimum (for underflow) value represen
given the precision of theFix object.zero_saturate sets the value to zero.

Explicitly casting inputs

In the above example, the first line of thego method assigned the input to the pr
tected membersum, which has the side-effect of quantizing the input to the precision ofsum.
We could have alternatively written thego method as follows:

go {
sum = Fix(input1%0) + Fix(input2%0);
output%0 << sum;

}

The behavior here is significantly different: the inputs are added using their own native
sion, and only the result is quantized to the precision ofsum.

Some stars allow the user to select between these two different behaviors w
parameter calledArrivingPrecision. If set toYES, the input particles are not explicitly cas
they are used as they are; if set toNO, the input particles are cast to an internal precisi
which is usually specified by another parameter.

Here is the (abbreviated) source of theSDFGainFix star, which demonstrates thi
point:

defstar {
name { GainFix }
domain { SDF }
derivedFrom { SDFFix }
desc {

This is an amplifier; the fixed-point output is the fixed-point input
multiplied by the "gain" (default 1.0). The precision of "gain", the
input, and the output can be specified in bits.

}
input {

name { input }
type { fix }

}
output {

name { output }
type { fix }

}
defstate {

name { gain }
type { fix }
default { 1.0 }
desc { Gain of the star. }

}

Ptolemy Last updated: 10/10/97

4-8 Data Types
defstate {
name { ArrivingPrecision }
type {int}
default {"YES"}
desc {

Flag indicating whether or no to use the arriving particles as they
are: YES keeps the same precision, and NO casts them to the precision
specified by the parameter "InputPrecision". }

}
defstate {

name { InputPrecision }
type { precision }
default { 2.14 }
desc {

Precision of the input in bits. The input particles are only cast
to this precision if the parameter "ArrivingPrecision" is set to NO.

}
}
defstate {

name { OutputPrecision }
type { precision }
default { 2.14 }
desc {

Precision of the output in bits.
This is the precision that will hold the result of the arithmetic
operation on the inputs.
When the value of the product extends outside of the precision,
the OverflowHandler will be called.

}
protected {

Fix fixIn, out;
}
begin {

SDFFix::begin();

if (! int(ArrivingPrecision)) {
fixIn = Fix(((const char *) InputPrecision));
if(fixIn.invalid())

Error::abortRun(*this, "Invalid InputPrecision");
}

out = Fix(((const char *) OutputPrecision));
if (out.invalid())

Error::abortRun(*this, "Invalid OutputPrecision");
out.set_ovflow(((const char *) OverflowHandler));

if(out.invalid())
Error::abortRun(*this,"Invalid OverflowHandler");

}
go {

// all computations should be performed with out since
// that is the Fix variable with the desired overflow
// handler
out = Fix(gain);
if (int(ArrivingPrecision)) {
U. C. Berkeley Department of EECS

The Almagest 4-9

ed for

the
t so

et

rd
 rep-
eeds

ber
atu-

 the

en
ber
out *= Fix(input%0);
}
else {

fixIn = Fix(input%0);
out *= fixIn;

}
checkOverflow(out);
output%0 << out;

}
// a wrap-up method is inherited from SDFFix
// if you defined your own, you should call SDFFix::wrapup()

}

Note that theSDFGainFix star and many of theFix stars are derived from the starSDFFix .
SDFFix implements commonly used methods and defines two states:OverflowHandler
selects one of four overflow handlers to be called each time an overflow occurs; andRepor-
tOverflow , which, if true, causes the number and percentage of overflows that occurr
that star during a simulation run to be reported in thewrapup method.

Constructors:

Fix() Create aFix number with unspecified precision and value zero.

Fix(int length, int intbits)
Create aFix number with total word length oflength bits andint-
bits bits to the left of the binary point. The value is set to zero. If
precision parameters are not valid, then an error bit is internally se
that theinvalid method will returnTRUE.

Fix(const char* precisionString)
Create aFix number whose precision is determined byprecision-
String , which has the syntax “leftbits.rightbits”, where leftbits is the
number of bits to the left of the binary point andrightbits is the number
of bits to the right of the binary point, or “rightbits/totalbits”, where
totalbits is the total number of bits. The value is set to zero. If thepre-
cisionString is not in the proper format, an error bit is internally s
so that theinvalid method will returnTRUE.

Fix(double value)
Create aFix with the default precision of 24 total bits for the wo
length and set the number of integer bits to the minimum needed to
resent the integer part of the number value. If the value given n
more than 24 bits to represent, the value will be clipped and the num
stored will be the largest possible under the default precision (i.e. s
ration occurs). In this case an internal error bit is set so that
ovf_occurred method will returnTRUE.

Fix(int length, int intbits, double value)
Create aFix with the specified precision and set its value to the giv
value . The number is rounded to the closest representable num
Ptolemy Last updated: 10/10/97

4-10 Data Types

n an

cified
s.
ally
e

 to

ords

eant

he
t so

 If
the
given the precision. If the precision parameters are not valid, the
error bit is internally set so that theinvalid method will returnTRUE.

Fix(const char* precisionString, double value)
Same as the previous constructor except that the precision is spe
by the givenprecisionString instead of as two integer argument
If the precision parameters are not valid, then an error bit is intern
set so that theinvalid() method will return true when called on th
object.

Fix(const char* precisionString, uint16* bits)
Create aFix with the specified precision and set the bits precisely
the ones in the givenbits . The first word pointed to bybits contains
the most significant 16 bits of the representation. Only as many w
as are necessary to fetch the bits will be referenced from thebits argu-
ment. For example:Fix("2.14",bits) will only reference
bits[0] .

This constructor gets very close to the representation and is m
mainly for debugging. It may be removed in the future.

Fix(const Fix& arg)
Copy constructor. Produces an exact duplicate ofarg .

Fix(int length, int intbits, const Fix& arg)
Read the value from theFix argument and set to a new precision. If t
precision parameters are not valid, then an error bit is internally se
that theinvalid method will return true when called on the object.
the value from the source will not fit, an error bit is set so that
ovf_occurred method will returnTRUE.

Functions to set or display information about the Fix number:

int len() const
Return the total word length of the Fix number.

int intb() const
Return the number of bits to the left of the binary point.

int precision() const
Return the number of bits to the right of the binary point.

int overflow() const
Return the code of the type of overflow response for theFix number.
The possible codes are:
0 - ovf_saturate ,
1 - ovf_zero_saturate ,
2 - ovf_wrapped ,
3 - ovf_warning ,
4 - ovf_n_types .
U. C. Berkeley Department of EECS

The Almagest 4-11

n.

n.

ra-

d a
int roundMode() const
Return the rounding mode:1 for rounding,0 for truncation.

int signBit() const
ReturnTRUE if the value of theFix number is negative,FALSE if it is
positive or zero.

int is_zero()
ReturnTRUE if the value of theFix number is zero.

double max()
Return the maximum value representable using the current precisio

double min()
Return the minimum value representable using the current precisio

double value()
The value of theFix number as a double.

void setToZero()
Set the value of theFix number to zero.

void set_overflow(int value)
Set the overflow type.

void set_rounding(int value)
Set the rounding type:TRUE for rounding,FALSE for truncation.

void initialize()
Discard the current precision format and set theFix number to zero.

There are a few functions for backward compatibility:

void set_ovflow(const char*)
Set the overflow using a name.

void Set_MASK(int value)
Set the rounding type. Same functionality asset_rounding() .

Comparison function:

int compare (const Fix& a, const Fix& b)
Compare twoFix numbers. Return –1 ifa < b, 0 if a = b, 1 if a > b.

The following functions are for use with the error condition fields:

int ovf_occurred()
ReturnTRUE if an overflow has occurred as the result of some ope
tion like addition or assignment.

int invalid()
ReturnTRUE if the current value of theFix number is invalid due to it
having an improper precision format, or if some operation cause
Ptolemy Last updated: 10/10/97

4-12 Data Types

et
e
 or
 cur-
on”
ding

fault
divide by zero.

int dbz() ReturnTRUE if a divide by zero error occurred.

void clear_errors()
Reset all error bit fields to zero.

Operators:

Fix& operator = (const Fix& arg)
Assignment operator. If*this does not have its precision format s
(i.e. it is uninitialized), the sourceFix is copied. Otherwise, the sourc
Fix value is converted to the existing precision. Either truncation
rounding takes place, based on the value of the rounding bit of the
rent object. Overflow results either in saturation, “zero saturati
(replacing the result with zero), or a warning error message, depen
on the overflow field of the object. In these cases,ovf_occurred will
returnTRUE on the result.

Fix& operator = (double arg)
Assignment operator. The double value is first converted to a de
precisionFix number and then assigned to*this .

The function of these arithmetic operators should be self-explanatory:

Fix& operator += (const Fix&)

Fix& operator -= (const Fix&)

Fix& operator *= (const Fix&)

Fix& operator *= (int)

Fix& operator /= (const Fix&)

Fix operator + (const Fix&, const Fix&)

Fix operator - (const Fix&, const Fix&)

Fix operator * (const Fix&, const Fix&)

Fix operator * (const Fix&, int)

Fix operator * (int, const Fix&)

Fix operator / (const Fix&, const Fix&)

Fix operator - (const Fix&) // unary minus

int operator == (const Fix& a, const Fix& b)

int operator != (const Fix& a, const Fix& b)

int operator >= (const Fix& a, const Fix& b)

int operator <= (const Fix& a, const Fix& b)

int operator > (const Fix& a, const Fix& b)
U. C. Berkeley Department of EECS

The Almagest 4-13

 return
 result

se of
g the

s the

t
reci-

e
 cause

ds

le.

:

int operator < (const Fix& a, const Fix& b)

Note:

 • These operators are designed so that overflow does not, as a rule, occur (the
value has a wider format than that of its arguments). The exception is when the
cannot be represented in aFix with all 64 bits before the binary point.

 • The output of any operation will have error codes that are the logical OR of tho
the arguments to the operation, plus any additional errors that occurred durin
operation (like divide by zero).

 • The division operation is currently a cheat: it converts to double and compute
result, converting back toFix .

 • The relational operators ==, !=, >=, <=, >, < are all written in terms of a function
int compare(const Fix& a, const Fix& b)
This functions returns -1 ifa < b, 0 if a = b, and 1 ifa > b. The comparison is exac
(every bit is checked) if the two values have the same precision format. If the p
sions are different, the arguments are converted to doubles and compared. Sincdou-
ble values only have an accuracy of about 53 bits on most machines, this may
false equality reports forFix values with many bits.

Conversions:

operator int() const
Return the value of theFix number as an integer, truncating towar
zero.

operator float() const

operator double() const
Convert to a float or a double, creating an exact result when possib

void complement()
Replace the current value by its complement.

Fix overflow, rounding, and errors.

TheFix class defines the following enumerated values for overflow handling:

Fix::ovf_saturate

Fix::ovf_zero_saturate

Fix::ovf_wrapped

Fix::ovf_warning

They may be used as arguments to theset_overflow method, as in the following example

out.set_overflow(Fix::ovf_saturate);

The member function
Ptolemy Last updated: 10/10/97

4-14 Data Types

merated

he
vide

o trans-

d) that

ulation.

n many

ation

he ker-

. There

s are
ives a

ter to
int overflow() const;

returns the overflow type. This returned result can be compared against the above enu
values. Overflow types may also be specified as strings, using the method

void set_ovflow(const char* overflow_type);

the overflow_type argument may be one ofsaturate , zero_saturate , wrapped , or
warning .

The rounding behavior of aFix value may be set by calling

void set_rounding(int value);

If the argument is false, or has the valueFix::mask_truncate , truncation will occur. If the
argument is nonzero (for example, if it has the valueFix::mask_truncate_round , round-
ing will occur. The older nameSet_MASK is a synonym forset_rounding .

The following functions access the error bits of aFix result:

int ovf_occurred() const;

int invalid() const;

int dbz() const;

The first function returnsTRUE if there have been any overflows in computing the value. T
second returnsTRUE if the value is invalid, because of invalid precision parameters or a di
by zero. The third returnsTRUE only for divide by zero.

4.3 Defining New Data Types
The Ptolemy heterogeneous message interface provides a mechanism for stars t

mit arbitrary objects to other stars. Our design satisfies the following requirements:

 • Existing stars (stars that were written before the message interface was adde
handleANYTYPE work with message particles without change.

 • Message portholes can send different types of messages during the same sim
This is especially useful for modeling communication networks.

 • It avoids copying large messages by using a reference count mechanism, as i
C++ classes (for example, string classes).

 • It is possible to safely modify large messages without excessive memory alloc
and deallocation.

 • It is (relatively) easy for users to define their own message types; no change to t
nel is required to support new message types.

The “message” type is understood by Ptolemy to mean a particle containing a message
are three classes that implement the support for message types:

 • TheMessage class is the base class from which all other message data type
derived. A user who wishes to define an application-specific message type der
new class fromMessage .

 • TheEnvelope class contains a pointer to an derived fromMessage . When anEnve-
lope objects is copied or duplicated, the new envelope simply sets its own poin
U. C. Berkeley Department of EECS

The Almagest 4-15

 same
ow

d

a
idden in

 is an
the pointer contained in the original. Several envelopes can thus reference the
Message object. EachMessage object contains a reference count, which tracks h
manyEnvelope objects reference it; when the last reference is removed, theMes-
sage is deleted.

 • TheMessageParticle class is a type ofParticle (like IntParticle , Float-
Particle , etc.); it contains aEnvelope . Ports of type “message” transmit an
receive objects of this type.

Class Particle contains two member functions for message support:getMessage , to
receive a message, and the<< operator with anEnvelope as the right argument, to load
message into a particle. These functions return errors in the base class; they are overr
theMessageParticle class with functions that perform the expected operation.

4.3.1 Defining a new Message class

Every user-defined message is derived from classMessage . Certain virtual functions
defined in that class must be overridden; others may optionally be overridden. Here
example of a user-defined message type:

// This is a simple vector message object. It stores
// an array of integer values of arbitrary length.
// The length is specified by the constructor.
#include "Message.h"
class IntVecData: public Message {
private:

int len;
init(int length,int *srcData) {

len = length;
data = new int[len];
for (int i = 0; i < len; i++)

data[i] = *srcData++;
}

public:
// the pointer is public for simplicity
int *data;

int length() const { return len;}

// functions for type-checking
const char* dataType() const { return "IntVecData";}
// isA responds TRUE if given the name of the class or
// of any baseclass.
int isA(const char* typ) const {

if (strcmp(typ,"IntVecData") == 0) return TRUE;
else return Message::isA(typ);

}
// constructor: makes an uninitialized array
IntVecData(int length): len(length) {

data = new int[length];
}
// constructor: makes an initialized array from a int array
IntVecData(int length,int *srcData) { init(length,srcData);}
Ptolemy Last updated: 10/10/97

4-16 Data Types

 in the
wever,

 of the

 that are

er-
m-

e

erated

ith the

ns if
s integers
d. The

 error,
// copy constructor
IntVecData(const IntVecData& src) { init(src.len,src.data);}

// clone: make a duplicate object
Message* clone() const { return new IntVecData(*this);}

// destructor
~IntVecData() {

delete data;
}

};

This message object can contain a vector of integers of arbitrary length. Some functions
class are arbitrary and the user may define them in whatever way is most convenient; ho
there are some requirements.

The class must redefine thedataType method from classMessage . This function
returns a string identifying the message type. This string should be identical to the name
class. In addition, theisA method must be defined. TheisA method responds withTRUE (1)
if given the name of the class or of any base class; it returnsFALSE (0) otherwise. This mech-
anism permits stars to handle any of a whole group of message types, even for classes
defined after the star is written.

Because of the regular structure ofisA function bodies, macros are provided to gen
ate them. TheISA_INLINE macro expands to an inline definition of the function; for exa
ple,

ISA_INLINE(IntVecData,Message)

could have been written above instead of the definition ofisA to generate exactly the sam
code. Alternatively, to put the function body in a.cc file, one can write

int isA(const char*) const;

in the class definition and put

ISA_FUNC(IntVecData,Message)

in the.cc file (or wherever the methods are defined).

The class must define a copy constructor, unless the default copy constructor gen
by the compiler, which does memberwise copying, will do the job.

The class must redefine theclone method of classMessage . Given that the copy
constructor is defined, the form shown in the example, where a new object is created w
new operator and the copy constructor, will suffice.

In addition, the user may optionally define type conversion and printing functio
they make sense. If a star that produces messages is connected to a star that expect
(or floating values, or complex values), the appropriate type conversion function is calle
base class,Message , defines the virtual conversion functionsasInt() , asFloat() , and
asComplex() and the printing methodprint() — see the file$PTOLEMY/src/kernel/
Message.h for their exact types. The base class conversion functions assert a run-time
and the default print function returns aStringList saying

<type>: no print method
U. C. Berkeley Department of EECS

The Almagest 4-17

erates
ect to a

a
ility for
it is no

of
efer-

e-

;

pler:

 error

-

wheretype is whatever is returned bydataType() .

By redefining these methods, you can make it legal to connect a star that gen
messages to a star that expects integer, floating, or complex particles, or you can conn
Printer or XMgraph star (forXMgraph to work, you must define theasFloat function; for
Printer to work, you must define theprint method).

4.3.2 Use of the Envelope class

The Envelope class references objects of classMessage or derived classes. Once
message object is placed into an envelope object, the envelope takes over responsib
managing its memory: maintaining reference counts, and deleting the message when
longer needed.

The constructor (which takes as its argument a reference to aMessage), copy con-
structor, assignment operator, and destructor ofEnvelope manipulate the reference counts
the referencesMessage object. Assignment simply copies a pointer and increments the r
ence count. When the destructor of aEnvelope is called, the reference count of theMessage
object is decremented; if it becomes zero, theMessage object is deleted. Because of this del
tion, aMessage must never be put inside aEnvelope unless it was created with thenew
operator. Once aMessage object is put into anEnvelope it must never be explicitly deleted
it will “live” as long as there is at least oneEnvelope that contains it, and it will then be
deleted automatically.

It is possible for anEnvelope to be “empty”. If it is, theempty method will return
TRUE, and the data field will point to a special “dummy message” with typeDUMMY that has no
data in it.

ThedataType method ofEnvelope returns the datatype of the containedMessage
object; the methodsasInt() , asFloat() , asComplex() , andprint() are also “passed
through” in a similar way to the contained object.

Two Envelope methods are provided for convenience to make type checking sim
typeCheck andtypeError . A simple example illustrates their use:

if (!envelope.typeCheck("IntVecData")) {
Error::abortRun(*this, envelope.typeError("IntVecData"));
return;

}

The methodtypeCheck calls isA on the message contents and returns the result, so an
will be reported if the message contents are notIntVecData and are not derived fromIntV-
ecData . Since the above code segment is so common in stars; a macro is included inMes-
sage.h to generate it; the macro

TYPE_CHECK(envelope,"IntVecData");

expands to essentially the same code as above. ThetypeError method generates an appro
priate error message:

Expected message type ’ arg ’, got ’ type ’

To access the data, two methods are provided:myData() andwritableCopy() . The
myData function returns a pointer to the containedMessage -derived object.The data pointed
Ptolemy Last updated: 10/10/97

4-18 Data Types

nter to
r

th a
ssage)

pre-

of type
s. Mes-
t manag-

plex
ype
 the

e

rticle.
sent
eleted

ges. For
nsume
elow in
lasses
d in the

e
ing
to by this pointer must not be modified, since otherEnvelope objects in the program may
also contain it. If you convert its type, always make sure that the converted type is a poi
const (see the programming example forUnPackInt below). This ensures that the compile
will complain if you do anything illegal.

ThewritableCopy function also returns a pointer to the contained object, but wi
difference. If the reference count is one, the envelope is emptied (set to the dummy me
and the contents are returned. If the reference count is greater than one, aclone of the contents
is made (by calling itsclone() function) and returned; again the envelope is zeroed (to
vent the making of additional clones later on).

In some cases, a star writer will need to keep a receivedMessage object around
between executions. The best way to do this is to have the star contain a member
Envelope , and to use this member object to hold the message data between execution
sages should always be kept in envelopes so that the user does not have to worry abou
ing their memory.

4.3.3 Use of the MessageParticle class

If a porthole is of type “message”, then its particles are objects of the classMes-
sageParticle . A MessageParticle is simply a particle whose data field is anEnve-
lope , which means that it can hold aMessage in the same way thatEnvelope objects do.

Many methods of theParticle class are redefined in theMessageParticle class
to cause a run-time error; for example, it is illegal to send an integer, floating, or com
number to the particle with the<< operator. The conversion operators (conversion to t
int , double , or Complex) return errors by default, but can be made legal by redefining
asInt , asFloat , or asComplex methods for a specific message type.

The principal operations onMessageParticle objects are<< with an argument of
type Envelope , to load a message into the particle, andgetMessage(Envelope&) , to
transfer message contents from the particle into a user-supplied message. ThegetMessage
method removes the message contents from the particle1. In cases where the destructiv
behavior of getMessage cannot be tolerated, an alternative interface,accessMes-
sage(Envelope&) , is provided. It does not remove the message contents from the pa
Promiscuous use ofaccessMessage in systems where large-sized messages may be pre
can cause the amount of virtual memory occupied to grow (though all message will be d
eventually).

4.3.4 Use of messages in stars

Here are a couple of simple examples of stars that produce and consume messa
more advanced samples, look in the Ptolemy distribution for stars that produce or co
messages. The image processing classes and stars, which are briefly described b
“Image particles” on page 4-40, provide a particularly rich set of examples. The matrix c
described on page 4-21 are also good examples. The matrix classes are recognize
Ptolemy kernel, and supported bypigi andptlang .

1. The reason for this “aggressive reclamation” policy (both here and in other places) is to minimize th
number of no-longer-needed messages in the system and to prevent unnecessary clones from be
generated by writableCopy() by eliminating references to Message objects as soon as possible.
U. C. Berkeley Department of EECS

The Almagest 4-19

on each
Setting

d

re
ere
defstar {
name { PackInt }
domain { SDF }
desc { Accept integer inputs and produce IntVecData messages.}
defstate {

name { length }
type { int }
default { 10 }
desc { number of values per message }

}
input {

name { input }
type { int }

}
output {

name { output }
type { message }

}
ccinclude { "Message.h", "IntVecData.h" }
start {

input.setSDFParams(int(length),int(length-1));
}
go {

int l = length;
IntVecData * pd = new IntVecData(l);
// Fill in message. input%0 is newest, must reverse
for (int i = 0; i < l; i++)

pd->data[l-i-1] = int(input%i);
Envelope pkt(*pd);
output%0 << pkt;

}
}

Since this is an SDF star, it must produce and consume a constant number of tokens
step, so the message length must be fixed (though it is controllable with a state). See “
SDF porthole parameters” on page 7-1 for an explanation of thesetSDFParams method.
Notice that the output porthole is declared to be of typemessage . Notice also theccin-
clude statement; we must include the fileMessage.h in all message-manipulating stars, an
we must also include the definition of the specific message type we wish to use.

The code itself is fairly straightforward—anIntVecData object is created withnew,
is filled in with data, and is put into anEnvelope and sent. Resist the temptation to decla
the IntVecData object as a local variable: it will not work. It must reside on the heap. H
is a star to do the inverse operation:

defstar {
name { UnPackInt }
domain { SDF }
desc {

Accept IntVecData messages and produce integers. The first ’length’
values from each message are produced.
Ptolemy Last updated: 10/10/97

4-20 Data Types

ardless
 certain

nto the
 cast

pilers
piler
+, say

 would
he
}
defstate {

name { length }
type { int }
default { 10 }
desc { number of values output per message }

}
input {

name { input }
type { message }

}
output {

name { output }
type { int }

}
ccinclude { "Message.h", "IntVecData.h" }
start {

output.setSDFParams(int(length),int(length-1));
}
go {

Envelope pkt;
(input%0).getMessage(pkt);
if (!pkt.typeCheck("IntVecData")) {

Error::abortRun(*this,pkt.typeError("IntVecData"));
return;

}
const IntVecData * pd = (const IntVecData *)pkt.myData();
if (pd.length() < int(length)) {

Error::abortRun(*this,
"Received message is too short");

return;
}
for (i = 0; i < int(length); i++) {

output%(int(length)-i-1) << pd->data[i];
}

}
}

Because the domain is SDF, we must always produce the same number of outputs reg
of the size of the messages. The simple approach taken here is to require at least a
amount of data or else to trigger an error and abort the run.

The operations here are to declare an envelope, get the data from the particle i
envelope withgetMessage , check the type, and then access the contents. Notice the
operation; this is needed becausemyData returns a const pointer to classMessage . It is
important that we converted the pointer toconst IntVecData * and notIntVecData*
because we have no right to modify the message through this pointer. Many C++ com
will not warn by default about “casting away const”; we recommend turning on com
warnings when compiling code that uses messages to avoid getting into trouble (for g+
-Wcast-qual ; for cfront-derived compilers, say+w).

If we wished to modify the message and then send the result as an output, we
call writableCopy instead ofmyData , modify the object, then send it on its way as in t
U. C. Berkeley Department of EECS

The Almagest 4-21

king
usses

sses

-
f vec-
lumn-
e sec-
t row.
ow C

 row-
 image

 vector
r or col-
 as an

 opera-
ray of
uires
esired
n of
. For

ive to
nstruc-
 format

 imple-
ent is
 much of
ign of

ize and
previous star.

4.4 The Matrix Data Types
The primary support for matrix types in Ptolemy is thePtMatrix class.PtMatrix is

derived from theMessage class, and uses the various kernel support functions for wor
with theMessage data type as described in Section 4.3 on page 4-14. This section disc
thePtMatrix class and how to write stars and programs using this class.

4.4.1 Design philosophy

The PtMatrix class implements two dimensional arrays. There are four key cla
derived fromPtMatrix : ComplexMatrix , FixMatrix , FloatMatrix , andIntMatrix .
(Note thatFloatMatrix is a matrix of C++double s.) A review of matrix classes imple
mented by other programmers revealed two main styles of implementation: a vector o
tors, or a simple array. In addition, there are two main formats of storing the entries: co
major ordering, where all the entries in the first column are stored before the entries of th
ond column, and row-major ordering, where the entries are stored starting with the firs
Column-major ordering is how Fortran stores arrays whereas row-major ordering is h
stores arrays.

The PtolemyPtMatrix class stores data as a simple C array, and therefore uses
major ordering. Row-major ordering also seems more natural for operations such as
and video processing, but it might make it more difficult to interface Ptolemy’sPtMatrix
class with Fortran library calls. The limits of interfacing Ptolemy’sPtMatrix class with other
software is discussed in Section 4.4.5 on page 4-33.

The design decision to store data entries in a C array rather than as an array of
objects has a greater effect on performance than the decision whether to use row majo
umn major ordering. There are a couple of advantages to implementing a matrix class
array of vector class objects: referencing an entry may be faster, and it is easier to do
tions on a whole row or column of the matrix, depending on whether the format is an ar
column vectors or an array of row vectors. An entry lookup in an array of row vectors req
two index lookups: one to find the desired row vector in the array and one to find the d
entry of that row. A linear array, in contrast, requires a multiplication to find the locatio
first element of the desired row and then an index lookup to find the column in that row
example,A[row][col] is equivalent to looking up&data + (row*numRows + col) if
the entries are stored in a C arraydata[] , whereas it is *(&rowArray + row) + col if
looking up the entry in an array of vectors format.

Although the array of vectors format has faster lookups, it is also more expens
create and delete the matrix. Each vector of the array must be created in the matrix co
tor, and each vector must also be deleted by the matrix destructor. The array of vectors
also requires more memory to store the data and the extra array of vectors.

With the advantages and disadvantages of the two systems in mind, we chose to
ment thePtMatrix class with the data stored in a standard C array. Ptolemy’s environm
such that matrices are created and deleted constantly as needed by stars: this negates
the speedup gained from faster lookups. Also, we felt it was important to keep the des
the class simple and the memory usage efficient because of Ptolemy’s increasing s
Ptolemy Last updated: 10/10/97

4-22 Data Types

e

ows the
tputs
l
f

its
 to
 a
-

in the

ing in
r ones.

(
e

d to
y of
of
 be

rd
complexity.

4.4.2 The PtMatrix class

The PtMatrix base class is derived from theMessage class so that we can us
Ptolemy’sEnvelope class and message-handling system. However, theMessageParticle
class is not used by thePtMatrix class; instead, there are specialMatrixEnvParticle
classes defined to handle type checking between the various types of matrices. This all
system to automatically detect when two stars with different matrix type inputs and ou
are incorrectly connected together.1 Also, theMatrixEnvParticle class has some specia
functions not found in the standardMessageParticle class to allow easier handling o
PtMatrix class messages. A discussion of how to passPtMatrix class objects using the
MatrixEnvParticles can be found in a following section.

As explained previously, there are currently four data-specific matrix classes:Com-
plexMatrix , FixMatrix , FloatMatrix , andIntMatrix . Each of these classes stores
entries in a standard C array nameddata , which is an array of data objects corresponding
thePtMatrix type:Complex , Fix , double , or int . These four matrix classes implement
common set of operators and functions; in addition, theComplexMatrix class has a few spe
cial methods such asconjugate() andhermitian() and theFixMatrix class has a num-
ber of special constructors that allow the user to specify the precision of the entries
matrix. Generally, all entries of aFixMatrix will have the same precision.

The matrix classes were designed to take full advantage of operator overload
C++ so that operations on matrix objects can be written much like operations on scala
For example, the two-operand multiplyoperator * has been defined so that ifA andB are
matrices,A * B will return a third matrix that is the matrix product ofA andB.

4.4.3 Public functions and operators for the PtMatrix class

The functions and operators listed below are implemented by all matrix classes Com-
plexMatrix , FixMatrix , FloatMatrix , and IntMatrix) unless otherwise noted. Th
symbols used are:

 • XXX refers to one of the following:Complex , Fix , Float , or Int

 • xxx refers to one of the following:Complex , Fix , double , or int

Functions and Operators to access entries of the Matrix:

xxx& entry(int i)
Example: A.entry(i)
Return thei th entry of the matrix when its data storage is considere
be a linear array. This is useful for quick operations on every entr
the matrix without regard for the specific (row,column) position
that entry. The total number of entries in the matrix is defined to
numRows() * numCols() , with indices ranging from 0 tonum-

1. We recommend, however, that you do not adapt this method to your own types, but use the standa
method of adding new message types described in Section 4.3. The method currently used for the
matrix classes may not be supported in future releases.
U. C. Berkeley Department of EECS

The Almagest 4-23

e
entry.
f a

ge.
vec-
he

e
s

e set

 by

e first
sec-
hole
trix.

s to

ix is
-

Rows() * numCols() - 1 . This function returns a reference to th
actual entry in the matrix so that assignments can be made to that
In general, functions that wish to linearly reference each entry o
matrix A should use this function instead of the expressionA.data[i]
because classes which are derived fromPtMatrix can then overload
theentry() method and reuse the same functions.

xxx* operator [] (int row)
Example: A[row][column]
Return a pointer to the start of the row in the matrix’s data stora
(This operation is different to matrix classes defined as arrays of
tors, in which the[] operator returns the vector representing t
desired row.) This operator is generally not used alone but with the[]
operator defined on C arrays, so thatA[i][j] will give you the entry
of the matrix in thei th row andj th column of the data storage. Th
range of rows is from 0 tonumRows()-1 and the range of columns i
from 0 tonumCols()-1 .

Constructors:

XXXMatrix()
Example: IntMatrix A ;
Create an uninitialized matrix. The number of rows and columns ar
to zero and no memory is allocated for the storage of data.

XXXMatrix(int numRow, int numCol)
Example: FloatMatrix A(3,2) ;
Create a matrix with dimensionsnumRow by numCol . Memory is allo-
cated for the data storage but the entries are uninitialized.

XXXMatrix(int numRow, int numCol, PortHole& p)
Example: ComplexMatrix(3,3,myPortHole)
Create a matrix of the given dimensions and initialize the entries
assigning to them values taken from the portholemyPortHole . The
entries are assigned in a rasterized sequence so that the value of th
particle removed from the porthole is assigned to entry (0,0), the
ond particle’s value to entry (0,1), etc. It is assumed that the port
has enough particles in its buffer to fill all the entries of the new ma

XXXMatrix(int numRow, int numCol, XXXArrayState& dataArray)
Example:IntMatrix A(2,2,myIntArrayState);
Create a matrix with the given dimensions and initialize the entrie
the values in the givenArrayState . The values of theArrayState
fill the matrix in rasterized sequence so that entry (0,0) of the matr
the first entry of theArrayState , entry (0,1) of the matrix is the sec
ond, etc. An error is generated if theArrayState does not have
enough values to initialize the whole matrix.

XXXMatrix(const XXXMatrix& src)
Ptolemy Last updated: 10/10/97

4-24 Data Types

me
m the

val-

ce

ol-

o

 is

 is

rti-

 is

r
s.
x types.
Example: FixMatrix A(B);
This is the copy constructor. A new matrix is formed with the sa
dimensions as the source matrix and the data values are copied fro
source.

XXXMatrix(const XXXMatrix& src, int startRow, int startCol, int
numRow, int numCol)
Example: IntMatrix A(B,2,2,3,3);
This special “submatrix” constructor creates a new matrix whose
ues come from a submatrix of the source. The argumentsstartRow
and startCols specify the starting row and column of the sour
matrix. The valuesnumRow andnumCol specify the dimensions of the
new matrix. The sumstartRow + numRow must not be greater than
the maximum number of rows in the source matrix; similarly,start-
Col + numCol must not be greater than the maximum number of c
umns in the source. For example, ifB is a matrix with dimension (4,4),
thenA(B,1,1,2,2) would create a new matrixA that is a (2,2) matrix
with data values from the center quadrant of matrixB, so thatA[0][0]
== B[1][1] , A[0][1] == B[1][2] , A[1][0] == B[2][1] , and
A[1][1] == B[2][2] .

The following are special constructors for theFixMatrix class that allow the programmer t
specify the precision of the entries of theFixMatrix .

FixMatrix(int numRow, int numCol, int length, int intBits)
Example: FixMatrix A(2,2,14,4);
Create aFixMatrix with the given dimensions such that each entry
a fixed-point number with precision as given by thelength andint-
Bits inputs.

FixMatrix(int numRow, int numCol, int length, int intBits,
PortHole& myPortHole)
Example: FixMatrix A(2,2,14,4);
Create aFixMatrix with the given dimensions such that each entry
a fixed-point number with precision as given by thelength andint-
Bits inputs and initialized with the values that are read from the pa
cles contained in the portholemyPortHole .

FixMatrix(int numRow, int numCol, int length, int intBits, Fix-
ArrayState& dataArray)
Example: FixMatrix A(2,2,14,4);
Create aFixMatrix with the given dimensions such that each entry
a fixed-point number with precision as given by thelength andint-
Bits inputs and initialized with the values in the givenFixArray-
State .

There are also special copy constructors for theFixMatrix class that allow the programme
to specify the precision of the entries of theFixMatrix as they are copied from the source
These copy constructors are usually used for easy conversion between the other matri
U. C. Berkeley Department of EECS

The Almagest 4-25

e used

 is

cor-
 the

ery

ny

ly cast
ible to
 can be
ser did
 explic-

 the
f
)

ct. In
The last argument specifies the type of masking function (truncate, rounding, etc.) to b
when doing the conversion.

FixMatrix(const XXXMatrix& src, int length, int intBits,
int round)
Example: FixMatrix A(CxMatrix,4,14,TRUE);
Create aFixMatrix with the given dimensions such that each entry
a fixed-point number with precision as given by thelength andint-
Bits arguments. Each entry of the new matrix is copied from the
responding entry of the src matrix and converted as specified by
round argument.

Comparison operators:

int operator == (const XXXMatrix& src)
Example: if(A == B) then ...
ReturnTRUE if the two matrices have the same dimensions and ev
entry inA is equal to the corresponding entry inB. ReturnFALSE other-
wise.

int operator != (const XXXMatrix& src)
Example: if(A != B) then ...
ReturnTRUE if the two matrices have different dimensions or if a
entry ofA differs from the corresponding entry inB. ReturnFALSE oth-
erwise.

Conversion operators:

Each matrix class has a conversion operator so that the programmer can explicit
one type of matrix to another (this casting is done by copying). It would have been poss
make conversions occur automatically when needed, but because these conversions
quite expensive for large matrices, and because unexpected results might occur if the u
not intend for a conversion to occur, we chose to require that these conversions be used
itly.

operator XXXMatrix () const
Example: FloatMatrix C = A * (FloatMatrix)B;
Convert a matrix of one type into another. These conversions allow
various arithmetic operators, such as* and+, to be used on matrices o
different type. For example, ifA in the example above is a (3,3
FloatMatrix andB is a (3,2)IntMatrix , thenC is aFloatMatrix
with dimensions (3,2).

Destructive replacement operators:

These operators are member functions that modify the current value of the obje
the following examples,A is usually the lvalue (*this). All operators return*this :

XXXMatrix& operator = (const XXXMatrix& src)
Example: A = B;
Ptolemy Last updated: 10/10/97

4-26 Data Types

 stor-
s

ot

wise
This is the assignment operator: makeA into a matrix that is a copy of
B. If A already has allocated data storage, then the size of this data
age is compared to the size ofB. If they are equal, then the dimension
of A are simply set to those ofB and the entries copied. If they are n
equal, the data storage is freed and reallocated before copying.

XXXMatrix& operator = (xxx value)
Example: A = value;
Assign each entry ofA to have the givenvalue . Memory management
is handled as in the previous operator.
Note: this operator is targeted for deletion. Do not use it.

XXXMatrix& operator += (const XXXMatrix& src)
Example: A += B;
Perform the operationA.entry(i) += B.entry(i) for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator += (xxx value)
Example: A += value;
Add the scalarvalue to each entry in the matrix.

XXXMatrix& operator -= (const XXXMatrix& src)
Example: A -= B;
Perform the operationA.entry(i) -= B.entry(i) for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator -= (xxx value)
Example: A -= value;
Subtract the scalarvalue from each entry in the matrix.

XXXMatrix& operator *= (const XXXMatrix& src)
Example: A *= B;
Perform the operationA.entry(i) *= B.entry(i) for each entry in
A. A andB must have the same dimensions. Note: this is an element
operation and isnot equivalent to A = A * B.

XXXMatrix& operator *= (xxx value)
Example: A *= value ;
Multiply each entry of the matrix by the scalarvalue .

XXXMatrix& operator /= (const XXXMatrix& src)
Example: A /= B;
Perform the operationA.entry(i) /= B.entry(i) for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator /= (xxx value)
Example: A /= value
Divide each entry of the matrix by the scalarvalue . The scalar value
must be non-zero.
U. C. Berkeley Department of EECS

The Almagest 4-27

 is 1

 ele-

d. So

te of

ate
XXXMatrix& operator identity()
Example: A.identity();
ChangeA to be an identity matrix so that each entry on the diagonal
and all off-diagonal entries are 0.

Non-destructive operators (these return a new matrix):

XXXMatrix operator - ()
Example: B = -A;
Return a new matrix such that each element is the negative of the
ment of the source.

XXXMatrix operator ~ ()
Example: B = ~A;
Return a new matrix that is the transpose of the source.

XXXMatrix operator ! ()
Example: B = !A;
Return a new matrix which is the inverse of the source.

XXXMatrix operator ^ (int exponent)
Example: B = A^2;
Return a new matrix which is the source matrix to the givenexponent
power. Theexponent can be negative, in which case theexponent is
first treated as a positive number and the final result is then inverte
A^2 == A*A andA^(-3) == !(A*A*A) .

XXXMatrix transpose()
Example: B = A.transpose();
This is the same as the~ operator but called by a function name
instead of as an operator.

XXXMatrix inverse()
Example: B = A.inverse();
This is the same as the! operator but called by a function name
instead of as an operator.

ComplexMatrix conjugate()
Example: ComplexMatrix B = A.conjugate();
Return a new matrix such that each element is the complex conjuga
the source. This function is defined for theComplexMatrix class only.

ComplexMatrix hermitian()
Example: ComplexMatrix B = A.hermitian();
Return a new matrix which is the Hermitian Transpose (conjug
transpose) of the source. This function is defined for theComplexMa-
trix class only.
Ptolemy Last updated: 10/10/97

4-28 Data Types

 a
 the

urce

ry of

he
ns
Non-member binary operators:

XXXMatrix operator + (const XXXMatrix& left, const XXXMatrix&
right)
Example: A = B + C;
Return a new matrix which is the sum of the first two. Theleft and
right source matrices must have the same dimensions.

XXXMatrix operator + (const xxx& scalar, const XXXMatrix&
matrix)
Example: A = 5 + B;
Return a new matrix that has entries of thesource matrix added to a
scalar value.

XXXMatrix operator + (const XXXMatrix& matrix, const xxx& sca-
lar)
Example: A = B + 5;
Return a new matrix that has entries of the source matrix added to
scalar value. (This is the same as the previous operator but with
scalar on the right.)

XXXMatrix operator - (const XXXMatrix& left, const XXXMatrix&
right)
Example: A = B - C;
Return a new matrix which is the difference of the first two. Theleft
andright source matrices must have the same dimensions.

XXXMatrix operator - (const xxx& scalar, const XXXMatrix&
matrix)
Example: A = 5 - B;
Return a new matrix that has the negative of the entries of the so
matrix added to ascalar value.

XXXMatrix operator - (const XXXMatrix& matrix, const xxx& sca-
lar)
Example: A = B - 5;
Return a new matrix such that each entry is the corresponding ent
the sourcematrix minus thescalar value.

XXXMatrix operator * (const XXXMatrix& left, const XXXMatrix&
right)
Example: A = B * C;
Return a new matrix which is the matrix product of the first two. T
left and right source matrices must have compatible dimensio
(i.e. A.numCols() == B.numRows() .

XXXMatrix operator * (const xxx& scalar, const XXXMatrix&
matrix)
Example: A = 5 * B;
U. C. Berkeley Department of EECS

The Almagest 4-29

th the

-

sult
 step

rings

he

 Some
Return a new matrix that has entries of the sourcematrix multiplied
by ascalar value.

XXXMatrix operator * (const XXXMatrix& matrix, const xxx& sca-
lar)
Example: A = B * 5;
Return a new matrix that has entries of the source matrix multiplied
by a scalar value. (This is the same as the previous operator but wi
scalar on the right.)

Miscellaneous functions:

int numRows()
Return the number of rows in the matrix.

int numCols()
Return the number of columns in the matrix.

Message* clone()
Example:IntMatrix *B = A.clone();
Return a copy of*this.

StringList print()
Example: A.print()
Return a formattedStringList that can be printed to display the con
tents of the matrix in a reasonable format.

XXXMatrix& multiply (const XXXMatrix& left, const XXXMatrix&
right, XXXMatrix& result)
Example: multiply(A,B,C);
This is a faster 3 operand form of matrix multiply such that the re
matrix is passed as an argument so that we avoid the extra copy
that is involved when we writeC = A * B .

const char* dataType()
Example: A.dataType()
Return a string that specifies the name of the type of matrix. The st
are “ComplexMatrix ”, “ FixMatrix ”, “ FloatMatrix ”, and “Int-
Matrix ”.

int isA(const char* type)
Example: if(A.isA("FixMatrix")) then ...
Return TRUE if the argument string matches the type string of t
matrix.

4.4.4 Writing stars and programs using the PtMatrix class

This section describes how to use the matrix data classes when writing stars.
examples will be given here but the programmer should refer to the stars in$PTOLEMY/src/
domains/sdf/matrix/stars/*.pl and $PTOLEMY/src/domains/sdf/image/
Ptolemy Last updated: 10/10/97

4-30 Data Types

in the
locate
i-
f
nce.

ith the
e, the
atrix.

termi-
scalar

lls the
m, this
matrix
stars/*.pl for more examples

Memory management

The most important thing to understand about the use of matrix data classes
Ptolemy environment is that stars that intend to output the matrix in a particle should al
memory for the matrixbut never delete that matrix. Memory reclamation is done automat
cally by the reference-counting mechanism of theMessage class. Strange errors will occur i
the star deletes the matrix before it is used by another star later in the execution seque

Naming conventions

Stars that implement general-purpose matrix operations usually have names w
_M suffix to distinguish them from stars that operate on scalar particles. For exampl
SDFGain_M star multiplies an input matrix by a scalar value and outputs the resulting m
This is in contrast toSDFGain, which multiplies an input value held in aFloatParticle by
a double and puts that result in an outputFloatParticle .

Include files

For a star to use thePtMatrix classes, it must include the fileMatrix.h in either its
.h or .cc file. If the star has a matrix data member, then the declaration

hinclude { "Matrix.h" }

needs to be in theStar definition. Otherwise, the declaration

ccinclude { "Matrix.h" }

is sufficient.

To declare an input porthole that accepts matrices, the following syntax is used:

input {
name { inputPortHole }
type { FLOAT_MATRIX_ENV }

}

The syntax is the same for output portholes. The type field can beCOMPLEX_MATRIX_ENV,
FLOAT_MATRIX_ENV, FIX_MATRIX_ENV, or INT_MATRIX_ENV. The icons created by
Ptolemy will have terminals that are thicker and that have larger arrow points than the
nals for scalar particle types. The colors of the terminals follow the pattern of colors for
data types (e.g., blue representsFloat andFloatMatrix).

Input portholes

The syntax to extract a matrix from the input porthole is:

Envelope inPkt;
(inputPortHole%0).getMessage(inPkt);
const FloatMatrix& inputMatrix =

*(const FloatMatrix *)inPkt.myData();

The first line declares anEnvelope , which is used to access the matrix. Details of theEnve-
lope class are given in “Use of the Envelope class” on page 4-17. The second line fi
envelope with the input matrix. Note that, because of the reference-counting mechanis
line does not make a copy of the matrix. The last two lines extract a reference to the
U. C. Berkeley Department of EECS

The Almagest 4-31

 defini-

lly not

t
ce

ss it
-17.

ce
ing the
ted as

by the

handle

n matri-
ither
Note
eters of

pose

 each
ut.
from the envelope. It is up to the programmer to make sure that the cast agrees with the
tion of the input port.

Because multiple envelopes might reference the same matrix, a star is genera
permitted to modify the matrix held by theEnvelope . Thus, the functionmyData() returns
aconst Message * . We cast that to be aconst FloatMatrix * and then de-reference i
and assign the value toinputMatrix . It is generally better to handle matrices by referen
instead of by pointer because it is clearer to write “A + B ” rather than “*A + *B ” when
working with matrix operations. Stars that wish to modify an input matrix should acce
using thewritableCopy method, as explained in “Use of the Envelope class” on page 4

Allowing delays on inputs

The cast to(const FloatMatrix *) above is not always safe. Even if the sour
star is known to provide matrices of the appropriate type, a delay on the arc connect
two stars can cause problems. In particular, delays in dataflow domains are implemen
initial particles on the arcs. These initial particles are given the value “zero” as defined
type of particle. ForMessage particles, a “zero” is an uninitializedMessage particle contain-
ing a “dummy” data value. This dummyMessage will be returned by themyData method in
the third line of the above code fragment. The dummy message is not aFloatMatrix , ren-
dering the above cast invalid. A star that expects matrix inputs must have code to
empty particles. An example is:

if(inPkt.empty()) {
FloatMatrix& result = *(new FloatMatrix(int(numRows),

int(numCols)));
result = 0.0;
output%0 << result;

}

There are many ways that an empty input can be interpreted by a star that operates o
ces. For example, a star multiplying two matrices can simply output a zero matrix if e
input is empty. A star adding two matrices can output whichever input is not empty.
above that we create an output matrix that has the dimensions as set by the state param
the star so that any star that uses this output will have valid data.

A possible alternative to outputting a zero matrix is to simply pass that emptyMes-
sageParticle along. This approach, however, can lead to counterintuitive results. Sup
that empty message reaches a display star likeTkText , which will attempt to call the
print() method of the object. An empty message has aprint() method that results in a
message like

<type>: no print method

This is likely to prove extremely confusing to users, so we strongly recommend that
matrix star handle the empty input in a reasonable way, and produce a non-empty outp

Matrix outputs

To put a matrix into an output porthole, the syntax is:

FloatMatrix& outMatrix =*(new FloatMatrix(someRow,someCol));
Ptolemy Last updated: 10/10/97

4-32 Data Types

 the
e

t and
e spe-

s:
// ... do some operations on the outMatrix
outputPortHole%0 << outMatrix;

The last line is similar to outputting a scalar value. This is because we have overloaded<<
operator for MatrixEnvParticles to supportPtMatrix class inputs. The standard us
of theMessageParticle class requires you to put your message into an envelope firs
then use<< on the envelope (see “Use of the Envelope class” on page 4-17), but we hav
cialized this so that the extra operation of creating an envelope first is not explicit.

Here is an example of a complete star definition that inputs and outputs matrice

defstar {
name { Mpy_M }
domain { SDF }
desc {

Does a matrix multiplication of two input Float matrices A and B to
produce matrix C.

Matrix A has dimensions (numRows,X).
Matrix B has dimensions (X,numCols).
Matrix C has dimensions (numRows,numCols).

The user need only specify numRows and numCols. An error will be
generated automatically if the number of columns in A does not match
the number of columns in B.

}
input {

name { Ainput }
type { FLOAT_MATRIX_ENV }

}
input {

name { Binput }
type { FLOAT_MATRIX_ENV }

}
output {

name { output }
type { FLOAT_MATRIX_ENV }

}
defstate {

name { numRows }
type { int }
default { 2 }
desc { The number of rows in Matrix A and Matrix C.}

}
defstate {

name { numCols }
type { int }
default { 2 }
desc { The number of columns in Matrix B and Matrix C}

}
ccinclude { "Matrix.h" }
go {

// get inputs
Envelope Apkt;
(Ainput%0).getMessage(Apkt);
const FloatMatrix& Amatrix =
U. C. Berkeley Department of EECS

The Almagest 4-33

e on

e cur-
lumn
 For-
n C++
*(const FloatMatrix *)Apkt.myData();

Envelope Bpkt;
(Binput%0).getMessage(Bpkt);
const FloatMatrix& Bmatrix =

*(const FloatMatrix *)Bpkt.myData();

// check for “null” matrix inputs, which could be
// caused by delays on the input line
if(Apkt.empty() || Bpkt.empty()) {

// if either input is empty, return a zero
// matrix with the state dimensions
FloatMatrix& result =

*(new FloatMatrix(int(numRows),
int(numCols)));

result = 0.0;
output%0 << result;

}
else {

// Amatrix and Bmatrix are both valid
if((Amatrix.numRows() != int(numRows)) ||

(Bmatrix.numCols() != int(numCols))) {
Error::abortRun(*this,
"Dimension size of FloatMatrix inputs do ",
"not match the given state parameters.");
return;

}
// do matrix multiplication
FloatMatrix& result =

*(new FloatMatrix(int(numRows),
int(numCols)));

// we could write
// result = Amatrix * Bmatrix;
// but the following is faster
multiply(Amatrix,Bmatrix,result);

output%0 << result;
}

}
}

4.4.5 Future extensions

After reviewing the libraries of numerical analysis software that is freely availabl
the Internet, it is clear that it would be beneficial to extend thePtMatrix class by adding
those well-tested libraries as callable functions. Unfortunately, many of those libraries ar
rently only available in Fortran, and there are some incompatibilities with Fortran’s co
major ordering and C’s row major ordering. Those problems would still exist even if the
tran code was converted to C. There are a few groups which are currently working o
ports of the numerical analysis libraries. One notable group is the Lapack++1 project which is

1. LAPACK++: A Design Overview of Object-Oriented Extensions for High Performance Linear
Algebra, by Jack J. Dongarra, Roldan Pozo, and David W. Walker, available onnetlib.
Ptolemy Last updated: 10/10/97

4-34 Data Types

s of

ation.
 “non-
devel-
tions on

m
ger

 file

 file

given
es-
developing a flexible matrix class of their own, besides porting the Fortran algorithm
Lapack into C++. This might possibly be incorporated in a future release.

4.5 The File and String Types
There are two experimental types in Ptolemy that support non-numeric comput

These types represent the beginnings of an effort to extend Ptolemy’s dataflow model to
dataflow” problems such as scheduling and design flow. Their interfaces are still being
oped, so should be expected to change in future releases. We would welcome sugges
how to improve the interface and functionality of these two types.

4.5.1 The File type

The file type is implemented by the classesFileMessage and FileParticle ,
which are derived fromMessage andParticle . It uses the reference-counting mechanis
of the Message andEnvelope classes to ensure that files are not deleted until no lon
needed. Although we created a new particle type to allow these types to appear in thepigi
graphical interface, we recommend that you use theMessage interface described in
Section 4.3 for your own types.

TheFile type adds the following functions toMessage :

Constructors

FileMessage()
Create a new file message with a unique filename. By default, the
will be deleted when no file messages reference it.

FileMessage(const char* name)
Create a new file message with the given filename. By default, the
will not be deleted when no file messages reference it.

FileMessage(const FileMessage& src)
Create a new file message containing the same filename as the
file message. By default, the file will not be deleted when no file m
sages reference it.

Operations

const char* fileName()
Return the file name contained in this message.

StringList print()
Return the file name contained in this message in aStringList
object.

const char* fileName()
Return the file name contained in this message.

void setTransient(int transient)
Set the status of the file. If transient isTRUE, the file will be deleted
U. C. Berkeley Department of EECS

The Almagest 4-35

to

iven
t.

given

 in the
such
when no file messages reference it; ifFALSE, then it will not be
deleted.

4.5.2 The String type

The string type is implemented by the classesStringMessage andStringParti-
cle , which are derived fromMessage andParticle . It contains anInfString object—
InfString is a version ofStringList that allows limited modification, and is used
interface C++ to Tcl. Again, It uses the reference-counting mechanism of theMessage and
Envelope classes to ensure that strings are not deleted until no longer needed.StringMes-
sage is currently very simple—it adds the following functions toMessage :

Constructors

StringMessage()
Create a new string message an empty string.

StringMessage(const char* name)
Create a new string message with a copy of the given string. The g
string can be deleted, since the new message does not reference i

StringMessage(const StringMessage& src)
Create a new string message containing the same string as the
string message. Again, the string is copied.

Operations

StringList print()
Return the string contained in this message in aStringList object.

4.6 Writing Stars That Manipulate Any Particle Type
Ptolemy allows stars to declare that inputs and outputs are of typeANYTYPE. A star

may need to do this, for example, if it simply copies its inputs without regard to type, as
case of aFork star, or if it calls a generic function that is overloaded by every data type,
as sink stars which call the print method of the type.

The following is an example of a star that operates onANYTYPE particles:

defstar {
name {Fork}
domain {SDF}
desc { Copy input particles to each output. }
input {

name{input}
type{ANYTYPE}

}
outmulti {

name{output}
type{= input}

}
go {
Ptolemy Last updated: 10/10/97

4-36 Data Types

 type

 exam-

time
spe-

 dis-
ter to

of that
17, it

of its
 con-
f the

ppens

ue of
ole --

l type
onver-
MPHIter nextp(output);
PortHole* p;
while ((p = nextp++) != 0)

(*p)%0 = input%0;
}

}

Notice how in the definition of the output type, the star simply says that its output
will be the same as the input type. ptlang translates this definition into anANYTYPE output
porthole and a statement in the star constructor that reads

output.inheritTypeFrom(input);

as you can see by examining the.cc file generated forSDFFork .

During galaxy setup, the Ptolemy kernel assigns actual types toANYTYPE portholes,
making use of the types of connected portholes and inheritTypeFrom connections. For
ple, if a Fork’s input is connected to an output porthole of typeINT , the Fork’s input becomes
type INT , and then so do its output(s) thanks to the inheritTypeFrom connection. At run
there is no such thing as anANYTYPE porthole; every porthole has been resolved to some
cific data type, which can be obtained from the porthole using theresolvedType() method.
(However, this mechanism does not distinguish among the various subclasses ofMessage , so
if you are usingMessage particles you still need to check the actual type of eachMessage
received.)

Porthole type assignment is really a fairly complex and subtle algorithm, which is
cussed further in the Ptolemy Kernel Manual. The important properties for a star wri
know are these:

 • If an input port has a specific declared type, it is guaranteed to receive particles
type. For reasons mentioned in “Reading inputs and writing outputs” on page 2-
is safest to explicitly cast input particles to the desired type, as in

go {
double value = double(in%0);
...

}

but this is not strictly necessary in the current system.

 • In simulation domains, an output port is NOT guaranteed to transmit particles
declared type; the actual resolved type of the porthole will be determined by the
nected input porthole. Therefore, you should always allow for type conversion o
value computed by the star into the actual type of the output particle. This ha
implicitly when you write something like

out%0 << t;
because this expands into a call of the particle’s virtual method for loading a val
the given type. But assuming that you know the exact type of particle in the porth
- say by writing something like(FloatParticle&) (out%0) --- is very unsafe.

 • In code generation domains, it is usually critical that the output porthole’s actua
be what the star writer expected. Most codegen domains therefore splice type c
U. C. Berkeley Department of EECS

The Almagest 4-37

 types
ct, and

, if an
r-
 com-
 any

 suc-
-

 a

 exter-
ection

 with
imen-

ture

nt”
ters to
classes
ix.

 for
sion stars into the schematic when input and output ports of different declared
are connected. In this way, both connected stars will see the data type they expe
the necessary type conversion is handled transparently.

 • The component portholes of a multiporthole are type-resolved separately. Thus
input multiporthole is declaredANYTYPE, its component portholes might have diffe
ent types at runtime. (This was not true in Ptolemy versions preceding 0.7.) The
ponent portholes of an output multiporthole can have different resolved types in
case, because they might be connected to inputs of different types.

 • It is rarely a good idea to declare a pureANYTYPE output porthole; rather, its type
should be equated to some input porthole using the ptlang= port notation or an
explicit inheritTypeFrom call. This ensures that the type resolution algorithm can
ceed. A “pureANYTYPE” output will work only if connected to an input of determin
able type; if it’s connected to anANYTYPE input, the kernel will be unable to resolve
type for the connection. By providing an= type declaration, you allow the kernel to
choose an appropriate particle type for anANYTYPE-to-ANYTYPE connection.

4.7 Unsupported Types
There are a number of data types in Ptolemy that we recommend not be used by

nal developers because they are either insufficiently mature or likely to change. This s
briefly describes those classes.

4.7.1 Sub-matrices

The Ptolemy kernel contains a set of matrices to support efficient computation
sub-matrices. These classes were developed specifically for the experimental multid
sional SDF (MDSDF) domain and will probably be implemented differently in a fu
release.

There are four sub-matrix classes, one for each concrete matrix class:ComplexSub-
Matrix , FixSubMatrix , FloatSubMatrix , andIntSubMatrix , each of which inherits
from the correspondingPtMatrix class. A sub-matrix contains a reference to a “pare
matrix of the same type, and modifies its internal data pointers and matrix size parame
reference a rectangular region of the parent’s data. The constructors for the submatrix
have arguments that specify the region of the parent matrix referenced by the sub-matr

As for matrices, the description of sub-matrices uses the convention thatXXX means
Complex , Fix , Float , or Int , andxxx meansComplex , Fix , double , or int .

The submatrix constructors are:

XXXSubMatrix()
Create an uninitialized matrix.

XXXSubMatrix(int numRow, int numCol)
Create a regular matrix with dimensionsnumRow by numCol ; return a
new submatrix with this matrix as its parent. Memory is allocated
the data storage but the entries are uninitialized.

XXXSubMatrix(XXXSubMatrix& src, int sRow, int sCol, int nRow,
Ptolemy Last updated: 10/10/97

4-38 Data Types

fer-

 of
rror
lar

ix

ecause

l matrix

id-

age.

r, they
matrix
mary.

IFO
nts the
refer-
r

ion of
ization

region
int nCol)
Create a sub-matrix of the given dimensions and initialize it to re
ence the region of the parent matrix starting at (sRow, sCol) and of size
(nRow, nCol). The parent matrix is the same as the parent matrix
src . The given dimensions must fit into the parent matrix, or an e
will be flagged. Unlike the “sub-matrix” constructors in the regu
matrix classes, this constructor does not copy matrix data.

XXXSubMatrix(const XXXSubMatrix& src)
Make a duplicate of thesrc sub-matrix. The parent of the new matr
is the same as the parent ofsrc .

Submatrices support all operations supported by the regular matrix classes. B
the matrix classes uniformly use only theentry() andoperator [] member functions to
access the data, the sub-matrix classes need only to override these functions, and al
operations become available on sub-matrices.

xxx& entry(int i)
Return thei th entry of the sub-matrix when its data storage is cons
ered to be a linear array.

xxx* operator [] (int row)
Return a pointer to the start of the row of the sub-matrix’s data stor

Using sub-matrices in stars

Sub-matrices are not currently useful in general-purpose dataflow stars. Rathe
were developed to provide an efficient means of referencing portions of a single larger
in the multi-dimensional synchronous dataflow (MDSDF) domain. We give here a sum
For more details, see [Che94] and the MDSDF sources in$PTOLEMY/src/domains/
mdsdf/kernel and$PTOLEMY/src/domains/mdsdf/stars .

Unlike other domains, the MDSDF kernel does not transfer particles through F
buffers. Instead, each geodesic keeps a single copy of a “parent” matrix, that represe
“current” two-dimensional datablock. Each time a star fires, it obtains a sub-matrix that
ences this parent matrix with thegetOutput() function of the MDSDF input port class. Fo
example, a star might contain:

FloatSubMatrix* data = (FloatSubMatrix*)(input.getInput());

Note that this is not really getting a matrix, but a sub-matrix that references a reg
the current data matrix. The size of the sub-matrix has been set by the star in its initial
code by calling thesetMDSDFParams() function of the port.

To write data to the output matrix, the star gets a sub-matrix which references a
of the current output matrix and writes to it with a matrix operator. For example,

FloatSubMatrix* result = (FloatSubMatrix*)(output.getOutput());
result = -data;
U. C. Berkeley Department of EECS

The Almagest 4-39

rc they
Because the sub-matrices are only references to the current matrix on each a
must be deleted after use:

delete &input;
delete &result;

Here is a simplified example of a complete MDSDF star:

defstar {
name { Add }
domain { MDSDF }
desc {

Matrix addition of two input matrices A and B to
produce matrix C. All matrices must have the same
dimensions.

}
version { %W% %G% }
author { Mike J. Chen }
location { MDSDF library }
input {

name { Ainput }
type { FLOAT_MATRIX }

}
input {

name { Binput }
type { FLOAT_MATRIX }

}
output {

name { output }
type { FLOAT_MATRIX }

}
defstate {

name { numRows }
type { int }
default { 2 }
desc { The number of rows in the input/output matrices. }

}
defstate {

name { numCols }
type { int }
default { 2 }
desc { The number of columns in the input/output

matrices. }
}
ccinclude { “SubMatrix.h” }
setup {
 Ainput.setMDSDFParams(int(numRows), int(numCols));
 Binput.setMDSDFParams(int(numRows), int(numCols));
 output.setMDSDFParams(int(numRows), int(numCols));
}
go {
// get a SubMatrix from the buffer

FloatSubMatrix& input1
Ptolemy Last updated: 10/10/97

4-40 Data Types

 of

 never
estroyed

pulate
sed on
age

e
sed
s

 in the
ich

e. The
vious
 from

s.
ct is
= *(FloatSubMatrix*)(Ainput.getInput());
FloatSubMatrix& input2

= *(FloatSubMatrix*)(Binput.getInput());
FloatSubMatrix& result

= *(FloatSubMatrix*)(output.getOutput());

// compute product, putting result into output

result = input1 + input2;

delete &input1;
delete &input2;
delete &result;

}
}

The sub-matrix “particles”

The ptlang type of submatrices isFLOAT_MATRIX, INT_MATRIX, and so on. (This
is not documented in theUser’s Manual and is likely to change in a future release.) Each
these ptlang types is implemented by a sub-class of Particle:IntMatrixParticle , Float-
MatrixParticle , FixMatrixParticle andComplexMatrixParticle . These particle
classes exist only for setting up the portholes and performing type-checking—they are
created or passed around during a simulation. Instead, sub-matrices are created and d
by the MDSDF kernel and stars as described above.

4.7.2 Image particles

A set of experimental image data types, designed to make it convenient to mani
images and video sequences in Ptolemy, were defined by Paul Haskell. They are ba
Ptolemy’s built-inMessage type, described above. A library of stars that uses these im
data types can be found in the image library of the DE domain.

This set of classes is being replaced by thePtMatrix classes, and the SDF imag
classes now all usePtMatrix . We give here a brief introduction to the image data types u
in the DE domain, although new work should consider usingPtMatrix classes instead. Clas
definitions can be found in$PTOLEMY/src/domains/de/kernel .

The base class of all the image classes is calledBaseImage . It has some generic
methods and members for manipulating images. Most of the methods are redefined
derived classes. Thefragment method partitions an image into many smaller images, wh
together represent the same picture as the original. Theassemble method combines many
small images which make up a single picture into a single image that contains the pictur
fragment method works recursively, so an image that has been produced by a pre
fragment call can be further fragmented. Assembly always produces a full-sized image
fragments, however small.

Use of thesize , fullSize , andstartPos members varies within each subclas
Typically thesize variable holds the number of pixels that an object is storing. If an obje
not produced byfragment() , then (size == fullSize). If the object is produced by a
fragment() call, size may be less than or equal tofullSize . An objects’sfullSize
may be bigger or smaller thanwidth*height . It would be bigger, for example, inDCTIm-
U. C. Berkeley Department of EECS

The Almagest 4-41

 block-
o.

 same

on-
created
vided,

le
 been
it

y are
 the

he dis-

y sub-
iefly
nd that

y. You

 by

ts

nd
t dis-
h

age , where the amount of allocated storage must be rounded up to be a multiple of the
size. It would be smaller, for example, for an object that contains run-length coded vide

The frameId variable is used during assembly. Fragments with the sameframeId ’s
are assembled into the same image. So, it is important that different frames from the
source have different frameIds.

The comparison functions {==, != , <, >, etc.} compare two objects’frameId ’s. They
can be used to resequence images or to sort image fragments.

The copy constructor andclone methods have an optional integer argument. If a n
zero argument is provided, then all state values of the copied object are copied to the
object, but none of the image data is copied. If no argument or a zero argument is pro
then the image data is copied as well. Classes derived fromBaseImage should maintain this
policy.

The GrayImage class, derived fromBaseImage , is used to represent gray-sca
images. TheDCTImage class is used to represent images or image fragments that have
encoded using the discrete-cosine transform. TheMVImage class is a bit more specialized;
stores a frame’s worth of motion vectors.

4.7.3 “First-class” types

All of the types built-in to the Ptolemy kernel are “first-class” in the sense that the
understood bypigi andptlang . We recommend that users create their own types using
mechanism described in “Defining New Data Types” on page 4-14. This approach has t
advantage that all user-defined types are seen bypigi andptlang as being of type “mes-
sage.” If this is not acceptable, then it is possible to create your own first-class types b
classing Particle and adding the new types to VEM. The following instructions br
describes this process. We stress, however, that this method is not officially supported a
types created this way will probably have to be reworked in a future release of Ptolem
will need to use some other color—sayfileColor —as a sample to follow when modifying
the various source files.

 • Sub-classParticle and Message . Use the classes in$PTOLEMY/src/kernel/
FileMessage.h/cc and $PTOLEMY/src/kernel/FileParticle.{h,cc} as
examples. You will need to create a static instance of yourParticle and static
Plasma and PlasmaGate instances to hold your particles, as demonstrated
FileParticle .

 • Modify $PTOLEMY/src/pigilib/mkTerm.c . There are three switch statemen
where you will need to insert a new case.

 • In the directory$PTOLEMY/lib/colors/ptolemy , editbw.pat andcolors.pat
to add the new color. The color is in RBG format, with 1000 being full-scale.

 • Run the OcttoolsinstallColors program. It will ask you a series of mysterious a
strangely beautiful questions. To start with, use the defaults, except for “Outpu
play type”, where you answerGENERIC-COLOR. Run the same program again wit
the following output display types:GENERIC-BW, Postscript-Color , andPost-
script-BW .

 • To support monochrome screens (whenpigi is started with the-bw option), repeat
Ptolemy Last updated: 10/10/97

4-42 Data Types

t

new
the above, but specify$PTOLEMY/lib/colors/ptolemy/bw.pat as the pattern
file, $PTOLEMY/lib/bw_patterns as the directory in which to install,GENERIC-
COLOR as the display device, and answerYES to the question about color outpu
device.

 • After rebuildingpigilib and restarting, create an icon for a star that has your
type as an input or output. The terminal should be of the new color.
U. C. Berkeley Department of EECS

The Almagest 5-1

ile at
emy.

xplains
m
ng this

tation

rc tar
lable
p
tions

an be
s or by

mber of

number
ber of
Chapter 5. Using Tcl/Tk

Authors: Edward A. Lee

Other Contributors: Brian L. Evans
Wei-Jen Huang
Alan Kamas
Kennard White

5.1 Introduction
Tcl is an interpreted “tool command language” designed by John Ousterhout wh

UC Berkeley.Tk is an associated X window toolkit. Both have been integrated into Ptol
Parts of the graphical user interface and all of the textual interpreterptcl are designed using
them. Several of the stars in the standard star library also use Tcl/Tk. This chapter e
how to use the most basic of these stars,TclScript , as well how to design such stars fro
scratch. It is possible to define very sophisticated, totally customized user interfaces usi
mechanism.

In this chapter, we assume the reader is familiar with the Tcl language. Documen
is provided along with the Ptolemy distribution in the$PTOLEMY/tcltk/itcl/man direc-
tory in Unix man page format. HTML format documentation is available from the other.s
file in $PTOLEMY/src/tcltk . Up-to-date documentation and software releases are avai
by on the SunScript web page athttp://www.sunscript.com . There is also a newsgrou
called comp.lang.tcl . This news group accumulates a list of frequently asked ques
about Tcl which is availablehttp://www.teraform.com/%7Elvirden/tcl-faq/ .

The principal use of Tcl/Tk in Ptolemy is to customize the user interface. Stars c
created that interact with the user in specialized ways, by creating customized display
soliciting graphical inputs.

5.2 Writing Tcl/Tk scripts for the TclScript star
Several of the domains in Ptolemy have a star calledTclScript . This star provides

the quickest and easiest path to a customized user interface. The icon can take any nu
forms, including the following:

All of these icons refer to the same star, but each has been customized for a particular
of input and output ports. You should select the one you need on the basis of the num

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl

TclScript
TclTcl
Ptolemy Last updated: 10/10/97

5-2 Using Tcl/Tk

ts and

n the
ns. We
ar:

put
e spec-

essed,
lue 0.0.

e the
n will
input and output ports required. The left-most icon has an unspecified number of inpu
outputs (as indicated by the double arrows at its input and output ports).

TheTclScript star has one parameter (settable state):

tcl_file A string giving the full path name of a file containing a Tcl script

The Tcl script file specifies initialization commands, for example to open new windows o
screen, and may optionally define a procedure to be invoked by the star every time it ru
begin with two examples that illustrate most of the key techniques needed to use this st

Example 1: Consider the following simple schematic in the SDF domain:

TheTkShowValues star is in the standard SDF star library. It displays whatever in
values are supplied in a subpanel of the control panel for the system. Suppose w
ify the following Tcl script for theTclScript star:

set s $ptkControlPanel.middle.button_$starID
if {! [winfo exists $s]} {

button $s -text "PUSH ME"
pack append $ptkControlPanel.middle $s {top}
bind $s <ButtonPress-1> "setOutputs_$starID 1.0"
bind $s <ButtonRelease-1> "setOutputs_$starID 0.0"
setOutputs_$starID 0.0

}
unset s

This script creates a pushbutton in the control panel. When the button is depr
the star outputs the value 1.0. When the button is released, the star outputs va
The resulting control panel is shown below:

While the system is running, depressing the button labeled “PUSH ME” will caus
value displayed at the bottom to change from 0.0 to 1.0. Releasing the butto
change the value back to 0.0. The lines in the Tcl script are explained below:

TclScript
TclTcl Tk

ShowValues

WW
WW
WW
WW
WWYYYYYYYYYY

YY
YY
YY
YY
YY

123
kkkkkkkkkk
U. C. Berkeley Department of EECS

The Almagest 5-3

d for

et by

cl
to
ermits
control

xam-
utton a
button

el (see
 to a

proce-
.
t-
ment.
set s $ptkControlPanel.middle.button_$starID

This defines a Tcl variable “s” whose value is the name of the window to be use
the button. The first part of the name,$ptkControlPanel , is a global variable giv-
ing the name of the control panel window itself. This global variable has been s
pigi and can be used by any Tcl script. The second part,.middle , specifies that the
button should appear in the subwindow named.middle of the control panel. The
control panel, by default, has empty subwindows named.high , .middle , and.low .
The last part,.button_$starID , gives a unique name to the button itself. The T
variablestarID has been set by theTclScript star to a name that is guaranteed
be unique for each instance of the star. Using a unique name for the button p
multiple instances of the star in a schematic to create separate buttons in the
window without conflict.

if {! [winfo exists $s]} {
...

}

This conditionally checks to see whether or not the button already exists. If, for e
ple, the system is being run a second time, then there is no need to create the b
second time. In fact, an attempt to do so will generate an error message. If the
does not already exist, then it is created by the following lines:

button $s -text "PUSH ME"
pack append $ptkControlPanel.middle $s {top}

The first of these defines the button, and the second packs it into the control pan
the Tk documentation). The following Tcl statement binds a particular command
mouse action, thus defining the response when the button is pushed:

bind $s <ButtonPress-1> "setOutputs_$starID 1.0"

When button number 1 of the mouse is pressed, the Tcl interpreter invokes a
dure namedsetOutputs_$starID with a single argument,1.0 (passed as a string)
This procedure has been defined by theTclScript star. It sets the value(s) of the ou
puts of the star. In this case, there is only one output, so there is only one argu
The next statement defines the action when the button is released:

bind $s <ButtonRelease-1> "setOutputs_$starID 0.0"

The next statement initializes the output of the star to value 0.0:

setOutputs_$starID 0.0

The last command unsets the variable s, since it is no longer needed:
Ptolemy Last updated: 10/10/97

5-4 Using Tcl/Tk

l have
o mod-
 star.

or each
ting the
control

 the star
 glo-

ed
ports.

occurs
 will be

nclosed
ensure
ipt is
variable

wing
 how to
unset s

As illustrated in the previous example, a number of procedures and global variables wil
been defined for use by the Tcl script by the time it is sourced. These enable the script t
ify the control panel, define unique window names, and set initial output values for the
Much of the complexity in the above example is due to the need to use unique names f
star instance that sources this script. In the above example, the Tcl procedure for set
output values has a name unique to this star. Moreover, the name of the button in the
panel has to be unique to handle the case when more than oneTclScript star sources the
same Tcl script. These unique names are constructed using a unique string defined by
prior to sourcing the script. That string is made available to the Tcl script in the form of a
bal Tcl variablestarID . The procedure used by the Tcl script to set output values is call
setOutputs_$starID . This procedure takes as many arguments as there are output
The argument list should contain a floating-point value for each output of the star.

In the above example, Tcl code is executed when the Tcl script is sourced. This
during the setup phase of the execution of the star. After the setup phase, no Tcl code
executed unless the user pushes the “PUSH ME” button. The command

bind $s <ButtonPress-1> "setOutputs_$starID 1.0"

defines a Tcl command to be executed asynchronously. Notice that the command is e
in quotation marks, not braces. Tcl aficionados will recognize that this is necessary to
that thestarID variable is evaluated when the command binding occurs (when the scr
sourced), rather than when the command is executed. There is no guarantee that the
will be set when the command is executed.

In the above example, no Tcl code is executed when the star fires. The follo
example shows how to define Tcl code to be executed each time the star fires, and also
read the inputs of the star from Tcl.

Example 2: Consider the following schematic in the SDF domain:

Suppose we specify the following Tcl script for theTclScript star:

proc goTcl_$starID {starID} {
set inputVals [grabInputs_$starID]
set xin [lindex $inputVals 0]
set yin [lindex $inputVals 1]
setOutputs_$starID [expr $xin+$yin]

}

XgraphTclScript
TclTcl

Ramp

Rect
U. C. Berkeley Department of EECS

The Almagest 5-5

en the
imply

cedure
h this
ethe-

e
 is the

 this
l

dure
 one

ed to
 is
ipt is
s that

 asyn-

 the

e

 the
for

 an

 an
Unlike the previous example, this script does not define any code that runs wh
script is sourced, during the setup phase of execution of the star. Instead, it s
defines a procedure with a name unique to the instance of the star. This pro
reads two input values, adds them, and writes the result to the output. Althoug
would be a very costly way to accomplish addition in Ptolemy, this example non
less illustrates an important point. If a Tcl script sourced by aTclScript star defines
a procedure calledgoTcl_$starID , then that procedure will be invoked every tim
the star fires. The single argument passed to the procedure when it is called
starID. In this example, the procedure uses grabInputs_$starID , defined by
the TclScript star, to read the inputs. The current input values are returned by
procedure as a list, so the Tcl commandlindex is used to index into the list. The fina
line adds the two inputs and sends the result to the output.

As shown in the previous example, if the Tcl script defines the optional Tcl proce
goTcl_$starID , then that procedure will be invoked every time the star fires. It takes
argument (thestarID) and returns nothing. This procedure, therefore, allows forsynchro-
nous communication between the Ptolemy simulation and the Tcl code (it is synchroniz
the firing of the star). If nogoTcl_$starID procedure is defined, then communication
asynchronous (Tcl commands are invoked at arbitrary times, as specified when the scr
read). For asynchronous operation, typically X events are bound to Tcl/Tk command
read or write data to the star.

The inputs to the star can be of any type. Theprint() method of the particle is used
to construct a string passed to Tcl. Although it is not illustrated in the above examples,
chronous reads of the star inputs are also allowed.

Below is a summary of the Tcl procedures used when executing aTclScript star:

grabInputs_$starID
A procedure that returns the current values of the inputs of
star corresponding to the givenstarID . This procedure is
defined by theTclScript star if and only if the instance of th
star has at least one input port.

setOutputs_$starID
A procedure that takes one argument for each output of
TclScript star. The value becomes the new output value
the star. This procedure is defined by theTclScript star if and
only if the instance of the star has at least one output port.

goTcl_$starID If this procedure is defined in the Tcl script associated with
instance of theTclScript star, then it will be invoked every
time the star fires.

wrapupTcl_$starID
If this procedure is defined in the Tcl script associated with
instance of theTclScript star, then it will be invoked every
Ptolemy Last updated: 10/10/97

5-6 Using Tcl/Tk

s,

 an

 to
be

l to the

lue
re con-

,
ries are

 of

 the

d to

ript

rm

mer
ociated
bal

elow

ci-
time thewrapup method of the star is invoked. In other word
it will be invoked when a simulation stops.

destructorTcl_$starID
If this procedure is defined in the Tcl script associated with
instance of theTclScript star, then it will be invoked when
the destructor for the star is invoked. This can be used
destroy windows or to unset variables that will no longer
needed.

In addition to thestarID global variable, theTclScript star makes other information
available to the Tcl script. The mechanism used is to define an array with a name equa
value of thestarID variable. Tcl arrays are indexed by strings. Thus, not only isstarID a
global variable, but so is$starID . The value of the former is a unique string, while the va
of the latter is an array. One of the entries in this array gives the number of inputs that a
nected to the star. The value of the expression[set ${starID}(numInputs)] is an inte-
ger giving the number of inputs. The Tcl command “set ”, when given only one argument
returns the value of the variable whose name is given by that argument. The array ent
summarized below:

$starID This evaluates to a string that is different for every instance
the TclScript star. ThestarID global variable is set by the
TclScript star.

[set ${starID}(numInputs)]
This evaluates to the number of inputs that are connected to
star.

[set ${starID}(numOutputs)]
This evaluates to the number of outputs that are connecte
the star.

[set ${starID}(tcl_file)]
This evaluates to the name of the file containing the Tcl sc
associated with the star.

[set ${starID}(fullName)]
This evaluates to the full name of the star (which is of the fo
universe.galaxy.galaxy.star).

5.3 Tcl utilities that are available to the programmer
A number of Tcl global variables and procedures that will be useful to the Tcl program
have been incorporated into Ptolemy. Any of these can be used in any Tcl script ass
with an instance of theTclScript star. For example, in example 1 on page 5-2, the glo
variableptkControlPanel specifies the control panel that is used to run the system. B
is a list of the useful global variables that have been set by the graphical interface (pigi)
when the Tcl script is sourced or when thegoTcl_$starID procedure is invoked:

$ptkControlPanel A string giving the name of the control panel window asso
ated with a given run. This variable is set by pigi.
U. C. Berkeley Department of EECS

The Almagest 5-7

 for

er-

ser-

plied.
tolemy

he Tcl-
nd

ent

. The

ce-
led
nts.

ck
lled
ypes
$ptkControlPanel.high
The uppermost panel in the control panel that is intended
user-defined entries.

$ptkControlPanel.middle
The middle panel in the control panel that is intended for us
defined entries.

$ptkControlPanel.low
The lowest panel in the control panel that is intended for u
defined entries.

In addition to these global variables, a number of procedures have been sup
Using these procedures can ensure a consistent look-and-feel across a variety of P
applications. The complete set of procedures can be found in$PTOLEMY/lib/tcl . We list a
few of the more useful ones here. Note also that the entire set of commands defined in t
based textual interpreter for Ptolemy,ptcl , are also available. So for example, the comma
curuniverse will return the name of the current universe. See theptcl chapter in the
User’s Manual.

ptkExpandEnvVar
Procedure to expand a string that begins with an environm
variable reference. For example,

ptkExpandEnvVar $PTOLEMY/src
will return something like

/usr/users/ptolemy/src
Arguments:
path the string to expand

ptkImportantMessage
Procedure to pop up a message window and grab the focus
process is suspended until the message is dismissed.
Arguments:
win window name to use for the message
text text to display in the pop-up win-
dow

ptkMakeButton Procedure to make a pushbutton in a window. A callback pro
dure must be defined by the programmer. It will be cal
whenever the user pushes the button, and takes no argume
Arguments:
win name of window to contain the button
name name to use for the button itself
desc description to be put into the display
callback name of callback procedure to

register changes

ptkMakeEntry Procedure to make a text entry box in a window. A callba
procedure must be defined by the programmer. It will be ca
whenever the user changes the value in the entry box and t
Ptolemy Last updated: 10/10/97

5-8 Using Tcl/Tk

he

-

with

trol
be
ser
 the

alue
n a
<Return>. Its single argument will be the new value of t
entry.
Arguments:
win name of window to contain

the entry box
name name to use for the entry box itself
desc description to be put into the display
default the initial value of the entry
callback name of callback procedure to reg
ister changes

ptkMakeMeter Procedure to make a bar-type meter in a window.
Arguments:
win name of window to contain the
entry box
name name to use for the entry box itself
desc description to be put into the display
low the value of the low end of the scale
high the value of the high end of

the scale

ptkSetMeter Procedure to set the value of a bar-type meter created
ptkMakeMeter .
Arguments:
win name of window to contain the

entry box
name name to use for the entry box itself
value the new value to display in

the meter

ptkMakeScale Procedure to make a sliding scale. All scales in the con
panel range from 0 to 100. A callback procedure must
defined by the programmer. It will be called whenever the u
moves the control on the scale. Its single argument will be
new position of the control, between 0 and 100.
Arguments:
win name of window to contain the scale
name name to use for the scale itself
desc description to be put into the display
position initial integer position between

0 and 100
callback name of callback procedure to

register changes
Note:
A widget is created with name$win.$name.value that
should be used by the programmer to display the current v
of the slider. Thus, the callback procedure should contai
command like:
U. C. Berkeley Department of EECS

The Almagest 5-9

is is
0 to
am-
 it,
0 to
m

f 0
$win.$name.value configure -text $new_value
to display the new value after the slider has been moved. Th
not performed automatically because the fixed range from
100 may be correct from the user’s perspective. So, for ex
ple, if you divide the scale value by 100 before displaying
then to the user, it will appear as if the scale ranges from 0.
1.0. It is also possible to control the position of the slider fro
Tcl (overriding the user actions) using a command like
$win.$name.scale set $position
whereposition is an integer-valued variable in the range o
to 100.

Example 3: The following Tcl script can be used with theTclScript star in the sys-
tem configuration given in example 1 on page 5-2:

ptkMakeMeter $ptkControlPanel.high meter_$starID \
"meter tracking scale" 0 100

proc scale_update_$starID {new_value} \
"ptkSetMeter $ptkControlPanel.high \

meter_$starID \$new_value
 $ptkControlPanel.high.scale_$starID.value \

configure -text \$new_value"
ptkMakeScale $ptkControlPanel.high scale_$starID \

"my scale" 50 scale_update_$starID
ptkMakeButton $ptkControlPanel.middle button_$starID \

"my button" button_update
proc button_update {} {ptkImportantMessage .msg "Hello"}
ptkMakeEntry $ptkControlPanel.low entry_$starID \

"my entry" 10 entry_update_$starID
proc entry_update_$starID {new_value} \

"setOutputs_$starID \$new_value"

It will create the rather ugly control panel shown below:

The commands are explained individually below.

ptkMakeMeter $ptkControlPanel.high meter_$starID \
Ptolemy Last updated: 10/10/97

5-10 Using Tcl/Tk

art of

w the
he left
arks

ime it
is

ction
 must

at the
"meter tracking scale" 0 100

This creates a meter display with the label “meter tracking scale” in the upper p
the control panel with range from 0 to 100.

proc scale_update_$starID {new_value} \
"ptkSetMeter $ptkControlPanel.high \

meter_$starID \$new_value
 $ptkControlPanel.high.scale_$starID.value \

configure -text \$new_value"

This defines the callback function to be used for the slider (scale) shown belo
meter. The callback function sets the meter and updates the numeric display to t
of the slider. Notice that the body of the procedure is enclosed in quotation m
rather than the usual braces. This ensures that the variablesptkControlPanel and
starID will be evaluated at the time the procedure is defined, rather than at the t
is invoked. To make sure thatnew_value is not evaluated until the procedure
invoked, we use a preceding backslash, as in\$new_value . We could have alterna-
tively passed theptkControlPanel andstarID values as arguments.

ptkMakeScale $ptkControlPanel.high scale_$starID \
my_scale 50 scale_update_$starID

This makes the slider itself, and sets its initial value to 50, half of full scale.

ptkMakeButton $ptkControlPanel.middle button_$starID \
"my button" button_update

This makes a button labeled “my button”.

proc button_update {} {ptkImportantMessage .msg "Hello"}

This defines the callback function connected with the button. This callback fun
opens a new window with the message “Hello”, and grabs the focus. The user
dismiss the new window before continuing.

ptkMakeEntry $ptkControlPanel.low entry_$starID \
"my entry" 10 entry_update_$starID

This makes the entry box with initial value “10”.

proc entry_update_$starID {new_value} \
"setOutputs_$starID \$new_value"

This defines the callback function associated with the entry box. Again notice th
procedure body is enclosed quotation marks.
U. C. Berkeley Department of EECS

The Almagest 5-11

 of any
It has

y.

lay

ecu-
 dis-
 the

ent

ded in

key part

script.
-
 of
he glo-
e
Tcl
e

 vari-

lightly
5.4 Creating new stars derived from the TclScript star
A large number of useful stars can be derived from theTclScript star. The

TkShowValues star used in example 1 on page 5-2 is such a star. That star takes inputs
type and displays their value in a window that is optionally located in the control panel.
three parameters (settable states):

label A string-valued parameter giving a label to identify the displa

put_in_control_panelA Boolean-valued parameter that specifies whether the disp
should be put in the control panel or in its own window.

wait_between_outputsA Boolean-valued parameter that specifies whether the ex
tion of the system should pause each time a new value is
played. If it does, then a mouse click in the display restarts
system.

Conspicuously absent is thetcl_file parameter of theTclScript star from which this is
derived. The file is hard-wired into the definition of the star by the following C++ statem
included in the setup method:

tcl_file =
"$PTOLEMY/src/domains/sdf/tcltk/stars/tkShowValues.tcl";

The parameter is then hidden from the user of the star by the following statement inclu
the constructor:

tcl_file.clearAttributes(A_SETTABLE);

Thus, the user sees only the parameters that are defined in the derived star. This is a
of customizing the star.

A second issue is that of communicating the new parameter values to the Tcl
For example, the Tcl script will need to know the value of thelabel parameter in order to cre
ate the label for the display. TheTclScript star automatically makes all the parameters
any derived star available as array entries in the global array whose name is given by t
bal variablestarID. To read the value of thelabel parameter in the Tcl script, use th
expression[set ${starID}(label)] . The confusing syntax is required to ensure that
uses thevalue of starID as thename of the array. The string “label” is just the index into th
array. Theset command in Tcl, when given only one argument, returns the value of the
able whose name is given by the argument.

Some programmers may prefer an alternative way to refer to parameters that is s
more readable. The Tcl statement

upvar #0 $starID params

allows subsequent statement to refer to parameters simply as$param(param_name) . The
upvar command with argument#0 declares the local variableparams equivalent to the glo-
bal variable whose name is given by the value ofstarID.

Many more examples can be found in$PTOLEMY/src/domains/sdf/tcltk/
stars .
Ptolemy Last updated: 10/10/97

5-12 Using Tcl/Tk

articu-
the file
n

yplace
ned is

ing to
 class

or
e this

this
ts,
5.5 Selecting colors
Since X window installations do not necessarily use consistent color names, a p

lar color database has been installed in Ptolemy. The available colors can be found in
$PTOLEMY/lib/tcl/ptkColor.tcl . To access this color database, use the Tcl functio

ptkColor name

which returns a color defined in terms of RGB components. This color can be used an
that Tk expects a color. If the given name is not in the color database, the color retur
black.

5.6 Writing Tcl stars for the DE domain
In the discrete-event (DE) domain, stars are fired in chronological order accord

the time stamps of the new data that has arrived at their input ports. The Tcl interface
TclStarIfc , which was originally written with the SDF domain in mind, works well f
some types of DE stars. Specifically, any star with an input in the DE domain can us
class effectively. Consequently, a basic Tcl/Tk star,TclScript , has been written for the DE
domain.

The TclScript star can have any number of input or output portholes. As of
writing, it will not work if it is instantiated with no inputs. The problem is that with no inpu
there will be no events to trigger a firing of the star. This will be corrected in the future.
U. C. Berkeley Department of EECS

edul-
 algo-
rtant

 anno-
mselves
-
he
al and
e

d in a
of

t
-

tcl
. An

 is

monly
where
Chapter 6. Using the Cluster Class
for Scheduling

Authors: José Luis Pino

6.1 Introduction
The Ptolemy kernel has three main facilities to aid in the implementation of sch

ing algorithms: generic clustering mechanisms, graph iterators, and classical graph
rithms. In this chapter, we will cover the use of these facilities and some of the impo
methods currently available in Ptolemy to implement new scheduling algorithms.

6.2 Basic Classes
User-specifications done in Ptolemy are represented internally as a collection of

tated directed graphs that may contain cycles. Nodes in these directed graphs may the
contain other directed graphs. Anatomic node is either aStar, which defines code to imple
ment the node operation, or aWormHole, which has an internal graph that is hidden from t
outside. AWormHole is used when there is a change in the semantics between the intern
external graphs, such as a change in theDomain or Scheduler . For purposes of the outsid
graph, aWormHole is equivalent to aStar . A non-atomic node, orGalaxy, is a node which
contains an internal graph which is visible from the outside. This internal graph is store
Galaxy ’s BlockList . Finally, aScheduler is a class that determines the firing order
atomic nodes in a graph.

WormHoles , Galaxies andStars are all derived from the classBlock . A Block
containsPortLists , which store a list ofPortHoles that provide locations to connect inpu
or output arcs to theBlock . Blocks also containStateLists, which may either be user
specified parameters or run-time states that are used when a graph is executed.

A user specification is compiled into an internal representation known as aninter-
preted universe (InterpUniverse). Currently, the user specifications are in the form of p
or oct facets. In the future there will probably be also a Tycho specification format
InterpUniverse captures the user hierarchy in the form of a directed graph ofWormHoles ,
Galaxies andStars . TheInterpUniverse is derived fromGalaxy and contains the top-
level user-specification in itsBlockList . Every other level of the user specified hierarchy
represented by either aWormhole or Galaxy embedded inside of itsparentGalaxy .

All Block s have aparent Block pointer. The parent of aBlock is theGalaxy or
WormHole in which theBlock is embedded. TheInterpUniverse , which is the top-level
Galaxy user specification, has itsparent pointer set toNULL.

6.3 Galaxies and their relationship to Adjacency Lists
To define graph algorithms, adjacency-lists and adjacency-matrices are com

used to represent a directed graph [Cor90]. An adjacency-matrix is a square matrix

6-2 Using the Cluster Class for Scheduling

 is
ected.
are well

ata

y (See

of these

s

ver-
l that the
tweigh

ed a
or, if
cheduler

ring in

ition,
.

ts

raph.
y must
there is one column,i, and one row,j, for each node,i, the graph. An element(i, j) in this
matrix is either 1 if there is an arc fromi to j, or 0 if no arc exists. The second representation
an adjacency-list in which each node has a list containing the nodes to which it is conn
Thus an adjacency-list is better suited for sparse graphs, whereas adjacency-matrices
suited for dense graphs.

Blocks with theirPortLists can be viewed as equivalent to the adjacency-list d
structure. APortHole , in most domains, is either an input or an output. It contains afar-
SidePort pointer to thePortHole it is connected to (NULL if it is not connected). To
traverse the adjacency-list, a scheduler writer must make use of two iterators in Ptolem
“Iterators” on page 3-10):GalStarIter andSuccessorIter . By using aGalStarIter a
scheduler writer can iterate over the nodes in the user-specified graph. Then on each
nodes we can find the adjacent nodes using theSuccessorIter . Although it is not necessary
for adjacency-list equivalence, thePredecessorIter is provided to iterate over the node
that are predecessors to a given node.

There is slight overhead in accessing the graph using bothGalStarIter andSuc-
cessorIter over a straight forward implementation of an adjacency-list class. This o
head has a constant cost which is not dependent on the size of the graph. Thus we fee
robustness achieved by not having two parallel representations of the same graph far ou
this small overhead.

6.4 Clustering
Clustering is often used in implementing scheduling heuristics. We have provid

genericCluster class in the Ptolemy kernel which scheduler writers can use directly
need be, derive specialized clustering classes. The older schedulers such as the BDF s
and the SDF loop schedulers have not been upgraded to use the newCluster classes. Thus,
the BDF and SDF schedulers should not be used as examples of how to do cluste
Ptolemy, but rather the hierarchical SDF parallel scheduler ($PTOLEMY/src/domains/cg/
hierScheduler) can be used as a model. TheHierScheduler in the current version of
Ptolemy is a prototype of the hierarchical parallel scheduler detailed in [Pin95]. In add
we have a specialized loop scheduler [Mur94] which also uses the new cluster facilities

The classCluster is derived from theDynamicGalaxy and as such manages i
own memory. TheCluster classes useClusterPort s which are derived fromGalPort .
The main difference between theClusterPort s andGalPort s is thatClusterPort s
maintain afarSidePort pointer. We need this change inClusterPort in order to easily
iterate over theCluster s at any level of the clustering hierarchy. AClusterPort::far-
SidePort pointer will only beNULL if the ClusterPort is aliased to aStar PortHole
connected at higher level of the clustering hierarchy.

6.4.1 Initialization — Flattening the User Specified Graph

Clustering is done directly on the internal representation of the user-specified g
Before we can begin to cluster the internal representation, the irrelevant user hierarch
be flattened. The flattening is accomplished by creating a temporaryCluster instance and
then invoking theCluster::initializeForClustering method on theGalaxy whose
internals we want to cluster. This top-levelGalaxy will remain intact, but all internalGalax-
U. C. Berkeley Department of EECS

The Almagest 6-3

ny

rchy is

all

ser-

nts.
eci-

i-

o
as

o
meth-
ies which pass theCluster::flattenGalaxy test will be flattened and deleted. Thus a
Scheduler and Target pointers to the top-levelGalaxy will not need to be updated
because they do not change. The necessary information from the user-specified hiera
preserved automatically with the aid of theScope class detailed in section 6.5.

After the internals of the top-levelGalaxy have been flattened,Cluster s are con-
structed around each individual atomicBlock . In that way, the scheduler writer can treat
the Block s at each level (except the innermost level) as aCluster . This property is main-
tained through any sequence of merge/absorb calls. An exampleinitializeForCluster-
ing invocation is shown in figure 6-1, frames 1 and 2.

A facility for restoring the internal Ptolemy representation back to the original u
specified hierarchy is detailed in section 6.6.

6.4.2 Absorb and Merge

The basic clustering mechanisms are implemented with the virtual methods: Clus-
ter::merge andCluster::absorb . Both of these methods can take up to two argume
The first argument is theCluster to absorb/merge and the second argument(optional) sp
fies whether or not to remove the absorbed or mergedCluster from the original parentGal-
axy .

TheCluster::merge method takes the contents of theCluster being merged and
moves them into the Cluster pointed to by thethis pointer. A merge operation is commun
cative. A series of merge steps is shown in figure 6-1 frames 3 and 4.

TheCluster::absorb method takes theCluster being absorbed and moves it int
the Cluster pointed to by thethis pointer. Unlike merge, absorb is not communicative
shown in figure 6-1 frames 5 and 5’.

The absorbed or mergedCluster is removed from the original parentGalaxy by
default whenCluster::merge or Cluster::absorb is called. We provide three ways t
update the graph after a clustering operation with differing levels of efficiency. These
ods are detailed in the table 6-1. We first list some variable definitions:

 • Let be defined as the number ofCluster s in the parentGalaxy

 • Let be defined as the number ofPortHole s in this Cluster

 • Let be defined as the number ofPortHole s in theCluster to absorb or merge

Deletion/Update Method
Complexity to
update at each
clustering step

Using merge/absorb in their default mode of operation. This is the most
inefficient way to do clustering.

TABLE 6-1: Complexity cost of absorb/merge step.

N

Et

Ec

O N Et Ec×+()
Ptolemy Last updated: 10/10/97

6-4 Using the Cluster Class for Scheduling
A

B

C

D

3. B.merge(C)

A

B

C

D

4. BC.merge(A)

A

B

C

D

5. D.absorb(ABC)

A

B

C

D A

B

C

D

2. initializeForClustering1. Initial Graph

A

B

C

D

5’. ABC.absorb(D)

FIGURE 6-1: A five step clustering example. By convention, a Cluster in this figure will be
named by the listing of its innermost atomic Block s. In frame 1, the user-specified
graph is shown. Cluster::initializeForClustering is called and the
resultant graph is shown in frame 2 — this step adds a Cluster around all atomic
Block s. Frames 3-5 show a series of merge/absorb operations. The ordering is
important only with absorb operation — as shown by frames 5 and 5’.
U. C. Berkeley Department of EECS

The Almagest 6-5

y func-
rators

rs
6.4.3 Cluster Iterator Classes

TheCluster iterator classes assume that allBlock s in theGalaxy being iterated on
areCluster s. This property isTRUE assuming that theGalaxy (or one of its parent Galax-
ies) has been properly initialized (section 6.4.1) and merge/absorb have been the onl
tions that have modified the topology of the graph since the initialization. These ite
ignore pointers to invalidCluster s which have been left in theGalaxy using merge /
absorb with theremoveFlag set toFALSE (last two cases in table 6-1). The cluster iterato
are listed in table 6-2.

GalTopBlockIter::remove
We can use this method if theCluster to absorb/merge was found using
a GalTopBlockIter (or derived iterator class) on the parentGalaxy .
The scheduler writer needs to do two things:

 • remove the absorbed/merged cluster using from the parentGal-
axy using the iterator’sremove method.

 • delete the removedCluster using theC++ operatordelete .

This is the most efficient way of updating the graph after a clustering
operation — but it is not always possible because we may be traversing
the graph in some other way such as using aSuccessorIter .

cleanupAfterCluster (defined inCluster.{h,cc})
If we cannot use the previous method, we can leave theCluster in the
parentGalaxy list (it will be marked invalid automatically). TheClus-
ter iterator classes automatically skip these invalidCluster s. Periodi-
cally (but not at each clustering step), thecleanupAfterCluster
function should be invoked to remove and delete the invalidCluster s.
This function will cost to execute, but since it is not done
at each clustering step — the result on the overall complexity will be
additive versus being multiplicative. For an example of how this is done,
refer to: $PTOLEMY/src/domains/cg/hierScheduler/Hier-
Scheduler.cc .

Iterator Description

ClusterIter Iterate over all validCluster s in the givenGalaxy .

SuccessorClusterIter Iterate over all successor (adjacent)Cluster s for a
givenCluster .

TABLE 6-2: Cluster Iterators

Deletion/Update Method
Complexity to
update at each
clustering step

TABLE 6-1: Complexity cost of absorb/merge step.

O Et Ec×()

O N Et Ec×+()

O Et Ec×()
Ptolemy Last updated: 10/10/97

6-6 Using the Cluster Class for Scheduling

r-
archy
ever,

er-
ly cre-

rations
re

riter
6.5 Block state and name scoping hierarchy
Recall, that when we initialize aGalaxy for clustering, we flatten the original use

specified hierarchy. Before this action, we extract the important information in the hier
using theScope class. In this section we detail this class. The details in this section, how
are not necessary to understand clustering in Ptolemy.

Block s inherit states from their parent. TheScope class makes it possible for aTar-
get or Scheduler to change theBlock hierarchy by saving the inherited states in the us
specified hierarchy. The scoping hierarchy was first released in Ptolemy 0.6, and is on
ated when the static methodScope::createScope(Galaxy&) is invoked. Currently, the
only code that uses the scoping hierarchy is theCluster class.

TheScope class manages its memory. Once aScope is created, it will not be deleted
until all Block s within the givenScope are deleted. TheScope class is privately derived
from Galaxy . To turn on scoping a programmer simply calls the static method:

static Scope* Scope::createScope(Galaxy&)

This method constructs a parallel tree corresponding to eachGalaxy and copies the
StateList andname() for each level.

6.6 Resetting an InterpUniverse back to actionList
Ptolemy 0.6 and later includes the ability to reset anInterpUniverse back to the

original user-specification. Resetting is occasionally necessary to undo certain ope
done on a universe by aScheduler or Target . An example is in parallel scheduling, whe
the original stars in theInterpUniverse are moved to thesubGalaxies for the child
Targets (see$PTOLEMY/src/domains/cg/parScheduler/ParProcessors.cc). To
signal that a theInterpUniverse needs to be rebuilt upon the next run, the scheduler w
should invokeTarget::requestReset() .

PredecessorClusterIter Iterate over all predecessorCluster s for a givenClus-
ter .

Iterator Description

TABLE 6-2: Cluster Iterators
U. C. Berkeley Department of EECS

The Almagest 6-7

r

edu/

er-
6.7 References

[Cor90] Cormen, Leiserson and Rivest,Introduction to Algorithms, New York: MIT
Press, 1990.

[Mur94] Murthy, Bhattacharyya, and Lee,Combined code and data minimization fo
synchronous dataflow programs, Memorandum UCB/ERL M94/93, University
of California at Berkeley, December,1994. (http://ptolemy.eecs.berkeley.
papers/jointCodeDataMinimize)

[Pin95] Pino, Bhattacharyya, and Lee,A Hierarchical Multiprocessor Scheduling
Framework for Synchronous Dataflow GraphsMemorandum UCB/ERL M95/
36, University of California at Berkeley, May, 1995. (http://ptolemy.eecs.b
keley.edu/papers/hierStaticSched)
Ptolemy Last updated: 10/10/97

6-8 Using the Cluster Class for Scheduling
U. C. Berkeley Department of EECS

lemy.
ng the
f the

in, but
ains. A
ed for

del of
ith
er are

arti-
. These
ust one
 special
ever,

f that
to fire.
ble

samples

es.

f any
Chapter 7. SDF Domain

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee

7.1 Introduction
Synchronous dataflow (SDF) is a statically scheduled dataflow domain in Pto

“Statically scheduled” means that the firing order of the stars is determined once, duri
start-up phase. The firing order will be periodic. The SDF domain in Ptolemy is one o
most mature, with a large library of stars and demo programs. It is a simulation doma
the model of computation is the same as that used in most of the code generation dom
number of different schedulers, including parallelizing schedulers, have been develop
this model of computation.

We assume in this very short chapter that the reader is familiar with the SDF mo
computation. Refer to theUser’s Manual. Moreover, we assume the reader is familiar w
chapter 2, “Writing Stars for Simulation”. Since most of the examples given in that chapt
from the SDF domain, there is only a little more information to add here.

7.2 Setting SDF porthole parameters
All stars in the SDF domain must follow the basic SDF principle: the number of p

cles consumed or produced on any porthole does not change while the simulation runs
numbers are given for each porthole as part of the star definition. Most stars consume j
particle on each input and produce just one particle on each output. In these cases, no
action is required, since the porthole SDF parameters will be set to unity by default. How
if the numbers differ from unity, the star definition must reflect this. For example, theFFTCx
star has asize parameter that specifies how many input samples to read. The value o
parameter specifies the number of samples required at the input in order for the star
The following line in thesetup method of the star is used to make this information availa
to the scheduler:

input.setSDFParams (int(size), int(size)-1);

The name of the input porthole isinput. The first argument tosetSDFParams specifies how
many samples are consumed by the star when it fires; it is the same as the number of
required in order to enable the star. The second argument tosetSDFParams specifies how
many past samples (before the most recent one) will be accessed by the star when it fir

If the number of particles produced or consumed is a constant independent o
states, then it may be declared right along with the declaration of the input, in the.pl file. For
example,

input {
name { signalIn }
type { complex }

7-2 SDF Domain
numTokens { 2 }
desc { Complex input that consumes 2 input particles. }

}

This declares an input that consumes two successive complex particles.
U. C. Berkeley Department of EECS

put or
 called
ed at
Chapter 8. DDF Domain

Authors: Soonhoi Ha

8.1 Programming Stars in the DDF Domain
A DDF star, as distinct from an SDF star, has at least one porthole, either an in

an output, that receives or sends a variable number of particles. Such portholes are
dynamic. Consequently, for a DDF star, how many particles to read or write is determin
run time, in thego method. Consider an example, theLastOfN star:

defstar {
name {LastOfN}
domain {DDF}
desc {

Outputs the last token of N input tokens,
where N is the value of the control input.

}
input {

name {input}
type {anytype}
num {0}

}
input {

name {control}
type {int}

}
output {

name {output}
type {anytype}

}
private {

int readyToGo;
}
constructor {

input.inheritTypeFrom(output);
}
setup {

waitFor(control);
readyToGo = FALSE;

}
go {

if (!readyToGo) {
control.receiveData();
waitFor(input, int (control%0));
readyToGo = TRUE;

} else {
int num = int (control%0);
for (int i = num; i > 0; i--) input.receiveData();

8-2 DDF Domain

t

d

n
uld fire
ort. In

rrived
it-
output%0 = input%0;
output.sendData();
waitFor(control);
readyToGo = FALSE;

}
}

}

TheLastOfN star discards the firstN-1 particles from theinput porthole and routes the las
one to theoutput porthole . The valueN is read from thecontrol input. Since the control
data varies, the number of particles to read from theinput porthole is variable, as expecte
for a DDF star. We can specify that theinput porthole isdynamic by setting thenum field of
the input declaration to be 0 using the preprocessor format:

num {0}

The firing rule of the star is controlled by thewaitFor method of theDDFStar class (actu-
ally, it is defined in the base class,DynDFStar). ThewaitFor method takes a porthole as a
argument, and an optional integer as a second argument. It indicates that the star sho
when amount of data specified by the integer (default is 1) is available on the specified p
the above example, thesetup method specifies that the star should first wait for acontrol
input. When acontrol input arrives, thego method reads the control value, and useswait-
For to specify that the star should fire next when the specified number of inputs have a
at input . The private memberreadyToGo is used to keep track of which input we are wa
ing for. The line

for (int i = num; i > 0; i--) input.receiveData();

causes the appropriate number of inputs (given bynum) to be consumed.

The next example is a DDF star with a dynamic output porthole: aDownCounter star.

defstar {
name {DownCounter}
domain {DDF}
desc { Count down from the input value to zero. }
input {

name {input}
type {int}

}
output {

name {output}
type {int}
num {0}

}
go {

input.receiveData();
for (int i = int (input%0) - 1 ; i >= 0; i--) {

output%0 << i ;
output.sendData();

}
}

U. C. Berkeley Department of EECS

The Almagest 8-3

er

r and
s. The
r input
rticles
. In the

r. It
s
t firing,
hav-
}

TheDownCounter star has a dynamicoutput porthole that will generate the down-count
sequence of integer data starting from the value read through theinput porthole. The code in
thego method is self-explanatory.

It is possible, if a bit strange, for a star to alternate between SDF-like behavio
DDF-like behavior. To assert that its next firing should be under SDF rules, the star call
following example shows a star that uses the same input for control and data. An intege
specifies the number of particles that will be consumed on the next firing. After these pa
have been consumed, the star reverts to SDF behavior to collect the next control input
following, readyToGo andnum are private integers.

setup {
clearWaitPort();
readyToGo = FALSE;

}
go {

int i;
if (!readyToGo) {

// get input token from Geodesic
input.receiveData();
num = int(input%0);
waitFor(input, num);
readyToGo = TRUE;

} else {
for (i = 0; i < num; i++) {

input.receiveData();
output%0 << int(input%0);
output.sendData();

}
readyToGo = FALSE;
clearWaitPort();

}
}

Because of theclearWaitPort() in the setup method, the star begins as an SDF sta
consumes one data, stores its value innum, and issues awaitFor command. This changes it
behavior to DDF and specifies the number of input tokens that are required. On the nex
it will readnum input tokens and copy them to the output, and then it will revert to SDF be
ior.
Ptolemy Last updated: 7/23/96

8-4 DDF Domain
U. C. Berkeley Department of EECS

When
resent,
estina-
ole is

ber
rts are

ich is
ment is
ociated

n the

n the

ort is
ip is
r-

ort is
ela-
e

st
lt

the
Chapter 9. BDF Domain

Authors: Joseph T. Buck

9.1 Writing BDF Stars
BDF stars are written in almost exactly the same way as SDF stars are written.

thego method of the star is executed, it is guaranteed that all required input data are p
and after execution, any particles generated by the star are correctly sent off to their d
tions. The only additional thing the star writer must know is how to specify that a porth
conditional on other portholes. This is accomplished with a method of the classBDFPort-
Hole calledsetBDFParams .

The setBDFParams method takes four arguments. The first argument is the num
of particles transferred by the port when the port is enabled. Note that unconditional po
always enabled. The second argument is either a pointer or a reference to anotherBDFPort-
Hole , which is called the associated port (the function has two overloaded forms, wh
why the argument may be specified either as a pointer or as a reference). The third argu
a code specifying the relation between the porthole this method is called on and the ass
port:

BDF_NONE This code indicates no relation at all.

BDF_TRUE This code indicates that data are transferred by the port only whe
conditional port has aTRUE particle.

BDF_FALSE This code indicates that data are transferred by the port only whe
conditional port has aFALSE particle.

BDF_SAME This code indicates that the stream transferred by the associated p
the same as the stream transferred by this port. This relationsh
specified for the BDFFork actor and aids the operation of the cluste
ing algorithm.

BDF_COMPLEMENT
This code indicates that the stream transferred by the associated p
the logical complement of the stream transferred by this port. This r
tionship is specified for the BDFNot actor and aids the operation of th
clustering algorithm.

The fourth argument forsetBDFParams is the maximum delay, that is, the large
value that the star may specify as an argument to the% operator on that porthole. The defau
value is zero. This argument serves the same purpose as the second argument tosetSDF-
Params .

The setSDFParams function may be used on BDF portholes; it does not alter
associated port or the relation type, but does alter the other two parameters ofsetBDF-
Params . By default, BDF portholes transfer one token, unconditionally.

9-2 BDF Domain

y
r as an
ds a

s
en
Calls tosetBDFParams may be placed in thesetup method of a star, or alternativel
in the constructor if the call does not depend on any parameters of the star. Conside
example aSwitch star. This star’s functionality is as follows: on each execution, it rea
particle from its control input port. If the value isTRUE, it reads a particle from itstrueIn-
put port; otherwise it reads a particle from itsfalseInput port. In any case, the particle i
copied to the output port. Using theptlang preprocessor, the setup method could be writt

setup {
trueInput.setBDFParams(1, control, BDF_TRUE, 0);
falseInput.setBDFParams(1, control, BDF_FALSE, 0);

}

and the go method could be written

go {
if (int(control%0))

output%0 = trueInput%0;
else

output%0 = falseInput%0;
}

U. C. Berkeley Department of EECS

ted in
SDF),
ierar-

t con-

rs, are

h,

 pro-
tor is
e
 a data-
voking
atisfy
f
guar-

e in the

eed not
cesses.
ere are
rocess,
plex,

 access
. Moni-
nitor is
Chapter 10. PN domain

Authors: Thomas M. Parks

Other Contributors: Brian Evans

10.1 Introduction
The Process Network (PN) domain is an implementation of the theory presen

Thomas M. Parks’ thesis [Par95]. The PN domain includes the Synchronous Dataflow (
Boolean Dataflow (BDF), and Dynamic Dataflow (DDF) domains as subdomains. This h
chical relationship among the domains is shown in theUser’s Manual in Figure 1-2. The
model of computation for each domain is a strict subset of the model for the domain tha
tains it.

The nodes of a program graph, which correspond to processes or dataflow acto
implemented in Ptolemy by objects derived from the classStar . The firing function of a data-
flow actor is implemented by therun method ofStar . The edges of the program grap
which correspond to communication channels, are implemented by the classGeodesic . A
Geodesic is a first-in first-out (FIFO) queue that is accessed by theput andget methods.
The connections between stars and geodesics are implemented by the classPortHole . Each
PortHole has an internal buffer. The methodssendData andreceiveData transfer data
between this buffer and aGeodesic using theput andget methods.

Several existing domains in Ptolemy, such as SDF and BDF, implement dataflow
cess networks by scheduling the firings of dataflow actors. The firing of a dataflow ac
implemented as a function call to therun method of aStar object. A scheduler executes th
system as a sequence of function calls. Thus, the repeated actor firings that make up
flow process are interleaved with the actor firings of other dataflow processes. Before in
the run method of aStar , the scheduler must ensure that enough data is available to s
the actor’s firing rules. This makes it necessary for aStar object to inform the scheduler o
the number of tokens it requires from its inputs. With this information, a scheduler can
antee that an actor will not attempt to read from an empty channel.

By contrast, the PN domain creates a separate thread of execution for each nod
program graph. Threads are sometimes calledlightweight processes. Modern operating sys-
tems, such as Unix, support the simultaneous execution of multiple processes. There n
be any actual parallelism. The operating system can interleave the execution of the pro
Within a single process, there can be multiple lightweight processes or threads, so th
two levels of multi-threading. Threads share a single address space, that of the parent p
allowing them to communicate through simple variables. There is no need for more com
heavyweight inter-process communication mechanisms such as pipes.

Synchronization mechanisms are available to ensure that threads have exclusive
to shared data and cannot interfere with one another to corrupt shared data structures
tors and condition variables are available to synchronize the execution of threads. A mo

10-2 PN domain

itor. If
ended

nitor.
ust be
sing a

 graph.

rleave

d from
en data

,
s long
 devel-

Light-
irk
n94].
eller
d on
to be

 and
g sys-
stem,

leliza-
cessor
his is
lemy
an object that can be locked and unlocked. Only one thread may hold the lock on a mon
a thread attempts to lock a monitor that is already locked by another thread, it is susp
until the monitor is unlocked. At that point it wakes up and tries again to lock the mo
Condition variables allow threads to send signals to each other. Condition variables m
used in conjunction with a monitor; a thread must lock the associated monitor before u
condition variable.

The scheduler in the PN domain creates a thread for each node in the program
Each thread implements a dataflow process by repeatedly invoking therun method of aStar
object. The scheduler itself does very little work, leaving the operating system to inte
the execution of threads. Theput andget methods of the classGeodesic have been re-
implemented using monitors and condition variables so that a thread attempting to rea
an empty channel is automatically suspended, and threads automatically wake up wh
becomes available.

The classesPtThread , PtGate , andPtCondition define the interfaces for threads
monitors, and condition variables in Ptolemy. Different implementations can be used a
as they conform to the interfaces defined in these base classes. At different points in the
opment of the PN domain, we experimented with implementations based on Sun’s
weight Process library, AWESIME (A Widely Extensible Simulation Environment) by D
Grunwald [Gru91}, and Solaris threads [Pow91,Eyk92,Kha92,Kle92a,Kle92b,Ste92,Su
The current implementation is based on a POSIX thread library by Frank Mu
[Mue92,Mue93,Gie93,Mue95]. This library, which runs on several platforms, is base
Draft 6 of the POSIX standard. Parts of our implementation will need to be updated
compliant with the final POSIX thread standard.

By choosing the POSIX standard, we improve the portability of our code. Sun
Hewlett Packard already include an implementation of POSIX threads in their operatin
tems, Solaris 2.5 and HPUX 10. Having threads built into the kernel of the operating sy
as opposed to a user library implementation, offers the opportunity for automatic paral
tion on multiprocessor workstations. Thus, the same program runs properly on unipro
workstations and multiprocessor workstations without needing to be recompiled. T
important because it would be impractical to maintain different binary executables of Pto
for each workstation configuration.
U. C. Berkeley Department of EECS

The Almagest 10-3

nt the

he
w91]
is
nging

cts in
nce of
neric

ecu-
10.2 Processes
Figure 10-1 shows the class derivation hierarchy for the classes that impleme

processes of Kahn process networks. The abstract base classPtThread defines the interface
for threads in Ptolemy. The classPosixThread provides an implementation based on t
POSIX thread standard. Other implementations using AWESIME [Gru91] or Solaris [Po
are possible. The classPNThread is a typedef that determines which implementation
used in the PN domain. Changing the underlying implementation simply requires cha
this typedef . The classDataFlowProcess , which is derived fromPNThread , implements
a dataflow process. TheStar object associated with an instance ofDataFlowProcess is
activated repeatedly, just as a dataflow actor is fired repeatedly to form a process.

10.2.1 The PtThread Class

PtThread is an abstract base class that defines the interface for all thread obje
Ptolemy. Because it has pure virtual methods, it is not possible to create an insta
PtThread . All of the methods are virtual so that objects can be referred to as a ge
PtThread , but with the correct implementation-specific functionality.

The classPtThread has three public methods.

virtual void initialize() = 0;
This method initializes the thread and causes it to begin ex
tion.

FIGURE 10-1: The class derivation hierarchy for threads.PtThread is an abstract base
class with several possible implementations. EachDataFlowProcess
refers to aDataFlowStar .

PtThread

SyncDataFlowProcess

SolThread
AweThread

PosixThread

PNThread

DataFlowStarDataFlowProcess
Ptolemy Last updated: 4/17/97

10-4 PN domain

tion.

ed

by
e
 data

 the

he

.

ead.
hronize
es the
 pol-
 func-
t

The
ointer

ly an

enta-
virtual void runAll();
This method causes all threads to begin (or continue) execu

virtual void terminate() = 0;
This method causes execution of the thread to terminate.

The classPtThread has one protected method.

virtual void run() = 0;
This method defines the functionality of the thread. It is invok
when the thread begins execution.

10.2.2 The PosixThread Class

The classPosixThread provides an implementation for the interface defined
PtThread . It does not implement the pure virtual methodrun , so it is not possible to creat
an instance ofPosixThread . This class adds one protected method, and one protected
member to those already defined inPtThread .

static void* runThis(PosixThread*);
This static method invokes therun method of the referenced
thread. This provides a C interface that can be used by
POSIX thread library.

pthread_t thread;
A handle for the POSIX thread associated with t
PosixThread object.

pthread_attr_t attributes;
A handle for the attributes associated with the POSIX thread

int detach;
A flag to set the detached state of the POSIX thread.

The initialize method shown below initializes attributes, then creates a thr
The thread is created in a non-detached state, which makes it possible to later sync
with the thread as it terminates. The controlling thread (usually the main thread) invok
terminate method of a thread and waits for it to terminate. The priority and scheduling
icy for the thread are inherited from the thread that creates it, usually the main thread. A
tion pointer to therunThis method and thethis pointer, which points to the curren
PosixThread object, are passed as arguments to thepthread_create function. This cre-
ates a thread that executesrunThis , and passesthis as an argument torunThis . Thus, the
run method of thePosixThread object is the main function of the thread that is created.
runThis method is required because it would not be good practice to pass a function p
to therun method as an argument topthread_create . Although therun method has an
implicit this pointer argument by virtue of the fact that it is a class method, this is real
implementation detail of the C++ compiler. By using therunThis method, we make the
pointer argument explicit and avoid any dependencies on a particular compiler implem
tion.

void PosixThread::initialize()
{

U. C. Berkeley Department of EECS

The Almagest 10-5

 the
 main

eting

ed
ation
// Initialize attributes.
pthread_attr_init(&attributes);

// Detached threads free up their resources as soon
// as they exit; non-detached threads can be joined.
detach = 0;
pthread_attr_setdetachstate(&attributes, &detach);

// New threads inherit their priority and scheduling policy
// from the current thread.
pthread_attr_setinheritsched(&attributes,

PTHREAD_INHERIT_SCHED);

// Set the stack size to something reasonably large. (32K)
pthread_attr_setstacksize(&attributes, 0x8000);

// Create a thread.
pthread_create(&thread, &attributes,

(pthread_func_t)runThis, this);
// Discard temporary attribute object.
pthread_attr_destroy(&attributes);

}

The runAll method, which is shown below, allows all threads to run by lowering
priority of the main thread. If execution of the threads ever stops, control returns to the
thread and its priority is raised again to prevent other threads from continuing.

// Start or continue the running of all threads.
void PosixThread::runAll()
{

// Lower the priority to let other threads run. When control
// returns, restore the priority of this thread to prevent
// others from running.

pthread_attr_t attributes;
pthread_attr_init(&attributes);
pthread_getschedattr(mainThread, &attributes);

pthread_attr_setprio(&attributes, minPriority);
pthread_setschedattr(mainThread, attributes);

pthread_attr_setprio(&attributes, maxPriority);
pthread_setschedattr(mainThread, attributes);

pthread_attr_destroy(&attributes);
}

The terminate method shown below causes the thread to terminate before del
thePosixThread object. First it requests that the thread associated with thePosixThread
object terminate, using thepthread_cancel function. Then the current thread is suspend
by pthread_join to give the cancelled thread an opportunity to terminate. Once termin
Ptolemy Last updated: 4/17/97

10-6 PN domain

d by the
mi-

soci-

n

gs
duling

ens are
uler be
Because
red for

e been
 the

g the
 by
of that thread is complete, the current thread resumes and deallocates resources use
terminated thread by callingpthread_detach . Thus one thread can cause another to ter
nate by invoking theterminate method of that thread.

void PosixThread::terminate()
{

// Force the thread to terminate if it has not already done so.
// Is it safe to do this to a thread that has already
// terminated?
pthread_cancel(thread);

// Now wait.
pthread_join(thread, NULL);
pthread_detach(&thread);

}

10.2.3 The DataFlowProcess Class

The classDataFlowProcess is derived fromPosixThread . It implements themap
higher-order function (see the PN Domain chapter in theUser’s Manual). A DataFlowStar
is associated with eachDataFlowProcess object.

DataFlowStar& star;
This protected data member refers to the dataflow star as
ated with theDataFlowProcess object.

The constructor, shown below, initializes thestar member to establish the associatio
between the thread and the star.

DataFlowProcess(DataFlowStar& s)
: star(s) {}

The run method, shown below, is defined to repeatedly invoke therun method of the
star associated with the thread, just as themap function forms a process from repeated firin
of a dataflow actor. Some dataflow stars in the BDF domain can operate with static sche
or dynamic, run-time scheduling. Under static scheduling, a BDF star assumes that tok
available on control inputs and appropriate data inputs. This requires that the sched
aware of the values of control tokens and the data ports that depend on these values.
our scheduler has no such special knowledge, these stars must be properly configu
dynamic, multi-threaded execution in the PN domain. Stars in the BDF domain that hav
configured for dynamic execution, and stars in the DDF domain dynamically inform
scheduler of data-dependent firing rules by designating a particular inputPortHole with the
waitPort method. Data must be retrieved from the designated input before invokin
star’srun method. The star’srun method is invoked repeatedly, until it indicates an error
returningFALSE.

void DataFlowProcess::run()
{

// Configure the star for dynamic execution.
star.setDynamicExecution(TRUE);
U. C. Berkeley Department of EECS

The Almagest 10-7

nt the

ommu-
seman-

tions of
ling.

 in

g the

in
IX

rlying

g

s.
al
// Fire the Star ad infinitum.
do
{

if (star.waitPort()) star.waitPort()->receiveData();
} while(star.run());

}

10.3 Communication Channels
Figure 10-2 shows the class derivation hierarchy for the classes that impleme

communication channels of Kahn process networks. The classes that implement the c
nication channels provide the synchronization necessary to enforce the blocking read
tics of Kahn process networks. The classesPtGate , PosixMonitor and
CriticalSection provide a mutual exclusion mechanism. The classesPtCondition and
PosixCondition provide a synchronization mechanism. The classPNGeodesic uses these
classes to implement a communication channel that enforces the blocking read opera
Kahn process networks and the blocking write operations required for bounded schedu

The abstract base classPtGate defines the interface for mutual exclusion objects
Ptolemy. The classPosixMonitor provides an implementation ofPtGate based on the
POSIX thread standard. Other implementations are possible. The classPNMonitor is a
typedef that determines which implementation is used in the PN domain. Changin
underlying implementation simply requires changing thistypedef .

The abstract base classPtCondition defines the interface for condition variables
Ptolemy. The classPosixCondition provides an implementation based on the POS
thread standard. Other implementations are possible. The classPNCondition is atypedef
that determines which implementation is used in the PN domain. Changing the unde
implementation simply requires changing thistypedef .

The classCriticalSection provides a convenient method for manipulatin

FIGURE 10-2: The class derivation hierarchy for monitors and condition variable
PtGate and PtCondition are abstract base classes, each with sever
possible implementations. EachCriticalSection and PtCondition
refers to aPtGate .

SolMonitor
AweMonitor

PosixMonitor

PNMonitor

CriticalSection PtCondition

SolCondition
AweCondition

PosixCondition

PNCondition

PtGate
Ptolemy Last updated: 4/17/97

10-8 PN domain

us if
ded

by

nd
 also
pe and

y
ly one

 be
PtGate objects, preventing some common programming errors. The classPNGeodesic uses
all of these classes to implement a communication channel.

10.3.1 PtGate

A PtGate can be locked and unlocked, but only one thread can hold the lock. Th
a thread attempts to lock aPtGate that is already locked by another thread, it is suspen
until the lock is released.

virtual void lock() = 0;
This protected method locks thePtGate object for exclusive
use by one thread.

virtual void unlock() = 0;
This protected method releases the lock on thePtGate object.

10.3.2 PosixMonitor

The classPosixMonitor provides an implementation for the interface defined
PtGate . It has a single protected data member.

pthread_mutex_t thread;
A handle for the POSIX monitor associated with thePosix-
Monitor object.

The implementations of thelock andunlock methods are shown below.

void PosixMonitor::lock()
{

pthread_mutex_lock(&mutex);
}

void PosixMonitor::unlock()
{

pthread_mutex_unlock(&mutex);
}

10.3.3 CriticalSection

The classCriticalSection provides a convenient mechanism for locking a
unlockingPtGate objects. Its constructor, shown below, locks the gate. Its destructor,
shown below, unlocks the gate. To protect a section of code, simply create a new sco
declare an instance ofCriticalSection . ThePtGate is locked as soon as theCritical-
Section is constructed. When execution of the code exits scope, theCriticalSection
destructor is automatically invoked, unlocking thePtGate and preventing errors caused b
forgetting to unlock it. Examples of this usage are shown in Section 10.3.6. Because on
thread can hold the lock on aPtGate , only one section of code guarded in this way can
active at a given time.

CriticalSection(PtGate* g) : mutex(g)
{

if (mutex) mutex->lock();
U. C. Berkeley Department of EECS

The Almagest 10-9

 A

hen a

oti-
exe-
 on
es.

lti-

le
ed.
lock
 sus-

 by
}

~CriticalSection()
{

if (mutex) mutex->unlock();
}

10.3.4 PtCondition

The classPtCondition defines the interface for condition variables in Ptolemy.
PtCondition provides synchronization through thewait andnotify methods. A condi-
tion variable can be used only when executing code within a critical section (i.e., w
PtGate is locked).

PtGate& mon;
This data member refers to the gate associated with thePtCon-
dition object.

virtual void wait() = 0;
This method suspends execution of the current thread until n
fication is received. The associated gate is unlocked before
cution is suspended. Once notification is received, the lock
the gate is automatically reacquired before execution resum

virtual void notify() = 0;
This method sends notification to one waiting thread. If mu
ple threads are waiting for notification, only one is activated.

virtual void notifyAll() = 0;
This method sends notification to all waiting threads. If multip
threads are waiting for notification, all of them are activat
Once activated, all of the threads attempt to reacquire the
on the gate, but only one of them succeeds. The others are
pended again until they can acquire the lock on the gate.

10.3.5 PosixCondition

The classPosixCondition provides an implementation for the interface defined
PtCondition . The implementations of thewait , notify and notifyAll methods are
shown below.

void PosixCondition::wait()
{

// Guarantee that the mutex will not remain locked
// by a cancelled thread.
pthread_cleanup_push((void(*)(void*))pthread_mutex_unlock,

 &mutex);

pthread_cond_wait(&condition, &mutex);

// Remove cleanup handler, but do not execute.
pthread_cleanup_pop(FALSE);
Ptolemy Last updated: 4/17/97

10-10 PN domain

ction

ck-

ck-

tion

s in

ica-
y of the

it
}

void PosixCondition::notify()
{

pthread_cond_signal(&condition);
}

void PosixCondition::notifyAll()
{

pthread_cond_broadcast(&condition);
}

10.3.6 PNGeodesic

The classPNGeodesic , which is derived from the classGeodesic defined in the
Ptolemy kernel, implements the communication channels for the PN domain. In conjun
with thePtGate member provided in the base classGeodesic , two condition variables pro-
vide the necessary synchronization for blocking read and blocking write operations.

PtCondition* notEmpty;
This data member points to a condition variable used for blo
ing read operations when the channel is empty.

PtCondition* notFull;
This data member points to a condition variable used for blo
ing write operations when the channel is full.

int cap;
This data member represents the capacity of the communica
channel and determines when it is full.

static int numFull;
This static data member records the number of full geodesic
the system.

TheslowGet method, shown in below, implements the get operation for commun
tion channels. The entire method executes within a critical section to ensure consistenc
object’s data members. If the buffer is empty, then the thread that invokedslowGet is sus-
pended until notification is received onnotEmpty . Data is retrieved from the buffer, and if
is not full notification is sent onnotFull to any other thread that may have been waiting.

Particle* PNGeodesic::slowGet()
{

// Avoid entering the gate more than once.
CriticalSection region(gate);
while (sz < 1 && notEmpty) notEmpty->wait();
sz--;
Particle* p = pstack.get();
if (sz < cap && notFull) notFull->notifyAll();
return p;

}

U. C. Berkeley Department of EECS

The Almagest 10-11

tion
 of the

nt

m-
tifica-
TheslowPut method, shown below, implements the put operation for communica
channels. The entire method executes within a critical section to ensure consistency
object’s data members. If the buffer is full, then the thread that invokedslowPut is suspended
until notification is received onnotFull . Data is placed in the buffer, and notification is se
on notEmpty to any other thread that may have been waiting.

// Block when full.
// Notify when not empty.
void PNGeodesic::slowPut(Particle* p)
{

// Avoid entering the gate more than once.
CriticalSection region(gate);
if (sz >= cap && notFull)
{

{
CriticalSection region(fullGate);
numFull++;

}
while (sz >= cap && notFull) notFull->wait();
{

CriticalSection region(fullGate);
numFull--;

}
}
pstack.putTail(p); sz++;
if (notEmpty) notEmpty->notifyAll();

}

ThesetCapacity method, shown below, is used to adjust the capacity limit of co
munication channels. If the capacity is increased so that a channel is no longer full, no
tion is sent onnotFull to any thread that may have been waiting.

void PNGeodesic::setCapacity(int c)
{

CriticalSection region(gate);
cap = c;
if (sz < cap && notFull) notFull->notifyAll();

}

Ptolemy Last updated: 4/17/97

10-12 PN domain

nt the

 of

ata
10.4 Scheduling
Figure 10-3 shows the class derivation hierarchy for the classes that impleme

dynamic scheduling of Kahn process networks. The classThreadList provides mechanisms
for terminating groups of threads. This class is used byPNScheduler to create threads for
each node in the program graph. The classSyncDataFlowProcess implements the threads
for the nodes.

10.4.1 ThreadList

The classThreadList implements a container class for manipulating groups
threads. It has two public methods.

virtual void add(PtThread*);
This method adds aPtThread object to the list.

virtual ~ThreadScheduler();
This method terminates and deletes all threads in the list.

10.4.2 PNScheduler

The classPNScheduler controls the execution of a process network. Three d
members support synchronization between the scheduler and the processes.

ThreadList* threads;
A container for the threads managed by the scheduler.

PNMonitor* monitor;
A monitor to guard the scheduler’s condition variable.

PNCondition* start;
A condition variable for synchronizing with threads.

FIGURE 10-3: The class derivation hierarchy for schedulers.ThreadList is a container
class for threads. EachPNScheduler uses aThreadList .

ThreadScheduler

SolScheduler
AweScheduler

PosixScheduler

PNThreadScheduler PNScheduler
U. C. Berkeley Department of EECS

The Almagest 10-13

n the

-

e

int iteration;
A counter for regulating the execution of the processes.

ThecreateThreads method, shown below, creates one process for each node i
program graph. ASyncDataFlowProcess is created for eachDataFlowStar and added to
theThreadList container.

// Create threads (dataflow processes).
void PNScheduler::createThreads()
{

if (! galaxy()) return;
GalStarIter nextStar(*galaxy());
DataFlowStar* star;
LOG_NEW; threads = new ThreadList;

// Create Threads for all the Stars.
while((star = (DataFlowStar*)nextStar++) != NULL)
{

LOG_NEW; SyncDataFlowProcess* p
= new SyncDataFlowProcess(*star,*start,iteration);

threads->add(p);
p->initialize();

}
}

It is often desirable to have a partial execution of a process network. The classSync-
DataFlowProcess , which is derived fromDataFlowProcess , supports this by synchro
nizing the execution of a thread with theiteration counter that belongs to the
PNScheduler . The run methods ofPNScheduler and SyncDataFlowProcess imple-
ment this synchronization. ThePNScheduler run method, shown below, increments th
iteration count to give every process an opportunity to run. TheSyncDataFlowProcess
run method, shown below, ensures that the number of invocations of the star’srun method
does not exceed theiteration count.

// Run (or continue) the simulation.
int PNScheduler::run()
{

if (SimControl::haltRequested() || ! galaxy())
{

Error::abortRun("cannot continue");
return FALSE;

}

while((currentTime < stopTime) && !SimControl::haltRequested())
{

// Notify all threads to continue.
{

CriticalSection region(start->monitor());
iteration++;
start->notifyAll();

}
PNThread::runAll();
Ptolemy Last updated: 4/17/97

10-14 PN domain

 the
cution
en the
while (PNGeodesic::blockedOnFull() > 0
&& !SimControl::haltRequested())

{
increaseBuffers();
PNThread::runAll();

}
currentTime += schedulePeriod;

}

return !SimControl::haltRequested();
}

void SyncDataFlowProcess::run()
{

int i = 0;
// Configure the star for dynamic execution.
star.setDynamicExecution(TRUE);

// Fire the star ad infinitum.
do
{

// Wait for notification to start.
{

CriticalSection region(start.monitor());
while (iteration <= i) start.wait();
i = iteration;

}
if (star.waitPort()) star.waitPort()->receiveData();

} while (star.run());
}

The increaseBuffers method is used during the course of execution to adjust
channel capacities according to the theory presented in [Par95, ch. 4]. Each time exe
stops, the program graph is examined for full channels. If there are any full channels, th
capacity of the smallest one is increased.

// Increase buffer capacities.
// Return number of full buffers encountered.
int PNScheduler::increaseBuffers()
{

int fullBuffers = 0;
PNGeodesic* smallest = NULL;

// Increase the capacity of the smallest full geodesic.
GalStarIter nextStar(*galaxy());
Star* star;
while ((star = nextStar++) != NULL)
{

BlockPortIter nextPort(*star);
PortHole* port;
while ((port = nextPort++) != NULL)
{

PNGeodesic* geo = NULL;
U. C. Berkeley Department of EECS

The Almagest 10-15

ut or
 the

or
ot

uch as
y if
rocess.
f

if (port->isItOutput() &&
 (geo = (PNGeodesic*)port->geo()) != NULL)
{

if (geo->size() >= geo->capacity())
{

fullBuffers++;
if (smallest == NULL ||
 geo->capacity() <

smallest->capacity())
smallest = geo;

}
}

}
}
if (smallest != NULL)

smallest->setCapacity(smallest->capacity() + 1);

return fullBuffers;
}

10.5 Programming Stars in the PN Domain
Unlike portholes in the SDF domain, the number of tokens consumed by an inp

produced by an output can be dynamic in the PN domain. This is indicated with
P_DYNAMIC porthhole attribute.

input {
name { a }
type { int }
attributes { P_DYNAMIC }

}

For dynamic ports, it is necessary to invoke thereceiveData andsendData meth-
ods explicitly. Note that thereceiveData method must be used to initialize outputs. F
static ports, thereceiveData andsendData methods are invoked implicitly and should n
be used in the go method.

Because a separate thread of execution is created for each star, thego method of a PN
star is not required to terminate. As a programmer, you are free to use infinite loops, s
while(TRUE) { ... } within thego method of your PN stars. This may be necessar
you access a porthole (requiring a blocking read) before entering the main loop of the p
In the future, such code could be placed in the star’sbegin method, but currently (as o
release 0.6) thebegin method is executed before the star’s thread is created.

go {
// Read both inputs the first time.
a.receiveData();
b.receiveData();
while (TRUE) {

output.receiveData();// Initialize the output.
if (int(a%0) < int(b%0)) {
Ptolemy Last updated: 4/17/97

10-16 PN domain
output%0 = a%0;
output.sendData();
a.receiveData();

}
else if (int(a%0) > int(b%0)) {

output%0 = b%0;
output.sendData();
b.receiveData();

}
else { // Remove duplicates.

output%0 = a%0;
output.sendData();
a.receiveData();
b.receiveData();

}
}

}

Instead of using an infinite loop, most PN stars rely on therun method ofDataFlow-
Process to repeatedly invoke the star’sgo method.
U. C. Berkeley Department of EECS

lemy
re easy
. Stars

chan-
 when
ot buff-

.

other
es, the

t ports.
port is

 to the
Chapter 11. SR domain

Authors: Stephen Edwards

Other Contributors: Christopher Hylands

11.1 Introduction
 Synchronous Reactive (SR) is a statically scheduled simulation domain in Pto

designed for concurrent, control-dominated systems. Simple stars for the SR domain a
to write, but more complex ones that take full advantage of the domain are more subtle
can be written in either C++ or Itcl.

11.2 Communication in SR
Time in SR is divided into discrete instants. In each instant, the communication

nels in SR contain a valued event, have no event, or are “undefined,” corresponding to
the system could not decide whether there was an event or not. These channels are n
ered, unlike Ptolemy’s dataflow domains, and do not hold their values between instants

Stars in the SR domain have input and output ports, much like they do in
domains. However, primarly because absent events are different from undefined on
interface to these ports are unique.

Because SR domain ports are unbuffered, output ports can be read just like inpu
It is often convenient to do this when checking to see whether the value on an output
already correct and does not need to be changed.

 Input/Output Porthole Interface

int SRPortHole::known()
ReturnTRUE when the value in the port is is known.

int SRPortHole::present()
ReturnTRUE when the value in the port is present.

int SRPortHole::absent()
ReturnTRUE when the value in the port is absent.

Particle & InSRPort::get()
Return the particle in the port. This should only be called whenpresent()
returnsTRUE.

Output Porthole Interface

Particle & OutSRPort::emit()
 Force the value on the output port to be present and return a reference
output particle.

11-2 SR domain

f any
r, for
f both
l of its
own,

cyclic
 inputs
duc-
 from

in the
med to

uce a

ction
void OutSRPort::makeAbsent()
Force the value on the output port to be absent.

11.3 Strict and non-strict SR stars
Broadly, there are two types of stars in the SR domain: strict and non-strict. I

input to a strict star is unknown, then all of its outputs are unknown. A two-input adde
example, behaves like this--it cannot say anything about its output until the values o
inputs are known. A non-strict star, by contrast, can produce some outputs before al
inputs are known. A two-input multiplexer is an example: when the selection input is kn
it can ignore the unselected input.

Non-strict stars are the key to avoiding deadlocked situations when there are
connections in the system. If all the stars in a cycle are strict, they each need all of their
before producing an output--all will be left waiting. The deadlock can be broken by intro
ing a non-strict star into the cycle that can produce an output without having all inputs
other stars in the cycle

 A number of methods set attributes of SR stars. These should be called
setup() method of a star as appropriate. By default, none of these attributes is assu
hold.

SRStar::reactive()
Indicate the star is reactive--it needs at least one present input to prod
present output.

Star::noInternalState()
Indicate the star has no internal state--its behavior in an instant is a fun
only of the inputs in that instant, and not on history.

By default, a star in the SR domain is strict. Here is (abbreviated)ptlang source for a two-
input adder:

defstar {
 name { Add }
 domain { SR }
 input {
 name { input1 }
 type { int }
 }
 input {
 name { input2 }
 type { int }
 }
 output {
 name { output }
 type { int }
 }
 setup {
 reactive();
U. C. Berkeley Department of EECS

The Almagest 11-3

e

 noInternalState();
 }
 go {
 if (input1.present() && input2.present()) {
 output.emit() <<
 int(input1.get()) + int(input2.get());
 } else {
 Error::abortRun(*this,
 "One input present, the other absent");
 }
 }
}

Non-strict stars inherit from theSRNonStrictStar class. Here is abbreviated sourc
for a non-strict two-input multiplexer:

defstar {
 name { Mux }
 domain { SR }
 derivedFrom { SRNonStrictStar }
 input {
 name { trueInput }
 type { int }
 }
 input {
 name { falseInput }
 type { int }
 }
 input {
 name { select }
 type { int }
 }
 output {
 name { output }
 type { int }
 }
 setup {
 noInternalState();
 reactive();
 }
 go {
 if (!output.known() && select.known()) {
 if (select.present()) {
 if (int(select.get())) {
 // Select is true--
 // copy the true input if it’s known
 if (trueInput.known()) {
 if (trueInput.present()) {
 output.emit() <<
 int(trueInput.get());
 } else {
Ptolemy Last updated: 10/10/97

11-4 SR domain
 // true input is absent:
 // make the output absent
 output.makeAbsent();
 }
 }
 } else {
 // Select is false--
 //copy the false input if it’s known
 if (falseInput.known()) {
 if (falseInput.present()) {
 output.emit() <<
 int(trueInput.get());
 } else {
 // false input is absent:
 // make the output absent
 output.makeAbsent();
 }
 }
 }
 } else {
 // Select is absent:
 // make the output absent
 output.makeAbsent();
 }
 }
 }
 }
U. C. Berkeley Department of EECS

time-
s, and

ronolog-
has an
sing

el of
ith
tion

utside,
agement
of par-

dularity,
of
ypi-

e input

g two
d as
 a time
the arc
arked
s eli-

idual
Chapter 12. DE Domain

Authors: Soonhoi Ha
Edward A. Lee
Thomas M. Parks

Other Contributors: Brian L. Evans

12.1 Introduction
The discrete event (DE) domain in Ptolemy provides a general environment for

oriented simulations of systems such as queueing networks, communication network
high-level computer architectures. In the domain, eachParticle represents anevent that
corresponds to a change of the system state. The DE schedulers process events in ch
ical order. Since the time interval between events is generally not fixed, each particle
associatedtime-stamp. Time stamps are generated by the block producing the particle, u
the time stamps of the input particles and the latency of the block.

We assume in this chapter that the reader is thoroughly familiar with the DE mod
computation. Refer to theUser’s Manual. Moreover, we assume the reader is familiar w
chapter 2, “Writing Stars for Simulation”. In this chapter, we give the additional informa
required to write stars for the DE domain.

12.2 Programming Stars in the DE Domain
A DE star can be viewed as an event-processor; it receives events from the o

processes them, and generates output events after some latency. In a DE star, the man
of the time stamps of the particles (events) is as important as the input/output mapping
ticle values.

Generating output values and time stamps are separable tasks. For greatest mo
therefore, we dedicate some DE stars, so-calleddelay stars, to time management. Examples
such stars areDelay andServer . These stars, when fired, produce output events that t
cally have larger time stamps than the input events. They usually do not manipulate thevalue
of the particles in any interesting way. The other stars, so-calledfunctional stars, avoid time-
management, usually by generating output events with the same time stamp as th
events. They, however,do manipulate thevalue of the particles.

Delay stars should not be confused with the delay marker on an arc connectin
stars (represented inpigi by a small green diamond). The latter delay is not implemente
a star. It is a property of the arc. In the DE domain, the delay marker does not introduce
delay, in the sense of an incremented time stamp. It simply tells the scheduler to ignore
while assigning dataflow-based firing priorities to stars. A star whose outputs are all m
with delays will have the lowest firing priority, and so will be fired last among those star
gible to be fired at the current time.

The scheduler’s assignment of firing priority also uses properties of the indiv

12-2 DE Domain

f a star
ler can
xplicit
s any
oduce

ed-
nt

lue of
d by

ly

nput
rence
 value.

o

stars: each star type can indicate whether or not it can produce zero-delay outputs. I
indicates that it does not produce any output events with zero delay, then the schedu
break the dataflow priority chain at that star. This saves the user from having to add e
delay markers. A star class can make this indication either globally (it never produce
immediate output event) or on a port-by-port basis (only some of its input ports can pr
immediate outputs, perhaps on only a subset of its output ports).

For managing time stamps, theDEStar class has two DE-specific members:arriv-
alTime andcompletionTime , summarized in table 12-1.. Before firing a star, a DE sch
uler sets the value of thearrivalTime member to equal the time stamp of the eve
triggering the current firing. When the star fires, before returning, it typically sets the va
thecompletionTime member to the value of the time stamp of the latest event produce
the star. The schedulers do not use thecompletionTime member, however, so it can actual
be used in any way the star writer wishes.DEStar also contains a fielddelayType and a
methodsetMode that are used to signal the properties of the star, as described below.

12.2.1 Delay stars

Delay-stars manipulate time stamps. Two types of examples of delay stars arepure
delays, andservers. A pure-delay star generates an output with the same value as the i
sample, but with a time stamp that is greater than that of the input sample. The diffe
between the input sample time stamp and the output time stamp is a fixed, user-defined
Consider for example theDelay star:

defstar {
name {Delay}
domain {DE}
desc { Delays its input by a fixed amount }
input {

name {input}
type {anytype}

}
output {

name {output}
type {=input}

}
defstate {

name {delay}
type {float}
default {"1.0"}
desc { Amount of time delay. }

}
constructor {

delayType = TRUE;
}
go {

completionTime = arrivalTime + double(delay);
Particle& pp = input.get();
output.put(completionTime) = pp;

}
}

Inside thego method description, thecompletionTime is calculated by adding the delay t
U. C. Berkeley Department of EECS

The Almagest 12-3

low.

-

fter

 delays
lcu-

ill
tamps
the arrival time of the current event. The last two lines will be explained in more detail be

Another type of delay star is aserver. In aserver star, the input event waits until a sim
ulated resource becomes free to attend to it. An example is theServer star:

defstar {
name {Server}
domain {DE}
desc {

This star emulates a server. If an input event arrives when it
is not busy, it delays it by the service time (a constant parameter).
If it arrives when it is busy, it delays it by more than the service
time. It must become free, and then serve the input.

}
input {

name {input}
type {anytype}

}
output {

name {output}
type {=input}

}
defstate {

name {serviceTime}
type {float}
default {"1.0"}
desc { Service time. }

}
constructor {

delayType = TRUE;
}
go {

// No overlapped execution. set the time.
if (arrivalTime > completionTime)

completionTime = arrivalTime + double(serviceTime);
else

completionTime += double(serviceTime);
Particle& pp = input.get();

output.put(completionTime) = pp;
}

}

This star uses thecompletionTime member to store the time at which it becomes free a
processing an input. On a given firing, if thearrivalTime is later than thecompletion-
Time , meaning that the input event has arrived when the server is free, then the server
the input by theserviceTime only. Otherwise, the time stamp of the output event is ca
lated as theserviceTime plus the time at which the server becomes free (thecompletion-
Time).

Both pure delays and servers are delay stars. Hence their constructor sets thedelay-
Type member, summarized in table 12-1. This information is used by the scheduler.

The technical meaning of thedelayType flag is this: such a star guarantees that it w
never produce any output event with zero delay; all its output events will have times
Ptolemy Last updated: 10/17/97

12-4 DE Domain

-delay

es the
orities,
e their

sed
ulta-

t
event in
events

l
ticles,
To see
larger than the time of the firing in which they are emitted. Stars that can produce zero
events should leavedelayType set to its default value ofFALSE.

Actually, stars often cheat a little bit on this rule; as we just saw, the standardDelay
star setsdelayType even if the user sets the star’s delay parameter to zero. This caus
star to be treated as though it had a positive delay for the purpose of assigning firing pri
which is normally what is wanted. Both pure delays and servers are delay stars. Henc
constructor sets thedelayType member, summarized in table 12-1. This information is u
by the scheduler, and is particularly important when determining which of several sim
neous events to process first.

12.2.2 Functional Stars

In the DE model of computation, a star isrunnable (ready for execution), if any inpu
porthole has a new event, and that event has the smallest time stamp of any pending
the system. When the star fires, it may need to know which input or inputs contain the
that triggered the firing. An input porthole containing a new particle has thedataNew flag set
by the scheduler. The star can check thedataNew flag for each input. A functional star wil
typically read the value of the new input particles, compute the value of new output par
and produce new output particles with time stamps identical to those of the new inputs.
how this is done, consider theSwitch star:

defstar {
name {Switch}
domain {DE}
desc {

Switches input events to one of two outputs, depending on
the last received control input.

}
input {

name {input}
type {anytype}

}
input {

name {control}
type {int}

}
output {

name {true}
type {=input}

}
output {

name {false}
type {=input}

}
constructor {

control.triggers();
control.before(input);

}
go {

if (input.dataNew) {
completionTime = arrivalTime;
U. C. Berkeley Department of EECS

The Almagest 12-5

e

r

g
ontrol
t. The
e 12-

e may
 SDF

 at p

put
t

p

by
Particle& pp = input.get();
int c = int(control%0);

if(c)
true.put(completionTime) = pp;

else
false.put(completionTime) = pp;

}
}

}

TheSwitch star has two input portholes:input , andcontrol . When an event arrives at th
input porthole, it routes the event to either thetrue or thefalse output porthole depending
on the value of the last receivedcontrol input. In thego method, we have to check whethe
a newinput event has arrived. If not, then the firing was triggered by acontrol input event,
and there is nothing to do. We simply return. If theinput is new, then its particle is read usin
get method, as summarized in table 12-1. In addition, the most recent value from the c
input is read. This value is used to determine which output should receive the data inpu
statements in the constructor will be explained below in “Sequencing directives” on pag
6.

There are three ways to access a particle from an input or output port. First, w
use the% operator followed by an integer, which is equivalent to the same operator in the

TABLE 12-1: A summary of the members and methods of the InDEPort and OutDEPort
classes that are used by star writers.

 InDEPort class

method description

Particle& operator % get a particle from the porthole without resetting dataNew
void before

(GenericPort& p)
simultaneous inputs here should be processed before those

int dataNew flag indicating whether the porthole has new data
Particle& get () get a particle from the porthole and reset dataNew
void getSimulEvent () fetch a simultaneous event from the global event queue
int numSimulEvents () return the number of pending simultaneous events at this in
void triggers () indicate that the input does not trigger any immediate outpu

events
void triggers

(GenericPort& p)
indicate that the input triggers an immediate output on port

 OutDEPort class

method description

Particle& operator % get the most recent particle from the porthole
Particle& put

(double time)
get a new writable particle with the given time stamp

void sendData () flush output porthole data to the global event queue (called
put)
Ptolemy Last updated: 10/17/97

12-6 DE Domain

le, we
-

the
mon
e

rom an

ts in a
 inputs
mmon
ut can

 the
oduce
ar will
icated.
ing to
ividual

gering
domain. For example,control%0 returns the most recent particle from thecontrol port-
hole. The second method,get , is specific toInDEPort . It resets thedataNew member of the
port as well as returning the most recent particle from an input port. In the above examp
are not using thedataNew flag for thecontrol input, so there is no need to reset it. How
ever, we are using it for theinput porthole, so it must be reset. If you need to reset
dataNew member of a input port after reading the newly arrived event (the more com
case) you should use theget method instead of%0 operator. Alternatively, you can reset th
dataNew flag explicitly using a statement like:

input.dataNew = FALSE;

Theput method is also specific toOutDEPort . It sets thetimeStamp member of the port to
the value given by its argument, and returns a reference to the most recent particle f
output port. Consider the line in the above example:

true.put(completionTime) = pp;

This says that we copy the particlepp to the output port withtimeStamp = completion-
Time . We can send more than one output event to the same port by calling theput method
repeatedly. A new particle is returned each time.

12.2.3 Sequencing directives

A special effort has been made in the DE domain to handle simultaneous even
rational way. If two distinct stars can be fired because they both have events at their
with identical time stamps, some choice must be made as to which one to fire. A co
strategy is to choose one arbitrarily. This scheme has the simplest implementation, b
lead to unexpected and counterintuitive results from a simulation.

The choice of which to fire is made in Ptolemy by statically assigning priorities to
stars according to a topological sort. Thus, if one of the two enabled stars could pr
events with zero delay that would affect the other, as shown in figure 12-1, then that st
be fired first. The topological sort is actually even more sophisticated than we have ind
It follows triggering relationships between input and output portholes selectively, accord
assertions made in the star definition. Thus, the priorities are actually assigned to ind
portholes, rather than to entire stars.

The cryptic statements in the constructor in the above example reveal these trig
relationships to the scheduler. Consider for example the following problem. In theSwitch
star above suppose that on a given firing, aninput with time stampτ is processed, and the
particle is sent to thetrue output. Suppose that the very next time the star fires, acontrol

FIGURE 12-1: When DE stars are enabled by simultaneous events, the choice of which to fire is
determined by priorities based on a topological sort. Thus if B and C both have events
with identical time stamps, B will take priority over C. The delay on the path from C to
A serves to break the topological sort.

A

B

C

U. C. Berkeley Department of EECS

The Almagest 12-7

ve

 might

-
y), then
-

e time
ample,

 the
l sort.

r have
delay.

re is
nd the

ering

hould
f an

; a

l time
 been
g. The
own
input with time stampτ arrives with valueFALSE. Probably, the previous output should ha
gone to thefalse porthole. Consider the constructor statement:

control.before(input);

This tells the scheduler that if a situation arises where two simultaneous events
appear at thecontrol and input portholes, then the one at thecontrol porthole should
appear first. This is implemented by giving the stars “upstream” from thecontrol porthole
higher firing priorities than those “upstream” from theinput porthole. Thus, if for some rea
son the simultaneous events are processed in two separate firings (always a possibilit
thecontrol event is sure to be processed first. A chain ofbefore directives can assign rela
tive priorities to a whole set of inputs.

The other statement in the constructor:
control.triggers();

has somewhat different objectives. It tells the scheduler that acontrol input does not
trigger outputs on any porthole. If an input event causes an output event with the sam
stamp, then the input event is said to have “triggered” the output event. In the above ex
thecontrol event does not trigger any immediate output event, but aninput event does. By
default, an input triggers all outputs, so it is not necessary to add the directive

input.triggers(output);

Providing triggers directives informs the scheduler that certain paths through
graph do not have zero delay, allowing it to ignore those paths in making its topologica
The triggers directive is essentially a selective version of thedelayType flag: setting
delayType means the star containsno zero-delay paths, whereas providingtriggers infor-
mation tells the scheduler that only certain porthole-to-porthole paths through the sta
zero delay. By default, the scheduler assumes that all paths through the star have zero

In some stars, an input event conditionally triggers an output. In principle, if the
any chance of triggering an output, we set the triggering relation between the input a
output. The triggering relation informs the scheduler that theremay be a delay-free path from
the input to the output. It is important, therefore, that the star writer not miss any trigg
relation whentriggers directives are provided.

If an input triggers some, but not all outputs, then the constructor for the star s
contain severaltriggers directives, one for each output that is triggered by that input. I
input triggers all outputs, then no directive is necessary for it.

If delayType is set toTRUE, it is not necessary to write any triggers directives
delay star by definition never triggers zero-delay output events.

12.2.4 Simultaneous events

An input port may have a sequence of simultaneous events (events with identica
stamps) pending. Normally, the star will be fired repeatedly until all such events have
consumed. Optionally, a DE star may process simultaneous events during a single firin
getSimulEvent method can be used as in the following example, taken from an up-d
counter star:

go {
... while (countUp.dataNew) {

count++;
countUp.getSimulEvent();
Ptolemy Last updated: 10/17/97

12-8 DE Domain

-
 times-

ter-

ending
neous
us
d.

r the
essing

ailable

n use

, trac-

f sink
t the
lled a
e in
 a loop
ty of
manner.

 the
e
ssage.
sually a

ent has
plies

 delay
ned the

signal
s of DE
 its
 a spe-
}
... }

Here,countUp is an input porthole. ThegetSimulEvent method examines the glo
bal event queue to see if any more events are available for the porthole with the current
tamp. If so, it fetches the next one and sets thedataNew flag toTRUE; if none remain, it sets
thedataNew flag toFALSE. (In this example, the actual values of the input events are unin
esting, but the star could useget() within the loop if it did need the event values.)

Sometimes, a star simply needs to know how many simultaneous events are p
on a given porthole. Without fetching any event, we can get the number of simulta
events by calling thenumSimulEvents method. This returns the number of simultaneo
events still waiting in the global event queue; the one already in the porthole isn’t counte

If the star has multiple input ports, the programmer should carefully conside
desired behavior of simultaneous inputs on different ports, and choose the order of proc
of events accordingly. For example, it might be appropriate to absorb all the events av
for a control porthole before examining any events for a data porthole.

If a star will always absorb all simultaneous events for all its input portholes, it ca
phase-based firing mode to improve performance. See section 12.3.

12.2.5 Non-deterministic loops

The handling of simultaneous events is based on assigning priorities to portholes
ing the connectivity of a schematic, and using the relationships established by thebefore and
triggers relationships. When we assign these priorities, we start from the input ports o
stars, and rely primarily on a topological sort. Delay-free loops, which would preven
topological sort for terminating, are detected and ruled out. But, another kind of loop, ca
non-deterministic loop, can cause unexpected results. A non-deterministic loop is on
which the priorities cannot be assigned uniquely; there is more than one solution. Such
has at least onebefore relation. If a programmer can guarantee that there is no possibili
simultaneous events on such a loop, then system may be simulated in a predictable
Otherwise, the arbitrary decisions in the scheduler will affect the firing order.

If a non-deterministic loop contains exactly onebefore relation, the scheduler
assigns priorities in a well-defined way, but unfortunately, in a way that is hidden from
user. For a non-deterministic loop with more than onebefore relation, the assignment of th
priorities is a non-deterministic procedure. Therefore, the scheduler emits a warning me
The warning message suggests that the programmer put a delay element on an arc (u
feedback arc) to break the non-deterministic loop. As mentioned before, the delay elem
a totally different meaning from that in the SDF domain. In the SDF domain, a delay im
an initial token on the arc, implying a one-sample delay. In the DE domain, however, a
element simply breaks a triggering chain. Therefore, the source port of the arc is assig
lowest priority.

12.2.6 Source stars

The DE stars discussed so far fire in response to input events. In order to build
generators, or source stars, or stars with outputs but no inputs, we need another clas
star, called aself-scheduling star. A self-scheduling star fools the scheduler by generating
own input events. These feedback events trigger the star firings. An event generator is
U. C. Berkeley Department of EECS

The Almagest 12-9

vents.
 output

elf-
2-
cial case of a delay star, in that its role is mainly to control the time spacing of source e
The values of the source events can be determined by a functional block attached to the
of the event generator (e.g.Const , Ramp, etc).

A self-scheduling star is derived from classDERepeatStar , which in turn is derived
from classDEStar . TheDERepeatStar class has two special methods to facilitate the s
scheduling function:refireAtTime andcanGetFired . These are summarized in table 1
2. ThePoisson star illustrates these:

defstar {
name {Poisson}
domain {DE}
derivedfrom { RepeatStar }
desc {

Generates events according to a Poisson process.
The first event comes out at time zero.

}
output {

name {output}
type {float}

}
defstate {

name {meanTime}
type {float}
default {"1.0"}
desc { The mean inter-arrival time. }

}
defstate {

name {magnitude}
type {float}
default {"1.0"}
desc { The value of outputs generated. }

}
hinclude { <NegExp.h> }
ccinclude { <ACG.h> }
protected {

NegativeExpntl *random;
}
// declare the static random-number generator in the .cc file

TABLE 12-2: A summary of the methods of the DERepeatStar class used when writing a source
star. Source stars are derived from this.

 DERepeatStar class

method description

int canGetFired () return 1 if the star is enabled for firing
void refireAtTime

(double t)
schedule the star to fire again at time t

void begin () schedule the star to fire at time zero
Ptolemy Last updated: 10/17/97

12-10 DE Domain

onen-
7

he self-

execu-

nera-
g the

i-

tomat-
heduler
ts will
code {
extern ACG* gen;

}
constructor {

random = NULL;
}
destructor {

if(random) delete random;
}
begin {

if(random) delete random;
random = new NegativeExpntl(double(meanTime),gen);
DERepeatStar::begin ();

}
go {

// Generate an output event
// (Recall that the first event comes out at time 0).
output.put(completionTime) << double(magnitude);

// and schedule the next firing
refireAtTime(completionTime);

// Generate an exponential random variable.
double p = (*random)();

// Turn it into an exponential, and add to completionTime
completionTime += p;

}
}

The Poisson star generates a Poisson process. The inter-arrival time of events is exp
tially distributed with parametermeanTime. Refer to “Using Random Numbers” on page 3-1
for information about the random number generation. The methodrefireAtTime launches
an event onto a feedback arc that is invisible to the users. The feedback event triggers t
scheduling star some time later.

Note that the feedback event for the next execution is generated in the current
tion. To initiate this process, an event is placed on the feedback arc by theDERepeatStar::
begin method, before the scheduler runs.

The DERepeatStar class can also be used for other purposes besides event ge
tion. For example, a sampler star might be written to fire itself at regular intervals usin
refireAtTime method.

Another strangely named method,canGetFired is seldom used in the star defin
tions. The method checks for the existence of a new feedback event, and returnsTRUE if it is
there, orFALSE otherwise.

The internal feedback arc consists of an input and an output porthole that are au
ically created and connected together, with a delay marker added to prevent the sc
from complaining about a delay-free loop. (This effectively assumes that refire reques
always be for times greater than the current time.)

Sometimes the programmer of a star derived fromDERepeatStar needs to be explic-
U. C. Berkeley Department of EECS

The Almagest 12-11

sider-

delay,
 write
 out-
tion the
 to
dback

rmally
 event.
ter

rrently

he

e
id not
rs of

ften be

duler.
 when
tional

the time

t port-
me the

r-

e,
lta-

uld

simulta-
itly aware of these portholes. In particular, they should be taken into account when con
ing whether a star is delay-type. SettingdelayType in a DERepeatStar derivative asserts
that not only do none of the star’s visible input portholes trigger output events with zero
but refire events do not either. Frequently this is a false statement. It’s usually safer to
triggers directives that indicate that specific input portholes cannot trigger zero-delay
puts. (Since the feedback portholes have a delay marker, it is never necessary to men
feedback output porthole intriggers directives, even for an input porthole that gives rise
refireAtTime requests --- the scheduler is uninterested in zero-delay paths to the fee
output.)

The event passed across the feedback arc is an ordinary FLOAT particle, no
having value zero. Sometimes it can be useful to store extra information in the feedback
Beginning in Ptolemy 0.7, therefireAtTime method accepts an optional second parame
that gives the numeric value to place in the feedback event. Fetching the value cu
requires direct access to the feedback input port, for example

if (feedbackIn->dataNew) {
double feedbackValue = double(feedbackIn->get());
...

A future version ofDERepeatStar might provide some syntactic sugar to hide t
details of this operation.

In Ptolemy versions prior to 0.7,DERepeatStar did not place a delay marker on th
feedback arc, but instead used a hack involving special porthole priorities. This hack d
behave very well if the star also had ordinary input portholes. To work around it, write
derived star types would sometimes setdelayType or providetriggers directives. When
updating such stars to 0.7, these statements should be examined critically --- they will o
found to be unnecessary, and perhaps even wrong.

12.3 Phase-Based Firing Mode
The ordering of simultaneous events is the most challenging task of the DE sche

In general, simultaneous events are caused by insufficient time resolution, particularly
the time unit is integral. In our case, simultaneous events are primarily caused by func
stars that produce output events with the same time stamp as the input events. Since
stamp is a double-precision floating-point number, we have very high time resolution.

As explained earlier, the DE scheduler fetches at most one event for each inpu
hole for each firing of a DE star. In the body of the star code, the programmer can consu
simultaneous events onto a certain input porthole by calling thegetSimulEvent method for
the porthole. This mode of operation is calledsimple mode, which is the default mode of ope
ation.

Suppose we program a new DE star, calledCounter . The Counter star has one
clock input and onedemand input. A clock event will increase the counter value by on
and thedemand input will send the counter value to the output. If there are multiple simu
neousclock inputs and a simultaneousdemand input, we should count all theclock inputs
before consuming thedemand input and producing an output. Thus, the programmer sho
call the getSimulEvent method for theclock input. However, thegetSimulEvent
method is expensive when there are many simultaneous events, since it gets only one
Ptolemy Last updated: 10/17/97

12-12 DE Domain

e
d in the
e star
taneous
he
d again
eration
d

. After

ing, the

call
l event
 of one

n the
neous event at a time. This runtime overhead is reduced in thephase-based firing mode.

In thephase-based firing mode, or simply thephase mode, before executing a star, th
scheduler fetches all simultaneous events for the star. The fetched events are store
internal queue of each input porthole. The internal queue of inputs is created only if th
operates in phase mode. In phase mode, when a DE star fires, it consumes all simul
events currently available. It constructs aphase. Afterwards, other simultaneous events for t
same star may be generated by a network of functional stars. Then, the star may be fire
with another set of simultaneous events, which forms another phase. We can set the op
mode of a starphase by calling methodsetMode(PHASE) in the constructor, as summarize
in table 12-1 on page 12-5. The following example is written in the simple mode.

go {
...
while (input.dataNew) {

temp += int(input.get());
input.getSimulEvent();

}
...

}

If the star is re-written using the phase mode, it will look like:

constructor {
setMode(PHASE);

}
go {

...
while (input.dataNew) {

temp += int(input.get());
}
...

}

or,
go {

...
for (int i = input.numSimulEvents(); i > 0; i--) {

temp += int(input.get());
}
...

}

The get method in phase mode fetches events from the internal queue one at a time
consuming all events from the queue (now the queue is empty), it resets thedataNew flag. If
a star in phase mode does not access all simultaneous input events in a particular fir
unaccessed events are discarded.

The method,numSimulEvent , returns the current queue size in phase mode. Re
that in simple mode, the method returns the number of simultaneous events in the globa
queue, which is one less than the actual number of simultaneous events. This difference
between two modes is necessary for coding efficiency.

There is still inherent non-determinism in the handling of simultaneous events i
U. C. Berkeley Department of EECS

The Almagest 12-13

n-

l.

main.
e will

atrix.
t fires
can be
DE domain. For example, suppose that theSwitch star has more than one simultaneous co
trol event. Which one is really the last one? Since the input is routed to either thetrue or
false output depending on the last value of thecontrol event, the decision is quite critica
We leave the responsibility of resolving such inherent non-determinism to the user.

12.4 Programming Examples
This section presents different examples of programming in the discrete-event do

There are no pre-defined stars that work with matrices in the discrete-event domain. W
give several examples of DE stars that work with matrices.

12.4.1 Identity Matrix Star

This section develops a star in the DE domain that will create an identity m
Instead of creating a source star which must schedule itself, we will create a star tha
whenever it receives an new input value. For example, a clock or some other source
attached to the star to set its firing pattern.

defstar {
name { Identity_M }
domain { DE }
desc { Output a floating-point identity matrix.}
author { Brian L. Evans }
input {

name { input }
type { anytype }

}
output {

name { output }
type { FLOAT_MATRIX_ENV }

}
defstate {

name { rowsCols }
type { int }
default { 2 }
desc {

Number of rows and columns of the output square matrix. }
}
ccinclude { "Matrix.h" }
go {

// Functional Star: pass timestamp without change
completionTime = arrivalTime;
// For messages, you must pass dynamically allocated data
FloatMatrix& result =

*(new FloatMatrix(int(rowsCols),int(rowsCols)));
// Set the contents of the matrix to an identity matrix
result.identity();
// Send the matrix result to the output port
output.put(completionTime) << result;
}

}

Ptolemy Last updated: 10/17/97

12-14 DE Domain

d. The
emain
-

ed
o
mp as
 differs
 SDF

pose
 in the
This is a functional star because the time stamp on the input particle is not altere
output is a matrix message. The matrix is a square matrix. In order for the matrix to r
defined after the go method finishes, the matrixresult cannot be allocated from local mem
ory. Instead, it must be allocated from global dynamic memory via thenew operator. In the
syntax for the new operator, theint cast in int(rowsCols) extracts the value from
rowsCols which is an instance of theState data structure. The dynamic memory allocat
for the matrix will be automatically deleted by theMessage class. Then, the matrix is reset t
be an identity matrix. Finally, the matrix is sent to the output port with the same time sta
that of the input data. Note that the syntax to output data in the discrete-event domain
from the syntax of the synchronous dataflow domain due to the time stamp. In the
domain, the output code would be

output%0 << result

12.4.2 Matrix Transpose

In the next example, we will compute the matrix transpose.

defstar {
name { Transpose_M }
domain { DE }
desc { Transpose a floating-point matrix.}
author { Brian L. Evans }
input {

name { input }
type { FLOAT_MATRIX_ENV }

}
output {

name { output }
type { FLOAT_MATRIX_ENV }

}
ccinclude { "Matrix.h" }
go {

// Functional Star: pass timestamp without change
completionTime = arrivalTime;
// Extract the matrix on the input port
Envelope Xpkt;
input.get().getMessage(Xpkt);
const FloatMatrix& Xmatrix =

*(const FloatMatrix *)Xpkt.myData();
// Create a copy of the input matrix
FloatMatrix& xtrans = *(new FloatMatrix(Xmatrix));
// Transpose the matrix
xtrans.transpose();
// Send the matrix result to the output port
output.put(completionTime) << xtrans;

}
}

The key difference between creating an identity matrix and taking a matrix trans
in the DE domain is the conversion of the input data to a matrix. The input data comes
U. C. Berkeley Department of EECS

The Almagest 12-15

e parti-
t enve-

of the
ce it is
form of an envelope which is essentially an instance of a class embedded in a messag
cle. To extract the contents of the message, we first extract the message from the inpu
lope. Then, we extract the data field from the message and cast it to be aFloatMatrix . Just
as in the previous example, we need to allocate dynamic memory to hold the value
matrix to be output. In this case, we do not have to code the transpose operation sin
already built into the matrix classes.
Ptolemy Last updated: 10/17/97

12-16 DE Domain
U. C. Berkeley Department of EECS

The Almagest 13-1

 to run
. The

testing
d a col-
eatures

mpu-
bool-
y are
get that
hedulers
ers and
 SDF is
ile we
 targets
 sched-
e CG
e CGC
at can
e gener-

ke the
 con-
or-inde-

Every
ts sup-
e class
nload-
d with
Chapter 13. Code Generation

Authors: Joseph Buck
Soonhoi Ha
Edward A. Lee
Praveen K. Murthy
Thomas M. Parks
José Luis Pino
Kennard White

13.1 Introduction
The CG domain and derivative domains are used to generate code rather than

simulations [Pin92]. Only the derivative domains are of practical use for generating code
stars in the CG domain can be thought of as “comment generators”; they are useful for
and debugging schedulers and for little else. The CG domain is intended as a model an
lection of base classes for derivative domains. This section documents the common f
and general structure of all code generation domains.

The CG domain is currently based on dataflow semantics. Dataflow models of co
tation in Ptolemy include synchronous dataflow (SDF), dynamic dataflow (DDF), and
ean dataflow (BDF). Both DDF and BDF are very general models of dataflow in that the
Turing equivalent. SDF is a subset of both these models. Hence, a code generation tar
uses the BDF scheduler can support BDF and SDF stars but a target that uses SDF sc
only supports SDF stars. Most targets in code generation domains use SDF schedul
parallel schedulers which makes these targets support only SDF stars. An advantage of
that compilation can be done statically; this permits very efficient code generation. Wh
have implemented targets that allow DDF code generation stars in the system, these
are not in the current release. However, there are a couple of targets that use the BDF
uler; refer to the BDF domain documentation, the section on the bdf-cg target in th
domain documentation in the user’s manual, and the section on the bdf-cgc target in th
domain documentation for more information on BDF semantics and the types of stars th
be supported. In this chapter, we assume that stars obey only SDF semantics since cod
ation for non-SDF models is still in its early stages.

The design goal of the code generation class hierarchy is to save work and to ma
system more maintainable. Most of the work required to allocate memory for buffers,
stants, tables, and to generate symbols that are required in code is completely process
pendent; hence these facilities are provided in the generic classes found in the$PTOLEMY/
src/domains/cg/kernel directory.

A key feature of code generation domains is the notion of a target architecture.
application must have a user-specified target architecture, selected from a set of targe
ported by the user-selected domain. Every target architecture is derived from the bas
Target , and controls such operations as scheduling, compiling, assembling, and dow
ing code. Since it controls scheduling, multiprocessor architectures can be supporte
Ptolemy Last updated: 10/17/97

13-2 Code Generation

ed to
ded to
ill first
of
s
ode
oces-
ration

iffer-

rs have

mem-
at the
e care-

d multi-
een

utside of
start-up
edul-
sched-

, the

e the
e num-

e integer

lation
relation
e is a
-loop).

lizable
automated task partitioning and synchronization.

In the following sections, we will introduce the methods and data structures need
write new code generation stars and targets. However, we will not document what is nee
write a new code generation domain; that discussion can be found in chapter 17. We w
introduce what is needed to write a new code generation star, introducing the concepts code
blocks, code streams and code block macros. Next we will describe the various method
which will generally use theaddCode method to piece together the code blocks into the c
streams. We will then go into what is required to write single-processor and multiple-pr
sor targets. Finally we will document the various schedulers available in the code gene
domains.

13.2 Writing Code Generation Stars
Code generation stars are very similar to the C++ simulation stars. The main d

ence is that the initialization (setup()), run time (go()), and termination (wrapup()) meth-
ods generate code to be compiled and executed later. Additionally, code generation sta
two more methods calledinitCode() andexecTime() .

Thesetup() method is called before the schedule is generated and before any
ory is allocated. In this method, we usually initialize local variables or states. Note th
setup method of a star may be called multiple times. This means that the user should b
ful so that the behavior of the star does not change even though setup method is calle
ple times. TheinitCode() method of a star is called after the static schedule has b
generated and before the schedule is fired. This method is used to generate the code o
the main loop such as initialization code and procedure declaration code. To generate
code, use theinitCode method, NOT the setup method, since setup is called before sch
ing and memory allocation. The main use of the setup method, as in SDF, is to tell the
uler if more than one sample is to be accessed from a porthole with thesetSDFParams call.

The go() function is used to generate the main loop code for the star. Finally
wrapup() function is used to generate the code after the main loop.

TheexecTime() method returns an integer specifying the time needed to execut
main loop code of a code generation star in processor cycles or instruction steps. Thes
bers are used by the parallel schedulers. In the assembly code generation domains, th
returned is the main loop code execution time in DSP instruction cycles. The better theexec-
Time() estimates are for each star, the more efficient the parallel schedule becomes.

If a star is invoked more than once during an iteration period, the precedence re
between stars should be known to the parallel scheduler. If there is no precedence
between invocations, the parallel scheduler will try to parallelize them. By default, ther
precedence relation between invocations for any star (this is equivalent to having a self
To assert that there is no such self-loop for a star, we have to call thenoInternalState()
method in the constructor:

constructor {
noInternalState();

}

It is strongly recommended that the star designer determine whether the star is paralle
or not, and callnoInternalState() if it is.
U. C. Berkeley Department of EECS

The Almagest 13-3

el lan-
ction, we
n-

 adder
n

 code.
de seg-
guage

is one
m one

s, and
ckets
TheCGStar class is the base class for all code generation stars, such as high lev
guage code generation stars and assembly language code generation stars. In this se
will explain the common features that theCGStar class provides for all derivative code ge
eration stars.

As a simple example to see how code generation stars are written, let’s write an
star for the C code generation domain. Thedefstar is almost the same as for a simulatio
star:

defstar {
name {Add}
domain {CGC}
desc { Output the sum of the inputs, as a floating

value.}
author { J. Pino }
input {

name {input1}
type {float}

}
input {

name {input2}
type {float}

}
output {

name {output}
type {float}

}
...

13.2.1 Codeblocks

Next we have to define the C code which will be used to generate the run-time
For this we use a codeblock. A codeblock is a pseudo-language specification of a co
ment. By pseudo-language we mean that the block of code is written in the target lan
with interspersed macros. Macros will be explained in the following section.

Codeblocks are implemented as protected static class members (e.g. there
instance of a codeblock for the entire class). Since they are protected, codeblocks fro
star class can be used from a derived star. Thecodeblock directive defines a block of code
with an associated identifying name (“addCB” in this case).

codeblock (addCB) {
/* output = input1 + input2 */
$ref(output) = $ref(input1) + $ref(input2);
}

Special care should be given to codeblock specification. Within each line, spaces, tab
new line characters are important because they are preserved. For this reason, the bra
“ { } ” should not be on the same lines with the code. HadaddCB been defined as follows:

codeblock (addCB) { /* output = input1 + input2 */
$ref(output) = $ref(input1) + $ref(input2); }

the line
Ptolemy Last updated: 10/17/97

13-4 Code Generation

 “

om-

d in the

unique-

at
ded if

eturn

efine
he fol-
ref(output) = $ref(input1) + $ref(input2);

would be lost! This is because anything preceding the closing “} ” on the same line is dis-
carded by the preprocessor (ptlang). Secondly, the spaces and tabs between the opening{ ”
and the first non-space character will be ignored.

The first definition of theaddCB codeblock is translated byptlang into a definition
of a static public member in the.h file:

class CGCAdd : public CGCStar
{
...
static CodeBlock addCB;
...
}

An associated constructor call will be generated in the .cc file:

CodeBlock CGCAdd :: addCB (
" /* output = input1 + input2 */\n"
" $ref(output) = $ref(input1) + $ref(input2);\n"
);

The argument is a single string, divided into lines for convenience. The following will c
plete our definition of the add star:

go {
addCode(addCB);

}

Notice that the code is added in the go method, thus implying that the code is generate
main loop.

The

addCode(code, stream name , <unique name>)

method of a CG star provides an interface to all the code streams (stream name and
name arguments are optional). This method defaults to adding code into themyCode stream
(codestreams are explained later on). If a stream name is specified,addCode looks up the
stream using thegetStream(stream-name) method and then adds the code into th
stream. Furthermore, if a unique name is provided for the code, the code will only be ad
no other code has previously been added with the given unique name. The methodaddCode
will return TRUE if the code-string has been added to the stream and otherwise will r
FALSE.

The star just defined is a very simple star. Typical code generation stars will d
many codeblocks. Conditional code generation is easily accomplished, as is done in t
lowing example:

go {
if (parameter == YES)

addCode(yesblock);
else

addCode(noblock);
U. C. Berkeley Department of EECS

The Almagest 13-5

op

 code
t-
n the

sion of
d
ion of

s static
mented
may be
 advan-
ts, even

m-
es
iva-
}

So far, we have used theaddCode() method to generate the code inside the main lo
body. In the assembly language domains,addCode can be called in theinitCode and
wrapup methods, to place code before or after the main loop respectively. In all of the
generation domains, we can use theaddProcedure() method to generate declarations ou
side of the main body. Refer to “Code streams” on page 13-16 for documentation o
addCode andaddProcedure methods.

The next section describes the extended codeblock support. The previous discus
simple codeblocks is still correct and supported byptlang ; the extensions below are upwar
compatible. These extensions are experimental. They may change in future vers
Ptolemy, and may still contain bugs.

13.2.2 Codeblocks with arguments

Simple codeblocks (as described above) have a name and are implemented a
member strings. Extended codeblocks have a name, optional arguments, and are imple
as non-static functions. They have an escape mechanism so that C++ expressions
evaluated at run time and inserted into the generated code. However, in order to take
tage of this escape mechanism, a codeblock must be defined and called with argumen
if those arguments are empty. An example:

codeblock(cbLoop,"int N, double x") {
for (i=0; i < @N; i++) {
 $ref(output,i) = sin(i*@x);
}

}

This defines a codeblock namedcbLoop with two arguments:N andx . The variablei will
appear in the generated code, while the C++ expressionsN andx are escaped by@ and will be
evaluated at code-generation time. When this is called as

cbLoop(5, 0.1);

the following string will be returned:

for (i=0; i < 5; i++) {
 $ref(output,i) = sin(i*0.1);
}

This might be used within ago() method as:

go {
addCode(cbLoop(5, 0.1));

}

TheaddCode() method will process the$ref() macro as described elsewhere. More co
plicated expressions are allowable. In general, the@ clause may be delimited by parenthes
“ (”and “) ”, and must be operator<< printable. The above codeblock could have been equ
lently declared as:
Ptolemy Last updated: 10/17/97

13-6 Code Generation

d

s

codeblock(cbLoop,"int N, double x") {
for (i=0; i < @(N); i++) {
 $ref(output,i) = sin(i*@(x));
}

}

A more complicated example follows:

codeblock(cbLoop2,"char *portname, int N, double x") {
for (i=0; i < @(int(length)); i++) {
 $ref(@portname,i) = sin(i*@(x/N));
}

}

In this example,length is a data member of the star (typically a state). When called as:

cbLoop2("ina", 3, 0.2);

it would generate (assuming the value oflength is 20):

for (i=0; i < 20; i++) {
 $ref(ina,i) = sin(i*0.6666666);
}

In order to trigger the C++ expression processing via@-escapes in codeblocks which woul
otherwise have no arguments, add in a null argument list as in:

codeblock(cbLoop3,"") {
for (i=0; i < @(int(length)); i++) {
 $ref(output,i) = sin(i*0.1);
}

}

In the example above, the@(int(length)) will be replaced with the value of the clas
memberlength . The above example would be called with an empty argument list as:

go {
addCode(cbLoop3());

}

The complete parsing rules are:
@@ ==> @ (double "@" goes to single)
@ATSIGN ==> @
@{ ==> {
@LBRACE ==> { (LBRACE is literal string)
@} ==> }
@RBRACE ==> } (RBRACE is literal string)
@\ ==> \
@BACKSLASH ==> \ (BACKSLASH is literal string)
@id ==> C++ token {id} (id is one or more alphanumerics)
@(expr) ==> C++ expr {expr}(expr is arbitrary with balanced
U. C. Berkeley Department of EECS

The Almagest 13-7

 of a

er vari-

a-

ode

;

parens)
@(white_space) ==> nothing
@anything_else is passed through unchanged (including the @)

In an extended codeblock, trailing backslashes "\ " will omit the following newline in the gen-
erated code. This special meaning of trailing "\ " may be prevented by using "@\" or
“@BACKSLASH”.

13.2.3 In-line codeblocks

Code blocks may be specified in the body of a method. Inside the definition
method (such asgo()), all contiguous blocks of lines with a leading@ will be translated into
an in-line codeblock (i.e., anaddCode() statement). The@ escape mechanism for C++
expressions works as described above for codeblocks with arguments. Within@-escaped
expressions, in-line codeblocks may reference local method variables as well as memb
ables.

Leading white-space before a leading@ will be ignored. Note that no override mech
nism is provided to prevent the in-line codeblock interpretation. Note also that@ has dual
meanings: the first@ on the line introduces in-line codeblock mode, while subsequent@ char-
acters on the same line escape into C++ expressions. For example:

go() {
 @CMAM_wait(&$ref(ackFlag), 1);
}

is equivalent to:

go() {
 addCode("CMAM_wait(&$ref(ackFlag), 1);\n");
}

A more complicated example:

go {
 @ $ref(output) = \
 int ni = input.numberPorts();
 for (int i = 1; i <= ni; i++) {

@$ref(input#@i) @(i < ni ? " + " : ";\n") \
 }
}

If “ input.numberPorts() ” returns 3 when the above program is run, the generated c
will be:

" $ref(output) = $ref(input#1) + $ref(input#2) + $ref(input#3);\n"

Currently, only the pre-defined methods (start , go, exectime etc.) are processed this way
not user-defined methods.
Ptolemy Last updated: 10/17/97

13-8 Code Generation

ad cor-
/regis-
n also

global
nerated
 macros
ted the

a port,

ative.

macro
har-

is one;
ize of
rger

es)

ch it

owned
 alive
ave

ptlang
13.2.4 Macros

In code generation stars, the inputs and outputs no longer hold values, but inste
respond to target resources where values will be stored (for example, memory locations
ters in assembler generation, or global variables in C-code generation). A star writer ca
define states which can specify the need for global resources.

A code generation star, however, does not have knowledge of the available
resources or the global variables/tables which have already been defined in the ge
code. For star writers, a set of macros to access the global resources is provided. The
are expanded in a language or target specific manner after the target has alloca
resources properly. In this section, we discuss the macros defined in theCGStar class.

$ref(name)
Returns a reference to a state or a port. If the argument, name, refers to
it is functionally equivalent to thename%0 operator in the SDF simulation
stars. If a star has a multi-porthole, sayinput, the first real porthole isinput#1.
To access the first porthole, we use$ref(input#1) or
$ref(input#internal_state) whereinternal_state is the name of a
state that has the current value, 1.

$ref(name,offset)
Returns a reference to an array state or a port with an offset that is not neg
For a port, it is functionally equivalent toname%offset in SDF simulation
stars.

$val(state-name)
Returns the current value of the state. If the state is an array state, the
will return a string of all the elements of the array spaced by the new line c
acter. The advantage of not using$ref macro in place of$val is that no addi-
tional target resources need to be allocated.

$size(name)
Returns the size of the state/port argument. The size of a non-array state
the size of a array state is the total number of elements in the array. The s
a port is the buffer size allocated to the port. The buffer size is usually la
than the number of tokens consumed or produced through that port.

$starName()
Returns the instantiated name of the star (without galaxy or universe nam

$fullName()
Returns the complete name of the star including the galaxies to whi
belongs.

$starSymbol(name)
Returns a unique label in the star instance scope. The instance scope is
by a particular instance of that star in a graph. Furthermore, the scope is
across all firings of that particular star. For example, two CG stars will h
two distinct star instance scopes. As an example, we show some parts of
U. C. Berkeley Department of EECS

The Almagest 13-9

the
star

 that
sin/cos
hese
rated

the
nerate
ere a
file of theCGCPrinter star.

initCode {
...

StringList s;
s << " FILE* $starSymbol(fp);";
addDeclaration(s);
addInclude("<stdio.h>");
addCode(openfile);

...
}
codeblock (openfile) {

if(!($starSymbol(fp)=fopen("$val(fileName)","w"))) {
fprintf(stderr,"ERROR: cannot open output file

for Printer star.\n");
exit(1);
}

}

The file pointerfp for a star instance should be unique globally, and
$starSymbol macro guarantees the uniqueness. Within the same
instance, the macro returns the same label.

$sharedSymbol(list,name)
Returns the symbol for name in the list scope. This macro is provided so
various stars in the graph can share the same data structures such as
lookup tables and conversion table from linear to mu-law PCM encoder. T
global data structures should be created and initialized once in the gene
code. The macrosharedSymbol does not provide the method to generate
code, but does provide the method to create a label for the code. To ge
the code only once, refer to “Code streams” on page 13-16. A example wh
shared symbol is used is inCGCPCM star.
Ptolemy Last updated: 10/17/97

13-10 Code Generation

ear to

s.

ode-
 only
 star
ck
codeblock (sharedDeclarations)
{

int $sharedSymbol(PCM,offset)[8];
/* Convert from linear to mu-law */
int $sharedSymbol(PCM,mulaw)(x)
double x;
{

double m;
m = (pow(256.0,fabs(x)) - 1.0) / 255.0;
return 4080.0 * m;

}
}
codeblock (sharedInit)
{

/* Initialize PCM offset table. */
{
int i;
double x = 0.0;
double dx = 0.125;
for(i = 0; i < 8; i++, x += dx)
{

$sharedSymbol(PCM,offset)[i] =
$sharedSymbol(PCM,mulaw)(x);

}
}
initCode {
...

if (addGlobal(sharedDeclarations, "$sharedSym-
bol(PCM,PCM)"))

addCode(sharedInit);
}

The above code creates a conversion table and a conversion function from lin
mu-law PCM encoder. The conversion table is namedoffset and belongs to thePCM
class. The conversion function is namedmulaw, and belongs to the same PCM clas
Other stars can access that table or function by saying$sharedSymbol(PCM,off-
set) or $sharedSymbol(PCM,mulaw) . The initCode method tries to put the
sharedDeclarations codeblock into the global scope (byaddGlobal() method
in the CGC domain). That code block is given a unique label by$sharedSym-
bol(PCM,PCM) . If the codeblock has not been previously defined,addGlobal
returns true, thus allowingaddCode(sharedInit) . If there is more than one
instance of the PCM star, only one instance will succeed in adding the code.

$label(name), $codeblockSymbol(name)
Returns a unique symbol in the codeblock scope. Both label and c
blockSymbol refer to the same macro expansion. The codeblock scope
lives as long as a codeblock is having code generated from it. Thus if a
usesaddCode() more than once on a particular codeblock, all codeblo
U. C. Berkeley Department of EECS

The Almagest 13-11

 the

 more
see how
ssembly

ate or
 bank

“x”

with-
 a
ror if
(e.g. a

 of a
tion,
fer-

ssion
o the
nde-
instances will have unique symbols. A example of where this is used in
CG56HostOut star.

codeblock(cbSingleBlocking) {
$label(wait)
jclr #m_htde,x:m_hsr,$label(wait)
jclr #0,x:m_pbddr,$label(wait)
movep $ref(input),x:m_htx
}
codeblock(cbMultiBlocking) {
move #$addr(input),r0
.LOOP #$val(samplesOutput)
$label(wait)
jclr #m_htde,x:m_hsr,$label(wait)
jclr #0,x:m_pbddr,$label(wait)
movep x:(r0)+,x:m_htx
.ENDL
nop
}

The above two codeblocks use a label namedwait. The $label macro will assign
unique strings for each codeblock.

The baseCGStar class provides the above 8 macros. In the derived classes, we can add
macros, or redefine the meaning of these macros. Refer to each domain document to
these macros are actually expanded. There are three commonly used macros in the a
code generation domains; these are:

$addr(name)
This returns the address of the allocated memory location for the given st
porthole name. The address does not include references to the memory
the location is coming from; for instance, “x:2034” for location 2034 in the
memory bank for Motorola 56000 is output as 2034.

$addr(name,<offset>)
This macro returns the numeric address in memory of the named object,
out (for the 56000) an “x:” or “y:” prefix. If the given quantity is allocated in
register (not yet supported) this function returns an error. It is also an er
the argument is undefined or is a state that is not assigned to memory
parameter).
Note that this does NOT necessarily return the address of the beginning
porthole buffer; it returns the “access point” to be used by this star invoca
and in cases where the star is fired multiple times, this will typically be dif
ent from execution to execution.
If the optional argument offset is specified, the macro returns an expre
that references the location at the specified offset -- wrapping around t
beginning of the buffer if that is necessary. Note that this wrapping works i
pendent of whether the buffer is circularly aligned or not.

$ref(name,<offset>)
Ptolemy Last updated: 10/17/97

13-12 Code Generation

er to
. If
ding

e has

aracter

irtual
fer

e

le.

n on
rder

rtholes

ion

ently,
This macro is much like $addr(name), only the full expression used to ref
this object is returned, e.g. “x:23” for a 56000 if “name” is in x memory
“name” is assigned to a register, this expression will return the correspon
register. The error conditions are the same as for $addr

$mem(name)
Returns the name of the memory bank in which the given state or porthol
its memory allocated.

To have “$” appear in the output code, put “$$” in the codeblock. For a domain where “$” is
a frequently used character in the target language, it is possible to use a different ch
instead by redefining the virtual functionsubstChar (defined inCGStar) to return a differ-
ent character.

It is also possible to introduce processor-specific macros, by overriding the v
function processMacro (rooted inCGStar) to process any macros it recognizes and de
substitution on the rest by calling its parent’sprocessMacro method.

13.2.5 Assembly PortHoles

Here are some methods of classAsmPortHole that might be useful in assembly cod
generation stars:

bufSize() Returns an integer, the size of the buffer associated with the portho

baseAddr() Returns the base address of the porthole buffer

bufPos() Returns the offset position in the buffer, which ranges from 0 tobuf-
Size() -1.

circAccessThisTime()
This method returns true (nonzero) if the data to be read or writte
this execution “wrap around”, so that accessing them in a linear o
will not work.

13.2.6 Attributes

Attributes are assertions about the object they are applied to. Both states and po
can have attributes. Attributes that apply to states have the prefix “A_”. Attributes that apply
to portholes have the prefix “P_”. The following attributes are common to all code generat
domains:

A_GLOBAL
If set, this state is declared global so that it is accessible everywhere. Curr
it is only supported in the CGC domain.

A_LOCAL
This is the opposite ofA_GLOBAL.

A_SHARED
A state that is shared among all stars that know its name, type, size.

A_PRIVATE
U. C. Berkeley Department of EECS

The Almagest 13-13

are the
e bits
fault

 edit-

 oth-

orks
es not

dress

g

tates

alog
Opposite ofA_SHARED.

The default for stars isA_LOCAL|A_PRIVATE. Right now, onlyA_SHARED|A_LOCAL is sup-
ported in the assembly language domains. This combination means that all stars will sh
particular state across a processor. For all stars to share it in a universe th
A_SHARED|A_GLOBAL need to be set; this combination is not implemented yet - the de
method will probably restrict all the stars that share this state to the same processor.

A_CONSTANT
The state value is not changed by the star’s execution.

A_NONCONSTANT
The state value is changed by the star’s execution.

A_SETTABLE
The user may set the value of this state from a user interface.

A_NONSETTABLE
The user may not set the value of this state from a user interface (e.g.
parameters doesn’t show it).

Applying an attribute to an object implies that some bits are to be “turned on”, and
ers are to be “turned off”. The underlying attribute bits have names beginning withAB_ for
states, andPB_ for portholes. The only two bits that exist in all states areAB_CONST and
AB_SETTABLE. By default, they are on for states, which means that the default state w
like a parameter (you can set it from the user interface, and the star’s execution do
change it).

For assembly language domains, the following attributes are defined:

A_CIRC
If set, the memory for this state is allocated as a circular buffer, whose ad
is aligned to the next power of two greater than or equal to its length.

A_CONSEC
If set, allocate the memory for thenext state in this star consecutively, startin
immediately after the memory for this star.

A_MEMORY
If set, memory is allocated for this state.

A_NOINIT
If set, the state is not be automatically initialized. The default is that all s
that occupy memory are initialized to their default values.

A_REVERSE
If set, write out the values for this state in reverse order.

A_SYMMETRIC
If set, and if the target has dual data memory banks (e.g. M56000, An
Devices 2100, etc.), allocate a buffer for this object in both memories.
Ptolemy Last updated: 10/17/97

13-14 Code Generation

 form
ests

e --

 this

ate

s. In
efault.
uitous,

ng this
Given these attributes (technically, the above also have “bit” representations of the
AB_xxx; A_xxx just turns the bit AB_xxx on), the following attributes correspond to requ
to turn some attributes off and to turn other attributes on. For example:

A_ROM
Allocate memory for this state in memory, and the value will not chang
A_MEMORY andA_CONSTANT set.

A_RAM
A_MEMORY set,A_CONST not set

For portholes in code generation stars, we have:

P_CIRC
If set, then allocate the buffer for this porthole as a circular buffer, even if
is not required because of any other consideration.

P_SHARED
Equivalent toA_SHARED, only for portholes.

P_SYMMETRIC
Similar toA_SYMMETRIC, but for portholes.

P_NOINIT
Do not initialize this porthole.

Attributes can be combined with the “| ” operator. For example, to allocate memory for a st
but make it non-settable by the user, I can say

AB_MEMORY|A_NONSETTABLE

13.2.7 Possibilities for effective buffering

In principle, blocks communicate with each other through porthole connection
code generation domains, we allocate a buffer for each input-output connection by d
There are some stars, however, that do not modify data at all. A good, and also ubiq
example is aFork star. When aFork star hasN outputs, the default behavior is to createN
buffers for output connections and copy data from input buffer toN output buffers, which is a
very expensive and silly approach. Therefore, we pay special attention to stars displayi
type of behavior. In the setup method of these stars, theforkInit() method is invoked to
indicate that the star is aFork -type star. For example, theCGCFork star is defined as

defstar {
name { Fork }
domain { CGC }
desc { Copy input to all outputs }
version { @(#)CGCFork.pl 1.6 11/11/92 }
author { E. A. Lee }
copyright { 1991-1994 The Regents of the University of Cali-
fornia }
location { CGC demo library }
explanation {
U. C. Berkeley Department of EECS

The Almagest 13-15

urrent
ets too
l num-
edule).

ubset of
t.

put is
-
ature,
.

Each input is copied to every output. This is done by the way
the buffers are laid out; no code is required.
}
input {

name {input}
type {ANYTYPE}

}
outmulti {

name {output}
type {=input}

}
constructor {

noInternalState();
}
start {

forkInit(input,output);
}
exectime { return 0;}
}

Where possible, code generation domains take advantage ofFork -type stars by not allocating
output buffers, but instead the stars reuse the input buffers. Unfortunately, in the c
implementation, assembly language fork stars can not do their magic if the buffer size g
large (specifically, if the size of the buffer that must be allocated is greater than the tota
ber of tokens generated or read by some port during the entire execution of the sch
Here, forks or delay stars that copy inputs to outputs must be used.

Another example of aFork -Type star is theSpread star. The star receivesN tokens
and spreads them to more than one destination. Thus, each output buffer may share a s
its input buffer. We call this relationshipembedding: the outputs are embedded in the inpu
For example, in theCGCSpread star:

setup {
MPHIter iter(output);
CGCPortHole* p;
int loc = 0;
while ((p = (CGCPortHole*) iter++) != 0) {

input.embed(*p, loc);
loc += p->numXfer();

}
}

Notice that the output is a multi-porthole. During setup, we express how each out
embedded in the input starting at locationloc. At the buffer allocation stage, we do not allo
cate buffers for the outputs, but instead reuse the input buffer for all outputs. This fe
however, has not yet been implemented in the assembly language generation domains

A Collect star embeds its inputs in its output buffer:

setup {
MPHIter iter(input);
Ptolemy Last updated: 10/17/97

13-16 Code Generation

omatic
ion)
uffer,
s
uires a
duced;
ill ever

C),
G56),
lt target

guage
cleanly

m.

d run-
ng its
gether
meters

n
gener-
l meth-

d target
CGCPortHole* p;
int loc = 0;
while ((p = (CGCPortHole*) iter++) != 0) {

output.embed(*p, loc);
loc += p->numXfer();

}
}

Other examples of embedded relationships areUpSample and DownSample stars.
One restriction of embedding, however, is that the embedded buffer must be static. Aut
insertion ofSpread andCollect stars in multi-processor targets (refer to the target sect
guarantees static buffering. If there is no delay (i.e., no initial token) in the embedded b
static buffering is enforced by default. A buffer is calledstatic when a star instance consume
or produces data in the same buffer location in any schedule period. Static buffering req
size that divides the least common multiple of the number of tokens consumed and pro
if such a size exists that equals or exceeds the maximum number of data values that w
be in the buffer, static allocation is performed.

13.3 Targets
A code generationDomain is specific to the language generated, such as C (CG

Sproc assembly code (Sproc) [Mur93], Silage [Kal93], DSP56000 assembly code (C
and DSP96000 assembly code (CG96). Each code generation domain has a defau
which defines routines generic to the target language. A derivedTarget that defines architec-
ture specific routines can then be written. A given language, particularly a generic lan
such as C, may run on many target architectures. Code generation functions are
divided between the default domain target and the architecture specific target.

All target architectures are derived from the base classTarget . The special class
KnownTarget is used to add targets to the known list of targets, much asKnownBlock is
used to add stars (and other blocks) to the known block list and to assign names to the

A Target object has methods for generating a schedule, compiling the code, an
ning the code (which may involve downloading code to target hardware and beginni
execution). There also may be child targets (for representing multiprocessor targets) to
with methods for scheduling the communication between them. Targets also have para
that are user specified.

13.3.1 Single-processor target

The base target for all code generation domains is theCGTarget , which represents a
single processor by default. This target is calleddefault-CG in the target list for the CG
domain. As the generic code generation target, theCGTarget class defines many commo
functions for code generation targets. Methods defined here include virtual methods to
ate, display, compile, and run the code. Derived targets are free to redefine these virtua
ods if necessary.

Code streams

A code generation target manages code streams which are used to store star an
generated code. TheCGTarget class has the two predefined code streams:myCode andpro-
U. C. Berkeley Department of EECS

The Almagest 13-17

ms

 proce-
l that
mple,
 this

a-

ed the

treams
:

cedures . ThemyCode stream is referred to asCODE and theprocedures stream is called
PROCEDURE; these names should be used when referring to these streams as in “Code-
Stream* code = getStream(CODE) ”. Derived targets are free to add more code strea
using theCGTarget methodaddStream(stream-name) . For example, the default CGC
target defines fourteen additional code streams.

Other methods, such asaddProcedure(code, uniquename) can be defined, to
provide a more efficient or convenient interface to a specific code stream (in this case,
dures). WithaddProcedure it becomes clear why unique names are necessary. Recal
addProcedure is used to declarations outside of the main body of the code. For exa
say we wanted to write a function in C to multiply two numbers. The codeblock to do
could read:

codeblock(sillyMultiply) {
/* A silly function */
double $sharedSymbol(silly,mult)(double a, double b)
{

double m;
m = a*b;
return m;

}
}

Note that in this codeblock we used thesharedSymbol macro described in the code gener
tion macros section. To add this code to the procedures stream, in theinitCode method of
the star, we can call either:

addProcedure(sillyMultiply,"mult");

or
addCode(sillyMultiply,"procedures","mult");

or
getStream("procedures")->put(sillyMultiply,"mult");

As with addCode , addProcedure returns aTRUE or FALSE indicating whether the
code was inserted into the code stream. Taking this into account, we could have add
code line by line:

if (addProcedure("/* A silly function */\n","mult")) {
addProcedure(
"double $sharedSymbol(silly,mult)(double a, double

b)\n"
);
addProcedure("{\n");
addProcedure("\tdouble m;\n");
addProcedure("\tm = a*b;\n");
addProcedure("\treturn m;\n");
addProcedure("}\n");

}

13.3.2 Assembly code streams

Code is generated in the assembly language domains into four streams. The s
inherited fromCGTarget are theCODE andPROCEDURES stream. The two new streams are
Ptolemy Last updated: 10/17/97

13-18 Code Generation

rated

 as an

m is

virtual
d is
-

d

“run”
,

p, the

 target
 and
e

mpile,

ke
er-

s. It

or tar-
 will be
gned
rget it
].

” and
mainLoop Code added to this stream comprises the main loop of the gene
algorithm. All addCode calls from a star’sgo function automatically
are concatenated to this stream unless another stream is supplied
argument.

trailer Code added to this stream comprises thewrapup section of the gener-
ated algorithm. AlladdCode calls from a star’swrapup method auto-
matically are concatenated to this stream unless another strea
supplied as an argument.

Code generation

Once the program graph is scheduled, the target generates the code in the
methodgenerateCode() . (Note: code streams should be initialized before this metho
called.) All the methods called bygenerateCode are virtual, thus allowing for target cus
tomization. ThegenerateCode method then callsallocateMemory() which allocates the
target resources. After resources are allocated, theinitCode method of the stars are calle
by codeGenInit() . The next step is to form the main loop by calling the methodmain-
LoopCode() . The number of iteration cycles are determined by the argument of the
directive which a user specifies inpigi or in ptcl . To complete the body of the main loop
go() methods of stars are called in the scheduled order. After forming the main loo
wrapup() methods of stars are called.

Now, all of the code has been generated; however, the code can be in multiple
streams. TheframeCode() method is then called to piece the code streams together
place the unified stream into themyCode stream. Finally, the code is written to a file by th
method writeCode() . The default file name is“ code . output ” , and that file will be
located in the directory specified by a target parameter,destDirectory .

Finally, since all of the code has been generated for a target, we are ready to co
load, and execute the code. Derived targets should redefine the virtual methodscompile-
Code() , loadCode() , andrunCode() to do these operations. At times it does not ma
sense to have separateloadCode() andrunCode() methods, and in these cases, these op
ations should be collapsed into therunCode() method.

13.3.3 Multiprocessor targets

Targets representing multiple processors are derived from theCGTarget class. The
base class for all multiple-processor targets is calledMultiTarget , and resides in the
$(PTOLEMY)/src/domains/cg/kernel directory. CGMultiTarget is derived from
MultiTarget . CGMultiTarget class is the base class for all multiple-processor target
is calledFullyConnected in the CG domain target list.

The design of Ptolemy is also intended to support heterogeneous multi-process
gets. In the future, the base class of all “abstract” heterogeneous multiprocessor targets
implemented from theMultiTarget class. For such targets, certain actors must be assi
to certain targets, and the cost of a given actor is in general a function of which child ta
is assigned to. We have developed parallel schedulers that address this problem [Sih91

We have implemented, or are in the process of implementing, both “abstract
“concrete” multi-processor targets. For example, we have classes namedCGMultiTarget
U. C. Berkeley Department of EECS

The Almagest 13-19

itrary
mmu-
ot actu-
r actual

ecture

s-
es that

ult, it
muni-

lti-

mber
s mod-
d in
unica-
 the

f the

stage,
ocessor
et-
 facili-
rs. The
shared
ssor.

hedul-
to
 on par-
e child

ocessor
erated
de into
les with

get by
b-
and CGSharedBus that represent sets of homogenous single-processor targets of arb
type, connected in either a fully connected or shared-bus topology, with parametrized co
nication costs. These targets, however, use only the CG domain stars and hence do n
ally generate code (recall that CG domain stars are “comment generators”). Some othe
implementations of multiprocessor systems include the CM-5 (CGCCm5Target in the CGC
domain), the Sproc multiprocessor DSP [Mur93], and the ordered transaction archit
[Sri93]. Refer to the CG56 domain documentation forCG56MultiSim target, or the CGC
domain documentation forCGCMultiTarget class as examples of “concrete” multi-proce
sor targets. In this section, we concentrate on the “abstract” multiprocessor target class
are in the$(PTOLEMY)/src/domains/cg/targets directory.

CGMultiTarget is the base target class for all homogeneous targets. By defa
models a fully-connected multiprocessor architecture; when a processor wants to com
cate with another processor, it can do immediately. ThescheduleComm() method returns
the time when the required communication is scheduled. In theCGMultiTarget class, it
returns the same time as when the communication is required. On the other hand,CGShared-
Bus, which is derived from theCGMultiTarget class, is the base target class for all mu
processor targets having a shared-bus topology. In theCGSharedBus class, the
scheduleComm() method schedules the required communication on the shared-bus me
object of that class, and returns the scheduled time. The communication cost (in time) i
eled by thecommTime() method. Given the information on which processors are involve
this communication and how many tokens are transmitted, it returns the expected comm
tion time once started. By default (or in fully-connected topology), it only depends on
number of tokens.

A CGMultiTarget has a sequence of child target objects to represent each o
individual processors. The number of processors are determined by anIntState , nprocs ,
and the type of the child target is specified by aStringState , childType . Refer to the
User’s Manual for details on how to specify the various target parameters. In the setup
the child targets are created and added to the child target list as members of the multipr
target. Classes derived fromMultiTarget represent the topology of the multi-processor n
work (communication costs between processors, schedules for use of communication
ties, etc.), and single-processor child targets can represent arbitrary types of processo
resource allocation problem is divided between the parent target, representing the
resources, and the child targets, representing the resources that are local to each proce

The main role of a multiprocessor target is to set up one of the chosen parallel sc
ers, and to coordinate the child targets. TheCGMultiTarget class has a set of parameters
select parallel scheduling options. See the schedulers section for a detailed discussion
allel schedulers. The selected parallel scheduler schedules the program graph onto th
targets and the scheduling results are displayed on a Gantt chart. The parent multipr
target collects the code from each of the child targets after the child targets have gen
code based on the scheduling results. By default, it merges all of the child-processor co
a single file. If separate files are required, then one approach is to create separate fi
names derived from the child target names and write the code to these files in theframe-
Code() method of the multi-target.

Interprocessor communication (IPC) stars are created by the multiprocessor tar
the methodscreateSend() andcreateReceive() . These stars are spliced in to the su
Ptolemy Last updated: 10/17/97

13-20 Code Generation

ds just
/receive

d
ed star.
r, the
design
ted tar-

 is to

s.

 code.

uling
 by set-

e
m, and
cedence
e most
ing reg-
ode by
fficient
rge sam-
ck for an
ne); in

e dead-
cluster-
chedule.
om the
galaxies that are created and handed down to the child targets. Typically, these metho
create the appropriate IPC star and return a pointer to the object created. Each send
pair is matched in thepairSendReceive() method. Typically, this might involve setting
pointers in the send/receive pair to point to each other.

There is no preprocessor for targets likeptlang for stars. Designing a customize
multiprocessor target, therefore, is a bit complicated compared to designing a customiz
If the interconnection topology is neither fully-connected nor shared-bus, in particula
communication scheduling should be designed in the target, which makes a target
more complicated. So the best way to design a target is to look at an already-implemen
get such asCGCMultiTarget class in the CGC domain.

13.4 Schedulers
Given a Universe of functional blocks to be scheduled and aTarget describing the

topology and characteristics of the single- or multiple-processor system for which code
be generated, it is the responsibility of theScheduler object to perform some or all of the
following functions:

 • Determine which processor a given invocation of a givenBlock is executed on (for
multiprocessor systems).

 • Determine the order in which actors are to be executed on a processor.

 • Arrange the execution of actors into standard control structures, like nested loop

In this section, we explain different scheduling options and their effect on the generated

13.4.1 Single-processor schedulers

For targets consisting of a single processor, we provide three different sched
techniques. The user can select the most appropriate scheduler for a given application
ting theloopingLevel target parameter.

In the first approach (loopingLevel = DEF), which is the default SDF scheduler, w
conceptually construct the acyclic precedence graph (APG) corresponding to the syste
generate a schedule that is consistent with that precedence graph. Note that the pre
graph is not physically constructed. There are many possible schedules for all but th
trivial graphs; the schedule chosen takes resource costs, such as the necessity of flush
isters and the amount of buffering required, into account. The target then generates c
executing the actors in the sequence defined by this schedule. This is a quick and e
approach when the SDF graph does not have large sample-rate changes. If there are la
ple-rate changes, the size of the generated code can be huge because the codeblo
actor might occur many times (if the number of repetitions for the actor is greater than o
this case, it is better to use some form ofloop scheduling.

We call the second approachJoe’s scheduler. In this approach (loopingLevel =
CLUST), actors that have the same sample rate are merged (wherever this will not caus
lock) and loops are introduced to match the sample rates. The result is a hierarchical
ing; within each cluster, the techniques described above can be used to generate a s
The code then contains nested loop constructs together with sequences of code fr
actors.
U. C. Berkeley Department of EECS

The Almagest 13-21

looping
d
mes
raph

in the

 usage.
ur96]
 is not
en
all opti-
tion).
nce
 single
eration,
de for
emory.

cheduler
-

uris-
ne of

orithm,
quire-

duced
acrifice

s 5 sam-
hedule
nvoca-
mple,
, third,
luded
le from
), and

dle all
lers we
nted
and in
ers. We
specific
Since the second approach is a heuristic solution, there are cases where some
possibilities go undetected. By setting theloopingLevel to SJS, we can choose the thir
approach, calledSJS (Shuvra-Joe-Soonhoi) scheduling after the inventor’s first na
[Bha94]. After performing Joe’s scheduling at the front end, it attacks the remaining g
with an algorithm that is guaranteed to find the maximum amount of looping available
graph.

A fourth approach, obtained by settingloopingLevel to ACYLOOP, we choose a
scheduler that generates single appearance schedules optimized for buffer memory
This scheduler was developed by Praveen Murthy and Shuvra ‘Bhattacharyya [M
[Bha96]. This scheduler only tackles acyclic SDF graphs, and if it finds that the universe
acyclic, it automatically resets theloopingLevel target parameter to SJS. Basically, for a giv
SDF graph, there could be many different single appearance schedules. These are
mally compact in terms of schedule length (or program memory in inline code genera
However, they will, in general, require differing amounts of buffering memory; the differe
in the buffer memory requirement of an arbitrary single appearance schedule versus a
appearance schedule optimized for buffer memory usage can be dramatic. In code gen
it is essential that the memory consumption be minimal, especially when generating co
embedded DSP processors since these chips have very limited amounts of on-chip m
Note that acyclic SDF graphs always have single appearance schedules; hence, this s
will always give single appearance schedules. If thefile target parameter is set, then a sum
mary of internal scheduling steps will be written to that file. Essentially, two different he
tics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better o
the two is selected. The generated file will contain the schedule generated by each alg
the resulting buffer memory requirement, and a lower bound on the buffer memory re
ment (called BMLB) over all possible single appearance schedules.

If the second, third, or fourth approach is taken, the code size is drastically re
when there are large sample rate changes in the application. On the other hand, we s
some efficient buffer management schemes. For example, suppose that star A produce
ples to star B which consumes 1 sample at a time. If we take the first approach, we sc
this graph as ABBBBB and assign a buffer of size 5 between star A and B. Since each i
tion of star B knows the exact location in the allocated buffer from which to read its sa
each B invocation can read the sample directly from the buffer. If we choose the second
or fourth approach, the scheduling result will be A5(B). Since the body of star B is inc
inside a loop of factor 5, we have to use indirect addressing for star B to read a samp
the buffer. Therefore, we need an additional buffer pointer for star B (memory overhead
one more level of memory access (runtime overhead) for indirect addressing.

13.4.2 Multiprocessor schedulers

A key idea in Ptolemy is that there is no single scheduler that is expected to han
situations. Users can write schedulers and can use them in conjunction with schedu
have written. As with the rest of Ptolemy, schedulers are written following object-orie
design principles. Thus a user would never have to write a scheduler from ground up,
fact the user is free to derive the new scheduler from even our most advanced schedul
have designed a suite of specialized schedulers that can be mixed and matched for
applications.
Ptolemy Last updated: 10/17/97

13-22 Code Generation

ate a
bes the
 itera-
 block
 sched-

 multi-
uling,
arget

ication

e

l
.

er-

 list
 the

 set

r,

t
ld be

erated
cation
re com-

ameter
star

n-

ailed.
n each
ck might
The first step in multiprocessor scheduling, or parallel scheduling, is to transl
given SDF graph to an acyclic precedence expanded graph (APEG). The APEG descri
dependency between invocations of blocks in the SDF graph during execution of one
tion. Refer to the SDF domain documentation for the meaning of one iteration. Hence, a
in a multirate SDF graph may correspond to several APEG nodes. Parallel schedulers
ule the APEG nodes onto processors.

We have implemented three scheduling techniques that map SDF graphs onto
ple-processors with various interconnection topologies: Hu’s level-based list sched
Sih’s dynamic level scheduling [Sih91], and Sih’s declustering scheduling [Sih91]. The t
architecture is described by itsTarget object, derived fromCGMultiTarget . The Target
class provides the scheduler with the necessary information on interprocessor commun
to enable both scheduling and code synthesis.

The CGMultiTarget has a parameter,schedName, that allows the user to select th
type of schedule. Currently, there are five different scheduling options:

DL If schedName is set toDL, we select the Sih’s dynamic leve
scheduler that accounts for IPC overhead during scheduling

HU Hu’s level scheduler is selected, which ignores the IPC ov
head.

DC The Sih’s declustering scheduler can be selected by settingDC.
The declustering algorithm is advantageous only when the
scheduling algorithm shows poor performance, judged from
scheduling result because it is more expensive than theDL or HU
scheduler.

HIER(DL) or HIER(HU) or HIER(DC)
If we want to use Pino’s hierarchical scheduler, we have to
schedName to HIER(DL or HU or DC). The default top-level
scheduling option is theDL scheduler. To use other schedule
DC or HU should be specified within the parenthesis.

CGDDF If the schedName is set toCGDDF, the Ha’s dynamic construc
scheduler is selected. To use this scheduler, Ptolemy shou
recompiled with special flags, or usemkcgddf executable.

Whichever scheduler is used, we schedule communication nodes in the gen
code. For example, if we use the Hu’s level-based list scheduler, we ignore communi
overhead when assigning stars to processors. Hence, the code is likely to contain mo
munication stars than with the other schedulers that do not ignore IPC overhead.

There are other target parameters that direct the scheduling procedure. If the par
manualAssignment is set toYES, then the default parallel scheduler does not perform
assignment. Instead, it checks the processor assignment of all stars (set using theprocId state
of CG and derived stars). By default, theprocId state is set to -1, which is an illegal assig
ment since the child target is numbered from 0. If there is any star, except theFork star, that
has an illegalprocId state, an error is generated saying that manual scheduling has f
Otherwise, we invoke a list scheduler that determines the order of execution of blocks o
processor based on the manual assignment. We do not support the case where a blo
U. C. Berkeley Department of EECS

The Almagest 13-23

ultiple
efault.

 or not.
 splice
ssi-
 of
 is
thm is

es not

he user
g the
 per-
ssor.

 The
in,

gard-
ide the
duling
rt. The
 to the
n. The

which
w if nec-
r target
rom the

ation
ected to
proces-
cation.
 should
serted
 each
one by
require more than one processor. ThemanualAssignment option automatically sets the
oneStarOneProc state to be discussed next.

If there are sample rate changes, a star in the program graph may be invoked m
times in each iteration. These invocations may be assigned to multiple processors by d
We can prevent this by setting theoneStarOneProc state toYES. Then, all invocations of a
star are assigned to the same processor regardless of whether they are parallelizable
The advantage of doing this is the simplicity in code generation since we do not need to
in Spread/Collect stars, which will be discussed later. Also, it provides us another po
ble scheduling option:adjustSchedule ; this is described below. The main disadvantage
settingoneStarOneProc to YES is the performance loss of not exploiting parallelism. It
most severe if Sih’s declustering algorithm is used. Therefore, Sih’s declustering algori
not recommended with this option.

In this paragraph, we describe a future scheduling option which this release do
support yet. Once automatic scheduling (withoneStarOneProc option set) is performed, the
processor assignment of each star is determined. After examining the assignment, t
may want to override the scheduling decision manually. It can be done by settin
adjustSchedule parameter. If that parameter is set, after the automatic scheduling is
formed, theprocId state of each star is automatically updated with the assigned proce
The programmer can override the scheduling decision by setting that state.
adjustSchedule cannot beYES before any scheduling decision is made previously. Aga
this option is not supported in this release.

Different scheduling options result in different assignments of APEG nodes. Re
less of which scheduling options are chosen, the final stage of the scheduling is to dec
execution order of stars including send/receive stars. This is done by a simple list sche
algorithm in each child target. The final scheduling results are displayed on a Gantt cha
multiple-processor scheduler produces a list of single processor schedules, giving them
child targets. The schedules include send/receive stars for interprocessor communicatio
child targets take their schedules and generate code.

To produce code for child targets, we create a sub-galaxy for each child target,
consists of the stars scheduled on that target and some extra stars to be discussed belo
essary. A child target follows the same step to generate code as a single processo
except that the schedule is not computed again since the scheduling result is inherited f
parent target.

Send/Receive stars

After the assignment of APEG nodes is finished, the interprocessor communic
requirements between blocks are determined in sub-galaxies. Suppose star A is conn
star B, and there is no sample rate change. By assigning star A and star B to different
sors (1 and 2 respectively), the parallel scheduler introduces interprocessor communi
Then, processor 1 should generate code for star A and a “send” star, while processor 2
generate code for a “receive” star and star B. These “send” and “receive” stars are in
automatically by the Ptolemy kernel when determining the execution order of blocks in
child target and creating the sub-galaxies. The actual creation of send/receive stars is d
the parallel scheduler by invoking methods (createSend() and createReceive() , as
mentioned earlier) in the parent multi-target.
Ptolemy Last updated: 10/17/97

13-24 Code Generation

ization
mmon
chroni-

nd have
e data if
aphore
message
r would

se

f

 con-
e same

essor 2.
ned to
2; inter-
ould be
 insert
tains 4
 to star
t port-

ingle
ces one
rthole

cessor

d are
b-galax-
. The
es we

signed
e first
h a
 over-
Once the generated code is loaded, processors run autonomously. The synchron
protocol between processors is hardwired into the “send” and “receive” stars. One co
approach in shared-memory architectures is the use of semaphores. Thus a typical syn
zation protocol is to have the send star set a flag when it completes the data transfer, a
the receive star read the data and reset the semaphore. The receive star will not read th
the semaphore has not been set and similarly, the send star will not write data if the sem
has not been reset. In a message passing architecture, the send star may form a
header to specify the source and destination processors. In this case, the receive sta
decode the message by examining the message header.

For properly supporting arbitrary data types, the send star should have anANYTYPE
input; the receive star should have anANYTYPE output. The resolved type for each of the
ports can be obtained using thePorthole::resolvedType method. For a preliminary ver-
sion of the communication stars, you can use a fixed datatype such asFLOAT or INT .

The send/receive stars that are declared to supportANYTYPE but fail to support a par-
ticular datatype, should display an appropriate error message using theError::abortRun
method. Finally, each of these stars must callPortHole::numXfer to determine the size o
the block of data that needs to be transferred upon each invocation.

Spread/Collect stars

Consider a multi-rate example in which star A produces two tokens and star B
sumes one token each time. Suppose that the first invocation of star B is assigned to th
processor as the star A (processor 1), but the second invocation is assigned to proc
After star A fires in processor 1, the first token produced should be routed to star B assig
the same processor while the second token produced should be shipped to processor
processor communication is required! Since star A has one output port and that port sh
connected to two different destinations (one is to star B, the other is to a “send” star), we
a “spread” star after star A. As a result, the sub-galaxy created for processor 1 con
blocks: star A is connected to a “spread” star, which in turn has two outputs connected
B and a “send” star. The role of a “spread” star is to spread tokens from a single outpu
hole to multiple destinations.

On the other hand, we may need to “collect” tokens from multiple sources to a s
input porthole. Suppose we reverse the connections in the above example: star B produ
token and star A consumes two tokens. We have to insert a “collect” star at the input po
of star A to collect tokens from star B and a “receive” star that receives a token from pro
2.

The “spread” and “collect” stars are automatically inserted by the scheduler, an
invisible to the user. Moreover, these stars can not be scheduled. They are added to su
ies only for the allocation of memory and other resources before generating code
“spread” and “collect” stars themselves do not require extra memory since in most cas
can overlay memory buffers. For example, in the first example, a buffer of size 2 is as
to the output of star A. Star B obtains the information it needs to fetch a token from th
location of the buffer via the “spread” star, while the “send” star knows that it will fetc
token from the second location. Thus, the buffers for the outputs of the “spread” star are
laid with the output buffer of star A.
U. C. Berkeley Department of EECS

The Almagest 13-25

 blocks
licitly.
ence of

nera-
detail
velop
fer to

ous to
a-
ing the

nica-
In case there are delays or past tokens are used on the connection between two
that should be connected through “spread” or “collect” stars, we need to copy data exp
Thus, we will need extra memory for these stars. In this case, the user will see the exist
“spread/collect” stars in the generated code.

Spread /Collect stars have only been implemented in the CGC domain so far.

13.5 Interface Issues
In Ptolemy 0.6 and later, we have developed a framework for interfacing code ge

tion targets with other targets (simulation or code generation). In this section we will
how to support this new framework for a code generation target. To learn how to de
applications within Ptolemy that use multiple targets that support this new framework, re
theInterface Issues section in theUser’s Manual - CG Domainchapter.

As with Wormholes , we have developed a way to interfaceN targets without requir-
ing N2 specialized interfaces. We do this by generating a customized interface (analog
the universalEventHorizon in wormholes) that is automatically built by using communic
tion stars supplied by each code generation target. This interface is generated in C (us
CGC domain) and runs on the Ptolemy host workstation.

To support this infrastructure, a target writer needs to define two pairs of commu

CS-56X

CS-56X

S-56XC

C VHDL

VHDL C

VHDL C

DSP

VHDL

Spliced-in send/receive pairs

DSP VHDLSparc Sparc

User Specification

Sparc

Sparc

FIGURE 13-1: An interface constructed between three code generation domains. The interface
constructed by the framework is made up of communication pairs, each pair encir-
cled by an ellipse. The first (sine) and last (xgraph) stars are to be run on the host
workstation (CGC). The second block (analysis filter bank, a galaxy made up of
two polyphase FIR actors) is to be run on a DSP card (CG56). The third block
(synthesis filter bank, a galaxy made up of two polyphase FIR actors) is to be run
using a VHDL simulator.
Ptolemy Last updated: 10/17/97

13-26 Code Generation

ill then
tors are
3-2.

rm of
eive for
 down-

 code
oppo-
ommu-
a target
port this
tion stars and add target methods which return each of these pairs. The framework w
build the interface by splicing in these stars as is shown in figure 13-1. These same ac
used when constructing an interface to a Ptolemy simulation target as shown in figure 1

These communication stars, described in section 13.4.2, are a specialized fo
send/receive stars. In addition to the previous assumptions in section 13.4.2, send/rec
this infrastructure must also define C code to control the target for operations such as
loading, initializing and (if applicable) terminating the generated executable.

One pair of communication stars must communicate from the target to the CGC
that will run on the Ptolemy host workstation. The other pair must communicate in the
site direction. The CGC send/receive stars are typically defined from a common base c
nication star specific for each target. This common base defines the C code to control
that was discussed in the previous paragraphs. Examples of send/receive stars that sup
infrastructure can be found in:

For the S56XTarget (Ariel S-56X DSP card):
$PTOLEMY/src/domains/cg56/targets/CGCXBase.pl
$PTOLEMY/src/domains/cg56/targets/CGCXSend.pl
$PTOLEMY/src/domains/cg56/targets/CGCXReceive.pl
$PTOLEMY/src/domains/cg56/targets/CG56XCSend.pl
$PTOLEMY/src/domains/cg56/targets/CG56XCReceive.pl

For the SimVSSTarget (Synopsis VSS Simulator):
$PTOLEMY/src/domains/vhdl/targets/CGCVSynchComm.pl

FIGURE 13-2: General Ptolemy simulation interface. The analysis and synthesis filter bank
blocks are identical to those described in figure 13-1. The SimIn and SimOut
stars are built into Ptolemy and defined in:

$PTOLEMY/src/domains/cgc/targets/main/CGCSDF{Send,Receive}.pl

CS-56X

CS-56X

S-56XC

C VHDL

VHDL C

VHDL C

DSP

VHDL

SimIn

SimOut

ExternalSim-SDF Sim-SDF

User Specification

Spliced-in simulation-SDF send/receive actors
U. C. Berkeley Department of EECS

The Almagest 13-27

 stars

in a
ese
$PTOLEMY/src/domains/vhdl/targets/CGCVSend.pl
$PTOLEMY/src/domains/vhdl/targets/CGCVReceive.pl
$PTOLEMY/src/domains/vhdl/targets/VHDLCSend.pl
$PTOLEMY/src/domains/vhdl/targets/VHDLCReceive.pl

After defining both pairs of communication stars, methods to instantiate these
must be defined in the target:

CommPair fromCGC(PortHole&);
CommPair toCGC(PortHole&);

A CommPair is a communication pair, where one of the communication stars
CGC star. TheS56XTarget::fromCGC method, illustrates the typical code needed for th
methods:

CommPair S56XTarget::fromCGC(PortHole&) {
CommPair pair(new CGCXSend,new CG56XCReceive);
configureCommPair(pair);
return pair;

}

TheconfigureCommPair function is defined in theS56XTarget.cc file and con-
figures the S56XTarget communication stars.
Ptolemy Last updated: 10/17/97

13-28 Code Generation
U. C. Berkeley Department of EECS

The Almagest 14-1

n”
c princi-
s” on
 chap-
 in the

en

eration
e
es
ide
r
the

d.

se
Chapter 14. CGC Domain

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee
Yu Kee Lim
Thomas M. Parks
José Luis Pino

Other Contributors: Sunil Bhave
Kennard White

14.1 Introduction
The CGC domain generates code for theC programming language. “Code Generatio

on page 13-1 describes the features common to all code generation domains. The basi
ples of writing code generation stars are explained in “Writing Code Generation Star
page 13-2.You will find explanations for codeblocks, macros, and attributes there. This
ter explains features specific to the CGC domain. Refer to the CGC domain chapter
user’s manual for an introduction to this domain.

14.2 Code Generation Methods
The addCode method is context sensitive so that it will ‘do the right thing’ wh

invoked from within theinitCode , go, andwrapup methods ofCGCStar. Refer to “Writing
Code Generation Stars” on page 13-2 for documentation onaddCode , including context sen-
sitive actions and conditional code generation. There are several additional code-gen
methods defined in the CGC domain. TheaddInclude method is used to generat
#include file directives. TheaddDeclaration method is used to declare local variabl
within the main function. TheaddGlobal method is used to declare global variables outs
the main function. As withaddCode , these methods returnTRUE if code was generated fo
the appropriate stream andFALSE otherwise. These methods are member functions of
CGCStar class.

int addInclude (const char* file)
Generate the directive#include file in theinclude stream.
The stringfile must include quotation marks (" file ") or angle
brackets (<file >) around the name of the file to be include
Only one#include file directive will be generated for the
file, even if addInclude is invoked multiple times with the
same argument. ReturnTRUE if a new directive was generated.

int addDeclaration (const char* text , const char* name = NULL)
Add text to themainDecls stream. Usename as the identify-
ing key for the code fragment if it is provided, otherwise u
Ptolemy Last updated: 8/26/97

14-2 CGC Domain

nly

se
nly

he

ons

cribed,
he

 the

 this

dded

sing

ented
 func-
text itself as the key. Code will be added to the stream o
the first time that a particular key is used.

int addGlobal (const char* text , const char* name = NULL)
Add text to theglobalDecls stream. Usename as the identi-
fying key for the code fragment if it is provided, otherwise u
text itself as the key. Code will be added to the stream o
the first time that a particular key is used.

int addCompileOption (const char* text)
Add options to be used when compiling a C program. T
options are collected in thecompileOptionsStream stream.

int addLinkOption (const char* text)
Add options to be used when linking a C program. The opti
are collected in thelinkOptionsStream stream.

The following streams, which are used by the code generation methods just des
are defined as members of theCGCTarget class in addition to the streams defined by t
CGTarget class.

CodeStream include
Include directives are added to this stream by theaddInclude
method ofCGCStar.

CodeStream mainDecls
Local declarations for variables are added to this stream by
addDeclaration method ofCGCStar.

CodeStream globalDecls
Global declarations for variables and functions are added to
stream by theaddGlobal method ofCGCStar.

CodeStream mainInit
Initialization code is added to this stream when theaddCode
method is invoked from within theinitCode method.

CodeStream mainClose
Code generated when theaddCode method is invoked from
within thewrapup method of stars is placed in this stream.

CodeStream compileOptionsStream
Options to be passed to the C compiler which have been a
using theCGCStar::addCompileOption method.

CodeStream linkOptionsStream
Options to be passed to the linker which have been added u
theCGCStar::addLinkOption method.

14.3 Buffer Embedding
Although many of the methods related to buffer embedding are actually implem

in the CG domain, only the CGC domain makes use of them at this time. The following
U. C. Berkeley Department of EECS

The Almagest 14-3

 in the
s stars
a state
within
ine. In

he state
cuted

nts is
tion is defined as a method of theCGPortHole class.

void embed (CGPortHole port , int location = -1)
Embed the buffer ofport in the buffer of this porthole with
offset location . The defaultlocation of -1 indicates that
the offset is not yet determined.

For example, the following statements appear in the setup method of theSwitch
block. This causes the buffers oftrueOutput andfalseOutput to be embedded within the
buffer of input.

input.embed(trueOutput,0);
input.embed(falseOutput,0);

14.4 Command-line Settable States
In the Ptolemy releases before Ptolemy0.6 the C programs generated by Ptolemy

CGC domain did not take any command-line arguments. The state values of the variou
were set during compilation and thus hard-coded into the program. In order to change
variable, the code had to be recompiled again (i.e. the universe had to be re-run
Ptolemy). This was time consuming, and it also placed unnecessary load on the mach
Ptolemy0.6 and later, the CGC domain can generate C code that allow users to set t
values from the command-line, which allows runs with different parameters to be exe
and compared quickly and easily.

Implementation

14.4.1 C code generated to support command line arguments

A sample of the additional code generated to support command-line argume
shown below:

.

.
struct {
 double FOO;
 double BAR;
} arg_store = {1.0, 0.01,};

void set_arg_val(char *arg[]) {
 int i;
 for (i = 1; arg[i]; i++) {
 if ((!strcmp(arg[i], "-help")) \

||(!strcmp(arg[i], "-HELP")) \
||(!strcmp(arg[i], "-h"))) {
printf("Settable states are :\n

 FOO\tdefault : 1.0\n
 BAR\tdefault : 0.01\n");

exit(0);
 }
 if (!strcmp(arg[i], "-FOO")) {

if (arg[i + 1])
 arg_store.FOO = atof(arg[i + 1]);
Ptolemy Last updated: 8/26/97

14-4 CGC Domain

struct
ts

hen the
r-
, a

s to
d on the

 via

ther-
 continue;
 }
 if (!strcmp(arg[i], "-BAR")) {

if (arg[i + 1])
 arg_store.BAR = atof(arg[i + 1]);
 continue;

 }
 }

}

/* main function */
main(int argc, char *argv[]) {
.
.
 double value_11;
 double value_12;
.
. // End of Declaration
 set_arg_val(argv);
. // Begin of Initialization
.
 value_12 = arg_store.BAR;
 value_11 = arg_store.FOO;
. // Code
.
}

The default values (set by the "edit-parameters" command) are stored in the
arg_store . The functionset_arg_val(argv) scans the list of command-line argumen
for FOO andBAR and sets the corresponding member inarg_store . It also builds up the help
message (consist of the settable state names and their default values) to be printed w
program receives a '-h ', '-help ' or '-HELP' option. The state values are initialized to the co
respondingarg_store members during the variable initialization stage. By doing this
state will get its default value if it is not set on the command-line.

14.4.2 Changes in pigiRpc to support command line arguments

The pragma mechanism in theTarget base class is used to specify the state that i
be made settable via command-line arguments as well as to store the name to be use
command-line. InCGCtarget , these are stored as a character string in aTextTable* map-
pings (a pointer to aHashTable in which the data value and index are character strings)
the overloadedpragma() member functions.

A function, isCmdArg(const State* state) , is used to check whether 'state '
is to be set by a command-line argument. It callsCGCTarget::pragma() and scans through
theStringList returned for the state's name. If found, the mapped name is return. O
wise a null string is return.

Four new protectedCodeStream are added toCGCTarget to store the additional
codes:

cmdargStruct stores the struct members.
U. C. Berkeley Department of EECS

The Almagest 14-5

y

f

tch

 if

ed to

ed to

lues.
priate

e ini-
 state

e are
d
ritten

ively, it

two or
e.

cks
-

cmdargStruct stores the default values.

setargFunc stores the code segment inset_arg_val() .

setargFuncHelp stores the built-up help message.

Four new public member functions and four private ones are also added toCGCStar
to generate the codes:

cmdargStates() callscmdargState() to generate the members of
struct arg_store using the mapped name returned b

isCmdArg() .

cmdargStatesInits()
calls cmdargStatesInit() to generate the default values o
the settable states.

setargStates() calls setargState() to generate the code segment to ma
the mapped name to the command-line options.

setargStatesHelps()
callssetargStatesHelp() to build up the help message.

These are called in theCGCTarget::declareStar(CGCStar* star) function
after the global and main declarations have been generated.CGCStar::initCod-
eState(const State* state) is modified to generate the required initialization code
state is to be settable from the command-line.

In order for a$val state to be settable from the command-line, it has to be chang
a reference state . TheexpandVal() member function is overloaded inCGCStar to
check if the "name" state is to be made settable from the command-line. If so, it is add
the list of referenced state so that it will be declared and initialized.

14.4.3 Limitations of command line arguments.

Currently, this implementation works only for scalar states with float or integer va
Extension to other types of state should be straight forward by simply adding the appro
struct member declaration code inCGCStar::cmdargState(const State* state) .
The cmdargStatesInit() , setargState() , setargStatesHelp() and initCode-
String() member functions need to be modified accordingly to generate codes for th
tialization, setting function, help message and assignment respectively of the new
variable.

Also, there is no provision to check for duplicate command-line names. If ther
duplicates, Ptolemy will simply generate multiplestruct members with the same name, an
error will result in the generated code. To get around this, a new Tk interface could be w
to specify and set the settable states and checking can be done at that level. Alternat
might be a better idea to use theput() method inCodeStream to add thestruct member
with its unique handle to the appropriateCodeStream . That way, there will not be duplicate
struct members and state-variables could still reference the same member, so that
more states could be set to the same value from a single argument on the command-lin

Another limitation is that the command-line capability only works for states of blo
at the top level. It will not work for states ofGalaxies andUniverses , and states that refer
Ptolemy Last updated: 8/26/97

14-6 CGC Domain

echa-
ned

d.

ode
us these

 intro-
rnings

niverse

ry long

 need
rs that

ines.
pti-

ation

tholes
enced other settable states. This could probably be solved by modifying the pragma m
nism to ensure thatpragma s at the top level propagate all the way down to the contai
blocks. By doing this, states will inheritpragma s from their parentgalaxies so that these
can be picked up by theisCmdArg() function, and the appropriate codes can be generate

Certain states will affect the overall scheduling of the whole system, e.g. thefactor of
upsampling and downsampling stars, and changing these would mean that new c
needs to be generated since the scheduling is hard-coded into the generated code. Th
should not be allowed to take values from the command-line. A new attribute can be
duced to identify those states that should not be settable from the command-line. Wa
can then be generated if users attempt to specify these for command-line setting.

14.5 CGC Compile-time Speed
There are several areas that can affect the amount of time that it takes a CGC u

to compile, we discuss them below.

 • Large sample rate changes and large delays can result in Ptolemy taking a ve
time to generate C code. A symptom of this sort of problem is that thepigiRpc pro-
cess will consume all the available swap and eventually crash. If you feel you
really large delays, James Lundblad suggests writing your own code in your sta
provides the same functionality as delays, but usesmalloc() in the initCode sec-
tion instead of the array that is created by the CGC Delay icon.

 • C compiler optimizers do not work well with functions that have thousands of l
The main() function of a CGC simulation may be too large for the peephole o
mizer, causing the optimizer to take a long time to compile the file. Undergcc , you
can pass the-O0 option to turn off the optimizer.

14.6 BDF Stars
Because the classCGCPortHole is not derived fromBDFPortHole , the setBDF-

Params method described in “BDF Domain” on page 8-1 is not available for code gener
stars. Use thesetRelation method ofDynDFPortHole instead.

void setRelation (DFRelation relation , DynDFPortHole* assoc)
Specify therelation of this port with the associated portholeassoc .
There are five possible values for relation:
DF_NONE no relationship.
DF_TRUE produces/consumes data only whenassoc has aTRUE

particle.
DF_FALSE produces/consumes data only whenassoc has aFALSE

particle.
DF_SAME signal is logically the same asassoc .
DF_COMPLEMENT signal is the logical complement of

assoc .

For example, the following statements describe the relationships among the por
of theSwitch block.

trueOutput.setRelation(DF TRUE, control);
U. C. Berkeley Department of EECS

The Almagest 14-7

o

ption
is

 The

ton.

iption
 be

r in
falseOutput.setRelation(DF FALSE, control);

14.7 Tcl/Tk Stars
TheCGCTclTkTarget class defines thetkSetup stream for Tcl/Tk stars.There is n

special code generation function for this stream, so its name must be used withaddCode . This
is usually done from within theinitCode method.

addCode(codeblock, "tkSetup");

The following functions, which are defined in the filetkMain.c , can be used within
codeblocks of Tcl/Tk stars in the CGC domain.

void errorReport (char* message)
This functions creates a pop-up window containingmessage .

void makeEntry (char* window , char* name, char* desc , char*
initValue , Tcl CmdProc* callback)
This function creates an entry box in awindow . Thename of the entry
box must be unique (e.g. derived from the star name). The descri
of the entry box is desc. The initial value in the entry box
initValue .

A callback function is called whenever the user enters aRET in the
box. The argument to thecallback function will be the value that the
user has put in the entry box. The return value of thecallback func-
tion should beTCL_OK.

void makeButton (char* window, char * name, char* desc , Tcl Cmd-
Proc* callback)
This function creates a push button in awindow . Thename of the
push button must be unique (e.g. derived from the star name).
description of the push button isdesc .

A callback function is called whenever the user pushes the but
The return value of thecallback function should beTCL_OK.

void makeScale (char* window , char* name, char* desc , int posi-
tion , Tcl CmdProc* callback)
This function creates a scale (with slider) in awindow . The name of the
scale must be unique (e.g., derived from the star name). The descr
of the push button is desc. The initial position of the slider must
between0 and100 .

A callback function is called whenever the user moves the slide
the scale. The argument to thecallback function will be the current
position of the slider, which can range from0 to 100 . The return value
of thecallback function should beTCL_OK.

void displaySliderValue (char* window , char* name, char*
value)
Ptolemy Last updated: 8/26/97

14-8 CGC Domain

The

f the

 CGC
st pro-
mented
This function displays a value associated with a scale’s slider.
scale is identified by its name and thewindow it is in. This function
must be called by the user of the slider. Only the first 6 characters o
value will be used.

14.8 Tycho Target
The CGC TychoTarget is an experimental target that provides a way to create

control panels that use the functionality in Tycho. A universe that uses TychoTarget mu
vide a script that creates the control panel that the user sees. The TychoTarget is docu
in $PTOLEMY/demo/whats_new/whats_new0.7/tychotarget.html .
U. C. Berkeley Department of EECS

The Almagest 15-1

 Chap-
iples of
s for
 CG56

ains.

ed

do the
.

s are

ff

is
Chapter 15. CG56 Domain

Authors: Joseph T. Buck
José Luis Pino

Other Contributors: S. Sriram
Kennard White

15.1 Introduction
The CG56 domain generates assembly code for the Motorola 56001 processor.

ter 13 describes the features common to all code generation domains. The basic princ
writing code generation stars are explained in section 13.2. You will find explanation
codeblocks, macros, and attributes there. This chapter explains features specific to the
domain. Refer to the CG56 chapter in the user manual for an introduction to these dom

15.2 Data Types
The supported CG56 data types are:

int
intarray
fix
fixarray

In addition thecomplex data type is partially supported. None of the currently defin
stars that takeanytype input exceptFork , are compatible with thecomplex data type. It
would be possible to write a star that supports a complex token read into ananytype input.
To do this the star writer would have to check on the input type and make sure to
intended function on both the X and Y memory components of the complex input token

15.3 Attributes
In addition to the code generation attributes detailed in 13.2.6, for CG56 attribute

defined to specify the X and Y memory banks. They are:

A_XMEM Allocate this state in X memory

A_YMEM Allocate this state in Y memory

The underlying bits areAB_XMEM, andAB_YMEM. Each attribute above turns one o
and turns the other on (e.g.A_YMEM turnsAB_YMEM on andAB_XMEM off).

Also for CG56 stars, portholes can assert attributesP_XMEM andP_YMEM, which work
in exactly the same way asA_XMEM andA_YMEM. The default attribute for a 56001 porthole
P_XMEM, which allocates the porthole buffer in X memory. Specifying theP_YMEM attribute
places the porthole buffer in Y memory.
Ptolemy Last updated: 10/10/97

15-2 CG56 Domain

ssed in
etailed

la-

tart
ith

tart
ase
er-
15.4 Code Streams
The CG56 domain uses the default assembly language code streams discu

“Assembly code streams” on page 13-17. There are few target specific code streams d
by target below.

15.4.1 Sim56Target Code Streams

simulatorCmds
Collects the commands to configure the Motorola DSP simu
tor.

shellCmds Collects the commands that will be used in a shell script to s
the run. The resultant script simply invokes the simulator w
the file generated fromsimulatorCmds .

15.4.2 S56XTarget/S56XTargetWH Code Streams

aioCmds Collects the GUI specification which is interpreted byqdm or
gslider .

shellCmds Collects the commands that will be used in a shell script to s
the run. The resultant script can start qdm or gslider. In the c
of the S56XTarget, it might also download and run the gen
ated code on the S-56X dsp card.
U. C. Berkeley Department of EECS

The Almagest 16-1

 of pro-
he basic
xpla-
ecific to

 at the

s are
They

ff

is

sed in
tream
Chapter 16. C50 Domain

Authors: Luis Gutierrez

16.1 Introduction
The C50 domain generates assembly code for the Texas Instruments C5x series

cessors. Chapter 13 describes the features common to all code generation domains. T
principles of writing code generation stars are explained in section 13.2. You will find e
nations for codeblocks, macros, and attributes there. This chapter explains features sp
the C50 domain. Refer to the C50 chapter in thePtolemy User’s Manual for an introduction to
these domains.

16.2 Data Types
The supported CG50 data types are:

int
intarray
fix
fixarray

In addition thecomplex data type is supported for portholes (but not states). Acom-
plex number is stored as a sequence of two 16 bit numbers. The real part is stored
lower address.

16.3 Attributes
In addition to the code generation attributes detailed in 13.2.6, for C50 attribute

defined to specify the Single Access RAM and Double Access RAM memory banks.
are:

A_BMEM Allocate this state in the address range specified by thebMem-
Map target parameter.

A_UMEM Allocate this state in the address range specified by theuMem-
Map target parameter.

The underlying bits areAB_BMEM, andAB_UMEM. Each attribute above turns one o
and turns the other on (e.g.A_BMEM turnsAB_BMEM on andAB_UMEM off).

Also for C50 stars, portholes can assert attributesP_BMEM andP_UMEM, which work in
exactly the same way asA_BMEM andA_UMEM. The default attribute for a C50 porthole
P_BMEM, which allocates the porthole buffer in DARAM memory. Specifying theP_UMEM
attribute places the porthole buffer in SARAM memory.

16.4 Code Streams
The C50 domain uses the default assembly language code streams discus

“Assembly code streams” on page 13-17. Additionally, TITarget declares a code s
Ptolemy Last updated: 10/10/97

16-2 C50 Domain

t the
n
OFF
mory
m-

ey are
-
 user

eded
namedTISuProcs to store code that should be placed outside the main loop. Note tha
code stored in this code stream will get added after thewrapup methods of the stars have bee
called. TheTISuProcs code stream is useful for adding procedures when using non-C
assemblers (like the TI DSK assembler) or defining tables of coefficients in program me
(as an example, the C50 instructionmacd needs one of the operands to be in program me
ory)

16.5 Symbols
The DSKC50 targets defines certain symbols that are meant to be unique. Th

AIC_INIT, SETUPX, SETUPR, XINT, RINT and TINT . The C50Sin star defines a glo
bal symbolSINTBL used to store a sine table that is shared by all C50Sin stars. The
should avoid redefining these symbols in the output assembly file.

16.6 Reserved Memory
The DSKC50 target reserves the last 9 words in DARAM block 1 to store data ne

to configure the Analog Interface Chip in the DSK board
U. C. Berkeley Department of EECS

mpu-

eral

 of

 a

o

d
di-

target

ct

 the
Chapter 17. Creating New Domains

Authors: Mike Chen
Christopher Hylands
Thomas M. Parks

Other Contributors: Wan-Teh Chang
Michael C. Williamson

17.1 Introduction
One of Ptolemy’s strengths is the ability to combine heterogeneous models of co

tation into one system. In Ptolemy, a model of computation corresponds to aDomain . The
code for eachDomain interacts with the Ptolemy kernel. This overview describes the gen
structure of the various classes that are used by aDomain in its interaction with the kernel.
The PtolemyUser’s Manual has a more complete overview of this information.

A functional block, such as an adder or an FFT, is called aStar in Ptolemy terminol-
ogy, (see “Writing Stars for Simulation” on page 2-1 for more information). A collection
connectedStar s form aGalaxy (see Chapter 2 of theUser’s Manual for more information).
Ptolemy supports graphical hierarchy so that an entireGalaxy can be formed and used as
single function block icon. TheGalaxy can then be connected to otherStar s orGalaxies
to create anotherGalaxy . Usually, all theStar s of aGalaxy are from the sameDomain but
it is possible to connectStar s of one domain to aGalaxy of another domain using aWorm-
Hole .

A Universe is a complete executable system. AUniverse can be either a single
Galaxy or a collection of disconnected Galaxies. To run aUniverse , eachGalaxy also
needs aTarget . In simulation domains, aTarget is essentially a collection of methods t
compute a schedule and run the variousStar s of aGalaxy . SomeDomain s have more than
one possible scheduling algorithm available and theTarget is used to select the desire
scheduler. In code generation domains, aTarget also computes a schedule and runs the in
vidual Star s, but eachStar only generates code to be executed later. Code generationTar-
gets also handle compiling, loading, and running the generated code on the
architecture.

At a lower level are the connections betweenBlock s. A Block is aStar or Galaxy .
Each Block has a number of input and output terminals which are attached to aBlock
through itsPortHole s. A specialPortHole , called aMultiPortHole , is used to make
multiple connections but with only one terminal. TwoBlock s are not directly connected
through theirPortHole s. Rather, theirPortHole s are connected to an intermediary obje
called aGeodesic . In simulation domains, data is passed betweenPortHole s (through the
Geodesic) using container objects calledParticle s. Ptolemy uses a system whereParti-
cle s are used and recycled instead of created and deleted when needed.Particle s are
obtained from a production and storage class called aPlasma , which creates newParticle s
if there are no old ones to reuse.Particle s that have completed their task are returned to

17-2 Creating New Domains

rking

ing

e first
er, it is
ins, or

in the
 classes

corre-
he
er

hange,

efined
the
Plasma , which may reissue them at a later request. Graphically, theStar to Star connection
is depicted below:

The classes defined above provide most of the functionality necessary for a wo
domain. One additional class needed by all domains is aScheduler to compute the order of
execution of theStar s in theGalaxy .

Therefore, creating a new Ptolemy simulation domain will typically involve writ
new classes forStar s,PortHole s,WormHoles , Targets , andSchedulers .

Creating a new domain is a fairly involved process, and not to be done lightly. Th
thing that many users want to do when they see Ptolemy is create a new domain. Howev
often the case that the functionality they need is already in either the SDF or DE doma
they can merely add aTarget or Scheduler rather than an entire domain.

17.2 A closer look at the various classes
A simulationDomain can use the various classes mentioned above as they exist

Ptolemy kernel or it can redefine them as needed. For example, in the SDF domain, the
SDFStar , SDFPortHole , SDFScheduler , SDFDomain, SDFTarget , andSDFWormhole
have all been defined. Most of those classes inherit much of their functionality from the
sponding kernel classes but theDomain creator is free to make major changes as well. T
kernelGeodesic , Plasma , andParticle classes are used without modification, but oth
domains such as the CG domain have derived a subclass fromGeodesic . TheDomain cre-
ator needs to decide whether or not existing Ptolemy classes can be used without c
therefore it is a good idea to understand what functionality the kernel classes provide.

The following is a brief description of the various classes that either need to be d
or are used by aDomain . Note that we only provide a functional description of some of
major methods of each class and not a complete description of all methods.

FIGURE 17-1: Block objects in Ptolemy can send and receive data encapsulated in Particles
through Portholes. Buffering and transport is handled by the Geodesic and gar-
bage collection by the Plasma. Some methods are shown.

PortHole PortHole

Block
• initialize()
• run()
• wrapup()

PortHole
• initialize()
• receiveData()
• sendData()
• type()

PortHole PortHole

Geodesic

Plasma

Geodesic
• initialize()
• setSourcePort()
• setDestPort()

Particle
• type()
• print()
• initialize()

Particle

Block Block
U. C. Berkeley Department of EECS

The Almagest 17-3

y’s

to

ain

d
re is a
17.2.1 Target

A Target is an object that manages the execution of theStars in aDomain .

 Major methods:

run() Called to execute a schedule.

wrapup() Called at the end of an execution to clean up.

setup() Called byinitialize() (which is inherited from theBlock
class, which is a common base class for many of Ptolem
classes). Sets eachStar to point to thisTarget and sets up the
Scheduler .

 Major objects contained are:

gal A pointer to theGalaxy being executed.

sched A pointer to the Scheduler that is being used.

For further information aboutTarget s, see some of the existing domains.

17.2.2 Domain

Declares the type of various components of theDomain , like which type ofWorm-
Hole , PortHole , Star , etc. is used by theDomain .

 Major methods:

newWorm() Create aWormHole of the appropriate type for thisDomain.

newFrom() Create anEventHorizon (an object that is used to interface
other Domains , used withWormHoles) that translates data
from a Universal format to aDomain specific one.

newTo() Create anEventHorizon that translates data from aDomain
specific format to a Universal one.

newNode() Returns aGeodesic of the appropriate type for thisDomain .

17.2.3 Star

A Star is an object derived from classBlock that implements an atomic function.

 Major methods:

run() What to do to run the star.

For example, theDataFlowStar class (a parent class to many of the dataflow dom
stars such asSDFStar andDDFStar) defines this function to make each inputPortHole
obtainParticles from theGeodesic , execute thego() method of eachStar , and then
have each outputPortHole put itsParticles into theGeodesic .

17.2.4 PortHole

PortHole s are data members ofStar s and are where streams ofParticle s enter or
leave theStar s. EachPortHole always handlesParticle s of one type, so two connecte
PortHole s need to decide which data type they will use if they are not the same. The
Ptolemy Last updated: 10/10/97

17-4 Creating New Domains

ses

)

f

-

e

base class calledGenericPort which provides some basic methods that derived clas
should redefine as well as some data members commonly needed by allPortHole types.

 Major methods:

isItInput() ReturnTRUE if the PortHole class is an input type.

isItOutput() ReturnTRUE if the PortHole class is an output type.

isItMulti() ReturnTRUE if the PortHole class is aMultiPorthole .

connect() Connect thisPortHole to aGeodesic (create one if needed
and tell thatGeodesic to connect itself to both thisPortHole
and the destinationPortHole . Also provides the number o
delays on this connection.

initialize() Initialize thePortHole . In the case of outputPortHole s, this
function will usually initialize the connectedGeodesic as
well. Resolve the type ofParticle s with thePortHole it is
connected to.

receiveData() What to do to receive data from theGeodesic .

sendData() What to do to send data to theGeodesic .

putParticle() Put a particle from the buffer into theGeodesic .

getParticle() Get a particle from theGeodesic and put it into the buffer.

numXfer() Returns numberTokens , the number ofParticle s trans-
ferred per execution.

numTokens() Returns the number ofParticle s inside theGeodesic .

numInitDelays() Returns the number of initial delay on theGeodesic .

geo() Returns a pointer to theGeodesic thisPortHole is connected
to.

setDelay() Set the delay on theGeodesic .

Major data members:

myType Data type of particles in this porthole.

myGeodesic TheGeodesic that thisPortHole is connected to

myPlasma A pointer to thePlasma used to request newParticle s.

myBuffer Usually aCircularBuffer used to store incoming or outgo
ing Particle s.

farSidePort ThePortHole that we are connected to.

bufferSize The size of theBuffer .

numberTokens The number ofParticle s consumed or generated each tim
we access theGeodesic .

 Note thatPortHole s are generally separated into inputPortHole s and output
U. C. Berkeley Department of EECS

The Almagest 17-5

A

the

t

a
 the
PortHole s. They aren’t designed to handle bidirectional traffic.

17.2.5 Geodesic

Models a FIFO buffer (usually) between twoPortHole s. Major methods:

setSourcePort() Set the sourcePortHole and the delay on this connection.
delay is usually implemented as an initialParticle in the
Geodesic ’s buffer, but this can be changed depending on
desired functionality.

setDestPort() Set the destinationPortHole .

disconnect() Disconnect from the givenPortHole .

setDelay() Set the number of delays on this connection.

initialize() Initialize the buffer in thisGeodesic . This means either clear i
or insert the number of initialParticle s needed to match the
number of delays on this connection (theseParticle s are
taken from the sourcePortHole s’s Plasma).

put() Put aParticle into the buffer

get() Get aParticle from the buffer.incCount() and
decCount() are used by aScheduler to simulate an execu-
tion.

numInit() Return the number of initial particles.

Major data members:

originatingPort A pointer to the sourcePortHole .

destinationPort A pointer to the destinationPortHole .

pstack The buffer, implemented as aParticleStack .

sz The number ofParticle s in the buffer.

numInitialParticles
The number of initial delays.

17.2.6 Plasma

There are container object for unusedParticle s. There is one global instance of
Plasma for each type ofParticle defined in the kernel. This class is usually only used by
Domain s and not changed by the authors of newDomain s.

 Major methods:

put() Return an unusedParticle to thePlasma .

get() Get an unusedParticle (or create one if needed).

17.2.7 Particle

The variousParticle types supported by Ptolemy. Currently, the types areFloat ,
Ptolemy Last updated: 10/10/97

17-6 Creating New Domains

-

a

ection

d how

ass in

nd of

ors

,

Int , Complex , Fix , andMessage . The Message Particle is used to carryMessages
(insideEnvelopes) which can be almost anything. For example, theMatrix class is trans-
ferred usingMessage Particle s. These classes are also only used as-is by theDomain s and
not redefined for new domains.

17.2.8 Scheduler

Sets up the execution by determining the order in which eachStar of theGalaxy will
fire. Execution is performed using two main methods --setup() andrun() . Schedulers
can be timed or untimed, depending on theDomain ’s model of execution. This class will usu
ally be different for each domain, although some domains reuse theScheduler of another
domain, if theScheduler is appropriate for the new domain’s model of computation.

 Major methods:

setup() Checks theStar s in theGalaxy , initializes them, and creates
schedule.

run() Run the schedule computed in setup()

Major data members

myGalaxy The pointer to theGalaxy that the Scheduler is working on.

myTarget The pointer to theTarget which is controlling the execution.

17.3 What happens when a Universe is run
Now that you have some idea of what classes exist in the Ptolemy kernel, this s

will try to explain flow of control when aUniverse is run. By knowing this, you will get an
idea of what additions or changes might be needed to get the functionality you desire an
the code of your new domain will fit in.

First off, a little more about the basics of Ptolemy classes. Almost every object cl
Ptolemy is derived from theNamedObj class. This class simply provides support for aName
field, a longerDescription field, and a pointer to aParent Block . Also, the methodini-
tialize() is declared here to be purely virtual, so every object should have some ki
initialization function.

TheBlock class is derived fromNamedObj and is the main base class for most act
in Ptolemy. It has I/O constructs likePortHole s andMultiPortHoles , state/parameter
constructs likeState , and defines execution methods such assetup() , run() andwra-
pup() . TheBlock also provides a virtual function to access an associated Scheduler.

A simulation universe is generally of typeDataFlowStar . When a universe is run
the flow of control is as follows, using the SDF domain as an example:

PTcl::dispatcher()
PTcl::run()

PTcl::computeSchedule()
Runnable::initTarget()

Block::initialize()
SDFTarget::setup()

Target::setup()
SDFScheduler::setup()
U. C. Berkeley Department of EECS

The Almagest 17-7

mely
f

ple, a
u-
a new
Notice at this point that we have called two domain-specific methods, na
SDFTarget::setup() andSDFScheduler::setup() . TheTarget can have a choice o
more than oneScheduler and in this case it called the defaultSDFScheduler . We continue
here with a more detailed description of a very important function:

SDFScheduler::setup()
checkConnectivity() // Checks that the galaxy is

// properly connected.
prepareGalaxy() // Initializes the portHoles of each star and

// the geodesics that connect them.
checkStars() // Verifies that the type of the Stars are

// compatible with this Scheduler.
repetitions() // Solves the balance equations for the

// system and calculates how many times
// each star should be fired for
// one iteration (specific to dataflow).

computeSchedule() // Compute the actual schedule
adjustSampleRates() // Set the number of tokens transferred

// between EventHorizons if this schedule
// is for a WormHole.

The order of various operations can be different for each scheduler. For exam
new domain may require that thePortHole s be initialized after the repetitions were calc
lated but before the schedule was computed. The domain writer may wish to define
function prepareForScheduling() that would call thesetup() function of eachStar
without initializing theStar ’s PortHole s.

ExpandingprepareGalaxy() in more detail:
SDFScheduler:: prepareGalaxy()

galaxy()->initialize() // Initialize the galaxy.
InterpGalaxy::initialize() // Causes the initialization of delays

// and the setup of bus widths.
Galaxy::initSubblocks() // Calls initialize() of each star.

DataFlowStar::initialize()// This is a general initialize.
// function for data flow stars.
// Your own Star class might
// redefine it. Sets the number
// of input Ports and clears
// some parameters.

Block::initialize() // Initializes the PortHoles and States
// of the Block/Star. Calls the user
// defined setup() function of each
// star after the portholes and
// geodesics have been initialized.

PortHole::initialize() // General PortHole initialization;
// again you can redefine it for a
// domain specific PortHole.
// Resolves the type of Particles
// to be sent. Allocates a
// buffer and a Plasma. Request
// empty Particles from the Plasma
// to initialize the buffer.

Geodesic::initialize() // General Geodesic initialization,
Ptolemy Last updated: 10/10/97

17-8 Creating New Domains
// called by output PortHole only.
// Clears the buffer and adds any
// initial Particles for delays.

After the schedule is set up and all the actors in theUniverse have been initialized,
the flow of control is as follows:

PTcl::run()
PTcl::computeSchedule() // Described above.

PTcl::cont()
universe->setStopeTime() // Used to set the number of

// iterations to be run.
universe->run()

InterpUniverse::run()
Runnable::run()

target->run()
sched->run()

SDFScheduler::run() // The domain specific Scheduler’s
// run() function.

Let’s look at what a typical scheduler does when it runs a star.
SDFScheduler::run() // Checks if there has been an error

// in the last iteration. Calls
// runOnce() for each iteration.

runOnce() // Goes through each Star on the
// schedule (which is a list of Stars
// computed by setup()) and calls
// star->run().

star->run()
DataFlowStar::run() // The SDF domain uses the general

// DataFlowStar
// run() function. A new Domain
// might want to redefine this.

..Ports->receiveData() // Calls receiveData() for each of
// the PortHoles for this Star.
// Output PortHoles would do nothing
// in this case but input PortHoles
// would get Particles from the
// Geodesic.

Star::run()
SimControl::doPreActions()// Execute pre-actions for a star.
go() // Call the Star specific go() function

// that will process the input data
// and generate data to be put in the
// output PortHoles.

SimControl::doPostActions() // Execute post-actions for a star
..Ports->sendData() // Calls sendData() for each of the

// PortHoles for this Star.
// Input PortHoles would do nothing
// in this case but output PortHoles
// would put their Particles into
// the Geodesic and refill their
// buffers with empty Particles
// from the Plasma.
U. C. Berkeley Department of EECS

The Almagest 17-9

’t have
es that a

ould

 decide
ter 1 so
s inter-

for
itive,

e inter-
nted in

-
unction
s, it is

u
ere

).

ust
ns.
17.4 Recipe for writing your own domain
This section describes some of the template files we have made so that you don

to start coding from scratch. We also discuss which classes and methods of those class
new domain must define.

17.4.1 Introduction

The first thing to do is to think through what you want this domain to do. You sh
have some idea of how the yourStar s will exchange data and what kind ofScheduler is
needed. You should also understand the existing Ptolemy domains so that you can
whether your domain can reuse some of the code that already exists. Also, read Chap
you understand the general classes in the Ptolemy kernel and how the domain method
act.

17.4.2 Creating the files

Themkdom script at$PTOLEMY/bin/mkdom can be used to generate template files
a new domain.mkdom takes one argument, the name of the domain, which case insens
mkdom converts the what ever you pass to it as a domain name to upper and lower cas
nally. Here, we assume that you have set up a parallel development tree, as docume
chapter 1, or you are working in the directory tree where Ptolemy was untar’d.

1. To usemkdom, create a directory with the name of your domain in thesrc/
domains directory. In this example, we are creating a domain calledyyy :

mkdir $PTOLEMY/src/domains/yyy

2. cd to that directory and then runmkdom:

cd $PTOLEMY/src/domains/yyy
$PTOLEMY/bin/mkdom yyy

17.4.3 Required classes and methods for a new domain

mkdom will create copies of key files in$PTOLEMY/src/domains/yyy/kernel and
a Nop star in$PTOLEMY/src/domains/yyy/stars . The template files have various com
ments about which methods you need to redefine. The template files also define many f
for you automatically. If you aren’t clear as to how to define the methods in each clas
best to try look at the existing Ptolemy domains as examples.

YYYDomain.cc This file will be setup for you automatically so that yo
shouldn’t need to modify much. The various methods h
return WormHoles and EventHorizons which should be
defined inYYYWormhole . A node is usually a type ofGeode-
sic that allows multiple connections, such asAutoForkNode .
You can define your ownYYYGeodesic or simply use the ker-
nel’s AutoForkNode if that is suitable (this is what SDF does

YYYWormhole.{h,cc}
Various methods to interface your new domain with others m
be defined if you wish to use your domain with other domai
Ptolemy Last updated: 10/10/97

17-10 Creating New Domains

kip
 or
oth-
e to

e try

d
ne

h-
efer

 the

object

r users

 in

 basic
 Note
However, if you don’t need to mix domains, then you may s
these files. Wormholes translate different notions of time
concurrency. Since some domains are timed (like DE) and
ers are not (like SDF), you must be able to convert from on
another.

YYYGeodesic.{h,cc}
Currently we set theGeodesic to be the kernel’sAutoForkN-
ode . If the kernel’sGeodesic class offers all the functionality
you need, then this doesn’t need to be changed. Otherwis
looking at some of the pre-existing domains for examples.

YYYPortHole.{h,cc}
Define inputPortHole s and outputPortHole s, as well as
MultiPortHole s, specific to your domain. The only require
methods are generated for you, but you’ll likely want to defi
many more support methods. Look at the kernelPortHole ,
DFPortHole , andSDFPortHole for examples.

YYYStar.{h,cc} Domain -specific class definition. Again, all the required met
ods have been defined but you’ll want to add much more. R
to Star , DataFlowStar , andSDFStar as examples.

YYYScheduler.{h,cc}
This is where much of the action goes. You’ll need to define
functionsetup() , run() , andsetStopTime() .

17.4.4 Building an object directory tree

Ptolemy can support multiple machine architectures from one source tree, the
files from each architecture go into$PTOLEMY/obj.$PTARCH directories. Currently, there
are two ways to build the$PTOLEMY/obj.$PTARCH directory tree:MAKEARCH and mkP-
tolemyTree . To build object files for your new domain in$PTOLEMY/obj.$PTARCH , you
will have to set up either or both of these ways. Typically, you first useMAKEARCH because it
can operate on an existing Ptolemy tree, and once everything works, then you and othe
run mkPtolemyTree to setup parallel development trees on the new domain.

MAKEARCH

$PTOLEMY/MAKEARCH is a/bin/csh script that creates or updates the object tree
an already existing Ptolemy tree. To add a domain toMAKEARCH, edit the file and look for a
similar domain, and add appropriately. A little trial and error may be necessary, but the
idea is simple:MAKEARCH traverses directories and creates subdirectories as it sees fit.
that if MAKEARCH is under version control, you may need to dochmod a+x MAKEARCH when
you check it back out, or it won’t be executable.

Continuing with our example:

3. EditMAKEARCH and add your domain yyy to the list of experimental domains:

set EXPDOMAINS=(cg56 cgc vhdlb vhdl mdsdf hof ipus yyy)
U. C. Berkeley Department of EECS

The Almagest 17-11

l
el-

s. A

main

ies as

-

This will cause astars and kernel directory to be created in$PTOLEMY/
obj.$PTARCH/domains/yyy whenMAKEARCH is run.

4. RunMAKEARCH:

cd $PTOLEMY; csh -f MAKEARCH

If you get a message like:

cxh@watson 181% csh -f MAKEARCH
making directory /users/ptolemy/obj.sol2/domains/yyy
mkdir: Failed to make directory "yyy"; Permission denied
yyy: No such file or directory

The you may need to remove yourobj.$PTARCH tree, asMAKEARCH has probably
traversed down a parallel tree created bymkPtolemyTree and come up in a direc-
tory that you do not own.

mkPtolemyTree

$PTOLEMY/bin/mkPtolemyTree is a tclsh script that creates a new paralle
Ptolemy tree. Note thatmkPtolemyTree cannot be run in an already existing Ptolemy dev
opment tree. The file$PTOLEMY/mk/stars.mk controls what directoriesmkPtolemyTree
creates, you need not actually edit themkPtolemyTree script. To createpigiRpc binaries
with your new domain in it, you will need to modifystars.mk , so adding support formkP-
tolemyTree is fairly trivial.

$PTOLEMY/mk/stars.mk

Follow the style for domain addition that you see in this file for the other domain
few things to keep in mind:

 • You should list the new domain before any other domain library that the new do
depends on.

 • You should make sure to define the make variables to pull in other domain librar
necessary. You may needMDSDF=1 definition for example.

 • mkPtolemyTree uses theCUSTOM_DIRS makefile variable to determine what direc
tories to create, so be sure to add your directories here.

Continuing with our example of adding the yyy domain:

5. Edit$PTOLEMY/mk/stars.mk and add your entry:

YYYDIR = $(CROOT)/src/domains/cg56
ifdef YYY

CUSTOM_DIRS += $(YYYDIR)/kernel $(YYYDIR)/stars
Have to create this eventually
PALETTES += PTOLEMY/src/domains/yyy/icons/main.pal
STARS += $(LIBDIR)/yyystars.o
LIBS += -lyyystars -lyyy
LIBFILES += $(LIBDIR)/libyyystars.$(LIBSUFFIX) \

$(LIBDIR)/libyyy.$(LIBSUFFIX)
endif
Ptolemy Last updated: 10/10/97

17-12 Creating New Domains

el

cto-

 tree

ils on
$PTOLEMY/mk/ptbin.mk

In $PTOLEMY/mk/ptbin.mk , add your domain to theFULL definition. This causes
your domain to be built in whenever a fullpigiRpc binary is created.

Building a pigiRpc

6. To build apigiRpc with your domain, first build and install your domain’s kern
and star libraries:

cd $PTOLEMY/obj.$PTARCH/domains/yyy
make depend
make install

If your domain depends on other domains, you will have to build in those dire
ries as well. You may find it easier to docd $PTOLEMY; make install , though
this could take 3 hours. An alternative would be to create a parallel directory
usingmkPtolemyTree .

7. If you have not recompiled from scratch, or runmkPtolemyTree , you may also
need to do:

cd $PTOLEMY/obj.$PTARCH/pigilib; make ptkRegisterCmds.o

8. Then build yourpigiRpc . You can either build a fullpigiRpc with all of the
domains, or you can create aoverride.mk in $PTOLEMY/obj.$PTARCH/
pigiRpc which will pull in only the domains you want.

$PTOLEMY/obj.$PTARCH/pigiRpc/override.mk could contain:

YYY=1
DEFAULT_DOMAIN=YYY
USERFLAGS=
VERSION_DESC="YYY Domain Only"

To build your binary, do:

cd $PTOLEMY/obj.$PTARCH/pigiRpc; make

If you don’t have all the libraries built, you may get an error message:

make: *** No rule to make target ̀ ../../lib.sol2/libcg56dspstars.so’,
needed by `pigiRpc’. Stop.

The workaround is to do:

cd $PTOLEMY/obj.$PTARCH/pigiRpc; make PIGI=pigiRpc

9. See “Creating a pigiRpc that includes your own stars” on page 1-7 for deta
how to use your new pigiRpc binary.

10. To verify that your new domain has been installed, startpigi with the-console
option:

cd $PTOLEMY; pigi -rpc $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc -console
U. C. Berkeley Department of EECS

The Almagest 17-13

ple
and then type:

domains

into the console window prompt. Below is the sample output for the yyy exam
domain:

pigi> domains
YYY
pigi> knownlist
Nop
pigi>
Ptolemy Last updated: 10/10/97

17-14 Creating New Domains
U. C. Berkeley Department of EECS

The Almagest I-1
INDEX
Symbols
...2-23
$PTARCH ...1-2
$PTOLEMY ..1-3
% operator ..2-19, 12-5
.alias file ...1-2, 1-12
.cc files...2-4
.cshrc file ...1-2
.h files ..2-4
.html files...2-4
.pl file...2-1, 7-1
= operator...2-19
~ptolemy..1-3
A
A ..2-10
A_CONSTANT attribute.....................................2-10
A_NONCONSTANT attribute.................2-10, 2-21
A_NONSETTABLE attribute2-10
A_SETTABLE attribute...........................2-10, 2-21
AB_CIRC attribute...13-13
AB_CONSEC attribute13-13
accessMessage method

MessageParticle class...................................4-18
ACG class..3-17
acknowledge ptlang directive2-6, 2-8
ACYLOOP, SDF scheduler option13-21
Add (SDF block) ...2-20
addCode (CGStar method)14-2, 14-7
addCompileOption (CGCTarget method)14-2
addDeclaration (CGCStar method)14-2
AddFix (SDF block) ..4-5
addGlobal (CGCStar method)14-2
addInclude (CGCStar method)14-2
addLinkOption (CGCTarget method)14-2
aggressive reclamation ..4-18
aliases

exp ..1-12
mkl..1-12
objdir ..1-2
pt...1-12
ptl..1-12
rml ..1-12
srcdir...1-2
sw ...1-12

aliases for developers ..1-12
allocateMemory, method..................................13-18
anytype portholes...2-11
application exited error message1-21

ArrayState class...2-23
ArrivingPrecision parameter4-7
asComplex method

Message class...4-18
asFloat method

Message class...4-18
asInt method

Message class...4-18
AsmPortHole, class ..13-12
attribute...2-9, 2-10, 2-21

A_CIRC ..13-13
A_CONSEC..13-13
A_CONSTANT ..13-13
A_GLOBAL..13-12
A_LOCAL ..13-12
A_MEMORY..13-13
A_NOINIT ..13-13
A_NONCONSTANT................................13-13
A_NONSETTABLE13-13
A_PRIVATE...13-12
A_RAM...13-14
A_SETTABLE.............................13-13, 13-13
A_SHARED..13-12
A_UMEM ..16-1
A_XMEM ...15-1, 16-1
A_YMEM ..15-1
P_BMEM ...16-1
P_CIRC ...13-14
P_NOINIT...13-14
P_SHARED ..13-14
P_SYMMETRIC.......................................13-14
P_UMEM...16-1
P_XMEM...15-1
P_YMEM...15-1

attribute, A_BMEM ..16-1
attribute, A_UMEM ..16-1
attribute, A_XMEM ..15-1
attribute, A_YMEM ..15-1
Attributes..13-12
author ptlang directive...................................2-6, 2-8
B
bad format parameters

Fix class..4-4
BarGraph class ..3-4
baseAddr, method...13-12
BaseImage class ..4-40
BDFPortHole class.....................................9-1, 14-6
before method...12-5, 12-7
begin method
Ptolemy Last updated: 10/17/97

I-2
DERepeatStar class......................................12-9
begin ptlang directive..................................2-6, 2-13
Bhattacharyya, S. S. ..13-21
Bhave, S. ...14-1
binary point ...4-4
Buck, J. T.2-1, 3-1, 4-1, 7-1, 9-1, 13-1, 14-1, 15-

1
Buck, J.T ...14-1
bufPos, method..13-12
bufSize, method ..13-12
C
C++ Primer..2-17
callTcl_$starID..5-4, 5-5
canGetFired method....................12-9, 12-9, 12-10
ccinclude ptlang directive2-6, 2-15
cerr ..3-3
Cfront C++ compiler...1-2
CG, domain ...13-1
CGCPCM..13-9
CGCPortHole class ...14-6
CGCStar class ...14-1
CGCTarget class ...14-2
CGDDF Scheduler ..13-22
CGMultiTarget, class13-18, 13-19
CGPortHole class..14-3
CGSharedBus, class ..13-19
CGStar, class...13-3
CGTarget...14-2
Chang, W.-T..17-1
Chen, M. J. ..4-1, 17-1
cin..3-3
circAccessThisTime, method............................13-12
clearAttributes method..2-26
clog..3-3
clone method

Message class....................................4-16, 4-18
Closing Application error message1-21
code ptlang directive2-6, 2-15
code stream

aioCmds ...15-2
shellCmds...15-2
simulatorCmds ...15-2

code streams..13-16
Codeblock ...13-3
codeblock ptlang directive2-6
codeGenInit, method...13-18
CodeStream, class ...13-16
Collect CGC..13-15
collect star ...13-24
Collect, star ...13-15
colors...5-12
CommPair ...13-27

communication networks..........................4-14, 12-1
compileCode, method.......................................13-18
compile-time scheduling2-13
Complex class..........................2-21, 2-22, 4-2–4-3

- operator ..4-2
!= operator ..4-3
* operator..4-2
*= operator ...4-2
+ operator ...4-2
+= operator ...4-2
/ operator ..4-3
/= operator ..4-2
-= operator ..4-2
= operator ...4-2
== operator ...4-3
abs() function..4-3
arg() function..4-3
basic operators..4-2
conj() function ..4-3
constructors ..4-2
cos() function..4-3
exp() function ...4-3
imag() function.......................................4-2, 4-3
log() function..4-3
norm() function ..4-3
pow() function ..4-3
real() function...4-2, 4-3
sin() function ..4-3
sqrt() function...4-3

Complex data type...4-1–4-3
complex data type..2-11
complex state ...2-10
complex type

portholes ...2-11
states ...2-9

COMPLEX_MATRIX_ENV..............................4-30
complex_matrix_env type

portholes ...2-11
complexarray type

states ...2-9
ComplexArrayState class2-21
ComplexMatrix, see Matrix class
ComplexParticle class ...2-21
ComplexState class...................................2-21, 2-22
computer architecture modeling12-1
conscalls ptlang directive2-6, 2-13
constructor ptlang directive2-6, 2-12
constructors..2-13
copy constructor
U. C. Berkeley Department of EECS

The Almagest I-3
Message class ...4-16
copyright ptlang directive..............................2-6, 2-8
core dump ..1-21
core dumped ..1-21
core files ..1-21
cout ...2-28, 3-3
creating a new star ...2-1
CUSTOM_DIRS ...1-10
D
data types ...2-11

user-defined..4-14
dataNew flag..12-5, 12-12
dataNew flag in DE ...12-4
dataType method

Envelope class ..4-17
DC Scheduler..13-22
DCTImage class ..4-41
DDF star ..8-1
DDFStar class..8-2
DE

writing stars ..12-1
DE domain...12-1
debugging ...1-21, 1-23
default parameter values......................................2-10
default value for states...2-9
delay

DE domain..12-1
delay stars in DE domain12-1
for matrix arcs ..4-31
in dataflow..4-31
in DE ..12-8

Delay (DE block)...12-1
DEPortHole class...12-5
DERepeatStar class ...12-9
derived ptlang directive ...2-6
derivedfrom ptlang directive2-6, 2-7
desc ptlang directive ..2-6
descriptor ...2-10
descriptor ptlang directive2-6, 2-7
DEStar class...12-9
destructor ptlang directive2-6, 2-13
determinism ..12-12
discrete event (DE) domain12-1
divide by zero

Fix class..4-4
DL Scheculer ..13-22
domain

SDF...7-1
domain ptlang directive2-5, 2-6
DownCounter (DDF star)8-2
dummy message4-17, 4-18, 4-31

duplicate directory tree..1-12
dynamic linking...2-1, 3-1

permanent...2-3
dynamic porthole...8-1
DynDFStar class..8-2
E
edit-params command2-21, 2-26
Edwards, S...11-1
emacs...1-26
empty method

Envelope class..4-17
Envelope class ..4-14, 4-17
environment variables

PT_DEBUG ...1-26
PTARCH..1-2
PTOLEMY...1-2

Error class..3-1
Evans, B. ..4-1, 10-1
event ..12-1
event generator ..12-9
exectime ptlang directive2-6
execTime, method ...13-2
exp alias...1-12
expandPathName...3-3
expandPathName function3-8
explanation ptlang directive2-6, 2-9
exponentially distributed random number...........3-17
external programs

invoking ...3-8

F
FFTCx (SDF block) ..7-1
file input to states ..2-23
file, target parameter ..13-21
first-in, first-out (FIFO) queue3-11
Fix class...4-3, ??–4-14

- operator ..4-12
* operator ...4-12
*= operator ...4-12
+ operator ...4-12
+= operator...4-12
/ operator ..4-12
/= operator ..4-12
-= operator..4-12
= operator ...4-12
clear_errors() ..4-12
compare() ...4-11
complement() ...4-13
constructors ..4-9
conversion operators4-13
Ptolemy Last updated: 10/17/97

I-4
dbz() ...4-12
intb()...4-10
invalid()..4-11
is_zero() ...4-11
len() ..4-10
max() ..4-11
maximum length ..4-4
min()...4-11
overflow() ..4-10
ovf_occurred ..4-11
precision() ..4-10
roundMode() ..4-11
set_overflow...4-11
set_rounding...4-11
setToZero() ..4-11
signBit() ...4-11
uninitialized..4-6
value() ..4-11

fix type
portholes...2-11
states...2-9

FIX_MATRIX_ENV ..4-30
fix_matrix_env type

portholes...2-12
FIX_MAX_LENGTH...4-4
Fixed-point

inputs and outputs ..4-5
fixed-point ...4-3

array parameters...4-4
parameters ..4-4
precision...2-10
setting precision ...2-10
states...4-4

Fixed-point data type ??–4-14
FixMatrix, see Matrix class
FixParticle class ..2-21
float type

portholes...2-11
states...2-9

FLOAT_MATRIX_ENV....................................4-30
float_matrix_env type

portholes...2-11
floatarray type

states...2-9
FloatArrayState class2-21, 2-23
FloatMatrix, see Matrix class
FloatParticle class ...2-21
FloatState class..2-21
Fork

code generation ...13-14
Fork (SDF block)...2-20
frameCode, method ..13-18
fread of long failed ..1-21
Free Software Foundation1-1
functional star in DE..12-1
G
g++...2-22
g++ compiler ...1-1
Gain (SDF block) ..2-27
gdb ..1-22, 1-26
generateCode, method13-18
generic pointer technique3-11
get method12-5, 12-6, 12-12
getMessage method

MessageParticle class...................................4-18
getSimulEvent method12-5, 12-11
globalDecls (CGCTarget method).......................14-2
Gnu tools ...1-22
go method ..2-3
go ptlang directive2-6, 2-14
grabInputs_$starID ..5-4, 5-5
GrayImage class ..4-41
H
Ha, S.2-1, 3-1, 7-1, 8-1, 12-1, 13-1, 14-1
hash table ...3-8
hash tables ...3-13
HashEntry class ...3-13
hashing function ..3-13
hashstring function ..3-8
HashTable class ..3-13, 3-15
HashTableIter class ...3-13
Haskell, P..4-1, 4-40
header ptlang directive2-6, 2-15
heterogeneous message interface4-14
HIER Scheduler..13-22
hinclude ptlang directive2-6, 2-15
Histogram class ...3-5
hppa.cfront...1-2
htmldoc ptlang directive ..2-6
HU Scheduler ...13-22
Hylands, C.1-1, 11-1, 17-1
I
I/O..3-2, 3-3
ifstream class ...3-2, 3-3
image processing ...4-40
include (CGCTarget) ...14-1
include files ...3-1
InDEPort class ...12-5
InfString class..3-9
initCode (CGCStar method)14-7
initCode, method ...13-2
U. C. Berkeley Department of EECS

The Almagest I-5
initial value for states...2-25
initialized Fix objects ..4-6
initializing states from files2-23
inline method ptlang directive2-11
inline virtual method ptlang directive..................2-11
inmulti ptang directive...2-19
inmulti ptlang directive....................2-6, 2-11, 2-11
inout ptlang directive.......................2-6, 2-11, 2-11
inoutmulti ptlang directive2-6, 2-11, 2-11
input...3-2, 3-3
input ptlang directive.............2-6, 2-11, 2-11, 2-17
InSDFPort class ..2-17, 2-19
installColors...4-41
int type

portholes ...2-11
states ...2-9

INT_MATRIX_ENV ..4-30
int_matrix_env type

portholes ...2-11
intarray type

states ...2-9
IntArrayState class...2-21
IntMatrix, see Matrix class
IntParticle class..2-21
IntState class..2-21
isA method

Message class ...4-16
ISA_FUNC macro ...4-16
ISA_INLINE macro ..4-16
iterator classes ...3-10
iterators ...3-10, 3-13
K
Kalavade, A. ..4-1
key method

HashEntry class ..3-13
Khazeni, A...4-1
L
label

codeblockSymbol13-10
Lane, T...4-1
last-in, first-out (LIFO) queue3-11
LastOfN (DDF block)..8-1
Lee, E. A.1-1, 2-1, 3-1, 4-1, 7-1, 12-1, 13-1, 14-

1
libraries of stars ...2-1
Lim, Y. K...14-1
Lippman, S. ...2-17
ListIter class...3-11
loadCode, method...13-18
load-star command ..2-3
load-star-perm command.......................................2-3
location ptlang directive2-6, 2-8

look-inside command ..2-1
loop schedulers...13-21
loopingLevel, target parameter13-21
M
macro

$addr(name,offset)13-11
$ref (assembly)..13-12
label ...13-10
ref ...13-8
sharedSymbol...13-9
starName ..13-8

macro, $$..13-12
macro, codeblockSymbol13-10
macros, CG stars ...13-8
mainDecls (CGCTarget member)14-1
mainLoopCode, method13-18
make ..1-4, 2-1
make.template ...1-7
makefiles ...1-4
make-star command ..2-1
Matrix class ..4-21–4-33

- operator ..4-28
- operator, unary negation operator..............4-27
! operator, inverse operator4-27
!= operator..4-25
* operator ...4-28
*= operator ...4-26
+ operator ...4-28
+= operator...4-26
/= operator ..4-26
-= operator..4-26
= operator, assignment operator...................4-25
== operator...4-25
^ operator ...4-27
~ operator, transpose operator......................4-27
clone() function ..4-29
ComplexMatrix ..4-22
conjugate() function for ComplexMatrix4-27
constructors ..4-23
conversion operators4-25
dataType() function......................................4-29
entry() function4-22, 4-38
FixMatrix ...4-22
FixMatrix, special constructors.........4-24, 4-25
FloatMatrix...4-22
hermitian() function for ComplexMatrix4-27
including Matrix.h into a Star4-30
indentity() function4-27
Ptolemy Last updated: 10/17/97

I-6
IntMatrix ..4-22
inverse() function...4-27
isA() function...4-29
Lapack++ ...4-33
MatrixEnvParticle ..4-22
multiply() function.......................................4-29
outputting to a PortHole...............................4-31
print() function...4-29
star input and output.....................................4-30
transpose() function4-27
writing Stars that use the Matrix class4-29

Matrix.h include file..4-30
Message class...4-14, 4-40
message data type..2-11
message programming example..........................4-18
message type

portholes...2-11
MessageParticle class....................2-21, 4-15, 4-18
method ptlang directive....................2-6, 2-11, 2-15
mkl alias ..1-12
mkPtolemyTree...1-9
MultiInSDFPort class..2-19
MultiOutSDFPort class2-19
multiple portholes ...2-19
multiple-processor schedulers...........................13-21
MultiPortHole class...2-19
multiprocessor target...13-18
MultiTarget, class..13-18
Murthy, P. K...13-1, 13-21
MVImage class ...4-41
myData method

Envelope class..4-17

N
name ptlang directive2-5, 2-6
NegativeExpntl class...3-17
non-determinism ...12-12
non-deterministic loop ..12-8
num ptlang directive..8-2
numberPorts method ...2-21
numSimulEvents method12-5
numTokens ptlang directive..................................7-2
numtokens ptlang directive2-11, 2-12
O
obj.$PTARCH directories.....................................1-4
objdir alias...1-2
Octtools ...1-5
ofstream class..3-2, 3-3
operator, referencing an entry4-23, 4-38
OutDEPort class..12-5
outmulti ptlang directive2-6, 2-11, 2-11, 2-19
output ..3-2, 3-3

output ptlang directive...........2-6, 2-11, 2-11, 2-19
OutSDFPort class2-17, 2-19
overflow

Fix class..4-4
override.mk...1-7, 1-9, 1-11
P
parallel directory tree

mkPtolemyTree ..1-9
parallel schedulers ..13-21
parallel software development tree

csh aliases...1-12
parameter ...2-9
parameters

complex ..2-10
Parks, T. M.1-1, 10-1, 12-1, 13-1, 14-1, 17-1
Particle class2-17, 2-21, 4-15
particle types..2-21
pathSearch function ...3-8
phase mode in DE...12-12
PHASE, de..12-12
phase-based firing mode in DE12-12
pigi...3-4
pigiExample directory ...1-7
pigiRpc ...1-5, 1-21
pigiRpc, custom version ..1-6
pigiRpc.debug..1-23
Pino, J. L.......................1-1, 6-1, 13-1, 14-1, 15-1
plotting data ...3-3
Pointer type..3-11
Poisson (DE block)...................................3-17, 12-9
Poisson process..12-9
polymorphism..2-28
PortHole class..2-17
porthole SDF parameters.......................................7-1
porthole, dynamic ..8-1
ports, hiding from the user...................................2-26
pragma ..2-21, 14-4
precision parameter ...4-4
precision state ..2-10
precision type

states ...2-9
preprocessor...2-1
print method...2-21

Message class4-16, 4-31
Printer (SDF block) ...2-28
private ptlang directive2-6, 2-14
processMacro, method......................................13-12
profile command..2-7
progNotFound function ...3-8
protected ptlang directive2-6, 2-14
pt alias..1-12
PT_DEBUG environment variable......................1-26
U. C. Berkeley Department of EECS

The Almagest I-7
pt_ifstream class ..3-2, 3-3
pt_ofstream class ...3-2, 3-3
PTARCH environment variable1-2
ptbin.mk...1-6
ptcl ...1-1, 1-5, 2-24, 3-4
ptkControlPanel...5-2, 5-6
ptl alias...1-12
ptlang ...2-3
PTOLEMY environment variable1-2
ptolemy user ..1-2
public ptlang directive2-6, 2-14
pure method ptlang directive2-11
Pure Sofware Inc. ..1-19
pure virtual method ptlang directive....................2-11
Purecov ..1-19
pure-delay star in DE...12-2
Purify ...1-19
put method..12-5, 12-6
pxgraph program ...3-3, 3-6
Q
Quantify...1-19
quantization

Fix class..4-4
Queue class..3-11
queueing ..12-1
queueing networks...12-1
R
Ramp (SDF block)...2-26
random numbers ..3-17
receive star..13-23
receiveData method ...8-2
Rect (SDF block)...2-4
reference count4-14, 4-17, 4-30
refireAtTime method12-9, 12-9
rml alias ...1-12
rounding

Fix class..4-4
RPC Error ..1-21
runCode, method ..13-18
S
saturation

Fix class..4-4
savestring function...3-8
sccs ..1-18
schedulers

static ...7-1
schedulers, CG domain.....................................13-20
SDF

domain..7-1
porthole parameters ..7-1
writing stars ...7-1, 12-1

SDF (synchronous dataflow).................................7-1
SDFFix class ...4-9
seed of a random number3-17
segmentation fault ...1-21
self-scheduling star..12-8
send star..13-23
Send/Receive stars..13-23
send/receive stars..13-23
sendData method ..8-2, 12-5
sequencing directives in DE................................12-6
SequentialList..3-15
SequentialList class ...3-11
Server (DE block)..12-1
server stars in DE ..12-3
setAttibututes method..2-26
setAttributes method ...2-26
setBDFParams (BDFPortHole method)14-6
setBDFParams method

BDFPortHole class...9-1
setInitValue method ..2-26
setOutputs_$starID..5-4, 5-5
setSDFParams method2-12, 2-19, 7-1
setstate command ..2-21
setup method ...7-1
setup ptlang directive2-6, 2-13
shared data structures ..3-14
sign bit ...4-4
signal generators in DE12-8
simple mode in DE...12-11
SIMPLE, de..12-11
simultaneous events (DE domain).......................12-6
sol2.cfront..1-2
source code..1-1
source code control..1-18
source stars in DE..12-8
Spread CGC..13-15
spread star...13-24
Spread, star ...13-15
spread/collect stars ...13-24
srcdir alias ...1-2
Sriram, S..15-1
stack...1-22
Stack class ...3-11
star, defining a new star...2-1
stars.mk ..1-6, 1-10
state..2-9
state ptlang directive................2-6, 2-9, 2-11, 2-21
states

hiding from the user2-26
static buffering..13-16
static members...3-15
static methods..3-1
static scheduling
Ptolemy Last updated: 10/17/97

I-8
SDF ..7-1
statistics, histogram...3-5
stderr..3-3
stdin...3-3
stdout ...3-3
string states..2-9
stringarray states ...2-9
StringArrayState class...2-21
StringList class..3-9
StringListIter class ..3-10
strings ..3-9
StringState class ..2-21
sub-galaxy ...13-23
substChar, method...13-12
sub-universe ..13-23
sw alias..1-12
Switch (CGC Block) ...14-3
Switch (CGC block)..14-6
symbolic links ...1-12
synchronous dataflow ...7-1
T
target, code generation13-16
target, multiprocessor..13-18
targets ..1-1
Tcl/Tk..1-1
TclScript (DE block) ...5-12
TclScript star ...5-1
TclStarIfc class..5-12
tempFileName function...3-8
TextTable class ...3-13
TextTableIter class..3-13
time stamp ...12-1
Tk ..3-4
tkMain.c ..14-7
tkSetup CGCTclTkTarget14-7
TkShowValues ..5-2
triggers method ...12-5
troff..2-4
truncation

Fix class ...4-4
two’s complement ...4-4
Tycho Target ...14-8
tylndir script ..1-11
type conversion ...2-21

Message class...4-16
type, C50 state...16-1
type, CG56/CG96 state15-1
TYPE_CHECK macro ..4-17
typeCheck method

Envelope class..4-17
typeError method

Envelope class..4-17

types...2-11
tysh ..1-5
U
underflow

Fix class..4-4
Uniform class...3-18
uniformly distributed random number.................3-18
uninitialized Fix object ..4-6
user-defined messages ...4-15
V
value method

HashEntry class ..3-13
vector message...4-15
vem ..1-1
version ptlang directive2-6, 2-7
video processing ..4-40
virtual method ptlang directive............................2-11
W
waitFor method

DDFStar class...8-2
White, K.13-1, 14-1, 15-1
Williamson, M...17-1
wrapup (Star method) ..14-2
wrapup method ..3-15
wrapup ptlang directive2-6, 2-14
writableCopy method

Envelope class ..4-17
writeCode, method ...13-18
X
X window system ..3-3
XGraph class ...3-3
XHistogram class...3-5
Y
yacc..2-4
U. C. Berkeley Department of EECS

	Chapter 1. Extending Ptolemy — Introduction
	1.1 Introduction
	1.2 File Organization
	1.2.1 Ptolemy environment variables
	1.2.2 Directory Structure

	1.3 Creating Custom Versions of pigiRpc
	1.3.1 Creating a pigiRpc that includes your own st...
	1.3.2 Creating a pigiRpc with more extensive custo...

	1.4 Using mkPtolemyTree to create a custom Ptolemy...
	1.4.1 mkPtolemyTree example
	1.4.2 How mkPtolemyTree works
	1.4.3 Combining mkPtolemyTree and pigiExample
	1.4.4 Known Bugs in mkPtolemyTree

	1.5 Using csh aliases to create a Parallel Softwar...
	1.5.1 Aliases for Managing Symbolic Links
	1.5.2 Creating a Duplicate Hierarchy
	1.5.3 Source Code Control

	1.6 Building standalone programs that use Ptolemy ...
	1.6.1 Standalone example using StringList
	1.6.2 Standalone example that tests a Scheduler

	1.7 Debugging Ptolemy and Extensions Within Pigi
	1.7.1 A quick scan of the stack
	1.7.2 More extensive debugging
	1.7.3 Debugging hints

	Chapter 2. Writing Stars for Simulation
	2.1 Introduction
	2.2 Adding stars dynamically to Ptolemy
	2.3 The Ptolemy preprocessor language (ptlang)
	2.3.1 Invoking the preprocessor
	2.3.2 An example
	2.3.3 Items that appear in a defstar

	2.4 Writing C++ code for stars
	2.4.1 The structure of a Ptolemy star
	2.4.2 Reading inputs and writing outputs
	2.4.3 States
	2.4.4 Array States

	2.5 Modifying PortHoles and States in Derived Clas...
	2.6 Programming examples
	2.7 Preventing Memory Leaks in C++ Code

	Chapter 3. Infrastructure for Star Writers
	3.1 Introduction
	3.2 Handling Errors
	3.3 I/O Classes
	3.3.1 Extended input and output stream classes
	3.3.2 Generating graphs using the XGraph class
	3.3.3 Classes for displaying animated bar graphs
	3.3.4 Collecting statistics using the histogram cl...

	3.4 String Functions and Classes
	3.5 Iterators
	3.6 List Classes
	3.7 Hash Tables
	3.8 Sharing Data Structures Across Multiple Stars
	3.9 Using Random Numbers

	Chapter 4. Data Types
	4.1 Introduction
	4.2 Scalar Numeric Types
	4.2.1 The Complex data type
	4.2.2 The fixed-point data type

	4.3 Defining New Data Types
	4.3.1 Defining a new Message class
	4.3.2 Use of the Envelope class
	4.3.3 Use of the MessageParticle class
	4.3.4 Use of messages in stars

	4.4 The Matrix Data Types
	4.4.1 Design philosophy
	4.4.2 The PtMatrix class
	4.4.3 Public functions and operators for the PtMat...
	4.4.4 Writing stars and programs using the PtMatri...
	4.4.5 Future extensions

	4.5 The File and String Types
	4.5.1 The File type
	4.5.2 The String type

	4.6 Writing Stars That Manipulate Any Particle Typ...
	4.7 Unsupported Types
	4.7.1 Sub-matrices
	4.7.2 Image particles
	4.7.3 “First-class” types

	Chapter 5. Using Tcl/Tk
	5.1 Introduction
	5.2 Writing Tcl/Tk scripts for the TclScript star
	5.3 Tcl utilities that are available to the progra...
	5.4 Creating new stars derived from the TclScript ...
	5.5 Selecting colors
	5.6 Writing Tcl stars for the DE domain

	Chapter 6. Using the Cluster Class for Scheduling
	6.1 Introduction
	6.2 Basic Classes
	6.3 Galaxies and their relationship to Adjacency L...
	6.4 Clustering
	6.4.1 Initialization — Flattening the User Specifi...
	6.4.2 Absorb and Merge
	6.4.3 Cluster Iterator Classes

	6.5 Block state and name scoping hierarchy
	6.6 Resetting an InterpUniverse back to actionList...
	6.7 References

	Chapter 7. SDF Domain
	7.1 Introduction
	7.2 Setting SDF porthole parameters

	Chapter 8. DDF Domain
	8.1 Programming Stars in the DDF Domain

	Chapter 9. BDF Domain
	9.1 Writing BDF Stars

	Chapter 10. PN domain
	10.1 Introduction
	10.2 Processes
	10.2.1 The PtThread Class
	10.2.2 The PosixThread Class
	10.2.3 The DataFlowProcess Class

	10.3 Communication Channels
	10.3.1 PtGate
	10.3.2 PosixMonitor
	10.3.3 CriticalSection
	10.3.4 PtCondition
	10.3.5 PosixCondition
	10.3.6 PNGeodesic

	10.4 Scheduling
	10.4.1 ThreadList
	10.4.2 PNScheduler

	10.5 Programming Stars in the PN Domain

	Chapter 11. SR domain
	11.1 Introduction
	11.2 Communication in SR
	11.3 Strict and non-strict SR stars

	Chapter 12. DE Domain
	12.1 Introduction
	12.2 Programming Stars in the DE Domain
	12.2.1 Delay stars
	12.2.2 Functional Stars
	12.2.3 Sequencing directives
	12.2.4 Simultaneous events
	12.2.5 Non-deterministic loops
	12.2.6 Source stars

	12.3 Phase-Based Firing Mode
	12.4 Programming Examples
	12.4.1 Identity Matrix Star
	12.4.2 Matrix Transpose

	Chapter 13. Code Generation
	13.1 Introduction
	13.2 Writing Code Generation Stars
	13.2.1 Codeblocks
	13.2.2 Codeblocks with arguments
	13.2.3 In-line codeblocks
	13.2.4 Macros
	13.2.5 Assembly PortHoles
	13.2.6 Attributes
	13.2.7 Possibilities for effective buffering

	13.3 Targets
	13.3.1 Single-processor target
	13.3.2 Assembly code streams
	13.3.3 Multiprocessor targets

	13.4 Schedulers
	13.4.1 Single-processor schedulers
	13.4.2 Multiprocessor schedulers

	13.5 Interface Issues

	Chapter 14. CGC Domain
	14.1 Introduction
	14.2 Code Generation Methods
	14.3 Buffer Embedding
	14.4 Command-line Settable States
	14.4.1 C code generated to support command line ar...
	14.4.2 Changes in pigiRpc to support command line ...
	14.4.3 Limitations of command line arguments.

	14.5 CGC Compile-time Speed
	14.6 BDF Stars
	14.7 Tcl/Tk Stars
	14.8 Tycho Target

	Chapter 15. CG56 Domain
	15.1 Introduction
	15.2 Data Types
	15.3 Attributes
	15.4 Code Streams
	15.4.1 Sim56Target Code Streams
	15.4.2 S56XTarget/S56XTargetWH Code Streams

	Chapter 16. C50 Domain
	16.1 Introduction
	16.2 Data Types
	16.3 Attributes
	16.4 Code Streams
	16.5 Symbols
	16.6 Reserved Memory

	Chapter 17. Creating New Domains
	17.1 Introduction
	17.2 A closer look at the various classes
	17.2.1 Target
	17.2.2 Domain
	17.2.3 Star
	17.2.4 PortHole
	17.2.5 Geodesic
	17.2.6 Plasma
	17.2.7 Particle
	17.2.8 Scheduler

	17.3 What happens when a Universe is run
	17.4 Recipe for writing your own domain
	17.4.1 Introduction
	17.4.2 Creating the files
	17.4.3 Required classes and methods for a new doma...
	17.4.4 Building an object directory tree

	INDEX

