UNIVERSITY OF CALIFORNIA AT BERKELEY

COLLEGE OF ENGINEERING
* DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
BERKELEY, CALIFORNIA 94720

TS AT e cirhS T T,

| LUanye ofwmen . 0D oorlee Tug oTAne
S | o oel e fouEETTITTOR [~k ooot omesm s e
Eﬁ-u-l"&mﬂiﬁ.t\-m!-‘t.‘mnﬁt 1 18 masicrTa Gt

© 2 rofitilam bepeme enemie I C e plmrnr of Revmgmen
; P, el mﬁ':"“ﬁ““':" |"|p1.ur qmifone lII' LE et By formuoiemn

Vol. 2 - Ptolemy 0.7 Programmer’s Manual

Primary Authors

Shuvra Bhattacharyya, Joseph T. Buck, Wan-Teh Chang, Michael J. Chen, Brian L.
Evans, Edwin E. Goei, Soonhoi Ha, Paul Haskell, Chih-Tsung Huang, Wei-Jen Huang, Chris-
topher Hylands, Asawaree Kalavade, Alan Kamas, Allen Lao, Edward A. Lee, Seungjun Lee,
David G. Messerschmitt, Praveen Murthy, Thomas M. Parks, José Luis Pino, John Reekie,
Gilbert Sih, S. Sriram, Mary P. Stewart, Michael C. Williamson, Kennard White.

Other contributors

Raza Ahmed, Egbert Amicht (AT&T), Sunil Bhave, Anindo Banerjea, Neal Becker
(Comsat), Jeff Bier, Philip Bitar, Rachel Bowers, Andrea Cassotto, Gyorgy Csertan (T.U.
Budapest), Stefan De Troch (IMEC), Rolando Diesta, Martha Fratt, Mike Grimwood, Luis
Gutierrez, Eric Guntvedt, Erick Hamilton, Richard Han, David Harrison, Holly Heine, Wai-
Hung Ho, John Hoch, Sangjin Hong, Steve How, Alireza Khazeni, Ed Knightly, Christian
Kratzer (U. Stuttgart), Ichiro Kuroda (NEC), Tom Lane (Structured Software Systems, Inc.),
Phil Lapsley, Bilung Lee, Jonathan Lee, Wei-Yi Li, Yu Kee Lim, Brian Mountford, Douglas
Niehaus (Univ. of Kansas), Maureen O’Reilly, Sunil Samel (IMEC), Chris Scannel (NRL),
Sun-Inn Shih, Mario Jorge Silva, Rick Spickelmier, Eduardo N. Spring, Richard S. Stevens
(NRL), Richard Tobias (White Eagle Systems Technology, Inc.), Alberto Vignani (Fiat), Gre-
gory Walter, Xavier Warzee (Thomson), Anders Wass, Jiurgen Weiss (U. Stuttgart), Andria
Wong, Anthony Wong, Mei Xiao, Chris Yu (NRL).

Copyright © 1990-1997
The Regents of the University of California
All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees,
to use, copy, modify, and distribute the Ptolemy software and its documentation for any pur-
pose, provided that the above copyright notice and the following two paragraphs appear in all
copies of the software and documentation.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMEN-
TATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF CAL-
IFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Ptolemy Last updated: 8/27/97

Current Sponsors

The Ptolemy project is supported by the Defense Advanced Research Projects Agency
(DARPA), the State of California MICRO program, and the following companies: The Alta
Group of Cadence Design Systems, Hewlett Packard, Hitachi, Hughes Space and Communi-
cations, LG Electronics, NEC, Philips, and Rockwell.

The Ptolemy project is an ongoing research project focusing on design methodology
for heterogeneous systems. Additional support for further research is always welcome.

Trademarks

Sun Workstation, OpenWindows, SunOS, Sun-4, SPARC, and SPARCstation are trademarks
of Sun Microsystems, Inc.

Unix is a trademark of Unix Systems Laboratories, Inc.
PostScript is a trademark of Adobe Systems, Inc.

About the Cover

The image on the cover is from a fourteenth century Provencal illuminated manuscript at the
British Library. It depicts angels cranking a celestial gear that activates planetary spheres. The
earth is motionless, at the center.

1. Extending Ptolemy — Introductionccccoevviiiiiiiiiiieeeennn. 1-1

1.1 Introduction. 1-1
1.2 FileOrganization. 1-1

Ptolemy environment variables 1-2
Directory Structure 1-3

1.3 Creating Custom Versions of pigiRpc 1-6

Creating a pigiRpc that includes your own stars 1-7

Creating a pigiRpc with more extensive customizations 1-8
1.4 Using mkPtolemyTree to create a custom Ptolemy trees. 1-9

mkPtolemyTree example 1-9

How mkPtolemyTree works 1-10

Combining mkPtolemyTree and pigiExample 1-11

Known Bugs in mkPtolemyTree 1-11
1.5 Using csh aliases to create a Parallel Software Development Tree

1-12
Aliases for Managing Symbolic Links 1-12
Creating a Duplicate Hierarchy 1-16
Source Code Control 1-18
1.6 Building standalone programs that use Ptolemy libraries.1-19
Standalone example using StringList 1-19
Standalone example that tests a Scheduler 1-20
1.7 Debugging Ptolemy and Extensions Within Pigi. 1-21
A quick scan of the stack 1-22
More extensive debugging 1-23
Debugging hints 1-25
2. Writing Stars for Simulation...........ccccoovvveiiiiiieeeecee e, 2-1
2.1 Introduction. 2-1
2.2 Adding stars dynamically to Ptolemy. 2-1
2.3 The Ptolemy preprocessor language (ptlang) 2-3
Invoking the preprocessor 2-4
An example 2-4
Items that appear in a defstar 2-5
2.4 Writing C++codeforstars. 2-16
The structure of a Ptolemy star 2-17
Reading inputs and writing outputs 2-17
States 2-21
Array States 2-23
2.5 Modifying PortHoles and States in Derived Classes. . . . 2-26
2.6 Programmingexamples............... 2-26
2.7 Preventing Memory LeaksinC++Code 2-28
3. Infrastructure for Star WIters..........eeeeiiee i 3-1

Ptolemy Last updated: 10/17/97

3.1 Introduction 3-1
3.2 Handling Errors 3-1
3.3 HOCIASSES . i it e 3-2
Extended input and output stream classes 3-2
Generating graphs using the XGraph class 3-3
Classes for displaying animated bar graphs 3-4
Collecting statistics using the histogram classes 3-5
3.4 String Functionsand Classes. 3-8
3.5 Herators. 3-10
36 ListClasses ... 3-11
3.7 HashTables 3-13
3.8 Sharing Data Structures Across Multiple Stars 3-14
3.9 UsingRandom Numbers.......................... 3-17
B L | = R 1Y 01T S PPTPPRTPN 4-1
4.1 Introduction 4-1
4.2 Scalar Numeric Types 4-1
The Complex data type 4-1
The fixed-point data type 4-3
4.3 DefiningNewDataTypes 4-14
Defining a new Message class 4-15
Use of the Envelope class 4-17
Use of the MessagePatrticle class 4-18
Use of messages in stars 4-18
44 TheMatrix Data Types. oo 4-21
Design philosophy 4-21
The PtMatrix class 4-22
Public functions and operators for the PtMatrix class 4-22
Writing stars and programs using the PtMatrix class 4-29
Future extensions 4-33
45 TheFileand String Types, 4-34
The File type 4-34
The String type 4-35
4.6 Writing Stars That Manipulate Any Particle Type 4-35
4.7 Unsupported TYPES . . . oo i i 4-37
Sub-matrices 4-37
Image particles 4-40
“First-class” types 4-41
5. USING TCHTKu ettt e e 5-1
51 IntroducCtion 5-1
5.2 Writing Tcl/Tk scripts for the TclScriptstar. 5-1
5.3 Tcl utilities that are available to the programmer. 5-6

5.4 Creating new stars derived from the TclScript star. 5-11

55 Selectingcolors 5-12

5.6 Writing Tcl stars forthe DEdomain 5-12
6. Using the Cluster Class for Scheduling...........ccccooooiiiiinnnnn. 6-1

6.1 Introduction.......... 6-1

6.2 BasicClassesciii i 6-1

6.3 Galaxies and their relationship to Adjacency Lists. 6-1

6.4 Clustering i 6-2

Initialization — Flattening the User Specified Graph 6-2
Absorb and Merge 6-3
Cluster Iterator Classes 6-5

6.5 Block state and name scoping hierarchy.............. 6-6
6.6 Resetting an InterpUniverse back to actionList. 6-6
6.7 References. 6-7

7. SDF DOMAINcciiiiiiiii e e 7-1
7.1 Introduction. 7-1
7.2 Setting SDF porthole parameters 7-1

ST 1] o B Lo 1 ¢ F= 1] o I 8-1
8.1 Programming Stars inthe DDF Domain............... 8-1

9. BDF DOMAINiiiiiiiiiiii e 9-1
9.1 WritingBDF Stars. 9-1

O TR o\ Vo (0] 1 = o 1P 10-1
10.1 Introduction. 10-1
10.2 PrOCESSES . . ittt 10-3

The PtThread Class 10-3
The PosixThread Class 10-4
The DataFlowProcess Class 10-6
10.3 CommunicationChannels 10-7
PtGate 10-8
PosixMonitor 10-8
CriticalSection 10-8
PtCondition 10-9
PosixCondition 10-9
PNGeodesic 10-10
10.4 Scheduling. 10-12

ThreadList 10-12
PNScheduler 10-12

10.5 Programming Stars inthe PN Domain 10-15

Ptolemy Last updated: 10/17/97

11, SR AOMAIN e 11-1

11.1 Introduction 11-1
11.2 CommunicationinSR 11-1
11.3 Strictand non-strictSRstars 11-2

{2 1 B T ¢ = 1] 12-1
12.1 Introduction 12-1
12.2 Programming Stars in the DE Domain............... 12-1

Delay stars 12-2

Functional Stars 12-4

Sequencing directives 12-6

Simultaneous events 12-7

Non-deterministic loops 12-8

Source stars 12-8
12.3 Phase-Based FiringMode 12-11
12.4 Programming Examples 12-13

Identity Matrix Star 12-13
Matrix Transpose 12-14

G I OF Lo [N CT=T =] =11 0] o TR 13-1
13.1 Introduction 13-1
13.2 Writing Code Generation Stars. 13-2

Codeblocks 13-3

Codeblocks with arguments 13-5

In-line codeblocks 13-7

Macros 13-8

Assembly PortHoles 13-12

Attributes 13-12

Possibilities for effective buffering 13-14

13.3 Targets 13-16
Single-processor target 13-16
Assembly code streams 13-17
Multiprocessor targets 13-18

13.4 Schedulers 13-20
Single-processor schedulers 13-20
Multiprocessor schedulers 13-21

13.5 Interface Issues 13-25
14, CGC DOMAIN .. 14-1
14.1 Introduction 14-1
14.2 Code Generation Methods. 14-1
14.3 BufferEmbedding 14-2

14.4 Command-line Settable States 14-3

C code generated to support command line arguments 14-3
Changes in pigiRpc to support command line arguments 14-4
Limitations of command line arguments. 14-5

14,5 CGC Compile-time Speed 14-6
14.6 BDF Stars. e 14-6
14.7 TcellTKStars o 14-7
148 TychoTarget....... 14-8
15. CG56 DOMAINiitiiiieieeee e e e e eans 15-1
15.1 Introduction. 15-1
152 Data TYPeS. . . .o vt 15-1
15.3 Attributes. 15-1
15.4 Code Streamst e 15-2

Sim56Target Code Streams 15-2
S56XTarget/S56XTargetWH Code Streams 15-2

16. C50 DOMAIN.....u it e e e ees 16-1
16.1 Introduction. 16-1
16.2 Data TYPES. . . . oot 16-1
16.3 Attributes. 16-1
16.4 Code Streamsttt 16-1
16.5 Symbols. 16-2
16.6 Reserved Memory.iiiiiinnninn... 16-2

17. Creating New DOMAINSccccovuiiieiiiiiiiiie e 17-1
17.1 Introduction. 17-1
17.2 Acloser look at the various classes. 17-2

Target 17-3

Domain 17-3

Star 17-3

PortHole 17-3

Geodesic 17-5

Plasma 17-5

Particle 17-5

Scheduler 17-6
17.3 What happens when a Universeisrun............... 17-6
17.4 Recipe for writing your own domain. 17-9

Introduction 17-9

Creating the files 17-9

Required classes and methods for a new domain 17-9

Building an object directory tree 17-10

Ptolemy Last updated: 10/17/97

Chapter 1. Extending Ptolemy —
Introduction

Authors: Christopher. Hylands
Edward. A. Lee
Thomas. M. Parks
José Luis Pino

1.1 Introduction
Ptolemy is extensible in the following ways:

* New galaxies can be defined. We do not view this as a programming task, so it is
explained in théJser's Manualrather than in thiProgrammer’s Manual

* Customized simulation builders and controllers can be created usipiglthenter-
preted command language. This language is also covereduiséne Manual

* New functional blocks (stars) can be added to any of the Ptolemy domains. These
blocks can be dynamically linked with eithpel or pigi

* New code generation blocks can be added to existing synthesis domains.

e Stars with customized user interfaces and displays can be created using Tcl/Tk.
* New simulation and design-flow managers (called targets) can be created.

* New domains with new models of computation can be created.

This volume explains how to accomplish most of the above KEheel Manual volume 3 of

The Almagestsupplements this volume with a detailed listing of all of the classes in the
Ptolemy kernel and in the code generation kernel. The sophisticated user, however, who is
extending the system in nontrivial ways, will wish to refer to the source code as the ultimate,
most complete documentation.

In this volume, we assume familiarity with the terminology and use of Ptolemy. Refer
to theUser's Manual and particularly to the glossary contained therein for assistance. We
also assume you are familiar with the overall organization of the Ptolemy software, as
described irUser’'s Manual

1.2 File Organization

Ptolemy is distributed with source code. The complete distribution even includes the
compiler we use (g++, from the Free Software Foundation), Tcl/Tky@ndprograms that
were developed quite independently, but upon which Ptolemy relies. The distribution also
includes a large number of demonstrations. Perusing the demonstrations can be an excellent
way to get familiar with the system. Perusing the source code is by far the best way to under-
stand the system. At a minimum, anyone wishing to write new stars should read the source

1-2 Extending Ptolemy — Introduction

code for a few of the built-in stars.

1.2.1 Ptolemy environment variables

The root of the Ptolemy tree is often installed in the home directory of a fictitious user
calledptolemy . If the installation follows this model at your site, you can find the Ptolemy
code with the following command:

cd ~ptolemy

If your installation does not have a user namietemy , then you must find out where your
system administrator has installed the system, and set an environment variable called
PTOLEMYto point to this directory. For instance, if your system administrator installed
Ptolemy in/users/ptolemy , then you should issue the following command:

setenv PTOLEMY /users/ptolemy

$PTARCHIs an environment variable representing the architecture on which you are
running, and has one (or more) of the following valses# , sol2 , orhppa, for Sun (under
Sun O/S), Sun (under Solaris 2.X), and HP machines respectively. There are a few other pos-
sible values for theTARCHvariable as well. There might be variations kle&.cfront or
hppa.cfront ~ to store an object tree created by the Cfront C++ compiler or some other non-
g++ compiler.The scrigdPTOLEMY/bin/ptarch will return the architecture of the machine
on which it is run. For example, if you were on a machine running Sun0S4.1.3, you would
type:

setenv PTARCH sun4

You can use the following fragment in yowshrc file to set$PTOLEMYand
$PTARCH The $PTOLEMY/.cshrc file contains the fragment below and many other csh
setup commands you may find useful.

setenv PTOLEMY /users/ptolemy
if (! $?$PTARCH) setenv $PTARCH * $PTOLEMY/bin/ptarch’
set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

Note that if you are using a prebuilt Gnu compiler that you obtained from the Ptolemy
project, you must either place the Ptolemy distributiolasars/ptolemy , or you must set
certain environment variables so that the Gnu compiler can find the necessary pieces of itself.
Appendix A, Installation and Troubleshooting of the Ptolddser's Manualdiscusses these
variables in detail. The variables change with different releases of the compilers, so we do not
document them here. The User's Manual also documents other useful environment variables,
such asD_LIBRARY_PATH

For every directory under tlsec tree (see figure 1-2) that contains source code that is
compiled, there is a corresponding directory undeotji@PTARCH tree. Many developers
find it convenient to set the following aliases:

alias srcdir ‘cd “pwd | sed “s?/0bj.$PTARCH/?/src/?"”
alias objdir ‘cd "pwd | sed “s?/src/?/obj.$PTARCH/?""

For your convenience, these can be found in th&®IROLEMY/.alias . They make it easy

to move between the source directory and the corresponding object directory. For example, if
you are running on a Sun machine running Solaris 2.4,

U. C. Berkeley Department of EECS

The Almagest 1-3

% cd $PTOLEMY/src/kernel
% pwd
/users/ptolemy/src/kernel

% obijdir

% pwd
/users/ptolemy/obj.sol2/kernel
% srcdir

% pwd
/users/ptolemy/src/kernel

%

1.2.2 Directory Structure

The documentation (usually) refers to the root of the Ptolemy directory tree as
$PTOLEMY but occasional slips will refer teptolemy . Below this root, you can find the
directories indicated in figure 1-1.

The src directory is key to much of what this volume deals with. Its structure is
shown in figure 1-2. Within therc directory, thekernel directory is most important. It con-
tains all the classes that define what Ptolemy is. Second most importantasées direc-
tory. Its structure is shown in figure 1-3. This directory contains one subdirectory that defines
each of the domains distributed with Ptolemy. Each domain directory contains at least the sub-
directories shown in figure 1-4. If you are going to write stars for the SDF domain, for exam-
ple, then you would be well advised to look at a few examples contained in the directory
$PTOLEMY/src/domains/sdf/stars

The directory$PTOLEMY/mk contains master makefiles that are included by other
makefiles (The makefilénclude directive does this for uspPTOLEMY/mk/config-
$PTARCH.mkrefers to the makefile for the architect@TARCH For instance$PTOLEMY/
mk/config-sun4.mk is the makefile that contains the sun4 specific details.

bin platform-independent executables

bin.$PTARCH platform-dependent executables

demo top-level demo directory, with pointers to demos in src
doc documentation (including this manual) in PostScript
lib platform-independent run-time libraries

$PTOLEM lib.$PTARCH platform-dependent libraries used for linking
mk shared portions of makefiles

0bj.$PTARCH object files (this appears when Ptolemy is recompiled)

octtools a subset of the Berkeley octtools, used by pigi

src root of the source tree (includes all demos and icons)
tcltk the installation of Tcl and Tk, used by pigi

tycho the Ptolemy syntax manager

FIGURE 1-1: Structure of the home directory of the Ptolemy installation ($PTOLEMY).

Ptolemy Last updated: 10/10/97

1-4 Extending Ptolemy — Introduction

When you cd t6PTOLEMYand typenake, $PTOLEMY/makefile contains a rule that
checks to see if the directoBPTOLEMY/obj.$PTARCH exists. If this directory does not
exist, then make runs the commaustl -f MAKEARCH , whereMAKEARCI$ a C shell script
at $PTOLEMY/MAKEARCHMAKEARCHwWIll create the necessary subdirectories under
$PTOLEMY/obj.$PTARCH for $PTARCHf they do not exist.

We split up the sources and the object files into separate directories in part to make it easier to
support multiple architectures from one source tree. The direkRGIQLEMY/obj.$PTARCH

contains the platform-dependent object files for a particular architecture. The platform-depen-
dent binaries are installed int®PTOLEMY/bin.$PTARCH, and the libraries go into
$PTOLEMY/lib.$PTARCH . Octtools, Tcl/Tk, and Gnu tools have their own set of architec-
ture-dependent directories.

The makefiles are all designed to be run fromahjeSPTARCH tree so that object
files from different platforms are kept separate (when younrake in the SPTOLEMYtop
level, the appropriatebj.$PTARCH tree is selected for you automatically).

We are able to have separate object and source directories by usmgkthpro-
gram’sVPATHfaclility. Briefly, VPATHIis a way of tellingnake to look in another directory for
a file if that file is not present in the current directory. For more information, see the Gnu
make documentation, in Gnu Info format files$RTOLEMY/gnu/common/info/make-*

compat header files for non-standard configurations
domains the code for each of the domains

filters outside filter design programs

gnu source for Gnu tools (optional)

kernel the Ptolemy kernel

octtools source for our subset of the Berkeley oct tools

pigiExample example showing how to make a custom pigi

pigiRpc source for pigiRpc program
$PTOLEMY/src pigilib source for most of pigi

ptcl source for ptcl

ptklib some Tcl/Tk code used in various places

ptlang source for the preprocessor for star writing

pxgraph source code for the pxgraph program

tcltk source for Tcl and Tk (optional)

thread code used by the PN domain

tycho source for the tysh Tycho/Ptolemy binary

utils external software package interface libraries

XV image viewer sources (optional)

FIGURE 1-2: The structure of the $PTOLEMY/src directory

U. C. Berkeley Department of EECS

The Almagest

There are three primary Ptolemy binaries:

pigiRpc

ptcl

tysh

$PTOLEMY/
src/domains

1-5

The graphical version that usesm as a front endpigiRpc
contains an interface to Octtools, the package that is used to
store facets. When you rysgi , you actually run a script

called$PTOLEMY/bin/pigiEnv.csh

in turn, starts upigiRpc

which callsvem which,

A prompt version that contains most of the functionality in
not including the Tk stargtcl does not contain an

pigiRpc

interface to Octtools

The Tycho shell version, which is similar p@iRpc , except
thattysh does not contain an interface to Octtools. Note that

Tycho can be run from a bagtkwish

Ptolemy functionality.

bdf
c50

cg

cg56

cgc
ddf
de
fsm
hof
pn
sdf
sr
vhdl
vhdl

XXX

b

Boolean-controlled dataflow domain
code generation for the Texas Instruments C50

the base class domain for all code generation
code generation for the Motorola DSP56000
code generation in C

dynamically scheduled dataflow

the discrete-event domain

finite state machine domain

higher-order function domain

the process network domain

synchronous dataflow (statically scheduled)

synchronous reactive domain
code generation for behavioral modeling in VHDL
code generation for behavioral modeling in VHDL

demonstration of how to define a new domain

FIGURE 1-3: The structure of the $PTOLEMY/src/domains directory.

$PTOLEMY/
src/domains/xxx

<

demo demonstrations of the domain

icons the oct facets defining the icons used by pigi
kernel the core code defining the domain

stars stars distributed with the domain

targets

FIGURE 1-4: The structure of a typical domain directory within $PTOLEMY/src/domains.

Ptolemy

(optional) additional targets used by the domain

binary that contains no

Last updated: 10/10/97

1-6 Extending Ptolemy — Introduction

Each of the three binaries above has three different versions that contain different
functionality. Below we only list the different version @w§iRpc , butptcl andtysh have
similar versions.

pigiRpc This binary contains all of the domains, so it is the largest
binary.

pigiRpc.ptrim This binary contains SDF, DE, BDF, DDF and CGC domains
only.

pigiRpc.ptiny This binary contains SDF (no image stars) and DE domains
only.

Each of the above versions can also be built.estauig version that contains debug-
ging information. The fil$PTOLEMY/mk/ptbin.mk contains rules to build the above bina-
ries in combination with debugging and other features. Th&BIOLEMY/mk/stars.mk
contains rules that indicate dependencies between domains and other features.

1.3 Creating Custom Versions of pigiRpc

Ptolemy is an extensible system. Extensions can take the form of universes and galax-
ies, which are viewed by Ptolemy as applications, but they can also take the form of additional
code linked to the Ptolemy kernel. New stars can be dynamically linked (see “Writing Stars
for Simulation” on page 2-1). Other additional code has to be linked in statically. If you add
many of your own stars to the system, you will want these stars to be statically linked as well,
so that you do not have to wait for the dynamic linking to complete every time you execute
your applications.

The Ptolemy kernel angem (the schematic editor) run in separate Unix processes.
The Ptolemy kernel process is callgibiRpc ", while thevem process is calledvem”. You
can create your own versionm§iRpc that contains your stars and other extensions perma-
nently linked in.

There are at least three ways to build your @igiRpc , depending on the kind of
extensions you are making. The first way usefpigiExample , and it is intended for
users who just need to add new stars. The second and third ways o&®thiemyTree
script and csh aliases and are for users that are creating new domains or making other more
extensive changes.

If you want to extend Ptolemy by modifying or adding a new scheduler, target, or even
an entire domain, it is recommended that you create a duplicate directory hierarchy. This
allows you to experiment with and fully test any changes separately, rather than incorporating
them into the “official” version of Ptolemy. This way, your experimentation will not interfere
with other Ptolemy users at your site, and your changes will not be overwritten by future
installations of Ptolemy releases. It also means that all of the existing makefiles will work
without modification because all of the paths specified are relative to the root of the hierarchy.

The most direct way to do this is to copy the entire Ptolemy hierarchy. This could be
done with a command such as:
cp -r $SPTOLEMY ~/ptolemy

which would create a copy of the hierarchy in your home directory. Because this method

U. C. Berkeley Department of EECS

The Almagest 1-7

requires excessive disk space and makes cooperative development difficult, many developers
prefer to use symbolic links when creating a duplicate hieranckjtolemyTree and the
csh aliases can help you setup these symbolic links.

1.3.1 Creating a pigiRpc that includes your own stars

For those who just want to statically link in their own stars with minimal hacking with
makefiles, an example showing how to do this is providekPIFTOLEMY/src/pigiExam-
ple.

In the example below, we assume thARTOLEMYand$PTARCHare set and that you
have write permission to the Ptolemy source tree. If you don’t have write permission, you can
set up a parallel tree with the Unix-s command. If, for example, the Ptolemy tree was at
lusers/ptolemy , but you wanted to build undefpt , you could do the following to create
the directory and create symbolic links for the dot files, ldsrc , and create symbolic
links for the other files and directories in the distribution:

mkdir ~/pt

cd ~/pt

In -s /users/ptolemy/* .

In -s /users/ptolemy/.??* .

setenv PTOLEMY ~/pt

setenv PTARCH ‘$PTOLEMY/bin/ptarch’

rm obj.$PTARCH src bin.$PTARCH

mkdir -p src src/pigiExample bin.$PTARCH

cd bin.$PTARCH; In -s /users/ptolemy/bin.$PTARCH
cd ../src; In -s /users/ptolemy/src/* .

cd pigiExample; cp /users/ptolemy/src/pigiExample/* .

You also need to be sure that you have your environment set up properly for the com-
piler that you are using.

Continuing with our example of how to builp@iRpc that includes your own stars:

1. Build a basicpigiRpc . PigiRpc depends ono files under $PTOLEMY/
obj.$PTARCH , so you must do a basic build. To build all iefiles, type:

cd $PTOLEMY; make install

The complete build process can take upwards of three hours. If you ogar-an
ride.mk file, you can reduce the build time by building only the functionality you
need. See “Using mkPtolemyTree to create a custom Ptolemy trees” on page 1-9
for more information.

2. Edit $PTOLEMY/src/pigiExample/make.template . Add your stars to
LOCAL_OBJSandPL_SRCS

3. cd to $PTOLEMY/obj.$PTARCH/pigiExample and type:
make depend

to update thenakefile ~from themake.template . You will see messages some-
thing like:

Ptolemy Last updated: 10/10/97

1-8 Extending Ptolemy — Introduction

makefile remade -- you must rerun make.
exit 1
make: *** [makefile] Error 1

This is normal and you may safely ignore the error message.
4. While still in$PTOLEMY/obj.$PTARCH/pigiExample , type
make

This will create a version of thegiRpc executable with your own stars statically
linked in. If later you add a new star, you should modify the symbBliS and
PLSRCSIn make.template to include it, and repeat the above procedure.

5. If you built yourpigiRpc with SDFMyStar.o , you can test youpigiRpc by
starting up with:

pigi -rpc $SPTOLEMY/obj.$PTARCH/pigiExample/pigiRpc $PTOLEMY/
src/pigiExamplefinit.pal

and then run the ‘wave’ universe. If you want to have the binary you just built be
the default binary for yourself, you can set yBUBIRPC environment variable to
the name of the binary you just built:

setenv PIGIRPC $PTOLEMY/obj.$PTARCH/pigiExample/pigiRpc

Next time you stanigi , your new executable will be used instead of the standard
one. To revert to using the installeidiRpc , just type

unsetenv PIGIRPC

6. If you want yourpigiRpc to be the defaulpigiRpc , you can install it in
$PTOLEMY/bin.$PTARCH, but this will wipe out whatevepigiRpc is in that
directory

With the same makefile, you can make a version obifiRpc program that has
debug symbols. Just type:
make pigiRpc.debug

To use this, assuming the Gnu debugg#r is in your path, specify the executable as fol-
lows:

setenv PIGIRPC\
$PTOLEMY/0bj.$PTARCHY/pigiExample/pigiRpc.debug

assuming your executable isHRTOLEMY/obj.$PTARCH/pigiExample/ . Then starpigi
as follows:

pigi -debug
To revert to using the installgdhiRpc , just type
unsetenv PIGIRPC

1.3.2 Creating a pigiRpc with more extensive customizations
If you are extending Ptolemy in nontrivial ways, such as writing a new domain, we

U. C. Berkeley Department of EECS

The Almagest 1-9

suggest that you create your own copy of the Ptolemy directory tree. You may use symbolic
links to the “official” directories if you do not need to modify or work on them. Your new
code should be placed in the parallel directory with the other similar Ptolemy subdirectories,
using the same directory structure. This way you can reuse the makefiles of similar Ptolemy
directories with minimal modifications. After you create your own Ptolemy tree and add your
new directories and files, certain Ptolemy makefiles, typi@®IyOLEMY/mk/ptbin.mk and
$PTOLEMY/mk/stars.mk , need to be modified to include your own code. Building your
ownpigiRpc , ptcl ortysh this way requires extensive knowledge of the Ptolemy directory
tree structure and makefiles, but if you are doing serious development in Ptolemy, you will
need to know this anyway.

Warning: If you have write permission in the directory where Ptolemy is installed, make sure
to modify the place where “make install” puts the completed executable, or it will attempt to
overwrite thepigiRpc in the Ptolemy installation, and other users may be upset with you if
you succeed in doing that. (If you are using the makefile $#®8MOLEMY/src/pigiExam-

ple , you do not need to worry about this because “make install” has been removed from that
makefile.) The simplest thing to do is to replace the line imtdefile

install: makefile $(DESTBIN)

with:
install: makefile pigiRpc

This will leave thepigiRpc in whatever directory you make it even if you type:
make install

1.4 Using mkPtolemyTree to create a custom Ptolemy trees

In Ptolemy 0.6 and later, there are two methods of building custom Ptolemy trees that
have a user selected set of domains: csh aliases am#tRk@emyTree script. This section
discusses thenkPtolemyTree script, see “Using csh aliases to create a Parallel Software
Development Tree” on page 1-12 for an alternative method of creating a parallel tree.

In Ptolemy 0.6 and later, th@ekPtolemyTree script and a user suppliedier-
ride.mk file to create an entire custom object tree. The tree will have copies of all Ptolemy
directories on which the customized installation depends. The script will also set up the
override.mk files needed to build custopigiRpc , tysh andptcl binaries. SincenkP-
tolemyTree runs very fast, you may avoid having to recompile the entire Ptolemy tree,
which can take 3 hours on a fast workstation.

1.4.1 mkPtolemyTree example
ThemkPtolemytree command usage is:
mkPtolemyTree override.mKk file r oot _pathname_of new tree
For example, say that you wanted to build a tree that only has the VHDL domain in
~/mypt .
1. One would create a file calletbverride.mk that contains:

VHDL=1
DEFAULT_DOMAIN=VHDL

Ptolemy Last updated: 10/10/97

1-10 Extending Ptolemy — Introduction

VERSION_DESC="VHDL only"

The file $SPTOLEMY/mk/ptbin.mk contains a list of the makefile variables that
can be set to bring in the various domains.

2. Set$PTOLEMYto point to the Ptolemy distribution, in this example, the Ptolemy
distribution is at /users/ptolemy:

setenv PTOLEMY /users/ptolemy
3. Set$PTARCHOo the appropriate value:
setenv PTARCH ‘$PTOLEMY/bin/ptarch’
4. Set the path properly:
set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

5. Execute thenkPtolemyTree command so that theverride.mk file is used to
create a custom tree in thégnypt directory.

mkPtolemyTree ~/override.mk ~/mypt

In general, you will want to define the variablésandHOF SettingTK indicates that
you want to include Tcl/Tk extensions to the domains. SeHiDgmeans that you want to
include the higher-order functions domain. The higher-order functions domain is used in
many demonstrations to configure stars with multiple portholes and to specify scalable sys-
tems. So, adding these make variables in the saangde.mk file would make it look like
the following:

HOF=1

TK=1

VHDL=1

DEFAULT_DOMAIN=VHDL

VERSION_DESC="VHDL only"

1.4.2 How mkPtolemyTree works

To accumulate a list of the directories necessary to build a custon$re®@,EMY/
src/stars.mk contains a makefile variable nam@dSTOM_DIRSIn stars.mk , each fea-
ture, such a¥HDLadds directories t6USTOM_DIRSAIso a feature can require sub-features,
and the sub-features can add directorieSWUSTOM_DIRSFor exampleYHDL requiresCG
andCGadds more directories @JSTOM_DIRS

When you rur8PTOLEMY/bin/mkPtolemyTree , the following events occur:

1. From theoverride.mk file that the user specifies, the script builds a tree with the
directories as specified the value of @¢STOM_DIRS$nakefile variable.

2. Next, the files in théPTOLEMYtree are copied over if the directory exists using
tar (to save modification times).

3. For each directory specified BYSTOM_DIRSwe create symbolic links to all the
directories that we have not expanded from#R€OLEMYtree themake.tem-
plate andmakefile symbolic links in the obj directories are set correctly.

U. C. Berkeley Department of EECS

The Almagest 1-11

4. Theoverride.mk file is copied into the new tree a&W_ROOmk/over-
ride.mk , whereNEW_ROO the root path name of the tree we are constructing.

5. override.mk files are constructed that refereméEW _RO@MNk/override.mk
specific totysh , ptcl andpigiRpc

6. make install IS run iNNEW_ROQ@4dbj.$PTARCH/ which creates the hard link
for the libraries IWVEW_ROdib.$PTARCH and builds the custorgsh , ptcl ,
andpigiRpc

This new tree has all the symbolic links and directories necessary to act as a full-
fledged Ptolemy tree. You should be able to set Pa@LEMYenvironment variable to this
new tree angigi will run your custonpigiRpc binary.

Currently the Tcl libraries and Tycho are not expanded but are accessible via symbolic
links. To have the utility expand ti$®TOLEMY/lib/tcl directory, add the following line to
youroverride.mk file:

CUSTOM_DIRS += $(CROOT)/lib/tcl

To expand Tycho, consult the Tycho documentation and usgriie script.

There is no documentation of the variables to pull in each domain yet. In general, it is
the standard abbreviation for the domain in capital letter. For example, the Synchronous Data-
flow (SDF) domain isSDF, the Discrete-EvenDE) domain is DE, and so forth. Some of the
domains are split up, the entire domain can be brought in by defaiggJLL (e.g.,SDF-

FULL or CGCFULL) When defined, they include all of the SDF and CGC functionality,
respectively, whereas SDF and CGC include only the basic functionality. The basic version of
the SDF domain does not include the image, matrix, Matlab, DSP, and Tcl/Tk stars. If you are
attempting to build a pigi that includes the Process Network (PN) domain, then you should
add the following to youoverride.mk file.

INCLUDE_PN_DOMAIN = yes

For a listing of the possible make variables, refer to #REOLEMY/mk/ptbin.mk and
$PTOLEMY/mk/stars.mk files.

1.4.3 Combining mkPtolemyTree and pigiExample

It is possible to use thaverride.mk file used bymkPtolemyTree in thepigiEx-
ample directory to create a custquigiRpc with user added stars. One reason for doing this
would be to that on some platforms, stars that have been incrementally linked are not visible
from the debugger. Creating a custpigiRpc with the star as a built in star can aid debug-
ging.

After running mkPtolemyTree , edit SPTOLEMY/src/pigiExample/make.tem-
plate and add your stars as described in “Creating a pigiRpc that includes your own stars” on
page 1-7.

1.4.4 Known Bugs in mkPtolemyTree

e To build a customized pigiRpc, you set makefile variablesSikeor CG56to 1 in
your override.mk . If you happen to have an environment variable cadipg or
CG56 this procedure fails because the rulstars.mk just checks whether the vari-
able is defined or not, not what value it has. So, ensure that you have no environment

Ptolemy Last updated: 10/10/97

1-12

Extending Ptolemy — Introduction

variables that clash with the variables usedvirride.mk

Suggested fix: Istars.mk , not only check whether a variable li8®F is defined,
but also check its value.

Hopefully, the value is different from the other definition and the code is more robust.
If mkPtolemyTree gives you the following message:

Making a customized Ptolemy development tree using the version of

Ptolemy installed in the directory /users/ptolemy

The new customized Ptolemy tree will go in /users/cxh/mypt

mkdir: illegal option -- n

mkdir: usage: mkdir [-m mode] [-p] dirname ...

The try setting your path so thasr/ucb is before/usr/bin . The problem here is
that in Ptolemy 0.7, thekPtolemyTree script uses then option withecho, which
is not portable.

mkPtolemyTree cannot add new directories to an already existing tree, it can only be
used to create a brand new parallel tree.

MAKEARCHNay fail when used with a tree that was created wkRtolemyTree |,
sinceMAKEARCHhay follow symbolic links into the master tree, where the user does
not have write permission.

mkPtolemyTree requires that the master Ptolemy tree have a fully expanded
obj.$PTARCH directory. Otherwise you will get an error about ‘no sources rule
found'.

1.5 Using csh aliases to create a Parallel Software Development

Tree

Below is a set of C shell aliases that can be used to create a parallel software develop-

ment tree.

1.5.1 Aliases for Managing Symbolic Links

Below are severalsh aliases that can be helpful when managing a duplicate hierar-

chy that is implemented with symbolic links:

alias pt 'echo $cwd | sed s:${HOME}/Ptolemy:${PTOLEMY}:’
alias ptl 'In -s "pt'/* .’

alias sw 'mv \I* swap$$; mv \I* \IY; mv swap$$ A

alias exp 'mkdir \I; sw\IY; cd \I; ptl’

alias rml "\rm -f "\Is -F \I* | sed -n s/@\$//p”’

alias mkl 'rml make*; In -s “vpath'/make* .’

These are documented below in detail. For convenience, these aliases can be found in the file
$PTOLEMY!/.alias

The pt Alias

Thept alias returns the name of the “official” Ptolemy directory that corresponds to

U. C. Berkeley Department of EECS

The Almagest 1-13

the current directory, which is presumably in your personal hierarchy. This assumes that you
have the environment varial$® TOLEMYset to the root directory of the “official” version of
Ptolemy, and that your private version is~ifPtolemy . If this is not the case, then you
should make suitable modifications to definition ofghealias. This alias is useful when you
want to make a symbolic link to or otherwise access the “official” version of a file, as in

% cd ~/Ptolemy/src/domains/sdf/kernel
% In -s pt'/SCCS.

This will create a symbolic link in your directoryPtolemy/src/domains/sdf/kernel
to the directorysPTOLEMY/src/domains/sdf/kernel/SCCS . (For information on source
code control, see below).

The ptl Alias

Theptl alias uses thpt alias to create, in the current directory, symbolic links to all
the files in the corresponding “official” directory. This is useful for quickly filling in the
branches of a new directory in your private hierarchy.

% pwd
/users/me/Ptolemy/src/domains/ddf
% mkdir stars

% cd stars

% ptl

% Is -F

DDFCase.cc@ DDFLastOfN.cc@ DDFThresh.cc@
DDFCase.h@ DDFLastOfN.h@ DDFThresh.h@
DDFCase.pl@ DDFLastOfN.pl@ DDFThresh.pl@
DDFDownCounter.cc@ DDFRepeater.cc@ SCCS@
DDFDownCounter.h@ DDFRepeater.h@ TAGS@
DDFDownCounter.pl@ DDFRepeater.pl@ ddfstars.c@
DDFEndCase.cc@ DDFSelf.cc@ ddfstars.mk@
DDFEndCase.h@ DDFSelf.h@ make.template @
DDFEndCase.pl@ DDFSelf.pl@ makefile@

%

This creates a directory nams@rs and fills it with symbolic links to the contents of the
corresponding directory in the “official” Ptolemy tree. Using #heoption of thels com-

mand, makes it easy to see which files in a directory are symbolic links (they are marked with
a trailing “@ sign).

The sw Alias

When experimenting with Ptolemy, you may want to switch back and forth between
using the official version of some directory and your own version. You can keep two versions
of the same directory (or a file). Thw alias swaps a file or directof{ename with another
file or directory.filename . The period at the beginning of the second file name makes it
invisible unless you use the option of thds command. For example, suppose you wish to
experiment with making a change to just one BleFRepeater.pl , in the directory above,
to fix a bug (and then send the bug fix back to the Ptolemy group):

Ptolemy Last updated: 10/10/97

1-14 Extending Ptolemy — Introduction

% pwd
/users/me/Ptolemy/src/domains/ddf/stars
% sw DDFRepeater.pl

mv: cannot access .DDFRepeater.pl

% ls -a

A DDFEndCase.h@ DDFThresh.cc@
. DDFEndCase.pl@ DDFThresh.h@
.DDFRepeater.pl@ DDFLastOfN.cc@ DDFThresh.pl@
DDFCase.cc@ DDFLastOfN.h@ SCCS@
DDFCase.h@ DDFLastOfN.pl@ TAGS@
DDFCase.pl@ DDFRepeater.cc@ ddfstars.c@
DDFDownCounter.cc@ DDFRepeater.h@ ddfstars.mk@
DDFDownCounter.h@ DDFSelf.cc@ make.template @
DDFDownCounter.pl@ DDFSelf.h@ makefile@
DDFEndCase.cc@ DDFSelf.pl@

Notice thatDDFRepeater.pl was moved toDDFRepeater.pl . You can now create your
own version oDDFRepeater.pl . To later reinstate the official version (e.g., you discovered
that what you thought was a bug was in fact a feature),

% sw DDFRepeater.pl

The exp Alias

When starting your experimentation, the job of creating the parallel tree can be rather
tedious. Theexp aliases combines the functions of thie andsw aliases into one, making
the common task of expanding a branch in the directory hierarchy easy. Suppose you type:

% exp stars

This is equivalent to the following sequence of commands:

% mkdir .stars
% sw stars

% cd stars

% ptl

Note that the command leaves you in the new directory ready to issue axptloemmand.

For example, to create a duplicate of the direc8VOLEMY/src/domains/ddf/stars ,
creating all subdirectories as you go, and linking to all the appropriate files in the Ptolemy
tree,

% cd ~/Ptolemy
% exp src

% exp domains
% exp ddf

% exp stars

U. C. Berkeley Department of EECS

The Almagest 1-15

The rml Alias

Therml alias removes symbolic links in the current directory. Without an argument, it
removes all the visible symbolic links. Any arguments are passed onlso temmand. So,
to removeall symbolic links, including those that are invisible, use-gh@ption:

% rml -a

You can also give file names as arguments to remove just some of the symbolic links:

% rml *.0

The mkl alias

Suppose you wish to compile your change toDb&Repeater.pl file, as above.
You will need to make an object tree. Assume you are on a Sun Solaris 2.x platform. You
have created a parallel tree already~iRtolemy/src (i.e. ~Ptolemy/src/domains/
ddf/stars exists). Create the corresponding object tree:

% cd ~Ptolemy

% exp obj.sol2

% exp domains

% exp ddf

% exp stars

% pwd
/users/me/Ptolemy/obj.sol2/domains/ddf/stars

The directory in which you are now located contains symbolic links tmthiges and make-
files in the official Ptolemy tree. If you runake here, your replacemebDFRepeater.pl

star will be compiled in place of the official one. If you rumake install ", then a library
will be created and installed in the directeri?tolemy/lib.sol2 , assuming this directory
exists.

Runningmake as above uses the makefiles in the official Ptolemy tree, because you
have symbolic links to them. Suppose you wish to modifyrthiee.template file in
~/Ptolemy/src/domains/ddf/stars . In this case, you should run thekl alias to
replace thenakefile symbolic links. If you have followed the above steps, try this:

% pwd

/users/me/Ptolemy/obj.sol2/domains/ddf/stars

% Is -F

DDFCase.o@ DDFRepeater.o@ libddfstars.a@
DDFDownCounter.o@ DDFSelf.o@ make.template @
DDFEndCase.o@ DDFThresh.o@ makefile@
DDFLastOfN.o@ ddfstars.o@

(This assumes that the “official” Ptolemy has been rebuilt after being installed, otherwise the
.0 and .a files will be missing). Expand the makefile symbolic links:

% Is -| make*

Ptolemy Last updated: 10/10/97

1-16 Extending Ptolemy — Introduction

Irwxrwxrwx 1 eal 56 Jul 14 11:30 make.template -> /users/
ptolemy/obj.sol2/domains/ddf/stars/make.template
Irwxrwxrwx 1 eal 51 Jul 14 11:30 makefile -> /users/

ptolemy/obj.sol2/domains/ddf/stars/makefile

Note that they point to the “official” makefiles. To make them point to the versions in your
own tree,

% mkI

% Is -I make*

Irwxrwxrwx 1 eal 47 Jul 14 11:31 make.template -> ../../
..I..Isrc/domains/ddf/stars/make.template

Irwxrwxrwx 1 eal 42 Jul 14 11:31 makefile -> ../..1..1..]

src/domains/ddf/stars/makefile

Now you can modify thenake.template file in your own tree as you need.

Warning

Note that modifying Ptolemy files is risky. You will have essentially created your own
version of Ptolemy. You will not be able to install future releases of Ptolemy without aban-
doning your version. However, if you have modifications that you believe are valuable, please
communicate them to the Ptolemy grouptatemy@eecs.berkeley.edu . The Ptolemy
group welcomes suggestions for changes.

1.5.2 Creating a Duplicate Hierarchy

Let's look at a complete example to see how these aliases can be used. Suppose you
want to modify an existing file that is part of the kernel for the SDF domain. You will need a
private copy of the file that is writable. This allows you to make your changes without affect-
ing the “official” version of Ptolemy. In order to test your change, you will have to build a pri-
vate version of the interpretptcl or the graphical interfagegiRpc

First, create the root directory for your duplicate hierarchy.

% mkdir ~/Ptolemy

Then go into that directory and create symbolic links to all files in the corresponding “offi-
cial” Ptolemy directory.

% cd ~/Ptolemy
% ptl

You will want to have a private version of thie$PTARCH directory so that you won't
modify the “official” version of any library or object files.

% cd ~/Ptolemy
% exp lib.$PTARCH

(This assumes youwPTARCHenvironment variable is set). You will also want a private

U. C. Berkeley Department of EECS

The Almagest 1-17

obj.$PTARCH directory for the same reason. In this example, the tree is expanded down to
thesdf directory:

% cd ~/Ptolemy

% exp obj.$PTARCH
% exp domains

% exp sdf

If you are modifying code in thsdf/kernel directory, then you will want to expand it as
well. Once expanded, you will want remove theke.template and makefile links
(which point to the “official” Ptolemy files) and replace them with links that use relative paths
to refer to your private versions of these files (in case you make changes to them):

% exp kernel
% mkl

If you make changes in thelf/kernel directory, then there is a good chance that object
files insdf/dsp and other directories will also have to be recompiled. Thus, you will want to
expand these directories (and any subdirectories below them) as well. Remember to replace
themake.template andmakefile links as in thesdf/kernel directory.

% exp dsp
% mkl

% exp stars
% mkl

Because of the way symbolic links work, it is important to remove the links fos thed.a
files in the directories you have just created. You can do this by issuiagearealclean
command in thebj.$PTARCH/domains/sdf directory. This will recursively clean out all
the subdirectories. You could also do this manually by issuing ao *.a command in
each directory.

You will also need a private version of thre directory.
% cd ~/Ptolemy
% exp src
% exp domains

% exp sdf
% exp kernel

At any point after this, it is possible to switch back and forth between private and “official”
versions of these directories with the alias. In fact, you just used it (as part of¢lkp alias)
to switch to the private versions of tbig.$PTARCH , lib.$PTARCH , andsrc directories.

To compile your version of the sdf kernel directory,

% cd ~/Ptolemy/obj.$PTARCH/domains/sdf/kernel
% make install

To make a version pigiRpc (or better yet, ptinyRpc) with your changes,

Ptolemy Last updated: 10/10/97

1-18 Extending Ptolemy — Introduction

% cd ~/Ptolemy/obj.$PTARCH
% exp pigiRpc

% mkl

% make ptinyRpc

1.5.3 Source Code Control

At the present time, at Berkeley, the Ptolemy group uses SCCS for source code con-
trol. This means that each directory with source code in it contains a subdirectory called
SCCS. That subdirectory is not distributed with Ptolemy, but if you are starting your own
development expanding on Ptolemy, you may wish to use a similar mechanism. We assume
here that you are familiar with SCCS, which is a standard Unix facility.

Recall the command above:

% pwd
/users/me/Ptolemy/src/domains/ddf/stars
% sw DDFRepeater.pl

mv: cannot access .DDFRepeater.pl

% s -a

A DDFEndCase.h@ DDFThresh.cc@
i DDFEndCase.pl@ DDFThresh.h@
.DDFRepeater.pl@ DDFLastOfN.cc@ DDFThresh.pl@
DDFCase.cc@ DDFLastOfN.h@ SCCS@
DDFCase.h@ DDFLastOfN.pl@ TAGS@
DDFCase.pl@ DDFRepeater.cc@ ddfstars.c@
DDFDownCounter.cc@ DDFRepeater.h@ ddfstars.mk@
DDFDownCounter.h@ DDFSelf.cc@ make.template @
DDFDownCounter.pl@ DDFSelf.h@ makefile@
DDFEndCase.cc@ DDFSelf.pl@

Note the symbolic link to the “official” SCCS directory. This will not be present if you are
using the distributed Ptolemy and have not created it. Assume, however, that you have put this
directory under SCCS control (or someone else has). Then you can create an editable version
of theDDFRepeater.pl star with the command:

% sccs edit DDFRepeater.pl
1.24

new delta 1.25

76 lines

The sccs utility tells you the latest version number (1.24) and assigns you a new version num-
ber (1.25). You can now edit the file safely (nobody else will be allowed by sccs to edit it).
When you are done and have fully tested your changes (and obtained clearance from the
Ptolemy group if necessary), you can check the file back in:

% sccs delget DDFRepeater.pl
comments?

You should enter an explanation of your changes. If you wish to nullify your changes, restor-

U. C. Berkeley Department of EECS

The Almagest 1-19

ing the official version,

% sccs unedit DDFRepeater.pl

and if you wish to create a new file and put it under SCCS control,

% sccs create -fi NewFileName

1.6 Building standalone programs that use Ptolemy libraries.

Sometimes it is necessary to create small standalone programs that use part of the
Ptolemy libraries.

Examples of this are the desire to use Ptolemy kernel classes sitohghsst or
the need to isolate an obscure bug or memory leak$AH@LEMY/mk/standalone.mk file
provides the make definitions to make this possible. This file provides make rule definitions to
build various binaries some using the Pure Sofwaré ttitities.

The usage for this makefile is:

make -f $PTOLEMY/mk/standalone.mk stars.mk_variable_defs file-
name. suffix
Where stars.mk_variable _defs is zero or more makefile variables used in

$PTOLEMY/mk/stars.mk , such asSDF=L1 filename is the base name of the file to be com-
piled, and the basename of the output file.aufflx is one of the forms listed in table 1-1.

Suffix Binary Type

.bin Standard binary

.debug Binary with debug symbols

.purify Binary with Purify and debug
symbols

.quantify Binary with Quantify linked in

.purecov Binary with Pure Coverage linkdd
in

TABLE 1-1: Table of filename suffixes and binary types.

It is possible to use these makefiles to create binaries that do not have any Ptolemy
code. A reason why you might want to do this is to take advantage of the Pure Software make
definitions instandalone.mk . To specify no Ptolemy libraries, use the make argument
NOPTOLEMY=1

1.6.1 Standalone example using StringList
For example, say you want to use teingList class in a standalone program

1. Rational (http://www.rational.com) sells tools such as:
Purify, which can be used to find memory leaks and out of bounds memory accesses.
Quantify, which can be used to profile performance.
Purecov, which can be used to provide code coverage information.

Ptolemy Last updated: 10/10/97

1-20 Extending Ptolemy — Introduction

namedbar.cc
#include
#include "StringList.h"
main() {
StringList testing = "This is a test\n";
cout << testing;

}
To build it you would type:

make -f $PTOLEMY/mk/standalone.mk bar.bin

If you wanted to make a new standalone program that also uses part of the CG domain,
just define the domain make variables (as used in stars.mk) on the make command line:

make -f $PTOLEMY/mk/standalone.mk CG=1 bar.bin

If you are going to do this often, it may be useful to create a new directory in which to
test this program. In this directory, execute the commands:

In -s $PTOLEMY/mk/standalone.mk makefile
In -s $PTOLEMY/mk/standalone.mk make.template

By having these symbolic links, you will not have to supply the make argument
-f SPTOLEMY/mk/standalone.mk as before.

1.6.2 Standalone example that tests a Scheduler

Here is an example of a minimal file that can be used to call the setup in a Scheduler
for instance. If the filéestAcyLoopSched.cc contains:

#include <iostream.h>

#include "Galaxy.h"

#include "SDFStar.h"

#include "AcyCluster.h"

#include "AcyLoopScheduler.h"

#include "SDFPortHole.h"

main() {
/I First create a simple galaxy and some stars.
SDFStar star[3];
Galaxy topGalaxy;
topGalaxy.setDomain("SDF");
topGalaxy.setName("topGalaxy");
topGalaxy.addBlock(star[0],"star0");
topGalaxy.addBlock(star[1],"starl");
topGalaxy.addBlock(star[2],"star2");

/I Add ports to stars.
OutSDFPort p0,p1;
INSDFPort p2,p3;

[/l initialize the ports
pO0.setPort("outputl"”,&star[0],FLOAT,2);
star[0].addPort(p0);
pl.setPort("output2",&star[0],FLOAT,3);
star[0].addPort(pl);
p2.setPort("input”,&star[1],FLOAT,3);

U. C. Berkeley Department of EECS

The Almagest 1-21

p3.setPort("input”,&star[2],FLOAT,2);
star[1].addPort(p2);
star[2].addPort(p3);

/I Connect ‘em up. The graph is

/I star[1] (3) <--- (2) star[0] (3) ---> (2) star[2]
p0.connect(p2,0);

pl.connect(p3,0);

/I Scheduling
AcyLoopScheduler sched;
sched.setGalaxy(topGalaxy);
cout << "No problem till now. Calling sched.setup()...\n";
sched.setup();
inti;
for(i=0;i<3;i++){
cout << star][i].fullName() << "\n";
cout << "Repetitions =" << star[i].reps() << "\n";

}
StringList sch = sched.displaySchedule();

cout << sch;

}

The command to compile this and produce a standalone binary would be:
make -f SPTOLEMY/mk/standalone.mk OPTIMIZER= SDF=1\
USE_SHARED_LIBS=yes testAcyLoopSched.debug

1.7 Debugging Ptolemy and Extensions Within Pigi

The extensibility of Ptolemy can introduce problems. Code that you add may be defec-
tive (few people write perfect code every time), or may interact with Ptolemy in unexpected
ways. These problems most frequently manifest themselves as a Ptolemy crash, where the
Ptolemy kernel aborts, creating a core file.

The fact thapigiRpc andvem are separate Unix processes has the advantage that
whenpigiRpc aborts with a fatal errovem keeps running. Yourem schematic is unharmed
and can be safely saved. Vem gives a cryptic error message something like:

RPC Error: server: application exited without calling
RPCEXxit

Closing Application /home/ohm1/users/messer/ptolemy/lib/
pigiRpcShell on host foucault.berkeley.edu

Elapsed time is 1538 seconds

The message
segmentation fault (core dumped)

may appear in the window from which you stangégd . The first line in the above message
might alternatively read

RPC Error: fread of long failed

Vem is trying to tell you that it is unable to get data from the link to the Ptolemy kernel. In
either case, it will create a large file in your home directory cathesl . Thecore ! file is

Ptolemy Last updated: 10/10/97

1-22 Extending Ptolemy — Introduction

useful for finding the problem.

1.7.1 A quick scan of the stack

Assuming you are using Gnu tools, and assumingitfiiBpc executable that you
are using is in your path, go to your home directory and type:

gdb pigiRpc
The Gnu symbolic debuggegdb) will show the state of the stack at the point where the pro-
gram failed. Note thajdb is not distributed with Ptolemy, but is available free over the Inter-
net in many places, includinfyp:/prep.ai.mit.edu/pub/gnu . The most recently

called function might give you a clue about the cause of the problem. Here is a typical session:
cxh@watson 197% gdb pigiRpc ~/core
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type “show copying” to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for
details.
GDB 4.15.1 (sparc-sun-solaris2.4),
Copyright 1995 Free Software Foundation, Inc...
(no debugging symbols found)...

Tell gdb to read in the core file.

(gdb) core core

Core was generated by “/users/ptolemy/bin.sol2/pigiRpc :0.0 wat-

son.eecs.berkeley.edu 32870 inet 1 2 3.

Program terminated with signal 11, Segmentation fault.

Reading symbols from
/users/ptolemyl/lib.sol2/libcg56dspstars.so...done.

Reading symbols from
/users/ptolemyl/lib.sol2/libcg56stars.so...done.

Since this version of Ptolemy uses shared libraries, we see lots of messages about shared
libraries, which we've deleted here for brevity.

(gdb) where

#0 Oxee7alc20 in _kill ()

#1 0x52b04 in pthread_clear_sighandler ()

#2 0x52cb4 in pthread_clear_sighandler ()

#3 0x53130 in pthread_clear_sighandler ()

#4 0x53320 in pthread_handle_one_process_signal ()

#5 0x55658 in pthread_signal_sched ()

#6 0x554d8 in called_from_sighandler ()

#7 0x535e4 in pthread_handle_pending_signals ()

#8 0x10100c in SimControl::getPollFlag ()

#9 0x101604 in Star::run ()

#10 0xd394c in DataFlowStar::run ()

#11 Oxeecab5fb8 in SDFAtomCluster::run (this=0x2bd0b0)

at ../../..l../src/domains/sdf/kernel/SDFCluster.cc:1032

#12 Oxeecalf20 in SDFScheduler::runOnce (this=0x2bd050)

at ../../../../src/domains/sdf/kernel/SDFScheduler.cc:121

#13 Oxeecaleac in SDFScheduler::run (this=0x2bd050)

at ../../..l../src/domains/sdf/kernel/SDFScheduler.cc:98

1. Note that core files can be large in size, so your system administrator may have setup the csh “limit”
command to disable the creation of core files. For further information, see the csh man page.

U. C. Berkeley Department of EECS

The Almagest 1-23

#14 0x108358 in Target::run ()
#15 0x109e04 in Runnable::run ()
#16 Oxe62ec in InterpUniverse::run ()
#17 Oxee9e7f04 in PTcl::run (this=0x20af80, argc=2949528,
argv=0x109fa4)
at ../../src/ptcl/PTcl.cc:521
#18 Oxee9e99a4 in PTcl::dispatcher (which=0x27, interp=0x1d4830,
argc=2,
The “where” command shows that state of the stack at the time of the crash. The actual stack

trace was 72 frames long, the last two frames being:
#71 Oxeec06d5c in ptkMainLoop ()
at ../../src/pigilib/ptk TkSetup.c:192
#72 0x4982c in main ()

Scanning this list we can recognize that the crash occurred during the execution of a
star. Unfortunately, unless you are running a versiopigilRpc with the debug symbols
loaded, it will be difficult to tell much more from this.

1.7.2 More extensive debugging

To do more extensive debugging, you need to create or find a verspigiRpic
with debug symbols, callgagiRpc.debug

The first step is to build pigiRpc that contains the domains you are interested in
debugging. There are several ways to buiibérpc

a. There may be prebuilt debug binaries on the Ptolemy Web site, check the directory
that contains the latest release.

b. Rebuild the entire tree from scratch. This takes about 3 hours. Appendix A in the
Ptolemy User’'s Manual has instructions about this.

c. UsemkPtolemyTree to rebuild a subset of the Ptolemy tree. See “Using mkP-
tolemyTree to create a custom Ptolemy trees” on page 1-9 for more information.

d. Use the csh aliases to rebuild a subset of the Ptolemy tree. See “Using csh aliases
to create a Parallel Software Development Tree” on page 1-12 for more informa-
tion.

The next step is to build thgiRpc.debug binary:
cd $SPTOLEMY/obj.$PTARCH/pigiRpc; make pigiRpc.debug

Then set th®IGIRPC environment variable to point to the binary:
setenv PIGIRPC $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.debug 1

Then run pigi as follows:
pigi -debug

An extra window runningdb appears. (If this fails, thegub is probably not installed at your

1. Note that the pigi script will attempt to find pigiRpc.debug binary if the PIGIRPC environment vari-
able is not set. An alternative is that one can avoid setting PIGIRPC and use the pigi -rpc option to
specify a binary.The command would be:
pigi -debug -rpc $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.debug

Ptolemy Last updated: 10/10/97

1-24 Extending Ptolemy — Introduction

site or is not in your path.) Tyment to continue past the initial breakpoint.

Now, if you can replicate the situation that created the crash, you will be able to get
more information about what happened. Here is a sample of interaction with the debugger
through thegdb window:

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type “show copying” to see the conditions.

There is absolutely no warranty for GDB; type “show warranty” for

details.

GDB 4.15.1 (sparc-sun-solaris2.4),

Copyright 1995 Free Software Foundation, Inc...

Breakpoint 1 at 0x39ab4: file ../../src/pigiExample/pigiMain.cc, line

58.

Breakpoint 1, main (argc=-282850408, argv=0x399c0)

at ../../src/pigiExample/pigiMain.cc:58

58 pigiFilename = argv[0];

(gdb) cont

Continuing.

At this point, you are running Ptolemy. Use it in the usual way to replicate your problem.
When you succeed, you will get a message something like:

Program received signal SIGSEGV, Segmentation fault.

Oxeee81394 in mxRealMax ()

(gdb)

At this point you can again examine the stack. This time, however, there will be more infor-
mation. Here, we examine the top 5 frames of the stack

(gdb) where 5

#0 Oxeee81394 in mxRealMax ()

#1 0xe3864 in SimControl::getPollFlag () at ../../src/kernel/SimCon-

trol.cc:271

#2 0xe3e5c in Star::run (this=0x28c908) at ../../src/kernel/

Star.cc:73

#3 Oxbacb8 in DataFlowStar::run (this=0x28c908)

at ../../src/kernel/DataFlowStar.cc:94

#4 0xef485fb8 in SDFAtomCluster::run (this=0x278570)

at ../../../l../src/domains/sdf/kernel/SDFCluster.cc:1032

(More stack frames follow...)

(gdb)

This particular stack trace is a little strange at the “bottom” (gdb calls the lower num-
bers the bottom even though they are at the top of the list) because it was generated by invok-
ing a dynamically linked star, and the symbol information is not complete. However, you can
still find out quite a bit. Notice that you are now told where the files are that define the meth-
ods being called. The file names are all relative to the directory in which the corresponding
object file normally resides. The Ptolemy files can all be found in some subdirectory of
$PTOLEMY/src .

You can get help fromgdb by typing “help”. Suppose you wish to find out first which
star is being run when the crash occurs. The following sequence moves up in the stack until
the “run” call of a star:

(gdb) up

#1 0xe3864 in SimControl::getPollFlag () at ../../src/kernel/SimCon-

trol.cc:271

U. C. Berkeley Department of EECS

The Almagest 1-25

271 ptBlockSig(SIGALRM);
(gdb) up
#2 0xe3eb5c in Star::run (this=0x28c908) at ../../src/kernel/
Star.cc:73
73 go();
(gdb)
At this point, you can see that line 73 of the $iRTOLEMY/src/kernel/Star.cc reads
go();

Odds are pretty good that the problem is ingh@ method of the star. You can find out to
which star this method belongs as follows:
(gdb) p *this
$1 = {<Block> = {<NamedObj> = {nm = 0x28ad58 "BadStarl",
prnt = 0x28c878,
myDescriptor = 0x28b658 "Causes a core dump deliberately”,
_vptr. = Oxeee91738}, flags = {nElements = 0, val = Ox0},
pTarget = 0x28aa60, scp = 0x0,
ports = {<NamedObjList> = {<SequentialList> =
{lastNode = 0x0, dimen = 0}, }, }, states = {<NamedObijList> =
{<SequentialList> = { lastNode = 0x0, dimen = 0}, }, },
multiports = {<NamedObjList> = {<SequentialList> =
{lastNode = 0x0, dimen =0}, }, }},
indexValue = -1, inStateFlag = 1}
(gdb)
This tells you that a star with namemj BadStarl and descriptor “Causes a core
dump deliberately.” is being invoked. This particular star has the following erroneous go
method:

go {
char*p =0;
*p = ’C';

}

More elaborate debugging requires that the symbols for the star be included. The easiest way
to do this is to build a version pfgiRpc.debug that includes your star already linked into

the system. Then repeat the above procedure. The bottom of the stack frame will have much
more complete information about what is occurring.

1.7.3 Debugging hints
Below are some hints for debugging.

* “Using emacs, gdb and pigi” on page 1-26

e “Gdb and the environment” on page 1-26

* “Optimization” on page 1-26

* “Debugging StringLists in gdb” on page 1-26

* “How to use ptcl to speed up the compile/test cycle.” on page 1-27

Ptolemy Last updated: 10/10/97

1-26 Extending Ptolemy — Introduction

* “Miscellaneous debugging hints for gdb” on page 1-28
See also Appendix A of the Ptolemy User’s manual.

Using emacs, gdb and pigi

By default,gdb is started in an X terminal window with its default command line
interface. Many people prefer to interface witltb throughemacs, which provides much
more sophisticated interaction between the source code and the debugger. Tengatsan
interface togdb (assumingmacs is installed on your system), set the following environment
variable:

setenv PT_DEBUG ptgdb

To find out more about usinglb from within emacs, start upemacs and type:
M-X info
Then type:
m emacs

Then go down to:
Running Debuggers Under Emacs

* Starting GUD:: How to start a debugger subprocess.

* Debugger Operation:: Connection between the \

debugger and source buffers.

* Commands of GUD:: Key bindings for common commands.
* GUD Customization:: Defining your own commands for GUD.

Gdb and the environment

Note that the documentation fgdb says the following:
Warning: GDB runs your program using the shell indicated by your
"SHELL' environment variable if it exists (or “/bin/sh’ if not). If

your "SHELL’ variable names a shell that runs an initialization file-
-such as ".cshrc’ for C-shell, or ".bashrc’ for BASH--any variables
you setin that file affect your program. You may wish to move setting
of environment variables to files that are only run when you sign on,
such as ".login’ or ".profile’.

Optimization
By default, Ptolemy is compiled with the optimizer turn up to a very high level. This
can result in strange behavior inside the debugger, as the compiler may evaluate instructions
in a different order than they appear in the source file. You may find it easier to debug a file by
recompiling it with the optimization turned off by removing the correspondgingle and
doing:
make OPTIMIZER= install

Debugging StringLists in gdb
Ptolemy usestringList object to manipulate strings. However, usiaiy to view

U. C. Berkeley Department of EECS

The Almagest 1-27

a StringList object can be non-intuitive. To print the contents ofStanglist
myStringList ~ as one item per line from withgub, use:

p displayStringListltems(myStringList)
To print out theStringList as a contiguous string, use:
p displayStringList(myStringList)

How to use ptcl to speed up the compile/test cycle.

If you are spending a lot of time debugging a problem, you may want tptaise
instead ofpigiRpc , asptcl is smaller and starts up faster. Also, you can keep your break-
points between invocations pfcl , as debuggingtcl does not start up a separateacs
each time. Howeveptcl cannot handle demos that use Tk.

Here’s how to usetcl to debug.

1. RunpigiRpc on the universe, and use compile-facet to generate a
~/pigiLog.pt file. Note the number of iterations for the universe, and then exit

pigiRpc

2. Copy-~/pigiLog.pt to somewhere. A short file name, lilk@p/tst.tcl will
save time in typing since you may be typing it often. Don’t use something inside
your home directory as you can't easily us@sideptcl

3. Edit the file and add mn XXXline and awrapup line at the end. If the demo
should run for 100 iterations, then add:

run 100
wrapup

to the end of the file.

4. Build aptcl.debug that has just exactly the functionality you need by using an
override.mk file. Alternatively, you could use eithetcl.ptrim.debug or
ptcl.ptiny.debug . If your demo is SDF, then try building and using
ptcl.ptiny.debug

5. If you useemacs, then you can start wlb on your binary with:
M-x gdb
6. Then type in the name of the binary. You may have to use the full pathname.

7. Insideemacs, you can then set breakpoints in thy window, either by typing a
break command, or by viewing the file and typ@untrol-X space at the loca-
tion you would like a break point.

8. Typer to start the process, and then source your demo with:
source /tmpltst.tcl

If you want to recompile your demo outsidegab and then reload it into your
gdb session, use thile command insidgdb:

Ptolemy Last updated: 10/10/97

1-28 Extending Ptolemy — Introduction

file /Jusers/cxh/pt/obj.sol2/ptcl/ptcl.ptiny.debug

Your breakpoints will be saved, which is a big time saver.

Miscellaneous debugging hints for gdb
If you are having problems debugging wailtb , here’s what to check.

1. Verify that yoursPTOLEMVYis set to what you intended. If you are building bina-
ries in your private tree, be sure tB®TOLEMYis set to your private tree and not
~ptdesign or/users/ptolemy

2. Verify that your $LD_LIBRARY_PATH does not include libraries in another
Ptolemy tree. You could type:

unsetenv $LD_LIBRARY_PATH

3. gdb sources yourcshrc , SO yourSPTOLEMYand$LD_LIBRARY_PATHcould be
different. Insidegdb, use

show env PTOLEMY

to see what it is set to. This problem is especially common if you are rugdiing
insideemacs via ptgdb .

4. \Verify that you are running the right binary by looking at the creation times. You
may find it useful to use thepc option:

pigi -debug -rpc $PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.mine ~ptdesign/
init.pal

5. Recompile the problem files with optimization turned off and relink your
pigiRpc . You can do this with

rm myfile.o; make OPTIMIZER= install
Then rebuild youpigiRpc

6. Look for weird coding styles that could confuse the line count in emacs and gdb,
such as declaring variables in the middle of a block and brackets that open a func-
tion body on the same line as the function declaration:

int foo(int bar){
VS.

int foo(int bar)

{
7. Usestepi to step by instructions, rather thstap .

U. C. Berkeley Department of EECS

Chapter 2. Writing Stars for
Simulation

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee

Other Contributors: Most of the Ptolemy team

2.1 Introduction

Ptolemy provides rich libraries of stars for the more mature domains. Since the stars
were designed to be as generic as possible, many complicated functions can be realized by a
galaxy. Nonetheless, no star library can possibly be complete; you may need to design your
own stars. The Ptolemy preprocessor language makes this easier than it could be. This chapter
is devoted to the use of the preprocessor language.

Newly designed stars can be dynamically linked into Ptolemy, avoiding frequent
recompilation of the system. If the new stars are generic and useful, however, it might be bet-
ter to add them to the list of compiled-in stars and rebuild the system. See “Creating Custom
Versions of pigiRpc” on page 1-6.

2.2 Adding stars dynamically to Ptolemy

To get a quick sense of what it means to create a nhew star, you can use one of the exist-
ing stars as a template. Create a new directory in which you have write permission. Copy the
source code for an existing Ptolemy star. For example,

cd my_directory
cp $PTOLEMY/src/domains/sdf/stars/SDFSin.pl SDFMyStar.pl
chmod +w SDFMyStar.pl

The “pl " extensions on the file hames stand for “Ptolemy language” or “preproces-
sor language.” The file name must be of the f@wmainStarname .pl for dynamic linking
and thdook-inside command to work. The last command just ensures that you can modify
the file. Edit the file to change the name of the star Bomto MyStar . This is necessary so
that the name does not conflict with the existing star in the SDF domain.

You can now dynamically link your new star. Staigi , the graphical editor. If you
startpigi in your new directory, you will get a blainit.pal facet. Place your mouse cur-
sor in this facet, and issue the “make-star” command (the shortcu)).is\“dialog box like

2-2 Writing Stars for Simulation

the following will appear:

inke Star

Star- s
flomaim:
Stai- Gt difectorg s

Fathmam= of FPalekie]

Enter the name of the stavlyStar , its domain,SDF, the location of the directory that
defines it, such asuser_name/my_directory , and the name of palette in which you
would like its icon to appeauyser.pal . The star will be compiled and dynamically
linked with the Ptolemy executable. An icon for it will appear in the fasatpal . Try
using this in a simple system.

Three details about dynamic linking may prove useful:

e If the name of the star source directory hascda componentpigi will replace
this with /obj.$PTARCH/ depending on the type of machine you are running, to
get the name of the directory in which to store the object file. This is especially
useful if you are jointly doing development with others who use a different type of
machine. If there is nerc/ component in the name, then the object file is placed
in the same directory with the source file.

e If there is a file namedakefile or makefile in the object file directoryigi
will run the make program, using theakefile to create the object file (or make
sure it is up to date). If there is nmkefile , pigi will run a make-like proce-
dure on its own, running the preprocessor as needed to produce the C++ source
files, then running the C++ compiler to create the object file. By default, the C++
compiler will be told to look for include files in the kernel directory and the
domain-specific kernel and star directories; if this is not adequate, then you need to
write a makefile. Once compilation (if any) is complete, the dynamic linker is used
to load the star into the system. Compilation errors, if any, will appear in a popup
window.

* Whenever the definition of a star is changed so that the new definition has differ-
ent 1/O ports, the icon must be updated as well. You can do this by cabiker
star again to replace the old icon with a new one.

If the linking fails, one of the following situations may apply:
e Whoever installed Ptolemy did not install the compiler.

* The compiler is not configured correctly. If you are using a prebuilt compiler
obtained from the Ptolemy ftp site, you may need to set some environment vari-
ables if your Ptolemy installation is not/asers/ptolemy . See Appendix A of
the PtolemyUser’s Manualfor more information.

* A spuriousnakefile exists in your directory. If makefile exists in your direc-
tory, Ptolemy will attempt to use it to compile your star. Remove it, and try again.

U. C. Berkeley Department of EECS

The Almagest 2-3

* The version of the compiler used to build Ptolemy is not the same as the version used
to compile your star. This should not occur if you are using the compiler distributed
with Ptolemy, but can occur if the compiler has been updated since Ptolemy was last
built, or if you are not using the compiler distributed with Ptolemy.

* You have @rc/ component in the directory name, but the corresponding
/obj.$PTARCH/ directory does not exist or cannot be written. A common error is to
put the Ptolemy sources fnsr/local/src/ptolemy , Which confuses Ptolemy
since a star might be iasr/local/src/ptolemy/src/domains/sdf/stars ,
which has twdsrc/ directories in the path.

You may find it helpful to refer to the Appendix A, Installation and Troubleshooting in the
User’'s Manual

The star you just created performs exactly the same function as an existing star in the
Ptolemy library, and hence is not very interesting. Try modifying the star. For example, you
could add 1.0 to the sine before producing the output. Find the definition gd thethod,
which should look like this:

go {
}

The one line of code is ordinary C++ code, although k& and “% operators have been
overloaded. This line means that the current vat@ ¢f the output namedtitput " should

be assigned the value returned by dme function applied to the current value of the input
named fnput ”. The cast talouble indicates that we are not really interested inPiuei-

cle object supplied by the input, but rather its value, interpreted as a double-precision float-
ing point number. Try changing this code to

go {
}

To recompile and reload the star, place your mouse cursor on any instance of the icon for the
star, and typel™” (or invoke the “Extend:load-star” command through the menus).

Sometimes, you will wish to dynamically link stars that are derived from other stars
that you have dynamically linked. To do this, the base class stars npesintenently linked
This can be done with the “Extend:load-star-perm” commakrd).(To do this, place the
mouse over an icon representing the parent star, andKkyp@rice the parent star is perma-
nently linked, it cannot be replaced or redefined: you must regjart

Thego and all other entries in thel file defining the star are explained in the fol-
lowing sections.

output%0 << sin (double(input%0));

output%0 << sin (double(input%0)) + 1.0;

2.3 The Ptolemy preprocessor language (ptlang)

The Ptolemy preprocess@tjang , was created to make it easier to write and docu-
ment star class definitions to run under Ptolemy. Instead of writing all the class definitions and
initialization code required for a Ptolemy star, the user can concentrate on writing the action
code for a star and let the preprocessor generate the standard initialization code for portholes,
states, etc. The preprocessor generates standard C++ code, divided into two files (a header file

Ptolemy Last updated: 8/26/97

2-4 Writing Stars for Simulation

with a.h extension and an implementation file witlca extension). It also generates stan-
dardized documentation, in a file withraml extension, to be included in the manual. In
releases before Ptolemy 0.7, Ptolemy usediles, which conained troff source

2.3.1 Invoking the preprocessor

The definition of a star nametYYin domainXXXshould appear in file with the name
XXXYYY.pl . The class that implements this star will be naE®YYY Then, running the
command

ptlang XXXYYY .pl

will produce the filesXXXYYY.cc, XXXYYY.h, and XXXYYY.html . Implementation of the
preprocessor

The preprocessor is writtenyacc and C. It does not attempt to parse the parts of the
language that consist of C++ code (for examgemethods); for these, it simply counts curly
braces to find the ends of the items in question. It outfliats directives so the C++ com-
piler will print error messages, if any, with respect to the original source file.

2.3.2 An example

To make things clearer, let us start with an example, a rectangular pulse star in the file
SDFRect.pl

defstar {
name { Rect }
domain { SDF }
desc{
Generates a rectangular pulse of height "height" (default 1.0).
with width "width" (default 8).
}
version {%W% %G%}
author { J. T. Buck }
copyright {1993 The Regents of the University of California}
location { SDF main library }
state {
name { height }
type { float }
default { 1.0}
desc { Height of the rectangular pulse. }

}

state {
name { width }
type {int}
default { 8 }
desc { Width of the rectangular pulse. }

}

state {
name { count }
type {int}
default { 0}

desc { Internal counting state. }
attributes { A_NONSETTABLE|A_NONCONSTANT }

U. C. Berkeley Department of EECS

The Almagest 2-5

}
output { /I the output port

name { output }
type { float }
desc { The output pulse. }

go { /l the run-time function
double t = 0.0;
if (count < width) t = height;
count = int(count) + 1;
output%0 << t;
}
}

Running the preprocessor on the above file produces the threeSfleRect.h ,
SDFRect.cc andSDFRect.html ; the names are determinadt by the input filename but
by concatenating the domain and name fields. These files define a classSb&Rect .

At the time of this writing, only one type of declaration may appear at the top level of
a Ptolemy language file,defstar , used to define a star. Sometime in the futudefgal-
axy section may also be supported. Heéstar section is itself composed of subitems that
define various attributes of the star. All subitems are of the form

keyword { body }

where thebody may itself be composed of sub-subitems, or may be C++ code (in which case
the Ptolemy language preprocessor checks it only for balanced curly braces). Note that the
keywords arenotreserved words; they may also be used as identifiers in the body.

2.3.3 Items that appear in a defstar

The following items can appear indafstar directive. The items are given in the
order in which they typically appear in a star definition (although they can appear in any
order). An alphabetical listing and summary of directives is given in table 2-1.

name

This is a required item, and has the syntax

name { identifier }

It (together with the domain) provides the name of the class to be defined and the
names of the output files. Case is important in the identifier.

domain

This is a required item; it specifies the domain, such as SDF. The syntax is:

domain { identifier }

whereidentifier specifies the domain (again, case is important).

Ptolemy Last updated: 8/26/97

2-6 Writing Stars for Simulation
keyword summary required page
acknowl- the names of other contributors to the star no 2-§
edge
author the name(s) of the author(s) no 2-8
begin C++ code to execute at start tinadter the schedulesetup no 2-13
method is called

ccinclude specify other files to include in the .cc file no 2-1%
code C++ code to include in the .cc file outside the class definition no 2415
codeblock define a code segment for a code-generation star no 1B-2
conscalls define constructor calls for members of the star class no 2413
construc- C++ code to include in the constructor for the star no 2-32
tor
copyright copyright information to include in the generated code no 2-3
derived alternative form oflerivedFrom no 2-7
derived- the base class, which must also be a star no 2y
from
desc alternative form oflescriptor no 2-7
descriptor a short summary of the functionality of the star no 2-7
destructor C++ code to include in the destructor for the star no 2-13
domain the domain, and the prefix of the name of the class yes 2-5
explana- full documentation (See also htmldoc). no 2-9
tion
exectime specify the execution time for a code generation star no 13-2
go C++ code to execute when the star fires no 2-14
header C++ code to include in the .h file, before the class definition no 2415
hinclude specify other files to include in the .h file no 2-14
htmldoc full documentation, optionally using HTML directives
inmulti define a set of inputs no 2-11
inout define a (bidirectional) input and output no 2-11
inoutmulti define a set of (bidirectional) inputs and outputs no 2-11
input define an input to the star no 2-11
location an indication of where a user might find the star no 2-§
method define a member function for the star class no 2-15
name the name of the star, and the root of the name of the class yes 2-5
outmulti define a set of outputs no 2-11
output define an output from the star no 2-11
private define private data members of the star class no 2414
protected defined protected data members of the star class no 2}14
public define public data members of the star class no 2-14
setup C++ code to execute at start tinbeforecompile-time scheduling no 2-13
state define a state or parameter no 2-9
version version humber and date no 2-7

TABLE 2-1: A summary of the items used to define a star. Additional items are allowed in code

U. C. Berkeley

generation stars, as explained in later chapters. A minimal set of the most useful items

are shaded.

Department of EECS

The Almagest 2-7

derivedfrom

This optional item indicates that the star is derived from another class. Syntax:

derivedfrom { identifier }

whereidentifier specifies the base class. Thefile for the base class is automat-
ically included in the outpuh file, assuming it can be located (you may need to cre-
ate a makefile).

For example, th&MS star in theSDF domain is derived from theIR star. The full
name of the base classSBFFIR, but thederivedfrom statement allows you to say
either

derivedfrom { FIR }

or
derivedfrom { SDFFIR }

Thederivedfrom statement may also be writtéerivedFrom or derived

descriptor

This item defines a short description of the class. This description is displayed by the
profile pigi command. It has the syntax

descriptor { text }

wheretext is simply a section of text that will become the short descriptor of the star.
You may also writedesc instead ofdescriptor . A principal use of the short
descriptor is to get on-screen help, so the descriptor should not include any troff for-
matting commands. Unlike themidoc (described below), it does not pass through
troff. The following are legal descriptors:

desc { A one line descriptor. }

or
desc {
A multi-line descriptor. The same line breaks and spacing
will be used when the descriptor is displayed on the screen.

}

By convention, in these descriptors, references to the names of states, inputs, and out-
puts should be enclosed in quotation marks. Also, each descriptor should begin with a
capital letter, and end with a period. If the descriptor seems to get long, augment it
with the htmidoc directive, explained below. However, it should be long enough so
that it is sufficient to explain the function of the star.

version

This item contains two entries as shown below

Ptolemy Last updated: 8/26/97

2-8 Writing Stars for Simulation

version { number MO/DA/YR '}

where thenumber is a version number, and tiMO/DA/YRis the version date. If you
are using SCCS for version control then the following syntax will work well:

version { %W% %G% }

When the file is checked in by SCCS, the stes\ywill be replaced with a string of
the form: @(#) filename num , where num is the version number, &dowill be
replaced with a properly formatted date.

author
This optional entry identifies the author or authors of the star. The syntax is

author { authorl, author2 and author3 }

Any set of characters between the braces will be interpreted as a list of author names.

acknowledge
This optional entry attaches an acknowledgment section to the documentation. The
syntax is
acknowledge { arbitrary single line of text }
copyright
This optional entry attaches a copyright notice talthecc , and.t files. The syntax
is
copyright { copyright information }

For example, we used to use the following (our lawyers have recently caused us to
increase the verbosity):
copyright {1994 The Regents of the University of California}

The copyright may span multiple lines, just like a descriptor. In house, we use the
SCCS%Q%eyword to update the date when a file is changed. A typical copyright line

might look like:
copyright {1990-%Q% The Regents of the University of
California}
location

This item describes the location of a star definition. The following descriptions are
used, for example:

U. C. Berkeley Department of EECS

The Almagest 2-9

location { SDF dsp library }

or
location { directory '}

wheredirectory is the location of the star. This item is for documentation only.

explanation

This item is used to give longer explanations of the function of the stars. In releases
previous to Ptolemy 0.7, this item included troff formatting directives. In Ptolemy 0.7
and later, this item has been superceded bigtthidoc item.

htmldoc

State

Ptolemy

This item is used to give longer explanations that include HTML format directives.
The Tycho system includes an HTML viewer that can be used to display star docu-
mentation. The HTML output gftlang can be viewed by any HTML viewer, but
certain features, such as tk&l></tcl> directive are only operational when
viewed with Tycho. For complete documentation for the Tycho HTML viewer, see the
HTML viewer Help menu.

This item is used to define a state or parameter. Recall that by definition, a parameter
is the initial value of a state. Here is an example of a state definition:
state {
name { gain }
type {int}
default { 10 }
desc { Output gain. }
attributes { A_CONSTANT|A_SETTABLE }

There are five types of subitems that may appear in a state statement, in any order. The
name field is the name of the state; ttype field is its type, which may be one of

int , float , string , complex , fix , intarray , floatarray , complexarray ,

precision , orstringarray . Case is ignored for the type argument.

Thedefault item specifies the default initial value of the state; its argument is either
a string (enclosed in quotation marks) or a numeric value. The above entry could
equivalently have been written:

default { "1.0" }

Furthermore, if a particularly long default is required, as for example when initializing
an array, the string can be broken into a sequence of strings. The following example
shows the default for @omplexArray

Last updated: 8/26/97

2-10

Writing Stars for Simulation

default {
"(-.040609,0.0) (-.001628,0.0) (.17853,0.0) (.37665,0.0)"
"(.37665,0.0) (.17853,0.0) (-.001628,0.0) (-.040609,0.0)"

}

For complex states, the syntax for the default value is
(real, imag)
wherereal andimag evaluate to integers or floats.

Theprecision state is used to give the precision of fixed-point values. These values
may be other states or may be internal to the star. The default can be specified in either
of two ways:

Method 1. As a string like “3.2”, or more generallyn'ri’, wherem is the number of
integer bits (to the left of the binary point) am& the number of fractional bits (to the
right of the binary point). Thus lengthns+n.

Method 2: A string like “24/32” which means 24 fraction bits from a total length of
32. This format is often more convenient because the word length often remains con-
stant while the number of fraction bits changes with the normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must be at
least one.

The desc (or descriptor) item, which is optional but highly recommended,
attaches a descriptor to the state. The same formatting options are available as with the
star descriptor.

Finally, theattributes keyword specifies state attributes. At present, two attributes
are defined for all stated. CONSTANTandA_SETTABLE(along with their comple-
ments A_ NONCONSTAN@nd A_NONSETTABLE If a state has thé& CONSTANT
attribute, then its value is not modified by the run-time code in the star (it is up to you
as the star writer to ensure that this condition is satisfied). States with the
A_NONCONSTANattribute may change when the star is run. If a state has the
A_SETTABLEattribute, then user interfaces (suchpa@g) will prompt the user for
values when directives such edit-parametersre given. States without this attribute
are not presented to the user; such states always start with their default values as the
initial value. If no attributes are specified, the defaulk iISONSTANJA_SETTABLE

Thus, in the above example, thgributes directive is unnecessary. The notation
“A_CONSTANJAR_SETTABLE indicates a logical “or” of two flags. Confusingly, this
means that they both applf (CONSTANBNdA_SETTABLE.

Code generation stars use a great number of attributes, many specific to the language
model for which code is being generated. Read chapter 13, “Code Generation”, and
the documentation for the appropriate code generation domain to learn more about
these.

Mechanisms for accessing and updating states in C++ methods associated with a star
are explained below, in sections 2.4.3 on page 2-21 and 2.4.4 on page 2-23.

U. C. Berkeley Department of EECS

The Almagest 2-11

An alternative form for thetate directive isdefstate . The subitems of theate
directive are summarized in table 2-2, together with subitems of other directives.

input, output, inout, inmulti, outmulti, inoutmulti

These keywords are used to define a porthole, which may be an input, output, inout
(bidirectional) porthole or an input, output, or inout multiporthole. Bidirectional ports
are not supported in most domains (The Thor domain is an exceptionktatike, it
contains subitems. Here is an example:

input {
name { signalin }
type { complex }
numtokens { 2 }
desc {A complex input that consumes 2 input particles.}

Here, name specifies the porthole name. This is a required itgpe. specifies the
particle type. The scalar types ame , float , fix , complex , message, or any-

type . Again, case does not matter for the type value. The matrix types are
int_matrix_env , float_matrix_env , complex_matrix_env and

item sub-item summary required page
inmulti, name name of the port or group of ports yes 11
inout, type data type of input (& output) particles no
inoutmult, descriptor summary of the function of the input no
Input numtokens number of tokens consumed by the port (use-
ful only for dataflow domains)
method, name the name of the method yes 15 |
virtual method, access private, protected, or public no
inline method, arglist the arguments to the method no
pure method,
pure virtual method, type the return typg gf the method Ile
inline virtual method code C++ code defining the method if not pure
outmulti, name name of the port or group of ports yes 11
output type data type of output particles no
descriptor summary of the function of the output no
numtokens number of tokens produced by the port (use
ful only for dataflow domains)
state name the name of the state variable yes 9
type data type of the state variable yes
default the default initial value, always a string yes
descriptor summary of the function of the state no
attributes hints to the simulator or code generator no
TABLE 2-2: Some items used in defining a star have subitems. These are described here.
Ptolemy Last updated: 8/26/97

2-12 Writing Stars for Simulation

fix_matrix_env . Thetype item may be omitted; the default typeaig/type . For
more information on all of these, please see chapter 4, “Data Types”.

The numtokens keyword (it may also be writtemum or numTokens) specifies the
number of tokens consumed or produced on each firing of the star. This only makes
sense for certain domains (SDF, DDF, and BDF); in such domains, if the item is omit-
ted, a value of one is used. For stars where this number depends on the value of a state,
it is preferable to leave out theimtokens specification and to have tlsetup

method set the number of tokens (in the SDF domain and most code generation
domains, this is accomplished with tbetSDFParams method). This item is used
primarily in the SDF and code generation domains, and is discussed further in the doc-
umentation of those domains.

There is an alternative syntax for the type field of a porthole; this syntax is used in
connection withANYTYPEto specify a link between the types of two portholes. The
syntax is

type { = name }

wherename is the name of another porthole. This indicates that this porthole inherits
its type from the specified porthole. For example, here is a portion of the definition of
the SDFFork star:

input {
name{input}
type{ANYTYPE}
}

outmulti {
name{output}
type{= input}
desc{ Type is inherited from the input. }

constructor

This item allows the user to specify extra C++ code to be executed in the constructor
for the class. This code will be executdter any automatically generated code in the
constructor that initializes portholes, states, etc. The syntax is:

constructor { body }

wherebody is a piece of C++ code. It can be of any length. Note that the constructor is
invoked only when the class is first instantiated; actions that must be performed before
every simulation run should appear in eeup orbegin methods, not the construc-

tor.

U. C. Berkeley Department of EECS

The Almagest 2-13

conscalls

You may want to have data members in your star that have constructors that require
arguments. These members would be added by usimpylbhie , private , or pro-

tected keywords. If you have such members, thascalls keyword provides a
mechanism for passing arguments to the constructors of those members. Simply list
the names of the members followed by the list of constructor arguments for each, sep-
arated by commas if there is more than one. The syntax is:

conscalls { memberl(arglist), member2(arglist) }

Note thatmember1, and member2 should have been previously defined ipualic
private , orprotected section (see page 2-14).

destructor

setup

begin

This item inserts code into the destructor for the class. The syntax is:

destructor { body }

You generally need a destructor only if you allocate memory in the constructor,
begin method, orsetup method; termination functions that happen with every run
should appear in therapup functiont. The optional keywordhline may appear
beforedestructor ; if so, the destructor function definition appears inline, in the
header file. Since the destructor for all stars is virtual, this is only a win when the star
is used as a base for derivation.

This item defines theetup method, which is called every time the simulation is
startedpeforeany compile-time scheduling is performed. The syntax is:

setup{ body }

The optional keywordhline may appear before tlsetup keyword. It is common

for this method to set parameters of input and output portholes, and to initialize states.
The code syntax for doing this is explained starting on page 2-16. In some domains,
with some targets, theetup method may be called more than once during initiation.
You must keep this in mind if you use it to allocate or initialize memory.

This item defines theegin method, which is called every time the simulation is
started, butifter the schedulesetup method is called (i.e., after any compile-time
scheduling is performed). The syntax is:

1. Note, however, that wrapup is not called if an error occurs. See page 2-14.

Ptolemy

Last updated: 8/26/97

2-14 Writing Stars for Simulation

begin{ body }

This method can be used to allocate and initialize memory. It is especially useful when
data structures are shared across multiple instances of a star. It is always called exactly
once when a simulation is started.

go
This item defines the action taken by the star when it is fired. The syntax is:

go{ body }

The optional keywordnline may appear before thgwo keyword. The go method

will typically read input particles and write outputs, and will be invoked many times
during the course of a simulation. The code syntax for the body is explained starting
on page 2-16.

wrapup
This item defines therapup method, which is called at the completion of a simula-
tion. The syntax is:

wrapup { body }

The optional keywordhline may appear before theapup keyword. The wrapup
method might typically display or store final state values. The code syntax for doing
this is explained starting on page 2-16. Note thatwtapup method is not invoked if

an error occurs during execution. Thus,whapup method cannot be used reliably to
free allocated memory. Instead, you should free memory from the previous run in the
setup orbegin method, prior to allocating new memory, and in the destructor.

public, protected, private

These three keywords allow the user to declare extra members for the class with the
desired protection. The syntax is:

protkey { body }

whereprotkey is public , protected , orprivate . Example, from th&Mgraph
star:

protected {
XGraph graph;
double index;

This defines an instance of the clasGraph, defined in the Ptolemy kernel, and a

U. C. Berkeley Department of EECS

The Almagest 2-15

double-precision number. If any of the added members require arguments for their
constructors, use tlwnscalls item to specify them.

ccinclude, hinclude

These directives cause tloe file, or the.h file, to#include extra files. A certain
number of files are automatically included, when the preprocessor can determine that
they are needed, so they do not need to be explicitly specified. The syntax is:

ccinclude { inclist }
hinclude { inclist }

whereinclist is a comma-separated list of include files. Each filename must be sur-
rounded either by quotation marks or by’ ‘and “>” (for system include files like
<math.h>).

code

This keyword allows the user to specify a section of arbitrary C++ code. This code is
inserted into thecc file after the include files but before everything else; it can be
used to define static non-class functions, declare external variables, or anything else.
The outermost pair of curly braces is stripped. The syntax is:

code{ body }

header

This keyword allows the user to specify an arbitrary set of definitions that will appear
in the header file. Everything between the curly braces is inserted into fike after

the include files but before everything else. This can be used, for example, to define
classes used by your star. The outermost pair of curly braces is stripped.

method

Themethod item provides a fully general way to specify an additional method for the
class of star that is being defined. Here is an example:
virtual method {
name { exec }
access { protected }
arglist { "(const char* extraOpts)" }
type { void }
code {

}

/I code for the exec method goes here

An optional function type specification may appear beforentbthod keyword,
which must be one of the following:

Ptolemy Last updated: 8/26/97

2-16 Writing Stars for Simulation

virtual

inline

pure

pure virtual
inline virtual

Thevirtual keyword makes a virtual member function. If thee virtual key-
word is given, a pure virtual member function is declared (there mustdaglenatem
in this case). The function typeire is a synonym fopure virtual . Theinline
function type declares the function to be inline.

Here are thenethod subitems:
name: The name of the method. This is a required item.

access The level of access for the method, onepalilic , protected , or
private . If the item is omittedprotected is assumed.

arglist : The argument list, including the outermost parentheses, for the method
as a quoted string. If this is omitted, the method has no arguments.

type : The return type of the method. If the return type is not a single identi-
fier, you must put quotes around it. If this is omitted, the return type is
void (no value is returned).

code : The code that implements the method. This is a required item, unless
thepure keyword appears, in which case this itemmnotappear.

exectime

This item defines the optionalyExecTime() function, which is used in code generation to
specify how many time units are required to execute the star’s code. The syntax is:

exectime { body }

The optional keywordhline may appear before tleeectime keyword. Thebody
defines the body of a function that returns an integer value.

codeblock

Codeblocks are parametrized blocks of code for use in code generation stars. Their use and
format is discussed in detail in the code generation chapters. The syntax is:

codeblock {
code

}

2.4 Writing C++ code for stars
This section assumes a knowledge of the C++ language; no attempt will be made to

U. C. Berkeley Department of EECS

The Almagest 2-17

teach the language. We recommend “C++ Primer, Second Edition”, by Stanley Lippman
(from Addison-Wesley) for those new to the language. Chapter 3, “Infrastructure for Star
Writers”, is also highly recommended reading for those who will be writing stars, since it
explains some of the more generic and useful classes defined in the Ptolemy kernel. Many of
these are useful in stars.

C++ code segments are an important part of any star definition. They can appear in the
setup , begin , go, wrapup , constructor , destructor , exectime , header , code, and
method directives in the Ptolemy preprocessor. These directives all include a body of arbi-
trary C++ code, enclosed by curly bracds,dnd “} ”. In all but thecode andheader direc-
tives, the C++ code between braces defines the body of a method of the star class. Methods
can access any member of the class, including portholes (for input and output), states, and
members defined with thmublic , protected , andprivate directives.

2.4.1 The structure of a Ptolemy star

In general, the task of a Ptolemy star is to receive input particles and/or produce output
particles; in addition, there may be side effects (reading or writing files, displaying graphs, or
even updating shared data structures). As for all C++ objects, the constructor is called when
the star is created, and the destructor is called when it is destroyed. In addisetyghend
begin methods, if any, are called every time a new simulation run is startegh thethod
(which always exists except for stars liReckHole andNull that do nothing) is called
each time a star is executed, andwingpup method is called after the simulation run com-
pletes without errors.

2.4.2 Reading inputs and writing outputs

The precise mechanism for references to input and output portholes depends some-
what on the domain. This is because stars in the doxxa{mse objects of clagsXXXPort
andOutXXXPort (derived fromPortHole) for input and output, respectively. The examples
we use here are for the SDF domain. See the appropriate domain chapter for variations that
apply to other domains.

PortHoles and Patrticles

In the SDF domain, normal inputs and outputs become members oh8fpePort
andOutSDFPort after the preprocessor is finished. These are derived from basealass
Hole . For example, given the following directive in defstar of an SDF star,

input {
name {in}
type {float}
}

a member nameid , of typelnSDFPort , will become part of the star.

We are not usually interested in directly accessing these porthole classes, but rather
wish to read or write data through the portholes. All data passing through a porthole is derived
from base clasBarticle . Each particle contains data of the type specified ityflee sub-
directive of thanput oroutput directive.

Ptolemy Last updated: 8/26/97

2-18 Writing Stars for Simulation

The operator% operating on a porthole returns a reference to a particle. Consider the
following example:
go {
Particle& currentSample = in%0;
Particle& pastSample = in%1;

}

The right-hand argument to thet“operator specifies the delay of the access. A zero always
means the most recent particle. A one means the particle arriving just before the most recent
particle. The same rules apply to outputs. Given an output namedhe same particles that

are read fronin can be written tout in the same order as follows:

go {

out%1 = pastSample;
out%0 = currentSample;

}

This works becauseut%n returns aeferenceto a particle, and hence can accept an assign-
ment. The assignment operator for the cReasicle is overloaded to make a copy of the
data field of the particle.

Operating directly on clagzarticle , as in the above examples, is useful for writing
stars that accephytype of input. The operations need not concern themselves with the type
of data contained by the particle. But it is far more common to operate numerically on the data
carried by a particle. This can be done using a cast to a compatible type. For example, since
in above is of typdloat , its data can be accessed as follows:

go {
Particle& currentSample = in%0;
double value = double(currentSample);

}
or more concisely,

go {
double value = double(in%0);

}

The expressiomouble(in%0) can be used anywhere that a double can be used. In many
contexts, where there is no ambiguity, the conversion operator can be omitted:

double value = in%0;

U. C. Berkeley Department of EECS

The Almagest 2-19

However, since conversion operators are defined to convert particles to several types, it is
often necessary to indicate precisely which type conversion is desired.

To write data to an output porthole, note that the right-hand side of the assignment
operator should be of tygearticle , as shown in the above example. An operatoiis
defined for particle classes to make this more convenient. Consider the following example:

go {
float t;
t= some value to be sent to the output
out%0 << t;

}

Note the distinction between tke operator and the assignment operator; the latter operator
copies Patrticles, the former operator loads data into particles. The type of the right-side oper-
and of<< may beint , float , double , Fix , Complex or Envelope ; the appropriate type
conversion will be performed. For more information on Engelope andMessage types,

please see the chapter “Data Types” on page 4-1.

SDF PortHole parameters

In the above example, whergsl was referenced, some special action is required to
tell Ptolemy that past input particles are to be saved. Special action is also required to tell the
SDF scheduler how many particles will be consumed at each input and produced at each out-
put when a star fires. This information can be provided through a cafIDFParams in
thesetup method. This has the syntax

setup {
name.setSDFParams(multiplicity , past)
}
wherenameis the name of the input or output porthaieytiplicity Is the number of par-

ticles consumed or produced, auakt is the maximum value thatffset can take in any
expression of the formame%offset . For example, if thgo method referencesame?0and
name’l, thenpast would have to be at least one. It is zero by default.

Multiple PortHoles

Sometimes a star should be defined withput portholes on output portholes, where
n is variable. This is supported by the clasgtiPortHole and its derived classes. An
object of this class has a sequential listPoftHole s. For SDF, we have the specialized
derived classMultiinSDFPort (which containsinSDFPorts) and MultiOutSDFPort
(which contain®©utSDFPorts).

Defining a multiple porthole is easy, as illustrated next:
defstar {

inmulti {
name { input_name }

Ptolemy Last updated: 8/26/97

2-20 Writing Stars for Simulation

type { input_type }

}

outmulti {
name { output_name }
type { output type }

}

To successively access individual portholes Mu#iPortHole , theMPHIter itera-
tor class should be used. Iterators are explained in more detail in “Iterators” on page 3-10.
Consider the following code segment from the definition of the S star:

input {
name{input}
type{ANYTYPE}
outmulti {
name{output}
type{= input}
}
go {
MPHIter nextp(output);
PortHole* p;
while ((p = nextp++) = 0)
(*pP)%0 = input%0;
}

A single input porthole supplies a particle that gets copied to any number of output portholes.
Thetype of the outpuMultiPortHole is inherited from the type of the input. The first line

of thego method creates aniPHiter iterator callechextp , initialized to point to portholes in
output . The “++” operator on the iterator returns a pointer to the next porthole in the list,
until there are no more portholes, at which time it rettosL. So thewhile construct steps
through all output portholes, copying the input particle data to each one.

Consider another example, taken from the 20# star:

inmulti {
name {input}
type {float}
output {
name {output}
type {float}
}
go {

MPHIter nexti(input);
PortHole *p;
double sum = 0.0;

U. C. Berkeley Department of EECS

The Almagest 2-21

while ((p = nexti++) I=0)
sum += double((*p)%0);
output%0 << sum;

}

Again, anMPHlter iterator namedexti is created and used to access the inputs.

Upon occasion, theumberPorts method of clasultiPortHole , which returns
the number of ports, is useful. This is called simplyp@#ame .numberPorts() , and it
returns annt .

Type conversion

The type conversion operators are™ operators are defined as virtual methods in the
base classarticle . There are never really objects of classticle in the system,;
instead, there are objects of clastParticle , FloatParticle , ComplexParticle
andFixParticle , Which hold data of typant , double (not float!),Complex, andFix ,
respectively (there are alstessageParticle ~ and a variety of matrix particles, described
later). The conversion and loading operators are designed to “do the right thing” when an
attempt is made to convert between mismatched types.

Clearly we can convert ant to adouble or Complex, or adouble to aComplex,
with no loss of information. Attempts to convert in the opposite direction work as follows:
conversion of &omplex to adouble produces the magnitude of the complex number. Con-
version of adouble to anint produces the greatest integer that is less than or equal to the
double value. There are also operators to convert to or flmah andFix .

Each particle also has a virtyaint method, so a star that writes particles to a file
can accepanytype .

2.4.3 States

A state is defined by thetate directive. The star can use a state to store data values,
remembering them from one invocation to another. They differ from ordinary members of the
star, which are defined using theblic , protected , andprivate directives, in that they
have a name, and can be accessed from outside the star in systematic ways. For instance, the
graphical interfacgigi permits the user to set any state with AhnSETTABLEattribute to
some value prior to a run, using thdit-paramscommand. The interpreter provides similar
functionality through theetstate = command. The state attributes are set irstdte direc-
tive. A state may be modified by the star code during a run. The atéioN@NCONSTANS
used as a pragma to mark a state as one that gets modified during a run. There is currently no
mechanism for checking the correctness of these attributes.

All states are derived from the base clasge , defined in the Ptolemy kernel. The
derived state classes currently defined in the kernéll@aieState |, IntState , Complex-
State , StringState , FloatArrayState , IntArrayState , ComplexArrayState , and
StringArrayState

A state can be used in a star method just like the corresponding predefined data types.
As an example, suppose the star definition contains the following directive:
state {

Ptolemy Last updated: 8/26/97

2-22 Writing Stars for Simulation

name { myState }

type { float }

default { 1.0}

descriptor { Gain parameter. }

}

This will define a member of clagdoatState with default value 1.0. No attributes are
defined, soA_ CONSTANTandA SETTABLE the default attributes, are assumed. To use the
value of a state, it should be cast to tgoeble , either explicitly by the programmer or
implicitly by the context. For example, the value of this state can be accessedgm the
method as follows:

go {
}

output%0 << double(myState) * double(input%0);

The references to input and output are explained above. The refereang8tate has an
explicit cast tadouble ; this cast is defined iRloatState class. Similarly, a cast iot is
available forintState , to Complex from ComplexState , and toconst char* for
Stringstate). In principle, it is possible to rely on the compiler to automatically invoke this
cast. However:

Warning: some compilers (notably some versions of g++) may not choose the expected cast.
In particular, g++ has been known to cast everythingxoif the explicit cast is omitted in
expressions similar to that above. The arithmetic is then performed using fixed-point point
computations. This will be dramatically slower than double or integer arithmetic, and may
yield unexpected results. It is best to explicitly cast states to the desired form. An exception is
with simple assignment statements, like

double stateValue = myName;

Even g++ gets this right. Explicit casting should be used whenever a state is used in an expres-
sion. For example, from the setup method of3bEChop star, in whichuse_past_inputs
is an integer state,
if (int(use_past_inputs))
input.setSDFParams(int(nread),int(nread)+int(offset)-1);
else
input.setSDFParams(int(nread),int(nread)-1);

Note that the typ€omplex is not a fundamental part of C++. We have implemented a
subset of th€omplex class as defined by several library vendors; we use our own version for
maximum portability. Using th€omplexState class will automatically ensure the inclusion
of the appropriate header files. A member ofGbenplex class can be initialized and oper-
ated upon any number of ways. For details, see “The Complex data type” on page 4-1.

A state may be updated by ordinary assignment in C++, as in the following lines

U. C. Berkeley Department of EECS

The Almagest 2-23

double t = expression
myState =t;

This works because thioatState class definition has overloaded the assignment operator
(*=") to set its value from double . Similarly, anintState = can be set from ant and a
StringState ~ can be set from ehar* or const char*

2.4.4 Array States

TheArrayState classes FloatArrayState , IntArrayState andComplexAr-
rayState) are used to store arrays of data. For example,

state {
name { taps }
type { FloatArray }
default { "0.0 0.0 0.0 0.0" }
descriptor { An array of length four. }

}

defines an array of typ#ouble with dimension four, with each element initialized to zero.
Quotes must surround the initial values. Alternatively, you can specify a file name with a pre-
fix <. If you have a file nameido that contains the default values for an array state, you can
write,

default { "< foo" }

If you expect others to be able to use your star, however, you should specify the default file-
name using a full path. For instance,

default { "< ~/user_name/directory/foo" }
For default files installed in the Ptolemy directory tree, this should read:
default { "< $PTOLEMY/directory/foo" }

The format of the file is also a sequence of data separated by spaces (or newlines, tabs, or
commas). File input can be combined with direct data input as in

default { "< foo 2.0" }
default { "0.5 < foo < bar" }

A “repeat” notation is also supported frayState objects: the two value strings

default { "1.0 [5]" }
default {"1.0 1.0 1.0 1.0 1.0" }

are equivalent. Any integer expression may appear inside the brgck&ise number of ele-
ments in arArrayState can be determined by calling #ige method. The size is not spec-
ified explicitly, but is calculated by scanning the default value.

As an example of how to access the elements af@agState , supposdState s
aFloatState andaState is aFloatArrayState . The accesses, like those in the follow-

Ptolemy Last updated: 8/26/97

2-24 Writing Stars for Simulation

ing lines, are routine:

fState = aState[1] + 0.5;
aState[1] = (double)fState * 10.0;
aState[0] = (double)fState * aState[2];

For a more complete example of the usEladtArrayState , consider th&IR star defined
below. Note that this is a simplified version of the IR star that does not permit interpo-
lation or decimation.

defstar {
name {FIR}
domain {SDF}
desc{
A Finite Impulse Response (FIR) filter.
}
input {
name {signalln}
type {float}
}
output {
name {signalOut}
type {float}
state {
name {taps}
type {floatarray}
default { "-.04 -.001 .17 .37 .37 .17 -.0018 -.04" }
desc { Filter tap values. }
}
setup {
/I tell the PortHole the maximum delay we will use
signalln.setSDFParams(1, taps.size() - 1);
}
go {
double out = 0.0;
for (inti = 0; i < taps.size(); i++)
out += taps][i] * double(signalln%i);
signalOut%0 << out;
}
}

Notice thesetup method; this is necessary to allocate a buffer in the ippuitiole large
enough to hold the particles that are accessed igatheethod. Notice the use of thize
method of thé-loatArrayState

We now illustrate aptcl interpreter session using the ab&¥e star. Assume there
is a galaxy calledingen that generates a sine wave. you can use it witRIghestar, as in:
star foop singen
star fir FIR
star printer Printer

U. C. Berkeley Department of EECS

The Almagest 2-25

connect foop output fir signalln
connect fir signalOut printer input
print fir

Star: mainGalaxy.fir

States in the star fir:
mainGalaxy.fir.taps type: FloatArray
initial value: -.040609 -.001628 .17853 .37665 .37665 .17853
-.001628 -.040609

current value:

0 -0.040609

1-0.001628

2.17853

3.37665

4 .37665

5.17853

6 -0.001628

7 -0.040609

Then you can redefine taps by reading them from afite™; which contains the data:

11
-2.2
3.3
-4.4

The resulting interpreter commands are:

setstate fir taps "<foo 5.5"
print fir
Star: mainGalaxy.fir

States in the star fir:
mainGalaxy.fir.taps type: FloatArray
initial value: <foo 5.5

current value:

01.1

1-2.2

23.3

3-4.4

455

PTOLEMY:

This illustrates thaboththe contents and the size oflaatArrayState are changed by a
setstate command. Also, notice that file values may be combined with string values; when
< filename

occurs in arinitial value, it is processed exactly as if the whole file were substituted at that

Ptolemy Last updated: 8/26/97

2-26 Writing Stars for Simulation

point.

2.5 Modifying PortHoles and States in Derived Classes

When one star is derived from another, it inherits all the states of the base class star.
Sometimes we want to modify some aspect of the behavior of a base class state in the derived
class. This is done by placing calls to member functions of the state in the constructor of the
derived star. Useful functions includetinitValue to change the default value, and
setAttibututes andclearAttributes to modify attributes.

When creating new stars derived from stars already in the system, you will often also
wish to customize them by adding new ports or states. In addition, you may wish to remove
ports or states. Although, strictly speaking, you cannot do this, you can achieve the desired
effect by simply hiding them from the user.

The following code will hide a particular state narsedename from the user:

constructor {
statename.clearAttributes(A_SETTABLE);
}

This means that when the user invokes “edit-paramgigin , statename will not appear as
one of the parameters of the star. Of course, the state can still be set and used within the code
defining the star.

The same effect can be achieved with outputs or inputs. For instance, given an output
namedoutput , you can use the following code:

constructor {
output.setAttributes(P_HIDDEN);
}

This means that when you create an icon for this star, no terminal will appear for this port.
This is most useful whesutput is a multiporthole, because this means simply that there will
be zero instances of the individual portholes.

This technique can also be used to hide individual portholes, however, the porthole
will still be present, so it must be used with caution. Most domains do not allow disconnected
portholes, and will flag an error. You can explicitly connect the port within the body of the
star (see the kernel manual).

2.6 Programming examples

The following star has no inputs, just an output. The source star generates a linearly increasing
or decreasing sequence of float particles on its output. The/atage is initialized to define

the value of the firsbutput . Each time the stajo method fires, thealue state is updated

to store the nexbutput value. Hence, the attributes of thelue state are set so that the

state can be overwritten by the star's methods. By default, the star will generate the output
sequence 0.0, 1.0, 2.0, etc.

defstar {
name { Ramp }
domain { SDF }
desc{

U. C. Berkeley Department of EECS

The Almagest 2-27

Generates a ramp signal, starting at "value" (default 0)
with step size "step” (default 1).

}
output {
name { output }
type { float }
}
state {
name { step }
type { float }
default { 1.0 }
desc { Increment from one sample to the next. }
}
state {
name { value }
type { float }
default { 0.0 }
desc { Initial (or latest) value output by Ramp. }
attributes { A_SETTABLE|JA_NONCONSTANT }
}
go {
double t = double(value);
output%0 << t;
t += step;
value =1t;
}

}
The next example is thgain star, which multiplies its input by a constant and outputs
the result:

defstar {

name { Gain }

domain { SDF }

desc { Amplifier: output is input times "gain" (default 1.0). }

input {
name { input }
type { float }

}

output {
name { output }
type { float }

state {
name { gain }
type { float }
default { "1.0" }
desc { Gain of the star. }

go {
output%0 << double(gain) * double(input%0);

Ptolemy Last updated: 8/26/97

2-28 Writing Stars for Simulation

The following example of therinter star illustrates multiple input&NYTYPENputs, and
the use of therint method of theParticle class.

defstar {
name { Printer }
domain { SDF }
inmulti {
name { input }
type { ANYTYPE }

state {
name { fileName }

type { string }
default { "<cout>"}
desc { Filename for output. }

}
hinclude { "pt_fstream.h" }

protected {
pt_ofstream *p_out;
}

constructor { p_out = 0;}
destructor { LOG_DEL,; delete p_out;}
setup {

delete p_out;

p_out = new pt_ofstream(fileName);

go {
pt_ofstreamé& output = *p_out;
MPHIter nexti(input);
PortHole* p;
while ((p = nexti++) !=0)
output << ((*p)%0).print() << "\t";
output << "\n";

}

This star ipolymorphicsince it can operate on any type of input. Note that the default value
of the output filename iscout> , which causes the output to go to the standard output. This
and other aspects of the ofstream output stream class are explained below in “Extended
input and output stream classes” on page 3-2. The iteftattir used to scan the input is
explained in “Iterators” on page 3-10.

2.7 Preventing Memory Leaks in C++ Code

Memory leaks occur when new memory is allocated dynamically and never deallo-
cated. In C programs, new memory is allocated bynthkoc or calloc functions, and
deallocated by thegee function. In C++, new memory is usually allocated byrtee oper-
ator and deallocated by tlelete or thedelete [] operator. The problem with memory
leaks is that they accumulate over time and, if left unchecked, may cripple or even crash a pro-
gram. We have taken extensive steps to eliminate memory leaks in the Ptolemy software envi-
ronment by following the guidelines below and by tracking memory leaks with Purify (a

U. C. Berkeley Department of EECS

The Almagest 2-29

commercial tool from Pure Software Inc.).

One of the most common mistakes leading to memory leaks is applying the wrong
delete operator. Thelelete operator should be used to free a single allocated class or data
value, whereas theelete [operator should be used to free an array of data values. In C
programming, théree function does not make this distinction.

Another common mistake is overwriting a variable containing dynamic memory with-
out freeing any existing memory first. For example, assumehidsiting is a data mem-
ber of a class, and in one of the methods (other than the constructor), there is the following
statement:

thestring = new char[buflen];
This code should be

delete [] thestring;
thestring = new char[buflen];

Using delete is not necessary in a class’s constructor because the data member
would not have been allocated previously.

In writing Ptolemy stars, theelete operator should be applied to variables contain-
ing dynamic memory in both the star’'s setup and destructor methods. In the star’s constructor
method, the variables containing dynamic memory should be initialized to zero. By freeing
memory in both the setup and destructor methods, one covers all possible cases of memory
leaks during simulation. Deallocating memory in the setup method handles the case in which
the user restarts a simulation, whereas deallocating memory in the destructor covers the case
in which the user exits a simulation. This includes the cases that arise when error messages are
generated. For an example implementation, see the implementationStfRRenter star
given in Section 2.6.

Another common mistake is not paying attention to the kinds of strings returned by
functions. The functiosavestring returns a new string dynamically allocated and should
be deleted when no longer used. EipandPathName , tempFileName , andmakeLower
functions return new strings, as does Theget::writeFileName method. Therefore, the
strings returned by these routines should be deleted when they are no longer needed, and code
such as

savestring(expandPathName(s))
is redundant and should be simplified to
expandPathName(s)

to avoid a memory leak due to not keeping track of the dynamic memory returned by
the functionsavestring

Occasionally, dynamic memory is being used when instead local memory could have
been used. For example, if a variable is only used as a local variable inside a method or func-
tion and the value of the local variable is not returned or passed to outside the method or func-
tion, then it would be better to simply use local memory. For example,

char* localstring = new char[len + 1},
if (person == absent) return;
strcpy(localstring, otherstring);
delete [] localstring;

Ptolemy Last updated: 8/26/97

2-30 Writing Stars for Simulation

return;

could easily return without deallocatifugalstring . The code should be rewritten
to use either th8tringList or InfString class, e.g.,

InfString localstring;

if (person == absent) return;
localstring = otherstring;
return;

Both StringList andInfString can manage the construction of strings of arbi-

trary size. When a function or method exits, the destructors dbttimgList and Inf-
String variables will automatically be called which will deallocate their memory. Casts have
been defined that will convestringList to aconst char* string andinfString to a
const char* or achar* string, so that instances of tisgringList and InfString
classes can be passed as is into routines that take character array (string) arguments. A good
example of using th&tringList class is in the functionompile in the file$PTOLEMY/
src/pigilib/pigiLoader.cc . A simpler example from the same file is tle®ermis-
sion function which builds up an error message into a single string:

StringList sl = msg;

sl << file << " " << sys_errlist[errno];

ErrAdd(sl);

TheerrAdd function takes @aonst char* argument, sel will converted automatically to
aconst char string by the C++ compiler.

Instead of using the new and delete operators, it is tempting to use constructs like
char localstring[buflen + 1];

in which buflen is a variable, because the compiler will automatically handle the
deallocation of the memory. Unfortunately, this syntax is a Gnu extension and not portable to
other C++ compilers. Instead, tB&ingList andInfString classes should be used, as
the previous example involvirigcalstring illustrates.

Sometimes the return value from a routine that returns dynamic memory is not stored,
and therefore, the pointer to the dynamic memory gets lost. This occurs, for example, in
nested function calls. Code such as

puts(savestring(s));
should be written as

const char* newstring = savestring(s);
puts(newstring);
delete [] newstring;

Several places in Ptolemy, especially in the schedulers and targets, relyhashthe
string function, which returns dynamic memory. This dynamic memory, however, should
not be deallocated because it may be reused by other chliststring . It is the responsi-
bility of the hashstring ~ function to deallocate any memory it has allocated.

U. C. Berkeley Department of EECS

Chapter 3. Infrastructure for Star
Writers

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee

3.1 Introduction

The Ptolemy kernel provides a number of C++ classes that are fairly generic and often
prove useful to star writers. Some of these are essential, such as those that handle errors. Com-
plete documentation of the kernel classes is givemha Kernel Manualvolume of The
Almagest Here, we summarize only the most generic of these classes, i.e., the ones that are
generally useful to star programmers. All of the classes described here may be used in stars,
provided that the star writer includes the appropriate header files. For instance, the entry

ccinclude { "pt_fstream.h" }

will permit the star to create instances of the basic stream classes (described below) in the
body of functions that are defined in the star. If the user wishes to create such an instance as a
private , protected , or public member of the star, then the header file needs to be
included in theh file, specified as done in the line

hinclude { "pt_fstream.h" }
in the Printer star defined on page 2-28.

The source code for most of classes and functions described in this section can be
found in $PTOLEMY/src/kernel . The source code is the ultimate reference. Moreover,
since this directory is automatically searched for include files when a star is dynamically
linked, no special effort is required to specify where to find the include files.

3.2 Handling Errors

Uniform handling of errors is provided by tBeor class. Thé&rror class provides
four static methods, summarized in table 3-1. From within a star definition, it is not necessary
to explicitly include theerror.h header file. A typical use of the class is shown below:

Error::abortRun(*this,"this message is displayed");

The notation Error::abortRun " is the way static methods are invoked in C++ without
having a pointer to an instance of tBeor class. The first argument tells the error class
which object is flagging the error; this is strongly recommended. The name of the object will
be printed along with the error message. Note thatnloeRun call does not cause an
immediate halt. It simply marks a flag that the scheduler must test for.

The table uses standard C++ notation to indicate how to use the methods. The type of
the return value and the type of the arguments is given, together with an explanation of each.
When an argument has the annotatiorstmething then this argument is optional. If it is

3-2 Infrastructure for Star Writers

omitted from the call, then the value used willSbenething

Error class #include "Error.h"
method description
static void abortRun (signal a fatal error, and request a halt to the run
const NamedObj& the object triggering the error
obj,
const char*, the error message
const char* = 0, optional additional message to concatenate to the errorjmes-
sage
const char* = 0) optional additional message to concatenate to the errorfmes-
sage
static void abortRun signal a fatal error, and request a halt to the run
const char*, the error message
const char* = 0, optional additional message to concatenate to the errorfmes-
sage
const char* = 0) optional additional message to concatenate to the errorjmes-
sage
static void error signal an error, without requesting a halt to the run
(...)
static void message output a message to the user
(-.r)
static void warn generate a warning message
(-r)
TABLE 3-1: A summary of the static methods in the Error class. Each method has two tem-

plates, as shown only for the abortRun method. The others are the same.

3.3 1/O Classes

Star programmers often need to communicate with the user. The most flexible way to
do this is to build a customized, window-based interface, as described in “Using Tcl/Tk” on
page 5-1. Often, however, it is sufficient to plot some data or to just construct strings and out-
put them to files or to the standard outpiib do the latter, use the claspesfstream and
pt_ofstream , which are derived from the standard C++ stream clagsesam and
ofstream , respectively. More sophisticated output can be obtained withGhaph class,
the histogram classes, and classes that interface to Tk for generating animated, interactive dis-
plays. All of these classes are summarized in this section.

3.3.1 Extended input and output stream classes

Thept_ofstream class is used in therinter star on page 2-28. Include the header
file pt_fstream.h . Thept_ofstream constructor is invoked in theetup method with

1. Note that when users run pigi, the standard output may appear on a window that is buried. The
-console option to pigi helps, in that it creates a specific window for the standard output and other
interactions with the user. The standard output is much more useful with ptcl, the textual interpreter.

U. C. Berkeley Department of EECS

The Almagest 3-3

the call tonew. It would not do to invoke it in the constructor for the star, sincéléhame
state would not have been initialized. Notice thatséwep method reclaims the memory
allocated in previous runs (or previous invocations ofsétep method) before creating a
new pt_ofstream object. Notice that we are not usingveapup method to reclaim the
memory, since this method is not invoked if an error occurs during a run.

The classegt_ifstream and pt_ofstream are only a slight extension of the
classesfstream andofstream. They add the following features:

» First, certain special file names are recognized as arguments to the constructor or to the
open method. These file names amn> , <cout> , <cerr> , or<clog> (the angle
brackets must be part of the string), then the corresponding standard stream of the
same name is used for inppt_(fstream) or output pt_ofstream). In addition,

C standard I/O fans can specifstdin> , <stdout> , or<stderr>

e Second, the PtolemgxpandPathName (see table3-7 onpage 3-8) is applied to
the filename before it is opened, permitting it to start witker or $VAR

* Finally, if a failure occurs when the file is opengdor::abortRun is called with
an appropriate error message, including the Unix error condition.

These classes can be used for binary character data as well as ASCII.

3.3.2 Generating graphs using the XGraph class

The XGraph class provides an interface to tweggraph program, used for plotting
data on an X window system display. Tpwgraph program and all its options are docu-
mented in théJser's Manual An example of the output fropxgraph is shown in figure 3-
1.The most useful methods of the class are summarized in table 3-2.

Using theXGraph class involves an invocation of tlvetialize method, some
number of invocations of theddPoint method, followed by an invocation of thermi-

& modulator dema

B

o 110 [] !
)

Al

38D ' L
=] B ‘ i o
i
5 |

"
puan FLC] 1000 1 5000 £ 09 Salgn 100 () 3000 4000 (i)

FIGURE 3-1: An example of the output from the pxgraph program, which can be accessed using
the XGraph class.

Ptolemy Last updated: 8/26/97

3-4 Infrastructure for Star Writers

nate method. Multiple data sets (currently up to 64) may be plotted together. They will each
be given a distinctive color and/or line pattern. Within each data set, it is possible to break the
connecting lines between points by calling tleeaTrace method.

XGraph class #include "Display.h”
method description

void initialize (start a fresh plot
Block* parent, pointer to the block using the class
int noGraphs, the number of data sets to plot
const char* options to pass to the pxgraph program
options,
const char* title to put on the graph
title,
const char* name of a file to save data to
saveFile =0,
intignore =0) number of initial points to ignore

void addPoint (add the next point to the first data set with implicit x posjtion
floaty) the vertical position

void addPoint (add a single point to the first data set
float X, the horizontal position of the point to plot
floaty) the vertical position of the point to plot

void addPoint (add a single point to a particular data set
int dataSet, the number of the data set (starting with 1)
float X, the horizontal position of the point to plot
floaty) the vertical position of the point to plot

void newTrace (start a new trace disconnected from the previous trace
int dataSet = 1) the data set for the new trace

void terminate () plot the data using the pxgraph program

TABLE 3-2: A summary of the most useful methods of the XGraph class, which provides a simple

interface to the pxgraph program, used for plotting data.

3.3.3 Classes for displaying animated bar graphs

TheBarGraph class creates a Tk window that displays a bar graph that can be modi-
fied dynamically, while a simulation runs. An example with 12 data sets and 8 bars per data
set is shown in figure 3-2. The most useful methods of the class are summarized in table 3-3.
This class is directly usable only by stars linked inpigaa. process, not to stars linked into
the interpretemptcl . The reason for this is thaiicl does not have the Tk code linked into it.
Correspondingly, the class definition source code $£ITOLEMY/src/pigilib , rather than
the more usuagPTOLEMY/src/kernel

U. C. Berkeley Department of EECS

The Almagest 3-5

BarGraph class #include "BarGraph.h"
method description

int setup (start a fresh plot; return FALSE if setup fails
Block* parent, pointer to the block using the class
char* desc, label for the bar graph
int numinputs, the number of data sets to plot
int numBars the number of bars per data set to show at once
double top, the numerical value that will produce the highest bar
double bottom, the numerical value that will produce the lowest bar
char* geometry, the starting position for the window (e.g. “+0+0” or “-0-0
double width, the starting width of the window (in cm)
double height) the starting height of the window (in cm)

int update (modify or add a bar; return FALSE if it fails
int dataSet, the number of the data set (starting with 0)
int bar, the horizontal position of the point to plot
double y) the requested height of the bar

TABLE 3-3: A summary of the most useful methods of the BarGraph class, which creates ani-

mated bar graph charts in a window, and is available to stars running under pigi

3.3.4 Collecting statistics using the histogram classes
The Histogram class constructs a histogram of data supplied. XHistogram

Jcale range:

ﬂ{n 1L

FIGURE 3-2: An example of an animated bar graph created using the BarGraph class. This class
uses Tk, so it is available under pigi , but not under ptcl

Ptolemy Last updated: 8/26/97

3-6

Infrastructure for Star Writers

class also constructs a histogram, but then plots it usinxdr@ph program. An example of
such a plot is shown in figure 3-3. The most useful methods of both classes are summarized in

tables 3-4 and 3-5.

TheHistogram class counts the number of occurrences of data values that fall within
each of a number of bins. Each bin represents a range of numbers. All bins have the same
width, and the center of each bin will be an integer multiple of this width. Bin number 0 is
always that with the smallest center. Bins are added if new data arrives that does not fit within
any of the existing bins. ThgetData method is used to read out the contents of a bin. If you

start with bin number 0, and proceed ugéiData

bins.
Histogram class

#include "Histogram.h"

int numCounts ()

returnsFALSE, you will have read all the

mber

Is

Histogram (constructor
double width = the width of each bin; bins are centered at integer multiplgs of
1.0, this
int maxBins = since bins are added as needed, it is wise to limit their nt
1000)

void add (add to the count of the bin within which the given data faj
double x) a data point for the histogram

return the number of data values used so far in the histogram

double mean ()

return the average value of all observed data so far

double variance ()

return the variance of the observed data so far

int getData (

get the count for a given bin; return FALSE if the bin is o(t of

range
int binno, starting at 0, the bin number
int& count, place to store the count for the given bin
double& bin- place to store the center of the given bin
Center)
TABLE 3-4: A summary of the most useful methods of the Histogram class, which creates his-

togram charts in a window, and is available to stars running under pigi

m Hardeepy

FIGURE 3-3:

U. C. Berkeley

An example of a histogram generated using the XHistogram

Histogram of noise samplés

class.

Department of EECS

The Almagest

XHistogram class
method

void initialize (
Block* parent,

3-7

#include "Histogram.h"

description
start a fresh histogram

pointer to the block using the class

double binWidth, the width of each bin; bins are centered at integer multiplgs of
this
const char* options to pass to the pxgraph program, in addition to -bgr -nl
options, -brw
const char* title to put on the histogram
title,
const char* name of a file to save data to (or O if none)
saveFile,
int maxBins = since bins are added as needed, it is wise to limit their ngmber
1000)
void addPoint (add to the count of the bin within which the given data fajls
double y) a data point for the histogram

int numCounts ()

return the number of data values used so far in the histogram

double mean ()

return the average value of all observed data so far

double variance ()

return the variance of the observed data so far

void terminate ()

plot the histogram using the pxgraph program

TABLE 3-5:

Ptolemy

A class for displaying histograms.

Last updated: 8/26/97

3-8 Infrastructure for Star Writers

3.4 String Functions and Classes

The Ptolemy kernel defines some ordinary functions (not classes) plus two classes that
are useful for building and manipulating strings. The non-class string functions are summa-
rized in table 3-6.. These include functions for copying strings, adding strings to a system-

ordinary functions for strings #include "miscFuncs.h"

description

char* savestring (create a new copy of the given text and return g
const char* text) pointer to it; the caller must eventually delete thg
string.
const char* hashstring (save a copy of the text in a system-wide hash tgble,
const char* text) if it isn’t already there, and return a pointer to thg
entry.
char* tempFileName () return a new, unique temporary file name; the
caller must eventually delete the string.
const char* expandPathName (return an expanded version of the filename argy-
const char* filename) ment, which may start with “~”, “~user”, or
“$var”; the expanded result is in static storage, ahd
will be overwritten by the next call.

TABLE 3-6: Non-class (ordinary) functions available in the Ptolemy kernel for string manipulation

wide hash table, creating temporary file names. The non-class pathname functions are summa-
rized in table 3-7. These functions are for expanding file names that might begin with a refer-
ence to a users home directory~ysername") or an shell environment variable
("$VARIABLE"). Also provided is a function for verifying that an external program to be
invoked is available, and a function for searching the user’s path.

ordinary functions for path search #include "paths.h"
method description
int progNotFound (flag an error and return TRUE if a program is n¢t
found
const char* program, the name of the program to find in the user’s pgth
const char* extramsg = message to add to error message if the program
0) isn't found
const char* pathSearch (find a file in a Unix-style path, returning the dirdc-
tory name
const char* file, file name to find in the path
const char* path = 0) if non-zero, the path to use instead of the user’g
path
TABLE 3-7: Non-class (ordinary) functions available in the Ptolemy kernel for certain pathname

manipulations.

U. C. Berkeley Department of EECS

The Almagest

Two classes are provided for manipulating strimgfString

3-9

, andStringList,

classes are summarized in figure 3-8.

StringList class

#include "StringList.h"

these

method description
StringList constructors can take any of the following possible argyi-
ments
none return an empty StringList
const StringList& copy s and return a new, identical StringList
S
charc return a StringList with one string of one character

const char* string

copy the string and makes a one element StringList co
ing it

htain-

arg

structors, except “none”

inti create an ASCII representation of the number and retuyn a
double x one element StringList with that number as the eleme
unsigned u

StringList&operator= assignment takes the same types of arguments as the [con-

StringList& operator
<< arg

add one or more elements to a StringList; this takes th¢

14

same types of arguments as the constructors, except “hone”

operator const char*
void initialize ()

join all elements together and return as a single string;

delete all elements, making the StringList empty

int length ()

return the length in characters (sum of the lengths of the

elements)

int numPieces ()

return the number of elements

const char* head ()

return the first element

char* newCopy ()

return the concatenated elements in a single newly allg

cated string; the caller must free the memory allocated

InfString class

method
all StringList

methods

#include "InfString.h"

description
see above

operator char*

join all elements together and return as a single string;

TABLE 3-8:

A summary of the most useful methods of the StringList

and InfString

classes. The InfString , add-

ing only the cast to char* .

class inherits all of the methods from StringList

Ptolemy Last updated: 8/26/97

3-10 Infrastructure for Star Writers

Although these two classes are almost identical in design, their recommended uses are
quite different. The first is designed for building up strings without having to be concerned about
the ultimate size of the string. New characters can be appended to the string at any time, and
memory will be allocated to accommodate them. When you are ready to use the string, perhaps
by passing it to a function that expects the standard character array representation of the string,
then simply cast the object ¢tbar* .

In fact, InfString is publicly derived fromStringList , adding only the cast to
char* . StringList is implemented as a list of strings, where the size of the list is not
bounded ahead of tim&tringList is recommended for applications where the list structure
is to be preserved. The casttar* in InfString destroys the list structure, consolidating all
its strings into one contiguous string.

The most useful methods for both classes are summarized in table InSiey
differs by only one operator, we show only that one operator.

A word of warning is in order. If a function or expression returr&riagList or
InfString , and that value is not assigned t8tangList or InfString variable or refer-
ence, and théonst char*) or (char*) cast is used, it is possible (likely under g++) that
the StringList or InfString temporary will be destroyed too soon, leaving thest
char* orchar* pointer pointing to garbage. The solution is to assign the returned value to a
local StringList or InfString before performing the cast. Suppose, for example, that the
functionfoo returns annfString . Further, suppose the functibar takes achar* argu-
ment. Then the following code will fail:

bar(foo());

(Note that the cast har* is implicit). The following code will succeed:
InfString x = foo();
bar(x);

3.5 lterators

The StringList class is one of several list classes in the Ptolemy kernel. A basic oper-
ation on list classes is to sequentially access their members one at a time. This is accomplished
using an iterator class, companion to the list class. FosttirgList class, the iterator is

calledStringListlter . Its methods are summarized in table 3-9. An example program frag-
StringListlter class #include "StringList.h"
StringList (constructor
StringList& list) the list over which the iterator will iterate
const char* next () return the next string on the list, or O if there are no moye
const char* operator a synonym for “next”
++ ()
void reset () reset the iterator to start at the head again
TABLE 3-9: An example of an iterator class, used to access the elements of a list class.

ment using this is given below:
StringListlter item(myList);
const char* string;

U. C. Berkeley Department of EECS

The Almagest 3-11

while ((string = item++) = 0) cout << string << "\n";

In this fragmentmyList is assumed to beSringList previously set up.

3.6 List Classes

The StringList class is privately derived from th&equentialList class, an
extremely useful class used throughout Ptolemy. This class implements a linked list with a
running count of the number of elements. It uses the generic pointer technique, with

typedef void* Pointer

Thus, items in a sequential list can be pointers to any object, with a generic pointer used to
access the object. In derived classes, $ikimgList , this generic pointer is converted to a
specific type of pointer, likeonst char* . The methods are summarized in table 3-10.

An important point to keep in mind when usingSaquentialList is that its
destructor does not delete the elements in the list. It would not be possible to do so, since it has
only a generic pointer. Also, note that random access (by element number, or any other
method) can be very inefficient, since it would require sequentially chaining down the list.

SequentiallList has an iterator class calledtiter . The++ operator (onext
member function) returnskointer

In table 3-11 are two classes privately derived fiequentialList , Queue and

Stack . The first of these can implement either a first-in, first-out (FIFO) queue, or a last-in,

SequentialList class

method
void append (Pointer p)

#include "DataStruct.h"

description
add the element p to the end of the list

Pointer elem (intn)

return the n-th element on the list (zero if there gre

fewer than n)

intempty ()

return 1 if empty, O if not

Pointer getAndRemove ()

return and remove the first element on the list
(return zero if empty)

Pointer getTailAndRemove ()

return and remove the last element on the list (re
zero if empty)

urn

Pointer head ()

return the first element on the list (zero if empty)

void initialize ()

remove all elements from the list

int member (Pointer p)

return 1 if the list has a pointer equal to p, O if ng

void prepend (Pointer p)

add the element p to the beginning of the list

int remove (Pointer p)

if the list has a pointer equal to p, remove it, and
return 1; O if not

int size ()

return the number of elements on the list

Pointer tail ()

—t

return the last element on the list (zero if empty)

TABLE 3-10:

Ptolemy

The most useful basic list structure defined in the Ptolemy kernel.

Last updated: 8/26/97

Infrastructure for Star Writers

first-out (LIFO) queue. The second implements a stack, which is also a LIFO queue.

Queue class

#include "DataStruct.h"

method description
Pointer getHead () 0 if

empty)

Pointer getTail ()

return and remove the last element on the list (return zefp if
empty)

void initialize ()

remove all elements from the list

voidputHead(Pointer
p)

add the element p to the beginning of the list

voidputTail (Pointer
p)

add the element p to the end of the list

int size () return the number of elements on the list

Stack class #include "DataStruct.h”
method description

Pointer accessTop () return the top of the stack without removing it (return zerp if

empty)

void initialize ()

remove all elements from the list

Pointer popTop ()

—

return and remove the top element from the stack (zero i
empty)

void pushBottom

add the element p to the bottom of the stack

(Pointer p)

voidpushTop(Pointer add the element p to the top of the stack
p)

int size () return the number of elements on the list

TABLE 3-11: Two classes derived from SequentiallList.

U. C. Berkeley

Department of EECS

The Almagest

3.7 Hash Tables

3-13

Hash tables are lists that are indexed by an ASCII string. A “hashing function” is com-
puted from the string to make random accesses reasonably efficient; they are much more effi-

cient, for example, than a linear search ove$eguentialList

. Two such classes are

provided in the Ptolemy kernel. The firsgshTable , is generic, in that the table entries are

of typePointer

, and thus can point to any user-defined data structure. The s€egind;

ble , is more specialized; the entries are strings. It is derivedHtashTable .

The HashTable class is summarized in table 3-12 amcttTable

HashTable class

class is summ

#include "HashTable.h"

method description
void clear () empty the table
virtual void cleanup (does nothing; in derived classes, this might deallocatg
Pointer p) memory
int hasKey (return 1 if the given key is in the table, O otherwise
const char* key)
void insert (insert an entry; any previous entry with the same key i

const char* key,
Pointer data)

replaced, and the cleanup method is called so that in
derived classes, its memory can be deallocated.

Pointer lookup (
const char* key)

lookup an entry; in a derived class, this could be over-
loaded to return a pointer of a more specific type.

a_

int remove (remove the entry with the given key from the table; noje
const char* key) that the object pointed to by the entry is not deallocatdqd.

int size () return the number of entries in the hash table

TABLE 3-12: A summary of the most useful methods of the HashTable class

rized in table 3-13. Only the most useful (and easily used) methods are described. You may
want to refer to the source code for more information. HéhTable class has a standard
iterator calledHashTablelter , where thenext method and-+ operator return a pointer to
classHashEntry . This class has@nst char* key() method that returns the key for the
entry, and #@ointer value() method that returns a pointer to the entextTable has an

iterator calledTextTablelter , where thenext method and+ operator return typeonst

char* .

Sophisticated users will often want to derive new classes lftaghTable . The rea-
son is that the methods that look up data in the table can be defined to return pointers of the
appropriate type. Moreover, the deallocation of memory when an entry is deleted or the table
itself is deleted can be automat@dxtTable is a good example of such a derived class. This
is not possible with the genettitashTable class, because tiRinter type does not give
enough information to know what destructor to invoke. Thus, when using the geasic
Table class, the user should explicitly delete the objects pointed to [Bothwer if they
were dynamically created and are no longer needed. A detailed example that directly uses the
HashTable class, without defining a derived class, is given in the next section. In that exam-

Ptolemy Last updated: 8/26/97

3-14

Infrastructure for Star Writers

ple, thePointer entries point to stars in a universe, so they should not be deleted when the
entries in the table are deleted. Their memory will be deallocated when the universe is deleted.

TextTable class

method

#include "HashTable.h"
description

const char* key,
constchar*string

)

void clear () empty the table

void cleanup (deallocate the string pointed to by p
Pointer p)

int hasKey (return 1 if the given key is in the table, O otherwise
const char* key)

void insert (create an entry containing a copy of string; any previqus

entry with the same key is replaced, and the cleanup
method is called to deallocate its memory.

const char* lookup (
const char* key)

lookup an entry with the given key; return 0 if there is o
such entry.

p -

int remove (remove the entry with the given key from the table an
const char* key) deallocated its memory.
int size() return the number of entries in the hash table

TABLE 3-13: A summary of the most useful methods of the HashTable and TextTab |

classes.

In some future versiomjashTable might be reimplemented using templates.

3.8 Sharing Data Structures Across Multiple Stars

It is sometimes desirable to have a set of stars that share and manipulate a common
data structure A simple way to accomplish this is to define a star that contains a static mem-
ber. Suppose, for example, you wish to define a class of stars that create a shared list of point-
ers, one to each instance of this type of star. Thus, every star of this type would be able to
access every other star of this type. Consider the following implementation:

defstar {

name { Share }
domain { SDF }

desc { A star with a shared data structure }
hinclude { “DataStruct.h” }

private {

static SequentiallList starList;

}
output {

name { howmany }

type {int}

}

code {

1. See the SDFWriteVar and SDFReadVar stars for a similar implementation.

U. C. Berkeley

Department of EECS

The Almagest 3-15

SequentialList SDFShare::starList;

}
begin {
starList.append(this);

}
go {
howmany%0 << starList.size();

}
wrapup {
starList.initialize();

}
}

This star has a static private member of tgpquentiallList with namestarList. The

“static " in C++ ensures that there will be no more than one instance Stthential-

List object. That instance will be accessible to every instance of the star, but not to any other
object (because the member is private). That one instance is actually declared by the lines:

code {
SequentialList SDFShare::starList;

}
The declaration will get put into the fi#DFShare.cc by the preprocessor. Notice that the
class name of the star 8FShare not justShare . Thebegin method simply adds to the
sequential list a pointer to the star that invokedhidsgin method this). Note that you
should use theegin method here rather than thetup method because thegin method
is always invoked exactly once, while teetup method might be invoked more than once
when the simulation starts up. The method sends to the output (nanhedmany) the size
of the list. This will be equal to the number of stars of this type in the universe.

Thewrapup method has the only tricky part of this code. It reinitializesStwpien-
tialList so that subsequent runs do not just simply add to a list created by previous runs.
However, note that the wrapup method will not be invoked if an error occurs during the run.
Pigi ensures correct operation nonetheless by deleting all instances of the stars and recreat-
ing them if an error occurred on the previous run. Thus, between invocationsbegime
method, either therapup method or the constructor for the star (and all its members) will
be invoked. The constructor fBequentiallList also initializes the list, so the list is always
initialized before the firgtegin method is called.

The above approach is somewhat limited. You may want more than one type of star to
share a data structure. In this case, you should create a common base class for all the stars that
will share the data structure. The shared data structure should be a protected member, rather
than a private member, so that it is accessible to derived stars.

Alternatively, you might want arbitrary subsets of stars to share distinct data struc-
tures, one for each subset. This can be accomplished by defining a static list that is indexed by
a string, and using a parameter in the star to identify to which subset it belongs. An efficient
data structure to use for this is thashTable . So for example, suppose we wanted to modify
the above star to create lists of stars with common values of a parameter “mySubset”, and to
output the number of stars in their subset. The above code becomes:

defstar {

Ptolemy Last updated: 8/26/97

3-16 Infrastructure for Star Writers

name { BetterShare }
domain { SDF }
desc { A star with a shared data structure }
hinclude { "DataStruct.h" }
hinclude { "HashTable.h" }
output {
name { howmany }
type {int}

state {
name { mySubset }
default { "subset A" }
type { string }
}
private {
static HashTable listOfLists;
SequentialList* myList;
}

code {
HashTable SDFBetterShare::listOfLists;

}
begin {
if (listOfLists.hasKey((char*)mySubset)) {
myList = listOfLists.lookup((char*)mySubset);
}else {
myList = new SequentialList;
listOfLists.insert((char*)mySubset,myList);

}
myList->append(this);

}

go {
howmany%0 << myList->size();

}
wrapup {
if (listOfLists.hasKey((char*)mySubset)) {
listOfLists.remove((char*)mySubset);
delete myList;

}

In addition to the static private membistOfLists , we also have a pointeryList to a
SequentialList . Thebegin method is a bit more complicated now. It first checks to see
whether an entry in the hash table has already been created with a key equal to the value of the
state “mySubset”. If it has, then tlSequentialList pointermyList is set equal to the

value of that entry. If it has not, then a nSequentiallList is allocated and inserted into

the hash table with the appropriate key. The last action is simply to insert a pointer to the star
instance intonyList .

Thego method is similar to before.

Thewrapup method is slightly more complicated, because it needs to free the mem-
ory allocated when the ne@equentialList was allocated. However, it should free that

U. C. Berkeley Department of EECS

The Almagest 3-17

memory only once, and there may be several star instances pointing to it. Thus, it first checks
the hash table to see whether there exists an entry with key eguaubset . If there does,
then it removes that entry and deletesSbguentialList myList

3.9 Using Random Numbers

Ptolemy uses the Gnu library routines for the random number generation. Refer to Vol-
ume Il of the Art of Computer Programming by Knuth for details about the method. There are
built-in classes for some popular distributions: uniform, exponential, geometric, discrete uni-
form, normal, log-normal, and so on. These classes use a common basic random number gen-
eration routine which is realized in tAe€Gclass. Here are some examples of using random
numbers.

The first example is the part of the PRisson star. See the DE chapter for details on
how to write DE stars.

hinclude { <NegExp.h>}
ccinclude { <ACG.h>}
protected {
NegativeExpntl *random;
}
/I declare the static random-number generator in the .cc file
code {
extern ACG* gen;
}
constructor {
random = NULL;
}
destructor {
if(random) delete random;
}
setup {
if(random) delete random;
random = new NegativeExpntl(double(meanTime),gen);
DERepeatStar :: setup();

go{

/I Generate an exponential random variable.
double p = (*random)();

The built-in class for an exponentially distributed random numbétsgativeExpntl

The Ptolemy kernel provides a single object to generate a stream of random numbers;
the global variablegen (a poor choice of name, perhaps) is a pointer to it. We create an
instance of theNegativeExpntl class in thesetup method, not in the constructor since
Ptolemy allows you to change the seed of the random number generator. When the user
changes the seed of the random number generator, the object pointegroidygeleted and
re-created, so all objects such as the one pointedrambym in this star become invalid.

Ptolemy Last updated: 8/26/97

3-18 Infrastructure for Star Writers

Finally, we can read a random number of the specific type by calling opgraibthe
NegativeExpnl class.

This example uses a uniformly distributed random number.

hinclude { <Uniform.h>}
ccinclude { <ACG.h>}
protected {

Uniform *random;
}

/I declare the extern random-number generator in the .cc file
code {

}

constructor {
random = NULL;
}

destructor {
if(random) delete random;

extern ACG* gen;

}
setup {
if(random) delete random;
random = new Uniform(0,double(output.numberPorts()),gen);
}
go {
double p = (*random)();
}

You may notice that the two examples above are very similar in nature. You can get another
kind of distribution for the random numbers, by including the appropriate library file im the
file and by creating the instance with the right parameters sethp method.

U. C. Berkeley Department of EECS

Chapter 4. Data Types

Authors: Joseph T. Buck
Michael J. Chen
Alireza Khazeni

Other Contributors: Brian Evans
Paul Haskell
Asawaree Kalavade
Tom Lane
Edward A. Lee
John Reekie

4.1 Introduction

Stars communicate by sending objects of fyaeicle . A basic set of types, includ-
ing scalar and array types, built on feticle class, is built into the Ptolemy kernel. Since
all of these patrticle types are derived from the same base class, it is possible to write stars that
operate on any of them (by referring only to the base class). It is also possible to define new
types that contain arbitrary C++ objects.

There are currently eleven key data types defined in the Ptolemy kernel. There are four
numeric scalar types—complex, fixed-point, double precision floating-point, and integer—
described in Section 4.2. Ptolemy supports a limited form of user-defined typ&tessage
type, described in Section 4.3. Each of the scalar numeric types has an equivalent matrix type,
which uses a more complex version of the user-defined type mechanism; they are described in
Section 4.4.

There are two experimental types included in the basic set, containing strings and file
references, described in Section 4.5. Ptolemy allows stars to be written that will read and write
particles of any type; this mechanism is described in Section 4.6. Finally, some experimental
types that are not officially supported by Ptolemy are described in Section 4.7.

4.2 Scalar Numeric Types

There are four scalar numeric data types defined in the Ptolemy kernel: complex,
fixed-point, double precision floating-point, and integer. All of these four types can be read
from and written to portholes as described in “Reading inputs and writing outputs” on page 2-
17. The floating-point and integer data types are based on the standatduBte+ andint
types, and need no further explanation. To support the other two types, the Ptolemy kernel
contains aComplex class and &ix class, which are described in the rest of this section.

4.2.1 The Complex data type

The Complex data type in Ptolemy contains real and imaginary components, each of
which is specified as a double precision floating-point number. The notation used to represent

4-2 Data Types

a complex number is a two number pair: (real, imaginary)—for example, (1.3,-4.5) corre-
sponds to the complex number +.3.5. Complex implements a subset of the functionality

of the complex number classes in the cfront and libg++ libraries, including most of the stan-
dard arithmetic operators and a few transcendental functions.

Constructors:
Complex()
Create a complex number initialized to zero—that is, (0.0, 0.0). For
example,
Complex C;

Complex(double real, double imag)
Create a complex number whose value is (real, imag). For example,
Complex C(1.3,-4.5);

Complex(const Complex& arg)
Create a complex number with the same value as the argument (the
copy constructor). For example,
Complex A(complexSourceNumber);

Basic operators:

The following list of arithmetic operators modify the value of the complex number. All func-
tions return a reference to the modified complex numnities ().

Complex& operator = (const Complex& arg)
Complex& operator += (const Complex& arg)
Complex& operator -= (const Complex& arg)
Complex& operator *= (const Complex& arg)
Complex& operator /= (const Complex& arg)
Complex& operator *= (double arg)
Complex& operator /= (double arg)
There are two operators to return the real and imaginary parts of the complex number:
double real() const

double imag() const

Non-member functions and operators:

The following one- and two-argument operators return a new complex number:
Complex operator + (const Complex& x, const Complex& y)
Complex operator - (const Complex& x, const Complex& y)

Complex operator * (const Complex& x, const Complex& y)

U. C. Berkeley Department of EECS

The Almagest 4-3

Complex operator * (double x, const Complex& y)
Complex operator * (const Complex& x, double y)
Complex operator / (const Complex& x, const Complex& y)
Complex operator / (const Complex& x, double y)

Complex operator - (const Complex& x)
Return the negative of the complex number.

Complex conj (const Complex& x)
Return the complex conjugate of the number.

Complex sin(const Complex& x)

Complex cos(const Complex& Xx)

Complex exp(const Complex& x)

Complex log(const Complex& x)

Complex sgrt(const Complex& x)

Complex pow(double base, const Complex& expon)

Complex pow(const Complex& base, const Complex& expon)
Other general operators:

double abs(const Complex& x)
Return the absolute value, defined to be the square root of the norm.

double arg(const Complex& x)
Return the value arctan(x.imag()/x.real()).

double norm(const Complex& x)
Return the value x.real() * x.real() + x.imag() * x.imag().

double real(const Complex& x)
Return the real part of the complex number.

double imag(const Complex& x)
Return the imaginary part of the complex number.

Comparison Operators:
int operator != (const Complex& x, const Complex& y)
int operator == (const Complex& X, const Complex& y)

4.2.2 The fixed-point data type

The fixed-point data type is implemented in Ptolemy byrtkeclass. This class sup-
ports a two’s complement representation of a finite precision number. In fixed-point notation,
the partition between the integer part and the fractional part—the binary point—lies at a fixed

Ptolemy Last updated: 10/10/97

4-4 Data Types

position in the bit pattern. Its position represents a trade-off between precision and range. If
the binary point lies to the right of all bits, then there is no fractional part.

Constructing Fixed-point variables

Variables of typé-ix are defined by specifying the word length and the position of the
binary point. At the user-interface level, precision is specified either by setting a fixed-point
parameter to a Yfalue precisior)” pair, or by setting grecision parameter. The former
gives the value and precision of some fixed-point value, while the latter is typically used to
specify the internal precision of computations in a star.

In either case, the syntax of the precision is eitkg¥ or “m/n”, wherex is the num-
ber of integer bits (including the sign big)andm are the number of fractional bits, amds
the total number of bits. Thus, the total number of bits in the fixed-point number (also called
its length is x+y or n. For example, a fixed-point number with precision “3.5” has a total
length of 8 bits, with 3 bits to the left and 5 bits to the right of the binary point.

At the source code level, methods workingFix objects either have the precision
passed as anx:y’ or “m/n” string, or as two C++ integers that specify the total number of bits
and the number of integer bits including the sign bit (that &dx). For example, suppose
you have a star with a precision parameter ngonecision Consider the following code:

Fix x = Fix(((const char *) precision));
if (x.invalid())
Error::abortRun(*this, "Invalid precision");

The “precision” parameter is cast to a string and passed as a constructor argumefik to the
class. The error check verifies that the precision was valid.

There is a maximum value for the total length 8ba object which is specified by the
constantFIX_MAX_LENGTHIn the file SPTOLEMY/src/kernel/Fix.h . The current value
is 64 bits. Numbers in thigix class are represented using two’s complement notation, with
the sign bit stored in the bits to the left of the binary point. There must always be at least one
bit to the left of the binary point to store the sign.

In addition to its value, eadfix object contains information about its precision and
error codes indicating overflow, divide-by-zero, or bad format parameters. The error codes are
set when errors occur in constructors or arithmetic operators. There are also fields to specify

a. whether rounding or truncation should take place when @tkervalues are
assigned to it—truncation is the default

b. the response to an overflow or underflow on assignment—the default is saturation
(see page 4-6).

Warning
TheFix type is still experimental.

Fixed-point states

State variables can be declaredrixs or FixArray . The precision is specified by an
associated precision state using either of two syntaxes:

U. C. Berkeley Department of EECS

The Almagest 4-5

» Specifying just a value itself in the dialog box creates a fixed-point number with the
default length of 24 bits and with the position of the binary point set as required to
store the integer value. For example, the value 1.0 creates a fixed-point object with
precision 2.22, and the value 0.5 would create one with precision 1.23.

* Specifying a (value, precision) pair create a fixed-point number with the specified pre-
cision. For example, the value (2.546, 3.5) creates a fixed-point object by casting the
double 2.546 to &ix with precision 3.5.

Fixed-point inputs and outputs

Fix types are available in Ptolemy as a typéatficle . The conversion from an
int or adouble to aFix takes place using thex::Fix(double) constructor which
makes &ix object with the default word length of 24 bits and the number of integer bits as
needed required by the value. For instancedtiidle 10.3 will be converted to Rix with
precision 5.19, since 5 is the minimum number of bits needed to represent the integer part, 10,
including its sign bit.

To use theFix type in a star, the type of the portholes must be declarefixas. “
Stars that receive or transmit fixed-point data have parameters that specify the precision of the
input and output in bits, as well as the overflow behavior. Here is a simplified version of
SDFAddFix star, configured for two inputs:

defstar {
name { AddFix }
domain {SDF}
derivedFrom{ SDFFix }
input {
name { inputl }
type { fix }

input {
name { input2 }
type { fix }
}
output {
name { output }
type { fix }
}
defstate {
name { OutputPrecision }
type { precision }
default{ 2.14}
desc {
Precision of the output in bits and precision of the accumulation.
When the value of the accumulation extends outside of the precision,
the OverflowHandler will be called.

}
}

(Note that the readddFix star supports any number of inputs.) By default, the precision used
by this star during the addition will have 2 bits to the left of the binary point and 14 bits to the

Ptolemy Last updated: 10/10/97

4-6 Data Types

right. Not shown here is the stab@erflowHandler , which is inherited from th8DFFix

star and which defaults taturate —that is, if the addition overflows, then the result satu-
rates, pegging it to either the largest positive or negative number representable. The result
value,sum, is initialized by the following code:

protected {
Fix sum;
}

begin {
SDFFix::begin();

sum = Fix(((const char *) OutputPrecision));
if (sum.invalid())
Error::abortRun(*this, "Invalid OutputPrecision");
sum.set_ovflow(((const char*) OverflowHandler));
if (sum.invalid())
Error::abortRun(*this, "Invalid OverflowHandler");

}
Thebegin method checks the specified precision and overflow handler for correctness. Then,
in thego method, we ussum to calculate the result value, thus guaranteeing that the desired
precision and overflow handling are enforced. For example,

go {
sum.setToZero();
sum += Fix(input1%0);
checkOverflow(sum);
sum += Fix(input2%0);
checkOverflow(sum);
output%0 << sum;

}

(ThecheckOverflow method is inherited frorBDFFix .) The protected membeum is an
uninitializedFix object until thebegin method runs. In thbegin method, it is given the
precision specified bputputPrecision . Thego method initializes it to zero. If thgo
method had instead assigned it a value specified by arkthabject, then it would acquire
the precision of that other object—at that point, it wouldii&lized.

Assignment and overflow handling

Once aFix object has been initialized, its precision does not change as long as the
object exists. The assignment operator is overloaded so that it checks whether the value of the
object to the right of the assignment fits into the precision of the left object. If not, then it takes
the appropriate overflow response is taken and set the overflow error bit.

If a Fix object is created using the constructor that takes no arguments, agraa the
tected declaration above, then that object is an uninitializied, it can accept any assign-
ment, acquiring not only its value, but also its precision and overflow handler.

The behavior of &ix object on an overflow depends on the specifications and the
behavior of the object itself. Each object has a private data field that is initialized by the con-
structor; when there is an overflow, thesrflow_handler looks at this field and uses the

U. C. Berkeley Department of EECS

The Almagest 4-7

specified method to handle the overflow. This data field is seftdcate by default, and

can be set explicitly to any other desired overflow handling method using a function called
set_ovflow(<keyword>) . The keywords for overflow handling methods aaurate

(default), zero_saturate , wrapped , warning . saturate replaces the original value is
replaced by the maximum (for overflow) or minimum (for underflow) value representable
given the precision of theix object.zero_saturate sets the value to zero.

Explicitly casting inputs
In the above example, the first line of th® method assigned the input to the pro-

tected membesum, which has the side-effect of quantizing the input to the precisistnof
We could have alternatively written the method as follows:

go {
sum = Fix(input1%0) + Fix(input2%0);
output%0 << sum;

}

The behavior here is significantly different: the inputs are added using their own native preci-
sion, and only the result is quantized to the precisiaurf

Some stars allow the user to select between these two different behaviors with a
parameter calledrrivingPrecision If set toYES the input particles are not explicitly cast;
they are used as they are; if setNi@ the input particles are cast to an internal precision,
which is usually specified by another parameter.

Here is the (abbreviated) source of #iBFGainFix star, which demonstrates this
point:

defstar {

name { GainFix }

domain { SDF }

derivedFrom { SDFFix }

desc{
This is an amplifier; the fixed-point output is the fixed-point input
multiplied by the "gain" (default 1.0). The precision of "gain”, the
input, and the output can be specified in bits.

}
input {
name { input }
type { fix }
output {
name { output }
type { fix }
}
defstate {
name { gain }
type { fix }
default { 1.0}
desc { Gain of the star. }
}

Ptolemy Last updated: 10/10/97

4-8 Data Types

defstate {
name { ArrivingPrecision }
type {int}
default {"YES"}
desc {
Flag indicating whether or no to use the arriving particles as they
are: YES keeps the same precision, and NO casts them to the precision
specified by the parameter "InputPrecision”. }
}
defstate {
name { InputPrecision }
type { precision }
default { 2.14 }
desc {
Precision of the input in bits. The input particles are only cast
to this precision if the parameter "ArrivingPrecision" is set to NO.
}
}
defstate {
name { OutputPrecision }
type { precision }
default { 2.14 }
desc {
Precision of the output in bits.
This is the precision that will hold the result of the arithmetic
operation on the inputs.
When the value of the product extends outside of the precision,
the OverflowHandler will be called.

}
protected {
Fix fixIn, out;
}
begin {
SDFFix::begin();
if (!int(ArrivingPrecision)) {
fixln = Fix(((const char *) InputPrecision));
if(fixIn.invalid())
Error::abortRun(*this, "Invalid InputPrecision");
}
out = Fix(((const char *) OutputPrecision));
if (out.invalid())
Error::abortRun(*this, "Invalid OutputPrecision");
out.set_ovflow(((const char *) OverflowHandler));
if(out.invalid())
Error::abortRun(*this,"Invalid OverflowHandler");
}
go {

/[all computations should be performed with out since
/ that is the Fix variable with the desired overflow

/I handler

out = Fix(gain);

if (int(ArrivingPrecision)) {

U. C. Berkeley Department of EECS

The Almagest 4-9

out *= Fix(input%0);
}

else {
fixln = Fix(input%0);
out *= fixIn;

}

checkOverflow(out);
output%0 << out;

}

/[a wrap-up method is inherited from SDFFix
/I if you defined your own, you should call SDFFix::wrapup()

}

Note that theSDFGainFix star and many of theix stars are derived from the s&DFFix .

SDFFix implements commonly used methods and defines two stedlowHandler

selects one of four overflow handlers to be called each time an overflow occurepand
tOverflow , which, if true, causes the number and percentage of overflows that occurred for
that star during a simulation run to be reported imttapup method.

Constructors:
Fix() Create &ix number with unspecified precision and value zero.

Fix(int length, int intbits)
Create &ix number with total word length ééngth bits andint-
bits bits to the left of the binary point. The value is set to zero. If the
precision parameters are not valid, then an error bit is internally set so
that theinvalid method will returnTRUE

Fix(const char* precisionString)
Create &ix number whose precision is determinedpbscision-
String , which has the syntaxéftbitsrightbits’, whereleftbitsis the
number of bits to the left of the binary point aightbits is the number
of bits to the right of the binary point, orightbits/totalbits, where
totalbitsis the total number of bits. The value is set to zero. Iptae
cisionString IS not in the proper format, an error bit is internally set
so that thénvalid method will returnTRUE

Fix(double value)

Create aFix with the default precision of 24 total bits for the word
length and set the number of integer bits to the minimum needed to rep-
resent the integer part of the number value. If the value given needs
more than 24 bits to represent, the value will be clipped and the number
stored will be the largest possible under the default precision (i.e. satu-
ration occurs). In this case an internal error bit is set so that the
ovf_occurred method will returiTRUE

Fix(int length, int intbits, double value)
Create &ix with the specified precision and set its value to the given
value . The number is rounded to the closest representable number

Ptolemy Last updated: 10/10/97

4-10

Data Types

given the precision. If the precision parameters are not valid, then an
error bit is internally set so that thewalid ~ method will returnTRUE

Fix(const char* precisionString, double value)

Same as the previous constructor except that the precision is specified
by the giverprecisionString instead of as two integer arguments.

If the precision parameters are not valid, then an error bit is internally
set so that thavalid() method will return true when called on the
object.

Fix(const char* precisionString, uint16* bits)

Create aix with the specified precision and set the bits precisely to
the ones in the giveits . The first word pointed to khyits contains

the most significant 16 bits of the representation. Only as many words
as are necessary to fetch the bits will be referenced frohitsheargu-
ment. For example:Fix("2.14" bits) will only reference
bits[O]

This constructor gets very close to the representation and is meant
mainly for debugging. It may be removed in the future

Fix(const Fix& arg)

Copy constructor. Produces an exact duplicategf

Fix(int length, int intbits, const Fix& arg)

Read the value from théx argument and set to a new precision. If the
precision parameters are not valid, then an error bit is internally set so
that theinvalid method will return true when called on the object. If
the value from the source will not fit, an error bit is set so that the
ovf_occurred method will returnTRUE

Functions to set or display information about the Fix number:

int len() const

int intb() const

Return the total word length of the Fix number.

Return the number of bits to the left of the binary point.

int precision() const

Return the number of bits to the right of the binary point.

int overflow() const

U. C. Berkeley

Return the code of the type of overflow response foFthenumber.
The possible codes are:

0 - ovf_saturate ,

1 - ovf_zero_saturate)

2 - ovf_wrapped ,

3 -ovf_warning ,

4 - ovf_n_types

Department of EECS

The Almagest 4-11

int roundMode() const
Return the rounding mode:for rounding,0 for truncation.

int signBit() const
ReturnTRUEIf the value of thé=ix number is negativ&SALSE if it is
positive or zero.

intis_zero()
ReturnTRUEIf the value of th&ix number is zero.

double max()
Return the maximum value representable using the current precision.

double min()
Return the minimum value representable using the current precision.

double value()
The value of th&ix number as a double.

void setToZero()
Set the value of théix number to zero.

void set_overflow(int value)
Set the overflow type.

void set_rounding(int value)
Set the rounding typ&RUEfor rounding FALSE for truncation.

void initialize()
Discard the current precision format and setrise number to zero.

There are a few functions for backward compatibility:

void set_ovflow(const char*)
Set the overflow using a name.

void Set_ MASK(int value)
Set the rounding type. Same functionalitysets rounding()

Comparison function:

int compare (const Fix& a, const Fix& b)
Compare twdrix numbers. Return -1 #&<b,0ifa=Db, 1ifa>bh.

The following functions are for use with the error condition fields:

int ovf_occurred()
ReturnTRUEIf an overflow has occurred as the result of some opera-
tion like addition or assignment.

int invalid()
ReturnTRUEIf the current value of theix number is invalid due to it
having an improper precision format, or if some operation caused a

Ptolemy Last updated: 10/10/97

4-12 Data Types

divide by zero.
int dbz() ReturnTRUEIf a divide by zero error occurred.

void clear_errors()
Reset all error bit fields to zero.
Operators:

Fix& operator = (const Fix& arg)
Assignment operator. Hthis does not have its precision format set
(i.e. it is uninitialized), the sourdéx is copied. Otherwise, the source
Fix value is converted to the existing precision. Either truncation or
rounding takes place, based on the value of the rounding bit of the cur-
rent object. Overflow results either in saturation, “zero saturation”
(replacing the result with zero), or a warning error message, depending
on the overflow field of the object. In these casefls,occurred will
returnTRUEON the result.

Fix& operator = (double arg)
Assignment operator. The double value is first converted to a default
precisionFix number and then assignedtias

The function of these arithmetic operators should be self-explanatory:
Fix& operator += (const Fix&)
Fix& operator -= (const Fix&)
Fix& operator *= (const Fix&)
Fix& operator *= (int)
Fix& operator /= (const Fix&)
Fix operator + (const Fix&, const Fix&)
Fix operator - (const Fix&, const Fix&)
Fix operator * (const Fix&, const Fix&)
Fix operator * (const Fix&, int)
Fix operator * (int, const Fix&)
Fix operator / (const Fix&, const Fix&)
Fix operator - (const Fix&) // unary minus
int operator == (const Fix& a, const Fix& b)
int operator != (const Fix& a, const Fix& b)
int operator >= (const Fix& a, const Fix& b)
int operator <= (const Fix& a, const Fix& b)

int operator > (const Fix& a, const Fix& b)

U. C. Berkeley Department of EECS

The Almagest 4-13

Note:

int operator < (const Fix& a, const Fix& b)

These operators are designed so that overflow does not, as a rule, occur (the return
value has a wider format than that of its arguments). The exception is when the result
cannot be represented ifria with all 64 bits before the binary point.

The output of any operation will have error codes that are the logical OR of those of
the arguments to the operation, plus any additional errors that occurred during the
operation (like divide by zero).

The division operation is currently a cheat: it converts to double and computes the
result, converting back teix .

The relational operators ==, |=, >=, <=, >, < are all written in terms of a function

int compare(const Fix& a, const Fix& b)

This functions returns -1 d < b, O ifa = b, and 1 ifa > b. The comparison is exact
(every bit is checked) if the two values have the same precision format. If the preci-
sions are different, the arguments are converted to doubles and comparedo&ince

ble values only have an accuracy of about 53 bits on most machines, this may cause
false equality reports fa¥ix values with many bits.

Conversions:

operator int() const
Return the value of thEix number as an integer, truncating towards
Zero.

operator float() const

operator double() const
Convert to a float or a double, creating an exact result when possible.

void complement()
Replace the current value by its complement.

Fix overflow, rounding, and errors.
TheFix class defines the following enumerated values for overflow handling:

Fix::ovf_saturate
Fix::ovf_zero_saturate
Fix::ovf_wrapped

Fix::ovf_warning

They may be used as arguments tostteoverflow method, as in the following example:

out.set_overflow(Fix::ovf_saturate);

The member function

Ptolemy

Last updated: 10/10/97

4-14 Data Types

int overflow() const;

returns the overflow type. This returned result can be compared against the above enumerated
values. Overflow types may also be specified as strings, using the method

void set_ovflow(const char* overflow_type);
the overflow_type argument may be one eaturate , zero_saturate , wrapped , or
warning .
The rounding behavior ofix value may be set by calling
void set_rounding(int value);

If the argument is false, or has the vahie:mask_truncate , truncation will occur. If the
argument is nonzero (for example, if it has the v&iMemask_truncate_round , round-
ing will occur. The older namg&et_MASK is a synonym foset_rounding

The following functions access the error bits &ia result:
int ovf_occurred() const;
int invalid() const;
int dbz() const;

The first function returnRUEIf there have been any overflows in computing the value. The
second returnsRUEIf the value is invalid, because of invalid precision parameters or a divide
by zero. The third returnBRUEonly for divide by zero.

4.3 Defining New Data Types

The Ptolemy heterogeneous message interface provides a mechanism for stars to trans-
mit arbitrary objects to other stars. Our design satisfies the following requirements:

» Existing stars (stars that were written before the message interface was added) that
handleANYTYPEwork with message particles without change.

* Message portholes can send different types of messages during the same simulation.
This is especially useful for modeling communication networks.

* |t avoids copying large messages by using a reference count mechanism, as in many
C++ classes (for example, string classes).

* It is possible to safely modify large messages without excessive memory allocation
and deallocation.

« ltis (relatively) easy for users to define their own message types; no change to the ker-
nel is required to support new message types.

The “message” type is understood by Ptolemy to mean a particle containing a message. There
are three classes that implement the support for message types:

* TheMessage class is the base class from which all other message data types are
derived. A user who wishes to define an application-specific message type derives a
new class fronMessage.

* TheEnvelope class contains a pointer to an derived fidassage . When arEnve-
lope objects is copied or duplicated, the new envelope simply sets its own pointer to

U. C. Berkeley Department of EECS

The Almagest 4-15

the pointer contained in the original. Several envelopes can thus reference the same
Message object. EactMessage object contains a reference count, which tracks how
many Envelope objects reference it; when the last reference is removedjdbe

sage is deleted.

TheMessageParticle class is a type dparticle (like IntParticle , Float-
Particle , etc.); it contains &nvelope . Ports of type “message” transmit and
receive objects of this type.

Class Particle contains two member functions for message suppetiessage , to
receive a message, and e operator with arEnvelope as the right argument, to load a

messa

ge into a particle. These functions return errors in the base class; they are overridden in

theMessageParticle class with functions that perform the expected operation.

4.3.1 Defining a new Message class

Every user-defined message is derived from dVassage . Certain virtual functions

defined in that class must be overridden; others may optionally be overridden. Here is an

examp

Ptolemy

le of a user-defined message type:

/I This is a simple vector message object. It stores
/[an array of integer values of arbitrary length.
/I The length is specified by the constructor.
#include "Message.h"
class IntVecData: public Message {
private:
int len;
init(int length,int *srcData) {
len = length;
data = new int[len];
for (inti=0;i<len;i++)
data[i] = *srcData++;
}
public:
/ the pointer is public for simplicity
int *data;

int length() const { return len;}

/I functions for type-checking
const char* dataType() const { return "IntVecData";}
/I isA responds TRUE if given the name of the class or
/I of any baseclass.
int isA(const char* typ) const {
if (strcmp(typ,"IntVecData") == 0) return TRUE;
else return Message::isA(typ);
}
/I constructor: makes an uninitialized array
IntVecData(int length): len(length) {
data = new int[length];
}

/I constructor: makes an initialized array from a int array
IntVecData(int length,int *srcData) { init(length,srcData);}

Last updated: 10/10/97

4-16 Data Types

/I copy constructor
IntVecData(const IntVecData& src) { init(src.len,src.data);}

/I clone: make a duplicate object
Message* clone() const { return new IntVecData(*this);}

/I destructor
~IntVecData() {
delete data;

}
2
This message object can contain a vector of integers of arbitrary length. Some functions in the
class are arbitrary and the user may define them in whatever way is most convenient; however,
there are some requirements.

The class must redefine thataType method from clas$essage. This function
returns a string identifying the message type. This string should be identical to the name of the
class. In addition, theA method must be defined. Te& method responds withRUE(1)
if given the name of the class or of any base class; it reeMSE (0) otherwise. This mech-
anism permits stars to handle any of a whole group of message types, even for classes that are
defined after the star is written.

Because of the regular structurds#f function bodies, macros are provided to gener-
ate them. ThéSA_INLINE macro expands to an inline definition of the function; for exam-
ple,

ISA_INLINE(IntVecData,Message)

could have been written above instead of the definitiosfofto generate exactly the same
code. Alternatively, to put the function body irca file, one can write

int isA(const char*) const;
in the class definition and put
ISA_FUNC(IntVecData,Message)
in the.cc file (or wherever the methods are defined).

The class must define a copy constructor, unless the default copy constructor generated
by the compiler, which does memberwise copying, will do the job.

The class must redefine thlwne method of clas$lessage. Given that the copy
constructor is defined, the form shown in the example, where a new object is created with the
new operator and the copy constructor, will suffice.

In addition, the user may optionally define type conversion and printing functions if
they make sense. If a star that produces messages is connected to a star that expects integers
(or floating values, or complex values), the appropriate type conversion function is called. The
base classiMessage, defines the virtual conversion functioasint() , asFloat() , and
asComplex() and the printing methogrint() = — see the fil§PTOLEMY/src/kernel/

Message.h for their exact types. The base class conversion functions assert a run-time error,
and the default print function returnSaingList saying

<type>: no print method

U. C. Berkeley Department of EECS

The Almagest 4-17

wheretypeis whatever is returned ljataType()

By redefining these methods, you can make it legal to connect a star that generates
messages to a star that expects integer, floating, or complex particles, or you can connect to a
Printer ~ or XMgraph star (forXMgraph to work, you must define tresFloat function; for
Printer to work, you must define theint method).

4.3.2 Use of the Envelope class

TheEnvelope class references objects of cldsssage or derived classes. Once a
message object is placed into an envelope object, the envelope takes over responsibility for
managing its memory: maintaining reference counts, and deleting the message when it is no
longer needed.

The constructor (which takes as its argument a referencéMtssage), copy con-
structor, assignment operator, and destruct@neélope manipulate the reference counts of
the referencellessage object. Assignment simply copies a pointer and increments the refer-
ence count. When the destructor &fravelope is called, the reference count of tessage
object is decremented,; if it becomes zeroMeesage object is deleted. Because of this dele-
tion, aMessage must never be put insideEnvelope unless it was created with thew
operator. Once Blessage object is put into ainvelope it must never be explicitly deleted;
it will “live” as long as there is at least omvelope that contains it, and it will then be
deleted automatically.

It is possible for arEnvelope to be “empty”. If it is, theempty method will return
TRUE and the data field will point to a special “dummy message” withiyfdé¢MYhat has no
data in it.

ThedataType method ofEnvelope returns the datatype of the contaimeksage
object; the methodasint() , asFloat() , asComplex() , andprint() are also “passed
through” in a similar way to the contained object.

Two Envelope methods are provided for convenience to make type checking simpler:
typeCheck andtypeError . A simple example illustrates their use:

if (lenvelope.typeCheck("IntVecData")) {
Error::abortRun(*this, envelope.typeError("IntVecData"));
return;

}

The methodypeCheck callsisA on the message contents and returns the result, so an error
will be reported if the message contents ardmdecData and are not derived fromtV-

ecData . Since the above code segment is so common in stars; a macro is incliaad in
sage.h to generate it; the macro

TYPE_CHECK(envelope,"IntVecData");

expands to essentially the same code as aboveygddt&ror method generates an appro-
priate error message:

Expected message type’ arg’, got’ type ’

To access the data, two methods are providgData() andwritableCopy() . The
myData function returns a pointer to the contaiméessage -derived objectThe data pointed

Ptolemy Last updated: 10/10/97

4-18 Data Types

to by this pointer must not be modifiesihce otheEnvelope objects in the program may

also contain it. If you convert its type, always make sure that the converted type is a pointer to
const (see the programming example @Packint below). This ensures that the compiler

will complain if you do anything illegal.

ThewritableCopy function also returns a pointer to the contained object, but with a
difference. If the reference count is one, the envelope is emptied (set to the dummy message)
and the contents are returned. If the reference count is greater tharlonepéthe contents
is made (by calling itslone() function) and returned; again the envelope is zeroed (to pre-
vent the making of additional clones later on).

In some cases, a star writer will need to keep a recéiesdage object around
between executions. The best way to do this is to have the star contain a member of type
Envelope , and to use this member object to hold the message data between executions. Mes-
sages should always be kept in envelopes so that the user does not have to worry about manag-
ing their memory.

4.3.3 Use of the MessageParticle class

If a porthole is of type “message”, then its particles are objects of theMdass
sageParticle . A MessageParticle is simply a particle whose data field is Emnve-
lope , which means that it can holdveessage in the same way th&nvelope objects do.

Many methods of thearticle class are redefined in tiMessageParticle class
to cause a run-time error; for example, it is illegal to send an integer, floating, or complex
number to the particle with the< operator. The conversion operators (conversion to type
int , double , or Complex) return errors by default, but can be made legal by redefining the
asint , asFloat , orasComplex methods for a specific message type.

The principal operations avlessageParticle ~ objects are<< with an argument of
type Envelope , to load a message into the particle, getMessage(Envelope&) , to
transfer message contents from the particle into a user-supplied messagetMEssage
method removes the message contents from the partiolecases where the destructive
behavior of getMessage cannot be tolerated, an alternative interfaaegessMes-
sage(Envelope&) , is provided. It does not remove the message contents from the patrticle.
Promiscuous use atcessMessage in systems where large-sized messages may be present
can cause the amount of virtual memory occupied to grow (though all message will be deleted
eventually).

4.3.4 Use of messages in stars

Here are a couple of simple examples of stars that produce and consume messages. For
more advanced samples, look in the Ptolemy distribution for stars that produce or consume
messages. The image processing classes and stars, which are briefly described below in
“Image particles” on page 4-40, provide a particularly rich set of examples. The matrix classes
described on page 4-21 are also good examples. The matrix classes are recognized in the
Ptolemy kernel, and supported fogi andptlang

1. The reason for this “aggressive reclamation” policy (both here and in other places) is to minimize the
number of no-longer-needed messages in the system and to prevent unnecessary clones from being
generated by writableCopy() by eliminating references to Message objects as soon as possible.

U. C. Berkeley Department of EECS

The Almagest 4-19

defstar {
name { Packint }
domain { SDF }
desc { Accept integer inputs and produce IntVecData messages.}
defstate {
name { length }
type {int}
default { 10 }
desc { number of values per message }

}
input {
name { input }
type {int}
}
output {
name { output }
type { message }
}
ccinclude { "Message.h", "IntVecData.h" }
start {
input.setSDFParams(int(length),int(length-1));
}
go {
int | = length;
IntVecData * pd = new IntVecData(l);
/I Fill in message. input%0 is newest, must reverse
for (inti=0;i<I;i++)
pd->data[l-i-1] = int(input%i);
Envelope pkt(*pd);
output%0 << pkt;
}

}

Since this is an SDF star, it must produce and consume a constant number of tokens on each
step, so the message length must be fixed (though it is controllable with a state). See “Setting
SDF porthole parameters” on page 7-1 for an explanation ofeti®FParams method.

Notice that the output porthole is declared to be of typesage. Notice also thecin-

clude statement; we must include the flessage.h in all message-manipulating stars, and

we must also include the definition of the specific message type we wish to use.

The code itself is fairly straightforward—amtVecData object is created withew,
is filled in with data, and is put into &@mvelope and sent. Resist the temptation to declare
thelntVecData object as a local variable: it will not work. It must reside on the heap. Here
is a star to do the inverse operation:

defstar {

name { UnPackint }

domain { SDF }

desc{
Accept IntVecData messages and produce integers. The first 'length’
values from each message are produced.

Ptolemy Last updated: 10/10/97

4-20 Data Types

}
defstate {
name { length }
type {int}
default { 10 }
desc { number of values output per message }
}
input {
name { input }
type { message }
}
output {
name { output }
type {int}
}
ccinclude { "Message.h", "IntVecData.h" }
start {
output.setSDFParams(int(length),int(length-1));
}
go {
Envelope pkt;
(input%0).getMessage(pkt);
if (Ipkt.typeCheck('IntVecData")) {
Error::abortRun(*this,pkt.typeError("IntVecData"));
return;
}
const IntVecData * pd = (const IntVecData *)pkt.myData();
if (pd.length() < int(length)) {
Error::abortRun(*this,
"Received message is too short");
return;
}
for (i = 0; i < int(length); i++) {
output%(int(length)-i-1) << pd->datali];
}
}

}
Because the domain is SDF, we must always produce the same number of outputs regardless
of the size of the messages. The simple approach taken here is to require at least a certain
amount of data or else to trigger an error and abort the run.

The operations here are to declare an envelope, get the data from the particle into the
envelope withgetMessage , check the type, and then access the contents. Notice the cast
operation; this is needed becausgData returns a const pointer to claBessage. It is
important that we converted the pointerctmst IntVecData * and notintVecData*
because we have no right to modify the message through this pointer. Many C++ compilers
will not warn by default about “casting away const”; we recommend turning on compiler
warnings when compiling code that uses messages to avoid getting into trouble (for g++, say
-Wecast-qual ; for cfrontderived compilers, sayw).

If we wished to modify the message and then send the result as an output, we would
call writableCopy instead oimyData, modify the object, then send it on its way as in the

U. C. Berkeley Department of EECS

The Almagest 4-21

previous star.

4.4 The Matrix Data Types

The primary support for matrix types in Ptolemy isBudatrix classPtMatrix is
derived from theMessage class, and uses the various kernel support functions for working
with theMessage data type as described in Section 4.3 on page 4-14. This section discusses
thePtMatrix class and how to write stars and programs using this class.

4.4.1 Design philosophy

ThePtMatrix class implements two dimensional arrays. There are four key classes
derived fromPtMatrix : ComplexMatrix , FixMatrix , FloatMatrix ~, andIntMatrix
(Note thatFloatMatrix is a matrix of C++double s.) A review of matrix classes imple-
mented by other programmers revealed two main styles of implementation: a vector of vec-
tors, or a simple array. In addition, there are two main formats of storing the entries: column-
major ordering, where all the entries in the first column are stored before the entries of the sec-
ond column, and row-major ordering, where the entries are stored starting with the first row.
Column-major ordering is how Fortran stores arrays whereas row-major ordering is how C
stores arrays.

The PtolemyPtMatrix class stores data as a simple C array, and therefore uses row-
major ordering. Row-major ordering also seems more natural for operations such as image
and video processing, but it might make it more difficult to interface Ptolepuyatrix
class with Fortran library calls. The limits of interfacing PtolenPgidatrix class with other
software is discussed in Section 4.4.5 on page 4-33.

The design decision to store data entries in a C array rather than as an array of vector
objects has a greater effect on performance than the decision whether to use row major or col-
umn major ordering. There are a couple of advantages to implementing a matrix class as an
array of vector class objects: referencing an entry may be faster, and it is easier to do opera-
tions on a whole row or column of the matrix, depending on whether the format is an array of
column vectors or an array of row vectors. An entry lookup in an array of row vectors requires
two index lookups: one to find the desired row vector in the array and one to find the desired
entry of that row. A linear array, in contrast, requires a multiplication to find the location of
first element of the desired row and then an index lookup to find the column in that row. For
example Afrow][col] is equivalent to looking uRdata + (row*numRows + col) if
the entries are stored in a C artaya[] , whereas it is *rowArray + row) + col if
looking up the entry in an array of vectors format.

Although the array of vectors format has faster lookups, it is also more expensive to
create and delete the matrix. Each vector of the array must be created in the matrix construc-
tor, and each vector must also be deleted by the matrix destructor. The array of vectors format
also requires more memory to store the data and the extra array of vectors.

With the advantages and disadvantages of the two systems in mind, we chose to imple-
ment thePtMatrix class with the data stored in a standard C array. Ptolemy’s environment is
such that matrices are created and deleted constantly as needed by stars: this negates much of
the speedup gained from faster lookups. Also, we felt it was important to keep the design of
the class simple and the memory usage efficient because of Ptolemy’s increasing size and

Ptolemy Last updated: 10/10/97

4-22 Data Types

complexity.

4.4.2 The PtMatrix class

The PtMatrix base class is derived from tMessage class so that we can use
Ptolemy’'sEnvelope class and message-handling system. HoweveKékeageParticle
class is not used by ti&Matrix class; instead, there are spedittrixEnvParticle
classes defined to handle type checking between the various types of matrices. This allows the
system to automatically detect when two stars with different matrix type inputs and outputs
are incorrectly connected togetftelso, theMatrixEnvParticle class has some special
functions not found in the standaktkssageParticle class to allow easier handling of
PtMatrix ~ class messages. A discussion of how to pagatrix class objects using the
MatrixEnvParticles can be found in a following section.

As explained previously, there are currently four data-specific matrix classes:
plexMatrix , FixMatrix , FloatMatrix ~ , andIntMatrix . Each of these classes stores its
entries in a standard C array nandeth , which is an array of data objects corresponding to
thePtMatrix type:Complex , Fix , double , orint . These four matrix classes implement a
common set of operators and functions; in additionCttveplexMatrix ~ class has a few spe-
cial methods such asnjugate() andhermitian() and theFixMatrix ~ class has a num-
ber of special constructors that allow the user to specify the precision of the entries in the
matrix. Generally, all entries ofRixMatrix ~ will have the same precision.

The matrix classes were designed to take full advantage of operator overloading in
C++ so that operations on matrix objects can be written much like operations on scalar ones.
For example, the two-operand multiplgerator * has been defined so thatifandB are
matricesA * B will return a third matrix that is the matrix productfoéndB.

4.4.3 Public functions and operators for the PtMatrix class

The functions and operators listed below are implemented by all matrix classes (
plexMatrix , FixMatrix , FloatMatrix , andIntMatrix) unless otherwise noted. The
symbols used are:

* XXXrefers to one of the followingomplex , Fix , Float , orint
* xxx refers to one of the followin@omplex , Fix , double , orint

Functions and Operators to access entries of the Matrix:

Xxx& entry(int i)
Example:A.entry(i)
Return the 1 entry of the matrix when its data storage is considered to
be a linear array. This is useful for quick operations on every entry of
the matrix ~ without regard for the specific (row,column) position of
that entry. The total number of entries in the matrix is defined to be
numRows() * numCols() , with indices ranging from O taum-

1. We recommend, however, that you do not adapt this method to your own types, but use the standard
method of adding new message types described in Section 4.3. The method currently used for the
matrix classes may not be supported in future releases.

U. C. Berkeley Department of EECS

The Almagest 4-23

Rows() * numCols() - 1 . This function returns a reference to the
actual entry in the matrix so that assignments can be made to that entry.
In general, functions that wish to linearly reference each entry of a
matrix A should use this function instead of the expresaidatali]

because classes which are derived fRimatrix can then overload
theentry() method and reuse the same functions.

XxXx* operator [] (int row)
Example:A[row][column]
Return a pointer to the start of the row in the matrix’s data storage.
(This operation is different to matrix classes defined as arrays of vec-
tors, in which the[] operator returns the vector representing the
desired row.) This operator is generally not used alone but wiffh the
operator defined on C arrays, so tAglj] will give you the entry
of the matrix in the ™ row andj " column of the data storage. The
range of rows is from O toumRows()-1 and the range of columns is
from 0 tonumCols()-1

Constructors:

XXXMatrix()
Example:IntMatrix A ;
Create an uninitialized matrix. The number of rows and columns are set
to zero and no memory is allocated for the storage of data.

XXXMatrix(int numRow, int numcCol)
Example:FloatMatrix A(3,2) X
Create a matrix with dimensionamRowby numCol. Memory is allo-
cated for the data storage but the entries are uninitialized.

XXXMatrix(int numRow, int numcCol, PortHole& p)
Example:ComplexMatrix(3,3,myPortHole)
Create a matrix of the given dimensions and initialize the entries by
assigning to them values taken from the portm®ortHole . The
entries are assigned in a rasterized sequence so that the value of the first
particle removed from the porthole is assigned to entry (0,0), the sec-
ond patrticle’s value to entry (0,1), etc. It is assumed that the porthole
has enough particles in its buffer to fill all the entries of the new matrix.

XXXMatrix(int numRow, int numCol, XXXArrayState& dataArray)
Example:IntMatrix A(2,2,mylIntArrayState);
Create a matrix with the given dimensions and initialize the entries to
the values in the giveArrayState . The values of th@rrayState
fill the matrix in rasterized sequence so that entry (0,0) of the matrix is
the first entry of thérrayState , entry (0,1) of the matrix is the sec-
ond, etc. An error is generated if tlRerayState does not have
enough values to initialize the whole matrix.

XXXMatrix(const XXXMatrix& src)

Ptolemy Last updated: 10/10/97

4-24 Data Types

Example:FixMatrix A(B);

This is the copy constructor. A new matrix is formed with the same
dimensions as the source matrix and the data values are copied from the
source.

XXXMatrix(const XXXMatrix& src, int startRow, int startCol, int
numRow, int numcCol)
Example:IntMatrix A(B,2,2,3,3);
This special “submatrix” constructor creates a new matrix whose val-
ues come from a submatrix of the source. The argunseart&ow
and startCols specify the starting row and column of the source
matrix. The valuesumRowandnumCol specify the dimensions of the
new matrix. The sumtartRow + numRow must not be greater than
the maximum number of rows in the source matrix; similathyt-
Col + numCol must not be greater than the maximum number of col-
umns in the source. For exampleBiis a matrix with dimension (4,4),
thenA(B,1,1,2,2) would create a new matrixthat is a (2,2) matrix
with data values from the center quadrant of ma&yiso thatA[0][0]
== B[1][1] , AlO][1] == B[1][2] » A[1][0] == B[2][1] , and
A[1][1] == B[2][2]

The following are special constructors for teMatrix class that allow the programmer to
specify the precision of the entries of #ieMatrix

FixMatrix(int numRow, int numCaol, int length, int intBits)
Example:FixMatrix A(2,2,14,4);
Create @&ixMatrix with the given dimensions such that each entry is
a fixed-point number with precision as given byldmgth andint-
Bits inputs.

FixMatrix(int numRow, int numCol, int length, int intBits,
PortHole& myPortHole)
Example:FixMatrix A(2,2,14,4);
Create &ixMatrix with the given dimensions such that each entry is
a fixed-point number with precision as given by ldmgth andint-
Bits inputs and initialized with the values that are read from the parti-
cles contained in the porthaleyPortHole

FixMatrix(int numRow, int numCaol, int length, int intBits, Fix-
ArrayState& dataArray)
Example:FixMatrix A(2,2,14,4);
Create @&ixMatrix with the given dimensions such that each entry is
a fixed-point number with precision as given byldmgth andint-
Bits inputs and initialized with the values in the giVe@RrArray-
State .

There are also special copy constructors fofFikilatrix class that allow the programmer
to specify the precision of the entries of BeMatrix ~ as they are copied from the sources.
These copy constructors are usually used for easy conversion between the other matrix types.

U. C. Berkeley Department of EECS

The Almagest 4-25

The last argument specifies the type of masking function (truncate, rounding, etc.) to be used
when doing the conversion.

FixMatrix(const XXXMatrix& src, int length, int intBits,
int round)
Example:FixMatrix A(CxMatrix,4,14, TRUE);
Create &ixMatrix with the given dimensions such that each entry is
a fixed-point number with precision as given by ldmgth andint-
Bits arguments. Each entry of the new matrix is copied from the cor-
responding entry of the src matrix and converted as specified by the
round argument.

Comparison operators:

int operator == (const XXXMatrix& src)
Example:if(A == B) then
ReturnTRUEIf the two matrices have the same dimensions and every
entry inAis equal to the corresponding entrBirReturnFALSE other-
wise.

int operator != (const XXXMatrix& src)
Example:if(A != B) then “
ReturnTRUEIf the two matrices have different dimensions or if any
entry ofA differs from the corresponding entryBnReturnFALSE oth-
erwise.

Conversion operators:

Each matrix class has a conversion operator so that the programmer can explicitly cast
one type of matrix to another (this casting is done by copying). It would have been possible to
make conversions occur automatically when needed, but because these conversions can be
quite expensive for large matrices, and because unexpected results might occur if the user did
not intend for a conversion to occur, we chose to require that these conversions be used explic-
itly.

operator XXXMatrix () const

Example:FloatMatrix C = A * (FloatMatrix)B;

Convert a matrix of one type into another. These conversions allow the
various arithmetic operators, suchraand+, to be used on matrices of
different type. For example, iA in the example above is a (3,3)
FloatMatrix andB is a (3,2)ntMatrix , thenC is aFloatMatrix

with dimensions (3,2).

Destructive replacement operators:

These operators are member functions that modify the current value of the object. In
the following examplesA is usually the Ivaluerthis). All operators returnthis

XXXMatrix& operator = (const XXXMatrix& src)
Example:A = B;

Ptolemy Last updated: 10/10/97

4-26

Data Types

This is the assignment operator: makimto a matrix that is a copy of

B. If A already has allocated data storage, then the size of this data stor-
age is compared to the sizeBflf they are equal, then the dimensions

of A are simply set to those Bfand the entries copied. If they are not
equal, the data storage is freed and reallocated before copying.

XXXMatrix& operator = (xxx value)
Example:A = value;
Assign each entry ot to have the givemalue . Memory management
is handled as in the previous operator.
Note: this operator is targeted for deletion. Do not use it.

XXXMatrix& operator += (const XXXMatrix& src)
Example:A += B;
Perform the operatioA.entry(i) += B.entry(i) for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator += (xxx value)
Example:A += value;
Add the scalavalue to each entry in the matrix.

XXXMatrix& operator -= (const XXXMatrix& src)
Example:A -= B;
Perform the operatioA.entry(i) -= B.entry(i) for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator -= (xxx value)
Example:A -= value;
Subtract the scalamlue from each entry in the matrix.

XXXMatrix& operator *= (const XXXMatrix& src)
Example:A *= B;
Perform the operatiof.entry(i) *= B.entry(i) for each entry in
A. A andB must have the same dimensions. Note: this is an elementwise
operation and isot equivalent to A = A * B.

XXXMatrix& operator *= (xxx value)
Example:A *=value ;
Multiply each entry of the matrix by the scalatue .

XXXMatrix& operator /= (const XXXMatrix& src)
Example:A /= B;
Perform the operatioA.entry(i) /= B.entry(i) for each entry in
A. A andB must have the same dimensions.

XXXMatrix& operator /= (xxx value)
Example: A /= value
Divide each entry of the matrix by the scalalue . The scalar value
must be non-zero.

U. C. Berkeley Department of EECS

The Almagest 4-27

XXXMatrix& operator identity()
Example:A.identity();
ChangeA to be an identity matrix so that each entry on the diagonal is 1
and all off-diagonal entries are 0.

Non-destructive operators (these return a new matrix):

XXXMatrix operator - ()
ExampleB = -A,;
Return a new matrix such that each element is the negative of the ele-
ment of the source.

XXXMatrix operator ~ ()
ExampleB = ~A;
Return a new matrix that is the transpose of the source.

XXXMatrix operator ! ()
Example:B = A;
Return a new matrix which is the inverse of the source.

XXXMatrix operator (int exponent)
Example:B = A"2;
Return a new matrix which is the source matrix to the gixponent
power. Theexponent can be negative, in which case #xponent is
first treated as a positive number and the final result is then inverted. So
AM2 == A*A andAn(-3) == I(A*A*A)

XXXMatrix transpose()
Example:B = A.transpose();
This is the same as theoperator but called by a function name
instead of as an operator.

XXXMatrix inverse()
Example:B = A.inverse();
This is the same as theoperator but called by a function name
instead of as an operator.

ComplexMatrix conjugate()
Example:ComplexMatrix B = A.conjugate();
Return a new matrix such that each element is the complex conjugate of
the source. This function is defined for @@mplexMatrix ~ class only.

ComplexMatrix hermitian()
Example:ComplexMatrix B = A.hermitian();
Return a new matrix which is the Hermitian Transpose (conjugate
transpose) of the source. This function is defined foCtmplexMa-
trix class only.

Ptolemy Last updated: 10/10/97

4-28 Data Types

Non-member binary operators:

XXXMatrix operator + (const XXXMatrix& left, const XXXMatrix&
right)
Example:A =B + C;
Return a new matrix which is the sum of the first two. TEfte and
right source matrices must have the same dimensions.

XXXMatrix operator + (const xxx& scalar, const XXXMatrix&
matrix)
Example:A =5 + B;
Return a new matrix that has entries of sherce matrix added to a
scalar value.

XXXMatrix operator + (const XXXMatrix& matrix, const xxx& sca-
lar)
Example:A=B + 5;
Return a new matrix that has entries of the source matrix added to a
scalar value. (This is the same as the previous operator but with the
scalar on the right.)

XXXMatrix operator - (const XXXMatrix& left, const XXXMatrix&
right)
Example:A=B - C;
Return a new matrix which is the difference of the first two. [€he
andright source matrices must have the same dimensions.

XXXMatrix operator - (const xxx& scalar, const XXXMatrix&
matrix)
Example:A =5 - B;
Return a new matrix that has the negative of the entries of the source
matrix added to acalar value.

XXXMatrix operator - (const XXXMatrix& matrix, const xxx& sca-
lar)
Example:A=B - 5;
Return a new matrix such that each entry is the corresponding entry of
the sourcenatrix minus thescalar value.

XXXMatrix operator * (const XXXMatrix& left, const XXXMatrix&
right)
Example:A=B * C;
Return a new matrix which is the matrix product of the first two. The
left andright source matrices must have compatible dimensions
(i.e. A.-numCols() == B.numRows()

XXXMatrix operator * (const xxx& scalar, const XXXMatrix&
matrix)
Example:A =5 * B;

U. C. Berkeley Department of EECS

The Almagest 4-29

Return a new matrix that has entries of the souara@ix multiplied
by ascalar value.

XXXMatrix operator * (const XXXMatrix& matrix, const xxx& sca-
lar)
Example:A=B * 5;
Return a new matrix that has entries of the source matrix multiplied
by a scalar value. (This is the same as the previous operator but with the
scalar on the right.)

Miscellaneous functions:

int numRows()
Return the number of rows in the matrix.

int numCols()
Return the number of columns in the matrix.

Message* clone()
Example:IntMatrix *B = A.clone();
Return a copy ofthis.

StringList print()
Example:A.print()
Return a formatte8tringList that can be printed to display the con-
tents of the matrix in a reasonable format.

XXXMatrix& multiply (const XXXMatrix& left, const XXXMatrix&
right, XXXMatrix& result)
Example:multiply(A,B,C);
This is a faster 3 operand form of matrix multiply such that the result
matrix is passed as an argument so that we avoid the extra copy step
that is involved when we write = A * B

const char* dataType()
Example:A.dataType()
Return a string that specifies the name of the type of matrix. The strings
are ‘ComplexMatrix ", “FixMatrix ", “FloatMatrix ", and “Int-
Matrix ”

int isA(const char* type)
Example:if(A.isA("FixMatrix")) then ...
Return TRUE if the argument string matches the type string of the
matrix.

4.4.4 Writing stars and programs using the PtMatrix class

This section describes how to use the matrix data classes when writing stars. Some
examples will be given here but the programmer should refer to the SS®BOLEMY/src/
domains/sdf/matrix/stars/*.pl and $PTOLEMY/src/domains/sdf/image/

Ptolemy Last updated: 10/10/97

4-30 Data Types

stars/*.pl for more examples

Memory management

The most important thing to understand about the use of matrix data classes in the
Ptolemy environment is that stars that intend to output the matrix in a particle should allocate
memory for the matridout never delete that matrisMemory reclamation is done automati-
cally by the reference-counting mechanism ofNfeasage class. Strange errors will occur if
the star deletes the matrix before it is used by another star later in the execution sequence.

Naming conventions

Stars that implement general-purpose matrix operations usually have names with the
_M suffix to distinguish them from stars that operate on scalar particles. For example, the
SDFGain_M star multiplies an input matrix by a scalar value and outputs the resulting matrix.
This is in contrast t& DFGain, which multiplies an input value held irFeatParticle by
a double and puts that result in an oufgiaatParticle

Include files

For a star to use tltMatrix classes, it must include the fleatrix.n in either its
.h or.cc file. If the star has a matrix data member, then the declaration

hinclude { "Matrix.h" }
needs to be in thetar definition. Otherwise, the declaration
ccinclude { "Matrix.h" }
is sufficient.
To declare an input porthole that accepts matrices, the following syntax is used:
input {

name { inputPortHole }
type { FLOAT_MATRIX_ENV }

The syntax is the same for output portholes. The type field CQOMPLEX_MATRIX_ENV
FLOAT_MATRIX_ENYV FIX_MATRIX_ENV, or INT_MATRIX_ENV The icons created by
Ptolemy will have terminals that are thicker and that have larger arrow points than the termi-
nals for scalar particle types. The colors of the terminals follow the pattern of colors for scalar
data types (e.g., blue represefitmt andFloatMatrix).

Input portholes
The syntax to extract a matrix from the input porthole is:
Envelope inPkt;
(inputPortHole%0).getMessage(inPkt);

const FloatMatrix& inputMatrix =
*(const FloatMatrix *)inPkt.myData();

The first line declares @mvelope , which is used to access the matrix. Details oEtine-

lope class are given in “Use of the Envelope class” on page 4-17. The second line fills the
envelope with the input matrix. Note that, because of the reference-counting mechanism, this
line does not make a copy of the matrix. The last two lines extract a reference to the matrix

U. C. Berkeley Department of EECS

The Almagest 4-31

from the envelope. It is up to the programmer to make sure that the cast agrees with the defini-
tion of the input port.

Because multiple envelopes might reference the same matrix, a star is generally not
permitted to modify the matrix held by tBEavelope . Thus, the functiomyData() returns
aconst Message * . We cast that to beanst FloatMatrix * and then de-reference it
and assign the value baputMatrix . It is generally better to handle matrices by reference
instead of by pointer because it is clearer to wrke+“B ” rather than *A + *B 7 when
working with matrix operations. Stars that wish to modify an input matrix should access it
using thewritableCopy method, as explained in “Use of the Envelope class” on page 4-17.

Allowing delays on inputs

The cast tqconst FloatMatrix *) above is not always safe. Even if the source
star is known to provide matrices of the appropriate type, a delay on the arc connecting the
two stars can cause problems. In particular, delays in dataflow domains are implemented as
initial particles on the arcs. These initial particles are given the value “zero” as defined by the
type of particle. FOMessage particles, a “zero” is an uninitializedessage particle contain-
ing a “dummy” data value. This dumnMessage will be returned by thenyData method in
the third line of the above code fragment. The dummy message ig-lwatMatrix , ren-
dering the above cast invalid. A star that expects matrix inputs must have code to handle
empty particles. An example is:

if(inPkt.empty()) {
FloatMatrix& result = *(new FloatMatrix(int(humRows),
int(hnumCols)));
result = 0.0;
output%0 << result;

}

There are many ways that an empty input can be interpreted by a star that operates on matri-
ces. For example, a star multiplying two matrices can simply output a zero matrix if either
input is empty. A star adding two matrices can output whichever input is not empty. Note
above that we create an output matrix that has the dimensions as set by the state parameters of
the star so that any star that uses this output will have valid data.

A possible alternative to outputting a zero matrix is to simply pass that émepty
sageParticle along. This approach, however, can lead to counterintuitive results. Suppose
that empty message reaches a display starTiext , which will attempt to call the
print() method of the object. An empty message hpsn) method that results in a
message like

<type>: no print method

This is likely to prove extremely confusing to users, so we strongly recommend that each
matrix star handle the empty input in a reasonable way, and produce a non-empty output.

Matrix outputs
To put a matrix into an output porthole, the syntax is:
FloatMatrix& outMatrix =*(new FloatMatrix(someRow,someCol));

Ptolemy Last updated: 10/10/97

4-32 Data Types

/... do some operations on the outMatrix
outputPortHole%0 << outMatrix;

The last line is similar to outputting a scalar value. This is because we have overloaded the
operator for MatrixEnvParticles to supportPtMatrix class inputs. The standard use

of the MessageParticle ~ class requires you to put your message into an envelope first and
then use<< on the envelope (see “Use of the Envelope class” on page 4-17), but we have spe-
cialized this so that the extra operation of creating an envelope first is not explicit.

Here is an example of a complete star definition that inputs and outputs matrices:

defstar {

name { Mpy_M }

domain { SDF }

desc{
Does a matrix multiplication of two input Float matrices A and B to
produce matrix C.

Matrix A has dimensions (numRows,X).

Matrix B has dimensions (X,numcCols).

Matrix C has dimensions (humRows,numcCols).
The user need only specify numRows and nhumCaols. An error will be
generated automatically if the number of columns in A does not match
the number of columns in B.

}
input {

name { Ainput }

type { FLOAT_MATRIX_ENV }
}
input {

name { Binput }

type { FLOAT_MATRIX_ENV }
}
output {

name { output }

type { FLOAT_MATRIX_ENV }
}
defstate {

name { numRows }

type {int}

default { 2 }

desc { The number of rows in Matrix A and Matrix C.}
}
defstate {

name { numcCols }

type {int}

default { 2 }

desc { The number of columns in Matrix B and Matrix C}
}
ccinclude { "Matrix.h" }
go {

/I get inputs

Envelope Apkt;
(Ainput%0).getMessage(Apkt);
const FloatMatrix& Amatrix =

U. C. Berkeley Department of EECS

The Almagest 4-33

*(const FloatMatrix *)Apkt.myData();

Envelope Bpkt;
(Binput%0).getMessage(Bpkt);
const FloatMatrix& Bmatrix =

*(const FloatMatrix *)Bpkt.myData();

/I check for “null” matrix inputs, which could be
/I caused by delays on the input line
if(Apkt.empty() || Bpkt.empty()) {
[l if either input is empty, return a zero
/I matrix with the state dimensions
FloatMatrix& result =
*(new FloatMatrix(int(humRows),
int(numcCols)));
result = 0.0;
output%0 << result;

else {

/I Amatrix and Bmatrix are both valid

if((Amatrix.numRows() != int(humRows)) ||
(Bmatrix.numcCols() != int(humCaols))) {
Error::abortRun(*this,
"Dimension size of FloatMatrix inputs do ",
"not match the given state parameters.”);
return;

}

/I do matrix multiplication

FloatMatrix& result =
*(new FloatMatrix(int(humRows),

int(numcCols)));

/[we could write

I result = Amatrix * Bmatrix;

/I but the following is faster

multiply(Amatrix,Bmatrix,result);

output%0 << result;

}

4.4.5 Future extensions

After reviewing the libraries of numerical analysis software that is freely available on
the Internet, it is clear that it would be beneficial to extendPtMatrix class by adding
those well-tested libraries as callable functions. Unfortunately, many of those libraries are cur-
rently only available in Fortran, and there are some incompatibilities with Fortran’s column
major ordering and C’s row major ordering. Those problems would still exist even if the For-
tran code was converted to C. There are a few groups which are currently working on C++
ports of the numerical analysis libraries. One notable group is the Lapagioiect which is

1. LAPACK++: A Design Overview of Object-Oriented Extensions for High Performance Linear
Algebra, by Jack J. Dongarra, Roldan Pozo, and David W. Walker, availalbietiin

Ptolemy Last updated: 10/10/97

4-34 Data Types

developing a flexible matrix class of their own, besides porting the Fortran algorithms of
Lapack into C++. This might possibly be incorporated in a future release.

4.5 The File and String Types

There are two experimental types in Ptolemy that support non-numeric computation.
These types represent the beginnings of an effort to extend Ptolemy’s dataflow model to “non-
dataflow” problems such as scheduling and design flow. Their interfaces are still being devel-
oped, so should be expected to change in future releases. We would welcome suggestions on
how to improve the interface and functionality of these two types.

4.5.1 The File type

The file type is implemented by the clas$dieMessage and FileParticle ,
which are derived fronMessage andParticle . It uses the reference-counting mechanism
of the Message andEnvelope classes to ensure that files are not deleted until no longer
needed. Although we created a new patrticle type to allow these types to appeaqigh the
graphical interface, we recommend that you use Nfessage interface described in
Section 4.3 for your own types.

TheFile type adds the following functions kessage :

Constructors

FileMessage()
Create a new file message with a unique filename. By default, the file
will be deleted when no file messages reference it.

FileMessage(const char* name)
Create a new file message with the given filename. By default, the file
will not be deleted when no file messages reference it.

FileMessage(const FileMessage& src)
Create a new file message containing the same filename as the given
file message. By default, the file will not be deleted when no file mes-
sages reference it.

Operations

const char* fileName()
Return the file name contained in this message.

StringList print()
Return the file name contained in this message BtriagList
object.

const char* fileName()
Return the file name contained in this message.

void setTransient(int transient)
Set the status of the file. If transientTIRUE the file will be deleted

U. C. Berkeley Department of EECS

The Almagest 4-35

when no file messages reference it;FALSE, then it will not be
deleted.

4.5.2 The String type

The string type is implemented by the clasSesgMessage andStringParti-
cle , which are derived frorMessage andParticle . It contains annfString object—
InfString is a version ofStringList that allows limited modification, and is used to
interface C++ to Tcl. Again, It uses the reference-counting mechanism ifetisage and
Envelope classes to ensure that strings are not deleted until no longer néeitgVes-
sage is currently very simple—it adds the following functiongvtessage :

Constructors

StringMessage()
Create a new string message an empty string.

StringMessage(const char* name)
Create a new string message with a copy of the given string. The given
string can be deleted, since the new message does not reference it.

StringMessage(const StringMessageé& src)
Create a new string message containing the same string as the given
string message. Again, the string is copied.

Operations

StringList print()
Return the string contained in this messageStriagList object.

4.6 Writing Stars That Manipulate Any Particle Type

Ptolemy allows stars to declare that inputs and outputs are CARN}YEYPE A star
may need to do this, for example, if it simply copies its inputs without regard to type, as in the
case of &ork star, or if it calls a generic function that is overloaded by every data type, such
as sink stars which call the print method of the type.

The following is an example of a star that operateANMTYPEparticles:

defstar {
name {Fork}
domain {SDF}
desc { Copy input particles to each output. }
input {
name{input}
type{ANYTYPE}
}
outmulti {
name{output}

type{= input}

go{

Ptolemy Last updated: 10/10/97

4-36 Data Types

MPHIter nextp(output);

PortHole* p;

while ((p = nextp++) = 0)
(*p)%0 = input%0;

Notice how in the definition of the output type, the star simply says that its output type
will be the same as the input type. ptlang translates this definition inAd"&dnY PEoutput
porthole and a statement in the star constructor that reads

output.inheritTypeFrom(input);
as you can see by examining tbe file generated foBDFFork .

During galaxy setup, the Ptolemy kernel assigns actual typ&NYoYPEportholes,
making use of the types of connected portholes and inheritTypeFrom connections. For exam-
ple, if a Fork’s input is connected to an output porthole of iype the Fork’s input becomes
type INT, and then so do its output(s) thanks to the inheritTypeFrom connection. At runtime
there is no such thing as ANYTYPEporthole; every porthole has been resolved to some spe-
cific data type, which can be obtained from the porthole usingshlvedType() method.
(However, this mechanism does not distinguish among the various subclagssesagie , SO
if you are usingMessage particles you still need to check the actual type of détedsage
received.)

Porthole type assignment is really a fairly complex and subtle algorithm, which is dis-
cussed further in the Ptolemy Kernel Manual. The important properties for a star writer to
know are these:

* If aninput port has a specific declared type, it is guaranteed to receive particles of that
type. For reasons mentioned in “Reading inputs and writing outputs” on page 2-17, it
is safest to explicitly cast input particles to the desired type, as in

go {
double value = double(in%0);

}
but this is not strictly necessary in the current system.

* In simulation domains, an output port is NOT guaranteed to transmit particles of its
declared type; the actual resolved type of the porthole will be determined by the con-
nected input porthole. Therefore, you should always allow for type conversion of the
value computed by the star into the actual type of the output particle. This happens
implicitly when you write something like

out%0 << t;
because this expands into a call of the particle’s virtual method for loading a value of
the given type. But assuming that you know the exact type of particle in the porthole --
- say by writing something lik@-loatParticle&) (out%0) --- is very unsafe.

* In code generation domains, it is usually critical that the output porthole’s actual type
be what the star writer expected. Most codegen domains therefore splice type conver-

U. C. Berkeley Department of EECS

The Almagest 4-37

sion stars into the schematic when input and output ports of different declared types
are connected. In this way, both connected stars will see the data type they expect, and
the necessary type conversion is handled transparently.

The component portholes of a multiporthole are type-resolved separately. Thus, if an
input multiporthole is declareNYTYPE its component portholes might have differ-

ent types at runtime. (This was not true in Ptolemy versions preceding 0.7.) The com-
ponent portholes of an output multiporthole can have different resolved types in any
case, because they might be connected to inputs of different types.

It is rarely a good idea to declare a paNYTYPEoutput porthole; rather, its type
should be equated to some input porthole using the ptlapgrt notation or an
explicit inheritTypeFrom call. This ensures that the type resolution algorithm can suc-
ceed. A “pureANYTYPE output will work only if connected to an input of determin-
able type; if it's connected to &NYTYPENput, the kernel will be unable to resolve a
type for the connection. By providing artype declaration, you allow the kernel to
choose an appropriate particle type forYTYPEtO-ANYTYPECONnection.

4.7 Unsupported Types

There are a number of data types in Ptolemy that we recommend not be used by exter-

nal developers because they are either insufficiently mature or likely to change. This section
briefly describes those classes.

4.7.1 Sub-matrices

The Ptolemy kernel contains a set of matrices to support efficient computation with

sub-matrices. These classes were developed specifically for the experimental multidimen-
sional SDF (MDSDF) domain and will probably be implemented differently in a future
release.

Matrix

There are four sub-matrix classes, one for each concrete matrixGagsexSub-
, FixSubMatrix , FloatSubMatrix , andIntSubMatrix , each of which inherits

from the correspondin@tMatrix class. A sub-matrix contains a reference to a “parent”
matrix of the same type, and modifies its internal data pointers and matrix size parameters to
reference a rectangular region of the parent’s data. The constructors for the submatrix classes
have arguments that specify the region of the parent matrix referenced by the sub-matrix.

As for matrices, the description of sub-matrices uses the conventioxXkateans

Complex , Fix , Float , orint , andxxx meanomplex , Fix , double , orint .

The submatrix constructors are:

XXXSubMatrix()
Create an uninitialized matrix.

XXXSubMatrix(int numRow, int numCaol)
Create a regular matrix with dimensiangsnRowby numCol; return a
new submatrix with this matrix as its parent. Memory is allocated for
the data storage but the entries are uninitialized.

XXXSubMatrix(XXXSubMatrix& src, int sRow, int sCol, int nRow,

Ptolemy Last updated: 10/10/97

4-38 Data Types

int nCol)

Create a sub-matrix of the given dimensions and initialize it to refer-
ence the region of the parent matrix startingRbygy, sCol) and of size
(nRow; nCol). The parent matrix is the same as the parent matrix of
src . The given dimensions must fit into the parent matrix, or an error
will be flagged. Unlike the “sub-matrix” constructors in the regular
matrix classes, this constructor does not copy matrix data.

XXXSubMatrix(const XXXSubMatrix& src)
Make a duplicate of therc sub-matrix. The parent of the new matrix
is the same as the parentaf .

Submatrices support all operations supported by the regular matrix classes. Because
the matrix classes uniformly use only th&ry() andoperator [] member functions to
access the data, the sub-matrix classes need only to override these functions, and all matrix
operations become available on sub-matrices.

XXx& entry(int i)
Return thei ™ entry of the sub-matrix when its data storage is consid-
ered to be a linear array.

XXX* operator [] (int row)
Return a pointer to the start of the row of the sub-matrix’s data storage.

Using sub-matrices in stars

Sub-matrices are not currently useful in general-purpose dataflow stars. Rather, they
were developed to provide an efficient means of referencing portions of a single larger matrix
in the multi-dimensional synchronous dataflow (MDSDF) domain. We give here a summary.
For more details, see [Che94] and the MDSDF source$PirOLEMY/src/domains/
mdsdf/kernel and$PTOLEMY/src/domains/mdsdf/stars

Unlike other domains, the MDSDF kernel does not transfer particles through FIFO
buffers. Instead, each geodesic keeps a single copy of a “parent” matrix, that represents the
“current” two-dimensional datablock. Each time a star fires, it obtains a sub-matrix that refer-
ences this parent matrix with thetOutput() function of the MDSDF input port class. For
example, a star might contain:

FloatSubMatrix* data = (FloatSubMatrix*)(input.getinput());

Note that this is not really getting a matrix, but a sub-matrix that references a region of
the current data matrix. The size of the sub-matrix has been set by the star in its initialization
code by calling theetMDSDFParams() function of the port.

To write data to the output matrix, the star gets a sub-matrix which references a region
of the current output matrix and writes to it with a matrix operator. For example,

FloatSubMatrix* result = (FloatSubMatrix*)(output.getOutput());
result = -data;

U. C. Berkeley Department of EECS

The Almagest 4-39

Because the sub-matrices are only references to the current matrix on each arc they
must be deleted after use:

delete &input;
delete &result;

Here is a simplified example of a complete MDSDF star:

defstar {

name { Add }

domain { MDSDF }

desc{
Matrix addition of two input matrices A and B to
produce matrix C. All matrices must have the same
dimensions.

}

version { %W% %G% }

author { Mike J. Chen }

location { MDSDF library }

input {
name { Ainput }
type { FLOAT_MATRIX }

input {
name { Binput }
type { FLOAT_MATRIX }
}
output {
name { output }
type { FLOAT_MATRIX }
}
defstate {
name { numRows }
type {int}
default { 2 }
desc { The number of rows in the input/output matrices. }
}
defstate {
name { numcCols }
type {int}
default { 2 }
desc { The number of columns in the input/output
matrices. }
}
ccinclude { “SubMatrix.h” }
setup {
Ainput.setMDSDFParams(int(hnumRows), int(hnumcCols));
Binput.setMDSDFParams(int(humRows), int(numcCols));
output.setMDSDFParams(int(humRows), int(numcCaols));
}
go {
/I get a SubMatrix from the buffer
FloatSubMatrix& inputl

Ptolemy Last updated: 10/10/97

4-40 Data Types

= *(FloatSubMatrix*) (Ainput.getinput());
FloatSubMatrix& input2

= *(FloatSubMatrix*)(Binput.getinput());
FloatSubMatrix& result

= *(FloatSubMatrix*)(output.getOutput());

/I compute product, putting result into output
result = inputl + input2;

delete &inputl;
delete &input2;
delete &result;

}

The sub-matrix “particles”

Theptlang type of submatrices BLOAT_MATRIX INT_MATRIX, and so on. (This
is not documented in tHdser's Manualand is likely to change in a future release.) Each of
these ptlang types is implemented by a sub-class of PantiglatrixParticle , Float-
MatrixParticle , FixMatrixParticle andComplexMatrixParticle . These particle
classes exist only for setting up the portholes and performing type-checking—they are never
created or passed around during a simulation. Instead, sub-matrices are created and destroyed
by the MDSDF kernel and stars as described above.

4.7.2 Image particles

A set of experimental image data types, designed to make it convenient to manipulate
images and video sequences in Ptolemy, were defined by Paul Haskell. They are based on
Ptolemy’s built-inMessage type, described above. A library of stars that uses these image
data types can be found in the image library of the DE domain.

This set of classes is being replaced byRtMatrix classes, and the SDF image
classes now all ugetMatrix . We give here a brief introduction to the image data types used
in the DE domain, although new work should consider ugBintrix classes instead. Class
definitions can be found BPTOLEMY/src/domains/de/kernel

The base class of all the image classes is c@8lisdimage . It has some generic
methods and members for manipulating images. Most of the methods are redefined in the
derived classes. THeagment method partitions an image into many smaller images, which
together represent the same picture as the originaladdeenble method combines many
small images which make up a single picture into a single image that contains the picture. The
fragment method works recursively, so an image that has been produced by a previous
fragment call can be further fragmented. Assembly always produces a full-sized image from
fragments, however small.

Use of thesize , fullSize , andstartPos members varies within each subclass.
Typically thesize variable holds the number of pixels that an object is storing. If an object is

not produced byragment() , then §ize == fullSize). If the object is produced by a
fragment() call, size may be less than or equalftdlSize . An objects’sfullSize
may be bigger or smaller thavidth*height . It would be bigger, for example, ICTIm-

U. C. Berkeley Department of EECS

The Almagest 4-41

age, where the amount of allocated storage must be rounded up to be a multiple of the block-
size. It would be smaller, for example, for an object that contains run-length coded video.

Theframeld variable is used during assembly. Fragments with the sameld ’s
are assembled into the same image. So, it is important that different frames from the same
source have different framelds.

The comparison functions=§, =, <, >, etc.} compare two objectfameld ’s. They
can be used to resequence images or to sort image fragments.

The copy constructor ardbne methods have an optional integer argument. If a non-
zero argument is provided, then all state values of the copied object are copied to the created
object, but none of the image data is copied. If no argument or a zero argument is provided,
then the image data is copied as well. Classes derivedBiasaimage should maintain this
policy.

The Graylmage class, derived fronBaselmage , is used to represent gray-scale
images. ThedCTImage class is used to represent images or image fragments that have been
encoded using the discrete-cosine transform.MVienage class is a bit more specialized; it
stores a frame’s worth of motion vectors.

4.7.3 "First-class” types

All of the types built-in to the Ptolemy kernel are “first-class” in the sense that they are
understood byigi andptlang . We recommend that users create their own types using the
mechanism described in “Defining New Data Types” on page 4-14. This approach has the dis-
advantage that all user-defined types are seqrigby andptlang as being of type “mes-
sage.” If this is not acceptable, then it is possible to create your own first-class types by sub-
classing Particle and adding the new types to VEM. The following instructions briefly
describes this process. We stress, however, that this method is not officially supported and that
types created this way will probably have to be reworked in a future release of Ptolemy. You
will need to use some other color—d@gColor —as a sample to follow when modifying
the various source files.

e Sub-classarticle and Message . Use the classes BPTOLEMY/src/kernel/
FileMessage.h/cc and $PTOLEMY/src/kernel/FileParticle.{h,cc} as
examples. You will need to create a static instance of pauicle and static
Plasma and PlasmaGate instances to hold your particles, as demonstrated by
FileParticle

e Modify $PTOLEMY/src/pigilib/mkTerm.c . There are three switch statements
where you will need to insert a new case.

* In the directorysPTOLEMY/lib/colors/ptolemy , editbw.pat andcolors.pat
to add the new color. The color is in RBG format, with 1000 being full-scale.

* Run the OcttoolimstallColors program. It will ask you a series of mysterious and
strangely beautiful questions. To start with, use the defaults, except for “Output dis-
play type”, where you answ&ENERIC-COLORRun the same program again with
the following output display type&ENERIC-BWPostscript-Color , andPost-
script-BW

To support monochrome screens (whigin is started with thebw option), repeat

Ptolemy Last updated: 10/10/97

4-42 Data Types

the above, but specif$PTOLEMY/lib/colors/ptolemy/bw.pat as the pattern
file, SPTOLEMY/lib/bw_patterns as the directory in which to installENERIC-
COLOR as the display device, and answS to the question about color output
device.

« After rebuildingpigilib and restarting, create an icon for a star that has your new
type as an input or output. The terminal should be of the new color.

U. C. Berkeley Department of EECS

The Almagest 5-1

Chapter 5. Using Tcl/Tk

Authors: Edward A. Lee

Other Contributors: Brian L. Evans
Wei-Jen Huang
Alan Kamas
Kennard White

5.1 Introduction

Tcl is an interpreted “tool command language” designed by John Ousterhout while at
UC Berkeley.Tk is an associated X window toolkit. Both have been integrated into Ptolemy.
Parts of the graphical user interface and all of the textual interptetterare designed using
them. Several of the stars in the standard star library also use Tcl/Tk. This chapter explains
how to use the most basic of these sfaekscript , as well how to design such stars from
scratch. It is possible to define very sophisticated, totally customized user interfaces using this
mechanism.

In this chapter, we assume the reader is familiar with the Tcl language. Documentation
is provided along with the Ptolemy distribution in $#TOLEMY/tcltk/itcl/man direc-
tory in Unix man page format. HTML format documentation is available from the other.src tar
file in SPTOLEMY/srcl/tcltk . Up-to-date documentation and software releases are available
by on the SunScript web pagehap://www.sunscript.com . There is also a newsgroup
called comp.lang.tcl . This news group accumulates a list of frequently asked questions
about Tcl which is availablettp://www.teraform.com/%7Elvirden/tcl-fag/

The principal use of Tcl/Tk in Ptolemy is to customize the user interface. Stars can be
created that interact with the user in specialized ways, by creating customized displays or by
soliciting graphical inputs.

5.2 Writing Tcl/Tk scripts for the TclScript star

Several of the domains in Ptolemy have a star caiéscript . This star provides
the quickest and easiest path to a customized user interface. The icon can take any number of
forms, including the following:

[

INE P

1y

1 Tel|” 7 Tel Tcl Tcl Tcl

TclScript TclScript [TclScript [TelScript [TclScript

[

>

an

!
1]

>
[TelScript [TeiScript [TeiScript [TeiScript

— > >—

1 Tel|” 7 Tel L. . Tel [~ | Tel

[TclScript [TelScript [TelScript [TclScript

!

l

All of these icons refer to the same star, but each has been customized for a particular number
of input and output ports. You should select the one you need on the basis of the number of

Ptolemy Last updated: 10/10/97

5-2 Using Tcl/Tk

input and output ports required. The left-most icon has an unspecified number of inputs and
outputs (as indicated by the double arrows at its input and output ports).

TheTclScript star has one parameter (settable state):
tcl_file A string giving the full path name of a file containing a Tcl script

The Tcl script file specifies initialization commands, for example to open new windows on the
screen, and may optionally define a procedure to be invoked by the star every time it runs. We
begin with two examples that illustrate most of the key techniques needed to use this star:

Example 1: Consider the following simple schematic in the SDF domain:

Tcl -

Tk

TclScript ShowValues
TheTkShowValues star is in the standard SDF star library. It displays whatever input
values are supplied in a subpanel of the control panel for the system. Suppose we spec-
ify the following Tcl script for thé&clScript star:

set s $ptkControlPanel.middle.button_$starlD

if {! [winfo exists $s]} {
button $s -text "PUSH ME"
pack append $ptkControlPanel.middle $s {top}
bind $s <ButtonPress-1> "setOutputs_$starlD 1.0"
bind $s <ButtonRelease-1> "setOutputs_$starlD 0.0"
setOutputs_$starID 0.0

}

unset s

This script creates a pushbutton in the control panel. When the button is depressed,
the star outputs the value 1.0. When the button is released, the star outputs value 0.0.
The resulting control panel is shown below:

[%] Buin el seript demo m

Control paned for tel_script_demo

Whan o :-'.n:ip:ill:lﬂl:l:l-i I Difoug
o0 <Foturn: PELAEE {Space: | STOF <EsCapa?

FLISH HE

Inpuatx 1o the TeShowWalues star:

DISHISS

While the system is running, depressing the button labeled “PUSH ME” will cause the
value displayed at the bottom to change from 0.0 to 1.0. Releasing the button will
change the value back to 0.0. The lines in the Tcl script are explained below:

U. C. Berkeley Department of EECS

The Almagest 5-3

set s $ptkControlPanel.middle.button_$starlD

This defines a Tcl variable “s” whose value is the name of the window to be used for
the button. The first part of the nan$gtkControlPanel , is a global variable giv-

ing the name of the control panel window itself. This global variable has been set by
pigi and can be used by any Tcl script. The second padile , specifies that the
button should appear in the subwindow nameiddle of the control panel. The
control panel, by default, has empty subwindows naimghl , .middle , and.low .

The last part,button_$starlD , gives a unique name to the button itself. The Tcl
variablestarlD has been set by thelScript star to a name that is guaranteed to

be unique for each instance of the star. Using a uniqgue name for the button permits
multiple instances of the star in a schematic to create separate buttons in the control
window without conflict.

if {! [winfo exists $s]} {

}

This conditionally checks to see whether or not the button already exists. If, for exam-
ple, the system is being run a second time, then there is no need to create the button a
second time. In fact, an attempt to do so will generate an error message. If the button
does not already exist, then it is created by the following lines:

button $s -text "PUSH ME"
pack append $ptkControlPanel.middle $s {top}

The first of these defines the button, and the second packs it into the control panel (see
the Tk documentation). The following Tcl statement binds a particular command to a

mouse action, thus defining the response when the button is pushed:
bind $s <ButtonPress-1> "setOutputs_$starID 1.0"

When button number 1 of the mouse is pressed, the Tcl interpreter invokes a proce-
dure namedetOutputs_$starlD with a single argument,0 (passed as a string).

This procedure has been defined byTtiScript star. It sets the value(s) of the out-
puts of the star. In this case, there is only one output, so there is only one argument.
The next statement defines the action when the button is released:

bind $s <ButtonRelease-1> "setOutputs_$starlD 0.0"

The next statement initializes the output of the star to value 0.0:

setOutputs_$starID 0.0

The last command unsets the variable s, since it is no longer needed

Ptolemy Last updated: 10/10/97

5-4 Using Tcl/Tk

unset s

As illustrated in the previous example, a number of procedures and global variables will have
been defined for use by the Tcl script by the time it is sourced. These enable the script to mod-
ify the control panel, define unique window names, and set initial output values for the star.
Much of the complexity in the above example is due to the need to use unique names for each
star instance that sources this script. In the above example, the Tcl procedure for setting the
output values has a name unique to this star. Moreover, the name of the button in the control
panel has to be unique to handle the case when more thariBogpt star sources the

same Tcl script. These unique names are constructed using a unique string defined by the star
prior to sourcing the script. That string is made available to the Tcl script in the form of a glo-
bal Tcl variablestarID . The procedure used by the Tcl script to set output values is called
setOutputs_$starlD . This procedure takes as many arguments as there are output ports.
The argument list should contain a floating-point value for each output of the star.

In the above example, Tcl code is executed when the Tcl script is sourced. This occurs
during the setup phase of the execution of the star. After the setup phase, no Tcl code will be
executed unless the user pushes the “PUSH ME” button. The command

bind $s <ButtonPress-1> "setOutputs_$starID 1.0"

defines a Tcl command to be executed asynchronously. Notice that the command is enclosed
in quotation marks, not braces. Tcl aficionados will recognize that this is necessary to ensure
that thestarlD variable is evaluated when the command binding occurs (when the script is
sourced), rather than when the command is executed. There is no guarantee that the variable
will be set when the command is executed.

In the above example, no Tcl code is executed when the star fires. The following
example shows how to define Tcl code to be executed each time the star fires, and also how to
read the inputs of the star from Tcl.

Example 2: Consider the following schematic in the SDF domain:

A ,

Ramp -

. Tel [~

TclScript ra]
cht

Suppose we specify the following Tcl script for TeScript star:

proc goTcl_$starlD {starID} {
set inputVals [grablnputs_$starlD]
set xin [lindex $inputVals 0]
set yin [lindex $inputVals 1]
setOutputs_$starlD [expr $xin+$yin]

U. C. Berkeley Department of EECS

The Almagest 5-5

Unlike the previous example, this script does not define any code that runs when the
script is sourced, during the setup phase of execution of the star. Instead, it simply
defines a procedure with a name unique to the instance of the star. This procedure
reads two input values, adds them, and writes the result to the output. Although this
would be a very costly way to accomplish addition in Ptolemy, this example nonethe-
less illustrates an important point. If a Tcl script sourced ByiScript star defines
a procedure callegoTcl_$starlD , then that procedure will be invoked every time
the star fires. The single argument passed to the procedure when it is called is the
starlD. In this example, the procedure usgablnputs_$starlD , defined by
theTclScript star, to read the inputs. The current input values are returned by this
procedure as a list, so the Tcl comméandex is used to index into the list. The final
line adds the two inputs and sends the result to the output.

As shown in the previous example, if the Tcl script defines the optional Tcl procedure
goTcl_S$starlD , then that procedure will be invoked every time the star fires. It takes one
argument (thestarID) and returns nothing. This procedure, therefore, allowsynchro-
nouscommunication between the Ptolemy simulation and the Tcl code (it is synchronized to
the firing of the star). If ngoTcl_$starlD procedure is defined, then communication is
asynchronougTcl commands are invoked at arbitrary times, as specified when the script is
read). For asynchronous operation, typically X events are bound to Tcl/Tk commands that
read or write data to the star.

The inputs to the star can be of any type. giré() method of the particle is used
to construct a string passed to Tcl. Although it is not illustrated in the above examples, asyn-
chronous reads of the star inputs are also allowed.

Below is a summary of the Tcl procedures used when execuTicl§aipt star:

grablnputs_$starlD
A procedure that returns the current values of the inputs of the
star corresponding to the givestariD . This procedure is
defined by th&clScript star if and only if the instance of the
star has at least one input port.

setOutputs_$starlD
A procedure that takes one argument for each output of the
TclScript star. The value becomes the new output value for
the star. This procedure is defined by ThkScript star if and
only if the instance of the star has at least one output port.

goTcl_$starlD If this procedure is defined in the Tcl script associated with an
instance of th&@clScript star, then it will be invoked every
time the star fires.

wrapupTcl_$starlD
If this procedure is defined in the Tcl script associated with an
instance of tha@clScript star, then it will be invoked every

Ptolemy Last updated: 10/10/97

5-6 Using Tcl/Tk

time thewrapup method of the star is invoked. In other words,
it will be invoked when a simulation stops.

destructorTcl_$starlD
If this procedure is defined in the Tcl script associated with an
instance of th&clScript star, then it will be invoked when
the destructor for the star is invoked. This can be used to
destroy windows or to unset variables that will no longer be
needed.

In addition to thestarID global variable, thérclScript star makes other information
available to the Tcl script. The mechanism used is to define an array with a name equal to the
value of thestarID variable. Tcl arrays are indexed by strings. Thus, not ordaitd a

global variable, but so fsstarID . The value of the former is a unique string, while the value

of the latter is an array. One of the entries in this array gives the number of inputs that are con-
nected to the star. The value of the expres@ens${starID}(numinputs)] is an inte-

ger giving the number of inputs. The Tcl commaseét*, when given only one argument,
returns the value of the variable whose name is given by that argument. The array entries are
summarized below:

$starlD This evaluates to a string that is different for every instance of
theTclScript star. ThestarID global variable is set by the
TclScript star.

[set ${starID}(numInputs)]
This evaluates to the number of inputs that are connected to the

star.

[set ${starID}(numOutputs)]
This evaluates to the number of outputs that are connected to

the star.

[set ${starID}(tcl_file)]
This evaluates to the name of the file containing the Tcl script

associated with the star.

[set ${starID}(fullName)]
This evaluates to the full name of the star (which is of the form

universe.galaxy.galaxy.star).

5.3 Tcl utilities that are available to the programmer

A number of Tcl global variables and procedures that will be useful to the Tcl programmer
have been incorporated into Ptolemy. Any of these can be used in any Tcl script associated
with an instance of th&clScript star. For example, in example 1 on page 5-2, the global
variableptkControlPanel specifies the control panel that is used to run the system. Below

is a list of the useful global variables that have been set by the graphical intpigacg (

when the Tcl script is sourced or when ¢fo@cl_$starlD procedure is invoked:

$ptkControlPanel A string giving the name of the control panel window associ-
ated with a given run. This variable is set by pigi.

U. C. Berkeley Department of EECS

The Alm

$ptkControlPanel.high

agest

5-7

The uppermost panel in the control panel that is intended for
user-defined entries.

$ptkControlPanel.middle

$ptkControlPanel.low

curuniverse

User’s

Ptolemy

The middle panel in the control panel that is intended for user-
defined entries.

The lowest panel in the control panel that is intended for user-
defined entries.

In addition to these global variables, a number of procedures have been supplied.
Using these procedures can ensure a consistent look-and-feel across a variety of Ptolemy
applications. The complete set of procedures can be foRIMMLEMY/lib/tcl . We list a

few of the more useful ones here. Note also that the entire set of commands defined in the Tcl-
based textual interpreter for Ptolempygl , are also available. So for example, the command

Manual

ptkExpandEnvVar

ptkimportantMessage

ptkMakeButton

ptkMakeEntry

will return the name of the current universe. Seepthe chapter in the

Procedure to expand a string that begins with an environment
variable reference. For example,
ptkExpandEnvVar $PTOLEMY/src
will return something like
lusr/users/ptolemy/src
Arguments:
path the string to expand

Procedure to pop up a message window and grab the focus. The
process is suspended until the message is dismissed.

Arguments:

win window name to use for the message
text text to display in the pop-up win-
dow

Procedure to make a pushbutton in a window. A callback proce-
dure must be defined by the programmer. It will be called
whenever the user pushes the button, and takes no arguments.

Arguments:

win name of window to contain the button
name name to use for the button itself

desc description to be put into the display
callback name of callback procedure to

register changes

Procedure to make a text entry box in a window. A callback
procedure must be defined by the programmer. It will be called
whenever the user changes the value in the entry box and types

Last updated: 10/10/97

5-8 Using Tcl/Tk

<Return>. Its single argument will be the new value of the

entry.
Arguments:
win name of window to contain
the entry box
name name to use for the entry box itself
desc description to be put into the display
default the initial value of the entry
callback name of callback procedure to reg-
ister changes
ptkMakeMeter Procedure to make a bar-type meter in a window.
Arguments:
win name of window to contain the
entry box
name name to use for the entry box itself
desc description to be put into the display
low the value of the low end of the scale
high the value of the high end of
the scale
ptkSetMeter Procedure to set the value of a bar-type meter created with
ptkMakeMeter
Arguments:
win name of window to contain the
entry box
name name to use for the entry box itself
value the new value to display in
the meter
ptkMakeScale Procedure to make a sliding scale. All scales in the control

panel range from 0 to 100. A callback procedure must be
defined by the programmer. It will be called whenever the user
moves the control on the scale. Its single argument will be the
new position of the control, between 0 and 100.

Arguments:
win name of window to contain the scale
name name to use for the scale itself
desc description to be put into the display
position initial integer position between
0 and 100
callback name of callback procedure to
register changes
Note:

A widget is created with nam&win.$name.value that
should be used by the programmer to display the current value
of the slider. Thus, the callback procedure should contain a
command like:

U. C. Berkeley Department of EECS

The Almagest

5-9

$win.$name.value configure -text $new_value

to display the new value after the slider has been moved. This is
not performed automatically because the fixed range from O to
100 may be correct from the user’s perspective. So, for exam-
ple, if you divide the scale value by 100 before displaying it,
then to the user, it will appear as if the scale ranges from 0.0 to
1.0. It is also possible to control the position of the slider from
Tcl (overriding the user actions) using a command like
$win.$name.scale set $position

whereposition is an integer-valued variable in the range of O
to 100.

Example 3: The following Tcl script can be used with thelScript star in the sys-
tem configuration given in example 1 on page 5-2:

ptkMakeMeter $ptkControlPanel.high meter_$starlD \
"meter tracking scale” 0 100

proc scale_update_$starlD {new_value}\
"ptkSetMeter $ptkControlPanel.high \

meter_$starlD \$new_value

$ptkControlPanel.high.scale_$starlD.value \

configure -text\$new_value"

ptkMakeScale $ptkControlPanel.high scale_$starlD \
"my scale" 50 scale_update_$starlD
ptkMakeButton $ptkControlPanel.middle button_$starID \
"my button” button_update
proc button_update {} {ptkimportantMessage .msg "Hello"}
ptkMakeEntry $ptkControlPanel.low entry_$starlD \
"my entry" 10 entry_update_$starlD
proc entry_update_$starlD {new_value} \
"setOutputs_$starID \$new_value"

It will create the rather ugly control panel shown below:

Control paned for tel_script_demod

bhen to stop: [THG00NG =g

meter tracking scole

I 160

my ®rkrys]

The commands are explained individually below.

Ptolemy

ptkMakeMeter $ptkControlPanel.high meter_$starlD \

Last updated: 10/10/97

5-10 Using Tcl/Tk

"meter tracking scale” 0 100

This creates a meter display with the label “meter tracking scale” in the upper part of
the control panel with range from 0 to 100.

proc scale_update_$starID {new_value} \
"ptkSetMeter $ptkControlPanel.high \
meter_$starlD \$new_value
$ptkControlPanel.high.scale_$starlD.value \
configure -text\$new_value"

This defines the callback function to be used for the slider (scale) shown below the
meter. The callback function sets the meter and updates the numeric display to the left
of the slider. Notice that the body of the procedure is enclosed in quotation marks
rather than the usual braces. This ensures that the vamalbestrolPanel and

starlD will be evaluated at the time the procedure is defined, rather than at the time it
is invoked. To make sure thatw_value is not evaluated until the procedure is
invoked, we use a preceding backslash, asnew_value . We could have alterna-

tively passed thptkControlPanel andstarlD values as arguments.

ptkMakeScale $ptkControlPanel.high scale_$starID \
my_scale 50 scale_update_$starlD

This makes the slider itself, and sets its initial value to 50, half of full scale.

ptkMakeButton $ptkControlPanel.middle button_$starID \
"my button" button_update

This makes a button labeled “my button”.

proc button_update {} {ptkimportantMessage .msg "Hello"}

This defines the callback function connected with the button. This callback function
opens a new window with the message “Hello”, and grabs the focus. The user must
dismiss the new window before continuing.

ptkMakeEntry $ptkControlPanel.low entry_$starID \
"my entry" 10 entry_update_$starlD

This makes the entry box with initial value “10”.

proc entry_update_$starlD {new_value} \
"setOutputs_$starID \$new_value"

This defines the callback function associated with the entry box. Again notice that the
procedure body is enclosed quotation marks.

U. C. Berkeley Department of EECS

The Almagest 5-11

5.4 Creating new stars derived from the TclScript star

A large number of useful stars can be derived from TbiScript star. The
TkShowValues star used in example 1 on page 5-2 is such a star. That star takes inputs of any
type and displays their value in a window that is optionally located in the control panel. It has
three parameters (settable states):

label A string-valued parameter giving a label to identify the display.

put_in_control_panelA Boolean-valued parameter that specifies whether the display
should be put in the control panel or in its own window.

wait_between_outpufs Boolean-valued parameter that specifies whether the execu-
tion of the system should pause each time a new value is dis-
played. If it does, then a mouse click in the display restarts the
system.

Conspicuously absent is thel_file parameter of th@clScript ~ star from which this is
derived. The file is hard-wired into the definition of the star by the following C++ statement
included in the setup method:

tcl_file =

"$PTOLEMY/src/domains/sdf/tcltk/stars/tkShowValues.tcl";

The parameter is then hidden from the user of the star by the following statement included in
the constructor:

tcl_file.clearAttributes(A_SETTABLE);

Thus, the user sees only the parameters that are defined in the derived star. This is a key part
of customizing the star.

A second issue is that of communicating the new parameter values to the Tcl script.
For example, the Tcl script will need to know the value ofdbel parameter in order to cre-
ate the label for the display. ThelScript star automatically makes all the parameters of
any derived star available as array entries in the global array whose name is given by the glo-
bal variablestarID. To read the value of thiabel parameter in the Tcl script, use the
expressioriset ${starID}(label)] . The confusing syntax is required to ensure that Tcl
uses thevalueof starlD as thenameof the array. The string “label” is just the index into the
array. Theset command in Tcl, when given only one argument, returns the value of the vari-
able whose name is given by the argument.

Some programmers may prefer an alternative way to refer to parameters that is slightly
more readable. The Tcl statement

upvar #0 $starlD params

allows subsequent statement to refer to parameters simglyaesn(param_name) . The
upvar command with argumenD declares the local variabparams equivalent to the glo-
bal variable whose name is given by the valustaD.

Many more examples can be found $RTOLEMY/src/domains/sdf/tcltk/
stars

Ptolemy Last updated: 10/10/97

5-12 Using Tcl/Tk

5.5 Selecting colors

Since X window installations do not necessarily use consistent color names, a particu-
lar color database has been installed in Ptolemy. The available colors can be found in the file
$PTOLEMY/lib/tcl/ptkColor.tcl . To access this color database, use the Tcl function

ptkColor name

which returns a color defined in terms of RGB components. This color can be used anyplace
that Tk expects a color. If the given name is not in the color database, the color returned is
black.

5.6 Writing Tcl stars for the DE domain

In the discrete-event (DE) domain, stars are fired in chronological order according to
the time stamps of the new data that has arrived at their input ports. The Tcl interface class
TclStarlfc , which was originally written with the SDF domain in mind, works well for
some types of DE stars. Specifically, any star with an input in the DE domain can use this
class effectively. Consequently, a basic Tcl/Tk StelScript , has been written for the DE
domain.

The TclScript ~ star can have any number of input or output portholes. As of this
writing, it will not work if it is instantiated with no inputs. The problem is that with no inputs,
there will be no events to trigger a firing of the star. This will be corrected in the future.

U. C. Berkeley Department of EECS

Chapter 6. Using the Cluster Class
for Scheduling

Authors: José Luis Pino

6.1 Introduction

The Ptolemy kernel has three main facilities to aid in the implementation of schedul-
ing algorithms: generic clustering mechanisms, graph iterators, and classical graph algo-
rithms. In this chapter, we will cover the use of these facilities and some of the important
methods currently available in Ptolemy to implement new scheduling algorithms.

6.2 Basic Classes

User-specifications done in Ptolemy are represented internally as a collection of anno-
tated directed graphs that may contain cycles. Nodes in these directed graphs may themselves
contain other directed graphs. Atomicnode is either &tar, which defines code to imple-
ment the node operation, oM&ormHole, which has an internal graph that is hidden from the
outside. AWormHole is used when there is a change in the semantics between the internal and
external graphs, such as a change irDibv@ain or Scheduler . For purposes of the outside
graph, avormHole is equivalent to &tar . A non-atomicnode, oiGalaxy, is a node which
contains an internal graph which is visible from the outside. This internal graph is stored in a
Galaxy 's BlockList . Finally, aScheduler is a class that determines the firing order of
atomicnodes in a graph.

WormHoles, Galaxies andStars are all derived from the clag8ock . A Block
containsPortLists , which store a list dPortHoles that provide locations to connect input
or output arcs to thBlock . Blocks also contairStateLists, which may either be user-
specified parameters or run-time states that are used when a graph is executed.

A user specification is compiled into an internal representation known edean
preted universéinterpUniverse). Currently, the user specifications are in the form of ptcl
or oct facets. In the future there will probably be also a Tycho specification format. An
InterpUniverse captures the user hierarchy in the form of a directed grapto@iiHoles ,
Galaxies andStars . ThelnterpUniverse is derived frontGalaxy and contains the top-
level user-specification in iBlockList . Every other level of the user specified hierarchy is
represented by eithendiormhole or Galaxy embedded inside of ifgrentGalaxy .

All Block s have garent Block pointer. The parent of Block is theGalaxy or
WormHole in which theBlock is embedded. ThiaterpUniverse , which is the top-level
Galaxy user specification, has fiarent pointer set toNULL

6.3 Galaxies and their relationship to Adjacency Lists

To define graph algorithms, adjacency-lists and adjacency-matrices are commonly
used to represent a directed graph [Cor90]. An adjacency-matrix is a square matrix where

6-2 Using the Cluster Class for Scheduling

there is one column, and one rowj, for each nodei, the graph. An elemeii, j) in this

matrix is either 1 if there is an arc frarto j, or O if no arc exists. The second representation is

an adjacency-list in which each node has a list containing the nodes to which it is connected.
Thus an adjacency-list is better suited for sparse graphs, whereas adjacency-matrices are well
suited for dense graphs.

Blocks with theirPortLists can be viewed as equivalent to the adjacency-list data
structure. APortHole , in most domains, is either an input or an output. It contatas a
SidePort pointer to thePortHole it is connected toNULL if it is not connected). To
traverse the adjacency-list, a scheduler writer must make use of two iterators in Ptolemy (See
“Iterators” on page 3-10)GalStarlter andSuccessorlter . By using aGalStarlter a
scheduler writer can iterate over the nodes in the user-specified graph. Then on each of these
nodes we can find the adjacent nodes usin§dheessoriter . Although it is not necessary
for adjacency-list equivalence, tReedecessorlter is provided to iterate over the nodes
that are predecessors to a given node.

There is slight overhead in accessing the graph usingGmighariter andSuc-
cessorlter over a straight forward implementation of an adjacency-list class. This over-
head has a constant cost which is not dependent on the size of the graph. Thus we feel that the
robustness achieved by not having two parallel representations of the same graph far outweigh
this small overhead.

6.4 Clustering

Clustering is often used in implementing scheduling heuristics. We have provided a
genericCluster class in the Ptolemy kernel which scheduler writers can use directly or, if
need be, derive specialized clustering classes. The older schedulers such as the BDF scheduler
and the SDF loop schedulers have not been upgraded to use tbwustew classes. Thus,
the BDF and SDF schedulers should not be used as examples of how to do clustering in
Ptolemy, but rather the hierarchical SDF parallel sched$ifr@LEMY/src/domains/cg/
hierScheduler) can be used as a model. ThierScheduler in the current version of
Ptolemy is a prototype of the hierarchical parallel scheduler detailed in [Pin95]. In addition,
we have a specialized loop scheduler [Mur94] which also uses the new cluster facilities.

The clasCluster is derived from théDynamicGalaxy and as such manages its
own memory. TheCluster classes us€lusterPort s which are derived frorGalPort
The main difference between tl@usterPort s andGalPort s is thatClusterPort s
maintain afarSidePort pointer. We need this changeGiusterPort in order to easily
iterate over th&€luster s at any level of the clustering hierarchyCAisterPort::far-
SidePort pointer will only beNULL if the ClusterPort is aliased to &tar PortHole
connected at higher level of the clustering hierarchy.

6.4.1 Initialization — Flattening the User Specified Graph

Clustering is done directly on the internal representation of the user-specified graph.
Before we can begin to cluster the internal representation, the irrelevant user hierarchy must
be flattened. The flattening is accomplished by creating a tempoitatgr instance and
then invoking theCluster::initializeForClustering method on th&alaxy whose
internals we want to cluster. This top-le@llaxy will remain intact, but all internabalax-

U. C. Berkeley Department of EECS

The Almagest 6-3

ies which pass th€luster::flattenGalaxy test will be flattened and deleted. Thus any
Scheduler and Target pointers to the top-levetGalaxy will not need to be updated
because they do not change. The necessary information from the user-specified hierarchy is
preserved automatically with the aid of ®epe class detailed in section 6.5.

After the internals of the top-lev€lalaxy have been flattened|luster s are con-
structed around each individual atorBiock . In that way, the scheduler writer can treat all
the Block s at each level (except the innermost level) @wuster . This property is main-
tained through any sequence of merge/absorb calls. An exartipleeForCluster-
ing invocation is shown in figure 6-1, frames 1 and 2.

A facility for restoring the internal Ptolemy representation back to the original user-
specified hierarchy is detailed in section 6.6.

6.4.2 Absorb and Merge

The basic clustering mechanisms are implemented with the virtual mettiads:
ter:merge andCluster::absorb . Both of these methods can take up to two arguments.
The first argument is th@luster to absorb/merge and the second argument(optional) speci-
fies whether or not to remove the absorbed or mezgeter from the original pareréal-
axy.

The Cluster::merge method takes the contents of thlester being merged and
moves them into the Cluster pointed to by tthie pointer. A merge operation is communi-
cative. A series of merge steps is shown in figure 6-1 frames 3 and 4.

TheCluster::absorb method takes theluster being absorbed and moves it into
the Cluster pointed to by thteis pointer. Unlike merge, absorb is not communicative as
shown in figure 6-1 frames 5 and 5'.

The absorbed or mergetiuster is removed from the original pare@hlaxy by
default whenCluster::merge or Cluster::absorb is called. We provide three ways to
update the graph after a clustering operation with differing levels of efficiency. These meth-
ods are detailed in the table 6-1. We first list some variable definitions:

* LetN be defined as the numbelCadster s in the parenGalaxy
* LetE, be defined as the numbePoftHole s inthis Cluster
» LetE, be defined as the numbePoftHole s in theCluster to absorb or merge

Complexity to
Deletion/Update Method update at each
clustering step

Using merge/absorb in their default mode of operation. This is the m&}¢(N + E, X E)
inefficient way to do clustering.

TABLE 6-1: Complexity cost of absorb/merge step.

Ptolemy Last updated: 10/10/97

6-4

-

~

1. Initial Graph

®
®
©

J

-

~

3. B.merge(C)

o\

(

XC)

J

o

5. D.absorb(ABC)

~

(5)

X0
(c)

Using the Cluster Class for Scheduling

/2.initializeForCIustering

-

~

(B)
(A) (D)

J

J

FIGURE 6-1:

~

4.BC.merge(A)

(8)
(A)

) O

J

o

~

5’. ABC.absorb(D)

(5)
(A) (D)

J

A five step clustering example. By convention, a Cluster

in this figure will be

named by the listing of its innermost atomic Block s. In frame 1, the user-specified

graph is shown. Cluster::initializeForClustering
resultant graph is shown in frame 2 — this step adds a Cluster

is called and the
around all atomic

Block s. Frames 3-5 show a series of merge/absorb operations. The ordering is
important only with absorb operation — as shown by frames 5 and 5'.

U. C. Berkeley

Department of EECS

The Almagest 6-5

Complexity to
Deletion/Update Method update at each
clustering step

GalTopBlocklter::remove O(E, x Ep)
We can use this method if tduster to absorb/merge was found using
a GalTopBlocklter (or derived iterator class) on the par€ataxy .
The scheduler writer needs to do two things:

* remove the absorbed/merged cluster using from the paaént
axy using the iterator'ssmove method.

* delete the removetluster using theC++ operatordelete

This is the most efficient way of updating the graph after a clustering
operation — but it is not always possible because we may be traversing
the graph in some other way such as usiSgaessorlter

cleanupAfterCluster (defined inCluster.{h,cc}) O(E,xE)
If we cannot use the previous method, we can leave€ltlseer in the
parentGalaxy list (it will be marked invalid automatically). Ti@&us-
ter iterator classes automatically skip these inv@licster s. Periodi-
cally (but not at each clustering step), theanupAfterCluster

function should be invoked to remove and delete the inGilister s.
This function will costO(N + E; X E) to execute, but since it is not dane
at each clustering step — the result on the overall complexity will be
additive versus being multiplicative. For an example of how this is dpne,
refer to:$PTOLEMY/src/domains/cg/hierScheduler/Hier-
Scheduler.cc

TABLE 6-1: Complexity cost of absorb/merge step.

6.4.3 Cluster Iterator Classes

TheCluster iterator classes assume thatBidick s in theGalaxy being iterated on
areCluster s. This property iTRUEassuming that th@alaxy (or one of its parent Galax-
ies) has been properly initialized (section 6.4.1) and merge/absorb have been the only func-
tions that have modified the topology of the graph since the initialization. These iterators
ignore pointers to invalicCluster s which have been left in th@alaxy using merge/
absorb with theremoveFlag set toFALSE (last two cases in table 6-1). The cluster iterators
are listed in table 6-2.

Iterator Description
Clusterlter Iterate over all valicCluster s in the giverGalaxy .
SuccessorClusterlter Iterate over all successor (adjacetit)ster s for a
givenCluster

TABLE 6-2: Cluster Iterators

Ptolemy Last updated: 10/10/97

6-6 Using the Cluster Class for Scheduling

Iterator Description

PredecessorClusterlter Iterate over all predecess0Oluster s for a giverClus-
ter .

TABLE 6-2: Cluster Iterators

6.5 Block state and name scoping hierarchy

Recall, that when we initialize @alaxy for clustering, we flatten the original user-
specified hierarchy. Before this action, we extract the important information in the hierarchy
using theScope class. In this section we detail this class. The details in this section, however,
are not necessary to understand clustering in Ptolemy.

Block s inherit states from their parent. Theope class makes it possible foar-
get or Scheduler to change th&lock hierarchy by saving the inherited states in the user-
specified hierarchy. The scoping hierarchy was first released in Ptolemy 0.6, and is only cre-
ated when the static meth&dope::createScope(Galaxy&) is invoked. Currently, the
only code that uses the scoping hierarchy i<lhster class.

TheScope class manages its memory. Oncgcape is created, it will not be deleted
until all Block s within the giverScope are deleted. Th&cope class is privately derived
from Galaxy . To turn on scoping a programmer simply calls the static method:

static Scope* Scope::.createScope(Galaxy&)

This method constructs a parallel tree corresponding to@aeRy and copies the
StateList andname() for each level.

6.6 Resetting an InterpUniverse back to actionList

Ptolemy 0.6 and later includes the ability to resetngatpUniverse back to the
original user-specification. Resetting is occasionally necessary to undo certain operations
done on a universe bySzheduler orTarget . An example is in parallel scheduling, where
the original stars in thénterpUniverse are moved to theubGalaxies for the child
Targets (see$PTOLEMY/src/domains/cg/parScheduler/ParProcessors.cc). To
signal that a thénterpUniverse needs to be rebuilt upon the next run, the scheduler writer
should invokeTarget::requestReset()

U. C. Berkeley Department of EECS

The Almagest 6-7

6.7 References

[Cor90] Cormen, Leiserson and Rivebtfroduction to AlgorithmsNew York: MIT
Press, 1990.
[Mur94] Murthy, Bhattacharyya, and Le€ombined code and data minimization for

synchronous dataflow programigdemorandum UCB/ERL M94/93, University
of California at Berkeley, December,1994. (http://ptolemy.eecs.berkeley.edu/
papers/jointCodeDataMinimize)

[Pin95] Pino, Bhattacharyya, and LeA, Hierarchical Multiprocessor Scheduling
Framework for Synchronous Dataflow Grapilemorandum UCB/ERL M95/
36, University of California at Berkeley, May, 1995. (http://ptolemy.eecs.ber-
keley.edu/papers/hierStaticSched)

Ptolemy Last updated: 10/10/97

6-8 Using the Cluster Class for Scheduling

U. C. Berkeley Department of EECS

Chapter 7. SDF Domain

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee

7.1 Introduction

Synchronous dataflow (SDF) is a statically scheduled dataflow domain in Ptolemy.
“Statically scheduled” means that the firing order of the stars is determined once, during the
start-up phase. The firing order will be periodic. The SDF domain in Ptolemy is one of the
most mature, with a large library of stars and demo programs. It is a simulation domain, but
the model of computation is the same as that used in most of the code generation domains. A
number of different schedulers, including parallelizing schedulers, have been developed for
this model of computation.

We assume in this very short chapter that the reader is familiar with the SDF model of
computation. Refer to thdser's Manual Moreover, we assume the reader is familiar with
chapter 2, “Writing Stars for Simulation”. Since most of the examples given in that chapter are
from the SDF domain, there is only a little more information to add here.

7.2 Setting SDF porthole parameters

All stars in the SDF domain must follow the basic SDF principle: the number of parti-
cles consumed or produced on any porthole does not change while the simulation runs. These
numbers are given for each porthole as part of the star definition. Most stars consume just one
particle on each input and produce just one particle on each output. In these cases, no special
action is required, since the porthole SDF parameters will be set to unity by default. However,
if the numbers differ from unity, the star definition must reflect this. For examplEFTi@x
star has aize parameter that specifies how many input samples to read. The value of that
parameter specifies the number of samples required at the input in order for the star to fire.
The following line in thesetup method of the star is used to make this information available
to the scheduler:

input.setSDFParams (int(size), int(size)-1);

The name of the input portholeirgout The first argument tesetSDFParams specifies how

many samples are consumed by the star when it fires; it is the same as the number of samples
required in order to enable the star. The second argumeat3DFParams specifies how

many past samples (before the most recent one) will be accessed by the star when it fires.

If the number of particles produced or consumed is a constant independent of any
states, then it may be declared right along with the declaration of the input,gh tfike. For
example,

input {
name { signalin }
type { complex }

7-2 SDF Domain

numTokens { 2 }
desc { Complex input that consumes 2 input particles. }

}

This declares an input that consumes two successive complex particles.

U. C. Berkeley Department of EECS

Chapter 8. DDF Domain

Authors: Soonhoi Ha

8.1 Programming Stars in the DDF Domain

A DDF star, as distinct from an SDF star, has at least one porthole, either an input or
an output, that receives or sends a variable number of particles. Such portholes are called
dynamic Consequently, for a DDF star, how many particles to read or write is determined at
run time, in thego method. Consider an example, tlastOfN star:

defstar {

name {LastOfN}

domain {DDF}

desc{
Outputs the last token of N input tokens,
where N is the value of the control input.

}
input {
name {input}
type {anytype}
num {0}
}
input {
name {control}
type {int}
}
output {
name {output}
\ type {anytype}
private {
int readyToGo;
}

constructor {
input.inheritTypeFrom(output);

}
setup {
waitFor(control);
readyToGo = FALSE;
}
go {

if (IreadyToGo) {
control.receiveData();
waitFor(input, int (control%0));
readyToGo = TRUE;
}else {
int num = int (control%0);
for (inti = num; i > 0; i--) input.receiveData();

8-2 DDF Domain

output%0 = input%0;
output.sendData();
waitFor(control);
readyToGo = FALSE;

}
}
ThelLastOfN star discards the first-1 particles from thénput porthole and routes the last
one to theoutput porthole . The valudl is read from theontrol input. Since the control
data varies, the number of particles to read fromrin¢ porthole is variable, as expected
for a DDF star. We can specify that thput porthole isdynamicby setting theaum field of
theinput declaration to be 0 using the preprocessor format:

num {0}

The firing rule of the star is controlled by thaitFor method of thedbDFStar class (actu-

ally, it is defined in the base claggnDFStar). ThewaitFor method takes a porthole as an
argument, and an optional integer as a second argument. It indicates that the star should fire
when amount of data specified by the integer (default is 1) is available on the specified port. In
the above example, tletup method specifies that the star should first wait fosrarol

input. When aontrol input arrives, thgo method reads the control value, and wsas

For to specify that the star should fire next when the specified number of inputs have arrived
atinput . The private membeeadyToGo is used to keep track of which input we are wait-

ing for. The line

for (inti = num; i > 0; i--) input.receiveData();

causes the appropriate number of inputs (givenulny to be consumed.
The next example is a DDF star with a dynamic output porth@ewaCounter star.

defstar {
name {DownCounter}
domain {DDF}
desc { Count down from the input value to zero. }
input {
name {input}
type {int}

output {
name {output}
type {int}
num {0}

go {
input.receiveData();
for (inti=int (input%0) - 1 ;i >=0; i--) {
output%0 <<i;
output.sendData();

U. C. Berkeley Department of EECS

The Almagest 8-3

}

The DownCounter star has a dynammutput porthole that will generate the down-counter
sequence of integer data starting from the value read througiptihe porthole. The code in
thego method is self-explanatory.

It is possible, if a bit strange, for a star to alternate between SDF-like behavior and
DDF-like behavior. To assert that its next firing should be under SDF rules, the star calls. The
following example shows a star that uses the same input for control and data. An integer input
specifies the number of particles that will be consumed on the next firing. After these particles
have been consumed, the star reverts to SDF behavior to collect the next control input. In the
following, readyToGo andnum are private integers.

setup {
clearWaitPort();
readyToGo = FALSE;

inti;
if (IreadyToGo) {
/I get input token from Geodesic
input.receiveData();
num = int(input%0);
waitFor(input, num);
readyToGo = TRUE;
} else{
for (i=0; i < num; i++) {
input.receiveData();
output%0 << int(input%0);
output.sendData();
}
readyToGo = FALSE;
clearWaitPort();

}

Because of thelearWaitPort() in the setup method, the star begins as an SDF star. It
consumes one data, stores its valueuin, and issues &aitFor command. This changes its
behavior to DDF and specifies the number of input tokens that are required. On the next firing,
it will read numinput tokens and copy them to the output, and then it will revert to SDF behav-
ior.

Ptolemy Last updated: 7/23/96

8-4 DDF Domain

U. C. Berkeley Department of EECS

Chapter 9. BDF Domain

Authors: Joseph T. Buck

9.1 Writing BDF Stars

BDF stars are written in almost exactly the same way as SDF stars are written. When
thego method of the star is executed, it is guaranteed that all required input data are present,
and after execution, any particles generated by the star are correctly sent off to their destina-
tions. The only additional thing the star writer must know is how to specify that a porthole is
conditional on other portholes. This is accomplished with a method of theBD&f®rt-

Hole calledsetBDFParams .

The setBDFParams method takes four arguments. The first argument is the number
of particles transferred by the port when the port is enabled. Note that unconditional ports are
always enabled. The second argument is either a pointer or a reference to BDBHwet-
Hole , which is called the associated port (the function has two overloaded forms, which is
why the argument may be specified either as a pointer or as a reference). The third argument is
a code specifying the relation between the porthole this method is called on and the associated
port:

BDF_NONE This code indicates no relation at all.

BDF_TRUE This code indicates that data are transferred by the port only when the
conditional port has @RUEparticle.

BDF_FALSE This code indicates that data are transferred by the port only when the
conditional port has BALSE patrticle.

BDF_SAME This code indicates that the stream transferred by the associated port is
the same as the stream transferred by this port. This relationship is
specified for the BDFFork actor and aids the operation of the cluster-
ing algorithm.

BDF_COMPLEMENT
This code indicates that the stream transferred by the associated port is
the logical complement of the stream transferred by this port. This rela-
tionship is specified for the BDWot actor and aids the operation of the
clustering algorithm.

The fourth argument fosetBDFParams is the maximum delay, that is, the largest
value that the star may specify as an argument teotipgerator on that porthole. The default
value is zero. This argument serves the same purpose as the second argemsbiFto
Params.

The setSDFParams function may be used on BDF portholes; it does not alter the
associated port or the relation type, but does alter the other two paramesetBDof-
Params. By default, BDF portholes transfer one token, unconditionally.

9-2 BDF Domain

Calls tosetBDFParams may be placed in theetup method of a star, or alternatively
in the constructor if the call does not depend on any parameters of the star. Consider as an
example aSwitch star. This star’'s functionality is as follows: on each execution, it reads a
particle from its control input port. If the valueTiRUE it reads a particle from itsueln-
put port; otherwise it reads a particle fromfasselnput port. In any case, the patrticle is
copied to the output port. Using thgang preprocessor, the setup method could be written
setup {

truelnput.setBDFParams(1, control, BDF_TRUE, 0);
falselnput.setBDFParams(1, control, BDF_FALSE, 0);

}
and the go method could be written
go {
if (int(control%0))
output%0 = truelnput%o0;
else
output%0 = falselnput%0;
}

U. C. Berkeley Department of EECS

Chapter 10. PN domain

Authors: Thomas M. Parks
Other Contributors: Brian Evans

10.1 Introduction

The Process Network (PN) domain is an implementation of the theory presented in
Thomas M. Parks’ thesis [Par95]. The PN domain includes the Synchronous Dataflow (SDF),
Boolean Dataflow (BDF), and Dynamic Dataflow (DDF) domains as subdomains. This hierar-
chical relationship among the domains is shown inUker's Manualin Figure 1-2. The
model of computation for each domain is a strict subset of the model for the domain that con-
tains it.

The nodes of a program graph, which correspond to processes or dataflow actors, are
implemented in Ptolemy by objects derived from the ks . The firing function of a data-
flow actor is implemented by then method ofStar . The edges of the program graph,
which correspond to communication channels, are implemented by theGeladssic . A
Geodesic is a first-in first-out (FIFO) queue that is accessed byudheandget methods.
The connections between stars and geodesics are implemented by tRerttags . Each
PortHole has an internal buffer. The methagisdData andreceiveData transfer data
between this buffer and@eodesic using theput andget methods.

Several existing domains in Ptolemy, such as SDF and BDF, implement dataflow pro-
cess networks by scheduling the firings of dataflow actors. The firing of a dataflow actor is
implemented as a function call to them method of &tar object. A scheduler executes the
system as a sequence of function calls. Thus, the repeated actor firings that make up a data-
flow process are interleaved with the actor firings of other dataflow processes. Before invoking
therun method of &tar , the scheduler must ensure that enough data is available to satisfy
the actor’s firing rules. This makes it necessary f6taa object to inform the scheduler of
the number of tokens it requires from its inputs. With this information, a scheduler can guar-
antee that an actor will not attempt to read from an empty channel.

By contrast, the PN domain creates a separate thread of execution for each node in the
program graph. Threads are sometimes caiigiweight processedModern operating sys-
tems, such as Unix, support the simultaneous execution of multiple processes. There need not
be any actual parallelism. The operating system can interleave the execution of the processes.
Within a single process, there can be multiple lightweight processes or threads, so there are
two levels of multi-threading. Threads share a single address space, that of the parent process,
allowing them to communicate through simple variables. There is no need for more complex,
heavyweight inter-process communication mechanisms such as pipes.

Synchronization mechanisms are available to ensure that threads have exclusive access
to shared data and cannot interfere with one another to corrupt shared data structures. Moni-
tors and condition variables are available to synchronize the execution of threads. A monitor is

10-2 PN domain

an object that can be locked and unlocked. Only one thread may hold the lock on a monitor. If
a thread attempts to lock a monitor that is already locked by another thread, it is suspended
until the monitor is unlocked. At that point it wakes up and tries again to lock the monitor.
Condition variables allow threads to send signals to each other. Condition variables must be
used in conjunction with a monitor; a thread must lock the associated monitor before using a
condition variable.

The scheduler in the PN domain creates a thread for each node in the program graph.
Each thread implements a dataflow process by repeatedly invokingithreethod of &Star
object. The scheduler itself does very little work, leaving the operating system to interleave
the execution of threads. Tipat andget methods of the clasSeodesic have been re-
implemented using monitors and condition variables so that a thread attempting to read from
an empty channel is automatically suspended, and threads automatically wake up when data
becomes available.

The classeftThread , PtGate , andPtCondition define the interfaces for threads,
monitors, and condition variables in Ptolemy. Different implementations can be used as long
as they conform to the interfaces defined in these base classes. At different points in the devel-
opment of the PN domain, we experimented with implementations based on Sun’s Light-
weight Process library, AWESIME (A Widely Extensible Simulation Environment) by Dirk
Grunwald [Gru91}, and Solaris threads [Pow91,Eyk92,Kha92,Kle92a,Kle92b,Ste92,Sun94].
The current implementation is based on a POSIX thread library by Frank Mueller
[Mue92,Mue93,Gie93,Mue95]. This library, which runs on several platforms, is based on
Draft 6 of the POSIX standard. Parts of our implementation will need to be updated to be
compliant with the final POSIX thread standard.

By choosing the POSIX standard, we improve the portability of our code. Sun and
Hewlett Packard already include an implementation of POSIX threads in their operating sys-
tems, Solaris 2.5 and HPUX 10. Having threads built into the kernel of the operating system,
as opposed to a user library implementation, offers the opportunity for automatic paralleliza-
tion on multiprocessor workstations. Thus, the same program runs properly on uniprocessor
workstations and multiprocessor workstations without needing to be recompiled. This is
important because it would be impractical to maintain different binary executables of Ptolemy
for each workstation configuration.

U. C. Berkeley Department of EECS

The Almagest 10-3

10.2 Processes

Figure 10-1 shows the class derivation hierarchy for the classes that implement the

PtThread

waThraad
E PosixThread

PNThread

'

DataFlowProcess DataFlowStar

'

SyncDataFlowProcess

FIGURE 10-1: The class derivation hierarchy for threaBslhread is an abstract base
class with several possible implementations. EBataFlowProcess
refers to @ataFlowStar

processes of Kahn process networks. The abstract bas@tdlassad defines the interface

for threads in Ptolemy. The claBssixThread provides an implementation based on the
POSIX thread standard. Other implementations using AWESIME [Gru91] or Solaris [Pow91]
are possible. The clagNThread is atypedef that determines which implementation is
used in the PN domain. Changing the underlying implementation simply requires changing
thistypedef . The clas®ataFlowProcess , which is derived fronPNThread , implements

a dataflow process. Ti&ar object associated with an instanceDaftaFlowProcess is
activated repeatedly, just as a dataflow actor is fired repeatedly to form a process.

10.2.1 The PtThread Class

PtThread is an abstract base class that defines the interface for all thread objects in
Ptolemy. Because it has pure virtual methods, it is not possible to create an instance of
PtThread . All of the methods are virtual so that objects can be referred to as a generic
PtThread , but with the correct implementation-specific functionality.

The clastThread has three public methods.

virtual void initialize() = 0;
This method initializes the thread and causes it to begin execu-
tion.

Ptolemy Last updated: 4/17/97

10-4 PN domain

virtual void runAll();
This method causes all threads to begin (or continue) execution.

virtual void terminate() = 0O;
This method causes execution of the thread to terminate.

The clastThread has one protected method.

virtual void run() = 0;
This method defines the functionality of the thread. It is invoked
when the thread begins execution.

10.2.2 The PosixThread Class

The classPosixThread provides an implementation for the interface defined by
PtThread . It does not implement the pure virtual methaal , so it is not possible to create
an instance oPosixThread . This class adds one protected method, and one protected data
member to those already defined,tithread .

static void* runThis(PosixThread*);
This static method invokes then method of the referenced
thread. This provides a C interface that can be used by the
POSIX thread library.

pthread_t thread;
A handle for the POSIX thread associated with the
PosixThread object.

pthread_attr_t attributes;
A handle for the attributes associated with the POSIX thread.

int detach;
A flag to set the detached state of the POSIX thread.

The initialize method shown below initializes attributes, then creates a thread.
The thread is created in a non-detached state, which makes it possible to later synchronize
with the thread as it terminates. The controlling thread (usually the main thread) invokes the
terminate method of a thread and waits for it to terminate. The priority and scheduling pol-
icy for the thread are inherited from the thread that creates it, usually the main thread. A func-
tion pointer to therunThis method and thehis pointer, which points to the current
PosixThread object, are passed as arguments tgthead_create function. This cre-
ates a thread that executasThis , and passehis as an argument tanThis . Thus, the
run method of théosixThread object is the main function of the thread that is created. The
runThis method is required because it would not be good practice to pass a function pointer
to therun method as an argument fithread_create . Although therun method has an
implicit this pointer argument by virtue of the fact that it is a class method, this is really an
implementation detail of the C++ compiler. By using theThis method, we make the
pointer argument explicit and avoid any dependencies on a particular compiler implementa-
tion.

void PosixThread::initialize()

{

U. C. Berkeley Department of EECS

The Almagest

10-5

/I Initialize attributes.
pthread_attr_init(&attributes);

/I Detached threads free up their resources as soon
/I as they exit; non-detached threads can be joined.
detach = 0;

pthread_attr _setdetachstate(&attributes, &detach);

/I New threads inherit their priority and scheduling policy

[/l from the current thread.

pthread_attr_setinheritsched(&attributes,
PTHREAD_INHERIT_SCHED);

/I Set the stack size to something reasonably large. (32K)
pthread_attr_setstacksize(&attributes, 0x8000);

/I Create a thread.

pthread_create(&thread, &attributes,
(pthread_func_t)runThis, this);

/I Discard temporary attribute object.

pthread_attr_destroy(&attributes);

TherunAll method, which is shown below, allows all threads to run by lowering the
priority of the main thread. If execution of the threads ever stops, control returns to the main
thread and its priority is raised again to prevent other threads from continuing.

/I Start or continue the running of all threads.
void PosixThread::runAll()

{

/I Lower the priority to let other threads run. When control
Il returns, restore the priority of this thread to prevent
/I others from running.

pthread_attr_t attributes;
pthread_attr_init(&attributes);
pthread_getschedattr(mainThread, &attributes);

pthread_attr_setprio(&attributes, minPriority);
pthread_setschedattr(mainThread, attributes);

pthread_attr_setprio(&attributes, maxPriority);
pthread_setschedattr(mainThread, attributes);

pthread_attr destroy(&attributes);

Theterminate method shown below causes the thread to terminate before deleting
the PosixThread object. First it requests that the thread associated withosigThread
object terminate, using thehread_cancel function. Then the current thread is suspended
by pthread_join to give the cancelled thread an opportunity to terminate. Once termination

Ptolemy

Last updated: 4/17/97

10-6 PN domain

of that thread is complete, the current thread resumes and deallocates resources used by the
terminated thread by callinghread_detach . Thus one thread can cause another to termi-
nate by invoking théerminate method of that thread.

void PosixThread::terminate()

{

/I Force the thread to terminate if it has not already done so.
/l'ls it safe to do this to a thread that has already

[/l terminated?

pthread_cancel(thread);

/l Now wait.
pthread_join(thread, NULL);
pthread_detach(&thread);

}

10.2.3 The DataFlowProcess Class

The clasDataFlowProcess is derived fronmPosixThread . It implements thenap
higher-order function (see the PN Domain chapter irer’'s Manud). A DataFlowStar
is associated with eadataFlowProcess object.

DataFlowStar& star;
This protected data member refers to the dataflow star associ-
ated with theDataFlowProcess object.

The constructor, shown below, initializes thar member to establish the association
between the thread and the star.

DataFlowProcess(DataFlowStar& s)

: star(s) {}

Therun method, shown below, is defined to repeatedly invokeuthemethod of the
star associated with the thread, just aswlagfunction forms a process from repeated firings
of a dataflow actor. Some dataflow stars in the BDF domain can operate with static scheduling
or dynamic, run-time scheduling. Under static scheduling, a BDF star assumes that tokens are
available on control inputs and appropriate data inputs. This requires that the scheduler be
aware of the values of control tokens and the data ports that depend on these values. Because
our scheduler has no such special knowledge, these stars must be properly configured for
dynamic, multi-threaded execution in the PN domain. Stars in the BDF domain that have been
configured for dynamic execution, and stars in the DDF domain dynamically inform the
scheduler of data-dependent firing rules by designating a particulaPioyiddle with the
waitPort method. Data must be retrieved from the designated input before invoking the
star'srun method. The starsain method is invoked repeatedly, until it indicates an error by
returningFALSE

void DataFlowProcess::run()

{

/I Configure the star for dynamic execution.
star.setDynamicExecution(TRUE);

U. C. Berkeley Department of EECS

The Almagest 10-7

/I Fire the Star ad infinitum.
do

{
if (star.waitPort()) star.waitPort()->receiveData();
} while(star.run());

}

10.3 Communication Channels
Figure 10-2 shows the class derivation hierarchy for the classes that implement the

CriticalSection PtGate PtCondition

wioMonitor wioC nnditinn
i PosixMonitor Ii PosixCondition

PNMonitor PNCondition

FIGURE 10-2: The class derivation hierarchy for monitors and condition variables.
PtGate andPtCondition are abstract base classes, each with several
possible implementations. EachiticalSection and PtCondition
refers to &PtGate .

communication channels of Kahn process networks. The classes that implement the commu-
nication channels provide the synchronization necessary to enforce the blocking read seman-
tics of Kahn process networks. The class&@Gate , PosixMonitor and
CriticalSection provide a mutual exclusion mechanism. The claBgesndition and
PosixCondition provide a synchronization mechanism. The cRi¢Geodesic uses these
classes to implement a communication channel that enforces the blocking read operations of
Kahn process networks and the blocking write operations required for bounded scheduling.

The abstract base claBgGate defines the interface for mutual exclusion objects in
Ptolemy. The clas®osixMonitor provides an implementation #tGate based on the
POSIX thread standard. Other implementations are possible. ThePt&&siitor is a
typedef that determines which implementation is used in the PN domain. Changing the
underlying implementation simply requires changing typedef

The abstract base claBgCondition defines the interface for condition variables in
Ptolemy. The clas®osixCondition provides an implementation based on the POSIX
thread standard. Other implementations are possible. ThePtl@smdition is atypedef
that determines which implementation is used in the PN domain. Changing the underlying
implementation simply requires changing tiyisedef

The classCriticalSection provides a convenient method for manipulating

Ptolemy Last updated: 4/17/97

10-8 PN domain

PtGate objects, preventing some common programming errors. TheRNg&Esodesic uses
all of these classes to implement a communication channel.

10.3.1 PtGate

A PtGate can be locked and unlocked, but only one thread can hold the lock. Thus if
a thread attempts to lockPaGate that is already locked by another thread, it is suspended
until the lock is released.

virtual void lock() = 0;
This protected method locks timGate object for exclusive
use by one thread.

virtual void unlock() = 0;
This protected method releases the lock orPtlzate object.

10.3.2 PosixMonitor

The classPosixMonitor provides an implementation for the interface defined by
PtGate . It has a single protected data member.

pthread_mutex_t thread,;
A handle for the POSIX monitor associated with Buosix-
Monitor object.

The implementations of tHeck andunlock methods are shown below.

void PosixMonitor::lock()

{
}

void PosixMonitor::unlock()

{
}

pthread_mutex_lock(&mutex);

pthread_mutex_unlock(&mutex);

10.3.3 CriticalSection

The classCriticalSection provides a convenient mechanism for locking and
unlocking PtGate objects. Its constructor, shown below, locks the gate. Its destructor, also
shown below, unlocks the gate. To protect a section of code, simply create a new scope and
declare an instance GtfiticalSection . ThePtGate is locked as soon as theitical-

Section is constructed. When execution of the code exits scoperifiEalSection

destructor is automatically invoked, unlocking #t&ate and preventing errors caused by
forgetting to unlock it. Examples of this usage are shown in Section 10.3.6. Because only one
thread can hold the lock onPaGate , only one section of code guarded in this way can be
active at a given time.

CriticalSection(PtGate* g) : mutex(g)
{

if (mutex) mutex->lock();

U. C. Berkeley Department of EECS

The Almagest 10-9

}

~CriticalSection()

{
}

if (mutex) mutex->unlock();

10.3.4 PtCondition

The classPtCondition defines the interface for condition variables in Ptolemy. A
PtCondition ~ provides synchronization through thvait andnotify = methods. A condi-
tion variable can be used only when executing code within a critical section (i.e., when a
PtGate is locked).

PtGate& mon;

This data member refers to the gate associated witbtCua-
diton object.

virtual void wait() = 0;
This method suspends execution of the current thread until noti-
fication is received. The associated gate is unlocked before exe-
cution is suspended. Once notification is received, the lock on
the gate is automatically reacquired before execution resumes.

virtual void notify() = O;
This method sends notification to one waiting thread. If multi-
ple threads are waiting for notification, only one is activated.

virtual void notifyAll() = O;
This method sends notification to all waiting threads. If multiple
threads are waiting for notification, all of them are activated.
Once activated, all of the threads attempt to reacquire the lock
on the gate, but only one of them succeeds. The others are sus-
pended again until they can acquire the lock on the gate.

10.3.5 PosixCondition

The clasgPosixCondition provides an implementation for the interface defined by
PtCondition . The implementations of theait , notify and notifyAll methods are
shown below.

void PosixCondition::wait()

{

/I Guarantee that the mutex will not remain locked

/I by a cancelled thread.

pthread_cleanup_push((void(*)(void*))pthread_mutex_unlock,
&mutex);

pthread_cond_wait(&condition, &mutex);

/I Remove cleanup handler, but do not execute.
pthread_cleanup_pop(FALSE);

Ptolemy Last updated: 4/17/97

10-10 PN domain

}

void PosixCondition::notify()

{
}

void PosixCondition::notifyAll()
{

}

pthread_cond_signal(&condition);

pthread_cond_broadcast(&condition);

10.3.6 PNGeodesic

The classPNGeodesic , which is derived from the clasgeodesic defined in the
Ptolemy kernel, implements the communication channels for the PN domain. In conjunction
with thePtGate member provided in the base cl&=desic , two condition variables pro-
vide the necessary synchronization for blocking read and blocking write operations.

PtCondition* notEmpty;
This data member points to a condition variable used for block-
ing read operations when the channel is empty.

PtCondition* notFull;
This data member points to a condition variable used for block-
ing write operations when the channel is full.

int cap;
This data member represents the capacity of the communication
channel and determines when it is full.

static int numFull;
This static data member records the number of full geodesics in
the system.

TheslowGet method, shown in below, implements the get operation for communica-
tion channels. The entire method executes within a critical section to ensure consistency of the
object’s data members. If the buffer is empty, then the thread that insloka8et is sus-
pended until notification is received oatEmpty . Data is retrieved from the buffer, and if it
is not full notification is sent omotFull to any other thread that may have been waiting.

Particle* PNGeodesic::slowGet()

{
/I Avoid entering the gate more than once.
CriticalSection region(gate);
while (sz < 1 && notEmpty) notEmpty->wait();
SZ--;
Particle* p = pstack.get();
if (sz < cap && notFull) notFull->notifyAll();
return p;

U. C. Berkeley Department of EECS

The Almagest 10-11

TheslowPut method, shown below, implements the put operation for communication
channels. The entire method executes within a critical section to ensure consistency of the
object’'s data members. If the buffer is full, then the thread that inabwBut is suspended
until notification is received omotFull . Data is placed in the buffer, and notification is sent
onnotEmpty to any other thread that may have been waiting.

/I Block when full.
/I Notify when not empty.
void PNGeodesic::slowPut(Particle* p)
{
/I Avoid entering the gate more than once.
CriticalSection region(gate);
if (sz >= cap && notFull)
{
{
CriticalSection region(fullGate);
numFull++;
}
while (sz >= cap && notFull) notFull->wait();
{
CriticalSection region(fullGate);
numFull--;

}

}
pstack.putTail(p); sz++;

if (notEmpty) notEmpty->notifyAll();
}

ThesetCapacity = method, shown below, is used to adjust the capacity limit of com-
munication channels. If the capacity is increased so that a channel is no longer full, notifica-
tion is sent omotFull to any thread that may have been waiting.

void PNGeodesic::setCapacity(int c)

{

CriticalSection region(gate);

cap = c;

if (sz < cap && notFull) notFull->notifyAll();
}

Ptolemy Last updated: 4/17/97

10-12 PN domain

10.4 Scheduling
Figure 10-3 shows the class derivation hierarchy for the classes that implement the

ThreadScheduler

I_I wiaSchaodiilar |
PosixScheduler

PNThreadScheduler PNScheduler

FIGURE 10-3: The class derivation hierarchy for schedul@tseadList is a container
class for threads. Ea€éiNScheduler uses &hreadList

dynamic scheduling of Kahn process networks. The GlasadList provides mechanisms
for terminating groups of threads. This class is useBN§cheduler to create threads for
each node in the program graph. The c&ssDataFlowProcess implements the threads
for the nodes.

10.4.1 ThreadList

The classThreadList implements a container class for manipulating groups of
threads. It has two public methods.

virtual void add(PtThread*);
This method addsRtThread object to the list.

virtual ~ThreadScheduler();
This method terminates and deletes all threads in the list.

10.4.2 PNScheduler

The classPNScheduler controls the execution of a process network. Three data
members support synchronization between the scheduler and the processes.

ThreadList* threads;
A container for the threads managed by the scheduler.

PNMonitor* monitor;
A monitor to guard the scheduler’s condition variable.

PNCondition* start;
A condition variable for synchronizing with threads.

U. C. Berkeley Department of EECS

The Almagest 10-13

int iteration;
A counter for regulating the execution of the processes.

ThecreateThreads method, shown below, creates one process for each node in the
program graph. AyncDataFlowProcess is created for eadbataFlowStar and added to
theThreadList container.

/I Create threads (dataflow processes).
void PNScheduler::createThreads()

{
if (! galaxy()) return;

GalStarlter nextStar(*galaxy());
DataFlowStar* star;
LOG_NEW, threads = new ThreadList;

/I Create Threads for all the Stars.
while((star = (DataFlowStar*)nextStar++) = NULL)

{
LOG_NEW; SyncDataFlowProcess* p

= new SyncDataFlowProcess(*star,*start,iteration);
threads->add(p);
p->initialize();

It is often desirable to have a partial execution of a process network. Th8ylass
DataFlowProcess , which is derived fronDataFlowProcess , supports this by synchro-
nizing the execution of a thread with theeration counter that belongs to the
PNScheduler . Therun methods ofPNScheduler and SyncDataFlowProcess imple-
ment this synchronization. THeNScheduler run method, shown below, increments the
iteration count to give every process an opportunity to run. SymeDataFlowProcess
run method, shown below, ensures that the number of invocations of thestarsethod
does not exceed tlie@ration count.

/I Run (or continue) the simulation.
int PNScheduler::run()

{
if (SimControl::haltRequested() || ! galaxy())
{
Error::abortRun("cannot continue™);
return FALSE;
}

while((currentTime < stopTime) && !SimControl::haltRequested())

/I Notify all threads to continue.

{
CriticalSection region(start->monitor());
iteration++;
start->notifyAll();

}

PNThread::runAll();

Ptolemy Last updated: 4/17/97

10-14 PN domain

while (PNGeodesic::blockedOnFull() > 0
&& ISimControl::haltRequested())

{
increaseBuffers();
PNThread::runAll();
}
currentTime += schedulePeriod;
}
return ISimControl::haltRequested();
}
void SyncDataFlowProcess::run()
{
inti=0;
/I Configure the star for dynamic execution.
star.setDynamicExecution(TRUE);
/I Fire the star ad infinitum.
do
{
/I Wait for notification to start.
{
CriticalSection region(start.monitor());
while (iteration <= i) start.wait();
i = iteration;
}
if (star.waitPort()) star.waitPort()->receiveData();
} while (star.run());
}

TheincreaseBuffers method is used during the course of execution to adjust the
channel capacities according to the theory presented in [Par95, ch. 4]. Each time execution
stops, the program graph is examined for full channels. If there are any full channels, then the
capacity of the smallest one is increased.

I/l Increase buffer capacities.
/I Return number of full buffers encountered.
int PNScheduler::increaseBuffers()
{
int fullBuffers = 0;
PNGeodesic* smallest = NULL;

/I Increase the capacity of the smallest full geodesic.
GalStarlter nextStar(*galaxy());
Star* star;
while ((star = nextStar++) != NULL)
{
BlockPortlter nextPort(*star);
PortHole* port;
while ((port = nextPort++) 1= NULL)

{
PNGeodesic* geo = NULL;

U. C. Berkeley Department of EECS

The Almagest 10-15

if (port->isltOutput() &&
(geo = (PNGeodesic*)port->geo()) !'= NULL)
{

if (geo->size() >= geo->capacity())

fullBuffers++;
if (smallest == NULL ||
geo->capacity() <
smallest->capacity())
smallest = geo;

}

}
if (smallest '= NULL)
smallest->setCapacity(smallest->capacity() + 1);

return fullBuffers;

}

10.5 Programming Stars in the PN Domain

Unlike portholes in the SDF domain, the number of tokens consumed by an input or
produced by an output can be dynamic in the PN domain. This is indicated with the
P_DYNAMICporthhole attribute.

input {
name{a}

type {int}
attributes { P_DYNAMIC }

}

For dynamic ports, it is necessary to invokerduweiveData andsendData meth-
ods explicitly. Note that thesceiveData method must be used to initialize outputs. For
static ports, theeceiveData andsendData methods are invoked implicitly and should not
be used in the go method.

Because a separate thread of execution is created for each ggarntbthod of a PN
star is not required to terminate. As a programmer, you are free to use infinite loops, such as
while(TRUE) { ... } within thego method of your PN stars. This may be necessary if
you access a porthole (requiring a blocking read) before entering the main loop of the process.
In the future, such code could be placed in the stedin method, but currently (as of
release 0.6) thieegin method is executed before the star’s thread is created.

go {
/l Read both inputs the first time.
a.receiveData();
b.receiveData();
while (TRUE) {
output.receiveData();// Initialize the output.
if (int(a%0) < int(b%0)) {

Ptolemy Last updated: 4/17/97

10-16 PN domain

output%0 = a%o0,;
output.sendData();
a.receiveData();

}

else if (int(a%0) > int(b%0)) {
output%0 = b%0;
output.sendData();
b.receiveData();

else { /l Remove duplicates.
output%0 = a%o0;
output.sendData();
a.receiveData();
b.receiveData();

}
}

Instead of using an infinite loop, most PN stars rely onuthemethod oDataFlow-
Process to repeatedly invoke the stags method.

U. C. Berkeley Department of EECS

Chapter 11. SR domain

Authors: Stephen Edwards
Other Contributors: Christopher Hylands

11.1 Introduction

Synchronous Reactive (SR) is a statically scheduled simulation domain in Ptolemy
designed for concurrent, control-dominated systems. Simple stars for the SR domain are easy
to write, but more complex ones that take full advantage of the domain are more subtle. Stars
can be written in either C++ or Itcl.

11.2 Communication in SR

Time in SR is divided into discrete instants. In each instant, the communication chan-
nels in SR contain a valued event, have no event, or are “undefined,” corresponding to when
the system could not decide whether there was an event or not. These channels are not buff-
ered, unlike Ptolemy’s dataflow domains, and do not hold their values between instants.

Stars in the SR domain have input and output ports, much like they do in other
domains. However, primarly because absent events are different from undefined ones, the
interface to these ports are unique.

Because SR domain ports are unbuffered, output ports can be read just like input ports.
It is often convenient to do this when checking to see whether the value on an output port is
already correct and does not need to be changed.

Input/Output Porthole Interface

int SRPortHole::known()
ReturnTRUEwhen the value in the port is is known.

int SRPortHole::present()
ReturnTRUEwhen the value in the port is present.

int SRPortHole::absent()
ReturnTRUEwhen the value in the port is absent.

Particle & InSRPort::get()
Return the patrticle in the port. This should only be called vphesent()
returnsTRUE

Output Porthole Interface

Particle & OutSRPort::emit()
Force the value on the output port to be present and return a reference to the
output particle.

11-2 SR domain

void OutSRPort::makeAbsent()
Force the value on the output port to be absent.

11.3 Strict and non-strict SR stars

Broadly, there are two types of stars in the SR domain: strict and non-strict. If any
input to a strict star is unknown, then all of its outputs are unknown. A two-input adder, for
example, behaves like this--it cannot say anything about its output until the values of both
inputs are known. A non-strict star, by contrast, can produce some outputs before all of its
inputs are known. A two-input multiplexer is an example: when the selection input is known,
it can ignore the unselected input.

Non-strict stars are the key to avoiding deadlocked situations when there are cyclic
connections in the system. If all the stars in a cycle are strict, they each need all of their inputs
before producing an output--all will be left waiting. The deadlock can be broken by introduc-
ing a non-strict star into the cycle that can produce an output without having all inputs from
other stars in the cycle

A number of methods set attributes of SR stars. These should be called in the
setup() method of a star as appropriate. By default, none of these attributes is assumed to
hold.

SRStar::reactive()
Indicate the star is reactive--it needs at least one present input to produce a
present output.

Star::nolnternalState()
Indicate the star has no internal state--its behavior in an instant is a function
only of the inputs in that instant, and not on history.

By default, a star in the SR domain is strict. Here is (abbreviptiady source for a two-
input adder:

defstar {
name { Add }
domain { SR }
input {
name { inputl }
type {int }

input {
name { input2 }
type {int }

}

output {
name { output }
type {int }

}

setup {
reactive();

U. C. Berkeley Department of EECS

The Almagest 11-3

nolnternalState();

}
go {
if (inputl.present() && input2.present()) {
output.emit() <<
int(inputl.get()) + int(input2.get());
} else {
Error::abortRun(*this,
"One input present, the other absent");

}
}
}

Non-strict stars inherit from tH@RNonStrictStar class. Here is abbreviated source
for a non-strict two-input multiplexer:

defstar {

name { Mux }

domain { SR }

derivedFrom { SRNonStrictStar }

input {
name { truelnput }
type {int }

}

input {
name { falselnput }
type {int }

}

input {
name { select }
type {int }

output {
name { output }
type {int }
}
setup {
nolnternalState();
reactive();
}
go {
if (loutput.known() && select.known()) {
if (select.present()) {
if (int(select.get())) {
Il Select is true--
I/l copy the true input if it's known
if (truelnput.known()) {
if (truelnput.present()) {
output.emit() <<
int(truelnput.get());
} else {

Ptolemy Last updated: 10/10/97

11-4

U. C. Berkeley

/I true input is absent:
/I make the output absent
output.makeAbsent();
}
}
} else {
Il Select is false--
/[copy the false input if it's known
if (falselnput.known()) {
if (falselnput.present()) {
output.emit() <<
int(truelnput.get());
} else {
/ false input is absent:
I/l make the output absent
output.makeAbsent();

}
}
}

} else {
Il Select is absent:
/l make the output absent
output.makeAbsent();

}

SR domain

Department of EECS

Chapter 12. DE Domain

Authors: Soonhoi Ha
Edward A. Lee
Thomas M. Parks

Other Contributors: Brian L. Evans

12.1 Introduction

The discrete event (DE) domain in Ptolemy provides a general environment for time-
oriented simulations of systems such as queueing networks, communication networks, and
high-level computer architectures. In the domain, eantticle represents amventthat
corresponds to a change of the system state. The DE schedulers process events in chronolog-
ical order. Since the time interval between events is generally not fixed, each particle has an
associatedime-stamp Time stamps are generated by the block producing the particle, using
the time stamps of the input particles and the latency of the block.

We assume in this chapter that the reader is thoroughly familiar with the DE model of
computation. Refer to thgser's Manual Moreover, we assume the reader is familiar with
chapter 2, “Writing Stars for Simulation”. In this chapter, we give the additional information
required to write stars for the DE domain.

12.2 Programming Stars in the DE Domain

A DE star can be viewed as an event-processor; it receives events from the outside,
processes them, and generates output events after some latency. In a DE star, the management
of the time stamps of the particles (events) is as important as the input/output mapping of par-
ticle values.

Generating output values and time stamps are separable tasks. For greatest modularity,
therefore, we dedicate some DE stars, so-cdidaly stas, to time management. Examples of
such stars arBelay andServer . These stars, when fired, produce output events that typi-
cally have larger time stamps than the input events. They usually do not manipuletiei¢he
of the particles in any interesting way. The other stars, so-dalhetional stas, avoid time-
management, usually by generating output events with the same time stamp as the input
events. They, howevetp manipulate th@alueof the particles.

Delay stars should not be confused with the delay marker on an arc connecting two
stars (represented pigi by a small green diamond). The latter delay is not implemented as
a star. Itis a property of the arc. In the DE domain, the delay marker does not introduce a time
delay, in the sense of an incremented time stamp. It simply tells the scheduler to ignore the arc
while assigning dataflow-based firing priorities to stars. A star whose outputs are all marked
with delays will have the lowest firing priority, and so will be fired last among those stars eli-
gible to be fired at the current time.

The scheduler's assignment of firing priority also uses properties of the individual

12-2 DE Domain

stars: each star type can indicate whether or not it can produce zero-delay outputs. If a star
indicates that it does not produce any output events with zero delay, then the scheduler can
break the dataflow priority chain at that star. This saves the user from having to add explicit
delay markers. A star class can make this indication either globally (it never produces any
immediate output event) or on a port-by-port basis (only some of its input ports can produce
immediate outputs, perhaps on only a subset of its output ports).

For managing time stamps, tb&Star class has two DE-specific membexsiv-
alTime andcompletionTime , summarized in table 12-1.. Before firing a star, a DE sched-
uler sets the value of tharrivalTime member to equal the time stamp of the event
triggering the current firing. When the star fires, before returning, it typically sets the value of
thecompletionTime member to the value of the time stamp of the latest event produced by
the star. The schedulers do not usectimpletionTime ~ member, however, so it can actually
be used in any way the star writer wishBEStar also contains a fieldelayType and a
methodsetMode that are used to signal the properties of the star, as described below.

12.2.1 Delay stars

Delay-stas manipulate time stamps. Two types of examples of delay stapsir@re
delays andservers A pure-delaystar generates an output with the same value as the input
sample, but with a time stamp that is greater than that of the input sample. The difference
between the input sample time stamp and the output time stamp is a fixed, user-defined value.
Consider for example thgelay star:

defstar {

name {Delay}
domain {DE}
desc { Delays its input by a fixed amount }
input {
name {input}
} type {anytype}
output {
name {output}
type {=input}
}
defstate {
name {delay}
type {float}
default {"1.0"}
desc { Amount of time delay. }
}
constructor {
delayType = TRUE;
}
go {
completionTime = arrivalTime + double(delay);
Particle& pp = input.get();
output.put(completionTime) = pp;
}
}

Inside thego method description, theompletionTime is calculated by adding the delay to

U. C. Berkeley Department of EECS

The Almagest 12-3

the arrival time of the current event. The last two lines will be explained in more detail below.

Another type of delay star issgrver In aserverstar, the input event waits until a sim-
ulated resource becomes free to attend to it. An example $ether star:

defstar {

name {Server}

domain {DE}

desc{
This star emulates a server. If an input event arrives when it
is not busy, it delays it by the service time (a constant parameter).
If it arrives when it is busy, it delays it by more than the service
time. It must become free, and then serve the input.

}
input {
name {input}
type {anytype}
output {
name {output}
type {=input}
}
defstate {
name {serviceTime}
type {float}
default {"1.0"}
desc { Service time. }
}

constructor {
delayType = TRUE;
}

[0}
%! /I No overlapped execution. set the time.
if (arrivalTime > completionTime)
completionTime = arrivalTime + double(serviceTime);
else
completionTime += double(serviceTime);
Particle& pp = input.get();
output.put(completionTime) = pp;
}
}
This star uses theompletionTime member to store the time at which it becomes free after
processing an input. On a given firing, if teivalTime is later than theompletion-
Time, meaning that the input event has arrived when the server is free, then the server delays
the input by theserviceTime only. Otherwise, the time stamp of the output event is calcu-
lated as theerviceTime plus the time at which the server becomes freecihmpletion-
Time).

Both pure delays and servers are delay stars. Hence their constructor defts/the
Type member, summarized in table 12-1. This information is used by the scheduler.

The technical meaning of thielayType flag is this: such a star guarantees that it will
never produce any output event with zero delay; all its output events will have timestamps

Ptolemy Last updated: 10/17/97

12-4 DE Domain

larger than the time of the firing in which they are emitted. Stars that can produce zero-delay
events should leawielayType set to its default value GALSE

Actually, stars often cheat a little bit on this rule; as we just saw, the stebelayd
star setslelayType even if the user sets the star's delay parameter to zero. This causes the
star to be treated as though it had a positive delay for the purpose of assigning firing priorities,
which is normally what is wanted. Both pure delays and servers are delay stars. Hence their
constructor sets theelayType member, summarized in table 12-1. This information is used
by the scheduler, and is particularly important when determining which of several simulta-
neous events to process first.

12.2.2 Functional Stars

In the DE model of computation, a starusnable(ready for execution), if any input
porthole has a new event, and that event has the smallest time stamp of any pending event in
the system. When the star fires, it may need to know which input or inputs contain the events
that triggered the firing. An input porthole containing a new particle hamathgew flag set
by the scheduler. The star can checkdiwaNew flag for each input. A functional star will
typically read the value of the new input particles, compute the value of new output particles,
and produce new output particles with time stamps identical to those of the new inputs. To see
how this is done, consider tlBavitch star:

defstar {
name {Switch}
domain {DE}
desc {
Switches input events to one of two outputs, depending on
the last received control input.
}
input {
name {input}
type {anytype}

input {
name {control}
type {int}

}

output {
name {true}
type {=input}

output {
name {false}
type {=input}
}
constructor {
control.triggers();
control.before(input);
}
go {
if (input.dataNew) {
completionTime = arrivalTime;

U. C. Berkeley Department of EECS

The Almagest 12-5

Particle& pp = input.get();
int ¢ = int(control%0);
if(c)
true.put(completionTime) = pp;
else
false.put(completionTime) = pp;

}

}
TheSwitch star has two input portholaaput , andcontrol . When an event arrives at the
input porthole, it routes the event to either thie or thefalse output porthole depending
on the value of the last receivechtrol input. In thego method, we have to check whether
a newinput event has arrived. If not, then the firing was triggereddpntiol input event,
and there is nothing to do. We simply return. Ifitipait is new, then its particle is read using
get method, as summarized in table 12-1. In addition, the most recent value from the control
input is read. This value is used to determine which output should receive the data input. The
statements in the constructor will be explained below in “Sequencing directives” on page 12-
6.

There are three ways to access a particle from an input or output port. First, we may
use thexoperator followed by an integer, which is equivalent to the same operator in the SDF

InDEPort class

method description

Particle& operator % get a particle from the porthole without resetting dataNew

void before simultaneous inputs here should be processed before thdse at p
(GenericPort& p)

int dataNew flag indicating whether the porthole has new data

Particle& get () get a particle from the porthole and reset dataNew

void getSimulEvent () fetch a simultaneous event from the global event queue

int numSimulEvents () return the number of pending simultaneous events at thigjinput

void triggers () indicate that the input does not trigger any immediate output

events

void triggers indicate that the input triggers an immediate output on poyt p

(GenericPort& p)

Particle& operator %

OutDEPort class

description

get the most recent particle from the porthole

Particle& put
(double time)

get a new writable particle with the given time stamp

void sendData ()

flush output porthole data to the global event queue (callg

d by

put)

TABLE 12-1:

A summary of the members and methods of the InDEPort

and OutDEPort

classes that are used by star writers.

Ptolemy

Last updated: 10/17/97

12-6 DE Domain

domain. For exampleontrol%0 returns the most recent particle from toatrol port-

hole. The second methagkt , is specific tanDEPort . It resets thelataNew member of the

port as well as returning the most recent particle from an input port. In the above example, we
are not using thdataNew flag for thecontrol input, so there is no need to reset it. How-
ever, we are using it for theput porthole, so it must be reset. If you need to reset the
dataNew member of a input port after reading the newly arrived event (the more common
case) you should use thet method instead df0operator. Alternatively, you can reset the
dataNew flag explicitly using a statement like:

input.dataNew = FALSE;

Theput method is also specific @utDEPort . It sets theimeStamp member of the port to
the value given by its argument, and returns a reference to the most recent particle from an
output port. Consider the line in the above example:

true.put(completionTime) = pp;

This says that we copy the partigle to the output port witlimeStamp = completion-
Time. We can send more than one output event to the same port by callmg thesthod
repeatedly. A new particle is returned each time.

12.2.3 Sequencing directives

A special effort has been made in the DE domain to handle simultaneous events in a
rational way. If two distinct stars can be fired because they both have events at their inputs
with identical time stamps, some choice must be made as to which one to fire. A common
strategy is to choose one arbitrarily. This scheme has the simplest implementation, but can
lead to unexpected and counterintuitive results from a simulation.

The choice of which to fire is made in Ptolemy by statically assigning priorities to the
stars according to a topological sort. Thus, if one of the two enabled stars could produce
events with zero delay that would affect the other, as shown in figure 12-1, then that star will
be fired first. The topological sort is actually even more sophisticated than we have indicated.
It follows triggering relationships between input and output portholes selectively, according to
assertions made in the star definition. Thus, the priorities are actually assigned to individual
portholes, rather than to entire stars.

The cryptic statements in the constructor in the above example reveal these triggering
relationships to the scheduler. Consider for example the following problem. Switoa
star above suppose that on a given firinginpnt with time stampx is processed, and the
particle is sent to theue output. Suppose that the very next time the star firesyteol

VAN
A

A

FIGURE 12-1: When DE stars are enabled by simultaneous events, the choice of which to fire is
determined by priorities based on a topological sort. Thus if B and C both have events
with identical time stamps, B will take priority over C. The delay on the path from C to
A serves to break the topological sort.

U. C. Berkeley Department of EECS

The Almagest 12-7

input with time stamp arrives with valué&=ALSE. Probably, the previous output should have
gone to thdalse porthole. Consider the constructor statement:
control.before(input);

This tells the scheduler that if a situation arises where two simultaneous events might
appear at theontrol andinput portholes, then the one at tbentrol porthole should
appear first. This is implemented by giving the stars “upstream” fromothl porthole
higher firing priorities than those “upstream” from thygut porthole. Thus, if for some rea-
son the simultaneous events are processed in two separate firings (always a possibility), then
thecontrol event is sure to be processed first. A chate@idre directives can assign rela-
tive priorities to a whole set of inputs.

The other statement in the constructor:
control.triggers();

has somewhat different objectives. It tells the scheduler tatt@l input does not
trigger outputs on any porthole. If an input event causes an output event with the same time
stamp, then the input event is said to have “triggered” the output event. In the above example,
thecontrol event does not trigger any immediate output event, binpah event does. By
default, an input triggers all outputs, so it is not necessary to add the directive

input.triggers(output);

Providingtriggers directives informs the scheduler that certain paths through the
graph do not have zero delay, allowing it to ignore those paths in making its topological sort.
The triggers directive is essentially a selective version of tletayType flag: setting
delayType means the star containe zero-delay paths, whereas providiriggers infor-
mation tells the scheduler that only certain porthole-to-porthole paths through the star have
zero delay. By default, the scheduler assumes that all paths through the star have zero delay.

In some stars, an input event conditionally triggers an output. In principle, if there is
any chance of triggering an output, we set the triggering relation between the input and the
output. The triggering relation informs the scheduler that tmergbea delay-free path from
the input to the output. It is important, therefore, that the star writer not miss any triggering
relation whenriggers directives are provided.

If an input triggers some, but not all outputs, then the constructor for the star should
contain severatiggers directives, one for each output that is triggered by that input. If an
input triggers all outputs, then no directive is necessary for it.

If delayType is set tOTRUE it is not necessary to write any triggers directives; a
delay star by definition never triggers zero-delay output events.

12.2.4 Simultaneous events

An input port may have a sequence of simultaneous events (events with identical time
stamps) pending. Normally, the star will be fired repeatedly until all such events have been
consumed. Optionally, a DE star may process simultaneous events during a single firing. The
getSimulEvent method can be used as in the following example, taken from an up-down
counter star:

go {

while (countUp.dataNew) {
count++;
countUp.getSimulEvent();

Ptolemy Last updated: 10/17/97

12-8 DE Domain

}
o}
Here,countUp is an input porthole. ThgetSimulEvent method examines the glo-
bal event queue to see if any more events are available for the porthole with the current times-
tamp. If so, it fetches the next one and setsitttaNew flag toTRUE if none remain, it sets
thedataNew flag toFALSE (In this example, the actual values of the input events are uninter-
esting, but the star could uget() within the loop if it did need the event values.)

Sometimes, a star simply needs to know how many simultaneous events are pending
on a given porthole. Without fetching any event, we can get the number of simultaneous
events by calling theumSimulEvents method. This returns the number of simultaneous
events still waiting in the global event queue; the one already in the porthole isn’'t counted.

If the star has multiple input ports, the programmer should carefully consider the
desired behavior of simultaneous inputs on different ports, and choose the order of processing
of events accordingly. For example, it might be appropriate to absorb all the events available
for a control porthole before examining any events for a data porthole.

If a star will always absorb all simultaneous events for all its input portholes, it can use
phase-based firing mode to improve performance. See section 12.3.

12.2.5 Non-deterministic loops

The handling of simultaneous events is based on assigning priorities to portholes, trac-
ing the connectivity of a schematic, and using the relationships establishedbfothe and
triggers relationships. When we assign these priorities, we start from the input ports of sink
stars, and rely primarily on a topological sort. Delay-free loops, which would prevent the
topological sort for terminating, are detected and ruled out. But, another kind of loop, called a
non-deterministic loopcan cause unexpected results. A non-deterministic loop is one in
which the priorities cannot be assigned uniquely; there is more than one solution. Such a loop
has at least ongefore relation. If a programmer can guarantee that there is no possibility of
simultaneous events on such a loop, then system may be simulated in a predictable manner.
Otherwise, the arbitrary decisions in the scheduler will affect the firing order.

If a non-deterministic loop contains exactly obefore relation, the scheduler
assigns priorities in a well-defined way, but unfortunately, in a way that is hidden from the
user. For a non-deterministic loop with more thanlmfere relation, the assignment of the
priorities is a non-deterministic procedure. Therefore, the scheduler emits a warning message.
The warning message suggests that the programmer put a delay element on an arc (usually a
feedback arc) to break the non-deterministic loop. As mentioned before, the delay element has
a totally different meaning from that in the SDF domain. In the SDF domain, a delay implies
an initial token on the arc, implying a one-sample delay. In the DE domain, however, a delay
element simply breaks a triggering chain. Therefore, the source port of the arc is assigned the
lowest priority.

12.2.6 Source stars

The DE stars discussed so far fire in response to input events. In order to build signal
generators, or source stars, or stars with outputs but no inputs, we need another class of DE
star, called aelf-scheduling staiA self-scheduling star fools the scheduler by generating its
own input events. These feedback events trigger the star firings. An event generator is a spe-

U. C. Berkeley Department of EECS

The Almagest 12-9

cial case of a delay star, in that its role is mainly to control the time spacing of source events.
The values of the source events can be determined by a functional block attached to the output
of the event generator (e@onst , Ramp etc).

A self-scheduling star is derived from cladSRepeatStar , which in turn is derived
from classDEStar . TheDERepeatStar class has two special methods to facilitate the self-
scheduling functionrefireAtTime andcanGetFired . These are summarized in table 12-
2. ThePoisson star illustrates these:

defstar {

name {Poisson}

domain {DE}

derivedfrom { RepeatStar }

desc {
Generates events according to a Poisson process.
The first event comes out at time zero.

}
output {
name {output}
type {float}
}
defstate {
name {meanTime}
type {float}
default {"1.0"}
desc { The mean inter-arrival time. }
}
defstate {
name {magnitude}
type {float}
default {"1.0"}
desc { The value of outputs generated. }
}

hinclude { <NegExp.h>}
ccinclude { <ACG.h>}
protected {

NegativeExpntl *random;
}

/l declare the static random-number generator in the .cc file

DERepeatStar class

method description
int canGetFired () return 1 if the star is enabled for firing
void refireAtTime schedule the star to fire again at time t
(double t)
void begin () schedule the star to fire at time zero

TABLE 12-2: A summary of the methods of the DERepeatStar class used when writing a source
star. Source stars are derived from this.

Ptolemy Last updated: 10/17/97

12-10 DE Domain

code {
extern ACG* gen;

}

constructor {
random = NULL;

}

destructor {
if(random) delete random;

}

begin {
if(random) delete random;
random = new NegativeExpntl(double(meanTime),gen);
DERepeatStar::begin ();

go {
/I Generate an output event
/I (Recall that the first event comes out at time 0).
output.put(completionTime) << double(magnitude);

/I and schedule the next firing
refireAtTime(completionTime);

/I Generate an exponential random variable.
double p = (*random)();

/I Turn itinto an exponential, and add to completionTime
completionTime += p;
}
}

The Poisson star generates a Poisson process. The inter-arrival time of events is exponen-
tially distributed with parameteneanTimeRefer to “Using Random Numbers” on page 3-17
for information about the random number generation. The me#fiecgAtTime launches
an event onto a feedback arc that is invisible to the users. The feedback event triggers the self-
scheduling star some time later.

Note that the feedback event for the next execution is generated in the current execu-
tion. To initiate this process, an event is placed on the feedback arcbiyRkpeatStar::
begin method, before the scheduler runs.

The DERepeatStar class can also be used for other purposes besides event genera-
tion. For example, a sampler star might be written to fire itself at regular intervals using the
refireAtTime method.

Another strangely named methatnGetFired is seldom used in the star defini-
tions. The method checks for the existence of a new feedback event, andTetuEifsit is
there, OIFALSE otherwise.

The internal feedback arc consists of an input and an output porthole that are automat-
ically created and connected together, with a delay marker added to prevent the scheduler
from complaining about a delay-free loop. (This effectively assumes that refire requests will
always be for times greater than the current time.)

Sometimes the programmer of a star derived fb@RepeatStar needs to be explic-

U. C. Berkeley Department of EECS

The Almagest 12-11

itly aware of these portholes. In particular, they should be taken into account when consider-
ing whether a star is delay-type. SettiejayType in aDERepeatStar derivative asserts

that not only do none of the star’s visible input portholes trigger output events with zero delay,
but refire events do not either. Frequently this is a false statement. It's usually safer to write
triggers directives that indicate that specific input portholes cannot trigger zero-delay out-
puts. (Since the feedback portholes have a delay marker, it is never necessary to mention the
feedback output porthole iriggers directives, even for an input porthole that gives rise to
refireAtTime requests --- the scheduler is uninterested in zero-delay paths to the feedback
output.)

The event passed across the feedback arc is an ordinary FLOAT particle, normally
having value zero. Sometimes it can be useful to store extra information in the feedback event.
Beginning in Ptolemy 0.7, thefireAtTime method accepts an optional second parameter
that gives the numeric value to place in the feedback event. Fetching the value currently
requires direct access to the feedback input port, for example

if (feedbackIn->dataNew) {
double feedbackValue = double(feedbackin->get());

A future version ofDERepeatStar might provide some syntactic sugar to hide the
details of this operation.

In Ptolemy versions prior to 0.DERepeatStar did not place a delay marker on the
feedback arc, but instead used a hack involving special porthole priorities. This hack did not
behave very well if the star also had ordinary input portholes. To work around it, writers of
derived star types would sometimes ¢slayType or providetriggers directives. When
updating such stars to 0.7, these statements should be examined critically --- they will often be
found to be unnecessary, and perhaps even wrong.

12.3 Phase-Based Firing Mode

The ordering of simultaneous events is the most challenging task of the DE scheduler.
In general, simultaneous events are caused by insufficient time resolution, particularly when
the time unit is integral. In our case, simultaneous events are primarily caused by functional
stars that produce output events with the same time stamp as the input events. Since the time
stamp is a double-precision floating-point number, we have very high time resolution.

As explained earlier, the DE scheduler fetches at most one event for each input port-
hole for each firing of a DE star. In the body of the star code, the programmer can consume the
simultaneous events onto a certain input porthole by callingeti$émulEvent method for
the porthole. This mode of operation is cakadplemode, which is the default mode of oper-
ation.

Suppose we program a new DE star, caltednter . The Counter star has one
clock input and onelemand input. Aclock event will increase the counter value by one,
and thedemand input will send the counter value to the output. If there are multiple simulta-
neousclock inputs and a simultaneodsmand input, we should count all tribock inputs
before consuming théemand input and producing an output. Thus, the programmer should
call the getSimulEvent method for theclock input. However, thegetSimulEvent
method is expensive when there are many simultaneous events, since it gets only one simulta-

Ptolemy Last updated: 10/17/97

12-12 DE Domain

neous event at a time. This runtime overhead is reduced phése-based firinghode.

In thephase-based firinghode, or simply thephasemode, before executing a star, the
scheduler fetches all simultaneous events for the star. The fetched events are stored in the
internal queue of each input porthole. The internal queue of inputs is created only if the star
operates in phase mode. In phase mode, when a DE star fires, it consumes all simultaneous
events currently available. It constructshease Afterwards, other simultaneous events for the
same star may be generated by a network of functional stars. Then, the star may be fired again
with another set of simultaneous events, which forms another phase. We can set the operation
mode of a staphaseby calling methodetMode(PHASE) in the constructor, as summarized
in table 12-1 on page 12-5. The following example is written in the simple mode.

go {
\./;/.hile (input.dataNew) {

temp += int(input.get());
input.getSimulEvent();

}
If the star is re-written using the phase mode, it will look like:

constructor {

setMode(PHASE);
}
go {
\./;/.hile (input.dataNew) {
temp += int(input.get());
}
}
or,
go {

%lc;r (inti = input.numSimulEvents(); i > 0; i--) {
temp += int(input.get());
}

}
Theget method in phase mode fetches events from the internal queue one at a time. After
consuming all events from the queue (now the queue is empty), it resedsatiiew flag. If
a star in phase mode does not access all simultaneous input events in a particular firing, the
unaccessed events are discarded.

The methodpumSimulEvent , returns the current queue size in phase mode. Recall
that in simple mode, the method returns the number of simultaneous events in the global event
gueue, which is one less than the actual number of simultaneous events. This difference of one
between two modes is necessary for coding efficiency.

There is still inherent non-determinism in the handling of simultaneous events in the

U. C. Berkeley Department of EECS

The Almagest 12-13

DE domain. For example, suppose that3hétch star has more than one simultaneous con-
trol event. Which one is really the last one? Since the input is routed to eitherether
false output depending on the last value of¢hsetrol event, the decision is quite critical.
We leave the responsibility of resolving such inherent non-determinism to the user.

12.4 Programming Examples

This section presents different examples of programming in the discrete-event domain.
There are no pre-defined stars that work with matrices in the discrete-event domain. We will
give several examples of DE stars that work with matrices.

12.4.1 ldentity Matrix Star

This section develops a star in the DE domain that will create an identity matrix.
Instead of creating a source star which must schedule itself, we will create a star that fires
whenever it receives an new input value. For example, a clock or some other source can be
attached to the star to set its firing pattern.

defstar {
name { Identity_M }
domain { DE }
desc { Output a floating-point identity matrix.}
author { Brian L. Evans }

input {
name { input }

} type { anytype }

output {
name { output }
type { FLOAT_MATRIX_ENV }

}

defstate {
name { rowsCols }
type {int}
default {2 }
desc {

Number of rows and columns of the output square matrix. }

}

ccinclude { "Matrix.h" }

go {
/I Functional Star: pass timestamp without change
completionTime = arrivalTime;
/I For messages, you must pass dynamically allocated data
FloatMatrix& result =

*(new FloatMatrix(int(rowsCols),int(rowsCols)));

/I Set the contents of the matrix to an identity matrix
result.identity();
/I Send the matrix result to the output port
output.put(completionTime) << result;

}

Ptolemy Last updated: 10/17/97

12-14 DE Domain

This is a functional star because the time stamp on the input particle is not altered. The
output is a matrix message. The matrix is a square matrix. In order for the matrix to remain
defined after the go method finishes, the maésxlt cannot be allocated from local mem-
ory. Instead, it must be allocated from global dynamic memory viagheoperator. In the
syntax for the new operator, thet cast inint(rowsCols) extracts the value from
rowsCols which is an instance of tts&ate data structure. The dynamic memory allocated
for the matrix will be automatically deleted by tilessage class. Then, the matrix is reset to
be an identity matrix. Finally, the matrix is sent to the output port with the same time stamp as
that of the input data. Note that the syntax to output data in the discrete-event domain differs
from the syntax of the synchronous dataflow domain due to the time stamp. In the SDF
domain, the output code would be

output%0 << result

12.4.2 Matrix Transpose
In the next example, we will compute the matrix transpose.

defstar {
name { Transpose_M }
domain { DE }
desc { Transpose a floating-point matrix.}
author { Brian L. Evans }
input {
name { input }
type { FLOAT_MATRIX_ENV }
}
output {
name { output }
type { FLOAT_MATRIX_ENV }

ccinclude { "Matrix.h" }
go {
/I Functional Star: pass timestamp without change
completionTime = arrivalTime;
/I Extract the matrix on the input port
Envelope Xpkt;
input.get().getMessage(Xpkt);
const FloatMatrix& Xmatrix =
*(const FloatMatrix *)Xpkt.myData();
/I Create a copy of the input matrix
FloatMatrix& xtrans = *(new FloatMatrix(Xmatrix));
/I Transpose the matrix
xtrans.transpose();
/I Send the matrix result to the output port
output.put(completionTime) << xtrans;

}

The key difference between creating an identity matrix and taking a matrix transpose
in the DE domain is the conversion of the input data to a matrix. The input data comes in the

U. C. Berkeley Department of EECS

The Almagest 12-15

form of an envelope which is essentially an instance of a class embedded in a message parti-
cle. To extract the contents of the message, we first extract the message from the input enve-
lope. Then, we extract the data field from the message and cast it KioheMatrix . Just

as in the previous example, we need to allocate dynamic memory to hold the value of the
matrix to be output. In this case, we do not have to code the transpose operation since it is
already built into the matrix classes.

Ptolemy Last updated: 10/17/97

12-16 DE Domain

U. C. Berkeley Department of EECS

The Almagest 13-1

Chapter 13. Code Generation

Authors: Joseph Buck
Soonhoi Ha
Edward A. Lee
Praveen K. Murthy
Thomas M. Parks
José Luis Pino
Kennard White

13.1 Introduction

The CG domain and derivative domains are used to generate code rather than to run
simulations [Pin92]. Only the derivative domains are of practical use for generating code. The
stars in the CG domain can be thought of as “comment generators”; they are useful for testing
and debugging schedulers and for little else. The CG domain is intended as a model and a col-
lection of base classes for derivative domains. This section documents the common features
and general structure of all code generation domains.

The CG domain is currently based on dataflow semantics. Dataflow models of compu-
tation in Ptolemy include synchronous dataflow (SDF), dynamic dataflow (DDF), and bool-
ean dataflow (BDF). Both DDF and BDF are very general models of dataflow in that they are
Turing equivalent. SDF is a subset of both these models. Hence, a code generation target that
uses the BDF scheduler can support BDF and SDF stars but a target that uses SDF schedulers
only supports SDF stars. Most targets in code generation domains use SDF schedulers and
parallel schedulers which makes these targets support only SDF stars. An advantage of SDF is
that compilation can be done statically; this permits very efficient code generation. While we
have implemented targets that allow DDF code generation stars in the system, these targets
are not in the current release. However, there are a couple of targets that use the BDF sched-
uler; refer to the BDF domain documentation, the section on the bdf-cg target in the CG
domain documentation in the user’s manual, and the section on the bdf-cgc target in the CGC
domain documentation for more information on BDF semantics and the types of stars that can
be supported. In this chapter, we assume that stars obey only SDF semantics since code gener-
ation for non-SDF models is still in its early stages.

The design goal of the code generation class hierarchy is to save work and to make the
system more maintainable. Most of the work required to allocate memory for buffers, con-
stants, tables, and to generate symbols that are required in code is completely processor-inde-
pendent; hence these facilities are provided in the generic classes foun$RTTEMY/
src/domains/cg/kernel directory.

A key feature of code generation domains is the notion of a target architecture. Every
application must have a user-specified target architecture, selected from a set of targets sup-
ported by the user-selected domain. Every target architecture is derived from the base class
Target , and controls such operations as scheduling, compiling, assembling, and download-
ing code. Since it controls scheduling, multiprocessor architectures can be supported with

Ptolemy Last updated: 10/17/97

13-2 Code Generation

automated task partitioning and synchronization.

In the following sections, we will introduce the methods and data structures needed to
write new code generation stars and targets. However, we will not document what is needed to
write a new code generation domain; that discussion can be found in chapter 17. We will first
introduce what is needed to write a new code generation star, introducing the conceqés of
blocks code streamsand code block macrosNext we will describe the various methods
which will generally use thaddCode method to piece together the code blocks into the code
streams. We will then go into what is required to write single-processor and multiple-proces-
sor targets. Finally we will document the various schedulers available in the code generation
domains.

13.2 Writing Code Generation Stars

Code generation stars are very similar to the C++ simulation stars. The main differ-
ence is that the initializatiosdtup()), run time §o()), and terminationWrapup()) meth-
ods generate code to be compiled and executed later. Additionally, code generation stars have
two more methods callgditCode() = andexecTime()

Thesetup() method is called before the schedule is generated and before any mem-
ory is allocated. In this method, we usually initialize local variables or states. Note that the
setup method of a star may be called multiple times. This means that the user should be care-
ful so that the behavior of the star does not change even though setup method is called multi-
ple times. ThenitCode() method of a star is called after the static schedule has been
generated and before the schedule is fired. This method is used to generate the code outside of
the main loop such as initialization code and procedure declaration code. To generate start-up
code, use thmitCode method, NOT the setup method, since setup is called before schedul-
ing and memory allocation. The main use of the setup method, as in SDF, is to tell the sched-
uler if more than one sample is to be accessed from a porthole wsit $idE-Params call.

The go() function is used to generate the main loop code for the star. Finally, the
wrapup() function is used to generate the code after the main loop.

TheexecTime() method returns an integer specifying the time needed to execute the
main loop code of a code generation star in processor cycles or instruction steps. These num-
bers are used by the parallel schedulers. In the assembly code generation domains, the integer
returned is the main loop code execution time in DSP instruction cycles. The bedtercthe
Time() estimates are for each star, the more efficient the parallel schedule becomes.

If a star is invoked more than once during an iteration period, the precedence relation
between stars should be known to the parallel scheduler. If there is no precedence relation
between invocations, the parallel scheduler will try to parallelize them. By default, there is a
precedence relation between invocations for any star (this is equivalent to having a self-loop).
To assert that there is no such self-loop for a star, we have to cadlitkenalState()
method in the constructor:

constructor {
nolnternalState();
}

It is strongly recommended that the star designer determine whether the star is parallelizable
or not, and calholnternalState() if itis.

U. C. Berkeley Department of EECS

The Almagest 13-3

TheCGsStar class is the base class for all code generation stars, such as high level lan-
guage code generation stars and assembly language code generation stars. In this section, we
will explain the common features that th&Star class provides for all derivative code gen-
eration stars.

As a simple example to see how code generation stars are written, let’'s write an adder
star for the C code generation domain. @htstar is almost the same as for a simulation
star:

defstar {
name {Add}
domain {CGC}
desc { Output the sum of the inputs, as a floating
value.}
author { J. Pino }
input {
name {inputl1}
type {float}
}
input {
name {input2}
type {float}

}

output {
name {output}
type {float}

13.2.1 Codeblocks

Next we have to define the C code which will be used to generate the run-time code.
For this we use a codeblock. A codeblock is a pseudo-language specification of a code seg-
ment. By pseudo-language we mean that the block of code is written in the target language
with interspersed macros. Macros will be explained in the following section.

Codeblocks are implemented as protected static class members (e.g. there is one
instance of a codeblock for the entire class). Since they are protected, codeblocks from one
star class can be used from a derived star.cbteblock directive defines a block of code
with an associated identifying nameddCB” in this case).

codeblock (addCB) {

/* output = inputl + input2 */

$ref(output) = $ref(inputl) + $ref(input2);

}
Special care should be given to codeblock specification. Within each line, spaces, tabs, and
new line characters are important because they are preserved. For this reason, the brackets
“{} " should not be on the same lines with the code. &@dB been defined as follows:

codeblock (addCB) { /* output = inputl + input2 */

$ref(output) = $ref(inputl) + $ref(input2); }

the line

Ptolemy Last updated: 10/17/97

13-4 Code Generation

ref(output) = $ref(inputl) + $ref(input2);

would be lost! This is because anything preceding the clo$ihgrf the same line is dis-
carded by the preprocessptidng). Secondly, the spaces and tabs between the opdlriing “
and the first non-space character will be ignored.

The first definition of theddCB codeblock is translated Ipglang into a definition
of a static public member in thie file:

class CGCAdd : public CGCStar
{

static CodeBlock addCB;

An associated constructor call will be generated in the .cc file:

CodeBlock CGCAdd :: addCB (

" [* output = inputl + input2 *An"

" $ref(output) = $ref(inputl) + $ref(input2);\n"
);
The argument is a single string, divided into lines for convenience. The following will com-
plete our definition of the add star:

go {
}

Notice that the code is added in the go method, thus implying that the code is generated in the
main loop.

The

addCode(addCB);

addCode(code, stream name , <unique name>)

method of a CG star provides an interface to all the code streams (stream name and unique-
name arguments are optional). This method defaults to adding code intgQbee stream
(codestreams are explained later on). If a stream name is speuiti€bde looks up the

stream using theetStream(stream-name) method and then adds the code into that
stream. Furthermore, if a unique name is provided for the code, the code will only be added if
no other code has previously been added with the given unique name. The aadtbaitk

will return TRUEIf the code-string has been added to the stream and otherwise will return
FALSE

The star just defined is a very simple star. Typical code generation stars will define
many codeblocks. Conditional code generation is easily accomplished, as is done in the fol-
lowing example:

go {
if (parameter == YES)
addCode(yesblock);
else
addCode(noblock);

U. C. Berkeley Department of EECS

The Almagest 13-5

}

So far, we have used thddCode() method to generate the code inside the main loop
body. In the assembly language domaanisiCode can be called in thieitCode and
wrapup methods, to place code before or after the main loop respectively. In all of the code
generation domains, we can use dddProcedure() method to generate declarations out-
side of the main body. Refer to “Code streams” on page 13-16 for documentation on the
addCode andaddProcedure methods.

The next section describes the extended codeblock support. The previous discussion of
simple codeblocks is still correct and supportegtang ; the extensions below are upward
compatible. These extensions are experimental. They may change in future version of
Ptolemy, and may still contain bugs.

13.2.2 Codeblocks with arguments

Simple codeblocks (as described above) have a name and are implemented as static
member strings. Extended codeblocks have a name, optional arguments, and are implemented
as non-static functions. They have an escape mechanism so that C++ expressions may be
evaluated at run time and inserted into the generated code. However, in order to take advan-
tage of this escape mechanism, a codeblock must be defined and called with arguments, even
if those arguments are empty. An example:

codeblock(cbLoop,"int N, double x") {
for (i=0; i < @N; i++) {
$ref(output,i) = sin(i*@x);

}

This defines a codeblock nametlLoop with two argumentsN andx. The variable will
appear in the generated code, while the C++ expressiandx are escaped bgand will be
evaluated at code-generation time. When this is called as

cbLoop(5, 0.1);

the following string will be returned:
for (iI=0; i < 5; i++) {

$ref(output,i) = sin(i*0.1);
}

This might be used withingo() method as:

go {
}

addCode(cbLoop(5, 0.1));

TheaddCode() method will process th&ef() macro as described elsewhere. More com-
plicated expressions are allowable. In general@bkuse may be delimited by parentheses
“("and ") ", and must be operatex printable. The above codeblock could have been equiva-
lently declared as:

Ptolemy Last updated: 10/17/97

13-6 Code Generation

codeblock(cbLoop,"int N, double x") {
for (i=0; i < @(N); i++) {
$ref(output,i) = sin(i*@(x));
}
}

A more complicated example follows:

codeblock(cbLoop2,"char *portname, int N, double x") {
for (i=0; i < @(int(length)); i++) {
$ref(@portname,i) = sin(i*@(x/N));
}
}

In this examplelength is a data member of the star (typically a state). When called as:

cbLoop2("ina”, 3, 0.2);

it would generate (assuming the valudenigth is 20):

for (i=0; i < 20; i++) {
$ref(ina,i) = sin(i*0.6666666);
}

In order to trigger the C++ expression processing@éscapes in codeblocks which would
otherwise have no arguments, add in a null argument list as in:

codeblock(cbLoop3,™) {
for (i=0; i < @(int(length)); i++) {
$ref(output,i) = sin(i*0.1);
}

In the example above, th@(int(length)) will be replaced with the value of the class
memberlength . The above example would be called with an empty argument list as:

go {
addCode(cbLoop3());
}
The complete parsing rules are:
@@ =>@ (double "@" goes to single)
@ATSIGN =>@
@{ ==> {
@LBRACE ==>{ (LBRACE is literal string)
@} ==> }
@RBRACE ==>} (RBRACE is literal string)
@\ ==>\
@BACKSLASH ==>\ (BACKSLASH is literal string)
@id ==> C++ token {id} (id is one or more alphanumerics)
@(expr) ==> C++ expr {expr}(expr is arbitrary with balanced

U. C. Berkeley Department of EECS

The Almagest 13-7

parens)
@(white_space) ==> nothing
@anything_else is passed through unchanged (including the @)

In an extended codeblock, trailing backslashéswill omit the following newline in the gen-
erated code. This special meaning of trailihrhay be prevented by usin@?X' or
“@BACKSLASH

13.2.3 In-line codeblocks

Code blocks may be specified in the body of a method. Inside the definition of a
method (such ago()), all contiguous blocks of lines with a leadi@yvill be translated into
an in-line codeblock (i.e., aaddCode() statement). The® escape mechanism for C++
expressions works as described above for codeblocks with arguments. @eboaped
expressions, in-line codeblocks may reference local method variables as well as member vari-
ables.

Leading white-space before a lead@will be ignored. Note that no override mecha-
nism is provided to prevent the in-line codeblock interpretation. Note als@thas dual
meanings: the firg@on the line introduces in-line codeblock mode, while subseq@ehtar-
acters on the same line escape into C++ expressions. For example:

go() {
@CMAM_wait(&$ref(ackFlag), 1);
}

is equivalent to:

go() {
addCode("CMAM_wait(&$ref(ackFlag), 1);\n");
}

A more complicated example:

9o {
@ Sref(output) =\
int ni = input.numberPorts();
for (inti=1;i<=ni; i++) {
@$%ref(input#@i) @G <ni 2" +":"\n")\

}

If “input.numberPorts() " returns 3 when the above program is run, the generated code
will be:

$ref(output) = $ref(input#l) + $ref(input#2) + $ref(input#3);\n"

Currently, only the pre-defined methodsaft , go, exectime etc.) are processed this way;
not user-defined methods.

Ptolemy Last updated: 10/17/97

13-8 Code Generation

13.2.4 Macros

In code generation stars, the inputs and outputs no longer hold values, but instead cor-
respond to target resources where values will be stored (for example, memory locations/regis-
ters in assembler generation, or global variables in C-code generation). A star writer can also
define states which can specify the need for global resources.

A code generation star, however, does not have knowledge of the available global
resources or the global variables/tables which have already been defined in the generated
code. For star writers, a set of macros to access the global resources is provided. The macros
are expanded in a language or target specific manner after the target has allocated the
resources properly. In this section, we discuss the macros definedCi@s$he class.

$ref(name)
Returns a reference to a state or a port. If the argument, name, refers to a port,
it is functionally equivalent to theame%0 operator in the SDF simulation
stars. If a star has a multi-porthole, sagut, the first real porthole imput#1
To access the first porthole, we usesref(input#l) or
$ref(input#internal_state) whereinternal_state is the name of a
state that has the current value, 1.

$ref(name,offset)
Returns a reference to an array state or a port with an offset that is not negative.
For a port, it is functionally equivalent tame%offset in SDF simulation
stars.

$val(state-name)
Returns the current value of the state. If the state is an array state, the macro
will return a string of all the elements of the array spaced by the new line char-
acter. The advantage of not ustrgf macro in place déval is that no addi-
tional target resources need to be allocated.

$size(name)
Returns the size of the state/port argument. The size of a non-array state is one;
the size of a array state is the total number of elements in the array. The size of
a port is the buffer size allocated to the port. The buffer size is usually larger
than the number of tokens consumed or produced through that port.

$starName()
Returns the instantiated name of the star (without galaxy or universe names)

$fullName()
Returns the complete name of the star including the galaxies to which it
belongs.

$starSymbol(name)
Returns a unique label in the star instance scope. The instance scope is owned
by a particular instance of that star in a graph. Furthermore, the scope is alive
across all firings of that particular star. For example, two CG stars will have
two distinct star instance scopes. As an example, we show some parts of ptlang

U. C. Berkeley Department of EECS

The Almagest 13-9

file of theCGCPrinter star.

initCode {

StringList s;

s << " FILE* $starSymbol(fp);";
addDeclaration(s);
addInclude("<stdio.h>");
addCode(openfile);

codeblock (openfile) {

if(!($starSymbol(fp)=fopen("$val(fileName)","w"))) {
fprintf(stderr,"ERROR: cannot open output file
for Printer star.\n");
exit(1);
}

The file pointerfp for a star instance should be unique globally, and the
$starSymbol macro guarantees the uniqueness. Within the same star
instance, the macro returns the same label.

$sharedSymbol(list,name)
Returns the symbol for name in the list scope. This macro is provided so that
various stars in the graph can share the same data structures such as sin/cos
lookup tables and conversion table from linear to mu-law PCM encoder. These
global data structures should be created and initialized once in the generated
code. The macrsharedSymbol does not provide the method to generate the
code, but does provide the method to create a label for the code. To generate
the code only once, refer to “Code streams” on page 13-16. A example where a
shared symbol is used isQGCPCMtar.

Ptolemy Last updated: 10/17/97

13-10 Code Generation

codeblock (sharedDeclarations)

{
int $sharedSymbol(PCM,offset)[8];

/* Convert from linear to mu-law */
int $sharedSymbol(PCM,mulaw)(x)
double x;

{

double m;
m = (pow(256.0,fabs(x)) - 1.0) / 255.0;
return 4080.0 * m;
}
}
codeblock (sharedInit)

{
/* Initialize PCM offset table. */

{
inti;
double x = 0.0;
double dx = 0.125;
for(i = 0; i < 8; i++, X += dx)
{
$sharedSymbol(PCM,offset)[i] =
$sharedSymbol(PCM,mulaw)(x);
}
}
initCode {

if (addGlobal(sharedDeclarations, "$sharedSym-
bol(PCM,PCM)"))

addCode(sharedInit);
}

The above code creates a conversion table and a conversion function from linear to
mu-law PCM encoder. The conversion table is naofiadt and belongs to theCMm

class. The conversion function is nammeglaw, and belongs to the same PCM class.
Other stars can access that table or function by s&gimgedSymbol(PCM,off-

set) or $sharedSymbol(PCM,mulaw) . TheinitCode method tries to put the
sharedDeclarations codeblock into the global scope (BgdGlobal() method

in the CGC domain). That code block is given a unique labebshgredSym-
bol(PCM,PCM) . If the codeblock has not been previously definstiGlobal

returns true, thus allowingddCode(sharedinit) . If there is more than one
instance of the PCM star, only one instance will succeed in adding the code.

$label(name), $codeblockSymbol(name)
Returns a unique symbol in the codeblock scope. Both label and code-
blockSymbol refer to the same macro expansion. The codeblock scope only
lives as long as a codeblock is having code generated from it. Thus if a star
usesaddCode() more than once on a particular codeblock, all codeblock

U. C. Berkeley Department of EECS

The Almagest 13-11

instances will have unique symbols. A example of where this is used in the
CG56HostOut star.

codeblock(cbSingleBlocking) {
$label(wait)
jcir #m_htde,x:m_hsr,$label(wait)
jclr #0,x:m_pbddr,$label(wait)
movep $ref(input),x:m_htx
}
codeblock(cbMultiBlocking) {
move #$addr(input),r0
.LOOP #$val(samplesOutput)
$label(wait)
jcIr #m_htde,x:m_hsr,$label(wait)
jcIr #0,x:m_pbddr,$label(wait)
movep X:(r0)+,x:m_htx
.ENDL
nop
}
The above two codeblocks use a label namad. The $label macro will assign
unique strings for each codeblock.

The basecGStar class provides the above 8 macros. In the derived classes, we can add more
macros, or redefine the meaning of these macros. Refer to each domain document to see how
these macros are actually expanded. There are three commonly used macros in the assembly
code generation domains; these are:

$addr(name)
This returns the address of the allocated memory location for the given state or
porthole name. The address does not include references to the memory bank
the location is coming from; for instance, “x:2034” for location 2034 in the “x”
memory bank for Motorola 56000 is output as 2034.

$addr(name,<offset>)
This macro returns the numeric address in memory of the named object, with-
out (for the 56000) an “x:” or “y:” prefix. If the given quantity is allocated in a
register (not yet supported) this function returns an error. It is also an error if
the argument is undefined or is a state that is not assigned to memory (e.g. a
parameter).
Note that this does NOT necessarily return the address of the beginning of a
porthole buffer; it returns the “access point” to be used by this star invocation,
and in cases where the star is fired multiple times, this will typically be differ-
ent from execution to execution.
If the optional argument offset is specified, the macro returns an expression
that references the location at the specified offset -- wrapping around to the
beginning of the buffer if that is necessary. Note that this wrapping works inde-
pendent of whether the buffer is circularly aligned or not.

$ref(name,<offset>)

Ptolemy Last updated: 10/17/97

13-12 Code Generation

This macro is much like $addr(name), only the full expression used to refer to
this object is returned, e.g. “x:23” for a 56000 if “name” is in x memory. If
“name” is assigned to a register, this expression will return the corresponding
register. The error conditions are the same as for $addr

$mem(name)
Returns the name of the memory bank in which the given state or porthole has
its memory allocated.

To have $” appear in the output code, p@s$” in the codeblock. For a domain whei®' ‘is

a frequently used character in the target language, it is possible to use a different character
instead by redefining the virtual functisabstChar (defined inCGStar) to return a differ-

ent character.

It is also possible to introduce processor-specific macros, by overriding the virtual
function processMacro (rooted inCGStar) to process any macros it recognizes and defer
substitution on the rest by calling its pareptscessMacro method.

13.2.5 Assembly PortHoles

Here are some methods of clasmPortHole that might be useful in assembly code
generation stars:

bufSize() Returns an integer, the size of the buffer associated with the porthole.
baseAddr() Returns the base address of the porthole buffer

bufPos() Returns the offset position in the buffer, which ranges fromtufto
Size() -1.

circAccessThisTime()
This method returns true (nonzero) if the data to be read or written on
this execution “wrap around”, so that accessing them in a linear order
will not work.

13.2.6 Attributes

Attributes are assertions about the object they are applied to. Both states and portholes
can have attributes. Attributes that apply to states have the piefixAttributes that apply
to portholes have the prefie“”. The following attributes are common to all code generation
domains:

A GLOBAL
If set, this state is declared global so that it is accessible everywhere. Currently,
it is only supported in the CGC domain.

A_LOCAL
This is the opposite &¥_GLOBAL

A_SHARED
A state that is shared among all stars that know its name, type, size.

A_PRIVATE

U. C. Berkeley Department of EECS

The Almagest 13-13

Opposite ofA_SHARED

The default for stars is_LOCAL|A_PRIVATE. Right now, onlyA_ SHARED|A LOCALS sup-

ported in the assembly language domains. This combination means that all stars will share the
particular state across a processor. For all stars to share it in a universe the bits
A_SHARED|A_GLOBAIneed to be set; this combination is not implemented yet - the default
method will probably restrict all the stars that share this state to the same processor.

A CONSTANT
The state value is not changed by the star’s execution.

A NONCONSTANT
The state value is changed by the star’s execution.

A SETTABLE
The user may set the value of this state from a user interface.

A NONSETTABLE
The user may not set the value of this state from a user interface (e.g. edit-
parameters doesn’t show it).

Applying an attribute to an object implies that some bits are to be “turned on”, and oth-
ers are to be “turned off”. The underlying attribute bits have names beginningBvitfor
states, andPB_ for portholes. The only two bits that exist in all statesABeCONSTand
AB_SETTABLE By default, they are on for states, which means that the default state works
like a parameter (you can set it from the user interface, and the star’s execution does not
change it).

For assembly language domains, the following attributes are defined:

A_CIRC
If set, the memory for this state is allocated as a circular buffer, whose address
is aligned to the next power of two greater than or equal to its length.

A_CONSEC
If set, allocate the memory for timextstate in this star consecutively, starting
immediately after the memory for this star.

A_MEMORY
If set, memory is allocated for this state.

A_NOINIT
If set, the state is not be automatically initialized. The default is that all states
that occupy memory are initialized to their default values.

A REVERSE
If set, write out the values for this state in reverse order.

A SYMMETRIC
If set, and if the target has dual data memory banks (e.g. M56000, Analog
Devices 2100, etc.), allocate a buffer for this object in both memories.

Ptolemy Last updated: 10/17/97

13-14 Code Generation

Given these attributes (technically, the above also have “bit” representations of the form
AB_xxx; A_Xxx just turns the bit AB_xxx on), the following attributes correspond to requests
to turn some attributes off and to turn other attributes on. For example:

A _ROM
Allocate memory for this state in memory, and the value will not change --
A_MEMOR¥ndA_CONSTANTEet.

A_RAM
A_MEMOR¥et,A_CONSThOt set

For portholes in code generation stars, we have:

P_CIRC
If set, then allocate the buffer for this porthole as a circular buffer, even if this
is not required because of any other consideration.

P_SHARED
Equivalent toA_SHAREDonly for portholes.

P_SYMMETRIC
Similar toA_SYMMETRICbut for portholes.

P_NOINIT
Do not initialize this porthole.

Attributes can be combined with thg"“operator. For example, to allocate memory for a state

but make it non-settable by the user, | can say
AB_MEMORY|A_NONSETTABLE

13.2.7 Possibilities for effective buffering

In principle, blocks communicate with each other through porthole connections. In
code generation domains, we allocate a buffer for each input-output connection by default.
There are some stars, however, that do not modify data at all. A good, and also ubiquitous,
example is @&ork star. When &ork star had\ outputs, the default behavior is to creldte
buffers for output connections and copy data from input buffirdatput buffers, which is a
very expensive and silly approach. Therefore, we pay special attention to stars displaying this
type of behavior. In the setup method of these stardptkieit() method is invoked to
indicate that the star isRork -type star. For example, tie&CFork star is defined as

defstar {

name { Fork }

domain { CGC }

desc { Copy input to all outputs }

version { @(#)CGCFork.pl 1.6 11/11/92 }

author { E. A. Lee }

copyright { 1991-1994 The Regents of the University of Cali-
fornia }

location { CGC demo library }

explanation {

U. C. Berkeley Department of EECS

The Almagest 13-15

Each inputis copied to every output. This is done by the way
the buffers are laid out; no code is required.

}
input {
name {input}
type {ANYTYPE}
}

outmulti {
name {output}

type {=input}

constructor {
nolnternalState();

}

start {
forkinit(input,output);
}

exectime { return 0;}
}

Where possible, code generation domains take advant&gekoftype stars by not allocating
output buffers, but instead the stars reuse the input buffers. Unfortunately, in the current
implementation, assembly language fork stars can not do their magic if the buffer size gets too
large (specifically, if the size of the buffer that must be allocated is greater than the total num-
ber of tokens generated or read by some port during the entire execution of the schedule).
Here, forks or delay stars that copy inputs to outputs must be used.

Another example of &ork -Type star is th&pread star. The star receivéétokens
and spreads them to more than one destination. Thus, each output buffer may share a subset of
its input buffer. We call this relationsh@mbeddingthe outputs are embedded in the input.
For example, in th€eGCSpread star:

setup {
MPHilter iter(output);
CGCPortHole* p;
int loc = 0;
while ((p = (CGCPortHole*) iter++) = 0) {
input.embed(*p, loc);
loc += p->numXfer();
}
}
Notice that the output is a multi-porthole. During setup, we express how each output is
embedded in the input starting at locatioa At the buffer allocation stage, we do not allo-
cate buffers for the outputs, but instead reuse the input buffer for all outputs. This feature,
however, has not yet been implemented in the assembly language generation domains.

A Collect star embeds its inputs in its output buffer:

setup {
MPHilter iter(input);

Ptolemy Last updated: 10/17/97

13-16 Code Generation

CGCPortHole* p;

int loc = 0;

while ((p = (CGCPortHole?*) iter++) 1= 0) {
output.embed(*p, loc);
loc += p->numXfer();

}
}

Other examples of embedded relationships @g8ample and DownSample stars.
One restriction of embedding, however, is that the embedded buffer must be static. Automatic
insertion ofSpread andCollect stars in multi-processor targets (refer to the target section)
guarantees static buffering. If there is no delay (i.e., no initial token) in the embedded buffer,
static buffering is enforced by default. A buffer is caktaticwhen a star instance consumes
or produces data in the same buffer location in any schedule period. Static buffering requires a
size that divides the least common multiple of the number of tokens consumed and produced;
if such a size exists that equals or exceeds the maximum number of data values that will ever
be in the buffer, static allocation is performed.

13.3 Targets

A code generatioomain is specific to the language generated, such as C (CGC),
Sproc assembly code (Sproc) [Mur93], Silage [Kal93], DSP56000 assembly code (CG56),
and DSP96000 assembly code (CG96). Each code generation domain has a default target
which defines routines generic to the target language. A dérargdt that defines architec-
ture specific routines can then be written. A given language, particularly a generic language
such as C, may run on many target architectures. Code generation functions are cleanly
divided between the default domain target and the architecture specific target.

All target architectures are derived from the base clasget . The special class
KnownTarget is used to add targets to the known list of targets, mué&n@snBlock is
used to add stars (and other blocks) to the known block list and to assign names to them.

A Target object has methods for generating a schedule, compiling the code, and run-
ning the code (which may involve downloading code to target hardware and beginning its
execution). There also may be child targets (for representing multiprocessor targets) together
with methods for scheduling the communication between them. Targets also have parameters
that are user specified.

13.3.1 Single-processor target

The base target for all code generation domains i€@¥arget , which represents a
single processor by default. This target is calliefault-CGin the target list for the CG
domain. As the generic code generation targetCth€arget class defines many common
functions for code generation targets. Methods defined here include virtual methods to gener-
ate, display, compile, and run the code. Derived targets are free to redefine these virtual meth-
ods if necessary.

Code streams

A code generation target manages code streams which are used to store star and target
generated code. Ti@GTarget class has the two predefined code streamSode andpro-

U. C. Berkeley Department of EECS

The Almagest 13-17

cedures . ThemyCode stream is referred to @&0ODEand theprocedures stream is called
PROCEDUREhese names should be used when referring to these streams Gslen “
Stream* code = getStream(CODE) ". Derived targets are free to add more code streams
using theCGTarget methodaddStream(stream-name). For example, the default CGC
target defines fourteen additional code streams.

Other methods, such asldProcedure(code, uniquename) can be defined, to
provide a more efficient or convenient interface to a specific code stream (in this case, proce-
dures). WithaddProcedure it becomes clear why unique names are necessary. Recall that
addProcedure is used to declarations outside of the main body of the code. For example,
say we wanted to write a function in C to multiply two numbers. The codeblock to do this
could read:

codeblock(sillyMultiply) {
* A silly function */
double $sharedSymboil(silly,mult)(double a, double b)

double m;
m = a*b;
return m;
}
}

Note that in this codeblock we used iaredSymbol macro described in the code genera-
tion macros section. To add this code to the procedures stream,initChde method of
the star, we can call either:

addProcedure(sillyMultiply,"mult");

or
addCode(sillyMultiply,"procedures”,"mult");

or
getStream("procedures")->put(sillyMultiply,"mult");

As with addCode, addProcedure returns arRUEoOr FALSE indicating whether the
code was inserted into the code stream. Taking this into account, we could have added the
code line by line:
if (addProcedure("/* A silly function *An","mult")) {
addProcedure(
"double $sharedSymbol(silly,mult)(double a, double

b)\n"
);
addProcedure("{\n");
addProcedure("\tdouble m;\n");
addProcedure("\tm = a*b;\n");
addProcedure("\treturn m;\n");
addProcedure("\n");

}

13.3.2 Assembly code streams

Code is generated in the assembly language domains into four streams. The streams
inherited fromCGTarget are theCODEandPROCEDUREStream. The two new streams are:

Ptolemy Last updated: 10/17/97

13-18 Code Generation

mainLoop Code added to this stream comprises the main loop of the generated
algorithm. All addCode calls from a star'go function automatically
are concatenated to this stream unless another stream is supplied as an
argument.

trailer Code added to this stream comprisesvitepup section of the gener-
ated algorithm. AlladdCode calls from a star’'svrapup method auto-
matically are concatenated to this stream unless another stream is
supplied as an argument.

Code generation

Once the program graph is scheduled, the target generates the code in the virtual
methodgenerateCode() . (Note: code streams should be initialized before this method is
called.) All the methods called lyenerateCode are virtual, thus allowing for target cus-
tomization. ThegenerateCode method then callallocateMemory() which allocates the
target resources. After resources are allocatednit@®de method of the stars are called
by codeGenlnit() . The next step is to form the main loop by calling the methaid-
LoopCode() . The number of iteration cycles are determined by the argument of the “run”
directive which a user specifiespiyi or inptcl . To complete the body of the main loop,
go() methods of stars are called in the scheduled order. After forming the main loop, the
wrapup() methods of stars are called.

Now, all of the code has been generated; however, the code can be in multiple target
streams. ThdrameCode() method is then called to piece the code streams together and
place the unified stream into the/Code stream. Finally, the code is written to a file by the
methodwriteCode() . The default file name iScode. output ", and that file will be
located in the directory specified by a target paramedstDirectory

Finally, since all of the code has been generated for a target, we are ready to compile,
load, and execute the code. Derived targets should redefine the virtual netihpds-
Code() , loadCode() , andrunCode() to do these operations. At times it does not make
sense to have separédedCode() andrunCode() methods, and in these cases, these oper-
ations should be collapsed into th@Code() method.

13.3.3 Multiprocessor targets

Targets representing multiple processors are derived fror@@Target class. The
base class for all multiple-processor targets is calletfiTarget , and resides in the
$(PTOLEMY)/src/domains/cg/kernel directory. CGMultiTarget Is derived from
MultiTarget . CGMultiTarget class is the base class for all multiple-processor targets. It
is calledFullyConnectedn the CG domain target list.

The design of Ptolemy is also intended to support heterogeneous multi-processor tar-
gets. In the future, the base class of all “abstract” heterogeneous multiprocessor targets will be
implemented from th&ultiTarget class. For such targets, certain actors must be assigned
to certain targets, and the cost of a given actor is in general a function of which child target it
is assigned to. We have developed parallel schedulers that address this problem [Sih91].

We have implemented, or are in the process of implementing, both “abstract” and
“concrete” multi-processor targets. For example, we have classes iG@hadtiTarget

U. C. Berkeley Department of EECS

The Almagest 13-19

and CGSharedBus that represent sets of homogenous single-processor targets of arbitrary
type, connected in either a fully connected or shared-bus topology, with parametrized commu-
nication costs. These targets, however, use only the CG domain stars and hence do not actu-
ally generate code (recall that CG domain stars are “comment generators”). Some other actual
implementations of multiprocessor systems include the CRIE&GCCm5Target in the CGC
domain), the Sproc multiprocessor DSP [Mur93], and the ordered transaction architecture
[Sri93]. Refer to the CG56 domain documentation@@56MultiSim target, or the CGC
domain documentation f@GCMultiTarget class as examples of “concrete” multi-proces-

sor targets. In this section, we concentrate on the “abstract” multiprocessor target classes that
are in theb(PTOLEMY)/src/domains/cg/targets directory.

CGMultiTarget is the base target class for all homogeneous targets. By default, it
models a fully-connected multiprocessor architecture; when a processor wants to communi-
cate with another processor, it can do immediately. stheduleComm() method returns
the time when the required communication is scheduled. IIC@MultiTarget class, it
returns the same time as when the communication is required. On the othexG@imated-

Bus, which is derived from th€GMultiTarget class, is the base target class for all multi-
processor targets having a shared-bus topology. In GlSharedBus class, the
scheduleComm() method schedules the required communication on the shared-bus member
object of that class, and returns the scheduled time. The communication cost (in time) is mod-
eled by theommTime() method. Given the information on which processors are involved in
this communication and how many tokens are transmitted, it returns the expected communica-
tion time once started. By default (or in fully-connected topology), it only depends on the
number of tokens.

A CGMultiTarget has a sequence of child target objects to represent each of the
individual processors. The number of processors are determinediimgtare , nprocs
and the type of the child target is specified b$téngState |, childType . Refer to the
User’'s Manualfor details on how to specify the various target parameters. In the setup stage,
the child targets are created and added to the child target list as members of the multiprocessor
target. Classes derived fravtultiTarget represent the topology of the multi-processor net-
work (communication costs between processors, schedules for use of communication facili-
ties, etc.), and single-processor child targets can represent arbitrary types of processors. The
resource allocation problem is divided between the parent target, representing the shared
resources, and the child targets, representing the resources that are local to each processor.

The main role of a multiprocessor target is to set up one of the chosen parallel schedul-
ers, and to coordinate the child targets. TMultiTarget ~ class has a set of parameters to
select parallel scheduling options. See the schedulers section for a detailed discussion on par-
allel schedulers. The selected parallel scheduler schedules the program graph onto the child
targets and the scheduling results are displayed on a Gantt chart. The parent multiprocessor
target collects the code from each of the child targets after the child targets have generated
code based on the scheduling results. By default, it merges all of the child-processor code into
a single file. If separate files are required, then one approach is to create separate files with
names derived from the child target names and write the code to these filesram#ie
Code() method of the multi-target.

Interprocessor communication (IPC) stars are created by the multiprocessor target by
the methodsreateSend() andcreateReceive() . These stars are spliced in to the sub-

Ptolemy Last updated: 10/17/97

13-20 Code Generation

galaxies that are created and handed down to the child targets. Typically, these methods just
create the appropriate IPC star and return a pointer to the object created. Each send/receive
pair is matched in thpairSendReceive() method. Typically, this might involve setting
pointers in the send/receive pair to point to each other.

There is no preprocessor for targets lgtang for stars. Designing a customized
multiprocessor target, therefore, is a bit complicated compared to designing a customized star.
If the interconnection topology is neither fully-connected nor shared-bus, in particular, the
communication scheduling should be designed in the target, which makes a target design
more complicated. So the best way to design a target is to look at an already-implemented tar-
get such a€GCMultiTarget class in the CGC domain.

13.4 Schedulers

Given a Universe of functional blocks to be scheduled anatget describing the
topology and characteristics of the single- or multiple-processor system for which code is to
be generated, it is the responsibility of 8wheduler object to perform some or all of the
following functions:

» Determine which processor a given invocation of a gileck is executed on (for
multiprocessor systems).

» Determine the order in which actors are to be executed on a processor.
* Arrange the execution of actors into standard control structures, like nested loops.
In this section, we explain different scheduling options and their effect on the generated code.

13.4.1 Single-processor schedulers

For targets consisting of a single processor, we provide three different scheduling
techniques. The user can select the most appropriate scheduler for a given application by set-
ting theloopingLevel target parameter.

In the first approachdopingLevel = DEF), which is the default SDF scheduler, we
conceptually construct the acyclic precedence graph (APG) corresponding to the system, and
generate a schedule that is consistent with that precedence graph. Note that the precedence
graph is not physically constructed. There are many possible schedules for all but the most
trivial graphs; the schedule chosen takes resource costs, such as the necessity of flushing reg-
isters and the amount of buffering required, into account. The target then generates code by
executing the actors in the sequence defined by this schedule. This is a quick and efficient
approach when the SDF graph does not have large sample-rate changes. If there are large sam-
ple-rate changes, the size of the generated code can be huge because the codeblock for an
actor might occur many times (if the number of repetitions for the actor is greater than one); in
this case, it is better to use some forntoop scheduling.

We call the second approadbe’s scheduler. In this approachdpingLevel =
CLUST), actors that have the same sample rate are merged (wherever this will not cause dead-
lock) and loops are introduced to match the sample rates. The result is a hierarchical cluster-
ing; within each cluster, the techniques described above can be used to generate a schedule.
The code then contains nested loop constructs together with sequences of code from the
actors.

U. C. Berkeley Department of EECS

The Almagest 13-21

Since the second approach is a heuristic solution, there are cases where some looping
possibilities go undetected. By setting thepingLevel to SJS, we can choose the third
approach, calledSJS (Shuvra-Joe-Soonhoi) scheduling after the inventor’s first names
[Bha94]. After performing Joe’s scheduling at the front end, it attacks the remaining graph
with an algorithm that is guaranteed to find the maximum amount of looping available in the
graph.

A fourth approach, obtained by settilegpingLevel to ACYLOOP, we choose a
scheduler that generates single appearance schedules optimized for buffer memory usage.
This scheduler was developed by Praveen Murthy and Shuvra ‘Bhattacharyya [Mur96]
[Bha96]. This scheduler only tackles acyclic SDF graphs, and if it finds that the universe is not
acyclic, it automatically resets thmopingLevelarget parameter to SJS. Basically, for a given
SDF graph, there could be many different single appearance schedules. These are all opti-
mally compact in terms of schedule length (or program memory in inline code generation).
However, they will, in general, require differing amounts of buffering memory; the difference
in the buffer memory requirement of an arbitrary single appearance schedule versus a single
appearance schedule optimized for buffer memory usage can be dramatic. In code generation,
it is essential that the memory consumption be minimal, especially when generating code for
embedded DSP processors since these chips have very limited amounts of on-chip memory.
Note that acyclic SDF graphs always have single appearance schedules; hence, this scheduler
will always give single appearance schedules. Ifithe target parameter is set, then a sum-
mary of internal scheduling steps will be written to that file. Essentially, two different heuris-
tics are used by the ACYLOOP scheduler, called APGAN and RPMC, and the better one of
the two is selected. The generated file will contain the schedule generated by each algorithm,
the resulting buffer memory requirement, and a lower bound on the buffer memory require-
ment (called BMLB) over all possible single appearance schedules.

If the second, third, or fourth approach is taken, the code size is drastically reduced
when there are large sample rate changes in the application. On the other hand, we sacrifice
some efficient buffer management schemes. For example, suppose that star A produces 5 sam-
ples to star B which consumes 1 sample at a time. If we take the first approach, we schedule
this graph as ABBBBB and assign a buffer of size 5 between star A and B. Since each invoca-
tion of star B knows the exact location in the allocated buffer from which to read its sample,
each B invocation can read the sample directly from the buffer. If we choose the second, third,
or fourth approach, the scheduling result will be A5(B). Since the body of star B is included
inside a loop of factor 5, we have to use indirect addressing for star B to read a sample from
the buffer. Therefore, we need an additional buffer pointer for star B (memory overhead), and
one more level of memory access (runtime overhead) for indirect addressing.

13.4.2 Multiprocessor schedulers

A key idea in Ptolemy is that there is no single scheduler that is expected to handle all
situations. Users can write schedulers and can use them in conjunction with schedulers we
have written. As with the rest of Ptolemy, schedulers are written following object-oriented
design principles. Thus a user would never have to write a scheduler from ground up, and in
fact the user is free to derive the new scheduler from even our most advanced schedulers. We
have designed a suite of specialized schedulers that can be mixed and matched for specific
applications.

Ptolemy Last updated: 10/17/97

13-22 Code Generation

The first step in multiprocessor scheduling, or parallel scheduling, is to translate a
given SDF graph to an acyclic precedence expanded graph (APEG). The APEG describes the
dependency between invocations of blocks in the SDF graph during execution of one itera-
tion. Refer to the SDF domain documentation for the meaning of one iteration. Hence, a block
in a multirate SDF graph may correspond to several APEG nodes. Parallel schedulers sched-
ule the APEG nodes onto processors.

We have implemented three scheduling techniques that map SDF graphs onto multi-
ple-processors with various interconnection topologies: Hu’s level-based list scheduling,
Sih’s dynamic level scheduling [Sih91], and Sih’s declustering scheduling [Sih91]. The target
architecture is described by itarget object, derived fronCGMultiTarget . The Target
class provides the scheduler with the necessary information on interprocessor communication
to enable both scheduling and code synthesis.

The CGMultiTarget has a parameteschedNamethat allows the user to select the
type of schedule. Currently, there are five different scheduling options:

DL If schedNames set toDL, we select the Sih’s dynamic level
scheduler that accounts for IPC overhead during scheduling.

HU Hu’'s level scheduler is selected, which ignores the IPC over-
head.

DC The Sih’s declustering scheduler can be selected by seifing

The declustering algorithm is advantageous only when the list
scheduling algorithm shows poor performance, judged from the
scheduling result because it is more expensive thablLtbeHU
scheduler.

HIER(DL) orHIER(HU) or HIER(DC)
If we want to use Pino’s hierarchical scheduler, we have to set
schedNameo HIER(DL or HU or DQ. The default top-level
scheduling option is thBL scheduler. To use other scheduler,
DCor HUshould be specified within the parenthesis.

CGDDF If the schedNames set toCGDDFthe Ha’s dynamic construct
scheduler is selected. To use this scheduler, Ptolemy should be
recompiled with special flags, or us&cgddf executable.

Whichever scheduler is used, we schedule communication nodes in the generated
code. For example, if we use the Hu’s level-based list scheduler, we ignore communication
overhead when assigning stars to processors. Hence, the code is likely to contain more com-
munication stars than with the other schedulers that do not ignore IPC overhead.

There are other target parameters that direct the scheduling procedure. If the parameter
manualAssignment is set toYES then the default parallel scheduler does not perform star
assignment. Instead, it checks the processor assignment of all stars (set ysoujcthestate
of CG and derived stars). By default, threcld state is set to -1, which is an illegal assign-
ment since the child target is numbered from 0. If there is any star, excéptkhstar, that
has an illegaprocld state, an error is generated saying that manual scheduling has failed.
Otherwise, we invoke a list scheduler that determines the order of execution of blocks on each
processor based on the manual assignment. We do not support the case where a block might

U. C. Berkeley Department of EECS

The Almagest 13-23

require more than one processor. H@nualAssignment option automatically sets the
oneStarOneProc state to be discussed next.

If there are sample rate changes, a star in the program graph may be invoked multiple
times in each iteration. These invocations may be assigned to multiple processors by default.
We can prevent this by setting thieeStarOneProc state toYES Then, all invocations of a
star are assigned to the same processor regardless of whether they are parallelizable or not.
The advantage of doing this is the simplicity in code generation since we do not need to splice
in Spread/Collect stars, which will be discussed later. Also, it provides us another possi-
ble scheduling optioradjustSchedule ; this is described below. The main disadvantage of
settingoneStarOneProc to YESis the performance loss of not exploiting parallelism. It is
most severe if Sih’s declustering algorithm is used. Therefore, Sih’s declustering algorithm is
not recommended with this option.

In this paragraph, we describe a future scheduling option which this release does not
support yet. Once automatic scheduling (witkStarOneProc option set) is performed, the
processor assignment of each star is determined. After examining the assignment, the user
may want to override the scheduling decision manually. It can be done by setting the
adjustSchedule parameter. If that parameter is set, after the automatic scheduling is per-
formed, theprocld state of each star is automatically updated with the assigned processor.
The programmer can override the scheduling decision by setting that state. The
adjustSchedule cannot berESbefore any scheduling decision is made previously. Again,
this option is not supported in this release.

Different scheduling options result in different assignments of APEG nodes. Regard-
less of which scheduling options are chosen, the final stage of the scheduling is to decide the
execution order of stars including send/receive stars. This is done by a simple list scheduling
algorithm in each child target. The final scheduling results are displayed on a Gantt chart. The
multiple-processor scheduler produces a list of single processor schedules, giving them to the
child targets. The schedules include send/receive stars for interprocessor communication. The
child targets take their schedules and generate code.

To produce code for child targets, we create a sub-galaxy for each child target, which
consists of the stars scheduled on that target and some extra stars to be discussed below if nec-
essary. A child target follows the same step to generate code as a single processor target
except that the schedule is not computed again since the scheduling result is inherited from the
parent target.

Send/Receive stars

After the assignment of APEG nodes is finished, the interprocessor communication
requirements between blocks are determined in sub-galaxies. Suppose star A is connected to
star B, and there is no sample rate change. By assigning star A and star B to different proces-
sors (1 and 2 respectively), the parallel scheduler introduces interprocessor communication.
Then, processor 1 should generate code for star A and a “send” star, while processor 2 should
generate code for a “receive” star and star B. These “send” and “receive” stars are inserted
automatically by the Ptolemy kernel when determining the execution order of blocks in each
child target and creating the sub-galaxies. The actual creation of send/receive stars is done by
the parallel scheduler by invoking methodgeéteSend() and createReceive() , as
mentioned earlier) in the parent multi-target.

Ptolemy Last updated: 10/17/97

13-24 Code Generation

Once the generated code is loaded, processors run autonomously. The synchronization
protocol between processors is hardwired into the “send” and “receive” stars. One common
approach in shared-memory architectures is the use of semaphores. Thus a typical synchroni-
zation protocol is to have the send star set a flag when it completes the data transfer, and have
the receive star read the data and reset the semaphore. The receive star will not read the data if
the semaphore has not been set and similarly, the send star will not write data if the semaphore
has not been reset. In a message passing architecture, the send star may form a message
header to specify the source and destination processors. In this case, the receive star would
decode the message by examining the message header.

For properly supporting arbitrary data types, the send star should hawyaNPE
input; the receive star should have AYTYPEoutput. The resolved type for each of these
ports can be obtained using therthole::resolvedType method. For a preliminary ver-
sion of the communication stars, you can use a fixed datatype seicD/A&BOr INT.

The send/receive stars that are declared to suppTYPEbut fail to support a par-
ticular datatype, should display an appropriate error message usiBgdhmbortRun
method. Finally, each of these stars mustRaitHole::numXfer to determine the size of
the block of data that needs to be transferred upon each invocation.

Spread/Collect stars

Consider a multi-rate example in which star A produces two tokens and star B con-
sumes one token each time. Suppose that the first invocation of star B is assigned to the same
processor as the star A (processor 1), but the second invocation is assigned to processor 2.
After star A fires in processor 1, the first token produced should be routed to star B assigned to
the same processor while the second token produced should be shipped to processor 2; inter-
processor communication is required! Since star A has one output port and that port should be
connected to two different destinations (one is to star B, the other is to a “send” star), we insert
a “spread” star after star A. As a result, the sub-galaxy created for processor 1 contains 4
blocks: star A is connected to a “spread” star, which in turn has two outputs connected to star
B and a “send” star. The role of a “spread” star is to spread tokens from a single output port-
hole to multiple destinations.

On the other hand, we may need to “collect” tokens from multiple sources to a single
input porthole. Suppose we reverse the connections in the above example: star B produces one
token and star A consumes two tokens. We have to insert a “collect” star at the input porthole
of star A to collect tokens from star B and a “receive” star that receives a token from processor
2.

The “spread” and “collect” stars are automatically inserted by the scheduler, and are
invisible to the user. Moreover, these stars can not be scheduled. They are added to sub-galax-
ies only for the allocation of memory and other resources before generating code. The
“spread” and “collect” stars themselves do not require extra memory since in most cases we
can overlay memory buffers. For example, in the first example, a buffer of size 2 is assigned
to the output of star A. Star B obtains the information it needs to fetch a token from the first
location of the buffer via the “spread” star, while the “send” star knows that it will fetch a
token from the second location. Thus, the buffers for the outputs of the “spread” star are over-
laid with the output buffer of star A.

U. C. Berkeley Department of EECS

The Almagest 13-25

User Specification
Sparc DSP VHDL Sparc

e o T)

Spliced-in send/receive pairs

Sparc DSP J—{(S-%X)_’(C
-'-ﬁ—(F{:a ﬁ—{(s-sax)—(C

@«-{(e Groy— o W

Sparc VHDL

FIGURE 13-1: An interface constructed between three code generation domains. The interface
constructed by the framework is made up of communication pairs, each pair encir-
cled by an ellipse. The first (sine) and last (xgraph) stars are to be run on the host
workstation (CGC). The second block (analysis filter bank, a galaxy made up of
two polyphase FIR actors) is to be run on a DSP card (CG56). The third block
(synthesis filter bank, a galaxy made up of two polyphase FIR actors) is to be run
using a VHDL simulator.

In case there are delays or past tokens are used on the connection between two blocks
that should be connected through “spread” or “collect” stars, we need to copy data explicitly.
Thus, we will need extra memory for these stars. In this case, the user will see the existence of
“spread/collect” stars in the generated code.

Spread /Collect stars have only been implemented in the CGC domain so far.

13.5 Interface Issues

In Ptolemy 0.6 and later, we have developed a framework for interfacing code genera-
tion targets with other targets (simulation or code generation). In this section we will detail
how to support this new framework for a code generation target. To learn how to develop
applications within Ptolemy that use multiple targets that support this new framework, refer to
thelnterface Issuesection in théJser's Manual - CG Domaiohapter.

As with Wormholes , we have developed a way to interfateéargets without requir-
ing N2 specialized interfaces. We do this by generating a customized interface (analogous to
the universakventHorizon in wormholes) that is automatically built by using communica-
tion stars supplied by each code generation target. This interface is generated in C (using the
CGC domain) and runs on the Ptolemy host workstation.

To support this infrastructure, a target writer needs to define two pairs of communica-

Ptolemy Last updated: 10/17/97

13-26 Code Generation

tion stars and add target methods which return each of these pairs. The framework will then
build the interface by splicing in these stars as is shown in figure 13-1. These same actors are
used when constructing an interface to a Ptolemy simulation target as shown in figure 13-2.

User Specification
Sim-SDF External Sim-SDF

~-

Spliced-in simulation-SDF send/receive actors

)
DSP 41_(
%_(

L]
—{=

-

C ><—<VHDL>}—H Cg:H

VHDL

FIGURE 13-2: General Ptolemy simulation interface. The analysis and synthesis filter bank
blocks are identical to those described in figure 13-1. The Simin and SimOut
stars are built into Ptolemy and defined in:

$PTOLEMY/src/domains/cgc/targets/main/CGCSDF{Send,Receive}.pl

These communication stars, described in section 13.4.2, are a specialized form of
send/receive stars. In addition to the previous assumptions in section 13.4.2, send/receive for
this infrastructure must also define C code to control the target for operations such as down-
loading, initializing and (if applicable) terminating the generated executable.

One pair of communication stars must communicate from the target to the CGC code
that will run on the Ptolemy host workstation. The other pair must communicate in the oppo-
site direction. The CGC send/receive stars are typically defined from a common base commu-
nication star specific for each target. This common base defines the C code to control a target
that was discussed in the previous paragraphs. Examples of send/receive stars that support this
infrastructure can be found in:

For the S56XTarget (Ariel S-56X DSP card):
$PTOLEMY/src/domains/cg56/targets/CGCXBase.pl
$PTOLEMY/src/domains/cg56/targets/CGCXSend.pl
$PTOLEMY/src/domains/cg56/targets/CGCXReceive.pl
$PTOLEMY/src/domains/cg56/targets/CG56XCSend.pl
$PTOLEMY/src/domains/cg56/targets/CG56XCReceive.pl

For the SimVSSTarget (Synopsis VSS Simulator):
$PTOLEMY/src/domains/vhdl/targets/CGCVSynchComm.pl

U. C. Berkeley Department of EECS

The Almagest 13-27

$PTOLEMY/src/domains/vhdl/targets/CGCVSend.pl
$PTOLEMY/src/domains/vhdl/targets/CGCVReceive.pl
$PTOLEMY/src/domains/vhdl/targets/VHDLCSend.pl
$PTOLEMY/src/domains/vhdl/targets/VHDLCReceive.pl

After defining both pairs of communication stars, methods to instantiate these stars
must be defined in the target:

CommpPair fromCGC(PortHole&);

CommpPair toCGC(PortHole&);

A CommPair is a communication pair, where one of the communication stars in a
CGC star. Th&56XTarget::fromCGC method, illustrates the typical code needed for these
methods:
CommPair S56XTarget::fromCGC(PortHole&) {
CommpPair pair(new CGCXSend,new CG56XCReceive);
configureCommpPair(pair);
return pair;

}

The configureCommpPair function is defined in th856XTarget.cc file and con-
figures the S56XTarget communication stars.

Ptolemy Last updated: 10/17/97

13-28 Code Generation

U. C. Berkeley Department of EECS

The Almagest 14-1

Chapter 14. CGC Domain

Authors: Joseph T. Buck
Soonhoi Ha
Edward A. Lee
Yu Kee Lim
Thomas M. Parks
José Luis Pino

Other Contributors: Sunil Bhave
Kennard White

14.1 Introduction

The CGC domain generates code for@lpmrogramming language. “Code Generation”
on page 13-1 describes the features common to all code generation domains. The basic princi-
ples of writing code generation stars are explained in “Writing Code Generation Stars” on
page 13-2.You will find explanations for codeblocks, macros, and attributes there. This chap-
ter explains features specific to the CGC domain. Refer to the CGC domain chapter in the
user’s manual for an introduction to this domain.

14.2 Code Generation Methods

The addCode method is context sensitive so that it will ‘do the right thing’ when
invoked from within theénitCode , go, andwrapup methods o£GCStar. Refer to “Writing
Code Generation Stars” on page 13-2 for documentati@id®ode, including context sen-
sitive actions and conditional code generation. There are several additional code-generation
methods defined in the CGC domain. Thédinclude method is used to generate
#include file directives. TheaddDeclaration method is used to declare local variables
within the main function. ThaddGlobal method is used to declare global variables outside
the main function. As witladdCode, these methods retufRUEIf code was generated for
the appropriate stream am@LSE otherwise. These methods are member functions of the
CGCsStar class.

int addInclude (const char* file)
Generate the directivéinclude file intheinclude stream.
The stringfile must include quotation marksfle ") or angle
brackets £file >) around the name of the file to be included.
Only one#include file directive will be generated for the
file, even ifaddinclude is invoked multiple times with the
same argument. RetumRUEIf a new directive was generated.

int addDeclaration (const char* text , const char* name= NULL)
Add text to themainDecls stream. Usaame as the identify-
ing key for the code fragment if it is provided, otherwise use

Ptolemy Last updated: 8/26/97

14-2 CGC Domain

text itself as the key. Code will be added to the stream only
the first time that a particular key is used.

int addGlobal (const char* text , const char* name= NULL)
Add text to theglobalDecls stream. Us@ame as the identi-
fying key for the code fragment if it is provided, otherwise use
text itself as the key. Code will be added to the stream only
the first time that a particular key is used.

int addCompileOption (const char* text)
Add options to be used when compiling a C program. The
options are collected in tlhempileOptionsStream stream.

int addLinkOption (const char* text)
Add options to be used when linking a C program. The options
are collected in thinkOptionsStream stream.

The following streams, which are used by the code generation methods just described,
are defined as members of f@6&CTarget class in addition to the streams defined by the
CGTarget class.

CodeStream include
Include directives are added to this stream byathinclude
method ofCGCStar.

CodeStream mainDecls
Local declarations for variables are added to this stream by the
addDeclaration method ofCGCStar.

CodeStream globalDecls
Global declarations for variables and functions are added to this
stream by theddGlobal method ofCGCStar.

CodeStream mainlnit
Initialization code is added to this stream when ddéCode
method is invoked from within theitCode method.

CodeStream mainClose
Code generated when tla@dCode method is invoked from
within thewrapup method of stars is placed in this stream.

CodeStream compileOptionsStream
Options to be passed to the C compiler which have been added
using theCGCStar::addCompileOption method.

CodeStream linkOptionsStream
Options to be passed to the linker which have been added using
the CGCStar::addLinkOption method.

14.3 Buffer Embedding

Although many of the methods related to buffer embedding are actually implemented
in the CG domain, only the CGC domain makes use of them at this time. The following func-

U. C. Berkeley Department of EECS

The Almagest 14-3

tion is defined as a method of th&PortHole class.

void embed (CGPortHole port , int location =-1)
Embed the buffer oport in the buffer of this porthole with
offset location . The defaultiocation of -1 indicates that
the offset is not yet determined.

For example, the following statements appear in the setup method Sfviloh
block. This causes the bufferstafeOutput andfalseOutput to be embedded within the
buffer of input.

input.embed(trueOutput,0);

input.embed(falseOutput,0);

14.4 Command-line Settable States

In the Ptolemy releases before Ptolemy0.6 the C programs generated by Ptolemy in the
CGC domain did not take any command-line arguments. The state values of the various stars
were set during compilation and thus hard-coded into the program. In order to change a state
variable, the code had to be recompiled again (i.e. the universe had to be re-run within
Ptolemy). This was time consuming, and it also placed unnecessary load on the machine. In
Ptolemy0.6 and later, the CGC domain can generate C code that allow users to set the state
values from the command-line, which allows runs with different parameters to be executed
and compared quickly and easily.

Implementation

14.4.1 C code generated to support command line arguments

A sample of the additional code generated to support command-line arguments is
shown below:

struct {

double FOO;

double BAR;

} arg_store = {1.0, 0.01,};

void set_arg_val(char *arg[]) {
inti;
for (i = 1; arg[i]; i++) {
if ((!strcmp(arg]i], "-help™)) \
[|(!stremp(arg(i], "-HELP")) \
|I(!strcmp(argli], "-h"))) {
printf("Settable states are :\n
FOO\tdefault : 1.0\n
BAR\tdefault : 0.01\n");
exit(0);
}
if (Istremp(argli], "-FOO")) {
if (arg[i + 1])
arg_store.FOO = atof(arg[i + 1]);

Ptolemy Last updated: 8/26/97

14-4 CGC Domain

continue;

}

if (Istrcmp(arg][i], "-BAR")) {
if (arg[i + 1])
arg_store.BAR = atof(arg[i + 1]);
continue;

}

/* main function */
main(int argc, char *argv[]) {

double value_11;
double value_12;

/l End of Declaration
set_arg_val(argv);
I/l Begin of Initialization

value_12 = arg_store.BAR;
value_11 = arg_store.FOO;
/l Code

}
The default values (set by the "edit-parameters” command) are stored in the struct
arg_store . The functionset_arg_val(argv) scans the list of command-line arguments
for FOOandBARand sets the corresponding membergn store . It also builds up the help
message (consist of the settable state names and their default values) to be printed when the
program receives &', -help ' or “HELP' option. The state values are initialized to the cor-

respondingarg_store members during the variable initialization stage. By doing this, a
state will get its default value if it is not set on the command-line.

14.4.2 Changes in pigiRpc to support command line arguments

The pragma mechanism in tierget base class is used to specify the state that is to
be made settable via command-line arguments as well as to store the name to be used on the
command-line. ICGCtarget , these are stored as a character stringTiexéTable* map-
pings (a pointer to BashTable in which the data value and index are character strings) via
the overloade@ragma() member functions.

A function,isCmdArg(const State* state) , iIs used to check whethstdte
is to be set by a command-line argument. It caBE€Target::pragmal() and scans through
the StringList returned for the state's name. If found, the mapped name is return. Other-
wise a null string is return.

Four new protecte€€odeStream are added t&GCTarget to store the additional
codes:

cmdargStruct stores the struct members.

U. C. Berkeley Department of EECS

The Almagest 14-5

cmdargStruct stores the default values.
setargFunc stores the code segmentit_arg_val()
setargFuncHelp stores the built-up help message.

Four new public member functions and four private ones are also ad@&t&ar
to generate the codes:

cmdargStates() callscmdargState() to generate the members of
struct arg_store using the mapped name returned by
isCmdArg()

cmdargStateslinits()
calls cmdargStatesinit() to generate the default values of
the settable states.

setargStates|() calls setargState() to generate the code segment to match
the mapped name to the command-line options.

setargStatesHelps()
callssetargStatesHelp() to build up the help message.

These are called in theGCTarget::declareStar(CGCStar* star) function
after the global and main declarations have been genera®@gsStar::initCod-
eState(const State* state) is modified to generate the required initialization code if
state is to be settable from the command-line.

In order for gbval state to be settable from the command-line, it has to be changed to
areference state . Theexpandval() member function is overloaded @GCStar to
check if the hame" state is to be made settable from the command-line. If so, it is added to
the list of referenced state so that it will be declared and initialized.

14.4.3 Limitations of command line arguments.

Currently, this implementation works only for scalar states with float or integer values.
Extension to other types of state should be straight forward by simply adding the appropriate
struct member declaration code @GCStar::cmdargState(const State* state)

The cmdargStatesinit() , setargState() , setargStatesHelp() andinitCode-

String() member functions need to be modified accordingly to generate codes for the ini-
tialization, setting function, help message and assignment respectively of the new state
variable.

Also, there is no provision to check for duplicate command-line names. If there are
duplicates, Ptolemy will simply generate multipteuct members with the same name, and
error will result in the generated code. To get around this, a new Tk interface could be written
to specify and set the settable states and checking can be done at that level. Alternatively, it
might be a better idea to use the() method inCodeStream to add thestruct member
with its unique handle to the approprigtedeStream . That way, there will not be duplicate
struct members and state-variables could still reference the same member, so that two or
more states could be set to the same value from a single argument on the command-line.

Another limitation is that the command-line capability only works for states of blocks
at the top level. It will not work for states @alaxies andUniverses , and states that refer-

Ptolemy Last updated: 8/26/97

14-6 CGC Domain

enced other settable states. This could probably be solved by modifying the pragma mecha-
nism to ensure thgiragmas at the top level propagate all the way down to the contained
blocks. By doing this, states will inhegtagma s from their parengalaxies so that these

can be picked up by theCmdArg() function, and the appropriate codes can be generated.

Certain states will affect the overall scheduling of the whole system, efgctheof
upsampling and downsampling stars, and changing these would mean that new code
needs to be generated since the scheduling is hard-coded into the generated code. Thus these
should not be allowed to take values from the command-line. A new attribute can be intro-
duced to identify those states that should not be settable from the command-line. Warnings
can then be generated if users attempt to specify these for command-Iline setting.

14.5 CGC Compile-time Speed

There are several areas that can affect the amount of time that it takes a CGC universe
to compile, we discuss them below.

e Large sample rate changes and large delays can result in Ptolemy taking a very long
time to generate C code. A symptom of this sort of problem is thaidifpc pro-
cess will consume all the available swap and eventually crash. If you feel you need
really large delays, James Lundblad suggests writing your own code in your stars that
provides the same functionality as delays, but usgec() in theinitCode sec-
tion instead of the array that is created by the CGC Delay icon.

e C compiler optimizers do not work well with functions that have thousands of lines.
The main() function of a CGC simulation may be too large for the peephole opti-
mizer, causing the optimizer to take a long time to compile the file. Wparderyou
can pass thed0 option to turn off the optimizer.

14.6 BDF Stars

Because the clasSGCPortHole is not derived fronBDFPortHole , the setBDF-
Params method described in “BDF Domain” on page 8-1 is not available for code generation
stars. Use theetRelation method oDynDFPortHole instead.

void setRelation (DFRelation relation , DynDFPortHole* assoc)
Specify therelation of this port with the associated porthaksoc .
There are five possible values for relation:
DF_NONE no relationship.
DF_TRUE produces/consumes data only wlasaoc has arRUE
particle.
DF_FALSE produces/consumes data only wianoc has aFALSE
particle.
DF_SAME signal is logically the same assoc .
DF_COMPLEMENT signal is the logical complement of
assoc .

For example, the following statements describe the relationships among the portholes
of theSwitch block.
trueOutput.setRelation(DF TRUE, control);

U. C. Berkeley Department of EECS

The Almagest 14-7

falseOutput.setRelation(DF FALSE, control);

14.7 Tcl/Tk Stars

TheCGCTcITkTarget class defines th&Setup stream for Tcl/Tk stars.There is no
special code generation function for this stream, so its name must be usadti®@iibie . This
is usually done from within thieitCode method.

addCode(codeblock, "tkSetup™);

The following functions, which are defined in the fk®lain.c , can be used within
codeblocks of Tcl/Tk stars in the CGC domain.

void errorReport (char* message)
This functions creates a pop-up window containirggsage.

void makeEntry (char* window , char* name, char* desc, char*
initValue , Tcl CmdProc* callback)
This function creates an entry box imadow. The name of the entry
box must be unique (e.g. derived from the star name). The description
of the entry box is desc. The initial value in the entry box is
initValue

A callback function is called whenever the user enteREa in the
box. The argument to thmllback function will be the value that the
user has put in the entry box. The return value otéfiback func-
tion should berCL_OK

void makeButton (char* window, char * name, char* desc, Tcl Cmd-
Proc* callback)
This function creates a push button iw@adow. The name of the
push button must be unique (e.g. derived from the star name). The
description of the push buttondesc .

A callback function is called whenever the user pushes the button.
The return value of theallback function should b&CL_OK

void makeScale (char* window , char* name, char* desc, int posi-
tion , Tcl CmdProc* callback)
This function creates a scale (with slider) iwiadow. The name of the
scale must be unique (e.g., derived from the star name). The description
of the push button is desc. The initial position of the slider must be
betweerD and100.

A callback function is called whenever the user moves the slider in
the scale. The argument to thalback function will be the current
position of the slider, which can range fronto 100. The return value

of thecallback function should b&CL_OK

void displaySliderValue (char* window, char* name, char*
value)

Ptolemy Last updated: 8/26/97

14-8 CGC Domain

This function displays a value associated with a scale’s slider. The
scale is identified by its name and tadow it is in. This function
must be called by the user of the slider. Only the first 6 characters of the
value will be used.

14.8 Tycho Target

The CGC TychoTarget is an experimental target that provides a way to create CGC
control panels that use the functionality in Tycho. A universe that uses TychoTarget must pro-
vide a script that creates the control panel that the user sees. The TychoTarget is documented
in $PTOLEMY/demo/whats_new/whats_newO0.7/tychotarget.html

U. C. Berkeley Department of EECS

The Almagest 15-1

Chapter 15. CG56 Domain

Authors: Joseph T. Buck
Joseé Luis Pino

Other Contributors: S. Sriram
Kennard White

15.1 Introduction

The CG56 domain generates assembly code for the Motorola 56001 processor. Chap-
ter 13 describes the features common to all code generation domains. The basic principles of
writing code generation stars are explained in section 13.2. You will find explanations for
codeblocks, macros, and attributes there. This chapter explains features specific to the CG56
domain. Refer to the CG56 chapter in the user manual for an introduction to these domains.

15.2 Data Types

The supported CG56 data types are:
int
intarray
fix
fixarray
In addition thecomplex data type is partially supported. None of the currently defined
stars that takanytype input exceptFork , are compatible with theomplex data type. It
would be possible to write a star that supports a complex token read intgtgre input.
To do this the star writer would have to check on the input type and make sure to do the
intended function on both the X and Y memory components of the complex input token.

15.3 Attributes

In addition to the code generation attributes detailed in 13.2.6, for CG56 attributes are
defined to specify the X and Y memory banks. They are:

A _XMEM Allocate this state in X memory
A_YMEM Allocate this state in Y memory

The underlying bits araB_XMEMandAB_YMEMEach attribute above turns one off
and turns the other on (eA. YMEMuUrnsAB_YMENN andAB_XMEMoff).

Also for CG56 stars, portholes can assert attribbtedvENMandP_YMEMwhich work
in exactly the same way as XMEMandA_YMEMThe default attribute for a 56001 porthole is
P_XMEMwhich allocates the porthole buffer in X memory. SpecifyingRtheéMEMattribute
places the porthole buffer in Y memory.

Ptolemy Last updated: 10/10/97

15-2 CG56 Domain

15.4 Code Streams

The CG56 domain uses the default assembly language code streams discussed in
“Assembly code streams” on page 13-17. There are few target specific code streams detailed
by target below.

15.4.1 Sim56Target Code Streams

simulatorCmds
Collects the commands to configure the Motorola DSP simula-
tor.

shellCmds Collects the commands that will be used in a shell script to start
the run. The resultant script simply invokes the simulator with
the file generated frosimulatorCmds

15.4.2 S56XTarget/S56XTargetWH Code Streams

aioCmds Collects the GUI specification which is interpreteddolyn or
gslider
shellCmds Collects the commands that will be used in a shell script to start

the run. The resultant script can start qdm or gslider. In the case
of the S56XTarget, it might also download and run the gener-
ated code on the S-56X dsp card.

U. C. Berkeley Department of EECS

The Almagest 16-1

Chapter 16. C50 Domain

Authors: Luis Gutierrez

16.1 Introduction

The C50 domain generates assembly code for the Texas Instruments C5x series of pro-
cessors. Chapter 13 describes the features common to all code generation domains. The basic
principles of writing code generation stars are explained in section 13.2. You will find expla-
nations for codeblocks, macros, and attributes there. This chapter explains features specific to
the C50 domain. Refer to the C50 chapter inRtedemy User’'s Manudbr an introduction to
these domains.

16.2 Data Types

The supported CG50 data types are:
int
intarray
fix
fixarray
In addition thecomplex data type is supported for portholes (but not statespnf
plex number is stored as a sequence of two 16 bit numbers. The real part is stored at the
lower address.

16.3 Attributes

In addition to the code generation attributes detailed in 13.2.6, for C50 attributes are
defined to specify the Single Access RAM and Double Access RAM memory banks. They
are:

A _BMEM Allocate this state in the address range specified bighNteam-
Map target parameter.
A _UMEM Allocate this state in the address range specified byNten-

Map target parameter.

The underlying bits araB_BMEMandAB_UMEMEach attribute above turns one off
and turns the other on (eA.BMEMurnsAB_BMENN andAB_UMENNff).

Also for C50 stars, portholes can assert attribet@&vVIEMaNdP_UMEMwhich work in
exactly the same way as BMEMandA_UMEMThe default attribute for a C50 porthole is
P_BMEMwhich allocates the porthole buffer in DARAM memory. Specifying Rh&MEM
attribute places the porthole buffer in SARAM memory.

16.4 Code Streams

The C50 domain uses the default assembly language code streams discussed in
“Assembly code streams” on page 13-17. Additionally, TITarget declares a code stream

Ptolemy Last updated: 10/10/97

16-2 C50 Domain

namedTISuProcs to store code that should be placed outside the main loop. Note that the
code stored in this code stream will get added aftextiyeup methods of the stars have been
called. TheTISuProcs code stream is useful for adding procedures when using non-COFF
assemblers (like the TI DSK assembler) or defining tables of coefficients in program memory
(as an example, the C50 instructioacd needs one of the operands to be in program mem-

ory)

16.5 Symbols
The DSKC50 targets defines certain symbols that are meant to be unique. They are
AIC_INIT, SETUPX, SETUPR, XINT, RINT and TINT . The C50Sin star defines a glo-

bal symboISINTBL used to store a sine table that is shared by all C50Sin stars. The user
should avoid redefining these symbols in the output assembly file.

16.6 Reserved Memory

The DSKC50 target reserves the last 9 words in DARAM block 1 to store data needed
to configure the Analog Interface Chip in the DSK board

U. C. Berkeley Department of EECS

Chapter 17. Creating New Domains

Authors: Mike Chen
Christopher Hylands
Thomas M. Parks

Other Contributors: Wan-Teh Chang
Michael C. Williamson

17.1 Introduction

One of Ptolemy’s strengths is the ability to combine heterogeneous models of compu-
tation into one system. In Ptolemy, a model of computation correspondSdmain. The
code for eaclbomain interacts with the Ptolemy kernel. This overview describes the general
structure of the various classes that are usedyn@in in its interaction with the kernel.
The PtolemyJser’'s Manualhas a more complete overview of this information.

A functional block, such as an adder or an FFT, is calle@ra in Ptolemy terminol-
ogy, (see “Writing Stars for Simulation” on page 2-1 for more information). A collection of
connectedstar s form aGalaxy (see Chapter 2 of théser’'s Manualfor more information).
Ptolemy supports graphical hierarchy so that an eGtitaxy can be formed and used as a
single function block icon. Th@alaxy can then be connected to otlsegir s orGalaxies
to create anothasalaxy . Usually, all theStar s of aGalaxy are from the samBomain but
it is possible to conne&tar s of one domain to @alaxy of another domain using\velorm-

Hole .

A Universe is a complete executable systemUAiverse can be either a single
Galaxy or a collection of disconnected Galaxies. To rudniverse , eachGalaxy also
needs ararget . In simulation domains, @arget is essentially a collection of methods to
compute a schedule and run the varigtes s of aGalaxy . SomeDomains have more than
one possible scheduling algorithm available andTidaget is used to select the desired
scheduler. In code generation domainsa@et also computes a schedule and runs the indi-
vidual Star s, but eaclstar only generates code to be executed later. Code generation
gets also handle compiling, loading, and running the generated code on the target
architecture.

At a lower level are the connections betw8é@tk s. ABlock is aStar or Galaxy .
EachBlock has a number of input and output terminals which are attachedlmla
through itsPortHole s. A specialPortHole , called aMultiPortHole , is used to make
multiple connections but with only one terminal. TBtwck s are not directly connected
through theirPortHole s. Rather, theiPortHole s are connected to an intermediary object
called aGeodesic . In simulation domains, data is passed betwaetHole s (through the
Geodesic) using container objects call@drticle s. Ptolemy uses a system wheeeti-
cle s are used and recycled instead of created and deleted when rmtied. s are
obtained from a production and storage class callddsana , which creates neRarticle s
if there are no old ones to reuBarticle s that have completed their task are returned to the

17-2 Creating New Domains

Plasma , which may reissue them at a later request. Graphicallgtdneto Star connection
is depicted below:

Block Geodesic

* initialize() « initialize()

e run() « setSourcePort()
« wrapup() » setDestPort()

PortHrtHoIe PortHole PortHole

PortHole @ Particle Particle

« initialize() * type()

* receiveData() * print()

» sendData() * initialize()
* type()

FIGURE 17-1: Block objects in Ptolemy can send and receive data encapsulated in Particles
through Portholes. Buffering and transport is handled by the Geodesic and gar-
bage collection by the Plasma. Some methods are shown.

The classes defined above provide most of the functionality necessary for a working
domain. One additional class needed by all domainseheduler to compute the order of
execution of thestar s in theGalaxy .

Therefore, creating a new Ptolemy simulation domain will typically involve writing
new classes fastar s,PortHole s,WormHoles, Targets , andSchedulers

Creating a new domain is a fairly involved process, and not to be done lightly. The first
thing that many users want to do when they see Ptolemy is create a new domain. However, it is
often the case that the functionality they need is already in either the SDF or DE domains, or
they can merely add®arget or Scheduler rather than an entire domain.

17.2 A closer look at the various classes

A simulationDomain can use the various classes mentioned above as they exist in the
Ptolemy kernel or it can redefine them as needed. For example, in the SDF domain, the classes
SDFStar , SDFPortHole , SDFScheduler , SDFDomain, SDFTarget , and SDFWormhole
have all been defined. Most of those classes inherit much of their functionality from the corre-
sponding kernel classes but themain creator is free to make major changes as well. The
kernelGeodesic , Plasma, andParticle classes are used without modification, but other
domains such as the CG domain have derived a subclas&#otesic . TheDomain cre-
ator needs to decide whether or not existing Ptolemy classes can be used without change,
therefore it is a good idea to understand what functionality the kernel classes provide.

The following is a brief description of the various classes that either need to be defined
or are used by Bomain. Note that we only provide a functional description of some of the
major methods of each class and not a complete description of all methods.

U. C. Berkeley Department of EECS

The Almagest 17-3

17.2.1 Target
A Target is an object that manages the execution oSthes in aDomain.
Major methods:

run() Called to execute a schedule.
wrapup() Called at the end of an execution to clean up.
setup() Called byinitialize() (which is inherited from th&lock

class, which is a common base class for many of Ptolemy’s
classes). Sets eaGhar to point to thisTarget and sets up the
Scheduler

Major objects contained are:
gal A pointer to theGalaxy being executed.
sched A pointer to the Scheduler that is being used.

For further information abottarget s, see some of the existing domains.

17.2.2 Domain

Declares the type of various components ofRbenain, like which type ofworm-
Hole , PortHole |, Star , etc. is used by th@omain .

Major methods:
newWorm() Create avormHole of the appropriate type for thixmain.

newFrom() Create arkventHorizon (an object that is used to interface to
other Domains, used withWormHoles) that translates data
from a Universal format to Romain specific one.

newTo() Create arkEventHorizon that translates data fromCamain
specific format to a Universal one.
newNode() Returns aeodesic of the appropriate type for thixomain.
17.2.3 Star

A Star is an object derived from claB&ck that implements an atomic function.
Major methods:

run() What to do to run the star.

For example, thBataFlowStar class (a parent class to many of the dataflow domain
stars such aSDFStar andDDFStar) defines this function to make each inpwttHole
obtain Particles from theGeodesic , execute thggo() method of eaclstar , and then
have each outpuirortHole put itsParticles into theGeodesic .

17.2.4 PortHole

PortHole s are data members®far s and are where streamsRaitticle s enter or
leave theStar s. EachPortHole always handleBarticle s of one type, so two connected
PortHole s need to decide which data type they will use if they are not the same. There is a

Ptolemy Last updated: 10/10/97

17-4

Creating New Domains

base class calleGenericPort ~ which provides some basic methods that derived classes
should redefine as well as some data members commonly neede@&dyHalle types.

Major methods:

isltinput()
isltOutput()
isltMulti()

connect()

initialize()

receiveData()
sendData()
putParticle()
getParticle()

numXfer()

numTokens()

numlinitDelays()

geo()

setDelay()

ReturnTRUEIf the PortHole class is an input type.
ReturnTRUEIf the PortHole class is an output type.
ReturnTRUEIf the PortHole class is aMultiPorthole

Connect thiPortHole to aGeodesic (create one if needed)
and tell thatGeodesic to connect itself to both thiBortHole
and the destinatioRPortHole . Also provides the number of
delays on this connection.

Initialize thePortHole . In the case of outptortHole s, this
function will usually initialize the connecteGeodesic as
well. Resolve the type dfarticle s with thePortHole it is
connected to.

What to do to receive data from tBeodesic .

What to do to send data to tBeodesic .

Put a particle from the buffer into tk@=odesic .

Get a particle from theeodesic and put it into the buffer.

Returns numberTokens , the number ofParticle s trans-
ferred per execution.

Returns the number ffarticle s inside the&seodesic .
Returns the number of initial delay on feodesic .

Returns a pointer to th@eodesic thisPortHole is connected
to.

Set the delay on th®&eodesic .

Major data members:

myType
myGeodesic
myPlasma

myBuffer

farSidePort

bufferSize

numberTokens

Data type of particles in this porthole.
TheGeodesic that thisPortHole is connected to
A pointer to thePlasma used to request nearticle s.

Usually aCircularBuffer
ing Particle s.

used to store incoming or outgo-

ThePortHole that we are connected to.
The size of th®uffer

The number oParticle s consumed or generated each time
we access théeodesic .

Note thatPortHole s are generally separated into infRdrtHole s and output

U. C. Berkeley

Department of EECS

The Almagest 17-5

PortHole s. They aren’t designed to handle bidirectional traffic.

17.2.5 Geodesic
Models a FIFO buffer (usually) between tRortHole s. Major methods:

setSourcePort() Set the sourc@ortHole and the delay on this connection. A
delay is usually implemented as an initidrticle in the
Geodesic s buffer, but this can be changed depending on the
desired functionality.

setDestPort() Set the destinatioRortHole

disconnect() Disconnect from the givelhortHole

setDelay() Set the number of delays on this connection.

initialize() Initialize the buffer in thisseodesic . This means either clear it

or insert the number of initid#article s needed to match the
number of delays on this connection (théseticle s are
taken from the sourdeortHole s’s Plasma).

put() Put aParticle into the buffer

get() Get aParticle from the bufferincCount() and
decCount() are used by &cheduler to simulate an execu-
tion.

numlinit() Return the number of initial particles.

Major data members:

originatingPort A pointer to the sourceortHole
destinationPort A pointer to the destinatioPortHole
pstack The buffer, implemented asParticleStack
sz The number oParticle s in the buffer.

numinitialParticles
The number of initial delays.

17.2.6 Plasma

There are container object for unugeaticle s. There is one global instance of a
Plasma for each type Particle defined in the kernel. This class is usually only used by the
Domains and not changed by the authors of D®mains.

Major methods:
put() Return an unuse@article to thePlasma .
get() Get an unuseBarticle (or create one if needed).

17.2.7 Particle
The variousParticle types supported by Ptolemy. Currently, the typesFara |,

Ptolemy Last updated: 10/10/97

17-6 Creating New Domains

Int , Complex, Fix , andMessage. The Message Particle is used to carrylessages
(insideEnvelopes) which can be almost anything. For example,Nlagrix class is trans-
ferred usingVlessage Particle s. These classes are also only used as-is iyotihain s and
not redefined for new domains.

17.2.8 Scheduler

Sets up the execution by determining the order in which &ach of theGalaxy will
fire. Execution is performed using two main methodsetap() andrun() . Schedulers
can be timed or untimed, depending onDoenain’s model of execution. This class will usu-
ally be different for each domain, although some domains reusgchieduler of another
domain, if theScheduler is appropriate for the new domain’s model of computation.

Major methods:

setup() Checks thestar s in theGalaxy , initializes them, and creates a
schedule.
run() Run the schedule computed in setup()

Major data members
myGalaxy The pointer to th&alaxy that the Scheduler is working on.
myTarget The pointer to th&@arget which is controlling the execution.

17.3 What happens when a Universe is run

Now that you have some idea of what classes exist in the Ptolemy kernel, this section
will try to explain flow of control when &niverse is run. By knowing this, you will get an
idea of what additions or changes might be needed to get the functionality you desire and how
the code of your new domain will fit in.

First off, a little more about the basics of Ptolemy classes. Almost every object class in
Ptolemy is derived from thedamedObj class. This class simply provides support fivaae
field, a longeDescription field, and a pointer toRarent Block . Also, the methothi-
tialize() is declared here to be purely virtual, so every object should have some kind of
initialization function.

TheBlock class is derived frorNamedObj and is the main base class for most actors
in Ptolemy. It has I/O constructs likeortHole s andMultiPortHoles , State/parameter
constructs likeState , and defines execution methods suckesp() , run() andwra-
pup() . TheBlock also provides a virtual function to access an associated Scheduler.

A simulation universe is generally of typataFlowStar . When a universe is run,
the flow of control is as follows, using the SDF domain as an example:

PTcl::dispatcher()

PTcl::run()

PTcl::computeSchedule()
Runnable::initTarget()
Block::initialize()
SDFTarget::setup()
Target::setup()
SDFScheduler::setup()

U. C. Berkeley Department of EECS

The Almagest 17-7

Notice at this point that we have called two domain-specific methods, namely
SDFTarget::setup() andSDFScheduler::setup() . TheTarget can have a choice of
more than on&cheduler and in this case it called the defasiliFScheduler . We continue
here with a more detailed description of a very important function:

SDFScheduler::setup()

checkConnectivity() /I Checks that the galaxy is
/[properly connected.
prepareGalaxy() /l Initializes the portHoles of each star and
/I the geodesics that connect them.
checkStars() /I Verifies that the type of the Stars are
/I compatible with this Scheduler.
repetitions() /I Solves the balance equations for the

/I system and calculates how many times

/I each star should be fired for

/I one iteration (specific to dataflow).
computeSchedule() /l Compute the actual schedule
adjustSampleRates() // Set the number of tokens transferred

I between EventHorizons if this schedule

/Il is for a WormHole.

The order of various operations can be different for each scheduler. For example, a
new domain may require that tRertHole s be initialized after the repetitions were calcu-
lated but before the schedule was computed. The domain writer may wish to define a new
function prepareForScheduling() that would call thesetup() function of eaclstar
without initializing theStar s PortHole s.

ExpandingprepareGalaxy() in more detalil:
SDFScheduler:: prepareGalaxy()
galaxy()->initialize() // Initialize the galaxy.
InterpGalaxy::initialize() // Causes the initialization of delays

/I and the setup of bus widths.

Galaxy::initSubblocks() /I Calls initialize() of each star.

DataFlowStar::initialize()// This is a general initialize.
/l function for data flow stars.
/I Your own Star class might
/Il redefine it. Sets the number
/[of input Ports and clears
/I some parameters.
Block::initialize() /I Initializes the PortHoles and States
/I of the Block/Star. Calls the user
/I defined setup() function of each
/I star after the portholes and
/I geodesics have been initialized.
PortHole::initialize() // General PortHole initialization;
/I again you can redefine it for a
/I domain specific PortHole.
I Resolves the type of Particles
/I to be sent. Allocates a
/I buffer and a Plasma. Request
/I empty Particles from the Plasma
/I toinitialize the buffer.
Geodesic::initialize() // General Geodesic initialization,

Ptolemy Last updated: 10/10/97

17-8 Creating New Domains

I called by output PortHole only.
I Clears the buffer and adds any
I initial Particles for delays.

After the schedule is set up and all the actors irUtiieerse have been initialized,

the flow of control is as follows:
PTcl::run()
PTcl::computeSchedule() /I Described above.
PTcl::cont()
universe->setStopeTime() // Used to set the number of
/I iterations to be run.
universe->run()
InterpUniverse::run()
Runnable::run()
target->run()
sched->run()
SDFScheduler::run() // The domain specific Scheduler’s
/I run() function.

Let's look at what a typical scheduler does when it runs a star.
SDFScheduler::run() /I Checks if there has been an error
I in the last iteration. Calls
/I runOnce() for each iteration.
runOnce() /I Goes through each Star on the
/I schedule (which is a list of Stars
/I computed by setup()) and calls
/[star->run().
star->run()
DataFlowStar::run() /l The SDF domain uses the general
/I DataFlowStar
/I run() function. A new Domain
I might want to redefine this.
..Ports->receiveData() /I Calls receiveData() for each of
/I the PortHoles for this Star.
/I Output PortHoles would do nothing
/I in this case but input PortHoles
/I would get Particles from the
/I Geodesic.

Star::run()
SimControl::doPreActions()// Execute pre-actions for a star.
go() /I Call the Star specific go() function

/I that will process the input data

/I and generate data to be put in the

/[output PortHoles.
SimControl::doPostActions() // Execute post-actions for a star
..Ports->sendData() /I Calls sendData() for each of the

1 PortHoles for this Star.

/I Input PortHoles would do nothing

/I in this case but output PortHoles

/[would put their Particles into

/I the Geodesic and refill their

/I buffers with empty Particles

/[from the Plasma.

U. C. Berkeley Department of EECS

The Almagest 17-9

17.4 Recipe for writing your own domain

This section describes some of the template files we have made so that you don’t have
to start coding from scratch. We also discuss which classes and methods of those classes that a
new domain must define.

17.4.1 Introduction

The first thing to do is to think through what you want this domain to do. You should
have some idea of how the yastar s will exchange data and what kind ®dheduler is
needed. You should also understand the existing Ptolemy domains so that you can decide
whether your domain can reuse some of the code that already exists. Also, read Chapter 1 so
you understand the general classes in the Ptolemy kernel and how the domain methods inter-
act.

17.4.2 Creating the files

Themkdomscript attPTOLEMY/bin/mkdom can be used to generate template files for
a new domainmkdomtakes one argument, the name of the domain, which case insensitive,
mkdomconverts the what ever you pass to it as a domain name to upper and lower case inter-
nally. Here, we assume that you have set up a parallel development tree, as documented in
chapter 1, or you are working in the directory tree where Ptolemy was untar'd.

1. To usemkdom create a directory with the name of your domain in sivé
domains directory. In this example, we are creating a domain cgjled

mkdir SPTOLEMY/src/domains/yyy
2. cd to that directory and then rorkdom

cd $PTOLEMY/src/domains/yyy
$PTOLEMY/bin/mkdom yyy

17.4.3 Required classes and methods for a new domain

mkdomwill create copies of key files BPTOLEMY/src/domains/yyy/kernel and
a Nop star in$PTOLEMY/src/domains/yyy/stars . The template files have various com-
ments about which methods you need to redefine. The template files also define many function
for you automatically. If you aren't clear as to how to define the methods in each class, it is
best to try look at the existing Ptolemy domains as examples.

YYYDomain.cc This file will be setup for you automatically so that you
shouldn’t need to modify much. The various methods here
return WormHoles and EventHorizons ~ which should be
defined inYYWormhole . A node is usually a type @eode-
sic that allows multiple connections, suchfagoForkNode .

You can define your owlYYGeodesic or simply use the ker-
nel’'s AutoForkNode if that is suitable (this is what SDF does).

YYYWormhole.{h,cc}
Various methods to interface your new domain with others must
be defined if you wish to use your domain with other domains.

Ptolemy Last updated: 10/10/97

17-10 Creating New Domains

However, if you don’t need to mix domains, then you may skip

these files. Wormholes translate different notions of time or

concurrency. Since some domains are timed (like DE) and oth-
ers are not (like SDF), you must be able to convert from one to
another.

YYYGeodesic.{h,cc}
Currently we set th&eodesic to be the kernel'sutoForkN-
ode. If the kernel'sGeodesic class offers all the functionality
you need, then this doesn’t need to be changed. Otherwise try
looking at some of the pre-existing domains for examples.

YYYPortHole.{h,cc}
Define inputPortHole s and outputPortHole s, as well as
MultiPortHole s, specific to your domain. The only required
methods are generated for you, but you'll likely want to define
many more support methods. Look at the kePmtHole
DFPortHole , andSDFPortHole for examples.

YYYStar.{h,cc} Domain -specific class definition. Again, all the required meth-
ods have been defined but you’ll want to add much more. Refer
to Star , DataFlowStar , andSDFStar as examples.

YYYScheduler.{h,cc}
This is where much of the action goes. You'll need to define the
functionsetup() ,run() , andsetStopTime()

17.4.4 Building an object directory tree

Ptolemy can support multiple machine architectures from one source tree, the object
files from each architecture go ind® TOLEMY/obj.$PTARCH directories. Currently, there
are two ways to build th8PTOLEMY/obj.$PTARCH directory tree MAKEARCHINd mkP-
tolemyTree . To build object files for your new domain $#TOLEMY/obj.$PTARCH, you
will have to set up either or both of these ways. Typically, you firskgeEARCIHecause it
can operate on an existing Ptolemy tree, and once everything works, then you and other users
runmkPtolemyTree to setup parallel development trees on the new domain.

MAKEARCH

$PTOLEMY/MAKEARCIS a/bin/csh script that creates or updates the object tree in
an already existing Ptolemy tree. To add a domaMABEARCHedit the file and look for a
similar domain, and add appropriately. A little trial and error may be necessary, but the basic
idea is simpleMAKEARCHraverses directories and creates subdirectories as it sees fit. Note
that if MAKEARCI$ under version control, you may need tachmod a+x MAKEARCH when
you check it back out, or it won't be executable.

Continuing with our example:
3. EditMAKEARCINnd add your domain yyy to the list of experimental domains:
set EXPDOMAINS=(cg56 cgc vhdib vhdl mdsdf hof ipus yyy)

U. C. Berkeley Department of EECS

The Almagest 17-11

This will cause astars andkernel directory to be created I®PTOLEMY/
obj.$PTARCH/domains/lyyy =~ whenMAKEARCI run.

4. RunMAKEARCH
cd $PTOLEMY; csh -f MAKEARCH
If you get a message like:

cxh@watson 181% csh -f MAKEARCH

making directory /users/ptolemy/obj.sol2/domains/yyy
mkdir: Failed to make directory "yyy"; Permission denied
yyy: No such file or directory

The you may need to remove yahj.$PTARCH tree, asMAKEARCHas probably
traversed down a parallel tree creatednPtolemyTree and come up in a direc-
tory that you do not own.

mkPtolemyTree

$PTOLEMY/bin/mkPtolemyTree is atclsh script that creates a new parallel
Ptolemy tree. Note thatkPtolemyTree cannot be run in an already existing Ptolemy devel-
opment tree. The filBPTOLEMY/mk/stars.mk controls what directorieskPtolemyTree
creates, you need not actually edit thiePtolemyTree script. To creat@igiRpc binaries
with your new domain in it, you will need to mod#tars.mk , so adding support fankP-
tolemyTree s fairly trivial.

$PTOLEMY/mk/stars.mk

Follow the style for domain addition that you see in this file for the other domains. A
few things to keep in mind:

* You should list the new domain before any other domain library that the new domain
depends on.

* You should make sure to define the make variables to pull in other domain libraries as
necessary. You may nestbSDF=1definition for example.

e mkPtolemyTree uses theCUSTOM_DIRSnakefile variable to determine what direc-
tories to create, so be sure to add your directories here.

Continuing with our example of adding the yyy domain:
5. Edit$PTOLEMY/mk/stars.mk and add your entry:

YYYDIR = $(CROOT)/src/domains/cg56
ifdef YYY
CUSTOM_DIRS += $(YYYDIR)/kernel $(YYYDIR)/stars
Have to create this eventually
PALETTES += PTOLEMY/src/domains/yyy/icons/main.pal
STARS += $(LIBDIR)/yyystars.o
LIBS += -lyyystars -lyyy
LIBFILES += $(LIBDIR)/libyyystars.$(LIBSUFFIX) \
$(LIBDIR)/libyyy.$(LIBSUFFIX)
endif

Ptolemy Last updated: 10/10/97

17-12 Creating New Domains

$PTOLEMY/mk/ptbin.mk
In $PTOLEMY/mk/ptbin.mk , add your domain to theULL definition. This causes

your domain to be built in whenever a fpiyjiRpc binary is created.
Building a pigiRpc

6. To build apigiRpc with your domain, first build and install your domain’s kernel
and star libraries:

cd $PTOLEMY/obj.$PTARCH/domains/yyy
make depend
make install

If your domain depends on other domains, you will have to build in those directo-
ries as well. You may find it easier to ctb$PTOLEMY; make install , though

this could take 3 hours. An alternative would be to create a parallel directory tree
usingmkPtolemyTree

7. If you have not recompiled from scratch, or rokPtolemyTree , you may also
need to do:

cd $PTOLEMY/obj.$PTARCH/pigilib; make ptkRegisterCmds.o

8. Then build youmigiRpc . You can either build a fulpigiRpc with all of the
domains, or you can create aaerride.mk in $PTOLEMY/obj.$PTARCH/
pigiRpc which will pull in only the domains you want.

$PTOLEMY/obj.$PTARCH)/pigiRpc/override.mk could contain:

YYvy=1

DEFAULT_DOMAIN=YYY
USERFLAGS=
VERSION_DESC="YYY Domain Only"

To build your binary, do:
cd $PTOLEMY/obj.$PTARCH/pigiRpc; make
If you don’t have all the libraries built, you may get an error message:

make: *** No rule to make target "../../lib.sol2/libcg56dspstars.so’,
needed by “pigiRpc’. Stop.

The workaround is to do:
cd $PTOLEMY/obj.$PTARCH/pigiRpc; make PIGI=pigiRpc

9. See “Creating a pigiRpc that includes your own stars” on page 1-7 for details on
how to use your new pigiRpc binary.

10. To verify that your new domain has been installed, gigirt with the-console
option:

cd $PTOLEMY; pigi -rpc $SPTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc -console

U. C. Berkeley Department of EECS

The Almagest 17-13

and then type:
domains

into the console window prompt. Below is the sample output for the yyy example
domain:

pigi> domains
YYY
pigi> knownlist
Nop
pigi>

Ptolemy Last updated: 10/10/97

17-14 Creating New Domains

U. C. Berkeley Department of EECS

The Almagest

INDEX

Symbols
... 2-23
BPTARCH ..ot 1-2
BPTOLEMY ..ottt 1-3
0] o [=1 =110 AU 2:1912-5
Aalias file ... 1-2, 1-12
CCIlBS .ot 2-4.
CSHIC Il oo 1-2
NFIES oo 2-4.
NMIFIES . 2:4
oI 1T 2:1,7-1
0011 =1 (o] SRR 2:19
B 0100] (=10 1)Y AT 1-3.
A
A o 2:10
A_CONSTANT attribute...........ccoccveveerrrrrnnnn. 2:10
A_NONCONSTANT attribute.............. 2:10 2-21
A_NONSETTABLE attribute......................... 2:10
A_SETTABLE attribute........................ 2:10 2-21
AB_CIRC attribute...........cccoevvvveereriererenennes 13-13
AB_CONSEC attributecoceevevevennanns 13-13
accessMessage method
MessageParticle class.........cccoceeveeeennee. 4-18
ACG ClaSS....cviveieeieciecieie e et 3-17
acknowledge ptlang directive................... 2:6,2-8
ACYLOOP, SDF scheduler option.............. 13-21
Add (SDF BIOCK) .o 2-20
addCode (CGStar method) 14-2 14-7
addCompileOption (CGCTarget method).....14-2
addDeclaration (CGCStar method) 14-2
AddFiX (SDF bIOCK) ..o 42D
addGlobal (CGCStar method)...........c.c........ 14-2
addinclude (CGCStar method)..................... 14-2
addLinkOption (CGCTarget method) 14-2
aggressive reclamationc..cccoeverveennenn. 4-18
aliases
EXP cvereete ettt ettt are s 1-12
MK oo 1-12
ODJAIN v, 1-2
Pl 1-12
(01| FO OO 1-12
1001 [P RTTRTRT 1:12
L] (o | TP 1-2
SW ottt ettt 1-12
aliases for developersccoeevevveeveieeenenn. 1-12
allocateMemory, method.............cccovvevee.. 13-18
anytype portholes..........c.ocevveveeeceeveeeieenenn, 2:11
application exited error message.................. 1-21
Ptolemy

-1
AITayState ClassS.......cccovvveverieeirieseeieinee 2-23
ArrivingPrecision parameter 4-7
asComplex method
MESSaQe ClasS........ccevveiveiriereireieeieenns 4-18
asFloat method
MESSAJE ClaSS.....ccvvevvrireeireiieireeiee e 4-18
asint method
MESSAQE ClaSS......cccvvuvrereiiaieiieiieieanas 4-18
AsmPortHole, Classcccccceveeeeeeenenen, 13-12
attribute........cooeveeeeieeeeceee 2:9 2-10 2-21
A CIRC .. 13-13
A CONSEC....cccoiiiieieee, 13-13
A CONSTANT ..o 13-13
A _GLOBAL ..o, 13-12
A LOCAL oo 13-12
A MEMORYcoooiiiiiiiiieiiiieeeees 13-13
A NOINIT oo 13-13
A _NONCONSTANT ..ot 13-13
A NONSETTABLE ..., 13-13
A PRIVATE ... 13-12
A RAM......coooiiiiieieeeeee e 13-14
A SETTABLE..........ccoeeeeenn 13-1313-13
A SHARED.......coooiieieeeeee 13-12
A UMEM ..., 16-1
A XMEM ..o 15-116-1
A YMEM ..o, 15-1
P BMEMoooviiiiii e 16-1
P CIRC...oooiiii e, 13-14
P NOINIT ..o 13-14
P SHAREDccooiiieei e 13-14
P SYMMETRIC.........ccoviiiiiiere, 13-14
P UMEM, 16-1
P XMEM.....ooiieiieii e, 15-1
P OYMEM oo 15-1
attribute, A BMEMcocovvvveiiieceeeeeeeeee e 16-1
attribute, A UMEMc..oovevvvieecreirceeeene 16-1
attribute, A XMEMcooovveeiriieieeee e, 15-1
attribute, A_YMEMccooovviiiieieieieenn 15-1
ARIDULES ... 13-12
author ptlang directive............c.cccceeuee. 2-6,2-8
B
bad format parameters
FiX ClasS....ccccovvevveeeceeeeeece e A4
BarGraph Classcccceeveeveeeeeceeeeeeee 3-4.
baseAddr, method.............cceoveeveiverenennne. 13-:12
Baselmage Classcccovevvevveeveeeiceieeeenn 4-40
BDFPortHole class............ccccveveeueane.n. ! 9:1,14-6
before method...........cccccoveveeeneenneen. 12-512-7

begin method

Last updated: 10/17/97

DERepeatStar class...........ccoceevveveenenean. 12-9
begin ptlang directive..............cccccve... 2-6,2-13
Bhattacharyya, S. S.ccccccevevveieicieien 13:21
Bhave, S. ..o 14-1
BINArY POINtcveiiieciee e 4:4
Buck, J. T2-1,3-1,4-1 7-1,9-1, 13-1, 14-1, 15-

1
BUCK, J.T e 14-1
bufPos, Method.........ccocvevveeeeeeeeeeee e 13:12
bufSize, methodcccoeeeviveeeeeeeeeeeee, 13-12
C
Ct PrMEL .o 2-17
callTcl_$stariD.......cccccvvveeeeieeiiieeieeenea, 5-4,5-5
canGetFired method............... 12-9 12-9 12-10
ccinclude ptlang directive 2-6,2-15
CBIT ettt e e ee e 3-3.
Cfront C++ compiler.........cccccceveeeeieeeereenenes 1-2
CG, dOMAIN .. 13-1
CGCPCM .. 13-9
CGCPOrHOIE ClaSSceoveeeeeeeeeeeeeeeeeee, 14-6
CGCSHAr ClassScoovveeeeeee e, 14-1
CGCTarget Classccceeeeveeveeeereceeeeeeneae 14-2
CGDDF Schedulercooovivveeeeeeieeeeeenn 13-22
CGMultiTarget, class..........c.c......... 13-1813-19
CGPOrtHOIE Class........ccceceveeeeeeeeeeeeeeeeeen. 14-3
CGSharedBuUs, ClasScc.cooceeeeeeveeeeeneennn 13-19
CGSHar, ClAaSSveeeeeeeeeeeeee e 13-3
COTarget. et 14-2
Chang, W.-T...cccccoirieeeeeee e 17:1
Chen, M. J. coooviiiiiceieeeeeen 421,171
(o1 TG =
circAccessThisTime, method..................... 13:12
clearAttributes method...........cccooeveeveeeenennen. 2-26
ClOG et 3:3.
clone method

MesSage Class........ooeeeveverireeinnnn 4:16 4-18
Closing Application error message................ 1-21
code ptlang directivecccocvveveenen. 2:6 2-15
code stream

AOCMNAS ...t 15-2

ShellCMAS. ..o 15-2

SIMUIAtOrCMOS ... 15-2
COAE SIrEAMS ... 13-16
COdEDIOCK ... 13-3
codeblock ptlang directivecccoeveuranene 2-6
codeGenlInit, Methodc.ccoveeveiirenenne 13-18
CodeStream, Classcccoecveeereceeseeene. 13-16
COllECt CGC e, 13-15
CONECE STAN et 13-24
COllECt, STAN c.veeeeee e, 13-15
COlOTS ..o 5-12
COMMPAIN ..o, 13-27

U. C. Berkeley

communication networks....................: 4-14 12-1
compileCode, Method...........cceervrurenennnes 13-18
compile-time schedulingc..ccovevvennnee. 2:13
Complex class..................... 2:212-22 4-24-3
= OPEIALON ...evveveeeieeieeeeete e 4-2
011051 (6] SRS 4-3
o] o 1= - (o SOOI 4:2
*Z OPEIALON ..ttt 4-2
R o) o= =10 N 4-2
+= OPEIatOrecveeveeeeeveeveeeeeeveeeeeeeenen . D2
/ OPEIALON ... 4-3.
[0] o111 (o] SR & Y22
= OPEIALON ... D2,
= OPEIALON .o 4-2
o]0 =1 1 (o) (O SRRRY. T3 1
abs() fFUNCHON.......ccovieiecece e 4:3
arg() function........ccccoeveeeeeeceeeeeeee 4-3
DASIC OPEIAtOrS.....ccvviveecveiieeteecte e 4:2.
conj() functionccceeveevveveereeseeeenn 423
CONSEIUCIONS ..ottt 4-2.
COS() TUNCHON......eecviiiectiee e 4-3
exp() fFuNCtionccovevieiiiiccce 4-3
imag() function...........cccceeeeeiveieeennn 4:2 4-3
log() fUNCLION....cvevveeciiciececcece e 423
norm() functioncccceeeveevvenceneeeenn 423
POW() FUNCiONcvevveveieieeeeeeeeen . 423
real() fUNCLONccocveveeeeie e 4-2, 4-3
SiN() fUNCHON ..o 4-3
sqrt() funNctionccceeveveiececececeee 4-3
Complex data typecceeeveeeeereeieneane. 4-1-4-3
complex data type........cceeeeeeeieieecrecneene, 2:11
COMPIEX SLALEcvveveerieieieeeie e 2-10
complex type
POINOIES ... 2-11
SEAES ..vecveecte ettt 2:9.
COMPLEX_MATRIX_ENVcccoooviiiiiiiiinn. 4-30
complex_matrix_env type
POMNOIES ...ttt 2-11
complexarray type
SEALES . 2:9.
ComplexArrayState classc..ccceeveeeenen. 2:21
ComplexMatrix, see Matrix class
ComplexParticle Classc..cccceevveeveeveenennns 2:21
ComplexState class...........ccccceeveneene. 2-21 2-22
computer architecture modeling................... 12-1
conscalls ptlang directive 2:6,2-13
constructor ptlang directive.................... 2:6,2-12
CONSEIUCTONS.veveeieeeeeceeeeceeeete et 2-13

copy constructor

Department of EECS

The Almagest

MesSage Class.........ccovveeveeeeeeereeneane 4-16
copyright ptlang directive........................ 2:6,2-8
COIE AUMP v 1-21
COre dUMPEUooveieieieciece e 1-21
COrE filS e, 1-21
COUL .t 2-28 3-3
creating a NeW Star...........c.ocoovveveeeeeveeennnne 2-1.
CUSTOM DIRS ... 1-10
D
data tyPES ..o, 2:11

user-defined.........ccceeveveiecececec, 4-14
dataNew flag.........ccoeeevevevreieeeenee 12-512-12
dataNew flag iNn DEc.ccocovveeveeeecreeeeeae, 12-4
dataType method

ENVElope Class........cccovevveeueeieeieeieeeeien 4:17
DC Scheduler..........ccoeeveeereeeeiceeeeeene 13-22
DCTIMAQGE ClaSS ...ccvvevriveerrieiesreeie e 4-41
DDF SEAI ...ttt 8-1.
DDFSHar Class.......ccccoevveeveiieeiecieeeeeereeie e 8:2.
DE

WItING StarS ...veivveeieiecececececeee e 12-1
DE dOMaiN.....c.ccveueeeeeveeeeeeeeeeee e 12-1
debuggingccceveueieeeeeeeeeeeeeea 1-21 1-23
default parameter values..............c.cc.ccoeue... 2:10
default value for States..........c.ccovveerieeiecevernnen 2:9.
delay

DE domaiN......ccoovevveviecieeecieceee e 12-1

delay stars in DE domain 12-1

fOr Matrix arcsccocvevveeeeeeeeeeeeeeenen 4-31

in dataflow........ccccceeeviiiiiiiceceeee 4-31

INDE oot 12-8
Delay (DE BIOCK)......ccvcviiieiriie e 12-1
DEPortHole Class.........ccccovevvevveeeeeieiieciene 12-5
DERepeatStar Classcccoeveeveeeiveerveineenns 12-9
derived ptlang directivec.coveevveveeeveennnne. 2-6
derivedfrom ptlang directive 2-6,2-7
desc ptlang direCtiveccoeeeeeeeeieeeceeieeee. 2:-6.
0 [S3T £19] (o] 2:10
descriptor ptlang directive 2:6,2-7
DESHar Class.......ccccceevevveiieiieeieerece e, 12-9
destructor ptlang directive 2:6,2-13
determinisSmccccceeveeeie i, 12-12
discrete event (DE) domainccocvvennene. 12-1
divide by zero

FiX ClasS.....ccccevveeveeeeeeeceee e A4
DL SChECUIET ..o 13-22
domain
domain ptlang directive...............c..cocuo.... 2-5,2-6
DownCounter (DDF Star)ccccovveeieereenns 8-2
dummy message4=17,4-18 4-31

Ptolemy

1-3
duplicate directory tree............cocovevveueeneane.n. 1-12
dynamic iNKiNG........ccocvveeieeee i 2:1 3-1
PEIMANENT.......cuiivierierieieieieieee e 2-3.
dynamic porthole..........cccceeeeereieeeieieeeenns 8:1
DYNDFSEAr ClasS......cccoveveierieieeieiesiesesienneas 8-2.
E
edit-params command......................... 2:21 2-26
EAWards, S.......ccccoveveieeeieeeeeee e 11-1
EIMACS ...c.veiereeteeteete e eteete e ete e ere e e e eneens 1-26
empty method
ENVelope ClassS.......occcevveeieecveieeereeennnes 4-17
Envelope class.......cccoeveeveveeeennnn 414 4-17
environment variables
PT _DEBUGcoviiiiiiriii i, 1-26
PTARCH ..., 1-2
PTOLEMY ..o 1-2
EITOr ClASS...cveeveeeeeeteeeee et 3:-1.
EVANS, B. oo, 4-1,10-1
L2V = 0| R 12:1
EVENE GENETALONc.veveeeieeeiecie e eiaena 12-9
exectime ptlang directivecccccccvevenenn. 2:6
execTime, methodc.ccceeeeieeieceecee, 13-2
EXP AlIAS....eveiveeeieie et 1-12
expandPathName..............cccceevveveierierienenne, 3:3..
expandPathName functionc..c.cocve.... 3-8.
explanation ptlang directive. 2-6,2-9
exponentially distributed random number.....3217
external programs
INVOKING . 3:8
F
FFTCX (SDF BIOCK) ...vvevvevieeveeie et =1
file INPUL t0 SEAtEScvveveeeecveeeceececeeee e 2-23
file, target parameteroceeeveeeeveevennnnn 13-21
first-in, first-out (FIFO) quUeUEc.ceveeee.... 3:-11
FiX ClaSS.....ccccvvveeiieeieeeeieeeeen 4-3 274-14
= OPEIALONceveeeeeeeeete e enas 4-12
* OPEIALON ...t 4:12
R o]0 1<Y =110 U 4-12
0] 0151 151 10] RN 4-12
+= OPEIaALOr.....cocveeeeeeeeeeeveeveeeveeienenen 4212
JA o) 11 1= 1 (0| (PSR 4-12
= OPErator.......ccccoveveceececeeeeeeeeeenn 4212
= OPErAtOrcvveveveeeeveeieieveereveereenennenn 4212
o o 1= =10 4-12
clear_errors()...ccccceeveveeveeveeeeeeeenenen 4212
COMPATE() vovveveerresieeiesieeste s ese e eree s 4-11
COMPIEMENL() vevveiveeeir e 4:13
CONSIUCLOrS ... 229,
CONVErSion OPEratorsc.ccecveveevenenn. 4-13

Last updated: 10/17/97

1072 | DT 4:12
() v 4-10
INVAIAQ) e 4-11
IS_ZETO() vveevveireereire e sie et 4-:11
LY T 4:10
MAX() cveenreerreere e e et ete e ereeere e eas 4:11
maximum lengthcccoceevevvevrevenennnn 424
1111010 T 4-11
OVEIFIOW() 1.vvveeireieieee e 4:-10
ovf_occurred......cccoovevviieieece e 4-11
PIECISION() c.vveeveieiecreeieseeeteeee e eee s 4-10
roundMode() ..veeeveereeeieeie et 4-11
set_overflow.......cccccveveeeeiecie e 4-11
set_rounding......ccccevveeeeeeievveeeesenennn 4211
SEITOZEIO() veevveeveereereeeteeeeete e 4:11
SIGNBIt() c.veveeveereceeeeeeeeeeeeeeeeeeen 4211
UNINILIANIZE. ... 4:-6
VAIUB() et 4:11
fix type
POMNOIES......eveeveeceeeeecee e, 2:11
SEALES...cvieeieieeceeeee e 2-9.
FIX_MATRIX_ENV oo 4-30
fix_matrix_env type
POINOIES.......cvevecieceeeeceeeeeee e 2:12
FIX_MAX_LENGTH ... 4-4
Fixed-point
INPUtS and OULPULSeevvevverieeieciie e 4-5
fIXEA-POINT....cviieieice e 4-3
array Parameters........oocvvveeveeeseeeerieesnns 4-4.
PArAMELEISuvecveecieeriecte et 4-4.
PIECISIONecvieeieeieieeeeee e 2:10
SEtting PreCiSioNvovevvveeeeeeeceecie e 2:-10
SEALES....vecviecte ettt 4:-4.
Fixed-point data typeccccceeveeveevennen... 2214
FixMatrix, see Matrix class
FixParticle Classcccccoeeeeeeeeeeeeeereene, 2-:21
float type
POINOIES.......ovivecvicieeecveceeee e 2:11
SEALES ... 2-9.
FLOAT_MATRIX_ENV....coovviiiivieiiiciieenenn, 4-30
float_matrix_env type
POINOIES.......cveevecvecieeeceeeeee e 2:11
floatarray type
LY Fz (=T 2-9.
FloatArrayState classccccueen..... 2-21 2-23
FloatMatrix, see Matrix class
FloatParticle Classc.ccoveeeeeeeeeeeerennee. 2:21
FloatState Class........c.coeeveeeeeeeereeeeereeeeae 2-21
Fork

U. C. Berkeley

code generationcccceeveeeeeeennnne 13:14
FOrk (SDF BIOCK).....c.coveierieiiecieiie e 2:20
frameCode, methodc.ccevvevieicieiennns 13-18
fread of long failedccccccevvvviiriecenn, 1-21
Free Software Foundationccccceeveueenee. 1-1.
functional star in DE.........ccccocevvvveeeieieennn, 12-1
G
o R TSRO 2:22
g+ COMPIIET .o, 1-1
Gain (SDF bIOCK)ccvveveeieeieeieceeeeveeeeenna, 2:27
GAD o 1-22 1-26
generateCode, methodc.ccccuveueeneene. 13-:18
generic pointer techniquec.cuc...... 3:-11
getmethodc.ccoevvevenenne. 12-512-612-12
getMessage method

MessageParticle class.........c..coeevvevne.. 4-18
getSimulEvent method 12-512-11
globalDecls (CGCTarget method)................ 14:2
GNU O0IS .. 1-22
O MEthOd ... 2-3.
go ptlang directiveccovevevereenene. 2:62-14
grabinputs_$stariD..........cccccevveierinennnne a:4,5-5
Graylmage Classccvvvevververeeie e 4-41
H
Ha, S........... 2-1,3-1,7-1,8-1,12-1 13-1,14-1
hash table...........cccveeiiiiiicceccee e, 3-8..
hash tablesccccovvieiiiiieeeceee s 3:13
HashENtry Classccccoeveveieieiesecie e 3-13
hashing funNCtionccccvevveiviieieicieeens 3-13
hashstring functionc.cccocvevvevievierieienene 3-8.
HashTable class........cccocveveveeveeeenn. 3-13 3-15
HashTablelter Classccccevveveieiiennene. 3:13
Haskell, P....oooeeeeeeeeeeeeeeee e 4-1 4-40
header ptlang directivec..c.c........ 2-6,2-15
heterogeneous message interface: 4-14.
HIER Scheduler...........cocvevieiieieieeeeenas 13-22
hinclude ptlang directive 2-6,2-15
HiStogram Classccccevevereneieseee e 3:5.
hPPA.CIrONT.......oieieecee e 1-2.
htmldoc ptlang directivecccccoceeeeeenenne. 2-6
HU Schedulercccovevieieeieicecene 13-22
Hylands, C......cccoeveiivieeeiiecieene 1-1,11-117-1
I
/O ettt 3:2 3-3
ifStream Classccoveevveeverieeseeeee, 3-2,3-3
iIMAge ProCESSINGccveveeiereeieeieereereereeaeenas 4-40
include (CGCTarget)cccoceeeeeeeeeeuecreeneane. 14-1
iNClude filesScovevvveieieieiceceece e 3-1
INDEPOI CIASSvcveveveeveieeecieete e 12-5
INFSENG ClaSSccveeveeeeeieeieeeceeeeeeeeeeea 3-9.
initCode (CGCStar method)................coc....... 14-7
initCode, Methodcccceeeeiverieeceeeee, 13-2

Department of EECS

The Almagest

initial value for states.............cccccoeeeeveereennne. 2-25
initialized FiX ODJECESccvvvvereiirireeceirie i 4-6
initializing states from filesc..ccovvevuane. 2-23
inline method ptlang directive........................ 2:11
inline virtual method ptlang directive............. 2:11
inmulti ptang directive.............cccoeeveveiennnnn. 2:19
inmulti ptlang directive................. 2-6,2-11 2-11
inout ptlang directive................... 2-6,2-11 2-11
inoutmulti ptlang directive 2-6,2-11 2-11
INPUL .. 3:2 3-3
input ptlang directive......... 2:6,2-11 2-11 2-17
INSDFPOIt Class.........cccccveveeeereeneaneen, 2:17,2-19
iNStallCOIOrS.......cveveieeececeeeee e 4-41
int type

POINOIES ...t 2-11

STALES ...vveveeeeie ettt 2:9.
INT_MATRIX_ENV ..coiiiiiiiinieeeeee 4-30
int_matrix_env type

POINOIES ..o 2-11
intarray type

SEAES ..cvveveecve et eete ettt 2:9.
INtArrayState Class.........ccoceveverirereiiesiennens 2:21
IntMatrix, see Matrix class
INtParticle Class..........cocecveeeeeeeiecreececiene 2:21
INEStALE ClASS.....cveeveeieeeeecteeieetee e, 2:21
isA method

MESSAQE ClASSvevvveereeirereece e, 4-16
ISA_FUNC MACIO...cocveeveeveeereeeeereesve e saeeand 4-16
ISA_INLINE MACIO ...veevveiveeceeceie e 4:16
ItErator ClaSSesccceeveveevereereeieeeeeeienenes 3-10
EEIALOrS ..., 3:10 3-13
K
Kalavade, A.c..oeeeeeeeeeeeeeeeeeeee e 4-1.
key method

HashENtry class..........ccccoveveveeeeueenenenn. 3:13
KRazeni, A........coooeieieeeeeceeeee e 4-1
L
label

codeblockSymbol...........cccceveieienienene. 13-10
LANE, Teoniiiiieie e 4:-1.
last-in, first-out (LIFO) queue........................ 3-11
LastOfN (DDF BIOCK).........cccvevveiierriiecreiinannd 8:-1
Lee, E. A1-1 2-1,3-14-1,7-1,12-1 13-1 14-

1

libraries of Starscccccoceeveeeieeececccecie s 2-1.
Lim, Y. Koo 14-1
LIPPMAN, S. .o 2:17
LIStIter ClasS......cccveeeveeeeeeieeeeeeeeieeaa 3:-11
loadCode, method...........cccceeveeiiicieenene, 13-18
load-star commandc.cccccceeeeveeeereenennnn. 2:3.
load-star-perm command.............c.cccceeveenee.s 2:3.
location ptlang directive 2-6,2-8

Ptolemy

I-5
look-inside command..............ccccccceeeeveineannnn. 2:1
loop schedulers.........ccoociiieenicceen 13:21
loopingLevel, target parameter 13-21
M
macro
$addr(name,offset)ccovevvereninnen. 13-11
Sref (assembly).......cccccvvveviieiieieenen, 13:12
[0ecvieeeeeee e 13-10
=] (RS RRR 13-8
sharedSymbol..........ccceevvevveieieceeeeen, 13:9
SEArNAMEovevicieciececteceee e 13-8
MACrO, $F....oiviiiiiiieeecee e, 13:12
macro, codeblockSymbol..........cccccveeveenene. 13:10
MACroS, CG StarSccccevveeveereiieerecreere e 13-8
mainDecls (CGCTarget member) 14:-1
mainLoopCode, method...........c..coveeveenennee. 13-18
MAKE ... 1-4.2-1
MaKe.temMPIatec.ccovevvrieiereecee e 1-7.
MAKEFIES ...oeveeceecvie e 1-4.
make-star commandc.ccceeeeveeeereineennnn. 2:-1.
MaLriX ClaSScoveeveiriirieieerieieieiein 4-21-4-33
= OPEIALON ...vevveiesieeieeie et 4-28
- operator, unary negation operator....... 4-27
I operator, inverse operator 427
1= OPEIALONeviveeieeieeie et 4-25
R0 011151 (6| AR 4-28
*= OPEIALON ...vceveeveveeieeie e 4-26
+ OPEIALON ...t 4-28
B0 0 =11 1 o) (Y2 2, o
1= OPErator.......ccccoveveeececeeeeeeeeneanenn. 4226
= OPEIALOrcvveveveierecieiereeiereeienannnn A2 20
= operator, assignment operator............ 4:25
== OPEratOr.....cceveeveerecreceerecreeeeeenennn 4225
N OPEIALON ...vvvveveveeveieveeieseveeiereeennenn A2 20
~ operator, transpose operator...............4:2.7
clone() functionccccceeeeeeeceeeenenea, 4-29
COMPIEXMALTIX ... 4:22
conjugate() function for ComplexMatrix.4-=27
CONSIIUCLOrS ...t 4-23
CONVErSioN OPEratorsc..ceeveveeveneen. 4-25
dataType() function.........cccoeeeevveevrrreennnn 4-29
entry() functionccccoceverennn 4-22 4-38
FIXMAaLriX ooeveeeeeeeeeee et 4-22
FixMatrix, special constructors.....4=24 4-25
FloatMatriX........cccoeeveeeeeeeereereereereeneenn. 4222
hermitian() function for ComplexMatrix .4-27
including Matrix.h into a Star 4-30
indentity() functionccccceeveeeneennne. 4-27

Last updated: 10/17/97

INEMLIX ©.veeee e 4-22
inverse() function.........ccccccevevevveneennenn 4227
ISA() FUNCHON ..o, 4-29
[T o= 1o) g o 4-33
MatrixEnvParticle..........ccoeeeeveueennnnnn. 4-22
multiply() function.............ccceeeveieeneennenn. 4-29
outputting to a PortHole.........................4=31
print() functioncccooevveeieeeeienn, 4-29
star input and OUPUL...........ccceevvrveerrenenn. 4-30
transpose() FuUNCLionccceeeeveveeveennead 4:27
writing Stars that use the Matrix class...4-29
Matrix.h include file...........cccoeevevvieereecienene, 4-30
MeSSage Class..........coveveeeeeeaeananns 4-14 4-40
message data typPe.........cceeveveeeeeeeseenanens 2:11
message programming example................. 4-18
message type
POINOIES.......cvevecieceeeeceeeeeee e 2:11
MessageParticle class.............. 2:21,4-154-18
method ptlang directive............... 2-6,2-11 2-15
MKl AlIAScoeereieieieceeeeceeeee e 1-12
MKPOIEMYTIEE ... 1-9
MultiinSDFPOTt Class..........cccoveeeueeeereerennen, 2-19
MultiOUtSDFPOrt Classccccveuvereereennnne. 2:19
multiple portholescccccceeeeeeeecceene, 2:19
multiple-processor schedulers.................... 13-21
MultiPortHole class...........cccccvveveveveeennennn. 2:19
MUItiprocessor target.............covcveeeuveneenenn. 13-18
MultiTarget, Class........ccccovevvveeevreieieenan, 13-18
Murthy, P. Koo 13-1,13-21
MVIMmage Classcccceeeveveveeveeveiee s 4241
myData method
Envelope Class.......ccccevevveeeeeieeeceenn 4-17
N
name ptlang directive...........c..ccoveveueen. 2:5 2-6
NegativeExpntl class...........ccccoveveeeeereennne. 3:=17
NON-determiniSMcccceeveeeeeceeeereneas 12-12
non-deterministic l00pPccccceeveeeeeereenane. 12-8
num ptlang directive.............ccoeeveeeeeeerennen 8-2
numberPorts methodccccccveeeveenene. 2:21
numSimulEvents methodccocueane.... 12:5
numTokens ptlang directive.............c..c.c......... 1:2
numtokens ptlang directive.................. 2:11 2-12
@)
0bj.$PTARCH directories...........cc.ccccvveeveennenn. 14
ODJAIr AlIASccvveieeeeicee e 1:-2
OCHOOIS ... 1-5
ofstream Class.........ccccceeeeeieeeeeeeeenea, 3-2.3-3
operator, referencing an entry 4-23 4-38
OULDEPOI ClaSScccvveeeeererieieieieiee 12-5
outmulti ptlang directive2-6, 2-11, 2-11, 2-19
OULPUL .t 3:2 3-3

U. C. Berkeley

output ptlang directive....... 2:6,2-11 2-11 2-19
OUtSDFPOIt Classcccevveeeveienenenes 2:17,2-19
overflow

FiX ClaSSveecveeee et 4-4.
override.MK.......cccceeeeeeeieeeeieenen 1-7,1-9 1-11
P
parallel directory tree

MKPLOIEMYTIEE ..oveeeeceeeee e 1-9
parallel schedulersccovevvevievieieiennn, 13-21
parallel software development tree

CSh AliaSESueveveieieeceee e 1-12
[OL= 11111 =) S 2-9..
parameters

COMPIEX .t 2:10
Parks, T.M....1-1,10-1,12-1,13-1, 14-1, 17-1
Particle Class........cccccoevervevennene. 2:17,2-21,4-15
PArtiCle tyPeS.....cc.cvveeeeeeeeeeeeee e, 2:21
pathSearch functioncccccceeveeceeeennnnn 3:8.
phase mode iN DE..........ccccccoeeeeeeeeneene. 12-12
PHASE, de....coovveiiicciciie e, 12:-12
phase-based firing mode in DE 12-12
o 0| DO OO 3-4.
pigiExample directorycccvevveveveeennenenn. 1-7
PIGIRPC v 1-5 1-21
PIgIRPC, CUSLOM VErSioNcccveeveeveeieenenea. 1-6.
PIgIRPC.AEDUG......veeveieicieciececececeeeee, 1-23
Pino, J. L.ccoovereienane, 1-1,6-1,13-1 14-1,15-1
PIOttNG data.......c.cceeveeeeeeiceieieeeeeeeeeeeeeee, 3:3.
POINLET tYPE...veeeeeeieieieeeeeee e 3-11
Poisson (DE bIocK).........ccccoveveueeneenen. 3:17,12-9
POISSON PrOCESS.......ccvveveeeeereereeneeneeeeeeiennns 12:9
POIYMOIPRISM......oveviiviiiieieceeeeeeeeee 2-28
POItHOIE ClasS.......cccceveverieriiieieeciee e 2-17
porthole SDF parameters............ccccceeeeeeeenn izl
porthole, dynamicC...........c.ccceeeeeeeceeeeneenee. 8-1
ports, hiding from the user............c.ccccccuee.e. 2-26
(o210 11 1T WSRO 2:21 14-4
precision parametercccoeevvevevenenenn. A4
Precision Stateccccceeveeveeeeeeieeeee e 2-10
precision type

STALES ..t 2:9
PIEPIOCESSONcvveeieieieieetesieereeteetesresresae e 2:1..
Print Method..........ccoeeveiieieececeeeeeeee 2:21

Message Class.........ccccoveveereeneanen. 4-16 4-31
Printer (SDF BIOCK)ccvveeicviecieceie e 2-28
private ptlang directivec..cveueee.. 2:6,2-14
processMacro, method............ccccveveeiurennene 13:12
profile comMmand..........ccoeveevviverieeceieeere e, 2-1
progNotFound functioncccceeeeeeeeriveene. 3-8
protected ptlang directive 2:6,2-14
0111 Y T 1-12
PT_DEBUG environment variable................ 1-26

Department of EECS

The Almagest

pt_ifstream Classc.cccccceeveeeeceeenennn, 3-2.3-3
pt_ofstream Classccccveeeeereenenenns 3:2.3-3
PTARCH environment variable 1-2
POINMK .o 1-6.
0100 IR 1-1 1-5 2-24 3-4
ptkControlPanel.............ccoveveveverennennn, 5:2 5-6
P AlAS......oeeviieieiecieeee e 112
PHANG ..o 2:3.
PTOLEMY environment variable 1-2
PLOIEMY USENcvvieieieieieeeeeeeece e 1-2.
public ptlang directive................c.cuo....... 2-6,2-14
pure method ptlang directive......................... 2:11
Pure Sofware INC.cccceeveeeieeeieceeeeeenea 1-19
pure virtual method ptlang directive.............. 2:11
PUIMBCOV ...t 1-19
pure-delay star in DE...........cccccveevevveienennene. 12-2
PUMTY oo 1-19
put methodcccoveveieieeeieeee, 12-512-6
pXgraph programc.ccceeeeeeveeenennn. 3-3 3-6
Q
QUANLITY ... 1-19
guantization

FiX ClasS.....ccccovveeveeeeeeeceee e A4
QUEUE ClASS....ecviieieieieie et 3-11
QUEUEING ..o 12-1
queueing NEtWOrkS.ccovevevveceeieeeienene. 12:1
R
Ramp (SDF bIOCK)........ccccoeveerieiecececveeiae. 2-26
random NUMDETScccccevveeeeeieeeeveeeeene, 3:=17
FECEIVE SIAl......ccveveiiciecieeeeece e, 13-23
receiveData method...............coccveeeecreenenne.n, 8:2.
ReCt (SDF BIOCK)ooveeiiciiiecce e 2-4.
reference count 4:14 4-17,4-30
refireAtTime methodccccceevae. 12-9 12-9
IMIAlAS ..o 1-12
rounding

FiX ClasS.....ccocvveveeeeeeeceee e e e e A24h,
RPC EITON ..ccviieiecteeeeeeeee e 1-21
runCode, Mmethodccoceveveeeeeee e, 13-18
S
saturation

FiX ClasS.....ccccvvveveveiicececeeeeeee e A2
savestring function............ccocceeeeveveeeceeee. 3-8.
LYol ot TR 1-18
schedulers

STALIC .ovveeeereieiceeeece e 7L
schedulers, CG domain..............cccocveevennen. 13-20
SDF

dOmMaiNc.cooiiii i 1=1

porthole parameters..........c.cccceverererennn. 7-1.

WItiNg Starscccoeevevevevveeveeneenn 21, 12-1

Ptolemy

-7

SDF (synchronous dataflow)............ccccceeevene... 7-1
SDFFIX ClaSSceeveeeeee e, 4-9.
seed of a random NUMDBErccccovveeeennn. 3-17
segmentation faultccccevvevvieeeeieeeneen, 1-21
self-scheduling Star............cccoevveveeeiieinennns 12-8
SN STAT ..ot 13-23
Send/Receive Stars..........cccoeeveeeeeeeeeeeeeennnn 13-23
send/receive Stars........cocooeveeeeeeeeeeeeeseee, 13-23
sendData methodcccveeveveeeeennnnn. 8-2 12-5
sequencing directives in DE......................... 12-6
SequentialLiSt..........c.cveeeeeeeeeeeeeeeeeeeena 3:=15
SequentialList Classccccceeeerieeeereeneanes 3:-11
Server (DE BIOCK).......c.ccovvveiiiieieeee e, 12-1
server stars iN DEcoooveveeeeeeeeeeeee e 12-3
setAttibututes method............ccoeeevevveeeeeenn. 2-26
setAttributes methodcccoevvveveieveneen. 2-26
setBDFParams (BDFPortHole method)........ 14-6
setBDFParams method

BDFPOrtHole ClasS........cocooveveeeeeeeeeeenn 9-1
setlnitValue methodcocoeveveeevceneeeene 2-26
setOutputs_$stariD.........cceeevveeveeernennee. 5-4,5-5
setSDFParams method 2-12 2-197-1
setstate commandccceeevevieeeeiieeeeeiieann 2-21
Setup MEethodcoovvevieieeiece e, 7-1.
setup ptlang directivecccceevevenene 2:6,2-13
shared data StruCturesccevevveeeevnnnne 3-14
SIGN DIt .o 4-4
signal generators in DEcccccoceveiieeiennnns 12-8
simple mode iN DE.........ccccevvevievierieiieienen 12-11
SIMPLE, d€..coveiiieeeeeeeee e 12-11
simultaneous events (DE domain)................ 12-6
SOI2.CIIONE e 1-2
o0 [(e= o7 Lo [1-1.
SOUrCe COAE CONLIOL........ccveevvieireeiieecieeieinane 1-18
source stars iNDE.......ooveeveeeeveeeeee e 12-8
Spread CGC...ovvieieieeeceeese e 13:-15
SPread Star.........cooveveveieieieieieeeeeeen, 13-24
Spread, Star.......c.coeeeeeeveeeeeeeiecee e 13-15
spread/collect Starsccocvveevereieinenens 13-24
SICAIN AlAS . 1-2.
SHFAM, S.oieiie et 15-1
SEACK .. 1-22
SEACK ClASS .. 3-11
star, defining a new star............ococcvvviveeennnennn. 2-1.
SEAIS.MK ..o 1-6 1-10
SEALE ..ttt 2-9..
state ptlang directive............ 2-6,2-9 2-11, 2-21
states

hiding from the USer........cccoccvevvevvivvennnn 2-26
static BUFErNG.......covveevveeeeeceece e 13:16
Static MEMDErS.......cocoveieeeeeeee e, 3-15
Static MethodS.........ccoeevvieeeeee e 3-1.

static scheduling

Last updated: 10/17/97

SDF .ot 7-1
statistics, hiStogram............ccccevveeeeeeereeceennea, 3-5.
Y10 (=Y SRS 3:-3.
SN oot 3:3.
SEAOUL ...ttt 3-3.
SEMNG SLALES....cveveieeiiie e 2:9.
Stringarray Statescoceevveeereieeeeeeeeneens 2:9.
StringArrayState Class..........ccocovververierieriennnn 2:21
SHNGLISt ClaSSc.cvveivieieiieiece e 3:9
StriNgLIStIter Classccccvveveieiiieieeieeias 3:10
SENGS oot 3-9.
StringState Classcccvveveeeieieseeeeiee 2:21
SUD-QAlAXY ..veveiveieeeieeieeie e 13-23
substChar, method...........cocoveveveeveneee. 13-12
SUD-UNIVEISEoevvvieieeiieieeieeeeeee s 13-23
SW AlIAS ...ccvveceecieceeete e 1-12
Switch (CGC BIOCK)cveveviicieeiececeeieeiei, 14-3
Switch (CGC bIOCK)cc.evveviecieiieiiicecieeiei, 14-6
SYmMbOlic INKSocvvviiiiiiicecceeceeee 1-12
synchronous dataflowc..ccoevevvevvevveren izl
T
target, code generationcccocuene.e. 13:-16
target, multiprocessor..........cccoveveveeennnen. 13-18
17 10 1] TSROSO 1-1.
TCUTK e 1-1
TclScript (DE bIOCK)coveveieeieciecieceeieeins 5:12
TCISCHPEL StArcveiveciicveceeeeeeeceeeeee e 5:1
TcIStarlfc Class........ooevveeeeeerieeceeeene 5:12
tempFileName function..............c.ccccoeeveueenane. 3-8
TextTable Classccccovveveevieeceeeeeas 3:13
TextTablelter Class.........covvevveecereeesienee, 3-13
tiIME STAMP ... 12-1
TK ettt 3-4
tKIMAIN.C ..o 14-7
tkSetup CGCTcITKTargetccovevevenvennee. 14-7
TKSHOWVAIUES ..., 9:2
triggers methodccocveveeeecicieeeee 12-5
TOff e 2-4
truncation

FiX ClaSS .vvveveeieieisieieeeseee e 4:-4
tW0’S COMPIEMENToeviiiiiieiecee e 4:4
TYChO TArget...c.veveieiecieciece e 14-8
tyINdir SCHPL ...oovveveieiceee e 1-11
tyPE CONVEISION ..o.vvviiiiieveereeeeee e 2:21

Message Class.........ccoceeveeeeeereereennnn. . 4216
type, C50 State.....vvvveeeiceeecre et cee e 16:-1
type, CG56/CGI6 Stateccovvevrrveerrernnnnn 15:1
TYPE_CHECK MaCroc..coveevveveeiveevriveene 4-17
typeCheck method

ENvelope Class.......cccovevveieieeie i, 4-17
typeError method

ENVelope Class.......cccvvvvevveveeieeieseennn, 4-17

U. C. Berkeley

11/ 0 L= =TSRSS 2-11
BYSN oo 1:-5
U
underflow

FiX ClasS......coeeeeeceece e 4-4
UNIfOrm Class.......ccevvvverveeieieesee e 3-18
uniformly distributed random number........... 3-18
uninitialized Fix objeCt..........cccccevevvecreenennnn.. 426
user-defined Messages..........occcvevveveeveeneaneas 4-15
\%
value method

HashENtry Class........cccceveveieeveieeneenns 3-13
VECIOr MESSAQE....cuvevereeieierierieriesieseenneennn. 4219
VEIM .ottt ettt ettt ettt et 1-1.
version ptlang directivec.c.ce..... 2-6,2-7
VIdEO ProcesSiNgccvevveveeeeieieieieieienen, 4-40
virtual method ptlang directive...................... 2:11
W
waitFor method

DDFSHar ClassS......ccoevevereeesiereeesiereeenenns 8-2
White, K.ooeviriiiiiciceeee 13-1,14-1 15-1
Williamson, M........cccoovieeeeeeeecee e 17:1
wrapup (Star method)ccccceevereieiiennnn. 14-2
Wrapup methodccceeeeieieiecececece 3:15
wrapup ptlang directive 2:6,2-14
writableCopy method

ENvelope Class.........ccovoveeeeeeeieiennn: 4:17
writeCode, methodcccoevveieniieenene 13-18
X
X WINAOW SYSEEMooovevieeceeereceeee et eee e 3:3
XGraph Classccceveveeeeieeeieee e 3:-3.
XHistogram Class.........coeevveeveeeeiveere s, 3:5.
Y
YACC ovvevieeteie e eiete ettt e ettt ereene s 2-4

Department of EECS

	Chapter 1. Extending Ptolemy — Introduction
	1.1 Introduction
	1.2 File Organization
	1.2.1 Ptolemy environment variables
	1.2.2 Directory Structure

	1.3 Creating Custom Versions of pigiRpc
	1.3.1 Creating a pigiRpc that includes your own st...
	1.3.2 Creating a pigiRpc with more extensive custo...

	1.4 Using mkPtolemyTree to create a custom Ptolemy...
	1.4.1 mkPtolemyTree example
	1.4.2 How mkPtolemyTree works
	1.4.3 Combining mkPtolemyTree and pigiExample
	1.4.4 Known Bugs in mkPtolemyTree

	1.5 Using csh aliases to create a Parallel Softwar...
	1.5.1 Aliases for Managing Symbolic Links
	1.5.2 Creating a Duplicate Hierarchy
	1.5.3 Source Code Control

	1.6 Building standalone programs that use Ptolemy ...
	1.6.1 Standalone example using StringList
	1.6.2 Standalone example that tests a Scheduler

	1.7 Debugging Ptolemy and Extensions Within Pigi
	1.7.1 A quick scan of the stack
	1.7.2 More extensive debugging
	1.7.3 Debugging hints

	Chapter 2. Writing Stars for Simulation
	2.1 Introduction
	2.2 Adding stars dynamically to Ptolemy
	2.3 The Ptolemy preprocessor language (ptlang)
	2.3.1 Invoking the preprocessor
	2.3.2 An example
	2.3.3 Items that appear in a defstar

	2.4 Writing C++ code for stars
	2.4.1 The structure of a Ptolemy star
	2.4.2 Reading inputs and writing outputs
	2.4.3 States
	2.4.4 Array States

	2.5 Modifying PortHoles and States in Derived Clas...
	2.6 Programming examples
	2.7 Preventing Memory Leaks in C++ Code

	Chapter 3. Infrastructure for Star Writers
	3.1 Introduction
	3.2 Handling Errors
	3.3 I/O Classes
	3.3.1 Extended input and output stream classes
	3.3.2 Generating graphs using the XGraph class
	3.3.3 Classes for displaying animated bar graphs
	3.3.4 Collecting statistics using the histogram cl...

	3.4 String Functions and Classes
	3.5 Iterators
	3.6 List Classes
	3.7 Hash Tables
	3.8 Sharing Data Structures Across Multiple Stars
	3.9 Using Random Numbers

	Chapter 4. Data Types
	4.1 Introduction
	4.2 Scalar Numeric Types
	4.2.1 The Complex data type
	4.2.2 The fixed-point data type

	4.3 Defining New Data Types
	4.3.1 Defining a new Message class
	4.3.2 Use of the Envelope class
	4.3.3 Use of the MessageParticle class
	4.3.4 Use of messages in stars

	4.4 The Matrix Data Types
	4.4.1 Design philosophy
	4.4.2 The PtMatrix class
	4.4.3 Public functions and operators for the PtMat...
	4.4.4 Writing stars and programs using the PtMatri...
	4.4.5 Future extensions

	4.5 The File and String Types
	4.5.1 The File type
	4.5.2 The String type

	4.6 Writing Stars That Manipulate Any Particle Typ...
	4.7 Unsupported Types
	4.7.1 Sub-matrices
	4.7.2 Image particles
	4.7.3 “First-class” types

	Chapter 5. Using Tcl/Tk
	5.1 Introduction
	5.2 Writing Tcl/Tk scripts for the TclScript star
	5.3 Tcl utilities that are available to the progra...
	5.4 Creating new stars derived from the TclScript ...
	5.5 Selecting colors
	5.6 Writing Tcl stars for the DE domain

	Chapter 6. Using the Cluster Class for Scheduling
	6.1 Introduction
	6.2 Basic Classes
	6.3 Galaxies and their relationship to Adjacency L...
	6.4 Clustering
	6.4.1 Initialization — Flattening the User Specifi...
	6.4.2 Absorb and Merge
	6.4.3 Cluster Iterator Classes

	6.5 Block state and name scoping hierarchy
	6.6 Resetting an InterpUniverse back to actionList...
	6.7 References

	Chapter 7. SDF Domain
	7.1 Introduction
	7.2 Setting SDF porthole parameters

	Chapter 8. DDF Domain
	8.1 Programming Stars in the DDF Domain

	Chapter 9. BDF Domain
	9.1 Writing BDF Stars

	Chapter 10. PN domain
	10.1 Introduction
	10.2 Processes
	10.2.1 The PtThread Class
	10.2.2 The PosixThread Class
	10.2.3 The DataFlowProcess Class

	10.3 Communication Channels
	10.3.1 PtGate
	10.3.2 PosixMonitor
	10.3.3 CriticalSection
	10.3.4 PtCondition
	10.3.5 PosixCondition
	10.3.6 PNGeodesic

	10.4 Scheduling
	10.4.1 ThreadList
	10.4.2 PNScheduler

	10.5 Programming Stars in the PN Domain

	Chapter 11. SR domain
	11.1 Introduction
	11.2 Communication in SR
	11.3 Strict and non-strict SR stars

	Chapter 12. DE Domain
	12.1 Introduction
	12.2 Programming Stars in the DE Domain
	12.2.1 Delay stars
	12.2.2 Functional Stars
	12.2.3 Sequencing directives
	12.2.4 Simultaneous events
	12.2.5 Non-deterministic loops
	12.2.6 Source stars

	12.3 Phase-Based Firing Mode
	12.4 Programming Examples
	12.4.1 Identity Matrix Star
	12.4.2 Matrix Transpose

	Chapter 13. Code Generation
	13.1 Introduction
	13.2 Writing Code Generation Stars
	13.2.1 Codeblocks
	13.2.2 Codeblocks with arguments
	13.2.3 In-line codeblocks
	13.2.4 Macros
	13.2.5 Assembly PortHoles
	13.2.6 Attributes
	13.2.7 Possibilities for effective buffering

	13.3 Targets
	13.3.1 Single-processor target
	13.3.2 Assembly code streams
	13.3.3 Multiprocessor targets

	13.4 Schedulers
	13.4.1 Single-processor schedulers
	13.4.2 Multiprocessor schedulers

	13.5 Interface Issues

	Chapter 14. CGC Domain
	14.1 Introduction
	14.2 Code Generation Methods
	14.3 Buffer Embedding
	14.4 Command-line Settable States
	14.4.1 C code generated to support command line ar...
	14.4.2 Changes in pigiRpc to support command line ...
	14.4.3 Limitations of command line arguments.

	14.5 CGC Compile-time Speed
	14.6 BDF Stars
	14.7 Tcl/Tk Stars
	14.8 Tycho Target

	Chapter 15. CG56 Domain
	15.1 Introduction
	15.2 Data Types
	15.3 Attributes
	15.4 Code Streams
	15.4.1 Sim56Target Code Streams
	15.4.2 S56XTarget/S56XTargetWH Code Streams

	Chapter 16. C50 Domain
	16.1 Introduction
	16.2 Data Types
	16.3 Attributes
	16.4 Code Streams
	16.5 Symbols
	16.6 Reserved Memory

	Chapter 17. Creating New Domains
	17.1 Introduction
	17.2 A closer look at the various classes
	17.2.1 Target
	17.2.2 Domain
	17.2.3 Star
	17.2.4 PortHole
	17.2.5 Geodesic
	17.2.6 Plasma
	17.2.7 Particle
	17.2.8 Scheduler

	17.3 What happens when a Universe is run
	17.4 Recipe for writing your own domain
	17.4.1 Introduction
	17.4.2 Creating the files
	17.4.3 Required classes and methods for a new doma...
	17.4.4 Building an object directory tree

	INDEX

