
EURO-DAC 1994, c
1994 ACM 0-89791-685{9/94/0011 $ 1.50 1

Instruction Set Extraction From Programmable Structures

Rainer Leupers, Peter Marwedel

University of Dortmund, Dept. of Computer Science XII, 44221 Dortmund, Germany

Abstract{Due to the demand for more design
exibility
and design reuse, ASIPs have emerged as a new im-
portant design style in the area of DSP systems. In
order to obtain e�cient hardware/software partition-
ings within ASIP-based systems, the designer has to be
supported by CAD tools that allow frequent re-mapping
of algorithms onto variable programmable target struc-
tures. This leads to a new class of design tools: re-
targetable compilers. Considering existing retargetable
compilers based on pattern matching, automatic instruc-
tion set extraction is identi�ed as a pro�table frontend
for those compilers. This paper presents concepts and
an implementation of an instruction set extractor.

1 Introduction

Recent application areas for VLSI circuits, in partic-
ular real time DSP systems, have led to a new de-
sign style: application-speci�c instruction set proces-
sors (ASIPs). ASIPs o�er a compromise between ASIC
implementations and programmable o�-the-shelf pro-
cessors. Increasing circuit performance by technologi-
cal advances now enables system designers to trade o�
between speed and programmability. ASIC develop-
ment is no longer obligatory on high-throughput sys-
tem design, since ASIPs can ful�ll the real-time require-
ments by dedicated hardware modules, yet o�ering pro-
grammability. Therefore, ASIPs can dramatically re-
duce design costs. This trend was recently outlined in
a survey by Paulin [1].
On the other hand, moving pieces of functionality from
hardware to software increases software development
costs. Traditionally, software development for DSP sys-
tems has been done at the assembly level, due to the
lack of high level language compilers for each di�erent
target processor. Because of the obvious drawbacks of
assembly level programming, high level language pro-
gramming is strongly desirable for ASIPs, but requires
compilers capable of exploiting application speci�c in-
struction sets. Therefore a new class of CAD tools
is currently investigated by researchers: retargetable
compilers (RCs). RCs read both a behavioral descrip-
tion given at a high level of abstraction (C, PASCAL,
VHDL processes) and a structural hardware descrip-
tion given in a HDL. The behavior is mapped onto the
programmable structure and binary code implementing
the behavior is generated. Since the target structure
is part of the compiler input, no compiler redesign is
necessary when changing the target. Only the HDL
description has to be adapted. Therefore, using RCs
instead of target-speci�c ones obviously can keep the
software development costs for DSP systems low. Sev-
eral implementations of RCs have been reported. The

.......
....................

...
.............
....

...
..............
.............
............

.......
....................

...
.............
....

...
..............
..............
............
.

...................
.....

.................
.....
..

.................
.....
..

...................
.....

...................
.....

code

binary

PRISMA

instruction

set

retargetable

compiler

structural HW
description

description
behavioral

Figure 1: Functionality of PRISMA

approach taken by Mavaddat [2] is focussed on local mi-
crocode generation, i.e. mapping pieces of straight-line
code onto a given datapath. The datapath is regarded
as a formal language, and binary code generation is
done by parsing. Langevin and Cerny [3] propose an-
other theoretic method for local microcode generation,
which uses a state machine model of the target data-
path. Binary code is derived by traversing state se-
quences.
Both methods do not support compilation of control
structures and need large amounts of computation time.
The compilers MSSQ and MSSV by Marwedel and No-
wak [4, 5] are based on pattern matching between reg-
ister transfers and hardware structures. Compilation
of data
ow as well as control
ow structures is sup-
ported. Since the complete controller speci�cation is
part of the structural hardware input description, nei-
ther the microinstruction format nor instruction re-
strictions due to encoding or sharing have to be for-
mulated by the user but are detected by the compiler
itself. Microcode compaction and maintenance of tem-
porary cells is restricted to basic blocks resulting in
suboptimal code, but pattern matching as a paradigm
for code generation guarantees fast compilation times.
Thus, the designer is allowed to "play around" with the
target architecture in order to achieve an e�cient hard-
ware/software partitioning within an ASIP-based sys-
tem. The CodeSyn compiler by Paulin [6] uses pattern
matching as well and is tailored towards DSP applica-
tions. Pattern matching is done between data/control

ow patterns and instructions. Therefore, the target
hardware description is not pure structural, but is based
on an instruction set speci�cation. This includes the
instruction behaviors and formats as well as the inter-
instruction restrictions, which all have to be manually
speci�ed by the user. It is stated that full retargetabil-
ity of CodeSyn required automatic instruction set cap-
ture, i.e. the compiler should be able to extract the
possible instructions of a programmable target struc-
ture automatically.

EURO-DAC 1994, c
1994 ACM 0-89791-685{9/94/0011 $ 1.50 2

REG1 2

SHIFTL ACCU

+

...
......

..
.....................
...

...
......

..
.....................
...

Figure 2: Expression tree

The MSSQ compiler [4] generates binary instructions
"on demand" for each statement within the input be-
havioral description, which results in unnecessary rep-
etitions of operator allocation and data routing within
the target structure. Only branch instructions are al-
located in advance during a preallocation phase.
Thus, automatic instruction set extraction from a tar-
get hardware description is well motivated. In this pa-
per we present the tool PRISMA (Predetermination
of Instruction Sets of Microprogrammed ASIPs), that
performs this task. PRISMA reads a
at RTL netlist
of a programmable hardware structure and extracts the
set of possible microoperations the hardware can per-
form. Additionally, binary code for disabling unused
storage devices is produced. This information can di-
rectly be fed into a RC (�g. 1). Note that instruction
set extraction has to be performed only once for each
speci�c target structure.
The rest of this paper is organised as follows. Sections
2 and 3 describe the tool functionality and the basic in-
ternal data structures. The main extraction steps are
presented in sections 4 to 7. Finally, the practical appli-
cability of PRISMA is discussed using several example
datapaths and some conclusions are drawn.

2 Basic de�nitions

Instruction set extraction from a programmable hard-
ware structure yields a list of microoperations the struc-
ture can perform. In order to explain the functionality,
we informally de�ne some basic notations.
Def: A microoperation is a tuple mo = (t; e; a; c; p),
where

t is a target module (register or memory port)
e is an expression which is assigned to t
a is an address, in case that t is a memory,
otherwise empty

c is a partial control word �eld setting,
necessary to execute the assignment

p is a precondition, that has to be ful�lled to
execute the assignment

An expression e is a tree, whose inner nodes represent
operators (arithmetic, logic, concatenation, compari-
son) and whose leaves represent storage modules, con-
stants, or external inputs. For instance, the tree in �g.
2 represents the term (REG1 SHIFTL 2) + ACCU. The
address a is an expression as well.
The control code c is a string over f0; 1; X;Cg, where
X denotes a don't care value and C denotes a bit be-
longing to an immediate constant. The length of c is
equal to the instruction word length. Conditions are
represented by the following data structure:

..
...................
.....

..
.................
.....
..

REG1 = "0011"

REG2 = "0110" ACCU > 0

and or

Figure 3: Condition tree

Def: A condition tree is either empty or a triple ct =
(r; ctand; ctor), where

r is the root
ctand is a condition tree
ctor is a condition tree

The root r of a condition tree is a single equation or
inequation. A condition tree ct is true, if one of the
following conditions holds:

a) ct = empty
b) (r = true) AND (ctand = true)
c) ctor = true

Thus, for example the condition tree shown in �g. 3
represents the condition
(REG1 = 0011 AND REG2 = 0110) OR (ACCU > 0)

The equations and inequations within a condition tree
refer to storage contents, module ports, bitstrings or
constants. A precondition p of a microoperation mo is
a condition tree, in which no (in)equation refers to the
instruction memory, since all conditions concerning the
instruction memory are already encoded in the control
code c of mo. The necessity of preconditions can be
seen in the structure in �g. 4, which will serve as a
running example throughout this paper.
In this 8 bit processor, the binary instructions are lo-
cated in the instruction memory I, whose width is 24
bits. All modules are directly controlled by the instruc-
tion word 1, except the shifter, which is residually
controlled by the contents of the 2 bit shift mode reg-
ister SM. Depending on the SM contents (00,01,10,11)
the shifter performs a left shift of 0, 2, 4, or 5 bits.
Thus, e.g. moving data from the accumulator accu
to the main memory MAIN with a left shift of 4 re-
quires SM = "10" besides the necessary control codes.
SM = "10" has to be ensured in a machine cycle before
the data transfer is executed, therefore we call this a
precondition. Preconditions always refer to states be-
ing reached in an earlier machine cycle.
Two functions for inserting an additional (in)equation
q into a condition tree are de�ned:

1. OR-Insert inserts a new (in)equation q into a
condition tree ct so that q is an alternative to
ful�ll ct.

2. AND-Insert inserts a new (in)equation q into a
condition tree ct so that q is necessary in any case
to ful�ll ct.

Both functions can be extended for inserting a complete
condition tree ct into another tree ct0.
In addition to microoperations, we de�ne special op-
erations for disabling storage modules, i.e. operations

1I.(k:l) denotes an instruction word subrange

EURO-DAC 1994, c
1994 ACM 0-89791-685{9/94/0011 $ 1.50 3

........................

.........
........
.......

........................

........................

........
....... ...

........
..

......................................

......................................

......................................

.......
........
.......
.......
.......
..

..

.................
.....
..

.....
..

....................
....

....................
....

.....................
...

.....................
...

.....................
...

.....................
...

.....................
...

.....................
...

.....................
...

....................
....

....................
....

...

................
.....
...

.................
.....
..

.................
.....
..

.................
.....
..

........................

...................
.....

....
.....
...............

.....................
...

.....
.....
..............

........................

........................

........................

........................

...................
.....

.................
.....
..

........................

.................
.....
..

.................
.....
..

....

.....

...............

.................
.....
..

.....

.....
..............

.................
.....
..

accu

alu

pins.(7:0)

ctr
I.(9)

ctr
I.(9:8)

I.(15)
ctr

I.(10)
ctrI.(15)

I.(7:0)

ctr

cnd

I.(10)

ctr

I.(12:11)
ctr

address

data

shifter

SMaccudrv

I.(23:16)

PC

+1

I.(14:13)

idrv

pcmux

ctr I.(1:0)

accucmp

ctr

DATABUS.(7:0)

MAIN

I

(7:0)

alumux

pcincr

d0

d1

> 0 ?

adr

Figure 4: Example structure

that preserve the current state of a storage module.
Def: A disabling operation is a triple do = (t; c; p),
where

t is the module to be disabled
c is the according partial control word �eld setting
p is the necessary precondition

The purpose of PRISMA is to extract the possible mi-
crooperations and disabling operations for all storage
modules within a programmable structure described in
a HDL. We assume a microcontrolled structure and
monophase execution. Instruction encoding and bit
sharing are permitted. Note that it is not useful to
extract the set of microinstructions instead of micro-
operations from a hardware structure, since this would
result in a very large computation time for pairwise
consistency check for all extracted micro- and disabling
operations. Compacting microoperations into a mi-
croinstruction can quickly be done by the RC on de-
mand, avoiding consideration of unnecessary microin-
structions.

3 Circuit representation

The HDL read by PRISMA allows description of hard-
ware structures comprising the following types of generic
components: multiplexers, ALUs, decoders, logic gates,
comparators, hardwired constants, busses, registers, me-
mories, tristate drivers, and external pins. RTL netlists
are described by enumeration of all modules together
with their interconnections. One distinguished ROM
within the speci�cation has to be marked as memory
for instructions. The netlist contains the complete con-
troller structure, so that instruction con
icts are de-
tected by PRISMA itself.

00: d0 + d1

01: d0 - d1

10: PASS d0

11: PASS d1

0: PASS d1

1: PASS d0

1: NOLOAD

0: LOAD

..................
....................
............

....................
....................

..........

..................
.....................

...........

....
.....
.....
.....
....
...........................

..
...

..

..

.........
.........
................................ ...

.......
.......
.......
.............................

..
...

.......
.......
.......
.............................
...

outp

ctr

ctr

inp

ctr
alumux

outp

d0 d1

d1d0

alu

accu

outp

Figure 5: Internal graph structure

The hardware description is parsed into an internal
graph structure, where nodes represent modules and
edges represent interconnections. We assume that mod-
ules with variable behaviors have a distinguished con-
trol input ctr. The list of possible module behaviors
together with the according control code is attached to
each node. Fig. 5 shows a part of the graph for the
example structure (�g. 4).
Graph edges are directed opposite to the data
ow
direction. The behavior tables are shown within the
nodes, e.g. the ALU alu performs four di�erent oper-
ations on its data inputs d0 and d1, depending on the
control code ctr (00,01,10,11): addition, subtraction,
and passing d0 resp. d1 unchanged to the output outp.
The multiplexer alumux only performs PASS operations
on its inputs. The register accu stores a new value at
its input when its control input is 0, otherwise pre-
serves its state. Modules without a control input have
a behavior table consisting of a single entry. Busses are
represented as dummymodules only supporting a PASS
operation. Every bus driving module has to have a
TRISTATE operation. All storage modules are assumed
to change their state at the same clock edge if they are
enabled.
A restriction is, that modules may have only one output
port, except multiport memories. This restriction can
be circumvented by splitting the output into several
subranges.
The internal graph structure is similar to the one pro-
posed in [4] and allows quickly backtracking data sources
within the structure. This is essential for the tasks de-
scribed in the following two sections.

EURO-DAC 1994, c
1994 ACM 0-89791-685{9/94/0011 $ 1.50 4

4 Extraction of expressions

As de�ned in section 2, every microoperation assigns
an expression e to a target storage module t. Each as-
signment in general requires several conditions to be
ful�lled, e.g. (see �g. 4) loading memory MAIN at a
certain address with the accumulator contents shifted
left by 4 requires2:

shifter.ctr = "10" (perform left shift of 4)
accudrv.ctr = "1" (accudrv drives the databus)
MAIN.ctr = "00" (MAIN reads from databus)
idrv.ctr = "0" (idrv is in TRISTATE mode)

Since these conditions can be represented by a condi-
tion tree, we can think of every expression e to have
an associated condition tree cte. In order to extract
all microoperations systematically, at �rst all expres-
sions with the associated condition trees for each stor-
age module input are extracted. This is the purpose of
the function

FindExpressions : module 7! list of pairs (e; cte)
yielding a list of expressions e a module can deliver at
its output port, assuming condition cte is ful�lled. Due
to the underlying graph structure, FindExpressions can
be implemented recursively. Recursion stops when a
leaf module, (i.e. storage, HW constant or external
input) is reached. The expression delivered by a leaf
module is simply its contents resp. value. For non-leaf
modules, FindExpressions backtracks the data
ow and
possible operations within the structure, while building
up the according condition trees on-the-
y. Necessary
conditions are AND-inserted, whereas alternatives are
OR-inserted in the current condition tree. When Find-
Expressions is called for a bus, it ensures that all bus
drivers unused for a certain expression are in TRISTATE
mode in order to avoid bus con
icts. Recursion also
must terminate when cyclic paths are detected, e.g. due
to bus exchanges.
We consider a call to FindExpressions for module pcmux,
which determines the next state of the program counter
PC. The pcmux has the behavior table

00: PASS d0
01: PASS d1
1X: IF cnd THEN PASS d1 ELSE PASS d0

i.e. control codes 00 resp. 01 pass the inputs d0 resp.
d1 to the output, and control codes 10 and 11 pass one
input depending on the condition input cnd. FindEx-
pressions(pcmux) calls itself recursively for the prede-
cessor modules pcincr and I and yields the following
results:

No. Expression Condition
1 PC + 1 pcmux.ctr = "00" OR (pcmux.ctr =

"1X" AND pcmux.cnd = "0")
2 I[PC].(7:0) pcmux.ctr = "01" OR (pcmux.ctr =

"1X" AND pcmux.cnd = "1")

FindExpressions also takes into account semantical in-
formation about the operations performed by the dif-
ferent modules. This is e.g. done by exploiting left and
right neutral elements of operations, like 0 for addition
and disjunction or 1 for multiplication and conjunction.

2The notation < m >.< p > denotes port < p > of module
< m >.

Thus, an ALU performing subtraction on two inputs a
and b implicitly has a virtual PASS operation, presum-
ing the constant 0 can be allocated at input b. Ex-
ploiting virtual operations leads to an extended set of
microoperations which in turn provide higher degrees
of freedom for a compiler.
Using FindExpressions as a subroutine, all expressions
assignable to any storage module can be extracted in
the following manner:
PROCEDURE ExtractAllExpressions(target storage module t);

BEGIN

m inp := module connected to the input port of t;

L inp := FindExpressions(m inp);

FOR EACH (e inp,ct inp) IN L inp DO

IF (t is an addressable memory)

THEN

m adr := module connected to the address port of t;

L adr := FindExpressions(m adr);

FOR EACH (e adr,ct adr) IN L adr DO

ct := empty condition tree;

AND-Insert(ct,"control code for LOAD operation of t");

AND-Insert(ct,ct inp);

AND-Insert(ct,ct adr);

ATTACH (e inp,e adr,ct) TO t;

OD

ELSE (* m is a single register *)

ct := empty condition tree;

AND-Insert(ct,"control code for LOAD operation of t");

AND-Insert(ct,ct inp);

ATTACH (e inp,ct) TO t;

FI

OD

END;

Procedure ExtractAllExpressions is called for each stor-
age module. As a result of this phase, each register has
been attached a list of expression/condition tree pairs
that represent possible assignments to it. For memory
modules, additionally all address expressions have been
generated together with the according condition trees.
A triple (e inp,e adr,ct) attached to memory M means
M[e adr] := e inp if ct is true.
All single conditions are equations of the type "mod-
ule input port = bitstring". In order to determine
whether a condition can be ful�lled and thus results
in a valid microoperation, the bitstrings have to be al-
located. This task is subject of the following section.

5 Constant allocation

The next step is to expand the condition trees found
in the expression extraction phase. A condition tree
is called expanded, when all its single conditions only
refer to storage contents instead of module ports. For
instance the condition "shifter.ctr= 10" can be ex-
panded to "SM = 10" in the example structure. Con-
dition tree expansion requires constant allocation at
module ports. This is the purpose of the function

Allocate : module � bitstring 7! condition tree
computing a condition tree that forces a module to
produce a given bitstring at its output port3. If the
module cannot provide the required constant, Allocate

3Actually, PRISMA also considers port subranges during ex-
traction. This has been left out in the paper for sake of simplicity.

EURO-DAC 1994, c
1994 ACM 0-89791-685{9/94/0011 $ 1.50 5

returns an "IMPOSSIBLE" value. Similar to FindEx-
pressions the function Allocate recursively backtracks
data
ow through the graph structure until leaf mod-
ules are reached. In general, constants are allocated at
storages, HW constants or decoders. Semantical infor-
mation about operations is taken into account as well,
e.g. an ALU can (among other alternatives) produce a
constant c by computing c+ 0 or c AND 11...11. Note
that "perfect" constant allocation is practically impos-
sible due to the large number of alternatives that may
arise (consider, for instance, the number of versions to
generate a certain 32 bit constant by addition). Thus,
there cannot exist a tool for extracting all possible mi-
crooperations from any arbitrary target structure. Ex-
panding a condition tree resulting from expression ex-
traction is done by the following procedure.

PROCEDURE ExpandConditionTree(condition tree ct);
BEGIN
FOR EACH node "module.port = bitstring" IN ct DO
m = module whose output is connected to module.port;
ct' = Allocate(m,bitstring);
IF ct' != IMPOSSIBLE
THEN REPLACE node BY ct';
FI
OD
END;

The structure of condition trees can be exploited, e.g. if
expansion of a node fails, all nodes in its AND-subtree
can be skipped. Calling ExpandConditionTree for the
two trees in the previous example (see section 4), one
obtains:

No. Expression Expanded condition
1 PC + 1 I[PC].(14:13) = "00" OR (I[PC].(14:13)

= "1X" AND accu <= 0)
2 I[PC].(7:0) I[PC].(14:13) = "01" OR (I[PC].(14:13)

= "1X" AND accu > 0)

ExpandConditionTree is called for each condition tree
produced during expression extraction. Therefore, �-
nally all conditions only refer to the distinguished in-
struction memory or to other storages. This allows
splitting the conditions into control word �eld settings
and preconditions.

6 Microoperation generation

In order to transform the previously extracted regis-
ter/memory assignments into microoperations as de-
�ned in section 2, the subroutine

Split : condition tree 7! list of pairs (c; ct)
is used, where c is a partially initialised instruction
word and ct is a condition tree only comprising pre-
conditions. Split performs several subtasks:

a) Check whether a condition refers to the instruction
memory or to another storage. If the instruction mem-
ory is referenced, set the according bits in c and elim-
inate the condition from the tree. Otherwise keep this
condition as a precondition.
b) Check for instruction con
icts of conditions sharing
subranges of the instruction word.
c) Check whether the remaining precondition tree is
consistent, i.e. all conditions to be ful�lled concurrently
are pairwise compatible.4

Calling Split for the previous example trees results in

4Since occurence of cyclic inconsistencies in practical struc-
tures is very unlikely, only pairwise compatibility is checked.

No. Expression (partial instruction, precondition)
1 PC + 1 (xxxxxxxxx00xxxxxxxxxxxxx,

empty)
(xxxxxxxxx1xxxxxxxxxxxxxx,
"accu <= 0")

2 I[PC].(7:0) (xxxxxxxxx01xxxxxxxxxxxxx,
empty)
(xxxxxxxxx1xxxxxxxxxxxxxx,
"accu > 0")

yielding two alternatives for assigning each of the two
expressions to register PC.
All register/memory assignments (see section 4) are
transformed into microoperations. Assuming Split com-
putes a list ((c1; ct1); : : : ; (cn; ctn)) for the condition
tree ct of an assignment (e inp,ct) to a target register
t, the set of microoperationsmoi = (t; e inp; �; ci; cti) is
constructed for this assignment. Memory assignments
are transformed accordingly into microoperations with
a non-empty address �eld.
In order to avoid unnecessary restrictions, all micro-
operations having the same target and the same ex-
pression/address are heuristically compacted, i.e. if
the preconditions are compatible and the instruction
words di�er only in one bit bi, two microoperations
can be replaced by one with bi = X. After compaction
the extraction of microoperations is �nished. For the
example structure, PRISMA �nds:
4 Operations for register PC
1 operation for register SM
10 operations for register accu
5 operations for memory MAIN

The output including bit range information in case of
register PC is:
MICROOPERATIONS FOR REGISTER PC:

(1) Expression: (PC.(7:0) + 1).(7:0)
Preconditions: <empty>
Code:
24 20 16 12 8 4 0
-|---|---|---|---|---|---|
xxxxxxxxx00xxxxxxxxxxxxx

(2) Expression: I[PC.(7:0)].(7:0)
Preconditions: <empty>
Code:
24 20 16 12 8 4 0
-|---|---|---|---|---|---|
xxxxxxxxx01xxxxxCCCCCCCC

(3) Expression: I[PC.(7:0)].(7:0)
Preconditions: accu.(7:0) > 0
Code:
24 20 16 12 8 4 0
-|---|---|---|---|---|---|
xxxxxxxxx1xxxxxxCCCCCCCC

(4) Expression: (PC.(7:0) + 1).(7:0)
Preconditions: accu.(7:0) <= 0
Code:
24 20 16 12 8 4 0
-|---|---|---|---|---|---|
xxxxxxxxx1xxxxxxxxxxxxxx

There are two alternative operations (2 and 3) for load-
ing the program counter immediately from I. Opera-
tion (3) only needs bit 14 of the instruction word to
be set to 1, but requires accu to be greater zero from
a previous instruction cycle. A RC might regard this
as a conditional jump operation, whereas operation (2)
could serve as an unconditional jump.

EURO-DAC 1994, c
1994 ACM 0-89791-685{9/94/0011 $ 1.50 6

When subranges of the instruction word occur in ex-
pressions, the according bits in the control code are
symbolically set to "C" to indicate that the instruction
provides an immediate constant at these bits, and thus
a restriction exists for setting these bits in microoper-
ations to be executed concurrently.

7 Storage disabling

When several microoperations are packed into one mi-
croinstruction, unused storage modules must remain
unchanged. Therefore, PRISMA also extracts disabling
operations for each register or memory port. This task
is very similar to extraction of microoperations. All
(expression, precondition) pairs are computed that guar-
antee NOLOAD operations for each storage. Additionally,
in case of registers, versions are extracted that force a
register to store its previous value, i.e. PRISMA looks
for cyclic paths within the structure. For instance, the
accu can preserve its state by setting instruction bit 15
to 1 ("NOLOAD", see �g. 4 and 6), or by setting instruc-
tion bit 15 to 0 ("LOAD") and bits (9:8) to 10 ("PASS
d0" via alu). Generating these additional disabling op-
erations can provide more alternatives for a compiler to
select from during code compaction.

8 Experimental results

PRISMA has been implementedwith about 10,000 lines
of C++ code on a Sun SPARCstation 10. It has been
applied to several target structures, among them the
datapaths mentioned in [3] (di�) and [5] (mssv), and
partial datapaths of the TMS320 DSP family [7] and of
the ADSP2101 signal processor [8]. Since no informa-
tion about the internal controller structure is provided
for TMS and ADSP, an arbitrary VLIW controller has
been added to these structures in order to permit ex-
traction.

structure # modules # �-OPs CPU sec
example 15 20 0.57
di� 23 79 0.95

E1000 18 48 0.66
ADSP 43 746 305
mssv 8 53 0.90
mssq 13 127 13.76
TMS 29 545 378

Table 1: Experimental results

The results shown in table 1 indicate that instruction
set extraction is feasible even for larger realistic struc-
tures. Runtime grows rapidly with the number of ex-
tracted microoperations due to the compaction phase.
Time for compaction could be reduced by pre-sorting
the extracted operations into several groups according
to their expressions and compaction only within each
group, but this is only an implementation issue. The
number of extracted microoperations itself is mainly in-

uenced by features of the structural model: the num-
ber of RT level modules, the number of di�erent be-
haviors per module, and the chaining degree within the
structure. The number of resulting microoperations is
only reduced by instruction word restrictions, such as
bit sharing (see e.g. alumux and alu in �g. 4).

9 Conclusions

With ASIPs emerging as a new important means of
DSP system implementation, CAD tool support be-
comes necessary for software development for these sys-
tems. Retargetable compilers that map behavioral de-
scriptions onto speci�c structures by exploiting com-
plex instruction sets with high degree of potential par-
allelism have been proposed to solve this problem. Pat-
tern matching has been identi�ed as one key technique
in this context [5, 6]. Matching is performed between
data/control
ow patterns in the behavioral descrip-
tion and RT patterns in the hardware structure. The
latter can be extracted from the hardware descriptions
automatically, resulting in full compiler retargetabil-
ity. A prototype tool for instruction set extraction was
presented in this paper, which provides a convenient
interface between compiler and target structure, since
the possible patterns of a given structure can be com-
puted in advance and be stored in a database. Restric-
tions arising from the controller structure are already
detected in this phase. During the steps of binary code
generation (allocation and code compaction), the com-
piler can rely on this pattern database rather than on
the RTL structure, permitting a higher level of abstrac-
tion. Experiments with realistic structures proved fea-
sibility of instruction set extraction. Future work will
include extending the structure domain towards mod-
ules with multi-cycle operations.

References
[1] P.G.Paulin: DSP Design Tool Requirements for the

Nineties: An Industrial Perspective, 6th International
High Level Synthesis Workshop, 1992

[2] M.Mahmood, F.Mavaddat, M.I.Elmasry: Experiments
with an E�cient Heuristic Algorithm for Local Mi-
crocode Generation, Proc. International Conference on
Computer Design (ICCD), 1990, pp. 319-323

[3] M.Langevin, E.Cerny: An Automata-Theoretic Ap-
proach to Local Microcode Generation, Proc. Euro-
pean Design and Test Conference(EDAC), 1993, pp.
94-98

[4] L. Nowak, P. Marwedel: Veri�cation of Hardware
Descriptions by Retargetable Code Generation, Proc.
26th Design Automation Conference, 1989, pp.441-447

[5] P.Marwedel: Tree-Based Mapping of Algorithms to
Prede�ned Structures, Proc. International Conference
on Computer-Aided Design (ICCAD), 1993, pp. 586-
593

[6] C.Liem, T.C.May, P.G.Paulin: Instruction Set Match-
ing and Selection for DSP and ASIP Code Generation,
to appear in: Proc. European Design and Test Confer-
ence (EDAC), 1994

[7] TMS320C2x User's Guide, Rev. B, Texas Instruments,
1990

[8] ADSP2101/2102 User's Manual (Architecture), Analog
Devices, 2nd Edition, 1991

