

Speech coding using personalized speech repository

1

 Speech coding using personalized speech
repository

Index

No. Topic Pg.No.

1 Introduction and motivation 2

2 Problem statement 3

3 Requirement analysis 4

4 Project Design 7

5 Implementation Details 14

6 Technologies used 26

7 Test cases 30

8 Project Timeline 31

9 Task Distribution 32

10 References 33

11 Appendix 34

Speech coding using personalized speech repository

2

1
INTRODUCTION & MOTIVATION

The project deals with the idea of achieving compression by coding a person’s
speech using digital signal processing, clustering and vector quantization algorithms.

People download a lot of audio and video over the Internet. Generally it takes
a huge lot of time to download the audio speeches. e.g. downloading news spoken by
a news reader, commentary of a particular match which created some history in the
concerned sport, budget presentation by the Finance Minister, important messages by
the President for the general public etc. In such cases so as to optimize the time
required to download these huge files, our project focuses on the speech compression
by speech coding. Since the process has to be carried out individually for every
person therefore the term “personalized” in the title.

This work is based on the intuition that in a speech sample of a particular
person, similar elementary sounds are repeated. For example, when a person says
“cricket” and “club”, the initial “kk” sound in both words will have similar
characteristics. Significant reduction in storage could result if the actual signal
information for both these sounds is not stored. Instead the elementary sound is stored
just once and wherever this sound appears the same stored sound is played.

E-mail is good only for text, and for graphics transmission. Standard sound
formats that encode human speech, produce extremely large outputs that are improper
for e-mail communication. However, if certain assumptions are made about features
of human speech, the communication will be efficient.

The speech profile of a person can be created which will contain the collection
of elementary sounds uttered. This profile will be a one-time download for the
listeners. The actual audio messages can be encoded based on the profile. The users
will only need to download the encoded data (which will be much smaller than the
actual audio data). This can be decoded using the profile stored earlier by the user,
and the audio can be regenerated. As only the binary codes are transferred rather than
the speech signals themselves, huge bandwidth compression can be obtained.

Speech coding using personalized speech repository

3

 2
 PROBLEM STATEMENT

The project involves building a system for exchanging voice messages over
mail, using very high speech compression. The sender will record his voice message
and transform it into the coded, compressed file using the encoder module. The coded
file is transferred as an email attachment. The receiver passes the attached file through
the decoder module, which reproduces the original speech. Both the encoder and
decoder will use a repository of speech segments. This repository will be pretty large
in size and may need to be transported by CDs etc.

 The entire system (encoder, decoder and repository generator) needs to be
prepared and coded for Linux. The project should deliver a easy-to-use package (it
may be set of command-line tools) which will enable the proposed exchange of voice
messages. The encoder tool should just take a sound file (maybe in the WAV format)
and convert it into a compressed binary file. The decoder tool does the opposite job.
The repository-generator tool works on a large sample of speech to generate the
corpus.

Speech coding using personalized speech repository

4

 3
REQUIREMENT ANALYSIS

3.1. Introduction

The project involves building a system for exchanging voice messages over
mail, using very high speech compression, as described above. The sender will record
his voice message and transform it into the coded, compressed file using the encoder
module. The coded file is transferred as an email attachment. The receiver passes the
attached file through the decoder module, which reproduces the original speech. Both
the encoder and decoder will use a repository of speech segments. The repository may
be transported by CDs, or may be made available for download, etc. The entire
system (encoder, decoder and repository generator) will be prepared and coded for
Linux.

The project will deliver an easy-to-use package which will enable the proposed
exchange of voice messages.

 The repository-generator tool works on a large sample of speech to generate the
corpus using clustering and Mel-frequency cepstrum coefficients (MFCC) feature
extraction processes.

 The encoder tool will take a sound file and convert it into a compressed binary
file, using the repository.

 The decoder tool does the opposite job.

3.2. Steps of the process

1. Repository generation

A recorded lecture will be obtained. All experiments will be conducted using
this sample (sampling rate: 11025 Hz, single channel and 8-bits/sample.).

A 15-minute sample will be extracted for repository generation. This file will
be divided into 45000 files of 20 ms duration each. 12 MFCC features (Mel-frequency
cepstral coefficients) will be computed for each of these sound-slices. MFCC features
are perception-based features, which are widely used in the speech recognition arena.

It is assumed that 10000 different elementary sounds will be enough to
characterize the range of sounds produced by a person. This number will be arrived at
empirically. The 45000 sound samples will then be clustered into 10000 clusters
based on their Mel-frequency cepstrum coefficients (MFCC) features.

A variant of the k-mean algorithm will be used for clustering. For each of
these clusters, a sample that is closest to the centroid will be chosen as the
representative. These 10000 representative sound samples will then be assigned
unique codes (the cluster numbers have been used as the codes). This collection of
representative sounds and their codes will be the repository, using which other sound
samples can now be encoded. Both the encoder and decoder will use a repository of

Speech coding using personalized speech repository

5

speech segments. The repository may be transported by CDs, or may be made
available for download, etc.

Purpose
To create a repository that represents the phonetically balanced characteristics
of the particular user.

Inputs
A speech file which has been recorded in the .wav format of at least 20 min
duration. Speech should be Mono and of uncompressed format.
Input should be sampled at 11025 Hz with 8 bits per sample (Microsoft
standard for telephone quality speech).

Outputs

A speech repository (frame files characterizing the speech features of the user)
that automatically gets created in the user’s system. This repository should
then be made publicly available by the creator.

Repository size is around 2 MB for each user. Every repository consists of
empirically decided (10000) representative frames and the codebook which
associates the frames with their corresponding parameters.

Repository generator stores the repository in a directory named as per the
user’s email id. Error messages have been handled by standard c++ handling
mechanisms such as try, throw, catch etc.

2. Encoding

A new 10-second sample will be taken and divided into 20 ms slices. MFCC
features will be extracted from the 500 sound-slices created this way. Each of these
feature vectors will be taken and a closest match will be found from the 10000 feature
vectors of the representative samples of the profile. This will be done by determining
the minimum Euclidean distance in the 12 dimensional feature space.

Thus, for each of the 500 sound-slices, a representative sound from the profile

will be identified. The encoded file will consist of this sequence of codes of the
representative sound samples. The sender will record his voice message and transform
it into the coded, compressed file using the encoder module. The coded file will be
transferred as an email attachment.

Purpose
The encoder tool will take a sound file and convert it into a compressed binary
file, using the repository.

Inputs
A speech file which has been recorded in the .wav format. Speech should be
Mono and of uncompressed format. Input should be sampled at 11025 Hz with
8 bits per sample (Microsoft standard for telephone quality speech).

Speech coding using personalized speech repository

6

Outputs
The code file that has to be transmitted over the internet to the receiver.
For an input file of 10 sec duration, an output file (code file) of around 2.2 KB
will be generated. This codefile will also contain the user’s email id for
identification purposes.

Error messages have been handled by standard c++ handling mechanisms such

as try, throw, catch etc.

3. Decoding

The decoding will be done using the encoded file and the repository (i.e.
10000 representative sound-slices). The resultant audio will be created by
successively concatenating the representative sound samples indicated in the encoded
file. Smoothing will improve the quality of the resulting decoded sample. The receiver
will pass the attached file through the decoder module, which will reproduce the
original speech.

Purpose
The decoder tool will take a code file and convert it into a decoded speech file
formed by concatenating representative frames from the repository.

Inputs
An encoded speech file (which has been encoded using this software itself)
Code file should have been created by using the repository that is present at
the decoder end. i.e. the user should possess the repository of the sender. If not
available he can get it.

Outputs

A .wav file that the user can listen to.

Error messages have been handled by standard c++ handling mechanisms such
as try, throw, catch etc.

Speech coding using personalized speech repository

7

 4

PROJECT DESIGN

4.1. CLASS DIAGRAMS

Speech coding using personalized speech repository

8

Speech coding using personalized speech repository

9

Speech coding using personalized speech repository

10

4.2. SEQUENCE DIAGRAMS

Speech coding using personalized speech repository

11

Speech coding using personalized speech repository

12

Speech coding using personalized speech repository

13

Speech coding using personalized speech repository

14

5

 IMPLEMENTATION DETAILS

Detailed description of components
The various components used in the modules, as shown above, are listed below,
module-wise:

repositorygenerator.cpp

Speech coding using personalized speech repository

15

encoder.cpp

Speech coding using personalized speech repository

16

decoder.cpp

Speech coding using personalized speech repository

17

clustermanager.cpp

This class is responsible for identifying representative frames corresponding to
the cluster centers obtained by performing k-means clustering on the training data set
or on the message file.

Data members:
Visibility Datatype Variable name Description
private long int Current current cluster number being processed

private vector<double> Dist distance of each cluster center from the

current data point

private vector<double> Centroid MFCC parameters of a particular cluster
center.

private vector<vector<d
ouble> >

cluster_centers centers of the clusters

private vector<unsigned
long int>

Indices indices of frames (in mfcc table) to be
added to the repository

private vector<int> Count // count of members in each cluster
currently

Public framemfcctable Fmtbl Stores the mfcc values for all the frames

Speech coding using personalized speech repository

18

Member Functions

wavefile.cpp

This class is responsible for representing the wavefile and performing
operations related to it like creation,getting MFCC parameters,breaking wavefile into
frames,making wavefile from constituent frames.

Visibility Datatype Variable name Description
Protected Char[4] ChunkID Contains the letters "RIFF" in ASCII

form(0x52494646 big-endian form)
Protected unsigned long int ChunkSize 36 + SubChunk2Size, or more precisely:

4 + (8 + SubChunk1Size) + (8 +
SubChunk2Size)
This is the size of the rest of the chunk
following this number. This is the size of
the entire file in bytes minus 8 bytes for
the two fields not included in this count:

Visibility Return
type

Name Parameters Description

Public - clustermanager

Void constuctor for the clustermanager
class

Public void showcenters Void Display all the cluster centers
Public int initcentroids

int iter Initializes cluster centroids by

randomly selecting tuples from the
mfcc table

Public int Start Void Initiates clustering algo
Public int Distance

Void calculates the distance between the

current data point taken from mfcc
table and the cluster centroids.

Public int distance

vector<double
> mfcc

calculates the distance between the
current data point passed as
parameter and the cluster
centroids.

Public int minimum

Void Finds the minimum distance of
current frame from all other cluster
centroids

Public int recalculate1

int min Recalculates the new cluster
centroid after the current frame has
been added to the cluster

Public vector<u
nsigned
long int>

 getIndices

Void Gets indices of the representative
cluster centroids’ mfcc parameters
from mfcc table

Public vector<v
ector<do
uble> >

getcentroids

Void Gets mfcc values of the
representative cluster centroids

Public int getallclustercente
rs

string email Gets the cluster centers from the
codebook which is being managed
by repositorymanager

Public unsigned
int

compare vector<double
> mfcc

Combines the functionality of
distance() and minimum() to find
representative for the frame passed
as the parameter

Speech coding using personalized speech repository

19

ChunkID and ChunkSize
Protected Char[4] Format Contains the letters "WAVE"

(0x57415645 big-endian form)
Protected Char[4] Subchunk1ID Contains the letters "fmt "

(0x666d7420 big-endian form)
Protected unsigned long int Subchunk1Size 16 for PCM. This is the size of the rest of

the Subchunk which follows this number
Protected unsigned short

int
AudioFormat PCM = 1 (i.e. Linear quantization)

Values other than 1 indicate some
form of compression

Protected unsigned short
int

NumChannels Mono = 1, Stereo = 2

Protected unsigned long int SampleRate 8000, 44100, etc.

Protected unsigned long int ByteRate == SampleRate * NumChannels *
BitsPerSample/8

Protected unsigned short
int

BlockAlign == NumChannels * BitsPerSample/8
The number of bytes for one sample
including all channels.

Protected unsigned short
int

BitsPerSample 8 bits = 8, 16 bits = 16, etc.

Protected Char[4] Subchunk2ID Contains the letters "data"
(0x64617461 big-endian form)

Protected unsigned long int Subchunk2Size == NumSamples * NumChannels *
BitsPerSample/8
This is the number of bytes in the data.
You can also think of this as the size of
the read of the subchunk following this
number

Protected char * Data The actual sound data.
Protected String Path Location of open wavefile
Protected unsigned long int locinc Size of Each Subchunk2Size of each

frame
Protected unsigned long int Curloc Current frame start location
Protected FILE* Fptr Associated with mfcc.fil

Member Functions

Speech coding using personalized speech repository

20

Visibility Return
type

Name Parameters Description

Public - Wavefile void Constructor: Implicit constructor
used to create wavefile with header
but no data

Public unsigned
long int

getlocinc void Gets the location increment

Public - Wavefile char*
frdata,unsigne
d long int
frsize

Constructor: Used to create
wavefile using the data passed as
parameter

Public - wavefile

string
wavepath

Constructor: opens the file
specified by the path and initialises
all private variables, allocates
buffer for data, and copy data

Public - wavefile

wavefile& wv Copy Constructor: copy all private
variables except for the path,
reallocates buffer for data, and
copy data

Public - wavefile

const
wavefile& wv

Copy Constructor: copy all private
variables except for the path,
reallocates buffer for data, and
copy data

Public int makeMono int type Converts this wavefile to
monochannel, if it is multichannel
type=1 => Sum; type = 2 => Avg;
ret = -1 => clip

Public int makePerm

string dest makes a wave file permanent

Public int getFirstFrame

char
*frmdata,unsig
ned long int*
frsize

Copies first frame of locinc
samples (if needed, padding is
done) in wf and returns the length
of frame

Public int getNextFrame

char
*frmdata,unsig
ned long int*
frsize

Copies next frame of locinc
samples (if needed, padding is
done) in wf and returns the length
of frame

Public int getFrame unsigned long
int i, string
framename

Copies ith frame of locinc samples
(if needed, padding is done) in wf
and returns the length of frame

Public vector<do
uble>

getMFCC int *status Gets all the parameters one by one
from fptr

Public int appendFrame

string fpath appends a frame to this wavefile
without smoothing

Public int getData char*
frmdata,unsign
ed long int*
frsize

Gets data for the current frame or
wavefile with the length indicated
by frsize

Public int commit

void copies all private variables & data
back to the location specified by
path

Public int showDetails

void Displays the header information of
wavefile

Public - ~wavefile

void Destructor: closes the file specified
by the path and copies all private
variables & data back, deallocates
buffer for data, and try to delete the
temporary file

Public unsigned
long int

nFrames

void Returns Subchunk2Size/getlocinc()

Speech coding using personalized speech repository

21

filemanager.cpp

This class is responsible for handling the various frame file operations such as

creating frame files with a unique name, deleting temporary ones and saving the
permanent ones as the repository.

Visibility Datatype Variable name Description
Protected vector<string> filelist List of all the temporary files that have

been created

Member Functions

frame.cpp

This class is responsible for representing the frames and performing operations as
performed by the wavefile class.
This class publicly inherits from the wavefile class.

Data members

Inherited from the wavefile class.

Member functions

Except for the constructors, it inherits all the functionality of the wavefile class. Other
member functions are as follows

Visibilit
y

Return
type

Name Parameters Description

Public - filemanager void Constructor: Implicit constructor
Public - ~filemanager void Destructor: Deletes all the temporary

files
Public string newTempFile void Provides a new unique name to the

frame file
Public int checkTempFile string path Checks whether the file is

temporary.Returns 1 if temporary
else 0

Public int delTempFile string path Deletes the file if it is found to be
temporary

Public int makePerm string dest,
string src

Makes the file permanent by
renaming it if it is found to be non-
temporary

Speech coding using personalized speech repository

22

framemfcctable.cpp

This class is responsible for populating and retrieving mfcc parameters from
the mfcc table for current frame.

Data members

Visibility Datatype Variable name Description
private vector<vector<d

ouble > >
mfcctable Stores the 12 mfcc parameters for each

frame

Member functions

codefile.cpp

This class represents the codefile that is the output of encoder and used as an input to
the decoder. It is responsible for holding the emailid and codes and for the operations
on these data members.

Data members:

Visibility Datatype Variable name Description
private String Emailed uniquely identifies repository and also

name of the repository directory
private string Path system path of the directory under which

Visibilit
y

Return
type

Name Parameters Description

Public - frame void Constructor: Implicit constructor.Calls
wavefile()

Public - frame

char*
frdata,unsigne
d long int
frsize

Constructor: Calls
wavefile(frdata,frsize)

Public - Frame string
wavepath

Constructor: Calls wavefile(wavepath)

Public - Frame

wavefile& wv Copy Constructor: Calls
wavefile(wv)

Public - Frame const
wavefile& wv

Copy Constructor: Calls wavefile(wv)

Public - Frame frame& wv Copy Constructor: Calls wavefile(wv)
public - ~frame Void Destructor

Visibilit
y

Return
type

Name Parameters Description

Public - framemfcctable void Constructor: Implicit constructor
Public int addFrame vector<double

> mfcc
Adds the mfcc parameters for the
current frame into the mfcc table

Public vector<do
uble>

getFrameMFCC int i,int *status Gets the mfcc parameters for the
current frame from the mfcc table

Public unsigned
long int

nFrames

wavefile& wv Returns the size of the mfcc table

Speech coding using personalized speech repository

23

all the repositories are stored
private vector<unsigned

int>
Codestream buffer to be emptied into the codefile

private unsigned long int curloc current location inside the codestream

Member Functions

repositorymanager.cpp

This class is used to manage a single repository that is the output of the
repository generator, and used by both the encoder and decoder. The repository is
identified by the emailid ad is stored as a directory containing a codebook and
representative frames.

Data members:

Visibility Datatype Variable name Description
private String Emailed uniquely identifies repository and also

name of the repository directory
private string Path system path of the directory under which

all the repositories are stored

Visibili
ty

Return
type

Name Parameters Description

Public - codefile

string cf_path
,string
email_id,unsig
ned long int
size

constructor to be called by the encoder
module

Public - codefile

string cf_path constructor to be called by the decoder
module

Public int append unsigned int
code

Appends the code specified as parameter
to this codefile

Public unsigned
int

read void Gets all the codes in this codefile into the
codestream.

Public unsigned
int

getcode Void Returns the next code from the
codesream. Returns
END_OF_CODESTREAM when
reached end of codestream

Public int distance vector<double
> mfcc

calculates the distance between the
current data point passed as parameter
and the cluster centroids

Public string reademailid

Void Returns the emailid’s value embedded in
this codefile

Public - ~codefile void Destructor

Speech coding using personalized speech repository

24

Member Functions

vox.cpp

NAME
 vox : Voice eXchange

SYNOPSIS

vox options filename module_specific_options

options:
 -r repository generation
 -e encoding
 -d decoding

filename: path of the input file

module_specific_options:
 If option=="-r" then emailid
 If option=="-e" then output_filename
 If option=="-d" then output_filename

DESCRIPTION:
A system for exchanging voice messages over mail, using very high speech compression. The sender
can record his voice message and transform it into the coded, compressed file using the encoder
module. The coded file can be transferred as an email attachment. The receiver may then pass the
attached file through the decoder module, which reproduces the original speech. Both the encoder and
decoder use a repository of speech segments generated using the repository generator module.

Visibility Return
type

Name Parameters Description

Public - repositorymanag
er

void Implicit constructor

Public - repositorymanag
er

string
email_id, int
create=NOCR
EATE

Creates a repository with the name
as specified by the
parameter,email_id when used in
repository generation.
Used to access the repository in the
encoder and the decoder phases.

Public string makeNewFileNa
me

int i Generates a new file name as
specified by the email_id and
integer i

Public vector<do
uble>

getClusterCenter unsigned int i Gets all the cluster centroids for
this repository

Public int addMFCC vector<double
> mfcc

Insert the mfcc parameters of the
cluster center in the codebook

Public string getFrameName unsigned int
code

Gets the filename for the specified
code

Public - ~repositorymana
ger

void Destructor

Speech coding using personalized speech repository

25

Parameter name Typical value Description
SUCCESS 1 Denotes successful completion of the routine
FAILURE 0 Denotes failure in the routine due to some

error
END_OF_CODESTREAM 0xFFFFFFFF

Denotes the end of the code file

REP_PATH "repositories/" Path of the directory where the repositories
are stored

CODEBOOK

"/rep_file.bin" Name of the codefile

MAXPATH

256 Maximum size of the path

voxtemppath

"tmp" Denotes the directory name where the
temporary files are stored

FRAMELENGTH

0.02 Denotes the length of the frame in seconds

SAMPLERATE 8000 Denotes the sampling rate in samples per
second

BPS 16 Denotes the number of the bits per sample
MAX_DIM

12 total number of dimensions involved

k

10000 number of clusters

VERY_HIGH_VALUE

99999.99999 Denotes a very high value

NO_OF_ITER 6 Number of iterations
CREATE 1 Denotes that a repository needs to be created
NOCREATE 0 Denotes that a repository need not be created

as it already exists

Speech coding using personalized speech repository

26

6
 TECHNOLOGIES USED

6.1. Linux

Here are some of the benefits and features that Linux provides over single-user
operating systems (such as MS-DOS) and other versions of UNIX for the PC.

 Full multitasking and 32-bit support.
 GNU software support.
 The X Window System.
 TCP/IP networking support.
 Virtual memory and shared libraries.
 Audio & Multimedia.

6.2. STLs

Originally, the development of the STL (Standard Template Library) was started by
Alexander Stepanow at HP in 1979. Later, he was joined by David Musser and Meng
Lee. In 1994, STL was included into ANSI and ISO C++.

The STL provides general purpose utility classes which programmers can use in their
applications and they even don't have to worry about allocating and freeing memory.
These classes are array, link, stack, string, vector, iterator, map classes. And the STL
provides general algorithms for sort, search, or reverse arrays or links. Besides these
two things, the STL also provides some iterators and other options you can apply on
these classes.

Features:

The STL's generic algorithms work on native C++ data structures such as
strings and vectors. STL containers are very close to the efficiency of hand-coded,
type-specific containers.

Advantages of the STL

 You don’t have to write your classes and algorithms. It saves your time.
 You don’t have to worry about allocating and freeing memory. That's a big

problem when you create you own linked-list, queue or other classes.
 Reduces your code size because STL uses templates to develop these classes.
 You have to override your functions or classes to operate on different types of

data while STL let you apply these classes on different kind of data.
 Easy to use and easy to learn.

6.3. Emacs

For programming on the CSE Unix system. Emacs features are as follows:

 source code coloring

Speech coding using personalized speech repository

27

 Automatic indentation
 Line numbers
 Split screen compilation
 Automatic line wrapping
 Automatic backups
 Free Windows version

6.4. C++ under LINUX

C++ is an "object oriented" programming language created by Bjarne
Stroustrup and released in 1985. It implements "data abstraction" using a concept
called "classes", along with other features to allow object-oriented programming.
Parts of the C++ program are easily reusable and extensible; existing code is easily
modifiable without actually having to change the code. C++ adds a concept called
"operator overloading" not seen in the earlier OOP languages and it makes the
creation of libraries much cleaner.
Overloading allows to declare a method with different parameters.

C++ maintains aspects of the C programming language, yet has features which
simplify memory management. Additionally, some of the features of C++ allow low-
level access to memory but also contain high level features.

C++ could be considered a superset of C. C programs will run in C++

compilers. C uses structured programming concepts and techniques while C++ uses
object oriented programming and classes which focus on data.

C++ describes classes into header files, and body of methods into source files.

By declaring instances of classes you can reuse set of variables and methods without
having to define them again.

 Memory management is unchanged. Classes inherit one from other and share their
methods.

6.5. Makefiles

We need a file called a makefile to tell make what to do. Most often, the
makefile tells make how to compile and link a program.

6.6. Edinburgh Speech Tools

The Edinburgh Speech Tools Library is library of general speech software,
written at the Centre for Speech Technology Research at the University of Edinburgh.

The Edinburgh Speech Tools Library is written is C++ and provide a range of

for common tasks found in speech processing. The library provides a set of stand

Speech coding using personalized speech repository

28

alone executable programs and a set of library calls which can be linked into user
programs.

sig2fv Generate signal processing coefficients from waveforms

sig2fv is used to create signal processing feature vector analysis on speech
waveforms. The following types of analysis are provided:

• Linear prediction (LPC)
• Cepstrum coding from lpc coefficients
• Mel scale cepstrum coding via fbank
• Mel scale log filter bank analysis
• Line spectral frequencies
• Linear prediction reflection coefficients
• Root mean square energy
• Power

fundamental frequency (pitch)

6.7.Tk/tcl

Tool Command Language

The Tcl language and Tk graphical toolkit are simple and powerful building blocks
for custom applications. The Tcl/Tk combination is increasingly popular because it
lets you produce sophisticated graphical interfaces with a few easy commands,
develop and change scripts quickly, and conveniently tie together existing utilities or
programming libraries.

One of the attractive features of Tcl/Tk is the wide variety of commands, many
offering a wealth of options. Most of the things you'd like to do have been anticipated
by the language's creator, John Ousterhout, or one of the developers of Tcl/Tk's many
powerful extensions. Thus, you'll find that a command or option probably exists to
provide just what you need.

The tool command language Tcl (pronounced tickle) is an interpreted, action-oriented,
string-based, command language. It was created by John Ousterhaut in the late 1980's
along with the Tk graphical toolkit. Tcl and the Tk toolkit comprise one of the earliest
scripted programming environments for the X Window System. Though it is
venerable by today's standards, Tcl/Tk remains a handy tool for developers and
administrators who want to rapidly build graphical frontends for command line
utilities.

Tcl and Tk come bundled with most major Linux distributions and source-based
releases are available from tcl.sourceforge.net. If Tcl and Tk are not installed on your
system, the source releases are available from the SourceForge Tcl project:
http://tcl.sourceforge.net/. Binary builds for most Linux distributions are available
from rpmfind.net. A binary release is also available for Linux and other platforms
from Active State at http://aspn.activestate.com/ASPN/Tcl

Speech coding using personalized speech repository

29

Tcl is built up from commands which act on data, and which accept a number of
options which specify how each command is executed. Each command consists of the
name of the command followed by one or more words separated by whitespace.
Because Tcl is interpreted, it can be run interactively through its shell command,
tclsh, or non-interactively as a script. When Tcl is run interactively, the system
responds to each command that is entered as illustrated in the following example. You
can experiment with tclsh by simply opening a terminal and entering the command
tclsh.

 Tcl's windowing shell, Wish, is an interpreter that reads commands from standard
input or from file, and interprets them using the Tcl language, and builds graphical
components from the Tk toolkit. Like the tclsh, it can be run interactively.

6.8. Pesq

PESQ stands for 'Perceptual Evaluation of Speech Quality' and is an enhanced
perceptual quality measurement for voice quality in telecommunications. PESQ was
specifically developed to be applicable to end-to-end voice quality testing under real
network conditions, like VoIP, POTS, ISDN, GSM etc.

PESQ (Perceptual Evaluation of Speech Quality) is a method of determining the voice
quality in the telecommunications networks. It combines the time-alignment
technique from PAMS (Perceptual Analysis Measurement System) with the accurate
perceptual modeling of PSQM (Perceptual Speech Quality Measurement), the best
features of each technique. It is applicable not only to speech codecs but also to end-
to-end measurement. Defined by ITU-T recommendation P.862 in February 2001,
PESQ has become the most widely accepted standard for measuring voice quality
over VoIP networks. However, the use of PESQ is not limited to VoIP. It can be used
effectively to test, for example, voice over frame relay (VoFR), voice over ATM
(VoATM), wireless systems, and cable modem and DSL systems that carry speech.
PESQ takes into account filtering in analog components, variable delay, and coding
distortion. It measures one-way quality and is designed for use with intrusive tests.
Meaning of PESQ Values The PESQ score is mapped to a MOS-like scale, a single
number in the range of -0.5 to 4.5, where values close to 4.5 indicate very good
speech quality, and values close to -0.5 indicate very bad speech quality. For most
cases, the output ranges between 1.0 and 4.5. PESQ score 2 and below corresponds to
degradation level that is difficult to understand. Further mapping to MO values is the
fairly straightforward process.

A system that assesses the quality of speech must allow for the transmission of
different voices. The source can be real or artificial speech. Input from real speech
should be based on ITU-T P.830 and it is recommended the use of minimum of two
male and female speakers. Artificial speech is recommended only if it can represent
the temporal and phonetic structure of real speech signals. Test signals should include
speech bursts that are separated by silent periods, that represent of natural pauses in
speech. The typical duration of a speech burst is 1-3 seconds. PESQ can also be used
to assess the quality of systems carrying speech in the presence of background or
environment noise.

Speech coding using personalized speech repository

30

7
TEST CASES

Test case 1

Training File Parameters

Training file
size

Sampling
rate

Sample
size

Number of
Channels

Compression type
used

~ 15 Minutes 8000 Hz 16 bits 1 PCM

Repository Parameters

Message Parameters

Using
Repository

Where is the message
from

Length of
message file

Length of
coded file PESQ

1 out repository ~ 1.9 MB ~ 24 KB 0.331

1 in repository ~ 250 KB ~ 4 KB 0.887

2 in repository ~ 250 KB ~ 4 KB 0.636

Reposito
ry
Number

Numb
er of
Cluster
s

Frame
length

MFCC
features
used

Number
of
Iterations

Size of
repositor
y
obtained

Time required to
generate repository

1 10000
20
millise
conds

0,1,2,3,4,
5,6,7,8,9,
10,11

6 ~14 MB ~ 486 minutes

2 13000
20
millise
conds

0,1,2,3,4,
5,6,7,8,9,
10,11

6 ~14 MB ~ 636 minutes

Speech coding using personalized speech repository 31

8
PROJECT TIMELINE

Obtain Approval

Problem Definition Analysis

Study of earlier systems

Class Identification

Usecase Analysis

Analysis Review

Object modeling

Behavioral modeling

Design Review

Design Modifications

Revised Design review

Alpha Implementation

Testing

Review results

Optimize system parameters

Beta Implementation

Testing

Review results

Generate final report

Submit project with report

June 04 Sept 04 Dec 04 Mar 05

Speech coding using personalized speech repository

32

9
 TASK DISTRIBUTION

Mumbai University recommends a group of 2-5 for the project work for the IV year
BE projects. We formed a group of 3.

After understanding the project, we realized that it basically contains 3 modules from
the statement of the problem. They were as follows:

1. Repository generator
2. Encoder
3. Decoder

On further analysis (this time aimed specifically at each module) we soon realized
that all the modules depended on some basic classes of objects.

e.g. Wavefile class, a class to handle clustering, class to handle repository and code
files, etc. So we sat together and decided on the different classes to be
developed/reused and their interactions in various modules.

Then Apoorv started off with study and development of the wavefile class and its
child class frame to handle various operations on .wav files. To handle multiple
temporary frames, he also developed filemanager class. He was also instrumental in
identifying the tools that can be used for MFCC generation.

 Manish was handed the responsibility of handling the clustering algorithm (with the
time and memory efficiency considerations) and vector quantization to be used and
implemented as clustermanager class. He worked on the implementation of
framemfcctable class, that is a part of clustermanager.

 Sumeet was given the responsibility of handling the repositorymanager and codefile
class which included considerations of how to represent the codefiles and the
repository. He also put extra efforts for testing the program at his home and was
instrumental in identification of someof the key parameters in system performance.

Finally, we decided to integrate our individual works to form 3 new classes to provide
an abstraction interface between the user and these classes. Thus the combined effort
led to development of repositorygenerator, encoder and decoder classes.

So as to create a complete command line-based tool we created the main file vox.cpp
which presented the user with the desired module of the available three.

Finally to implement a GUI for our tool, we used Tk.

After having a working tool in our hand, we tested the system with different
parameters which we had very cautiously isolated in parameters.cpp. We studied
various test cases that were provided by our guide and those generated by us to
improve the quality of the tool by deciding upon the appropriate parameter values

Speech coding using personalized speech repository

33

10
 REFERENCES

 Ki-Seung Lee and Richard V. Cox, A very low bit rate speech coder based on a
recognition/synthesis paradigm, IEEE Transactions on Speech and Audio
Processing, 2001

 Suresh Balakrishna, Speech Recognition using Mel Cepstrum features,
Mississippi State University, 1998

 http://www.it.iitb.ac.in/~chetanv
 http://www.speex.org/
 http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/kmeans.html
 http://www.festvox.org/
 http://www.sourceforge.org/
 http://www.opensource.org/
 http://www.psytechnics.com/downloads/2001-P02.pdf
 http://www.pesq.org/
 www.tcl.tk/

Speech coding using personalized speech repository

34

11
 APPENDIX

User manual:

VoX is an acronym for Voice eXchange. VoX is a nifty command-line and GUI based
tool that is used to encode speech files using a repository.

Sample passages can be used to generate a good training file. This will
eventually affect the creation of repository. A good training file should be long and
phonetically balanced. You may use open literature to generate the training file. Such
literature is available at Project Gutenberg

Some of the sample commands for the command line are:

To create directory named vox in root directory.
$mkdir vox

To copy the compressed files vox.tar.gz to vox directory.
$cp vox.tar.gz vox

To change the directory.
$cd vox

To uncompress the compressed files.
$tar -zxvf vox.tar.gz

To run the make file of the vox tool.
$make

To view the man page of the vox tool.
$./vox

For repositorygenerator module :
$./vox -r yourbigspeechfile.wav youremailid@somehost.somedomain

For encoder module :
$./vox -e yourmessage.wav codedfile.bin youremailid@somehost.somedomain

For decoder module:
$./vox -d codedfile.bin outputmessage.wav

Speech coding using personalized speech repository

35

Graphical interface's screenshots are shown below:

As you start you will see the following screen. Click one of the 3 buttons on the left
hand side so as to start the desired module.

When you click the topmost button the following window opens up in which you need
to enter the appropriate input as shown.

Repository generator

Decoder

Encoder

Status bar

Module name

File selector

Start execution

Exit button

Speech coding using personalized speech repository

36

Some of the most frequently asked questions :

Q The program does not compile:
A Are all the source files together in a directory? If not, put them together and

then try. Do you have the privilege to create or modify directories? If not, the
program will not compile or will not run properly. Consult your root about this
problem.

Q I am unable to run the program:

Speech coding using personalized speech repository

37

A The program may take a long time to finish. This is particularly true when you
are creating a repository. It may even happen during encoding or decoding
phase.

Q I get errors about MFCC stuff:
A Do you have sig2fv in the working directory of vox? If not, put it there. Is

sig2fv executable? If not chmod it to 700. If you are getting errors about
libtermcap or something like that, just get it from somewhere. sig2fv depends
on it.

Q The repository generator is not working:
A The program may take a long time to finish. This is particularly true when you

are creating a repository. It may even happen during encoding or decoding
phase.

Q Help! VoX is stuck!!
A The program may take a long time to finish. This is particularly true when you

are creating a repository. It may even happen during encoding or decoding
phase.

Q The encoder is not working:
A The repository generator is not working: The program may take a long time to

finish. This is particularly true when you are creating a repository. It may even
happen during encoding or decoding phase.

Q The decoder is not working:
A The repository generator is not working: The program may take a long time to

finish. This is particularly true when you are creating a repository. It may even
happen during encoding or decoding phase.

For more information visit http://vox.sf.net

Speech coding using personalized speech repository

38

Technical manual

VoX should work on any Linux/Unix box.

VoX has been developed using g++ on Redhat Linux. It has been tested on Redhat
Linux and Knoppix.

VoX makes use of sig2fv tool of Edinburgh Speechtools Library.

You will have to compile it seperately and place sig2fv in the working directory of
VoX.

VoX is independent of

 speech recording software and hardware
 e-mail software and communication network
 sound reproduction software and hardware

Advantages of this system

The system will be user-friendly. Once the repository generation and exchange
process is over, communication can begin almost instantly. The following are the
most prominent advantages of this system:

 Efficient Bandwidth Usage: Since only codes are transmitted, and not actual
speech, the system uses very little bandwidth, and is extremely speedy and cost
effective.

 Clarity Of Communication: Expression and understanding of emotions are better
in voice communication.

 Usable as a shared library
 Easy to use package

Applications
 News broadcast and archival: Consider the audio news downloads which appear

on news websites. These news items are typically read out by one person (or a
small group of persons). The actual news audio samples can be encoded based on
the profile. The users will only need to download the encoded data. This can be
decoded using the profile stored earlier by the user, and the audio can be
regenerated.

 Streaming and audio conferencing: Instead of communication via e-mail, this
system can act as a phone, so that two people can communicate in real-time.
Extending this idea further, multicasting will help in creating a virtual conference,
wherein the voice of speaker will be made audible to the entire audience.

Speech coding using personalized speech repository

39

For more information visit http://vox.sf.net

Hardware Requirements

Linux Compatible Machine (Pentium etc…Recommended Pentium III or equivalent).

Soundcard, Keyboard, Monitor, Speakers, Microphone (Not essential but
Recommended)

Internet connection (Not essential but Recommended),RAM atleast 256 MB
(Recommended).

Secondary Storage (Hard disc) : >5GB,CD-RW Drive (if Internet not available).

CD-RWs.

Software Requirements
Operating System: Linux

Playback Software: that supports uncompressed Wavefile at 8000Hz,Mono channel,8-
bits/sample

Recording Software: (Not essential but Recommended) that supports uncompressed
Wavefile at 8000Hz, Mono channel, 8-bits/sample.

CD-RW software: if CD-RW drive is present.

Web browser and E-mail client.

The project will be independent of all these:

 speech recording software and hardware
 e-mail software and communication network
 sound reproduction software and hardware

