USER MANUAL

ProDAQ VXI Data Acquisition Systems

ProDAQ 3047 Pentium-M based
VXlbus Slot-0 Controller

o
3
.
]

PUBLICATION NUMBER: 3047-XX-UM-0100

bustec

Copyright, © 2014, Bustec Production, Ltd.

Bustec Production, Ltd.
Bustec House, Shannon Business Park, Shannon, Co. Clare, Ireland
Tel: +353 (0) 61 707100, FAX: +353 (0) 61 707106

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to Bustec
Production Ltd., and shall not, without express written permission of Bustec
Production Ltd, be used, in whole or in part to solicit quotations from a competitive
source or used for manufacture by anyone other than Bustec Production Ltd. The
information herein has been developed at private expense, and may only be used
for operation and maintenance reference purposes or for purposes of engineering
evaluation and incorporation into technical specifications and other documents,
which specify procurement of products from Bustec Production Ltd. This document
is subject to change without further notification. Bustec Production Ltd. Reserve the
right to change both the hardware and software described herein.

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTIONccitiiiiiiiiiiiiiieieteeeeee ettt ettt e e e e 1
I O O V= V1 PR 1
2 = o Tod 1 I = o | - o 1
1.3 FUuNnctional DESCHPLIONccvviiiiiiiiiiiiiiiiie ettt 3

1.3.1 CeNIIal PrOCESSON ...ttt ettt e e e e e e e et e e e e e e e e eeesannnnnes 3
G P OF = Tox g T 1V =T 0 g o] =T 3
1.3.3 CRUPSEL .ttt 3
1.3.4 SDRADM ...ttt 4
L1.3.5 PO BUSSES ... ittt ettt e ettt et e ettt e e e et b e e e e e ea e e e e eeba e e e e eabaaeaeees 4
G N Gl =[O0 1 £0] 1= 4
IO TR 0 01 4
G IR I o Y O g (= 5 = T = 4
1.3.9 Ethernet CONtrOlIr......ccooeeeeiiii e e e e e e 4
1.3.10 Graphics CONLIOIIETcevieiii e e e 4
1.3.11 Serial CoOMMUNICALIONSuuuuiiiiieeeieeeeeiiiee e e e e e e et e e e e e e e e eeteaar e e e e e e e e eeeennnn s 5
1.3.12 Keyboard and MOUSE.............oiiiii e e e e e e 5
1.3. 13 VXIDUS INEITACE ... e eeeeeeeieiie ettt e et e e e e e e e e e eeannes 5

CHAPTER 2 - INSTALLATION AND CONFIGURATIONcootviiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee 7
2.1 Unpacking and INSPECLIONccoeeiiiiiiiiiiii e e e e e e 7
2.2 Hardware CONfIQUIALION.uuuueeittitiiiiitiiiieiieie bbb eeeaanaaee 8

2.2.1 Logical ADAreSs SWITCH.......ccoooiiiieeeee e 8
2.2.2 Opening the Module ENCIOSUIE...........uiiiiiieieeieeee e 9
2.2.3 Installing @ PMC MOGUIEcooiiieeeeeeeee e 10
2.2.4 Installing the ProDAQ 3249 FP 1/O OPtioNcovvviiiiiieieieeeeeee e, 13
2.3 Installing the ProDAQ 3047 CONtIOlEr........cccceeiiiiiiiie e 14
2.4 SOftWare CONFIQUIATIONuuuuietieitiiiiiiiitebeiebieee bbb eaeeaeeeeaeeanenes 15
2.4.1 Configuring the ProDAQ 3047 for the VISA Library ... 15
2.4.2 Configuring the ProDAQ 3047 Interface Characteristics...........ccccoeeeeevvviiiinnnnnnn. 18
2.4.3 Running the VXIbus Resource Manager ... 21
2.4.4 The VISA ASSISTANT.....coiiiiiiii i 23

CHAPTER 3 - PROGRAMMING VXI DEVICES........cotiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 29
3.1 CONNECHING t0 8 DEVICEuuuiiiiiiiiiiiiiiiiiiiiiiiiii e 29
3.2 Programming Register-based DEVICESccovuuiiiiiiiiiiiieeeeiie e 30

3.2.1 ACCESSING REQISIEIS ... ittt e e e e e e e e e e eees 30
3.2.2 MoVvIiNg BIOCKS Of DALAcoeeeeeeeieee e 33

3.3 Programming Message-based DEVICES.............uuuuuuumrimmimmiiiiiiiiiiiiiiiiiiiiiieiiininananns 36
3.3.1 Writing and Reading MESSAJEScoevviiiieieee e 36

3.4 Optimizing Data TRroUgNPUL...........uuuiiiiiiiii e 37
3.5 Using VXIbus and Front Panel Trigger LINES...........coouiiiiiiiiiiii e 37
3.5.1 UsiNg VXIDUS Trigger LINES ...covuuiiiiiiie ettt e e e e eees 37
3.5.2 Using Front-Panel Trigger LINEScoooo oo, 38
APPENDIX A: VISA LIBRARY INSTALLATIONcoi it 41

APPENDIX B: VXIBUS CONFIGURATION REGISTER ... 45

B.1 Address Map and REQISIEIS.coiiiiiiiiiiiiiiiiiiieiieeee ettt 45
B.2 ReQISIEr DELAIIS.....cceiiiiiii et e e e e e aaaan 46
2 0t I 10 =T £ = PO 46
2 o To Y o | PP 46

o G I D 1AV Y/ o PP 46
Y - 1 L1 1 P 47
B.2.5 CONIOL. ... e 48

B .26 O S it 48

2 32 A 1Y 15 | 5 48
B.2.8 VIMEOM S ... i e 49

2 2 Y [@0 o o P 49
B.2.10 VIMIECONTIOL.....eeeciei e e e e e e e e e e e aaa e 50

2 B B Ly (@ 111 - | - 50

2 B o Ly L@ 11, 1 1 51

2 0t I T I T 1S = L (1 PO 51
B.2.14 TIHIGINIMASK. ... ettt 51

2 20t I I T [0 o o PR 53
B.2.16 TIHIGINIMOUEueiiiiiiiiiiiiiieiiee bbb 53

2 B2 A | 5 54
B.2.18 SErNUMHIGNuiiiii e e e et e e e e e e e e eanannn s 54
B.2.19 SEINUMLLOW. ...ttt e e e e e e s e e b e e e e a e s enes 54
APPENDIX C: FRONT PANEL CONNECTORS AND SWITCHES.............cccoeeeviiieee. 55
C.1 Front-Panel CONNECIOIS.uuuiiiiie et e e e e e e e e e e e e e e e eennnnnnes 55
C.1.1 10/100/1000 BASET POIS ...ucieeeeeiiiiiiiiiiiaee e e e e eeeeetiiias e s e e e e e e eeeeann s e e e e e e e eeeaennnnnnes 55
CLli2 USB . 55
C.1.3 RS-232 (COMI/COMR2)ueiiiee et e et e e e e e e e et s n e e e e e e e eeannnnnas 56
C.1.4 PS2 Combined Keyboard/Mouse CONNECLON...........cccoeeeeeeiiiieiiiiiieee e 56
C.1.5 SVGA CONNEBCION. ... ittt e e e e e e e e e e e e e e e e ean e e eaneeeannas 56
C.L.6 Front-Panel LEDS............uuuiiiii it 57
C.1.7 Front-Panel SWILCNESi i e 57
C.2 ProDAQ 3249 FP 1/O OPLON ...uuiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiieisbibsseseesbsseeeeeessenesseseneeennanes 58
C2LTHGUEI INJOUL.....eeeeeeeeeeeeeeee e 58
O O I Q1 O TR 58
C.2.3 SHAtUS LEDS . .oeeee e e e 58
APPENDIX D: SPECIFICATIONS ... 59
D.1 Embedded Controller CharacCteriStiCSuuviiiiiiiiiieeeeie e 59
D I O 0 T 1= o P 59
D.1.2 IMEBIMOIY ...ttt e ettt e e e e e et e e e e e e e 59

D 200 TR 381 I o 59
D.1.4 GraphiCs INTEITACEuuuiiiiiiiiiiiiiiiie bbb eeaeaaee 59

[I o = T o I3 1] PP 59
D.1.6 IEEE P1386.1 PMC SIOtuuuuiiiiiiiiiiiiiiiiiiiiiieiisieiisiessssssssssssssssssssssnsnsnnnnnnnnannnne 60
D.2 VXIDUS CharaCteriSHiCScceiiiiiiiiiiiiieeeeeeeeeeiis e s e e e e e e e eeeten e e e e e e e e eeeasannnn e e e eeeeeeennes 60
[R =T =T - | RPN 60

[I AT 1 o 10 L3 1Y F= 1 = P 60
D.2.3 VXIbus Slave (Configuration REQISIEN)........cccciiiiiiiiiiiieeeeeeeeeeice e 60
D.2.4 VXIbus Slave (Shared MEMOIY)cccuuuuuiiiiieiiieeeiie e 60

D.2.5 VXIDUS REQUESTENttt e et e e e e e e e anannnnas 61

D.2.6 VXIDUS ATDITEE ...ttt bnnsnnnes 61
D.2.7 VXIDUS INTEITUPES ...ttt 61
D 202 T O It 0 [o | 61
D 22 T O I 0 1 1 o 11| 61
9 20 0 o To 1= | PO 62
9 20 5 A 1 T T 1= @ T PP 62
D.3 Power SUPPIY LOBAGINGceiiiiiiiiiiiiiiiiiiiieieeeee ettt 62
D.4 MISCEIIANEOUSceeiiiiiiiiiiiiiiieeeeee ettt e e 62

Table of Figures

Figure 1 - ProDAQ 3047 BIOCK DI@Qramcceeiiiiiiiiiiiieeeeeeeeeeiiiiis e e e e e e eeeeaaanns s e e e e eeeeannns 2
Figure 2 - Logical Address SWItCh LOCAtIONcoooiiiiiiiiiie e 8
Figure 3 - Location Of ENCIOSUIE SCIEWSccccciiiiiiiiiiiiie e et e e e e e e e e eeenees 9
Figure 4 - ProDAQ 3047 Module ASSEMDIYccooviiiiiiiiee e 10
Figure 5 - PMC Filler Panel ASSEMDBIYcoiiiiiiiiice e e eeeaens 11
Figure 6 - PMC Module ASSEMDBIYooviiiiiii e 12
Figure 7 - ProDAQ 3249 ASSEMDBIY.......ouiiiiiiiie e 13
Figure 8 - Installing the ProDAQ 3047 into a C-Size Mainframe............cccccvvvvieiiieeeeceeennns 14
Figure 9 - VISA Library Configuration UtIlItyouuiiiiiiiii e 16
Figure 10 - Adding @n INTEIACEccovveiiiiii e e e e e e eeaees 16
Figure 11 — Displaying configured INterfaces.............uuiiiiiiiiiiiiiiiie e 17
Figure 12 - The ProDAQ 3047 Configuration Dialog...........cccovvuiiuiiiiiiieeeiieeeiiiie e, 18
Figure 13 - Configuring the INterrupt LINEScoooiiieeeee 20
Figure 14 - Configuring the Front Panel /Ouiiiiii e, 21
Figure 15 - Running the VXI ResSource Manager ... 21
Figure 16 - Resource Manager Configuration.............ccoooeeeeiiiiiiiiiiii s e e e 22
Figure 17 - The VISA ASSISTANT......ccoo e 23
Figure 18 - VISA Assistant SeSSion WINAOWuuuiiiiiiieiiiiiiiiiiis e e e eeeeeenn e e e e e eeannns 23
Figure 19 - Using a template Operation.............oooviiiiiiiiiiieee e 24
Figure 20 - Using a basiC /O OPEratioNcccovviiiuiiiiiieeeeeeeeeeiie e e e e e e e e e e eeenens 25
Figure 21 - Memory 1/O OPEIALIONSccooeiiieeeeeeeee e 25
Figure 22 - Shared Memory OPErationS...........ccovvviiiiuiiiiieeeeeeeeeeiie e e e e e e e e eeaa e e e e e eeeannns 26
Figure 23 - VXI SPeCIfic OPEIatiONS.......cccoiiiieieeeeee e 27
Figure 24 - Opening @ VISA SESSIONuuuiiiii it e ettt e e e e e e e e et e e e e e eeennnns 29
Figure 25 - Memory-based /O ... 31
Figure 26 - Register 1/O using Memory MappinNgceeeeeeeeeeeerriiiiieeeeeeeeeersnineeeeeeeeeennns 32
Figure 27 - Moving a BIOCK Of Dat@..........coooiiiiiiiieieeeeee 33
Figure 28 - VXIDUS transfer tyPesooovvviii i 34
Figure 29 - Performing VXIbus Block Transfers..........coooooi, 35
Figure 30 - Reading the Device Identificationcccoooeeiiiiiiiiiii e, 36
Figure 31 - Sending a Trigger PUISE ..., 38
Figure 32 - Mapping Trigger LINESouuiiii i e e e e e enenns 40
Figure 33 - Selecting the Type of Installation. ..., 42
Figure 34 - Selecting Components for Installation. ..., 42
Figure 35 - Selecting Installation OPLiONSccooeeiiiiiiie e 43
Figure 36 - FINIShING the SETUP.....cccuviiiieie e e 43

VI

Chapter 1 - Introduction

1.1 Overview

The ProDAQ 3047 high-performance Slot-0 Controller provides a powerful, fully
customizable platform for embedded applications. Using Concurrent Technologies
Pentium M Processor Single Board Computer series VP325, and Bustec’s ProDAQ 3040
6U VMEG64x to C-Size VXIbus adapter, it provides the computational power and bandwidth
for algorithmic- and throughput-intensive control, test and data acquisition applications.

The VP325 Intel Pentium M Processor Single Board Computer provides a powerful, fully
customizable platform for embedded applications with a processor speed of 1.6 GHz. The
Pentium M processor supports the Dual Independent Bus (DIB) architecture with the
backside bus connected to the on-die Level 2 cache and the 64-bit front-side bus
connected to the memory controller at 400 MHz to provide a maximum theoretical transfer
bandwidth of 3.2 Gbytes/second. The processor is capable of addressing 4 Gbytes of
physical memory all of which is cacheable, and 64 Terabytes of virtual memory. The Level
1 (64 Kbytes instructions / 64 Kbytes data) and Level 2 (1 Mbyte instructions and data)
caches are both implemented on the processor die for maximum performance.

The ProDAQ 3040 6U VMEG64x to C-Size VXIbus Adapter allows the usage of 6U VMEbus
boards in a C-Size VXlbus system. It translates VMEbus cycles into VXIbus cycles and
vice versa. In addition it houses the extensions necessary for VXIbus devices, as there are
the configuration registers, a trigger and extended interrupt interface, MODID support and
the 10 MHz clock generation. It forwards all VME master cycles transparently to the
VXlbus, allowing a VMEbus master the full access to the VXIbus. On the VXlbus it allows
the full integration of the module in the VXIbus resource management by providing a set of
VXIbus compatible configuration registers and a configurable translation window in the
VXlbus A24 or A32 address space. Accesses to this translation window are forwarded to
the VMEbus module’s A16, A24, A32 or CR/CSR space.

Together they provide a powerful C-size, single Slot, register based embedded VXlbus

Slot-0 controller that can to be used as an embedded controller in Slot-0 and non-Slot-0
applications.

1.2 Block Diagram

Figure 1 shows a functional block diagram of the ProDAQ 3047 Pentium-M based VXlbus
Slot-0 controller.

Copyright, © 2006, Bustec Production Ltd. Page 1 of 62

Chapter 1 - Introduction

ProDAQ 3047 User Manual

Keyboard 2 x Ethernet PMC Module
Mouse 2xRS232 UsSB Graphics (10/100/1000-TX) Front-Panel I/O
PN —~ PN
1T 1T 1T
PC87417 Intel
Super 1/0O 82546GB
PMC Module
6300ESB
I/O Hub —
64-bit PCI bus
5 | BIOS 3 On-board s
& |FLASH DDR SDRAM -
Internal 2.5 3 ==
hard-drive slots ™ N7 =
1&2 "8
Intel s
855GME s
Universe I "o
3
I DDR SDRAM : 5
SO-DIMM : S
S
Intel e
Pentium-M .
Byte Swap
VXlbus
Configuration
Register

CLK10, Trigger

Transparent Cycle VXIbus Address and MODID
Forwarding Translation Control
VXlbus >

Figure 1 - ProDAQ 3047 Block Diagram

Page 2 of 62

Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

1.3 Functional Description

The ProDAQ 3047 Pentium-M based VXIbus Slot-O Controller is a powerful single board
computer based upon the Intel Pentium M processor, an 82546GB dual channel Gigabit
Ethernet controller, the Universe 1l PCI-to-VMEbus bridge and the 6300ESB 1/O hub.

1.3.1 Central Processor

The central processor used on this board is an ultra high performance Intel Pentium-M
processor operating internally at 1.6 GHz. This 32-bit processor supports the Dual
Independent Bus (DIB) architecture with the backside bus connected to the on-die Level 2
cache and the 64-bit frontside bus connected to the memory controller at 400 MHz to
provide a maximum theoretical transfer bandwidth of 3.2 Gbytes/s. The processor is
capable of addressing 4 Gbytes of physical memory all of which is cacheable, and 64
Terabytes of virtual memory.

1.3.2 Cache Memories

The Level 1 and Level 2 caches are both implemented on the processor die for maximum
performance. The Level 1 cache stores 32 Kbytes of instructions and 32 Kbytes of data.
The Level 2 cache stores 1 Mbyte of instructions and data. It operates at the core
frequency and is based on Intel's Advanced Transfer Cache architecture.

1.3.3 Chipset

The chipset used is comprised of the 855 GME Graphics and Memory Controller Hub and
the 6300ESB 1/0 Hub.

The 855GME interfaces to the CPU’s host bus. It provides a DDR SDRAM memory
controller, a graphics interface and a high-speed bus to connect to other chipset devices. It
supports concurrent Hub Link and CPU Bus operations.

The 6300ESB provides two PCI busses for supporting high performance PCI devices. The
6300ESB connects to the 855GME via a Hub Link 1.5 interface, which supports a
maximum transfer bandwidth of 266 Mbytes/s.

The 6300ESB also provides a variety of peripheral functions including EIDE controllers,
USB controller, IOAPIC interrupt controller and other legacy PC-AT architectural functions.

The 6300ESB connects to the on-board Firmware HUB containing the BIOS firmware and
to the PC87417 Super I/O controller providing serial ports as well as keyboard and mouse
controller.

Copyright, © 2006, Bustec Production Ltd. Page 3 of 62

Chapter 1 - Introduction ProDAQ 3047 User Manual

1.3.4 SDRAM

The 855GME SDRAM controller provides a DDR333 channel to provide a maximum
transfer bandwidth of 2.66 Gbytes/s and features ECC data protection. Up to 1 Gbyte of
on-board memory plus up to 1 Ghyte of SO-DIMM memory is supported.

1.3.5 PCIl Busses

There are two on-board PCI busses provided by the 6300ESB 1/O controller hub. The
primary PCI bus is 64-bit wide, operates at 33 or 66 MHz and connects to the Gigabit
Ethernet interfaces and the PMC site. The secondary bus is 32-bit wide and connects to
the Universe II™ PCI-to-VMEbus bridge.

1.3.6 EIDE Controllers

The 6300ESB I/0O hub provides two EIDE/Ultra ATA100 interfaces. One interface is routed
via the P2 connector to the 2.5” hard drive slot on the ProDAQ 3040 adapter, while the
other one can be used via an on-board connector to directly install either a 2.5” hard-drive
or a CompactFlash carrier.

1.3.7 USB

One USB2.0 port of the 6300ESB I/0O hub is available via a front-panel connector.

1.3.8 PMC Interface

A PMC interface, which supports single-width 64-bit or 32-bit PMC modules complying
with the IEEE 1361.1 standard, is provided. Both 5V and 3.3V PCI signaling environments
are supported for 33MHz modules.

1.3.9 Ethernet Controller

A 82546GB Gigabit Ethernet controller is used to provide two high-performance PCI to
Ethernet interfaces. Both support 10 Mbits/s, 100 Mbits/s and 1000 Mbits/s operation via
front-panel RJ45 connectors.

1.3.10 Graphics Controller

The 855GME provides a high-performance graphics accelerator with up to 64 Mbytes of
UMA memory. An analog CRT interface is provided via a 15-pin high-density D-Type
connector on the front panel.

Page 4 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

1.3.11 Serial Communications

The 6300ESB 1/0O hub provides two RS232 serial data communication channels via two
front-panel RJ45 connectors.

1.3.12 Keyboard and Mouse

A PS/2 type keyboard and mouse interface is available via a 6-way combined Mini-DIN
front-panel connector.

1.3.13 VXlbus Interface

A Tundra Universe Il PCI-to-VME bridge provides the VXlbus interface. Additional
hardware byte-swappingand VXIbus address range mapping are implemented through
high-speed programmable logic devices. The ProDAQ 3047 automatically detects whether
he is placed in slot O (the leftmost slot in a VXIbus mainframe) and enables or disables the
CLK10 and MODID lines accordingly.

Copyright, © 2006, Bustec Production Ltd. Page 5 of 62

Chapter 1 - Introduction ProDAQ 3047 User Manual

Page 6 of 62 Copyright, © 2006, Bustec Production Ltd.

Chapter 2 - Installation and Configuration

To set up and use the ProDAQ 3047 Pentium-M based VXIbus Slot-O Controller you need
the following:

A VXI mainframe

The ProDAQ 3047 VXIbus Slot-0 Controller
A VGA monitor

PS/2 or USB Keyboard and Mouse

The ProDAQ 3047 VXIbus Slot-0 Controller is a single-slot wide, C-size VXI module, which
can reside in any slot of a C-size or D-size VXI mainframe. It will automatically detect
whether it is located in the left most slot of the mainframe (slot “0”) and will enable or
disable its Slot-0 capabilities accordingly, avoiding conflicts with the backplane and other
modules.

Note

Being a C-size module, the ProDAQ 3047 does not provide a P3 connector as used
in D-size mainframes. If used as a Slot-0 Controller in a D-size mainframe, it cannot
provide the necessary control for instruments using the additional features of the
P3 connector (CLK100, Star Trigger, add. Trigger and Local Bus Lines).

2.1 Unpacking and Inspection

All ProDAQ modules are shipped in an antistatic package to prevent any damage from
electrostatic discharge (ESD). Proper ESD handling procedures must always be used
when packing, unpacking or installing any ProDAQ module, ProDAQ plug-in module or
ProDAQ function card:

= Ground yourself via a grounding strap or similar, e.g. by holding to a grounded
object.

= Remove the ProDAQ module from its carton, preserving the factory packaging
as much as possible.

= Discharge the package by touching it to a grounded object, e.g. a metal part of
your VXIbus chassis, before removing the module from the package.

= Inspect the ProDAQ module for any defect or damage. Immediately notify the
carrier if any damage is apparent.

= Only remove the module from its antistatic bag if you intend to install it into a VXI
mainframe or similar.

When reshipping the module, use the original packing material whenever possible. The
original shipping carton and the instrument’s plastic foam will provide the necessary
support for safe reshipment. If the original anti-static packing material is unavailable, wrap
the ProDAQ module in anti-static plastic sheeting and use plastic spray foam to surround
and protect the instrument.

Copyright, © 2006, Bustec Production Ltd. Page 7 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

2.2 Hardware Configuration

In general, the ProDAQ 3047 does not need to be configured to be able to run in your
VXlbus mainframe other then by choosing the logical address and the slot it will be
installed in. It will automatically detect whether it is located in left most slot of the
mainframe (slot “0”), and enable or disable the system controller and slot-O capabilities
accordingly.

All other hardware configuration settings are set to their defaults, which will be sufficient for
running the ProDAQ 3047 in most applications and environments. However, if you want for
example to install a PMC module, you may need to change some settings as described
below.

2.2.1 Logical Address Switch

Figure 2 shows the location of the logical address switch on the ProDAQ 3047. Set each
switch to ‘Off’ for a logical one (1) and to ‘On’ for a logical zero (0). The picture shows the
address switch set to logical address zero (0).

Figure 2 - Logical Address Switch Location

N
2 [[:l

If the ProDAQ 3047 is used in a non-slot-O position, it can be either statically or
dynamically configured. To configure it statically, the logical address switch must be set to
a value between 1 and 254. This determines the logical address of the module
permanently and can only be altered by changing the setting of the logical address switch.

To configure the ProDAQ 3047 dynamically, the logical address switch must be set to 255.
The resource manager will use the VXlbus MODID lines to access and configure the
board, and assigns a logical address during run-time.

Note

To be able to act as the Slot-0 Controller AND the Resource Manager for the VXI
mainframe it is installed in, the ProDAQ 3047 must be located in the left most slot
(slot “0”) of the VXI mainframe AND must be configured to use the logical address
O (OOhex).

Page 8 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

2.2.2 Opening the Module Enclosure

To install a PMC module or the ProDAQ 3249 FP 1/O option in the PMC slot of the
ProDAQ 3047, you will need to remove both the top and bottom cover of the metal
enclosure. To do so, you will have to remove the seven screws holding the enclosure in its
place:

1. a M2.5x6mm undercut flathead screw from the back of the module,

2. two M2.5x25mm panhead screws connecting the top an bottom cover
through the ProDAQ 3040 PCB,

3. two M2.5x6mm panhead screws connecting the top cover to the front-
panel mounting blocks,

4. and two M2.5x8mm panhead screws connecting the bottom cover, the
VP325 PCB and the extraction handles to the front-panel mounting
blocks.

The following picture shows the location of the different screws:

Top Cover

M2.5 x 29mm Panhead M2.5 x 6mm

Undercut

M2.5 x 6mm
Panhead

Cover Hooks
M2.S x 8mm
Panhead

M2.S x 6mm
Panhead

\ M85 « 8mm

Panhead

Figure 3 - Location of Enclosure Screws

The covers are also held in place by four cover hooks each, two per side. After removing
the screws, you will need to remove the covers by sliding them back and up (down for the
bottom cover) at the same time.

Copyright, © 2006, Bustec Production Ltd. Page 9 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

M2.5 x 25mm Me.5 x6mm
Panhead Undercut

Top Cover

M2.5S x 6mm
Panhead

Extraction
Haondles

;

M2.5 x 8mm
Panhead

Figure 4 - ProDAQ 3047 Module Assembly
2.2.3 Installing a PMC Module

Page 10 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

The ProDAQ 3047 provides one slot to install a PMC module. To install a PMC module,
you must first remove the PMC filler panel, which covers the front-panel PMC cutout in
case no PMC module is installed.

PMC Filler Panel

Figure 5 - PMC Filler Panel Assembly

To remove the filler panel, unscrew the two M2.5x6mm panhead screws connecting it to
the printed circuit board below (see Figure 5 - PMC Filler Panel Assembly). In case your
ProDAQ 3047 has the ProDAQ 3249 Front-panel I/O option installed, you will need to
remove it in the same way, as it takes the place of a PMC card when installed (see also
2.2.4 : Installing the ProDAQ 3249 FP I/O Option).

The ProDAQ 3047 PMC slot supports both the 3.3V and 5V signaling environment defined
in the PCI standard. For setting the correct voltage for your PMC module, you need to
install the detachable polarizing key for the PMC module in the correct location and set an
on-board jumper.

Caution

If the PMC V(I/O) configuration selected does not match the PMC modules
requirements, it may result in damage to the module or to the ProDAQ 3047.

The polarization key is located in the middle of the PMC slot either between or in front of
the four PMC bus connectors (Pn1/Jnl to Pn4/Jn4). Choose the position in front of the
connectors for the 3.3V signaling environment and the position right between the

Copyright, © 2006, Bustec Production Ltd. Page 11 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

connectors for the 5V signaling environment. The jumper for the V(I/O) selection is located
besides the PMC slot and must be set to 1-2 to select 3.3V and to 2-3 to select 5V:

PMC V(I/D)
[coJo ofo 0]
SV 33V

LN

a|| \&
B-,!!‘ll M

PMC V(I/DD ‘
Jumper*

S5V Key Position ‘ 3.3V Key Position &

4 x M25 x 6mm
Panhead Screws £@

4

Figure 6 - PMC Module Assembly

* PMC V(I/0> Jumper shown in 3.3V Position

To install the PMC module, insert it first into the front-panel cutout (1) and then press it
down (2) until the PMC connectors Pn1/Jnl to Pn4/J4 are seated correctly. Fix the PMC
module on the board using four M2.5x6mm screws as shown in Figure 6.

Note

Due to the utilization of the outer rows of the backplane bus connectors on the
VXlIbus, the ProDAQ 3047 does not support any form of rear-panel 1/0O via the PMC
bus connector Pn4/Jn4.

The ProDAQ 3047 supports the automatic switching between 33MHz and 66MHz PCI bus
speed depending on the installed PMC module. If necessary, the speed can also be fixed
to 33Mhz by setting the switch SW4, position 1 to “on”. The switch is located on the solder
site of the module.

Note

When the PCI bus speed for the PMC module is set fixed to 33Mhz, the dual
Ethernet controller sitting on the same PCI bus segment will also be restricted to
33Mhz bus speed.

Page 12 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

2.2.4 Installing the ProDAQ 3249 FP I/O Option

To allow access to the VXlbus trigger lines and the VXIbus CLK10 clock signal, the
ProDAQ 3249 Front-panel I/O option can be installed in the PMC slot. It provides the
connectors for the front-panel trigger I/O and VXIbus CLK10 and houses two LEDs
showing the status of the VXlbus SYSFAIL* signal and any activity on the VXIbus.

Note

The ProDAQ 3249 Front-Panel 1/0O Option cannot be installed together with a PMC
module, as it is located in the PMC slot. If your application requires access to the
VXlbus trigger lines or the VXlbus CLK10 signal AND you need to utilize a PMC
card in the controller, please contact Bustec Production Ltd. for other options of
providing those signals.

To install the ProDAQ 3249, remove the PMC filler panel, place the 3249 in the front-panel
cutout and connect the flat cable attached to it into the connector on the ProDAQ 3040
board. Fix the 3249 with two M2.5 x 6mm screws to the PCB.

ProDAQ 3249
FP 1/0 Option

2 x M25 x 6mm L&

Panhead Screws

Figure 7 - ProDAQ 3249 Assembly

The routing of the VXIlbus CLK10 signal can be defined via the VISA library configuration
tool (see 2.4.2.3). The routing of the VXlbus trigger signals to/from the front-panel I/0 can
be configured by your application using the standard VISA functions viMapTrigger and
viunmapTrigger.

Copyright, © 2006, Bustec Production Ltd. Page 13 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

2.3 Installing the ProDAQ 3047 Controller

To prevent damage to the ProDAQ module being installed, it is recommended to remove
the power from the mainframe or to switch it off before installing.

Insert the module into the mainframe using the guiding rails inside the mainframe as
shown in Figure 8. Push the module slowly into the slot until the modules backplane
connectors seat firmly in the corresponding backplane connectors. The top and bottom of
the front panel of the module should touch the mounting rails in the mainframe.

Figure 8 - Installing the ProDAQ 3047 into a C-Size Mainframe

Note:

To ensure proper grounding of the module, tighten the front panel mounting
screws after installing the module in the mainframe.

Connect your monitor, keyboard and mouse to the respective front-panel connectors. If
you are using both keyboard and mouse using the PS/2 connector, you will need to use
the PS/2 splitter cable coming with the ProDAQ 3047.

Page 14 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

2.4 Software Configuration

The ProDAQ 3047 comes with the operating system pre-installed on the internal hard disk
drive. When you boot the ProDAQ 3047 for the first time, the Windows Welcome or Mini-
Setup is started to help you finalizing your computers configuration. You will be asked to
complete the settings for

— License Key

— Computer Name

— Administrator Password
— Domain Settings

— Time Zone

— User Accounts

- etc.

The exact sequence depends on the chosen operating system version.

When prompted to enter your license key, please use the information from the license
documents coming with your ProDAQ 3047.

The VISA library, the VXI resource manager and all tools are already pre-installed as well.
You will find shortcuts to all programs in the VXIPNP group of your start menu. In case you
want to update the VISA library installation later on, please refer to Appendix A: Visa
Library Installation.

2.4.1 Configuring the ProDAQ 3047 for the VISA Library

The VISA library uses interface names and numbers to access available hardware
interfaces. In order to enable the VISA library to use the ProDAQ 3047 VXIlbus interface,
you must run the VISA configuration once to ensure that an active configuration for the
VXlbus interface of the 3047 is stored.

From the VXIplug&play program group created during the installation of the VISA library,
select “VISA Configuration Utility” (“Start” = “VXIPNP” = “VISA Configuration Utility”).
This will start the configuration tool for the VISA library and attached hardware interfaces.

Copyright, © 2006, Bustec Production Ltd. Page 15 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

wi=ProDAQ Configuration Ukility -10] =]

Configured Interfaces:

WS4 Mame | Interface Description ;I Add Interfaces |
Remove Interface |

Canfigure [nterface |

Refresh List |

Resource Manager |

h? |

Figure 9 - VISA Library Configuration Utility

To add a new interface, select “Add Interfaces”. A new dialog “Available Interfaces” is
shown with a list of unconfigured devices found in the system. The VXIlbus interface of the
ProDAQ 3047 appears as interfaces of the type “VXI” together with a description
containing the serial number of the device.

wimProDAQ Configuration Ukility x|

Available Interfaces:

Type | Description «| Interface Number
| FraDAL 3047 Ser Mo, 47508177 I\-‘Xm ﬂ
w

The ligt to the left shows all
available, not configured
interfaces. To add an
interface, select one of

the available interfaces

to the left and prezs <0k,

H
Y4 | 0K, | Cancel I

Figure 10 - Adding an Interface

To add the VXlbus interface of the ProDAQ 3047, select the entry for the device in the list,
choose an interface number on the right side and select ‘OK’. The list of configured
interfaces in the main dialog will now display the configured interface with its interface
name and number.

Page 16 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

s ProDAQ Configuration Utiliky - |D|ﬂ

;I Add Interfaces |
Remaove Interface |
Canfigure Interface |

Refresh List |

Configured Interfaces:

Resource b anager |

About
LI Cuit |

Figure 11 — Displaying configured Interfaces

2|
__thou_|

To remove an interface from the system, select the device in the list of configured
interfaces and select “Remove Interface”. To configure device-dependent parameters of
an interface, select “Configure Interface”.

Copyright, © 2006, Bustec Production Ltd. Page 17 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

2.4.2 Configuring the ProDAQ 3047 Interface Characteristics

The VXlbus interface of the ProDAQ 3047 has a number of characteristics that can be
configured with the configuration utility. The settings are stored together with the device
name/number and the serial number on the system and applied whenever the resource
manager is executed.

To configure the ProDAQ 3047, select the interface in the list and click “Configure
Interface”. The four tab panels of the configuration dialog allow to configure the different
parts of the interface:

VXlbus Configures various parameters used by the ProDAQ 3047
when accessing the VXIbus.

Interrupt Configures the assignment and use of the VXIbus interrupt
lines.

Front-End Configures the routing of VXlbus clock and trigger lines

to/from the front panel connectors.

. ProDAQ 3047

—
Embedded S5lot-0 Controller

vgé&plc

—Welbuz Timer ———————————————— — Wxlbuz Reguester

Busz Timeout I 1024 us 'I Request Mode I Fair 'I
Request Level I 3 'I

—Wlbus Arbiter ——————————————

Ayrbitration Mode I Pricrity "I Feleaze tMode | ROR hd

Timeout Qus -

r— Counter ccess

O Caunter I 296 bytes 'I

O Count -
Resget to Diefault aunker Qus
Ll ITI Cancel |

Figure 12 - The ProDAQ 3047 Configuration Dialog

To store the altered configuration, select “OK”. “Cancel” closes the dialog without altering
the stored configuration.

NOTE

To apply changes to the configuration of the 3047, you will need to re-run the
resource manager or to restart your VXI mainframe to make these changes
effective.

Page 18 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

2.4.2.1 Configuring the VXlbus Access

To configure the VXIbus access of the ProDAQ 3047, select the tab “VXlbus” in the
configuration dialog window (see Figure 12). The configurable parameters are:

Bus Time-out The time the on-board times needs to expire once a
VXlbus access by the 3020 is started. If it expires, a
VXlbus slave did not respond correctly and a bus error is
generated.

Possible values are: Disabled, 16 usec, 32 usec, 64 psec,
128 psec, 256 usec, 512 psec and 1024 psec.

Arbitration Mode Selects the bus arbiter mode. Possible values are:
“Priority”, “Single Level Arbitration” or “Round Robin”.
(Remark: The arbiter is only enabled if the module is
placed in the leftmost slot of a VXI mainframe, slot “0”).

Arbiter Time-out Selects the time-out for the bus arbiter.

Request Mode Sets the request mode of the ProDAQ 3020, “Fair” or
“‘Demand”.

Request Level Selects the request level the module is using when

accessing the VXlbus. Possible values are 3 to 0, with 3
as the highest priority and 0 as the lowest.

Release Mode Selects the release mode: “RWD” (release when done) or
“‘ROR” (release on request).

2.4.2.2 Configuring the Interrupt Lines

The configuration tool allows configuring the usage of the VXlbus interrupt lines in
the allocation mechanism of the VXI resource manager.

To configure the lines, select the tab “Interrupt” in the configuration dialog window.
For each of the VXIbus interrupt lines (Level 1 to Level 7) one of two settings for the
assignment can be chosen (see Figure 13):

Auto This setting will allow the resource manager to use the interrupt line
for this level in his allocation mechanism.
None This setting will prevent the resource manage to use the interrupt line

for this level in his allocation mechanism. This setting must be used if
a instrument in the system does not allow the dynamic allocation of
interrupt lines and wants to use one or more lines permanently
allocated.

Copyright, © 2006, Bustec Production Ltd. Page 19 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

. ProDAQ 3047

—r
bustec

vg&pla

Embedded S5lot-0 Controll

t IFrnnt-End I

Interupt Aszzignment

Lewvel 1 m
Level 2 m
Lewvel 3 m
Lewvel 4 m
Lewvel 5 m
Level B m
Lewvel 7 m

Rezet to Default |

M Ok I Cancel

Figure 13 - Configuring the Interrupt Lines

2.4.2.3 Confiqguring the Front Panel I/O

The ProDAQ 3047 Slot-0 Controller supports the synchronization of multi-mainframe
systems via shared system clocks (CLK10) and trigger lines. These lines are
available via the ProDAQ 3249 FP 1/O option when installed in the PMC slot of the
3047. To configure the front panel input and output signals, select the “Front Panel
I/O” tab on the right hand side of the configuration utility window (see Figure 14).

If the ProDAQ 3047 is located in the left most slot (slot “0”) of a VXlbus mainframe, it
can be configured to either receive a CLK10 signal via the “CLK10” connector or to
generate a CLK10 signal internally and share it with other mainframes via the
“CLK10” connector on the 3249. The “Front Panel CLK10 I/O” control allows you to
configure this:

Disabled The ProDAQ 3047 uses the internal clock generator to
generate the CLK10 clock signal for the VXlbus. The
front-panel CLK10 I/O is disabled.

Enabled as Output The ProDAQ 3047 uses the internal clock generator to
generate the CLK10 clock signal for the VXIlbus and
additionally makes the clock signal available via the front
panel “Clk Out” connector.

Enabled as Input The internal clock generator is disabled and the ProDAQ
3047 uses the clock signal from the “Clk In” connector to
generate the VXIbus CLK10 clock signal.

If the module is located in any other slot in a VXlbus system, the CLK10 signal
supplied by the VXlbus is used.

Page 20 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

> ProDAQ 3047
- Q

Embedded Slot-0 Controller -
bustec &p

Front Panel CLE10 [nput/Dutput I Enabled as Dutput VI

Feset to Default |
[}9 | Ok I Cancel |

Figure 14 - Configuring the Front Panel I/O

The actual mapping of the “Trig In” signal to one or many of the VXIlbus trigger lines and
the mapping of the VXIbus trigger line or lines to the “Trig Out” signal is done using VISA
functions (see 3.5.2 : Using Front-Panel Trigger Lines).

2.4.3 Running the VXIbus Resource Manager

Before you can use the VISA library to communicate to the instruments, you must run the
resource manager. The resource manager searches for VXI and GPIB instruments
connected to your PC and configure them. To run the resource manager, select “VXlbus
Resource Manager” from the VXlplug&play program group in the start menu (“Start” =
“VXIPNP” ="V XI Resource Manager”).

wimWXlbus Resource Manager =10 x|

IWaiting [4 zeconds) for SYSFAIL to be deasserted

o

([]]] 3

Cloze | Detailss» |

Figure 15 - Running the VXI Resource Manager

After start, the resource manager will wait a defined time to allow all devices to complete
their initialization and self-test (if available). Then he performs the following functions:

Copyright, © 2006, Bustec Production Ltd. Page 21 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

Identify all VXlbus and GPIB devices in the system.
Manage the system self-test and diagnostic sequence.
Configure the system’s A24 and A32 address maps.
Configure the system’s Commander/Servant hierarchies.
Allocate the VXIbus IRQ lines.

Initiate normal system operation.

ouALNE

Once finished, the information about the VXlbus and GPIB devices found is made
available for the VISA library and a readable version of this information is saved to a file.
Both the initial delay and the location of the resource manager output file are configurable
using the configuration utility.

To configure these parameters, start the configuration utility by selecting the “VISA
Configuration Utility” entry in the VXIplug&play program group in the start menu (“Start” =
“WXIPNP” =2»”VISA Configuration Utility”). In the configuration utility, select the “Resource
Manager” button on the right hand side (see Figure 9). This will show the configuration
dialog for the resource manager, which allows configuring the output file destination and
initial delay.

i ProDAQ) Resource Manager 5'

This utility allows vou to editthe Resource Manager Delay and
output Configuration File

Output File Destination

I o hwriphphiadink Thbuizasburesman, out Browse |

|3 3: Resource Manager Delay [secs]

Reset ta Default |
%‘? | Cancel |

Figure 16 - Resource Manager Configuration

Caution

The initial resource manager delay as defined by the VXIbus standard must be in
minimum five (5) seconds. Configuring the resource manager to use a shorter delay
might not allow all devices to finish their initialization and self-test, preventing the
resource manager from identifying and configuring them.

Note

The VISA library is a shared library that initializes itself when it is first loaded by an
application. Applications started while the VISA library is already loaded just share
this configuration. Only when all applications using the VISA library are stopped, it
will be unloaded by the system. Therefore all applications using the VISA library
must be closed before running the resource manager or using the VISA
configuration utility. Take special care while using integrated development
environments, they will keep the VISA library loaded even when the application
developed in them was stopped.

Page 22 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

2.4.4 The VISA Assistant

The VISA Assistant is an interactive tool, which allows executing VISA commands without
programming. To run the VISA Assistant, select “VISA Assistant” from the VXIplug&play
program group in the start menu (“Start” = “VXIPNP” 2»"VISA Assistant”).

The main window of the Visa Assistant shows a list of all VISA resources in the system:

win Bustec VISA Assistant ME s

“em VISA Assistant o
4 sistant ﬁuﬁm

bustec
Detected resources | =
-4 Fesource Information
L ARI0: 0 INS TR
H M anufacturer 10:
Oxe70 [3696)
W0 286 INSTR X
V100 BACKPLANE Hodel code:
IO -BACKPLANE e 5 2
- WRI0:MEMACT !
LRI SERVANT
- GPIB-A]
- GFIB Refresh |
E-ASAL
About |
Cloze |

Figure 17 - The VISA Assistant

On selecting one by double-clicking on its entry, the VISA Assistant opens a VISA session
for that device in a separate window:

VXI0:: 2 INSTR
: ate Operations Saession identifier
(- Basic 1/0 Operations Ix48150
-- Memory [/0 Dperations AR
-- Shared Memony Operations Lock state
-4 Specific Dperations MNa lock held
Ewvent handler
MNotinstalled

Enabled events

Figure 18 - VISA Assistant Session Window

In the treeview control on the left hand side you have now access to information about the
session and the VISA functions possible for the resource.

Copyright, © 2006, Bustec Production Ltd. Page 23 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

The functions available are divided into five groups:

= Template Operations

= Basic I/O Operations

= Memory I/O Operations

= Shared Memory Operations
= VXI Specific Operations

Not all operations are available for all types of devices, so depending on the device type,
the treeview control might not list all the possibilities discussed here.

2.4.4.1 Template Operations

The VISA standard implements a template of standard services for a resource. The
functions in this group provide access to those services. The services available include
attribute operations, asynchronous operation control, resource access control and event
operations.

As an example, the function viGetAttribute allows to retrieve the values for attributes
defined for a resource. Selecting the function in the treeview control on the left hand side
(click on “Template Operations”, then on “viGetAttribute”) allows you to control the
parameters for the function in a dialog on the right hand side of the session window:

X102 INSTR

- Gession Information

H Retrieve the state of an attribute,
- Temp tiarz

— Input

Attribute: [vI_ATTR_MANF_ID =l

- wiSetdttribute
- wiStatusD esc
- wiT erminate

- wiLock

- willnLack

- wiEventH andler
- wiE nableE vent il
- wiDisableE vent
- willizcardE vents — Output

- i aitOnE went . _ l—
- Basic /0 Operafiors Altribute state: |: E70
H-- bemary 140 Dperations

H-- Shared Memory Operations
H- %3] Specific Operations

[e I B e

Retuned Status:

| ¥ ID | Operation completed successfully.

Figure 19 - Using a template operation

Select one of the attributes to retrieve in the “Attribute” control in the “Input” section and
press “Run”. The “Output” section will show the current value of the attribute in the control
“Attribute state”, if the operation was successful, and the returned status of the function.

2.4.4.2 Basic I/O Operations

The basic I/O operations will allow the user to send commands to a device and read back
its answer, to trigger the device or read its status.

Page 24 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

e VI 2 INSTR
- S egsion Information .
- T emplate Operafions Read data from device.
— Input
viHeadiToFile Mumber of bytes ta read: EIU 3: ™ Asynchronous

wiwrite
wivdriteFromFile A
vidssertTrigger tn
wiAeadSTH
LeyiClear — Dutput

[#-Memary |/0 Operations Flead bufar

[#-Shared Merory Operations

(-4l Specific Operations

Jobidertiier: ||

Returned Status:

'+ I

Figure 20 - Using a basic I/O operation

As an example, you can use the viRead function to read data or a message from the
device. To do so, just specify the maximum number of bytes to read from the device and
press “Run”. As before, the VISA Assistant will show the message read as well as the
returned status of the operation.

2.4.4.3 Memory |/O Operations

The memory I/O operations consist of High- and Low-Level Access services. The High-
Level Access Services allow register-level access to devices that support direct memory
access. They encapsulate most of the code required to perform the access, such as
window mapping, address translation and error checking. The Low-Level Access Services
are similar in purpose, but are implemented without the software overhead of the High-
Level Services.

VXI0:2::INSTR

ession [nformation

emplate Operations
azic /0 Operations
.IHD Operationz — Input

Addiess space: I\.-'I_MB_SPACE vI icdth
i+ 2-hit

Dffeet: |x [0 =
- |: = 15-bit

vitd ovedsync i 32-hit
vitd aptddress

Read in an 8-bit, 16-bit, or 32-bit value from the specified memony space
offzet.

vidnbd apaddress
i viPeek Fun
viPoke
- Shared Memory 0 perations — Dutput
-l Specific Operations
[ata read: FIDE—

Returned Status:

| ® ID I Operation completed successfully.

Figure 21 - Memory 1/O Operations

Copyright, © 2006, Bustec Production Ltd. Page 25 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

Figure 21 shows an example of the high-level access services. In the “Input’ section the
user can select an address space, an offset and a transfer width. By pressing “Run”, on of
the functions viln8, viln16 or viln32 (depending on the access width) are executed and the
result is shown in the “Output” section of the dialog along with the returned status.

The high-level functions viMoveln, viMoveOut and viMoveAsync will move blocks of data.
As with the functions viln8, vin16, viln32, viOut8, viOut16 and viOut32, the “Input”’ section
will allow you to enter an address space, an offset and a transfer width. Additionally a
length parameter will define the number of elements to transfer.

The low-level access services viMapAddress, viunmapAddress, viPeek and viPoke need
to be used together. First a memory mapping must be established by using the function
viMapAddress, then viPeek and viPoke can be used to access the mapped register space,
and viUnmapAddress must be used to undo the memory mapping.

2.4.4.4 Shared Memory Operations

Shared memory operations allow to allocate memory space on the device to be used
exclusively by the session allocating it. Figure 22 shows an example of the shared memory
operations.

VX2 INSTR

PP
Sezzion Information
-- Template Operations
--Basic 1/0 Operations — Input

--Memor_l,l I/0 Operations Allacation size: Fm

ary Dperations

Allacate memary from a device's memary regiah.

--\u"XI Specific Dperations

— Output

Offget: FI

Returmed Status:

x| |

Figure 22 - Shared Memory Operations

2.4.4.5 VXI Specific Operations

VXI Specific Operations are those operations, which were implemented to deal with
special circumstances you can find only on controller and instruments using the VXIbus to
communicate. The example shows an operation, which can be found only for backplane
resources of VXlbus mainframes (see Figure 23).

Page 26 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

VX10::0::BACKPLANE

Session Information
-- Template Operations
-- Baszic /0 Operations
-4 Specific Operations
wibzsertintrSignal

eyl nmap Trigger

Idap the specified trigger source line to the specified destination line.

— Input

Source line: I YI_TRIG_ECLO

Destination line: | WI_TRIG_ECLO

— Output

Returmed Status:

s

Figure 23 - VXI Specific Operations

The functions viMapTrigger and viUnmapTrigger enable you to route a trigger signal from
a front panel input to one of the VXlbus trigger lines (only for VXlbus controller supporting
this feature). In the “Input” section you can select a source trigger line, which should be
mapped to a destination trigger line. As in the other examples, pressing “Run” will execute

the function and display the result in the “Output” section.

Note

For more information about the VISA functions and their parameter, refer to the

VXiplug&play Systems Alliance document “VPP-4.3: The VISA Library”.

Copyright, © 2006, Bustec Production Ltd.

Page 27 of 62

Chapter 2 - Installation and Configuration ProDAQ 3047 User Manual

Page 28 of 62 Copyright, © 2006, Bustec Production Ltd.

Chapter 3 - Programming VXI Devices

This chapter shows how to use the ProDAQ 3047 Embedded VXIlbus Slot-0 Controller and

the Bustec VISA library to program VXI instruments.

3.1 Connecting to a Device

An application using the VISA library to communicate with the instrument needs to open a
session for the resource it wants to use. A resource might be a physical resource as for
example a VXI instrument or a virtual resource like the backplane or the resource
manager. The session will handle all accesses, attributes and services for the particular

resource.

#include <visa.h>

main (int argc, char **argv)
{
Vistatus status;
ViSession rm session;
ViSession instr session;
ViChar descr[256];

/* open a session to the resource manager */
if ((status = viOpenDefaultRM (&rm session)) != VI _SUCCESS)

O

viStatusDesc (rm session, status, descr);

if (status > VI _SUCCESS)
printf (“WISA WARNING: viOpenDefaultRM returned status %08x (%s)\n”,
status, descr);
else
{
printf (“WISA ERROR: viOpenDefaultRM returned status %08x (%s)\n”,
status, descr);
return status;

}

/* open a session to the instrument */
(:) if ((status = viOpen (rm _session, “VXIO::2::INSTR”,

{

viStatusDesc (instr_session, status, descr);

if (status > VI _SUCCESS)
printf (“WISA WARNING: viOpen returned status %$08x (%s)\n”,
status, descr);
else
{
printf (“WISA ERROR: viOpen returned status %$08x (%s)\n”,
status, descr)
return status;

}

/* accessing the instrument */

/* close the sessions to the instrument and the resource manager */
(:) viClose (instr_session);

viClose (rm session);

}

VI NULL, VI NULL, &instr session)) != VI SUCCESS)

Figure 24 - Opening a VISA Session

The example shown in Figure 24 contains all necessary steps to connect to a device using
VISA functions. The first step in a program, which uses the VISA library, is always to open

Copyright, © 2006, Bustec Production Ltd.

Page 29 of 62

Chapter 3 - Programming VXI Devices ProDAQ 3047 User Manual

a session to the default resource manager (®). It provides connectivity to all VISA
resources registered with it and gives applications control and access to individual
resources.

The next step is to open a session to the instrument or multiple sessions to multiple
instruments (®). The resource name used is a combination of interface type and number,
logical address of the VXI device, and a device type:

VXI0:2:INSTR

Interface Type / \ Device Type

Interface Number Logical Address

The interface type for the ProDAQ 3047 Slot-0 Controller is always “VXI”. The interface
number is the number, which was assigned to the particular 3047 by using the VISA
configuration utility (see 2.4.1 : Configuring the ProDAQ 3047 for the VISA Library). The
logical address of a VXI device is defined either statically by setting its logical address
switch, or dynamically during runtime by the resource manager. If the resource manager
assigned the address dynamically, the actual assignment can be found in the output file of
the resource manager (see 2.4.3 - Running the VXIbus Resource Manager). The device
type for VXI instruments is always “INSTR”.

Note

When running the above example, please make sure that the logical address used
in it matches the logical address setting of the instrument you want to connect to.

Note

Before you can use the above example to connect to your device, you must run the
VXI Resource Manager (see 2.4.3 : Running the VXIbus Resource Manager).

3.2 Programming Register-based Devices

Register-based devices are devices implementing a set of registers in A16 and often in
A24 or A32. Programming register-based devices is done by reading and writing these
registers to change their contents, either by bit, in groups of bits or in whole.

3.2.1 Accessing Registers

To access single registers, the VISA library offers two groups of functions. The first group,
viln8, viln16, viln32, viOut8, viOutl6, viOut32, provides a standardized, single word
access to a device register in A16, A24 or A32 space. Figure 25 shows an example of a
function reading a value from a device register (@), modifying the value read and writing it
back (®@). The driver for the ProDAQ 3047 will automatically take care about byte ordering,
i.e. it will swap the words to be read or written between the little-endian host byte ordering
your PC is using to the big-endian byte ordering used on the VXlbus.

Page 30 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

Vistatus function rmw register (ViSession instr session, ViBusAddress offset, ViUIntl6 mod)
{
ViStatus status;
ViChar descr[256];
ViUIntl6 value;
(:> if ((status = viInlé (instr session, VI Al6 SPACE, offset, &value) != VI SUCCESS)
{
viStatusDesc (instr session, status, descr);
if (status > VI _SUCCESS)
printf (“WISA WARNING: viInl6 returned status %08x (%s)\n”, status, descr);
else
{
printf (“WISA ERROR: viInl6 returned status %08x (%s)\n”, status, descr);
return status;
}
}
value = value | mod;
<:> if ((status = viOutl6 (instr session, VI Al6 SPACE, offset, value) != VI SUCCESS)
{
viStatusDesc (instr session, status, descr);
if (status > VI _SUCCESS)
printf (“WISA WARNING: viOutlé returned status %08x (%s)\n”, status, descr);
else
{
printf (“WISA ERROR: viOutlé6 returned status %08x (%s)\n”, status, descr);
return status;
}
}
return VI SUCCESS;
}

Figure 25 - Memory-based I/O

The second group of functions is intended to map a register range into the memory of the
host and accessing it directly. Because this ability is architecture and system dependent,
the VISA standard foresees an attribute, which allows determining whether the range
could be physically mapped or the system architecture does not allow it. Depending on the
value of the attribute VI_ATTR_WIN_ACCESS, the range mapped can be directly

accessed (e.g. by using a C-style pointer), or the functions

viPeek8, viPeek16, viPeek32,

viPoke8, viPokel6 and viPoke32 must be used to access registers in the mapped range.
Figure 26 shows the same function as in Figure 25, this time implemented with memory

mapping functions.

Copyright, © 2006, Bustec Production Ltd.

Page 31 of 62

Chapter 3 - Programming VXI Devices ProDAQ 3047 User Manual

{
ViStatus status;
ViChar descr([256];
ViAddr address;

ViUIntl6 value;

viStatusDesc

printf (%
else

{
printf (%

viStatusDesc

printf (%
else

{
printf (%

if (win_access ==

/* allowed to

{

@ value = value

}

{

viStatusDesc

printf (%
else

{
printf (%

}

return VI_SUCCESS;

ViStatus function rmw register (ViSession instr session, ViBusAddress offset, ViUIntl6 mod)

ViUIntl6 win_access;

(:) if ((status = viMapAddress (instr session, VI _A32 SPACE, offset,

if (status > VI_SUCCESS)

return status;

(:) if ((status = viGetAttribute (instr session,

if (status > VI_SUCCESS)

return status;

value = * ((ViUIntl6é *) address);
(:) value = value | mod;
*((ViUIntl6 *) address) = value;
}
else if (win access == VI _USE OPERS)

/* use functions to access memory */
viPeekl6 (instr session, address, &value);

viPokel6 (instr_ session, address, value);

(:) if ((status = viUnmapAddress (instr session) != VI SUCCESS)

if (status > VI SUCCESS)

return status;

sizeof (ViUIntlé), VI FALSE, (ViAddr) 0, &address)) != VI _SUCCESS)

(instr session, status, descr);

VISA WARNING: viMapAddress returned status %08x (%s)\n”,
status, descr);

VISA ERROR: viMapAddress returned status %08x (%s)\n”,
status, descr);

VI _ATTR WIN ACCESS, &win access)) != VI SUCCESS)

(instr session, status, descr);

VISA WARNING: viGetAttribute returned status %08x (%s)\n”,
status, descr);

VISA ERROR: viGetAttribute returned status %08x (%s)\n”,

status, descr);

VI DEREF ADDR)

use pointer or similar */

| mod;

(instr_session, status, descr);

VISA WARNING: viUnmapAddress returned status %$08x (%s)\n”,
status, descr);

VISA ERROR: viUnmapAddress returned status %08x (%s)\n”,
status, descr);

Figure 26 - Register 1/0O using memory mapping

Page 32 of 62

Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

In the above example, the function viMapAddress is used to map a register range starting
with offset and extending over the size of the register into the memory of the host (©). If
this is successful, the attribute “VI_ATTR_WIN_ACCESS” is checked to see whether the
controller was able to map the address range physically into the memory space of the
controller, or whether the mapping was done only logically (®@). If the mapping was done
physically, the application is allowed to use the address, the register range is mapped to,
as if it is accessing its own memory. So for example C-style pointers may be used to
change the register value (®). If the mapping was done only logically, the application need
to use the functions viPeek and viPoke provided by the VISA library to access the mapped
register range (®). The VISA library will use the stored values for the mapped offset and
range to calculate the physical address and execute a single access in the same way as
internally done for the high-level functions. The function viunmapAddress must be used to
undo the mapping of the register range (®). Only one mapping per session is allowed by
the VISA standard. Please not that the functions viPeek and viPoke will work in both cases
(VI_ATTR_WIN_ACCESS equal to VI_DEREF_ADDR or equal to VI_USE_OPERS), but
will introduce a slightly higher overhead then using direct access if possible.

3.2.2 Moving Blocks of Data

To move blocks of data between an instruments memory and the host memory, the VISA
library implements the functions viMoveln and viMoveOut for different transfer sizes. In
addition a number of attributes can be used to define the type of transfer performed on the
VXlbus.

#include <visa.h>

/* buffer used to store data from the instrument */
ViUIntl6 data[l1024];

main (int argc, char **argv)
{
ViStatus status;
ViSession rm_session;
ViSession instr session;
ViChar descr[256];
ViUIntl6 value;

/* open a session to the resource manager and instrument
* as shown in Figure 24 - Opening a VISA Session (not shown here) */

/* now move a block of 16-bit data from the instrument to the buffer */
if ((status = viMovelInl6 (instr session,

VI_A32 SPACE, MEM START, 1024, data) != VI_SUCCESS)
{

viStatusDesc (instr_session, status, descr);

if (status > VI_SUCCESS)
printf (“WISA WARNING: viMoveInl6 returned status %08x (%s)\n”, status, descr);
else
{
printf (“WISA ERROR: viMovelInl6 returned status %08x (%s)\n”, status, descr);
return status;

}

/* close the sessions as shown in Figure 24 - Opening a VISA Session */

Figure 27 - Moving a Block of Data

Copyright, © 2006, Bustec Production Ltd. Page 33 of 62

Chapter 3 - Programming VXI Devices ProDAQ 3047 User Manual

For each move, one or several packets of data are moved over the VXIbus to the ProDAQ
3047. The type of transfer used on the VXIbus depends on the value of several attributes:

VI_ATTR_SRC_PRIV for data moved from a VXIbus instrument to the host

VI_ATTR_DEST_PRIV for data moved from the host to a VXIbus instrument

Only if the value of those attributes are set correctly prior to moving the data via viMoveln
or viMoveOut, a block transfer on the VXlbus will take place. The following table shows the
type of transfers performed by the viMoveln, viMoveOut and viMove functions for the

different values of the attributes:

Settings Resulting Transfer
Attribute Address Space Privilege Data/Program | Block Transfer | AM(hex)
VI_DATA_PRIV VI_A16_SPACE Supervisory | - - 2D
VI_A24 SPACE Supervisory | Data - 3D
VI_A32_SPACE Supervisory | Data - 0D
VI_DATA NPRIV | VI_A16_SPACE | Non-priv. - - 29
VI_A24 SPACE Non-priv. Data - 39
VI_A32_SPACE Non-priv. Data - 09
VI_PROG_PRIV | VI_A16_SPACE Supervisory | - - 2D
VI_A24 SPACE Supervisory | Program - 3E
VI_A32_SPACE Supervisory | Program - OE
VI PROG_NPRIV | VI_A16_SPACE | Non-priv. - - 29
VI_A24 SPACE Non-priv. Program - 3A
VI_A32_SPACE Non-priv. Program - 0A
VI_BLCK_PRIV VI_A16_SPACE Supervisory | - - 2D
VI_A24 SPACE Supervisory | - BLT 3F
VI_A32_SPACE Supervisory | - BLT OF
VI BLCK_NPRIV | VI_A16 _SPACE | Non-priv. - - 29
VI_A24 SPACE Non-priv. - BLT 3B
VI_A32_SPACE Non-priv. - BLT 0B
VI_D64_ PRIV VI_A16_SPACE Supervisory | - - 2D
VI_A24 SPACE Supervisory | - MBLT 3C
VI_A32_SPACE Supervisory | - MBLT 0C
VI D64 NPRIV | VI _A16 SPACE | Non-priv. - - 29
VI_A24 SPACE Non-priv. - MBLT 38
VI_A32_SPACE Non-priv. - MBLT 08
Figure 28 - VXIbus transfer types
Block transfers are performed on the VXlbus only if the correct attribute

(VI_ATTR_SRC_PRIV or VI_ATTR_DEST_PRIV, depending on the direction) is set to one
of the types VI_BLCK_ PRIV, VI_BLCK_NPRIV, VI_D64_ PRIV or VI_D64_NPRIV. The
data width of the performed transfer depends on the viMoveXX function used, except for
the case that the attribute is set to VI_D64_ PRIV or VI_D64_ NPRIV, in which case a D64
MBLT transfer is performed (viMoveln32 and viMoveOut32 only).

Page 34 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

#include <visa.h>
ViUIntl6 data[1024]; /* buffer used to store data */

main (int argc, char **argv)
{
ViStatus status;
ViSession rm session;
ViSession instr session;
ViChar descr[256];
ViUIntl6 value;

/* open a session to the resource manager and instrument
* as shown in Figure 24 - Opening a VISA Session (not shown here) */

/**/

/* Perform a 16-bit wide block transfer from a VXIbus instrument to the host */
dAhkhkhkhkhkhkkhkhhkhkhkhkhkkhkhhkhhkhkhkhkhkhkhhkhkhkhkhkkhkhkhk kb hkhkhkhkhkhkhkhkhkhkhkkhkhkhk kb hkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkkhkhkhkhdkhkhkk*xk
/ /

/* set the correct attribute - VI ATTR SRC PRIV for moving data IN */
if ((status = viSetAttribute (instr session,
VI_ATTR SRC_ PRIV, VI BLK PRIV)) != VI SUCCESS)

/* handle errors or warnings (not shown here) */

}

/* now move a block of 16-bit data from the instrument to the buffer */
if ((status = viMoveInl6é (instr session,
VI A32 SPACE, MEM START, 1024, data) != VI SUCCESS)

/* handle errors or warnings (not shown here) */

}

/‘k***********************/

/* Perform a 32-bit wide block transfer from the host to a VXIbus instrument *x/
/‘k*‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k‘k*‘k*‘k*‘k*/

/* set the correct attribute - VI_ATTR DEST PRIV for moving data OUT */
if ((status = viSetAttribute (instr session,
VI_ATTR DEST PRIV, VI _BLK PRIV)) != VI SUCCESS)
{
/* handle errors or warnings (not shown here) */

}

/* now move a block of 32-bit data from the instrument to the buffer */
if ((status = viMoveOut32 (instr_session,
VI _A32 SPACE, MEM START, 1024, data) != VI_SUCCESS)

/* handle errors or warnings (not shown here) */

}

/**/

/* Perform a 64-bit wide block transfer from the host to a VXIbus instrument */
/‘k*‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k‘k‘k*‘k*‘k*‘k*/

/* set the correct attribute — VI_ATTR DEST PRIV for moving data OUT */
if ((status = viSetAttribute (instr_session,
VI _ATTR DEST PRIV, VI D64 PRIV)) != VI SUCCESS)
/* handle errors or warnings (not shown here) */
/* now move a block of 64-bit data from the instrument to the buffer */
if ((status = viMoveOut32 (instr session,

VI _A32 SPACE, MEM START, 1024, data) != VI SUCCESS)

/* handle errors or warnings (not shown here) */

/* close the sessions as shown in Figure 24 - Opening a VISA Session */

Figure 29 - Performing VXIbus Block Transfers

Copyright, © 2006, Bustec Production Ltd. Page 35 of 62

Chapter 3 - Programming VXI Devices ProDAQ 3047 User Manual

3.3 Programming Message-based Devices

Message-based VXlbus devices implement the word serial protocol to communicate with
the application. Programming is done by sending ASCIl messages to the device and
reading its answer.

3.3.1 Writing and Reading Messages

The basic functions to write and read messages to/from devices are the two functions
viRead and viWrite. They implement the word serial protocol for message based devices,
but they do so on a very basic level. The user needs to build his message and use viWrite
to send it to the device. Then he uses viRead to receive the message sent back. The
message received might consists of strings, numbers and formatting characters and he will
need to interpret this message. To avoid some of these steps, a couple of higher level
functions were implemented in the VISA library.

#include <visa.h>

main (int argc, char **argv)
{
Vistatus status;
ViSession rm session;
ViSession instr session;
ViChar descr[256];

/* open a session to the resource manager */
if ((status = viOpenDefaultRM (&rm session)) != VI SUCCESS)
{

/* error handling as shown in the previous examples !*/

}

/* open a session to the instrument */
if ((status = viOpen (rm_session, “VXIO0::2::INSTR”,
VI _NULL, VI_NULL, &instr session)) != VI SUCCESS)
{
/* error handling as shown in the previous examples !*/

}

/* reset the device */
<:> if ((status = viPrintf (vi, “*RST\n”)) != VI SUCCESS)
{
/* error handling as shown in the previous examples !*/

}

/* ask the device for its identification */
<:> if ((status = viPrintf (vi, “*IDN?\n”)) != VI SUCCESS)
{
/* error handling as shown in the previous examples !*/

}

/* read the identification sent back */
<:> if ((status = viScanf (vi, “%256t”, descr)) != VI SUCCESS)
{
/* error handling as shown in the previous examples !*/
}

printf (“Device Identification: %s\n”, descr);

/* close the sessions to the instrument and the resource manager */
viClose (instr_session);
viClose (rm session);

Figure 30 - Reading the Device Identification

Page 36 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

The functions ViPrintf and viScanf use a C-style formatting string to format and scan
messages send to and read from the device, freeing the user from the separate steps
necessary to do so, if using the lower level function viWrite and viRead. Furthermore the
functions implement an extended set of formatting styles specially shaped towards
instrument communication.

In the above example the function viPrintf is used to send two messages to the device, first
a command to reset the device (©), then a request to send back its identification string
(@). viPrinf uses the format string together with the other arguments passed to it to build a
message string in a local buffer and then it calls viwrite to send this message to the
device.

The example program reads the identification using the function viScanf (®). ViScanf
allocates a local buffer, calls the function viRead to receive the message form the device
and then it parses the message using the formatting supplied by the format string. In the
example the format code “%t” together with a size modifier is used, telling viScanf to
expect a string to be returned in the message, and to copy a maximum of 256 characters
into the buffer supplied.

The VISA standard support a wide range of formatted 1/0O services like the viPrintf/viScanf
functions shown in the example. Please refer to the VISA standard document
“VXlplug&play Systems Alliance VPP-4.3: The VISA library” for a complete list.

3.4 Optimizing Data Throughput

To optimize you programs to achieve the maximum data throughput, please keep the
following in mind:

= Use the functions viMove, viMoveln or viMoveOut instead of single read and write
commands for devices and register ranges, where this is possible.

= Use the attributes VI_ ATTR_SRC_ PRIV and VI_ATTR_DEST_ PRIV to specify
block transfer privileges for devices where this is possible.

= Use 32-bit or 64-bit moves, whenever possible.

= Align your buffers to 32-bit boundaries. Locking this buffer in memory and allocating
a contiguous buffer will help to optimize the performance.

3.5 Using VXlbus and Front Panel Trigger Lines

One feature, that differs the VXlbus from other busses, is its ability to use trigger signals to
communicate with instruments in real-time, to share clock signals, etc. The VISA library
implements functions to control those trigger lines from your application.

3.5.1 Using VXlbus Trigger Lines

The VISA standard implements the function viAssertTrigger together with the attribute
VI_ATTR_TRIG_ID to assert and de-assert trigger lines on the VXlbus or sending the
word serial trigger command to message-based devices.

Copyright, © 2006, Bustec Production Ltd. Page 37 of 62

Chapter 3 - Programming VXI Devices ProDAQ 3047 User Manual

#include <visa.h>

main (int argc, char **argv)
{
ViStatus status;
ViSession rm_session;
ViSession instr session;
ViChar descr[256];

/* open a session to the resource manager */
if ((status = viOpenDefaultRM (&rm session)) != VI _SUCCESS)
{

/* error handling as shown in the previous examples !*/

}

/* open a session to the instrument */
if ((status = viOpen (rm session, “VXIO::2::INSTR”,
VI _NULL, VI_NULL, &instr_session)) != VI_SUCCESS)
{
/* error handling as shown in the previous examples !*/

}

/* defining the trigger line to use */
if ((status = viSetAttribute (instr session,
® VI ATTR TRIG ID, VI TRIG TTLO)) != VI SUCCESS)
{
/* error handling as shown in the previous examples !*/

}

/* send a trigger pulse to the device */
(:) if ((status = viAssertTrigger (instr session, VI TRIG PROT SYNC)) != VI SUCCESS)
{
/* error handling as shown in the previous examples !*/

}

/* close the sessions to the instrument and the resource manager */
viClose (instr_session);
viClose (rm_session);

Figure 31 - Sending a Trigger Pulse

Figure 31 shows an example for sending a trigger pulse to a device. The function
viSetAttribute is used (®) to set the attribute VI_ATTR_TRIG_ID to select the trigger line.
In general the trigger ID can be set to VI TRIG TTLO to VI TRIG TTL7,
VI_TRIG_ECLO/VI_TRIG_ECL1 or VI_TRIG_SW. For the setting VI_TRIG_SW, the device
is sent the word serial trigger command, the other settings correspond to the VXlbus
trigger lines TTLO-TTL7 and ECLO/ECLL1.

To send the trigger, the function viAssertTrigger is used in the example (@) with the
“protocol” argument set to VI_PROT_DEFAULT. The interpretation of this argument
depends on the value, the attribute VI_ATTR_TRIG_ID is set to. For software triggers, the
only valid protocol is VI_PROT_DEFAULT. For hardware triggers, the protocols
VI_PROT_DEFAULT or VI_PROT_SYNC will generate a trigger pulse on the specified
line, while VI_PROT_ON and VI_PROT_OFF let you explicitly assert and de-assert the
trigger line.

3.5.2 Using Front-Panel Trigger Lines

The ProDAQ 3047 supports a front-panel trigger input and output (using the ProDAQ 3249
FP 1/0 Option), which can be mapped to the VXlbus trigger lines. For this purpose, as for
querying and manipulating other VXlbus backplane specific lines, the VISA standard
implements a special resource. It encapsulates the VXI-defined operations and properties

Page 38 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

of the backplane in a VXlbus system. It lets a controller query and manipulate specific
lines on a specific mainframe in a given VXI system. Services are provided to map,
unmap, assert, and receive hardware triggers, and also to assert various utility and
interrupt signals.

The resource descriptor used for the backplane resource is again a combination of
interface type and number, logical address of the VXI device, and the device type
BACKPLANE:

VXI 0 :: 0 :: BACKPLANE

Interface Type / \ Device Type

Interface Number Logical Address

As before, the interface type is always “VXI”. The interface number depends on the
assignment you made using the configuration utility (see 2.4.1 Configuring the ProDAQ
3047 for the VISA Library). The logical address will be zero (0), as you will need to
configure the ProDAQ 3047 for logical address zero to allow it to function as a VXIbus slot-
0 controller.

Though the ProDAQ 3047 does not support the mapping of one VXIbus trigger line to
another, the standard VISA functions viMapTrigger and viUnmapTrigger can be used to
map the front panel trigger input to one or many of the VXlbus trigger lines as well as to
map one or many VXIbus trigger lines to the front panel trigger output.

Figure 32 shows an example how to map the trigger lines to/from the front panel input and
output. First a session for the backplane resource is opened (®). Then the function
viMapTrigger is used to map the front panel input to the VXlbus trigger line TTL1 (®), and
also to the VXIbus trigger lines ECLO (®). This means that whenever an active trigger is
detected on the front panel input of the ProDAQ 3047, both lines will be asserted. In
general, when the viMapTrigger function is called multiple times with the same source
trigger line and different destination trigger lines, an assertion of the source line will cause
all of those destination lines to be asserted. To select how the ProDAQ 3047 will detect am
active trigger on the front panel input, see 2.4.2.3: Configuring the Front Panel I/O.

To map one or multiple of the VXIbus trigger lines to the front panel output, the value
VI_TRIG_PANEL_OUT must be used for the destination parameter (®). As with the front
panel input, multiple lines can be mapped to the front panel output. When calling
viMapTrigger multiple times with the same destination line and different source lines, the
destination line will be asserted when any of the source lines is asserted.

Copyright, © 2006, Bustec Production Ltd. Page 39 of 62

Chapter 3 - Programming VXI Devices ProDAQ 3047 User Manual

#include <visa.h>

main (int argc, char **argv)
{
ViStatus status;
ViSession rm session;
ViSession instr session;
ViChar descr[256];

/* open a session to the resource manager */
if ((status = viOpenDefaultRM (&rm session)) != VI SUCCESS)
{

/* error handling as shown in the previous examples !*/

}

/* open a session to the instrument */
if ((status = viOpen (rm_session, “VXIO::0::BACKPLANE”,
(:) VI _NULL, VI NULL, &instr session)) != VI SUCCESS)

/* error handling as shown in the previous examples !*/

/* mapping the front panel input to trigger line TTL1 */
if ((status = viMapTrigger (instr session,
(:) VI_TRIG_PANEL IN, VI TRIG TTL1, VI NULL)) != VI_SUCCESS)

/* error handling as shown in the previous examples !*/

/* mapping the front panel input also to trigger line ECLO */
if ((status = viMapTrigger (instr session,
(:) VI TRIG PANEL IN, VI TRIG ECLO, VI NULL)) != VI SUCCESS)

/* error handling as shown in the previous examples !*/

/* mapping trigger line TTL6 to the front panel output */
if ((status = viMapTrigger (instr session,
(:) VI_TRIG TTL6, VI_TRIG PANEL OUT, VI NULL)) != VI_SUCCESS)
{
/* error handling as shown in the previous examples !*/

}

/* close the sessions to the instrument and the resource manager */
viClose (instr session);
viClose (rm_session);

Figure 32 - Mapping Trigger Lines

Page 40 of 62 Copyright, © 2006, Bustec Production Ltd.

Appendix A: Visa Library Installation

The VISA library provided by Bustec Production Ltd is used to communicate to the VXI
instruments via the VXlbus interface of the ProDAQ 3047.

Note

On Microsoft Windows 2000® or Microsoft Windows XP® systems it is
recommended to install the VISA library from an account having administrator
privileges.

To install it on your PC, do the following:

1. Apply power to your PC and boot your operating system. Close all open
applications to allow for a safe installation of the new components.

2. Insert the driver CD provided with the module into your PC CD-ROM drive. If the
autorun feature is turned on, the CD menu will start automatically. If not, select
“‘Run” from your Start menu and type <drive>:autorun.exe, where <drive>
designates the CD-ROM drive with the driver CD in it.

3. Select “VISA Library for ProDAQ Controller” from the driver section of the CD menu
to start the setup wizard.

Please note: If you have downloaded the Bustec VISA Library from our WEB site,
all files are packed into a single ZIP archive. To start the installation, unpack the
files into a separate directory on your drive and run the executable “setup.exe” from
that location.

4. Select “Next” to review the license agreement for the Bustec VISA library. You will
need to accept the terms of the agreement by selecting “Yes” to be able to install
the Visa library.

5. Select the folder where the wizard will install the components of the VISA library.
Please note that the location chosen will be the top-level directory for a
VXlplug&play standard compliant directory tree, and not a single location for the
library only. If you install VXIplug&play driver on your PC, they will install using the
directory tree created by the VISA installation.

6. Select “Next” to choose the type of setup to perform (see Figure 33). “Typical” will
install the most common components, while “Compact” will only install the absolute
necessary components. To choose which components to install, choose “Custom”.

Copyright, © 2006, Bustec Production Ltd. Page 41 of 62

Appendix A: Visa Library Installation ProDAQ 3047 User Manual

x|

Setup Type
Select the Setup Type to install

Click the type of Setup wou prefer, then click Mest.

Pragram will be inztalled with the most common options. Recommended for
mosk users.

" Compact Program will be installed with minimum required options.

£ Custom “fou may choose the optiohs you want to install Recommended for advanced
LISETS,

|netallEhield

< Back | Nest » I Cancel |

Figure 33 - Selecting the Type of Installation.

7. If you have chosen “Custom”, selecting “Next” will allow you to select the
components to install (see Figure 34):

VISA Library The core files (hardware driver, VISA dynamic link library,
config utility, include files) of the installation.

VISA Assistant An interactive graphical user interface for the VISA library. It
will allow you to use the VISA library without writing your own

application.
Help Files Help files for the VISA library.
Examples How to program using the VISA library.

Select Components

Chaooze the compaonents Setup will install.

Select the components pou want to ingtall, and clear the components pou do not want to
ingtall.

—Descripion—————————————
Bustec VIS4 Library Files

Space Required on C: R288 K
Space Available on C: 19450800 k.
| mstallShield

< Back | Nest » I Cancel |

Figure 34 - Selecting Components for Installation.

8. After selecting “Next”, the wizard will install the files and components for the chosen
configuration on your system.

Page 42 of 62 Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual Appendix A: Visa Library Installation

9. The next dialog allows you to select options for installing shortcuts to the resource
manager, configuration utility and the VISA assistant on your desktop as well as to
install a shortcut to the resource manager in the “Startup” folder, which will cause
the resource manager to be run automatically when the system boots.

setp x|

Installation Options

Pleaze zelect various installation options.

¥ Run x| Fesource Manager at Startup

¥ Create Deskiop Shortcut to %3] Fesman
¥ Create Desktop Shortcut to Y154 Config
v Create Desktop Shortcut to VISA Assistant

Install=hield

< Back | Heut » I Cancel

Figure 35 - Selecting Installation Options

10. After selecting next, the installation is complete. Please choose whether you want
to view the readme for the VISA distribution now or whether you want to run the
configuration utility immediately to complete the configuration and click “Finish”.

Setup Complete

Setup has finished installing Bustec WISA Library on your
compker.

¥ Run Y154 Configuration Utility

Click. Finigh to complete Setup.

< Back | Finizh I

Figure 36 - Finishing the Setup

11.Re-start the computer after the installation is complete.

Copyright, © 2006, Bustec Production Ltd. Page 43 of 62

Appendix A: Visa Library Installation ProDAQ 3047 User Manual

Page 44 of 62 Copyright, © 2006, Bustec Production Ltd.

Appendix B: VXlbus Configuration Register

Caution

Please note that the details of the VXIbus configuration registers are listed here for
reference only. The settings described here are normally controlled by the VXIbus
resource manager and the hardware drivers of the VISA library. Changing those
settings manually during run-time will most likely cause conflicts when using the
VISA library in your application. All configurations necessary should be done by
using either the VISA library configuration utility or the VISA library functions.

B.1 Address Map and Registers

All addresses are given in hexadecimal notation. Offset value is an offset in relation to the
base address in A16 address space defined by Logical Address.

Offset | Name Access | Description
0x00 ID RO ID F_’egister '

LogAdr WO Logical Address Register
0x02 DevType RO Device Type Register
0x04 Status RO Status Regi;ter

Control WO Control Register
0x06 Offset RW Offset Register
0x08 MODID RW MODID Register
Ox0A VMEOffset RW VME target image base address
0x0C IRQStatusID1 RO Latched Interrupt Status/ID — upper word
Ox0E IRQStatusID1 RO Latched Interrupt Status/ID — lower word
0x10 IRQStatusID2 RO Latched Interrupt Status/ID — upper word
0x12 IRQStatusID2 RO Latched Interrupt Status/ID — lower word
0x14 IRQStatusID3 RO Latched Interrupt Status/ID — upper word
0x16 IRQStatusID3 RO Latched Interrupt Status/ID — lower word
0x18 IRQStatusID4 RO Latched Interrupt Status/ID — upper word
Ox1A IRQStatusID4 RO Latched Interrupt Status/ID — lower word
0x1C IRQStatusID5 RO Latched Interrupt Status/ID — upper word
Ox1E IRQStatusID5 RO Latched Interrupt Status/ID — lower word
0x20 IRQStatusID6 RO Latched Interrupt Status/ID — upper word
0x22 IRQStatusID6 RO Latched Interrupt Status/ID — lower word
0x24 IRQStatusID7 RO Latched Interrupt Status/ID — upper word
0x26 IRQStatusID7 RO Latched Interrupt Status/ID — lower word
0x28 VXIControl RW VXI Control Register
0x2A VMEControl RW Controls several VME parameters
0x2C EEPROMData RW EEPROM Data Register
Ox2E EEPROMCIr] RW EEPROM Control Register
0x30 TrigStatus RO Actual Trigger Status
0x32 TrigintMask RW Trigger Interrupt Mask / Latch state
0x34 TrigControl e Trigger Line Control
0x36 TrigintMode RW Trigger Interrupt Mode register
0x38 Reserved
Ox3A IRQDir RW Interrupt Direction register
0x3C SerNumHigh RO Serial Number upper word
Ox3E SerNumLow RO Serial Number lower word

Copyright, © 2006, Bustec Production Ltd.

Page 45 of 62

Appendix B: VXlbus Configuration Register

ProDAQ 3047 User Manual

B.2 Register Details

B.2.1 ID Register
The ID register provides information about the device’s manufacturer and configuration.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operation | RO RO RO RO RO RO RO RO RO RO RO RO RO RO | RO RO
Content Device Address ManufacturerlD
Class Space

Device Class

Address Space

Manufacturer ID

B.2.2 LogAdr

The Logical Address register is a write-only register used by the VXIbus resource manager
to assign the modules logical address during the dynamic configuration.

This field indicates the module as a Register Based VXlbus device
(value 0x3).

This field determines the addressing mode of the device's
operational registers.

A16/A24 — 0x0

Al16/A32 — Ox1

Reserved — 0x2

A16 Only — 0x3

The value of this field will be initialized during hardware
initialization from the on-board EEPROM.

The Manufacturer ID is OXE70 (3696) and has been assigned by
the VXlbus Consortium. This number uniquely identifies the
manufacturer of the device as Bustec Production Ltd.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operation - - - - - - - - WO [WO | WO [WO | WO | WO | WO | WO
Initial X X X X X X X X 0 0 0 0 0 0 0 0
Content Not used LogicalAddr[7:0]

B.2.3 DevType

The Device Type register contains a device dependent type identifier and the information about the
memory space required by this device.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operation]| RO | RO | RO [RO | RO | RO | RO |[RO |[|RO|RO|RO|RO|RO | RO |RO RO
Initial EW1 or EW2* EW1 or EW2*

Content RegMemory[3:0]

ModelCode[11:0]

Page 46 of 62

Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

Appendix B: VXlbus Configuration Register

ReqMemory|[3:0]

ModelCode[11:0]

B.2.4 Status

The required memory as defined in the VXIbus standard. The
value of this field will be initialized during hardware initialization
from the on-board EEPROM.

This field contains a unique card identifier. The adapter module
has got two different codes depending on the slot position (slotO or
non-slot0).

The Status register provides information about the device’s status.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operation | RO RO RO RO RO RO RO RO RO RO RO RO RO RO | RO RO
Initial 0 h h h h h h h h h h h h h h

Content = = -
§ ® "9 S © Logical Address 2> s © ©
s (o o ra I @ rg (g
S oo 5 W — o) @ W= W=
g s = o o = p=
> > >

A24/A32 active

MODID*

Slot0

VME Read[2:0]

Logical Address

Ready

Passed

A one (1) indicates that the A24/A32 address range is enabled.

A one (1) indicates that the device is not selected via the P2
MODID line. A zero (0) indicates that the device is selected by a
high state on the MODID line.

A one (1) indicates that the module is in the leftmost slot of a
VXlbus system.

A pattern ‘100’ in this field indicates that the current read access
was initiated by the VMEbus master.

A pattern ‘011’ in this field indicates that the current read access
was initiated by a VXIbus master.

Contains the logical address the adapter is configured for. This
may be defined by either the Logical Address Switch or the value
written to the Logical Address register during the dynamic
configuration.

A zero (0) means the device is executing its self-test.

After completing the self-test (signaled by a one (1) in the Ready
bit), the Passed bit indicates the state of the self-test. A one (1)
indicates that the self-test has successfully completed. A zero (0)
means that the device has failed its self-test.

Copyright, © 2006, Bustec Production Ltd. Page 47 of 62

Appendix B: VXlbus Configuration Reqgister ProDAQ 3047 User Manual

B.2.5 Control
The Control register contains bits that cause specific action to be executed by the device.
Bit 15 | 14 | 13 | 12 | 12 | 10 | 9 8 7 6 5 4 3 2 1 0
Operation | WO WO | WO
Initial 0 X X X X X X X X X X X X X 0 0
Content
¥ TS
SO o
i ~ Not Used b = &

A24/A32 enable

Writing a one to this bits enables the decoding of the A24/A32 address
range.

Sysfail Inhibit A one (1) written to this bit disables the device from driving the
SYSFAIL* line.

Reset A one written to this field forces the device into a reset state. This
means the MODID driver will be disabled, if device is Slot 0
controller.

B.2.6 Offset
The Offset register sets the devices base address in A24/A32.
Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Operation | RW [RW [RW [RW [RW | RW [RW [RW | RW [RW [RW [RW [RW [RW | RW [RwW
Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Content Offset[15:0]
Offset[15:0] Offset defines the base address of the A24 or A32 operational registers
of a device in the VXI address space
B.2.7 MODID
Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Operation RW |[RW |[RW [RW |RW | RW [RW | RW | RW | RW | RW | RW [RW | RwW
Initial X X 0 X X X X X X X X X X X X X

Content | Not used

MODID[12:0]

Output Enable

Writing a one to this bit enables the Slot 0 MODID driver. Writing a zero
disables the MODID driver. This bit is cleared (zero) by device resets.
When read, this bit indicates the state of the MODID drivers. A one
means the drivers are enabled, a zero indicates that the drivers are
disabled.

Page 48 of 62

Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

Appendix B: VXlbus Configuration Register

MODID[12:0]

B.2.8 VMEOffset

Writing a one to any of these bits drives the corresponding MODID line
high. Writing a zero drives the corresponding line low. Writing to these
bits has only effect, if the Output Enable bit is set. When read, each of
these bits indicates the actual level of the corresponding MODID line.

Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Operation | RW | RW | RW | RW [RW | RW | RW | RW [RW | RW | RW | RW | RW | RW | RW | RW
Initial EW3
Content VMEBase[15:0]

VMEBase[15:0] The VMEBase defines the base of the target image in the VME A16,
A24 or A32 address space. The value of this register is initialised from
the EEPROM, but can be changed during runtime.

B.2.9 VXIControl
Bit 15 | 14 | 13 [12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Operation | - - - - - - - |RW | RW | RW | RW | RW | RW RW
Initial X X X X X X X 0 0 1 1 0 1 X 0
Content
Not Used BTO[3:0] w3
N i
o|g 4
o | &
- o
5 e 7
© o
SYSRESET Writing a one to this bit starting the generation of the SYSRESET. The

CLK10 _nFP_OSC

CLK10_FP_OE

bit will be cleared after the SYSRESET is done. The pulse will have the
width of 250ms. The SYSRESET line will be asserted after the current
register access is finished.

The SYSRESET will reset VXlbus only and will not be forwarded to VME
side

The bit is used to switch between CLK10 source: when zero CLK10
comes from the front panel connector, when one comes from the on
board oscillator.

The bit controls the output of the CLK10 front panel driver: when zero
driver is in high impedance state, when one the output of the driver is
enabled.

Copyright, © 2006, Bustec Production Ltd.

Page 49 of 62

Appendix B: VXlbus Configuration Register

ProDAQ 3047 User Manual

BTO[3..0]

B.2.10 VMEControl

These bits are used to set the adapter’s bus timer time-out value.
The following values can be set:

0000 - disabled

0001 — 16us

0010 — 32us

0011 — 64us (default)
0100 — 128us

0101 - 256us

0110 — 512us

0111 — 1024us
1xxx — reserved (timer is disabled)

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Operation - - - - - - - RW | RW
Initial X X X X X X X X X X X X X X EW4

Content
VME Addr
Not Used Space[1:0]
VME Addr Space[1:0] Selects the VME address space the accesses to the VXlbus slave
image are forwarded to. Depending on this setting the upper three
bits of the address modifier code used in the VXI bus transfer are
replaced before forwarding it to the VME bus. These bits are
initialised during power-up or reset from the EEPROM, but can be
changed during runtime to allow access to VME boards
implementing different address spaces.
BITS ADDR SPACE
00 Al16
01 A24
02 A32
03 CR/ICSR
B.2.11 EEPROMData
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Operation | RwW | RW | RW | RW [RW | RW | RW [RW [RW | RW | RW | RW [RW | RW | RW | RW
Content 16-bit EEPROM Read/Write Data

Page 50 of 62

Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

Appendix B: VXlbus Configuration Register

B.2.12 EEPROMCItrl

Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Operation - | RO | wo | wo | wo RW [RW | RW | RW | RW | RW | RW
Content

>l Aol |l =13
(] P @ 1] %)

Not Used < i < %)] OFFSETI[6..0]
o n @ >

RESET Resets the EEPROM Control Logic

START Writing a "1" to this bit starts the EEPROM access

READ Setting this bit to "1" together with the START bit will cause a read

access to the EEPROM, setting this bit to "0" will cause a write
access.

READY This bit will be set to "1" by the EEPROM control logic after finishing

an access cycle.

OFFSET[6..0] Address offset of the data in the EEPROM to be read/written.

B.2.13 TrigStatus

Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Operation | - - |RO| RO | RO |RO|[RO|RO|RO|RO|[RO|RO]|RO | RO

Initial X X X X h h h h h h h h h h h h
Content Not Used TRGSTS_ | TRGSTS_ TRGSTS_TTL[7:0]

FP[1:0] ECL[1:0]

TRGSTS_TTL[7:0]

TRGSTS_ECL[1:0]

TRGSTS_FP[1:0]

B.2.14 TrigIintMask

Show the status of the VXI TTL trigger lines. “0” means trigger line is
in inactive state. “1” means trigger line is in active state.

Show the status of the VXI ECL trigger lines. “0” means trigger line is
in inactive state. “1” means trigger line is in active state.

Show the status of the FP trigger lines. “0” means trigger line is in
inactive state. “1” means trigger line is in active state.

When writing the Trigger Interrupt Mask register defines which trigger will cause an interrupt.

When reading this register shows the awaiting lines for an interrupt service. During the interrupt
acknowledge cycle the information about the events awaiting for a service is latched in
IRQStatusID register and then cleared in TrigIntMask.

Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Operation WO | WO | WO | RW | RW [RW | RW | RW | RW | RW | RW | RW | RW | RW | RW
Initial X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Content | N.U.| VME_IRQ[2:0] | TRGMASK_| TRGMASK_ TRGMASK_TTL[7:0]
FP[1:0] ECL[1:0]

Copyright, © 2006, Bustec Production Ltd.

Page 51 of 62

Appendix B: VXlbus Configuration Register

ProDAQ 3047 User Manual

TRGMASK_TTL[7:0]

TRGMASK_ECL[1:0]

TRGMASK_FP[1:0]

VME_IRQ[2:0]

Writing a one (1) to one of these bits enables a VME interrupt
to be generated when a selected edge is detected on one of
the corresponding VXIbus TTL trigger lines.

Reading (1) from these bits means that the selected edge of the
trigger lines happened and caused the interrupt. After latching the
bits during interrupt acknowledge cycle these bits which were set
are cleared.

Writing a one (1) to one of these bits enables a VME interrupt
to be generated when a selected edge is detected on one of
the corresponding VXlbus ECL trigger lines.

Reading (1) from these bits means that the selected edge of the
trigger lines happened and caused the interrupt. After latching the
bits during interrupt acknowledge cycle these bits which were set
are cleared.

Writing a one (1) to one of these bits enables a VME interrupt
to be generated when a selected edge is detected on one of
the corresponding FP trigger lines.

Reading (1) from these bits means that the selected edge of the
trigger lines happened and caused the interrupt. After latching the
bits during interrupt acknowledge cycle these bits which were set
are cleared.

Defines the VME interrupt level, which is used for an interrupt from
VXlbus trigger. Zero (0x000) written here disables trigger
interrupter

Selection of the active edge of the trigger lines which will cause the interrupt (if enabled) is done in
the TrigintMode register.

During the interrupt acknowledge cycle the information about the awaiting events (trigger edges) is
latched in IRQStatusID register. Once latched the awaiting bit is cleared in TRIGIntMask register
allowing for the next event to come.

More than one trigger event can be serviced during the single interrupt cycle.

32-bit status/ID returned when acknowledging trigger interrupter:

Bit 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 |21 |20 | 19 | 18 | 17 | 16
Initial 0 0 0 0 0 0 0 0 0 0 0 0
Contents
TRGMASK | TRGMASK .
Not Used _FP[7:0] _ECL[7:0] TRGMASK_TTL[7:0]
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Initial 0 0 0 0 0 0 0 0 h h h h h h h h
Contents
If all zero then this is trigger source Logical Address

Page 52 of 62

Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual Appendix B: VXlbus Configuration Register

B.2.15 TrigControl

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Operation | WO | WO | WO | WO | WO [WO | WO | WO | WO | WO | WO | WO | WO | WO | WO | WO

Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Content CMDJ[3:0] TRGEN_ | TRGEN_ TRGEN_TTL[7:0]
FP[1:0] ECL[1:0]
TRGEN_TTL[7:0] When any bit is set the corresponding VXITTL trigger line will be
affected by the command set on the bits CMD[3:0]
TRGEN_ECL[1:0] When any bit is set the corresponding VXIECL trigger line will be
affected by the command set on the bits CMD[3:0]
TRGEN_FP[1:0] When any bit is set the corresponding FP trigger line will be
affected by the command set on the bits CMD[3:0]
CMD[3:0] The command specifies the action to perform on the selected

trigger lines. The action will start immediately after the write access
to this register. When pulse generation is in progress then the new
command performed on the same trigger line will overcome the
previous one.

0001 — deassert

0010 — assert

0011 — negate

1000 — pulse 100ns

1001 - pulse 200ns

1010 — pulse 1us

1011 — pulse 10us

others — reserved, no action performed

B.2.16 TrigintMode

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Operation - - - - RW | RW | RW [RW |RW | RW | RW | RW [RW | RW | RW | RW
Initial X X X X 0 0 0 0 0 0 0 0 0 0 0
Content Not Used TRGEDGE_ [TRGEDGE_ TRGEDGE_TTL[7:0]
FP[1:0] ECL[1:0]

TRGEDGE_TTL[7:0] Writing a one (1) to one of these bits selects the rising edge as an
active edge, which will generate the interrupt. Writing a zero (0)
selects the falling edge as an active edge.

Readout shows current setting of the bits.

TRGEDGE_ECL[1:0] Writing a one (1) to one of these bits selects the rising edge as an
active edge, which will generate the interrupt. Writing a zero (0)
selects the falling edge as an active edge.

Readout shows current setting of the bits.

TRGEDGE_FP[1:0] Writing a one (1) to one of these bits selects the rising edge as an
active edge, which will generate the interrupt. Writing a zero (0)
selects the falling edge as an active edge.

Readout shows current setting of the bits.

Copyright, © 2006, Bustec Production Ltd. Page 53 of 62

Appendix B: VXlbus Configuration Register

ProDAQ 3047 User Manual

B.2.17 IRQDir
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Operation - - - - - - RW | RW | RW | RW [RW | RW [RW -
Initial X X X X X X X X 0 0 0 0 0 0 0 X
Content Not Used IRQDIR[7:1] N.u
IRQDIR[7:1] When set to one (1) these bits enables forwarding corresponding
interrupts from VXlbus to VMEbus. Forwarding interrupts from
VMEDbus to VXIbus is then disabled.
When the bits are cleared (0) the corresponding VXIbus interrupt
will not be forwarded to the VMEbus. It automatically enables
VMEDbus interrupts to be forwarded to VXIbus for the given level.
B.2.18 SerNumHigh
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Operation | RO [RO | RO | RO | RO | RO | RO | RO [RO | RO | RO | RO |[RO|RO]|RO [RO
Initial EW5
Content SN[31:16]
B.2.19 SerNumLow
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Operation | RO [RO | RO | RO | RO | RO | RO | RO | RO|RO|RO|RO|[RO|RO]|RO | RO
Initial EW6
Content SN[15:0]

Page 54 of 62

Copyright, © 2006, Bustec Production Ltd.

Appendix C: Front Panel Connectors and

Switches

C.1 Front-Panel Connectors

The front panel of the ProDAQ 3047 gives access to the standard set of PC peripheral

connectors.

C.1.1 10/100/1000 BaseT Ports

The two RJ-45 ports labeled LAN1/LAN2 provide the 10BaseT,
100BaseTX or 1000Base-T Ethernet LAN interface. A standard
CAT5 network cable with RJ-45 connectors can be used to connect
the ProDAQ 3047 to your LAN.

Assignment

DA
DA#

DB

DC
DC#
DB#

DD
DD#

The yellow ethernet speed LEDs indicate the operating speed of the
ethernet interfaces:

— Off = 10 Mbit/s
— Steady On = 100 Mbit/s
— Flashing = 1000 Mbit/s

The green link/activity LEDs indicate whether a connection has been

made on the ethernet interfaces. They will lit when the connection
has been made and turn off during activity.

C.1.2 USB

The USB 2.0 port uses an industry standard dual 4 position shielded
connector.

Pin Signal Function

1 USBV USB Power
2 USB- USB Data -
3 USB+ USB Data +
4 USBG USB Ground

[>0
o<
bustec

busiee

ProDAQ 3047
9 O

) HD
)

OZT

ads M
ﬁfﬁjﬁ
oXTHMm

ads M
ﬁrﬁﬁ
= T =

PO

C
O
M
2
C
O
M
1

Copyright, © 2006, Bustec Production Ltd.

Page 55 of 62

Appendix C: Front Panel Connectors and Switches

ProDAQ 3047 User Manual

C.1.3 RS-232 (COM1/COM2)
The serial interfaces use an 8-way RJ45 connector with the following pin-out:

Pin RS-232 Function
Signal

1 RTS Request to Send

2 DTR Data Terminal Ready

3 GND Signal Ground

4 TXD Transmit Data

5 RXD Receive Data

6 DCD Data Carrier Detect

7 DSR Data Set Ready

8 CTS Clear to Send

C.1.4 PS2 Combined Keyboard/Mouse Connector

The keyboard and mouse connectors are standard 6-pin female mini-DIN PS/2

connectors.

Pin Dir Function

1 In/Out | Keyboard Data
2 In/Out | Mouse Data

3 Ground

4 +5 Volt

5 Out Keyboard Clock
6 Out Mouse Clock
Shield Chassis Ground

C.1.5 SVGA Connector
The video port uses a standard high-density DB15 SVGA connector.

Pin Dir Function Pin Dir Function

1 Out Red 9 +5 Volt

2 Out Green 10 Ground

3 Out Blue 11 Reserved

4 Reserved 12 /0 DDC Data

5 Ground 13 Out | Horizontal Sync
6 Ground 14 Out | Vertical Sync

7 Ground 15 I/O DDC Clock

8 Ground Shield Chassis Ground

Page 56 of 62

Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

Appendix C: Front Panel Connectors and Switches

C.1.6 Front-Panel LEDs

LED Colour Function

R Green The Run LED indicates activity on the internal PCI bus.

P Yellow The POST LED indicates when the power on self test has
failed. It will also flash to indicate sound output to the
speaker.

HD Orange IDE Indicator — Indicates when IDE activity is occurring.

U Red User LED - can be configured to indicate over
temperature conditions.

C.1.7 Front-Panel Switches

The front panel of the ProDAQ 3047 incorporates a reset switch. It allows the system to be

reset from the front-panel.

Copyright, © 2006, Bustec Production Ltd. Page 57 of 62

Appendix C: Front Panel Connectors and Switches ProDAQ 3047 User Manual

C.2 ProDAQ 3249 FP I/O Option

The ProDAQ 3249 front-panel 1/0O option offers connections for Trigger 1/0, CLK10 I/O and
shows some status LEDs.

C.2.1 Trigger In/Out
O
Two SMB connectors allow to receive (TRIG IN) or to generate —

bustee
(TRIG OUT) a TTL Trigger signal (see 3.5.2 Using Front-Panel

: . ProDAQ 3047
Trigger Lines). 2 O
Y
C.2.2 CLK10 a

The ProDAQ 3249 features a standard SMB connector (CLK10 1/O)
for receiving or distributing the CLK10 signal from/to the VXIbus.

O=Z=T

C.2.3 Status LEDs

The “SYSFAIL” LED shows the status of the VXlbus SYSFAIL line.
The “VXI” LED indicates activity on the VXIbus (VXlIbus accesses by =
the 3047). KB((8 20)ms

ads il
!FFH%
oIHm

ads M1
!FFH%
il

Page 58 of 62 Copyright, © 2006, Bustec Production Ltd.

Appendix D: Specifications

D.1 Embedded Controller Characteristics

D.1.1 Processor

Type Intel Pentium M

Speed 1.6 GHz

Cache 1 MByte on-die Level 2

Chipset Intel 6300ESB/855GSE with 400 MHz FSB
D.1.2 Memory

On-board Up to 1 GByte ECC protected PC333 SDRAM

Socket Up to 1 GByte ECC protected PC333 SO-DIMM

D.1.3 I/O Ports

KB/Mouse Combined Keyboard/Mouse on PS/2 connector

RS232 Dual 16550 compatible on micro-DB-9 connectors

Ethernet Dual 10 Base-T/100 BASE-TX/1000 Base-T on RJ45
connectors

USB USB2.0 host controller

D.1.4 Graphics Interface

Type High-performance 815GME graphics accelerator
Memory up to 64 MByte UMA memory
Resolution Up to 2048x1536@75Hz, 16M colors

D.1.5 Hard Disk

Interface

Ultra DMA/100

Drive

Up to two 2.5" IDE Hard Drives

Copyright, © 2006, Bustec Production Ltd.

Page 59 of 62

Appendix D: Specifications

ProDAQ 3047 User Manual

D.1.6 IEEE P1386.1 PMC Slot

Address/Data A32/D32/D64
PCI Bus Clock 33/66 MHz
Signaling Environment 3.3V &5V

10 Routing

Front-panel only

D.2 VXIbus Characteristics

D.2.1 General
Device Type Register-Based
Size C
Slots 1
Connectors P1/P2
Slot-0 Functionality Yes, auto-detected
Resource Manager Functionality Yes

D.2.2 VXlbus Master

Address Space

A16, A24 and A32

Data Transfer Capabilities

D08, D16, D32, D16BLT, D32BLT, D64MBLT

BLT/MBLT Address Increment

Software Selectable

Bus Timer

16, 32, 64, 128, 256, 512 and 1024 ps

D.2.3 VXIbus Slave (Configuration Register)

Address Space

Al6

Size

64 Bytes

Base Address

0xCO000 + Logical Address * 0x40

Data Transfer Capabilities

D08, D16 and D32

D.2.4 VXlbus Slave (Shared Memory)

Address Space

A24/A32

Size

Up to 2GByte

Data Transfer Capabilities

D08, D16, D32, D16BLT, D32BLT, D64MBLT

Page 60 of 62

Copyright, © 2006, Bustec Production Ltd.

ProDAQ 3047 User Manual

Appendix D: Specifications

D.2.5 VXIbus Requester

Request Level

BRO to BR3

Request Mode

“Fair” or “On Demand”

Release Mode ROR, RWD
D.2.6 VXIbus Arbiter
Arbitration Mode SGL, PRI, RRS
Arbitration Time-out 10 ps
D.2.7 VXIbus Interrupts
Interrupt Handler IRQ1 to IRQ7
Interrupter IRQ1 to IRQ7
Interrupter Release Mode ROAK

A.1 Front Panel I/O (with ProDAQ 3249)

D.2.8 CLK10 Input

Input Level TTL
Input Protection -5V to +10V
Connector Type SMB

Note

When using an external clock to supply the CLK10 signal, you must use a VXlbus
standard compliant clock signal (10 MHz, equal or better than £100 ppm, 50%+5%

duty cycle).

D.2.9 CLK10 Output

Output Level TTL
Output Frequency* 10 MHz
Frequency Stability* +100 ppm
Duty Cycle* 50%+5%
Connector Type SMB

(* Specification valid for internal clock generator only)

Copyright, © 2006, Bustec Production Ltd.

Page 61 of 62

Appendix D: Specifications ProDAQ 3047 User Manual

D.2.10 Trigger In

Input Level TTL

Active Edge Software selectable

Trigger Detection - Routable to VXIbus trigger lines TTLO to TTL7, ECLO/1
- Interrupt on trigger detection

Input Protection -5V to +10V

Connector Type SMB

D.2.11 Trigger Out

Output Level TTL

Active Level Software selectable

Trigger Generation - From VXIbus trigger lines TTLO to TTL7, ECLO/1
- By software command

Maximum Current -32 mA (lon) / 64 mA (lov)

Connector Type SMB

D.3 Power Supply Loading

Current Consumption +24V: 0.150 A
+12V: 0.005 A
+5V: 5.2 Atyp.
-2V: 0.05 A
-5.2V: 0.150 A
-12v: .005 A
-24V: 0A

Note: The power consumption depends on the installed options such as
memory, hard-drives and PMC modules. The values above are for the
base configuration only.

Total Power Consumption ca.32W

D.4 Miscellaneous

Operating Temperature 0°to 50° C

Storage Temperature -40°to +70° C

Humidity 0-90%, non-condensing
Cooling 1l/s @ 0.25mm H20
Weight 1050 g

Page 62 of 62 Copyright, © 2006, Bustec Production Ltd.

Bustec Production, Ltd.
World Aviation Park, Shannon, Co. Clare, Ireland
Tel: +353 (0) 61 707100, FAX: +353 (0) 61 707106

