
Freescale Digital Signal Processing
Development Software
Freescale DSP
Assembler Reference Manual

DSPASMRM

Ho

Ho
ww

E-m
sup

US
Fre
Tec
130
Cha
+1-
sup

Eur
Fre
Tec
Sch
818
+44
+46
+49
+33
sup

Jap
Fre
Hea
AR
1-8
Tok
012
sup

Asi
Fre
Tec
2 D
Tai
Tai
+80
sup

For
Fre
P.O
Den
1-8
Fax
LDC
w to Reach Us:

me Page:
w.freescale.com

ail:
port@freescale.com

A/Europe or Locations Not Listed:
escale Semiconductor
hnical Information Center, CH370
0 N. Alma School Road
ndler, Arizona 85224

800-521-6274 or +1-480-768-2130
port@freescale.com

ope, Middle East, and Africa:
escale Halbleiter Deutschland GmbH
hnical Information Center
atzbogen 7
29 Muenchen, Germany
 1296 380 456 (English)
 8 52200080 (English)
 89 92103 559 (German)
 1 69 35 48 48 (French)
port@freescale.com

an:
escale Semiconductor Japan Ltd.
dquarters

CO Tower 15F
-1, Shimo-Meguro, Meguro-ku,
yo 153-0064, Japan
0 191014 or +81 3 5437 9125
port.japan@freescale.com

a/Pacific:
escale Semiconductor Hong Kong Ltd.
hnical Information Center
ai King Street
Po Industrial Estate
Po, N.T., Hong Kong
0 2666 8080
port.asia@freescale.com

 Literature Requests Only:
escale Semiconductor Literature Distribution Center
. Box 5405
ver, Colorado 80217

00-521-6274 or 303-675-2140
: 303-675-2150
ForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

MS-DOS and Windows are trademarks of Microsoft Corporation.

Preface

Preface
This manual documents the assembler as of version 6.3.28 of the software.

Notation

The notational conventions used in this manual are:

DIRECTIVE

All assembler mnemonics and directives are shown in bold upper case to highlight
them. However, the assembler will recognize both upper and lower case for mne-
monics and directives.

{ }

Contains a list of elements or directives, one of which must be selected. Each
choice will be separated by a vertical bar. For example, {R I L} indicates that either
R or L must be selected.

[]

Contains one or more optional elements. If more than one optional element is
shown, the required element separators are indicated. All elements outside of the
angle brackets (< >) must be specified as they appear. For example, the syntacti-
cal element [<number>,] requires the comma to be specified if the optional element
<number> is selected.
Freescale DSP Assembler Reference Manual iii

Preface
< >

The element names are printed in lower case and contained in angle brackets.
Some common elements used to describe directives are:

<comment> A statement comment
<label> A statement label
<expr> or An assembler expression
<expression>
<number> A numeric constant
<string> A string of ASCII characters enclosed in quotes
<delimiter> A delimiter character
<option> An assembler option
<sym> or An assembler symbol
<symbol>

Supporting Publications

DSP56300 Family Manual. Freescale, Inc.

DSP Linker/Librarian Reference Manual. Freescale, Inc.
iv DSP Assembler Reference Manual Freescale

Table of Contents

Preface

Chapter 1 Freescale DSP Assembler

1.1 Introduction ... 1

1.2 Assembly Language ... 1

1.3 Installing the Assembler .. 1

1.4 Running the Assembler .. 1

1.5 Assembler Processing .. 8

1.6 Definition of Terms .. 8

1.7 Assembler Support for Digital Signal Processing ... 9

Chapter 2 Writing Assembly Language Programs

2.1 Input File Format ... 11

2.2 Symbol Names ... 11

2.3 Strings ... 11

2.4 Source Statement Format ... 12

2.4.1 Label Field... 13

2.4.2 Operation Field.. 14

2.4.3 Operand Field.. 14

2.4.4 Data Transfer Fields.. 14

2.4.5 Comment Field .. 15

2.5 Assembler Output ... 15
Freescale DSP Assembler Reference Manual v

Table of Contents (Continued)

Chapter 3 Expressions

3.1 Introduction ... 17

3.2 Absolute and Relative Expressions .. 17

3.3 Expression Memory Space Attribute .. 17

3.4 Internal Expression Representation .. 19

3.5 Constants .. 19

3.5.1 Numeric Constants.. 19

3.5.2 String Constants.. 20

3.6 Operators .. 20

3.6.1 Unary operators... 20

3.6.2 Arithmetic operators .. 21

3.6.3 Shift operators ... 21

3.6.4 Relational operators .. 22

3.6.5 Bitwise operators... 22

3.6.6 Logical operators... 22

3.7 Operator Precedence ... 23

3.8 Functions .. 23

3.8.1 Mathematical Functions .. 24

3.8.2 Conversion Functions.. 25

3.8.3 String Functions .. 25

3.8.4 Macro Functions.. 25

3.8.5 Assembler Mode Functions... 26

Chapter 4 Software Project Management

4.1 Introduction ... 37

4.2 Sections .. 37

4.3 Sections and Data Hiding ... 38

4.3.1 Sections and Symbols... 38

4.3.2 Sections and Macros... 40

4.3.3 Nested and Fragmented Sections... 40

4.4 Sections and Relocation ... 41
vi DSP Assembler Reference Manual Freescale

Table of Contents (Continued)

4.5 Address Assignment ... 42

4.5.1 The ORG Directive .. 43

4.5.2 Overlays .. 45

4.5.3 Address Assignment Examples... 46

4.5.4 Circular Buffers.. 47

4.6 Example 1: Multi-Programmer Environment ... 48

4.6.1 Absolute Mode Implementation... 49

4.6.2 Relative Mode Implementation.. 50

4.7 Example 2: Overlays ... 51

4.7.1 Absolute Mode Implementation... 52

4.7.2 Relative Mode Implementation.. 53

4.8 Example 3: Bootstrap Overlay .. 54

4.8.1 Absolute Mode Implementation... 55

4.8.2 Relative Mode Implementation.. 56

Chapter 5 Macro Operations and Conditional Assembly

5.1 Macro Operations ... 57

5.2 Macro Libraries ... 58

5.3 Macro Definition .. 58

5.4 Macro Calls ... 60

5.5 Dummy Argument Operators .. 61

5.5.1 Dummy Argument Concatenation Operator - \.. 61

5.5.2 Return Value Operator - ? ... 62

5.5.3 Return Hex Value operator - % ... 63

5.5.4 Dummy Argument String Operator - " ... 63

5.5.5 Macro Local Label Override Operator - ^ .. 64

5.6 DUP, DUPA, DUPC, DUPF Directives ... 65

5.7 Conditional Assembly ... 65

Chapter 6 Assembler Significant Characters and Directives

6.1 Introduction ... 67
Freescale DSP Assembler Reference Manual vii

Table of Contents (Continued)

6.2 Assembler Significant Characters ... 67

6.3 Assembler Directives .. 68

6.3.1 Assembly Control .. 68

6.3.2 Symbol Definition .. 69

6.3.3 Data Definition/Storage Allocation... 69

6.3.4 Listing Control and Options ... 69

6.3.5 Object File Control... 70

6.3.6 Macros and Conditional Assembly .. 70

6.3.7 Structured Programming ... 70

Chapter 7 Structured Control Statements

7.1 Introduction ... 167

7.2 Structured Control Directives .. 167

7.3 Syntax ... 168

7.3.1 .BREAK Statement.. 168

7.3.2 .CONTINUE Statement ... 169

7.3.3 .FOR Statement .. 170

7.3.4 .IF Statement... 171

7.3.5 .LOOP Statement .. 172

7.3.6 .REPEAT Statement.. 173

7.3.7 .WHILE Statement... 173

7.4 Simple and Compound Expressions ... 174

7.4.1 Simple Expressions... 174

7.4.1.1 Condition Code Expressions .. 174

7.4.1.2 Operand Comparison Expressions .. 175

7.4.2 Compound Expressions .. 176

7.5 Statement Formatting ... 176

7.5.1 Expression Formatting .. 176

7.5.2 .FOR/.LOOP Formatting.. 177

7.5.3 Assembly Listing Format ... 177

7.6 Effects on the Programmer’s Environment ... 177
viii DSP Assembler Reference Manual Freescale

Table of Contents (Continued)

Appendix A ASCII Character Codes

Appendix B Directive Summary

B.1 Assembly Control.. 181

B.2 Symbol Definition.. 182

B.3 Data Definition/Storage Allocation .. 182

B.4 Listing Control and Options .. 182

B.5 Object File Control .. 183

B.6 Macros and Conditional Assembly ... 183

B.7 Structured Programming... 183

Appendix C Assembler Messages

C.1 Introduction... 185

C.2 Command Line Errors... 186

C.3 Warnings... 188

C.4 Errors .. 196

C.5 Fatal Errors ... 226

Appendix D Freescale DSP Object File Format (COFF)

D.1 Introduction... 231

D.2 Object File Structure ... 231

D.3 Object File Components ... 233

D.3.1 File Header.. 233

D.3.2 Optional Header .. 234

D.3.3 Sections... 236

D.3.3.1 Section Headers .. 237

D.3.3.2 Relocation Information ... 239

D.3.3.3 Line Numbers... 240

D.3.4 Symbol Table .. 241

D.3.4.1 Symbol Name .. 243
Freescale DSP Assembler Reference Manual ix

Table of Contents (Continued)

D.3.4.2 Symbol Value... 243

D.3.4.3 Section Number ... 244

D.3.4.4 Symbol Type.. 244

D.3.4.5 Symbol Storage Class ... 246

D.3.4.6 Auxiliary Entries ... 250

D.3.4.6.1 Filenames ... 251

D.3.4.6.2 Sections .. 251

D.3.4.6.3 Tag Names ... 253

D.3.4.6.4 End of Structures .. 253

D.3.4.6.5 Functions .. 254

D.3.4.6.6 Arrays ... 255

D.3.4.6.7 End of Blocks and Functions .. 255

D.3.4.6.8 Beginning of Blocks and Functions .. 256

D.3.4.6.9 Structure, Union, and Enumeration Names 256

D.3.4.7 Object File Comments ... 257

D.3.5 String Table ... 257

D.4 Differences in DSP Object Format and Standard COFF 257

D.4.1 Multiple Memory Spaces ... 258

D.4.2 Object File Transportability.. 259

D.4.3 Structure Size Fields ... 260

D.4.4 Relocation Information .. 260

D.4.5 Block Data Sections .. 261

D.4.6 Other Extensions... 261

D.5 Object File Data Expression Format... 261

D.5.1 Data Expression Generation ... 262

D.5.2 Data Expression Interpretation.. 262

D.5.2.1 User Expression - { ... } .. 263

D.5.2.2 Relocatable Expression - [...] ... 263

D.5.2.3 Memory Space Operator - @... 263

D.5.2.4 Bit Size Operator - # .. 263

D.5.2.5 Memory Attribute Operator - : .. 264

D.5.2.6 Line Number Operator - ! ... 264
x DSP Assembler Reference Manual Freescale

Table of Contents (Continued)

D.5.2.7 BFxxx Instruction Mask Function - @FBF() 264

D.5.2.8 Local Relocatable Reference Function - @LRF() 264

D.5.2.9 Alternate Encoding Function - @ENC() ... 265

Appendix E Instruction Set Information

E.1 DSP56300 Information ... 267

E.1.1 Instruction Set Summary ... 267

E.1.1.1 Arithmetic Instructions .. 267

E.1.1.2 Logical Instructions ... 268

E.1.1.3 Bit Manipulation Instructions ... 268

E.1.1.4 Loop Instructions .. 269

E.1.1.5 Move Instructions ... 269

E.1.1.6 Program Control Instructions .. 269

E.1.2 Register Names and Usage .. 270

E.1.3 Condition Code Mnemonics .. 270

Index
Freescale DSP Assembler Reference Manual xi

Table of Contents (Continued)

xii DSP Assembler Reference Manual Freescale

List of Figures

A-1 COFF File Basic Structure .. 232

A-2 File Header Format .. 233

A-3 File Header Flags .. 234

A-4 Freescale DSP Optional Link Header Format .. 235

A-5 Freescale DSP Optional Runtime Header Format 236

A-6 Section Header Format ... 237

A-7 Section Header Flags ... 239

A-8 Relocation Entry Format ... 240

A-9 Line Number Entry Format ... 240

A-10 Line Number Grouping ... 241

A-11 COFF Symbol Table Ordering .. 242

A-12 Symbol Table Entry Format .. 243

A-13 Fundamental Types .. 245

A-14 Derived Types ... 246

A-15 Storage Classes ... 247

A-16 Storage Class and Value .. 249

A-17 Filename Symbol Auxiliary Entry .. 251

A-18 Section Symbol Auxiliary Entry ... 251

A-19 Relocatable Section Auxiliary Entry .. 252

A-20 Relocatable Buffer/Overlay Auxiliary Entry ... 252

A-21 Tag Name Symbol Auxiliary Entry .. 253

A-22 End of Structure Auxiliary Entry .. 254

A-23 Function Symbol Auxiliary Entry ... 254

A-24 Array Symbol Auxiliary Entry .. 255

A-25 End of Block or Function Auxiliary Entry ... 255
Freescale DSP Assembler Reference Manual xiii

List of Figures (Continued)

A-26 Beginning of Block or Function Auxiliary Entry ... 256

A-27 Structure, Union, or Enumeration Name Auxiliary Entry 257

A-28 CORE_ADDR Format ... 258

A-29 Memory Mapping Enumerations ... 259

A-30 Freescale DSP COFF Byte Ordering .. 260
xiv DSP Assembler Reference Manual Freescale

Chapter 1 Freescale DSP Assembler

1.1 Introduction

The Freescale DSP Assemblers are programs that process assembly language source
statements written for Freescale’s family of digital signal processors. The assembler
translates these source statements into object programs compatible with other Freescale
DSP software and hardware products.

1.2 Assembly Language

The assembly language provides mnemonic operation codes for all machine instructions
in the digital signal processor instruction set. In addition, the assembly language contains
mnemonic directives which specify auxiliary actions to be performed by the assembler.
These directives are not always translated into machine language. The assembly lan-
guage enables the programmer to define and use macro instructions which replace a sin-
gle statement with a predefined sequence of statements found in the macro definition.
Conditional assembly also is supported.

1.3 Installing the Assembler

The assembler is distributed on various media and in different formats depending on the
host environment.

1.4 Running the Assembler

The general format of the command line to invoke the assembler is:

ASM56300 [options] <filenames>

where:

ASM56300

The name of the Freescale DSP assembler program appropriate for the tar-
get processor. For the Freescale DSP56300 processor, the name of the as-
sembler executable is ASM56300.
Freescale DSP Assembler Reference Manual 1

Chapter 1 Freescale DSP Assembler - Running the Assembler
[options]

Any of the following command line options. These can be in any order, but
must precede the list of source filenames. Some options can be given more
than once; the individual descriptions indicate which options may be speci-
fied multiple times. Option letters can be in either upper or lower case.

Command options that are used regularly may be placed in the environment
variable DSPASMOPT. If the variable is found in the environment the as-
sembler adds the associated text to the existing command line prior to pro-
cessing any options. See your host documentation for instructions on how
to define environment variables.

Option arguments may immediately follow the option letter or may be sepa-
rated from the option letter by blanks or tabs. However, an ambiguity arises
if an option takes an optional argument. Consider the following command
line:

ASM56300 -B MAIN IO

In this example it is not clear whether the file MAIN is a source file or is
meant to be an argument to the -B option. If the ambiguity is not resolved
the assembler will assume that MAIN is a source file and attempt to open it
for reading. This may not be what the programmer intended.

There are several ways to avoid this ambiguity. If MAIN is supposed to be
an argument to the -B option it can be placed immediately after the option
letter:

ASM56300 -BMAIN IO

If there are other options on the command line besides those that take op-
tional arguments the other options can be placed between the ambiguous
option and the list of source file names:

ASM56300 -B MAIN -V IO

An alternative is to use two successive hyphens to indicate the end of the
option list:

ASM56300 -B -- MAIN IO

In this latter case the assembler interprets MAIN as a source file name and
uses the default naming conventions for the -B option.

-A

Indicates that the assembler should run in absolute mode, generating an ab-
solute object file when the -B command line option is given. By default the
assembler produces a relocatable object file that is subsequently processed
2 DSP Assembler Reference Manual Freescale

Chapter 1 Freescale DSP Assembler - Running the Assembler
by the Freescale DSP linker. See Chapter 4, , for more information on as-
sembler modes.

-B[<objfil>]

This option specifies that an object file is to be created for assembler output.
<objfil> can be any legal operating system filename, including an optional
pathname. A hyphen also may be used as an argument to indicate that the
object file should be sent to the standard output.

The type of object file produced depends on the assembler operation mode.
If the -A option is supplied on the command line, the assembler operates in
absolute mode and generates an absolute object (.CLD) file. If there is no
-A option on the command line, the assembler operates in relative mode
and creates a relocatable object (.CLN) file.

If a pathname is not specified, the file will be created in the current directory.
If no filename is specified, the assembler will use the basename (filename
without extension) of the first filename encountered in the source input file
list and append the appropriate file type (.CLN or .CLD) to the basename. If
the -B option is not specified, then the assembler will not generate an object
file. The -B option should be specified only once. If the file named in the
-B option already exists, it will be overwritten.

Example: ASM56300 -Bfilter main.asm fft.asm fio.asm

In this example, the files MAIN.ASM, FFT.ASM, and FIO.ASM are
assembled together to produce the relocatable object file
FILTER.CLN.

-D<symbol> <string>

This is equivalent to a source statement of the form:

DEFINE <symbol> <string>

 <string> must be preceded by a blank and should be enclosed in single
quotes if it contains any embedded blanks. Note that if single quotes are
used they must be passed to the assembler intact, e.g. some host command
interpreters will strip single quotes from around arguments. The -D<sym-
bol> <string> sequence can be repeated as often as desired. See the DE-
FINE directive (Chapter 6) for more information.

Example: ASM56300 -D POINTS 16 prog.asm

All occurrences of the symbol POINTS in the program PROG.ASM
will be replaced by the string ‘16’.
Freescale DSP Assembler Reference Manual 3

Chapter 1 Freescale DSP Assembler - Running the Assembler
-EA<errfil>
-EW<errfil>

These options allow the standard error output file to be reassigned on hosts
that do not support error output redirection from the command line. <errfil>
must be present as an argument, but can be any legal operating system file-
name, including an optional pathname.

The -EA option causes the standard error stream to be written to <errfil>; if
<errfil> exists, the output stream is appended to the end of the file. The -EW
option also writes the standard error stream to <errfil>; if <errfil> exists it is
rewound (truncated to zero), and the output stream is written from the be-
ginning of the file.

Example: ASM56300 -EWerrors prog.asm

Redirect the standard error output to the file ERRORS. If the file al-
ready exists, it will be overwritten.

-F<argfil>

Indicates that the assembler should read command line input from <argfil>.
<argfil> can be any legal operating system filename, including an optional
pathname. <argfil> is a text file containing further options, arguments, and
filenames to be passed to the assembler. The arguments in the file need be
separated only by some form of white space (blank, tab, newline). A semi-
colon (;) on a line following white space makes the rest of the line a com-
ment.

The -F option was introduced to circumvent the problem of limited line
lengths in some host system command interpreters. It may be used as often
as desired, including within the argument file itself. Command options may
also be supplied using the DSPASMOPT environment variable. See the dis-
cussion of DSPASMOPT under [options] at the beginning of this section.

Example: ASM56300 -Fopts.cmd

Invoke the assembler and take command line options and source
filenames from the command file OPTS.CMD.

-G

Send source file line number information to the object file. This option is val-
id only in conjunction with the -B command line option. The generated line
4 DSP Assembler Reference Manual Freescale

Chapter 1 Freescale DSP Assembler - Running the Assembler
number information can be used by debuggers to provide source-level de-
bugging.

Example: ASM56300 -B -G myprog.asm

Assemble the file MYPROG.ASM and send source file line number
information to the resulting object file MYPROG.CLN.

-I<pathname>

When the assembler encounters INCLUDE files, the current directory (or
the directory specified in the INCLUDE directive) is first searched for the file.
If it is not found and the -I option is specified, the assembler prefixes the file-
name (and optional pathname) specified in the INCLUDE directive with
<pathname> and searches the newly formed directory pathname for the file.

The pathname must be a legal operating system pathname. The -I option
may be repeated as many times as desired. The directories will be
searched in the order specified on the command line.

Example: ASM56300 -I\project\ testprog

This example uses IBM PC pathname conventions, and would cause
the assembler to prefix any INCLUDE files not found in the current
directory with the \project\ pathname.

-L<lstfil>

This option specifies that a listing file is to be created for assembler output.
<lstfil> can be any legal operating system filename, including an optional
pathname. A hyphen also may be used as an argument to indicate that the
listing file should be sent to the standard output, although the listing file is
routed to standard output by default.

If a pathname is not specified, the file will be created in the current directory.
If no filename is specified, the assembler will use the basename (filename
without extension) of the first filename encountered in the source input file
list and append .LST to the basename. If the -L option is not specified, then
the assembler will route listing output to the standard output (usually the
console or terminal screen) by default. The -L option should be specified
only once. If the file named in the -L option already exists, it will be
overwritten.

Example: ASM56300 -L filter.asm gauss.asm

In this example, the files FILTER.ASM and GAUSS.ASM are assem-
bled together to produce a listing file. Because no filename was giv-
en with the -L option, the output file will be named using the
Freescale DSP Assembler Reference Manual 5

Chapter 1 Freescale DSP Assembler - Running the Assembler
basename of the first source file, in this case FILTER. The listing file
will be called FILTER.LST.

-M<pathname>

This is equivalent to a source statement of the form:

MACLIB <pathname>

The pathname must be a legal operating system pathname. The -M option
may be repeated as many times as desired. The directories will be
searched in the order specified on the command line. See the MACLIB di-
rective (Chapter 6) for more information.

Example: ASM56300 -M fftlib/ trans.asm

This example uses UNIX pathname conventions, and would cause
the assembler to look in the fftlib subdirectory of the current directory
for a file with the name of the currently invoked macro found in the
source file.

-O<opt>[,<opt>,...,<opt>]

This is equivalent to a source statement of the form:

OPT <opt>[,<opt>,...,<opt>]

<opt> can be any of the options that are available with the OPT directive
(see Chapter 6). If multiple options are specified, they must be separated
by commas. The -O<opt> sequence can be repeated for as many options
as desired.

Example: ASM56300 -OS,CRE myprog.asm

This will activate the symbol table and cross reference listing options.

-Q

On some hosts the assembler displays a banner on the console when in-
voked. This option inhibits the banner display. It has no effect on hosts
where the signon banner is not displayed by default.

Example: ASM56300 -Q myprog.asm

Assemble the file MYPROG.ASM but do not display the signon ban-
ner on the console.
6 DSP Assembler Reference Manual Freescale

Chapter 1 Freescale DSP Assembler - Running the Assembler
-V

This option causes the assembler to report assembly progress (beginning
of passes, opening and closing of input files) to the standard error output
stream. This is useful to insure that assembly is proceeding normally.

Example: ASM56300 -V myprog.asm

Assemble the file MYPROG.ASM and send progress lines to the
standard error output.

-Z

This option causes the assembler to strip symbol information from the ab-
solute load file. Normally symbol information is retained in the object file for
symbolic reference purposes. Note that this option is valid only when the
assembler is in absolute mode via the -A command line option and when an
object file is created (-B option).

Example: ASM56300 -A -B -Z myprog.asm

Assemble the file MYPROG.ASM in absolute mode and strip symbol
information from the load file created as output.

<filenames>

A list of operating system compatible filenames (including optional path-
names). If no extension is supplied for a given file, the assembler first will
attempt to open the file using the filename as supplied. If that is not success-
ful the assembler appends .ASM to the filename and attempts to open the
file again. If no pathname is specified for a given file, the assembler will look
for that file in the current directory. The list of files will be processed sequen-
tially in the order given and all files will be used to generate the object file
and listing.

The assembler will redirect the output listing to the standard output if the output listing is
not suppressed with the IL option, or if it is not redirected via the -L command line option
described above. The standard output generally goes to the console or terminal screen
by default, but can be diverted to a file or to a printer by using the I/O redirection facilities
of the host operating system, if available. Error messages will always appear on the stan-
dard output, regardless of any option settings. Note that some options (-B, -L) allow a hy-
phen as an optional argument which indicates that the corresponding output should be
sent to the standard output stream. Unpredictable results may occur if, for example, the
object file is explicitly routed to standard output while the listing file is allowed to default to
the same output stream.
Freescale DSP Assembler Reference Manual 7

Chapter 1 Freescale DSP Assembler - Assembler Processing
1.5 Assembler Processing

The Freescale DSP assembler is a two-pass assembler. During the first pass the source
program is read to build the symbol and macro tables. During the second pass the object
file is generated (assembled) with reference to the tables created during pass one. It is
also during the second pass that the source program listing is produced.

Each source statement is processed completely before the next source statement is read.
As each line is read in, any translations specified by the DEFINE directive are applied.
Each statement is then processed, and the assembler examines the label, operation
code, operand, and data transfer fields. The macro definition table is scanned for a match
with the operation code. If there is no match, the operation code and directive tables are
scanned for a match with a known opcode.

Any errors detected by the assembler are displayed before the actual line containing the
error is printed. Errors and warnings are accumulated, and a total number of errors and
warnings is printed at the end of the source listing. If no source listing is produced, error
messages are still displayed to indicate that the assembly process did not proceed nor-
mally. The number of errors is returned as an exit status when the assembler returns con-
trol to the host operating system.

1.6 Definition of Terms

Since the Freescale DSP architectures are different from normal microprocessors, the
programmer may not be familiar with some of the terms used in this document. The fol-
lowing discussion serves to clarify some of the concepts discussed later in this manual.

The Freescale DSP architecture can have as many as five separate memory spaces re-
ferred to as the X, Y, L, P (Program). L memory space is a concatenation of X and Y data
memory and is considered by the assembler as a superset of the X and Y memory spaces.
The assembler will generate object code for each memory space, but object code can only
be generated for one memory space at a time.

The memory space and address location into which the object code generated by the as-
sembler will be loaded are referred to as the load memory space and load address, re-
spectively. Because the DSP architecture allows data transfers between memory spaces,
sometimes object code is loaded into an address of one memory space but will later be
transferred to a different memory space and address before the program is run. One ex-
ample of this might be a program located in an external EPROM that will be transferred
into external program RAM before it is run. The transfer of code/data from one memory
space/address to a different memory space/address is called an overlay.

When the object code for a part of the program is generated that later will be used as an
overlay, the load memory space and load address do not correspond to the memory
space and address where the program will be run. The memory space and address loca-
tion where the code/data will be located when the program is run are referred to as the
runtime memory space and runtime address, respectively. If the assembler only used
the load address to assign values to labels, then the program would not contain the cor-
8 DSP Assembler Reference Manual Freescale

Chapter 1 Freescale DSP Assembler - Assembler Support for Digital Signal Processing
rect label references when it was transferred to the runtime memory space and the run-
time address.

During the assembly process, the assembler uses location counters to record the ad-
dresses associated with the object code. In order to facilitate the generation of object code
for overlays, the assembler maintains two different location counters, the load location
counter, which determines the address into which the object code will be loaded and the
runtime location counter, which determines the address assigned to labels. In addition,
the assembler keeps track of the load memory space, which is the memory space into
which the object code will be loaded, and the runtime memory space, which is the mem-
ory space to which an overlay will be transferred and the memory space attribute that will
be assigned to labels. See Chapter 4, for a practical discussion of the use of memory
spaces and location counters.

The Freescale digital signal processors are capable of performing operations on modulo
and reverse-carry buffers, two data structures useful in digital signal processing applica-
tions. The DSP assembler provides directives for establishing buffer base addresses, al-
locating buffer space, and initializing buffer contents. For a buffer to be located properly
in memory the lower bits of the starting address which encompass one less than the buffer
size must be zero. For example, the lowest address greater than zero at which a buffer of
size 32 may be located is 32 (20 hexadecimal). More generally, the buffer base address
must be a multiple of 2k, where 2k is greater than or equal to the size of the buffer. Buffers
can be allocated manually or by using the assembler buffer directives (see Chapter 6).

The assembler operates in either absolute or relative mode, depending on the presence
of the command line -A option. In relative mode the assembler creates relocatable object
files. These files can be combined and relocated using the Freescale DSP linker. In ab-
solute mode the assembler generates absolute object files. Absolute files cannot be re-
located but can be loaded directly for execution. By default the assembler runs in relative
mode.

1.7 Assembler Support for Digital Signal Processing

As mentioned previously, the assembler offers facilities commonly found in other macro
assemblers, such as nested macro capabilities, include files, and conditional assembly.
The assembler must also provide extensions in support of the unconventional architecture
of the Freescale digital signal processors, as well as aids for programming DSP-specific
applications. Some of these features are discussed briefly below; see the appropriate
chapters later in this manual for more information.

The assembler supports the use of arbitrary algebraic expressions as arguments to vari-
ous directives and as immediate operands in certain instructions. Terms of these expres-
sions may consist of the assembler’s own built-in functions, which perform data
conversion, comparison, and computational operations. In the digital signal processing
domain transcendental functions for computing sine, cosine, and natural logarithm are
useful for initializing data values in memory, such as sine/cosine tables for FFT algo-
rithms. Also, there are functions for easily converting values expressed in decimal float-
Freescale DSP Assembler Reference Manual 9

Chapter 1 Freescale DSP Assembler - Assembler Support for Digital Signal Processing
ing point to their binary or fractional equivalents. This conversion is done automatically
for immediate instruction operands and arguments to the DC directive (see Chapter 6).
See Chapter 3 for more information on assembler expressions, operators, and built-in
functions.

The register set of the Freescale digital signal processors allows for efficient use of mod-
ulo and reverse-carry buffers for FFT applications. The assembler supports this architec-
ture by providing several special-purpose directives for allocating circular buffers. The
BADDR, BUFFER, DSM, and DSR directives automatically advance the program counter
to the next appropriate base address given the buffer size, and perform various boundary
and magnitude checks to insure that the buffer is valid. The BSM and BSR provide for
automatic alignment and block initialization of DSP buffers. Since a buffer allocated in this
fashion can cause alignment gaps in memory, the MU option (see the OPT directive,
Chapter 6) may be used to generate a full memory utilization report. See Chapter 6 for
more information on assembler directives and options.
10 DSP Assembler Reference Manual Freescale

Chapter 2 Writing Assembly Language Programs

2.1 Input File Format

Programs written in assembly language consist of a sequence of source statements. Any
source statement can be extended to one or more lines by including the line continuation
character (\) as the last character on the line to be continued. A source statement (first line
and any continuation lines) can be a maximum of 255 characters long. Upper and lower
case letters are considered equivalent for assembler mnemonics and directives, but are
considered distinct for labels, symbols, directive arguments, and literal strings.

If the source file contains horizontal tabs (ASCII $09), the assembler will expand these to
the next fixed tab stop located at eight character intervals (column 1, 9, 17...), unless reset
using the TAB directive (see Chapter 6). This is only significant if tab characters are em-
bedded within literal strings.

2.2 Symbol Names

Symbol names can be from one to 512 characters long. The first character of a symbol
must be alphabetic (upper or lower case); any remaining characters can be either alpha-
numeric (A-Z, a-z, 0-9) or the underscore character (_). Upper and lower case letters in
symbols are considered distinct unless the IC option is in effect (see the OPT directive,
Chapter 6).

Valid: loop_1 Invalid: 1_loop
ENTRY loop.e
a_B_c

Certain identifiers are reserved by the assembler and cannot be used. These identifiers
are the upper or lower case name of any Freescale DSP processor register. See Appen-
dix E for a list of the register names of the appropriate target processor.

2.3 Strings

One or more ASCII characters enclosed by single quotes (') constitute a literal ASCII
string. In order to specify an apostrophe within a literal string, two consecutive apostro-
Freescale DSP Assembler Reference Manual 11

Chapter 2 Writing Assembly Language Programs - Source Statement Format
phes must appear where the single apostrophe is intended. Strings are used as operands
for some assembler directives and also can be used to a limited extent in expressions.

A string may also be enclosed in double quotes (") in which case any DEFINE directive
symbols contained in the string would be expanded. The double quote should be used
with care inside macros since it is used as a dummy argument string operator (see Chap-
ter 5). In that case the macro concatenation operator can be used to escape the double-
quoted string if desired.

Two strings separated by the string concatenation operator (++) will be recognized by the
assembler as equivalent to the concatenation of the two strings. For example, these two
strings are equivalent:

'ABC'++'DEF' = 'ABCDEF'

The assembler has a substring extraction capability using the square brackets ([]). Here
is an example:

['DSP56300',3,5] = '56300'

Substrings may be used wherever strings are valid and can be nested. There are also
functions for determining the length of a string and the position of one string within anoth-
er. See Chapter 3 for more information on string functions.

2.4 Source Statement Format

Each source statement may include up to six fields separated by one or more spaces or
tabs: a label field, an operation field, an operand field, up to two data transfer fields, and
a comment field. Only fields preceding the comment field are considered significant to the
assembler; the comment field is ignored. For example, the following source statement
shows all six possible fields for the DSP56300:

ENT FMPY D8,D6,D2 X:(R0),D4.S D2.S,Y:(R5)+; TEXT

In general, the contents of each field other than the comment field cannot contain embed-
ded whitespace characters, since these characters are used as field delimiters. Two ex-

Label

Opcode

Operand

X field

Y field

Comment
12 DSP Assembler Reference Manual Freescale

Chapter 2 Writing Assembly Language Programs - Source Statement Format
ceptions are blanks and tabs in quoted strings and the syntax of structured control
statements (see Chapter 7).

2.4.1 Label Field

The label field occurs as the first field of a source statement, and can take one of the fol-
lowing forms:

1. A space or tab as the first character on a line ordinarily indicates that the label
field is empty, and that the line has no label.

2. An alphabetic character as the first character indicates that the line contains a
symbol called a label.

3. An underscore (_) as the first character indicates that the label is a local label.

Labels may be indented if the label symbol is immediately followed by a colon (:). If the
first non-blank field on a line complies with either forms 2 or 3 above and the field ends
with a colon, the assembler regards this as the label field, even if it does not start with the
first character on the line. However, all characters preceding the label on the source line
must be whitespace characters (spaces or tab characters). There should be no interven-
ing blanks or tabs between the end of the label symbol and the appended colon character.

Local labels are any normal symbol name preceded (with no intervening blanks) by an
underscore (_). Except for the special case of macros (described below), local labels have
a limited scope bounded by any two non-local labels. The local label can be referred to or
defined only in source statements that are between two source lines containing non-local
labels. Local labels are useful in defining program locations where a unique label name
is required but is not considered useful in documenting the source file (for example, the
terminating address of a DO loop). Note that the maximum length of a local label includes
the leading underscore (_) character.

Use of local labels in macros represents a special case. All local labels within a macro are
considered distinct for the currently active level of macro expansion (unless the macro lo-
cal label override operator is used; see Chapter 5). These local labels are valid for the en-
tire macro expansion and are not considered bounded by non-local labels. Therefore, all
local labels within a macro must be unique. This mechanism allows the programmer to
freely use local labels within a macro definition without regard to the number of times that
the macro is expanded. Non-local labels within a macro expansion are considered to be
normal labels and therefore cannot occur more than once unless used with the SET di-
rective (see Chapter 6).

A label may occur only once in the label field of an individual source file unless it is used
as a local label, a label local to a section, or is used with the SET directive. If a non-local
label does occur more than once in a label field, each reference to that label after the first
will be flagged as an error.
Freescale DSP Assembler Reference Manual 13

Chapter 2 Writing Assembly Language Programs - Source Statement Format
A line consisting of a label only is a valid line and has the effect of assigning the value of
the location counter to the label. With the exception of some directives, a label is assigned
the value of the location counter of the first word of the instruction or data being assem-
bled.

2.4.2 Operation Field

The operation field appears after the label field, and must be preceded by at least one
space or tab. Entries in the operation field may be one of three types:

Opcode - Mnemonics that correspond directly to DSP machine instructions.

Directive - Special operation codes known to the assembler which control
the assembly process.

Macro call - Invocation of a previously defined macro which is to be inserted
in place of the macro call.

The assembler first searches for operation codes in an internal macro definition table. If
no match is found, the table of machine operation codes and assembler directives is
searched. If neither of the tables holds the specified operation code, an error message is
generated (this sequence can be altered with the MACLIB directive). Macro names can
therefore replace standard machine operation codes and assembler directives, although
a warning will be issued if such a replacement occurs. The warning can be avoided by
use of the RDIRECT directive. See Chapter 6 for more information on the MACLIB and
RDIRECT directives.

2.4.3 Operand Field

The interpretation of the operand field is dependent on the contents of the operation field.
The operand field, if present, must follow the operation field, and must be preceded by at
least one space or tab. The operand field may contain a symbol, an expression, or a com-
bination of symbols and expressions separated by commas. There should be no inter-
vening whitespace characters separating operand elements.

 The operand field of machine instructions is used to specify the addressing mode of the
instruction, as well as the operand of the instruction. The format of the operand field for
a particular instruction is given in Appendix A of the User Manual for the DSP in question
(e.g., DSP56300 Family Manual). The operand fields of assembler directives are de-
scribed in Chapter 6. The operand fields of macros (Chapter 5) depend on the definition
of the macro.

2.4.4 Data Transfer Fields

Most opcodes can specify one or more data transfers to occur during the execution of the
instruction. These data transfers are indicated by two addressing mode operands sepa-
rated by a comma, with no embedded blanks. If two data transfers are specified, they
14 DSP Assembler Reference Manual Freescale

Chapter 2 Writing Assembly Language Programs - Assembler Output
must be separated by one or more blanks or tabs. See the appropriate DSP User’s Man-
ual for a complete discussion of addressing modes that are applicable to data transfer
specifications.

2.4.5 Comment Field

Comments are not considered significant to the assembler, but can be included in the
source file for documentation purposes. A comment field is composed of any characters
(not part of a literal string) that are preceded by a semicolon (;). A comment starting in the
first column of the source file will be aligned with the label field in the listing file. Otherwise,
the comment will be shifted right and aligned with the comment field in the listing file, un-
less the NOPP option is used (see the OPT directive, Chapter 6). Comments preceded by
two consecutive semicolons (;;) will not be reproduced on the assembler listing and will
not be saved as part of a macro definition.

2.5 Assembler Output

The assembler output consists of an optional listing of the source program and an optional
object file. Appendix D contains the description of the object file format.

The assembly source program listing contains the original source statements, formatted
for easier reading, as well as additional information which is generated by the assembler.
Most lines in the listing correspond directly to a source statement. Lines which do not cor-
respond directly to source statements include page headings, error messages, and ex-
pansions of macro calls or directives such as DC (Define Constant; see Chapter 6).

The assembly listing optionally may contain a symbol table or a cross-reference table of
all non-local symbols appearing in the program. These are always printed after the end of
source input or the END directive (whichever occurs first) if either the symbol table or
cross-reference table options are in effect (see the OPT directive, Chapter 6). The symbol
table contains the name of each symbol, along with its defined value. The cross-reference
table additionally contains the assembler-maintained source line number of every refer-
ence to every non-local symbol (local symbols may be included in the cross-reference list-
ing by using the LOC option; see the OPT directive, Chapter 6).

If the MU option is enabled (see the OPT directive, Chapter 6), the assembler generates
a report of load and runtime memory utilization. The report shows beginning and ending
addresses of allocated memory areas, along with their lengths and associated symbol
names, if applicable. A separate report is generated for each memory space where data
has been reserved for use by the program.

The assembler object file is a binary COFF (Common Object File Format) file, with exten-
sions and adaptations to support symbolic debugging and to make DSP object files trans-
portable among host platforms. COFF is a formal definition for the structure of machine
code files. It is derived from AT&T Unix System V and represents a quasi-de facto stan-
dard for object file formats. Refer to Appendix D for more information on Freescale DSP
COFF structure and layout.
Freescale DSP Assembler Reference Manual 15

Chapter 2 Writing Assembly Language Programs - Assembler Output
16 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions

3.1 Introduction

An expression represents a value which is used as an operand in an assembler instruction
or directive. An expression is a combination of symbols, constants, operators, and paren-
theses. Expressions may contain user-defined labels and their associated integer or float-
ing point values, and/or any combination of integers, floating point numbers, or ASCII
literal strings. In general, white space (a blank or tab) is not allowed between the terms
and operators of an assembler expression. Expressions otherwise follow the convention-
al rules of algebra and boolean arithmetic.

3.2 Absolute and Relative Expressions

An expression may be either relative or absolute. An absolute expression is one which
consists only of absolute terms, or is the result of two relative terms with opposing signs.
A relative expression consists of a relative term by itself or only in combination with abso-
lute terms.

When the assembler is operating in relative mode all address expressions must adhere
to the above definitions for absolute or relative expressions. This is because only these
types of expressions will retain a meaningful value after program relocation. For example,
when relative terms are paired with opposing signs, the result is the difference between
the two relative terms, which is an absolute value. However, if two positive relative terms
are added together the result is unpredictable based on the computed values of the terms
at relocation time.

3.3 Expression Memory Space Attribute

A symbol is associated with either an integer or a floating point value which is used in
place of the symbol during the expression evaluation. Each symbol also carries a memory
space attribute of either X, Y, L, Program, or None. SET labels, constants, and floating
point expressions always have a memory space attribute of None. The result of an ex-
pression will always have a memory space attribute associated with it. The unary logical
negate operator, relational operators, and some functions return values that have a mem-
ory space attribute of N. The result of an expression that has only one operand (and pos-
sibly the unary negate or unary minus operator) always has the memory attribute of that
Freescale DSP Assembler Reference Manual 17

Chapter 3 Expressions - Expression Memory Space Attribute
operand. Expressions that involve two or more operands and operators other than those
mentioned above derive the memory space attribute of the result by examining the oper-
ands on the left and right side of an operator as shown in the following chart:

Left Operand Memory Space Attribute

X Y L P N

Right Operand X X * X * X
Memory Space
Attribute Y * Y Y * Y

L X Y L * L

P * * * P P

N X Y L P N

* = Represents an illegal operation that will result in an error.

Notice that L memory space is regarded as a union of both X and Y space. In expressions
that have one element that has a memory space attribute of L and another element with
a memory space attribute of either X or Y, the result will have the more restrictive memory
space attribute (X or Y).

The memory space attribute is regarded by the assembler as a type, in the same sense
that high level languages use type for variables. Symbols that are assigned memory
space attributes of X, Y, L, or P are assumed to be addresses and therefore can only have
values between zero and the maximum address value of the DSP inclusive. Only symbols
that have a memory space attribute of N can have values greater than the maximum ad-
dress of the target processor.

Memory space attributes become important when an expression is used as an address.
Errors will occur when the memory space attribute of the expression result does not match
the explicit or implicit memory space specified in the source code. Memory spaces are
explicit when the address has any of the following forms:

X:<address expression>
Y:<address expression>
L:<address expression>
P:<address expression>

The memory space is implicitly P when an address is used as the operand of a DO,
branch, or jump-type instruction.

Expressions used for immediate addressing can have any memory space attribute.
18 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Internal Expression Representation
3.4 Internal Expression Representation

Expression value representation internal to the assembler is dependent on the word size
of the target processor. The assembler supports a word and a double word integer format
internally. The actual storage size of an expression value is dependent upon the magni-
tude of the result, but the assembler is capable of representing signed integers up to 64
bits in length. These longer integer representations are useful when performing data ini-
tialization in L memory space.

Internal floating point representation is almost entirely dependent upon the host environ-
ment, but in general floating point values are stored in double precision format. This
means that there are ordinarily 64 bits of storage allotted for a floating point number by
the assembler, with 11 bits of exponent, 53 bits of mantissa, and an implied binary point.

3.5 Constants

Constants represent quantities of data that do not vary in value during the execution of a
program.

3.5.1 Numeric Constants

Numeric constants can be in one of three bases:

Binary Binary constants consist of a percent sign (%) followed by a string
of binary digits (0,1).

Example: %11010

Hexadecimal Hexadecimal constants consist of a dollar sign ($) followed by a
string of hexadecimal digits (0-9, A-F, a-f).

Example: $12FF, $12ff

Decimal Decimal constants can be either floating point or integer. Integer
decimal constants consist of a string of decimal (0-9) digits op-
tionally preceded by a grave accent (`). Floating point constants
are indicated either by a preceding, following, or included decimal
point or by the presence of an upper or lower case ‘E’ followed by
the exponent.

Example:

12345 (integer)
6E10 (floating point)
.6 (floating point)
2.7e2 (floating point)
Freescale DSP Assembler Reference Manual 19

Chapter 3 Expressions - Operators
A constant may be written without a leading radix indicator if the input radix is changed
using the RADIX directive. For example, a hexadecimal constant may be written without
the leading dollar sign ($) if the input radix is set to16 (assuming an initial radix of 10). The
default radix is10. See Chapter 6 on the RADIX directive for more information.

3.5.2 String Constants

String constants that are used in expressions are converted to a concatenated sequence
of ASCII bytes (right aligned), as shown below. Strings used in expressions are limited to
the long word size of the target processor; subsequent characters in the string are ig-
nored. Null strings (strings that have no characters) have a value of 0.

String constants greater than the maximum number of characters can be used in expres-
sions, but the assembler will truncate the value and will use only those characters that will
fit in a DSP long word. In this case, a warning will be printed. This restriction also applies
to string constants using the string concatenation operator. Handling of string constants
by the DC and DCB directives is an exception to this rule; see Chapter 6 for a description.

Examples:

'ABCD' ($41424344)
'''79' ($00273739)
'A' ($00000041)
'' ($00000000) - null string
'abcdef' ($61626364)
'abc'++'de' ($61626364)

3.6 Operators

Some of the assembler operators can be used with both floating point and integer values.
If one of the operands of the operator has a floating point value and the other has an in-
teger value, the integer will be converted to a floating point value before the operator is
applied and the result will be floating point. If both operands of the operator are integers,
the result will be an integer value. Similarly, if both the operands are floating point, the
result will be a floating point value.

3.6.1 Unary operators

plus (+)
minus (-)
one’s complement (~) - Integer only
logical negate (!)

The unary plus operator returns the value of its operand.

The unary minus operator returns the negative of its operand.
20 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Operators
The one’s complement operator returns the one’s complement of its operand. It cannot
be used with a floating point operand.

The unary logical negation operator returns an integer 1 (memory space attribute None)
if the value of its operand is 0 and will return a 0 otherwise. For example, if the symbol
BUF had a value of 0, then !BUF would have a value of 1. If BUF had a value of 1000,
!BUF would have a value of 0.

3.6.2 Arithmetic operators

addition (+)
subtraction (-)
multiplication (*)
division (/)
mod (%)

The addition operator yields the sum of its operands.

The subtraction operator yields the difference of its operands.

The multiplication operator yields the product of its operands.

The divide operator yields the quotient of the division of the first operand by the second.
For integer operands the divide operation will produce a truncated integer result.

The mod operator applied to integers will yield the remainder from the division of the first
operand by the second. If the mod operator is used with floating point operands, the mod
operator will apply the following rules:

Y % Z = Y if Z = 0
= X if Z <> 0

where X has the same sign as Y, is less than Z, and satisfies the relationship:

Y = i * Z + X

where i is an integer.

3.6.3 Shift operators

shift left (<<) - Integer only
shift right (>>) - Integer only

The shift left operator causes the left operand to be shifted to the left (and zero-filled) by
the number of bits specified by the right operand.

The shift right operator causes the left operand to be shifted to the right by the number of
bits specified by the right operand. The sign bit will be extended.
Freescale DSP Assembler Reference Manual 21

Chapter 3 Expressions - Operators
Shift operators cannot be applied to floating point operands.

3.6.4 Relational operators

less than (<)
less than or equal (<=)
greater than (>)
greater than or equal (>=)
equal (==)
not equal (!=)

Relational operators all work the same way. If the indicated condition is true, the result of
the expression is an integer 1. If it is false, the result of the expression is an integer 0. In
either case, the memory space attribute of the result is None.

For example, if D has a value of 3 and E has a value of 5, then the result of the expression
D<E is 1, and the result of the expression D>E is 0. Each operand of the conditional op-
erators can be either floating point or integer. Test for equality involving floating point val-
ues should be used with caution, since rounding error could cause unexpected results.
Relational operators are primarily intended for use with the conditional assembly IF direc-
tive, but can be used in any expression.

3.6.5 Bitwise operators

AND (&) - Integer only
OR (|) - Integer only
exclusive OR (^) - Integer only

The bitwise AND operator yields the bitwise AND function of its operands.

The bitwise OR operator yields the bitwise OR function of its operands.

The bitwise exclusive OR operator yields the bitwise exclusive OR function of its oper-
ands.

Bitwise operators cannot be applied to floating point operands.

3.6.6 Logical operators

Logical AND (&&)
Logical OR (||)

The logical AND operator returns an integer 1 if both of its operands are nonzero; other-
wise, it returns an integer 0.
22 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Operator Precedence
The logical OR operator returns an integer 1 if either of its operands is nonzero; otherwise
it returns an integer 0.

The types of the operands may be either integer or floating point; the memory space at-
tribute of the result is None. Logical operators are primarily intended for use with the con-
ditional assembly IF directive, but can be used in any expression.

3.7 Operator Precedence

Expressions are evaluated with the following operator precedence:

1. parenthetical expression (innermost first)
2. unary plus, unary minus, one’s complement, logical negation
3. multiplication, division, mod
4. addition, subtraction
5. shift
6. relational operators: less, less or equal, greater, greater or equal
7. relational operators: equal, not equal
8. bitwise AND, OR, EOR
9. logical AND, OR

Operators of the same precedence are evaluated left to right. Valid operands include nu-
meric constants, literal ASCII strings, and symbols. The one’s complement, shift, and bit-
wise operators cannot be applied to floating point operands. That is, if the evaluation of
an expression (after operator precedence has been applied) results in a floating point
number on either side of any of these operators, an error will be generated.

3.8 Functions

The assembler has several built-in functions to support data conversion, string compari-
son, and transcendental math computations. Functions may be used as terms in any ar-
bitrary expression. Functions may have zero or more arguments, but must always be
followed by open and closed parentheses. Function arguments which are expressions
must be absolute expressions except where noted. Arguments containing external refer-
ences are not allowed. There must be no intervening spaces between the function name
and the opening parenthesis, and there must be no spaces between comma-separated
arguments.

Assembler functions can be grouped into five types:

1. Mathematical functions
2. Conversion functions
3. String functions
4. Macro functions
5. Assembler mode functions
Freescale DSP Assembler Reference Manual 23

Chapter 3 Expressions - Functions
3.8.1 Mathematical Functions

The mathematical functions comprise transcendental, random value, and min/max func-
tions, among others:

ABS - Absolute value
ACS - Arc cosine
ASN - Arc sine
AT2 - Arc tangent
ATN - Arc tangent
CEL - Ceiling function
COH - Hyperbolic cosine
COS - Cosine
FLR - Floor function
L10 - Log base 10
LOG - Natural logarithm
MAX - Maximum value
MIN - Minimum value
POW - Raise to a power
RND - Random value
SGN - Return sign
SIN - Sine
SNH - Hyperbolic sine
SQT - Square root
TAN - Tangent
TNH - Hyperbolic tangent
XPN - Exponential function
24 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Functions
3.8.2 Conversion Functions

The conversion functions provide conversion between integer, floating point, and fixed
point fractional values:

CVF - Convert integer to floating point
CVI - Convert floating point to integer
CVS - Convert memory space
FLD - Shift and mask operation
FRC - Convert floating point to fractional
LFR - Convert floating point to long fractional
LNG - Concatenate to double word
LUN - Convert long fractional to floating point
RVB - Reverse bits in field
UNF - Convert fractional to floating point

3.8.3 String Functions

String functions compare strings, return the length of a string, and return the position of a
substring within a string:

LEN - Length of string
POS - Position of substring in string
SCP - Compare strings

3.8.4 Macro Functions

Macro functions return information about macros:

ARG - Macro argument function
CNT - Macro argument count
MAC - Macro definition function
MXP - Macro expansion function
Freescale DSP Assembler Reference Manual 25

Chapter 3 Expressions - Functions
3.8.5 Assembler Mode Functions

Miscellaneous functions having to do with assembler operation:

CCC - Cumulative cycle count
CHK - Current instruction/data checksum
CTR - Location counter type
DEF - Symbol definition function
EXP - Expression check
INT - Integer check
LCV - Location counter value
LST - LIST directive flag value
MSP - Memory space
REL - Relative mode function

Individual descriptions of each of the assembler functions follow. They include usage
guidelines, functional descriptions, and examples.

@ABS(<expression>)

Returns the absolute value of <expression> as a floating point value. The memory
space attribute of the result will be None.

Example:

MOVE #@ABS(VAL),D4.S ; load absolute value

@ACS(<expression>)

Returns the arc cosine of <expression> as a floating point value in the range zero
to pi. The result of <expression> must be between -1 and 1. The memory space
attribute of the result will be None.

Example:

ACOS = @ACS(-1.0) ; ACOS = 3.141593

@ARG(<symbol> | <expression>)

Returns integer 1 if the macro argument represented by <symbol> or <expression>
is present, 0 otherwise. If the argument is a symbol it must be single-quoted and
refer to a dummy argument name. If the argument is an expression it refers to the
ordinal position of the argument in the macro dummy argument list. A warning will
be issued if this function is used when no macro expansion is active. The memory
space attribute of the result will be None.

Example:

IF @ARG(TWIDDLE) ; twiddle factor provided?
26 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Functions
@ASN(<expression>)

Returns the arc sine of <expression> as a floating point value in the range -pi/2 to
pi/2. The result of <expression> must be between -1 and 1. The memory space
attribute of the result will be None.

Example:

ARCSINE SET @ASN(-1.0) ; ARCSINE = -1.570796

@AT2(<expr1,expr2>)

Returns the arc tangent of <expr1>/<expr2> as a floating point value in the range
-pi to pi. Expr1 and expr2 must be separated by a comma. The memory space
attribute of the result will be None.

Example:

ATAN EQU @AT2(-1.0,1.0) ; ATAN = -0.7853982

@ATN(<expression>)

Returns the arc tangent of <expression> as a floating point value in the range -pi/
2 to pi/2. The memory space attribute of the result will be None.

Example:

MOVE #@ATN(1.0),D0.S ; load arc tangent

@CCC()

Returns the cumulative cycle count as an integer. Useful in conjunction with the
CC, NOCC, and CONTCC assembler options (see the OPT directive). The mem-
ory space attribute of the result will be None.

Example:

IF @CCC() > 200 ; cycle count > 200?

@CEL(<expression>)

Returns a floating point value which represents the smallest integer greater than or
equal to <expression>. The memory space attribute of the result will be None.

Example:

CEIL SET @CEL(-1.05) ; CEIL = -1.0
Freescale DSP Assembler Reference Manual 27

Chapter 3 Expressions - Functions
@CHK()

Returns the current instruction/data checksum value as an integer. Useful in con-
junction with the CK, NOCK, and CONTCK assembler options (see the OPT direc-
tive). Note that assignment of the checksum value with directives other than SET
could cause phasing errors due to different generated instruction values between
passes. The memory space attribute of the result will be None.

Example:

CHKSUM SET @CHK() ; reserve checksum value

@CNT()

Returns the count of the current macro expansion arguments as an integer. A
warning will be issued if this function is used when no macro expansion is active.
The memory space attribute of the result will be None.

Example:

ARGCNT SET @CNT() ; squirrel away arg count

@COH(<expression>)

Returns the hyperbolic cosine of <expression> as a floating point value. The mem-
ory space attribute of the result will be None.

Example:

HYCOS EQU @COH(VAL) ; compute hyperbolic cosine

@COS(<expression>)

Returns the cosine of <expression> as a floating point value. The memory space
attribute of the result will be None.

Example:

DC -@COS(@CVF(COUNT)*FREQ) ; compute cosine value

@CTR({L | R})

If L is specified as the argument, returns the counter number of the load location
counter. If R is specified, returns the counter number of the runtime location
counter. The counter number is returned as an integer value with memory space
of None.

Example:

CNUM = @CTR(R) ; runtime counter number
28 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Functions
@CVF(<expression>)

Converts the result of <expression> to a floating point value. The memory space
attribute of the result will be None.

Example:

FLOAT SET @CVF(5) ; FLOAT = 5.0

@CVI(<expression>)

Converts the result of <expression> to an integer value. This function should be
used with caution since the conversions can be inexact (e.g., floating point values
are truncated). The memory space attribute of the result will be None.

Example:

INT SET @CVI(-1.05) ; INT = -1

@CVS({X | Y | L | P | N},<expression>)

Converts the memory space attribute of <expression> to that specified by the first
argument; returns <expression>. See section 3.3 for more information on memory
space attributes. The <expression> may be relative or absolute.

Example:

LOADDR EQU @CVS(X,TARGET) ; set LOADDR to X:TARGET

@DEF(<symbol>)

Returns an integer 1 (memory space attribute N) if <symbol> has been defined, 0
otherwise. <symbol> may be any label not associated with a MACRO or SECTION
directive. If <symbol> is quoted it is looked up as a DEFINE symbol; if it is not quot-
ed it is looked up as an ordinary label.

Example:

IF @DEF(ANGLE) ; assemble if ANGLE defined

@EXP(<expression>)

Returns an integer 1 (memory space attribute N) if the evaluation of <expression>
would not result in errors. Returns 0 if the evaluation of <expression> would cause
an error. No error will be output by the assembler if <expression> contains an er-
ror. No test is made by the assembler for warnings. The <expression> may be
relative or absolute.

Example:

IF !@EXP(@FRC(VAL)) ; skip on error
Freescale DSP Assembler Reference Manual 29

Chapter 3 Expressions - Functions
@FLD(<base>,<value>,<width>[,<start>])

Shift and mask <value> into <base> for <width> bits beginning at bit <start>. If
<start> is omitted, zero (least significant bit) is assumed. All arguments must be
positive integers and none may be greater than the target word size. Returns the
shifted and masked value with a memory space attribute of None.

Example:

SWITCH EQU @FLD(TOG,1,1,7) ; turn eighth bit on

@FLR(<expression>)

Returns a floating point value which represents the largest integer less than or
equal to <expression>. The memory space attribute of the result will be None.

Example:

FLOOR SET @FLR(2.5) ; FLOOR = 2.0

@FRC(<expression>)

For binary fractional DSPs (DSP56300) this functions performs scaling and con-
vergent rounding to obtain the fractional representation of the floating point <ex-
pression> as an integer. The memory space attribute of the result will be None.

Example:

FRAC EQU @FRC(FLT)+1 ; compute saturation

@INT(<expression>)

Returns an integer 1 (memory space attribute N) if <expression> has an integer re-
sult, 0 otherwise. The <expression> may be relative or absolute.

Example:

IF @INT(TERM) ; insure integer value

@L10(<expression>)

Returns the base 10 logarithm of <expression> as a floating point value. <expres-
sion> must be greater than zero. The memory space attribute of the result will be
None.

Example:

LOG EQU @L10(100.0) ; LOG = 2
30 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Functions
@LCV({L | R}[,{L | H | <expression>}])

If L is specified as the first argument, returns the memory space attribute and value
of the load location counter. If R is specified, returns the memory space attribute
and value of the runtime location counter. The optional second argument indicates
the Low, High, or numbered counter and must be separated from the first argument
by a comma. If no second argument is present the default counter (counter 0) is
assumed.

The @LCV function will not work correctly if used to specify the runtime counter
value of a relocatable overlay. This is because the resulting value is an overlay
expression, and overlay expressions may not be used to set the runtime counter
for a subsequent overlay. See the ORG directive (Chapter 6) for more information.

Example:

ADDR = @LCV(R) ; save runtime address

@LEN(<string>)

Returns the length of <string> as an integer. The memory space attribute of the
result will be None.

Example:

SLEN SET @LEN('string') ; SLEN = 6

@LFR(<expression>)

For binary fractional DSPs (DSP56300) this functions performs scaling and con-
vergent rounding to obtain the fractional representation of the floating point <ex-
pression> as a long integer. The memory space attribute of the result will be None.

Example:

LFRAC EQU @LFR(LFLT) ; store binary form

@LNG(<expr1>,<expr2>)

Concatenates the single word <expr1> and <expr2> into a double word value such
that <expr1> is the high word and <expr2> is the low word. The memory space
attribute of the result will be None.

Example:

LWORD DC @LNG(HI,LO) ; build long word
Freescale DSP Assembler Reference Manual 31

Chapter 3 Expressions - Functions
@LOG(<expression>)

Returns the natural logarithm of <expression> as a floating point value. <expres-
sion> must be greater than zero. The memory space attribute of the result will be
None.

Example:

LOG EQU @LOG(100.0) ; LOG = 4.605170

@LST()

Returns the value of the LIST directive flag as an integer, with a memory space at-
tribute of None. Whenever a LIST directive is encountered in the assembler
source, the flag is incremented; when a NOLIST directive is encountered, the flag
is decremented.

Example:

DUP @CVI(@ABS(@LST())) ; list unconditionally

@LUN(<expression>)

Converts the double-word <expression> to a floating point value. For fractional
DSPs (DSP56300) <expression> should represent a binary fraction. The memory
space attribute of the result will be None.

Example:

DBLFRC EQU @LUN($3FE0000000000000) ;DBLFRC = 0.5

@MAC(<symbol>)

Returns an integer 1 (memory space attribute N) if <symbol> has been defined as
a macro name, 0 otherwise.

Example:

IF @MAC(DOMUL) ; expand macro

@MAX(<expr1>[,...,<exprN>])

Returns the greatest of <expr1>,...,<exprN> as a floating point value. The memory
space attribute of the result will be None.

Example:

MAX DC @MAX(1.0,5.5,-3.25) ; MAX = 5.5
32 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Functions
@MIN(<expr1>[,...,<exprN>])

Returns the least of <expr1>,...,<exprN> as a floating point value. The memory
space attribute of the result will be None.

Example:

MIN DC @MIN(1.0,5.5,-3.25) ; MIN = -3.25

@MSP(<expression>)

Returns the memory space attribute of <expression> as an integer value:

None = 0
X space = 1
Y space = 2
L space = 3
P space = 4

The <expression> may be relative or absolute.

Example:

MEM SET @MSP(ORIGIN) ; save memory space

@MXP()

Returns an integer 1 (memory space attribute N) if the assembler is expanding a
macro, 0 otherwise.

Example:

IF @MXP() ; macro expansion active?

@POS(<str1>,<str2>[,<start>])

Returns the position of string <str2> in <str1> as an integer, starting at position
<start>. If <start> is not given the search begins at the beginning of <str1>. If the
<start> argument is specified it must be a positive integer and cannot exceed the
length of the source string. The memory space attribute of the result will be None.

Example:

ID EQU @POS('DSP56300','56') ; ID = 3
Freescale DSP Assembler Reference Manual 33

Chapter 3 Expressions - Functions
@POW(<expr1>,<expr2>)

Returns <expr1> raised to the power <expr2> as a floating point value. <expr1>
and <expr2> must be separated by a comma. The memory space attribute of the
result will be None.

Example:

BUF EQU @CVI(@POW(2.0,3.0)) ; BUF = 8

@REL()

Returns an integer 1 (memory space attribute N) if the assembler is operating in
relative mode, 0 otherwise.

Example:

IF @REL() ; in relative mode?

@RND()

Returns a random value in the range 0.0 to 1.0. The memory space attribute of the
result will be None.

Example:

SEED DC @RND() ; save initial seed value

@RVB(<expr1>[,<expr2>])

Reverse the bits in <expr1> delimited by the number of bits in <expr2>. If <expr2>
is omitted the field is bounded by the target word size. Both expressions must be
single word integer values.

Example:

REV EQU @RVB(VAL) ; reverse all bits in value

@SCP(<str1>,<str2>)

Returns an integer 1 (memory space attribute N) if the two strings compare, 0 oth-
erwise. The two strings must be separated by a comma.

Example:

IF @SCP(STR,'MAIN') ; does STR equal MAIN?
34 DSP Assembler Reference Manual Freescale

Chapter 3 Expressions - Functions
@SGN(<expression>)

Returns the sign of <expression> as an integer: -1 if the argument is negative, 0 if
zero, 1 if positive. The memory space attribute of the result will be None. The <ex-
pression> may be relative or absolute.

Example:

IF @SGN(INPUT) ; is sign positive?

@SIN(<expression>)

Returns the sine of <expression> as a floating point value. The memory space at-
tribute of the result will be None.

Example:

DC @SIN(@CVF(COUNT)*FREQ) ; compute sine value

@SNH(<expression>)

Returns the hyperbolic sine of <expression> as a floating point value. The memory
space attribute of the result will be None.

Example:

HSINE EQU @SNH(VAL) ; hyperbolic sine

@SQT(<expression>)

Returns the square root of <expression> as a floating point value. <expression>
must be positive. The memory space attribute of the result will be None.

Example:

SQRT EQU @SQT(3.5) ; SQRT = 1.870829

@TAN(<expression>)

Returns the tangent of <expression> as a floating point value. The memory space
attribute of the result will be None.

Example:

MOVE #@TAN(1.0),D1.S ; load tangent
Freescale DSP Assembler Reference Manual 35

Chapter 3 Expressions - Functions
@TNH(<expression>)

Returns the hyperbolic tangent of <expression> as a floating point value. The
memory space attribute of the result will be None.

Example:

HTAN = @TNH(VAL) ; hyperbolic tangent

@UNF(<expression>)

Converts <expression> to a floating point value. For fractional DSPs (DSP56300)
<expression> should represent a binary fraction. The memory space attribute of
the result will be None.

Example:

FRC EQU @UNF($400000) ; FRC = 0.5

@XPN(<expression>)

Returns the exponential function (base e raised to the power of <expression>) as
a floating point value. The memory space attribute of the result will be None.

Example:

EXP EQU @XPN(1.0) ; EXP = 2.718282
36 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management

4.1 Introduction

The Freescale DSP assemblers provide several directives designed to assist in the de-
velopment of large software projects. Complex software projects often are divided into
smaller program units. These subprograms may be written by a team of programmers in
parallel, or they may be programs written for a previous development effort that are going
to be reused. The assembler provides directives to encapsulate program units and permit
the free use of symbol names within subprograms without regard to symbol names used
in other programs. These encapsulated program units are called sections. Sections are
also the basis for relocating blocks of code and data, so that concerns about memory
placement are postponed until after the assembly process.

4.2 Sections

A section is bounded by a SECTION directive and an ENDSEC directive. For example:

SECTION <section name> [GLOBAL | STATIC | LOCAL]
.
.

Section source statements
.
.

ENDSEC

All symbols that are defined within a section have the <section name> associated with
them. This serves to protect them from like-named symbols elsewhere in the program.
By default, a symbol defined inside any given section is private to that section unless the
GLOBAL or LOCAL qualifiers accompany the SECTION directive. More information on
the GLOBAL and LOCAL qualifiers can be found in Sections and Data Hiding, below.

Any code or data inside a section is considered an indivisible block with respect to relo-
cation. Code or data associated with a section is independently relocatable within the
memory space to which it is bound, unless the STATIC qualifier follows the SECTION di-
rective on the instruction line. More information on the STATIC qualifier is available in
Sections and Relocation, below.
Freescale DSP Assembler Reference Manual 37

Chapter 4 Software Project Management - Sections and Data Hiding
4.3 Sections and Data Hiding

Symbols within a section are generally distinct from other symbols used elsewhere in the
source program, even if the symbol name is the same. This is true as long as the section
name associated with each symbol is unique, the symbol is not declared public (XDEF or
GLOBAL), and the GLOBAL or LOCAL qualifiers are not used in the section declaration
(see below). Symbols that are defined outside of a section are considered global symbols
and have no explicit section name associated with them. Global symbols may be refer-
enced freely from inside or outside of any section, as long as the global symbol name does
not conflict with another symbol by the same name in a given section. Consider the fol-
lowing example:

SYM1 EQU 1
SYM2 EQU 2

SECTION EXAMPLE

SYM1 EQU 3

MOVE #SYM1,R0
MOVE #SYM2,R1

ENDSEC

MOVE #SYM1,R2

SYM1 and SYM2 are global symbols, initially defined outside of any section. Then in sec-
tion EXAMPLE another instance of SYM1 is defined with a different value. Because
SYM1 was redefined inside the section, the value moved to R0 will be 3. Since SYM2 is
a global symbol the value moved to R1 will be 2. The last move to R2 is outside of any
section and thus the global instance of SYM1 is used; the value moved to R2 is 1.

4.3.1 Sections and Symbols

Symbols may be shared among sections through use of the XDEF and XREF directives.
The XDEF directive instructs the assembler that certain symbol definitions that occur
within the current section are to be accessible by other sections:

XDEF <symbol>,<symbol>,...,<symbol>

The XREF directive instructs the assembler that all references to <symbol> within the cur-
rent section are references to a symbol that was declared public within another section
with the XDEF directive:

XREF <symbol>,<symbol>,...,<symbol>
38 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Sections and Data Hiding
XDEFed symbols by default are recognized only in other sections which XREF them.
They can be made fully global (recognizable by sections which do not XREF them) by use
of the XR option (see the OPT directive, Chapter 6). Alternatively the GLOBAL directive
(see Chapter 6) may be used within a section to make the named symbols visible outside
of the section. Both the XDEF and XREF directives must be used before the symbols to
which they refer are defined or used in the section. Here is another example:

SYM1 EQU 1
SECTION SECT1
XDEF SYM2

SYM1 EQU 2
SYM2 EQU 3

ENDSEC
SECTION SECT2
XREF SYM2
MOVE #SYM1,R0
MOVE #SYM2,R1
ENDSEC
MOVE #SYM2,R2

SYM1 is first defined outside of any section. Then in section SECT1 SYM2 is declared
public with an XDEF directive. SYM1 is also defined locally to section SECT1. In section
SECT2 SYM2 is declared external via the XREF directive, followed by a move of SYM1
to R0. Since SYM1 was defined locally to section SECT1, the assembler uses the global
value and moves a 1 to R0. Because SYM2 was declared external in section SECT1 the
value moved to R1 is 3. If SYM2 had not been XREFed in section SECT2 the value
moved to R1 would have been unknown at this point. In the last instruction it is not known
what value will be moved to R2 since SYM2 was not defined outside of any section or was
not declared GLOBAL within a section.

If the GLOBAL qualifier follows the <section name> in the SECTION directive, then all
symbols defined in the section until the next ENDSEC directive are considered global.
The effect is as if every symbol in the section were declared with the GLOBAL directive.
This is useful when a section needs to be independently relocatable, but data hiding is not
required.

If the LOCAL qualifier follows the <section name> in the SECTION directive, then all sym-
bols defined in the section until the next ENDSEC directive are visible to the immediately
enclosing section. The effect is as if every symbol in the section were defined within the
parent section. This is useful when a section needs to be independently relocatable, but
data hiding within an enclosing section is not required.

Symbols that are defined with the SET directive can be made visible with XDEF only in
absolute mode, and the section name associated with the symbol will be the section name
of the section where the symbol was first defined. This will be true even if the symbol value
is changed in another section.
Freescale DSP Assembler Reference Manual 39

Chapter 4 Software Project Management - Sections and Data Hiding
4.3.2 Sections and Macros

The division of a program into sections controls not only labels and symbols, but also mac-
ros and DEFINE directive symbols. Macros defined within a section are private to that
section and are distinct from macros defined in other sections even if they have the same
macro name. Macros defined outside of sections are considered global and may be used
within any section. Similarly, DEFINE directive symbols defined within a section are pri-
vate to that section and DEFINE directive symbols defined outside of any section are glo-
bally applied. There are no directives that correspond to XDEF for macros or DEFINE
symbols, therefore macros and DEFINE symbols defined in a section can never be ac-
cessed globally. If global accessibility is desired, the macros and DEFINE symbols should
be defined outside of any section. Here is an example:

DEFINE DEFVAL '1'
SECTION SECT1
DEFINE DEFVAL '2'
MOVE #DEFVAL,R0
ENDSEC
MOVE #DEFVAL,R1

The second definition of DEFVAL is visible only inside SECT1, so the value moved to R0
will be 2. However, the second move instruction is outside the scope of SECT1 and will
therefore use the initial definition of DEFVAL. This means that the value 1 will be moved
to R1.

4.3.3 Nested and Fragmented Sections

Sections can be nested to any level. When the assembler encounters a nested section,
the current section is stacked and the new section is used. When the ENDSEC directive
of the nested section is encountered, the assembler restores the old section and uses it.
The ENDSEC directive always applies to the most recent SECTION directive. Nesting
sections provides a measure of scoping for symbol names, in that symbols defined within
a given section are visible to other sections nested within it. For example, if section B is
nested inside section A, then a symbol defined in section A can be used in section B with-
out XDEFing in section A or XREFing in section B. This scoping behavior can be turned
off and on with the NONS and NS options respectively (see the OPT directive, Chapter 6).

Sections may also be split into separate parts. That is, <section name> can be used mul-
tiple times with SECTION and ENDSEC directive pairs. If this occurs, then these separate
(but identically named) sections can access each others symbols freely without the use of
the XREF and XDEF directives. If the XDEF and XREF directives are used within one
section, they apply to all sections with the same section name. The reuse of the section
name is allowed to permit the program source to be arranged in an arbitrary manner (for
example, all statements that reserve X space storage locations grouped together), but re-
tain the privacy of the symbols for each section.
40 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Sections and Relocation
4.4 Sections and Relocation

When the assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the source
a set of location counters is allocated for each DSP memory space. These counters are
used to maintain offsets of data and instructions relative to the beginning of the section.
At link time sections can be relocated to an absolute address, loaded in a particular order,
or linked contiguously as specified by the programmer. Sections which are split into parts
or among files are logically recombined so that each section can be relocated as a unit.

Sections may be relocatable or absolute. In the assembler absolute mode (command line
-A option) all sections are considered absolute. In relative mode, all sections are initially
relocatable. However, a section or a part of a section may be made absolute either im-
plicitly by using the ORG directive, or explicitly through use of the MODE directive.

If the assembler encounters an ORG directive with an absolute runtime address specifi-
cation it switches to absolute mode and begins generating absolute addresses within the
enclosing section. Note that the mode change is effective only if the assembler was start-
ed in relative mode; if the -A command line option is used the assembler always gener-
ates absolute addresses. The assembler continues to generate absolute code until an
ENDSEC directive is encountered, or the mode is explicitly changed via the MODE direc-
tive.

The MODE directive allows for arbitrary switching between absolute and relocatable code
generation:

MODE <ABS[OLUTE] | REL[ATIVE]>

The MODE directive may be issued at any time in the assembly source to alter the set of
location counters used for section addressing. Code generated while in absolute mode
will be placed in memory at the location determined during assembly. Relocatable code
and data within a section are combined at link time, even if absolute blocks are inter-
Freescale DSP Assembler Reference Manual 41

Chapter 4 Software Project Management - Address Assignment
spersed among relocatable blocks. The MODE directive has no effect when the com-
mand line -A option is active. The following is an example:

SECTION EXAMPLE ; relocatable section

; code/data generated here is relocatable

MODE ABSOLUTE

; code/data generated here is absolute; it will be
; placed in memory at the location specified during
; assembly

MODE REL

; back to relocatable; code/data generated here
; will be combined with the previous relocatable block,
; as long as memory space and mappings are compatible

ORG P:$200

; code/data generated here will be absolute
; until ENDSEC directive is found

ENDSEC

More information on the ORG and MODE directives can be found in Address Assignment
and under the individual directive descriptions in Chapter 6.

If the STATIC qualifier follows the <section name> in the SECTION directive, then all code
and data defined in the section until the next ENDSEC directive are relocated in terms of
the immediately enclosing section. The effect with respect to relocation is as if all code
and data in the section were defined within the parent section. This is useful when a sec-
tion needs data hiding, but independent relocation is not required.

4.5 Address Assignment

The Freescale DSP assembler can support absolute address assignment at assembly
time or generation of relocatable program addresses which are resolved during the linking
phase. The ORG directive is used to specify memory space changes, mappings to phys-
ical memory, and absolute address assignment.
42 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Address Assignment
Various memory layouts require special handling for data generation or location counter
updating. In the case of L memory, two words of code or data are produced for each in-
crement of the location counter.

The assembler allows for two sets of program counters per memory space, a set of load
counters and a set of runtime counters. The distinction between load and runtime
counters is maintained so that the assembler can support overlays, or runtime transfers
of code/data from one memory space to another. In these cases code or data might be
loaded in one memory space at a given address, but then copied to a different memory
space and address for execution. The assembler can produce output for either absolute
or relocatable overlays.

Freescale DSPs are capable of performing special-purpose addressing on data structures
suited to digital signal processing applications. Two such data structures are the modulo
buffer and the reverse-carry buffer, collectively referred to as circular buffers. Due to the
way they are accessed and manipulated, these buffers generally are constrained to a par-
ticular size or starting address. The assembler provides directives for aligning buffer base
addresses, allocating buffer space, and initializing buffer contents.

4.5.1 The ORG Directive

The ORG directive specifies which memory space will be the runtime memory space and
which counter (the H, L, default, or numbered runtime counter associated with that mem-
ory space and section) will be the runtime location counter. At the same time, the ORG
directive indicates which memory space will be the load memory space and which counter
(the H, L, default, or numbered load counter associated with that memory space and sec-
tion) will be used as the load location counter. In addition, the ORG directive can be used
to specify a physical mapping to DSP memory and to assign initial values to the runtime
and load location counters.

The names of the counters (High, Low, and default) are symbolic only, and the assembler
performs no checks to insure that the value assigned to the High counter is greater than
the Low. Moreover, there is no inherent relationship among numbered counters, except
that counters 0, 1, and 2 correspond to the default, Low, and High counters, respectively.
Counters are useful for providing mnemonic links between runtime and load memory
spaces or among individual memory blocks. Separate counters can be used to obtain
blocks within a common section which are accessed from one memory space but mapped
to separate physical memories. Also counters are necessary for handling relocatable
overlays at link time, as the DSP linker does not support the notion of separate load and
runtime counters. See the examples below for more information on location counter us-
age.

The ORG directive is organized as follows:

 ORG <rms>[<rlc>][<rmp>]:[<exp1>][,<lms>[<llc>][<lmp>]:[<exp2>]]
Freescale DSP Assembler Reference Manual 43

Chapter 4 Software Project Management - Address Assignment
or alternatively:

 ORG <rms>[<rmp>][(<rce>)]:[<exp1>][,<lms>[<lmp>][(<lce>)]:[<exp2>]]

<rms>

Which memory space (X, Y, L, or P) will be used as the runtime memory
space. If the memory space is L, any allocated datum with a value greater
than the target word size will be extended to two words; otherwise, it is trun-
cated.

<rlc>

Which runtime counter H, L, or default (if neither H or L is specified), that is
associated with the <rms> will be used as the runtime location counter.

<rmp>

Indicates the runtime physical mapping to DSP memory: I - internal, E - ex-
ternal, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

<rce>

Non-negative absolute integer expression representing the counter number
to be used as the runtime location counter. Must be enclosed in parenthe-
ses. Should not exceed the value 65535.

<exp1>

Initial value to assign to the runtime counter used as the <rlc>. If <exp1> is
a relative expression the assembler uses the relative location counter. If
<exp1> is an absolute expression the assembler uses the absolute location
counter. If <exp1> is not specified, then the last value and mode that the
counter had will be used.

<lms>

Which memory space (X, Y, L, or P) will be used as the load memory space.
If the memory space is L, any allocated datum with a value greater than the
target word size will be extended to two words; otherwise, it is truncated.

<llc>

Which load counter, H, L, or default (if neither H or L is specified), that is as-
sociated with the <lms> will be used as the load location counter.
44 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Address Assignment
<lmp>

Indicates the load physical mapping to DSP memory: I - internal, E - exter-
nal, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

<lce>

Non-negative absolute integer expression representing the counter number
to be used as the load location counter. Must be enclosed in parentheses.
Should not exceed the value 65535.

<exp2>

Initial value to assign to the load counter used as the <llc>. If <exp2> is a
relative expression the assembler uses the relative location counter. If
<exp2> is an absolute expression the assembler uses the absolute location
counter. If <exp2> is not specified, then the last value and mode that the
counter had will be used.

The ORG directive is useful in multi-programmer projects because it provides a means for
the individual programmer to specify in which memory space and which segment of that
memory space the code being written will be located without specifying an absolute ad-
dress. Absolute address assignment can be deferred until the various components of the
program are brought together. The utility of the ORG directive is not limited to multi-pro-
grammer projects. Even in single programmer projects, the ORG directive supports ma-
nipulation of overlays and the intermixing of label definition and code generation in
multiple memory spaces without having to reinitialize a location counter every time the
load memory space is changed.

4.5.2 Overlays

If the last half of the operand field in an ORG directive dealing with the load memory space
and counter is not specified, then the assembler will assume that the load memory space
and load location counter are the same as the runtime memory space and runtime loca-
tion counter. In this case, object code is being assembled to be loaded into the address
and memory space where it will be when the program is run, and is not an overlay.

If the load memory space and counter are given in the operand field, then the assembler
always generates code for an overlay. Whether the overlay is absolute or relocatable de-
pends upon the current operating mode of the assembler and whether the load counter
value is an absolute or relative expression. If the assembler is running in absolute mode,
or if the load counter expression is absolute, then the overlay is absolute. If the assembler
is in relative mode and the load counter expression is relative, the overlay is relocatable.
Runtime relocatable overlay code is addressed relative to the location given in the runtime
location counter expression. This expression, if relative, may not refer to another overlay
block. See section 1.6 for more information on location counters and overlays.
Freescale DSP Assembler Reference Manual 45

Chapter 4 Software Project Management - Address Assignment
The values and memory space attributes of both the load and runtime location counters
can be accessed with the @LCV function (see Section 3.8). This is particularly useful
when assigning the load location counter value to a label as a reference point for the over-
lay manager part of the program. The High, Low, default, or numbered counter assign-
ment can be determined by using the @CTR function (Section 3.8).

4.5.3 Address Assignment Examples

Some examples of the ORG directive are as follows:

ORG P:$1000

Sets the runtime memory space to P. Selects the default runtime counter (counter
0) associated with P space to use as the runtime location counter and initializes it
to $1000. The load memory space is implied to be P, and the load location counter
is assumed to be the same as the runtime location counter.

ORG PHE:

Sets the runtime memory space to P. Selects the H load counter (counter 2) as-
sociated with P space to use as the runtime location counter. The H counter will
not be initialized, and its last value will be used. Code generated hereafter will be
mapped to external (E) memory. The load memory space is implied to be P, and
the load location counter is assumed to be the same as the runtime location
counter.

ORG PI:OVL1,Y:

Indicates code will be generated for an overlay. The runtime memory space is P,
and the default counter is used as the runtime location counter. It will be reset to
the value of OVL1. If the assembler is in absolute mode via the -A command line
option then OVL1 must be an absolute expression. If OVL1 is an absolute expres-
sion the assembler uses the absolute runtime location counter. If OVL1 is a relo-
catable value the assembler uses the relative runtime location counter. In this case
OVL1 must not itself be an overlay symbol (e.g. defined within an overlay block).
The load memory space is Y. Since neither H, L, nor any counter expression was
specified as the load counter, the default load counter (counter 0) will be used as
the load location counter. The counter value and mode will be whatever it was the
last time it was referenced.

ORG XL:,E8:

Sets the runtime memory space to X. Selects the L counter (counter 1) associated
with X space to use as the runtime location counter. The L counter will not be ini-
tialized, and its last value will be used. The load memory space is set to E, and the
qualifier 8 indicates a bytewise RAM configuration. Instructions and data will be
generated eight bits per output word with byte-oriented load addresses. The de-
fault load counter will be used and there is no explicit load origin.
46 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Address Assignment
ORG P(5):,Y:$8000

Indicates code will be generated for an absolute overlay. The runtime memory
space is P, and the counter used as the runtime location counter is counter 5. It
will not be initialized, and the last previous value of counter 5 will be used. The load
memory space is Y. Since neither H, L, nor any counter expression was specified
as the load counter, the default load counter (counter 0) will be used as the load
location counter. The default load counter will be initialized to $8000.

If the last example shown was used in the following code sequence (assume the runtime
counter associated with P space had a previous value of $0010),

ORG P(5):,Y:$8000
RLMUL MOVE X:(R0),D4.S Y:(R4),D7.S

FMPY.S D4,D7,D0
MOVE D0.S,X:(R1)

then the label RLMUL would have a value of $0010 and a memory space attribute of P
space; the code generated would load into Y memory starting at $8000; and the runtime
address associated with the code would start at $0010.

4.5.4 Circular Buffers

To take advantage of the special DSP addressing capabilities a circular buffer must be
aligned on an appropriate address boundary with respect to its size. For a buffer to be
located properly in memory the lower bits of the starting address which encompass one
less than the buffer size must be zero. For example, the lowest address greater than zero
at which a buffer of size 32 may be located is 32 (20 hexadecimal). More generally, the
buffer base address must be modulo the buffer size, or a multiple of 2k, where 2k is greater
than or equal to the size of the buffer.

Buffers may be allocated manually or by using one of the assembler’s special buffer di-
rectives:

ORG X:$100
BUF1 DS 24
BUF2 DSM 32

The ORG statement sets the origin to hexadecimal 100 in X memory. The first buffer
BUF1 is manually allocated with a size of 24. Since the starting address is hex 100 the
buffer is already suitably aligned. The label BUF1 is assigned the runtime counter value
at the beginning of the buffer. The second buffer is allocated using the DSM directive,
which automatically sets the buffer starting address before reserving space. In this case,
the first buffer ended at location 117 hexadecimal, so the assembler advances the pro-
gram counter to location 120 hex before assigning a value to the buffer label BUF2.
Freescale DSP Assembler Reference Manual 47

Chapter 4 Software Project Management - Example 1: Multi-Programmer Environment
Buffers are special-purpose data structures, but they are named and accessed with labels
like any other data block. They therefore adhere to the same rules governing data hiding
in sections that any other segment of code or data would follow. A buffer allocated when
the assembler is in absolute mode (either via -A or an absolute ORG or MODE directive)
is placed in memory according to the absolute value of the runtime location counter at as-
sembly time. A buffer allocated in relative mode (a relocatable buffer) is suitably aligned
within its relocation section at assembly time. During the link phase a section enclosing
any relocatable buffers is located based on the largest relocatable buffer it contains, un-
less the buffers inside the section are auto-aligned. This insures that any smaller buffers
within the section are properly aligned. If any buffers in the section are auto-aligned, they
will be relocated independent of any other code or data in the section. Note that reposi-
tioning of any buffer, whether relocatable or absolute, may result in alignment gaps in
memory depending on the layout of data surrounding the buffer blocks.

4.6 Example 1: Multi-Programmer Environment

Typical multi-programmer projects are often split into tasks representing functional units.
For discussion purposes, suppose a project has been divided into three tasks - I/O,
FILTER, and MAIN. Each task will be written by a separate programmer as a separate
section. For example, when the I/O task has been written, there will be a file called
IO.ASM. This file will have the following form:

SECTION I_O
XREF I_PORT,O_PORT
ORG XL:
.
.
<storage location definitions>
.
.
ORG P:
.
.
<IO section source statements>
.
.
ENDSEC

In this example, because the X space storage locations were defined within the section
I_O, they will be private storage locations that are accessible only by the I_O handler, and
cannot be referenced by other sections. If global memory resource management is de-
sired, then the I_O section would not have defined any storage locations, and these would
have been defined as XREF. The X space data will be addressed through the Low
48 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Example 1: Multi-Programmer Environment
runtime counter. The P memory code is also private to the I_O section and uses the de-
fault runtime location counter for address generation.

In the discussion below, assume that the programmers responsible for the FILTER and
MAIN sections have similar program structures located in files named FILTER.ASM and
MAIN.ASM respectively. The program units can be combined either by invoking a final
assembly step to assign absolute addresses, or by assembling the modules separately
and then linking.

4.6.1 Absolute Mode Implementation

To assemble the entire project source code, a new file called PROJECT.ASM would be
created and would have the form:

ORG XLE:$0000
.
<global low memory X storage declarations (if any)>
.
ORG YLE:$0000
.
<global low memory Y storage declarations (if any)>
.
ORG YH:$FFC0
.
<global high memory Y storage declarations (if any)>
.
ORG XH:$FFC0
.
<global high memory X storage declarations (if any)>
.
; initialize internal low Program memory location counter
ORG PL:$1000
; initialize external high Program memory location counter
ORG PHE:$F000
INCLUDE 'MAIN.ASM'
INCLUDE 'IO.ASM'
INCLUDE 'FILTER.ASM'
END ENTRY

This file provides the project manager with a mechanism to organize memory utilization
to suit the application. For example, the external high P memory initialization statement
might correspond to the memory location of an external EPROM.
Freescale DSP Assembler Reference Manual 49

Chapter 4 Software Project Management - Example 1: Multi-Programmer Environment
After the location counters corresponding to the X, Y, and P(rogram) memory spaces are
initialized, the assembler is directed to take input from the MAIN.ASM file with the IN-
CLUDE directive. Within the MAIN.ASM file, the source statements are assembled and
object code is generated. The X, Y, L, and P(rogram) location counters (High, Low) are
advanced corresponding to the number of words generated for each memory space and
location counter in use.

When the end of the MAIN.ASM file is encountered, the assembler returns to the next se-
quential statement in the PROJECT.ASM file. This directs the assembler to start taking
input from the IO.ASM file. Within this file, the ORG PL: statement directs the assembler
to set the current memory space to P(rogram) and restore the last used P(rogram) L(ow)
location counter. The <IO source program statements> shown previously will be assem-
bled at the next available Low Program memory space. When the end of the IO.ASM file
is encountered, the X, Y, and P(rogram) location counters (High and Low) will have been
advanced corresponding to the number of words generated for each memory space.

In a similar manner, the file FILTER.ASM will be assembled. The last statement of the
PROJECT.ASM file informs the assembler that this is the last logical source statement,
and the starting address for the object module will be a label called ENTRY. In the exam-
ple above, ENTRY would have been a label defined in the section MAIN and declared as
global with the XDEF directive.

4.6.2 Relative Mode Implementation

Using the assembler default relative mode, each of the source files is assembled sepa-
rately. For each section defined in the input files a separate set of location counters is
maintained such that all memory spaces for each section begin at relative address zero.
The linker is invoked to combine the files and establish base addresses:

DSPLNK -B -M -OXLI:0 -OYLI:0 -OYH:FFC0 -OXH:FFC0 \
-OPL:1000 -OPHE:A000 MAIN IO FILTER

The linker reads the command input and sets up base values for all counters specified on
the command line. In this example, the X and Y low memory counters are initialized to ze-
ro, whereas the X and Y high memory counters are set to FFC0 hexadecimal. The pro-
gram low and high memory counters are initialized similarly. When the linker creates the
executable file it reads the input files and sets the starting address for all sections relative
to the values obtained from the command line. As the MAIN object file is read the linker
increments the section counters for all appropriate memory spaces.

After the MAIN object file is processed, the IO object file is read. The section named I_O
contained an ORG directive indicating a switch to the low X data memory counter. Recall
that the assembler generated relocatable code for the I_O section source such that the
low X data memory counter begins at zero. The linker adjusts the low X memory counter
associated with section I_O to reflect any previous data generation performed in low X
memory (e.g. in MAIN). The FILTER module is linked in a similar fashion.
50 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Example 2: Overlays
Another way for specifying base addresses, instead of lengthy command line options, is
through a memory control file. The memory control file allows the programmer to indi-
cate memory space starting addresses analogously to the command line approach. In ad-
dition, the memory control file offers finer control over placement of sections in memory.
See the Freescale DSP Linker/Librarian Reference Manual for more information on the
memory control file.

The preceding examples described two methods for organizing a software project. Refer
to the descriptions of the ORG and SECTION directives in Chapter 6 for a more detailed
discussion. See also the Freescale DSP Linker/Librarian Reference Manual for more
information on relocation and linking. One other assembler directive that should be men-
tioned (although not shown in the previous example) is the MACLIB directive which allows
sections to share a common macro library. The MACLIB directive is discussed more fully
in Chapter 5.

4.7 Example 2: Overlays

An overlay is a transfer of code or data from one memory space or address to another
memory space or address at runtime. Often the transfer involves copying different blocks
of code or data over a common storage area as runtime circumstances dictate; hence the
name overlay. Overlays are useful for moving code into internal program memory from
an external memory source such as EPROM. They are also effective when implementing
large programs with multiple segments which do not need to be accessed concurrently.
Consider the following program fragment contained in a file called OVER1.ASM:

SECTION OVERLAY1
XREF OVLBASE
XDEF OVL1,O1SIZE
ORG X:

OVL1
ORG P:OVLBASE,X:

START
.
.
<overlay source statements>
.
.

END
O1SIZE EQU END-START

ENDSEC

This is a sample of overlay code bounded by a SECTION directive. The overlay base, or
the place to which this block of code will be moved for execution, is declared external at
OVLBASE (OVLBASE is actually defined elsewhere). The label OVL1 is XDEFed to pro-
vide a handle for moving the block at runtime, and O1SIZE is also XDEFed so that the
overlay management code knows how many words to move. Note that the OVL1 label is
placed before the ORG for the overlay so that it remains a valid address in X memory dur-
Freescale DSP Assembler Reference Manual 51

Chapter 4 Software Project Management - Example 2: Overlays
ing execution. The overlay ORG directive insures that subsequent addresses will be
based from OVLBASE at runtime. The size of the overlay block (O1SIZE) is computed by
subtracting the START label value from the END label address. Assume for purposes of
discussion that there are other files containing similar overlay code with names
OVER2.ASM and OVER3.ASM.

4.7.1 Absolute Mode Implementation

In order to avoid binding addresses within the individual overlay modules, the programmer
could devise a preamble file called OVLPROJ.ASM which sets the appropriate counters
and establishes the overlay base address.

SECTION OVLPROJECT
XDEF OVLBASE
XREF OVL1,O1SIZE
XREF OVL2,O2SIZE
XREF OVL3,O3SIZE
ORG XE:$100 ; set absolute base for overlay sections
ORG PI:$200 ; set absolute base address for overlay

OVLBASE DS $400 ; reserve space for overlay area
MOVEOV1 ; code to move first overlay segment

MOVE #OVL1,R0 ; load overlay code address
MOVE #OVLBASE,R1 ; load overlay base address
MOVE #O1SIZE,R2 ; load overlay code size
DO R2,_ENDLOOP ; loop to move data words into P memory
MOVE X:(R0)+,X0 ; get word of overlay from data memory
MOVE X0,P:(R1)+ ; store word of overlay into P memory

_ENDLOOP
.
.
.
ENDSEC

The overlay base address OVLBASE is made global with the XDEF statement. The over-
lay segments and their sizes are made visible to the project section by using the XREF
directive. The first ORG establishes where the overlay segments will be placed in mem-
ory contiguously at load time. The second ORG sets up the absolute base address for
the overlay area common to all of the overlay segments. Uninitialized space is allocated
for the overlay area, immediately followed by code to move the overlay segments into the
common area at runtime. The following assembler command line will process the header
file and all overlay segments:

ASM56300 -A -B -L OVLPROJ OVER1 OVER2 OVER3 START
52 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Example 2: Overlays
The assembler is invoked in absolute mode (-A option), and generates an executable and
listing file. All files on the command line are processed as a single assembly run and all
are used to produce the output. OVLPROJ.ASM is read first and sets up the appropriate
absolute addresses for later sections. Then each overlay file is read and loaded one after
the other at external X memory address 100 hexadecimal. However, since each overlay
module was intended to run starting at OVLBASE in P memory, all labels and jumps to
those labels within the overlay code will be relative to the overlay base address. This
means that the code in each of the overlay modules, when loaded by the overlay manage-
ment code in the OVLPROJECT section, will start executing at internal P memory address
200 hexadecimal. The file START.ASM contains an END directive which indicates the
program start address after loading.

4.7.2 Relative Mode Implementation

In relative mode each of the overlay files is assembled separately to create individual ob-
ject files. The object files are combined to build a single executable file. A preamble file
OVLPROJ.ASM containing overlay management code might appear as follows.

SECTION OVLPROJECT
XDEF OVLBASE
XREF OVL1,O1SIZE
XREF OVL2,O2SIZE
XREF OVL3,O3SIZE
ORG PI: ; set base address for overlay

MOVEOV1 ; code to move first overlay segment
MOVE #OVL1,R0 ; load overlay code address
MOVE #OVLBASE,R1 ; load overlay base address
MOVE #O1SIZE,R2 ; load overlay code size
DO R2,_ENDLOOP ; loop to move data words into P memory
MOVE X:(R0)+,X0 ; get word of overlay from data memory
MOVE X0,P:(R1)+ ; store one word of overlay into P memory

_ENDLOOP
.
.
.

OVLBASE DS $400 ; reserve space for overlay area
ENDSEC START

Note that the ORG to P space does not specify an absolute address. In order to obtain
the same result from these files as in an absolute mode implementation the following link-
er command line would be used:

DSPLNK -B -M -OXE:100 -OPI:200 OVLPROJ OVER1 OVER2 OVER3
Freescale DSP Assembler Reference Manual 53

Chapter 4 Software Project Management - Example 3: Bootstrap Overlay
The linker scans the command line and sets the base addresses for X and P memory.
Here the X default counter is set to hex 100 and mapped to external memory; likewise the
P default counter is set to hex 200 and mapped to internal memory. Base addresses can
also be established with the linker memory control file.

The linker reads each input object file, placing the header file in internal P memory and
combining the overlay modules into a contiguous block loaded into external X memory at
location 100 hexadecimal. Any labels or jumps within the overlay blocks are resolved to
addresses relative to the relocatable symbol OVLBASE. Since OVLBASE is the first load
P memory address it is assigned the value 200 hexadecimal. The linker does not guaran-
tee that a given symbol or section will begin at a particular location unless that information
is explicitly specified in the linker memory control file. For more information on specific
linker operations see the Freescale DSP Linker/Librarian Reference Manual.

4.8 Example 3: Bootstrap Overlay

Many Freescale DSP processors, specifically those with RAM-based program memory,
support a bootstrap mode of operation. This involves mapping a built-in ROM-based boot-
strap program into P memory, executing the program to move user-supplied code from
another location (usually EPROM) into program RAM, then transferring control to the user
program. Because the user program is loaded in one location (e.g. EPROM) but moved
to another for execution, it is a natural application for assembly language overlay seman-
tics. Another wrinkle in bootstrap mode is that user instruction words are loaded in byte-
wise fashion, such that the load location counter must be incremented by bytes rather
54 DSP Assembler Reference Manual Freescale

Chapter 4 Software Project Management - Example 3: Bootstrap Overlay
than words. Consider the following section fragments contained in two files called
SECT1.ASM and SECT2.ASM respectively:

SECTION SECT1
ORG PI(1):,PE(2)

START1
.
.
<source statements>
.
.

END1
ENDSEC

. . .

SECTION SECT2
ORG PI(1):,PE(2)

START2
.
.
<source statements>
.
.

END2
ENDSEC

4.8.1 Absolute Mode Implementation

In order to avoid binding addresses within the individual modules, the programmer could
devise a preamble file called BOOTPROJ.ASM which sets the appropriate options and
establishes load and runtime base addresses:

OPT LB ; increment load counter by bytes
ORG PI(1):$100,PE(2):$C000 ; set runtime RAM address,

; bytewide load ROM address

The OPT directive with the LB option indicates that the assembler should increment the
load counter by the number of bytes in the target processor word. This guarantees that
the EPROM addresses will be correct for bytewide loading during bootstrap processing.
In the ORG directive, the runtime location counter, tagged as 1 and mapped to internal
memory, is set to hex 100. The load counter is tagged as 2, mapped to external memory,
and set to hex C000, where the built-in bootstrap program will begin loading bytes after
processor reset. The files are assembled using the command below:

ASM56300 -A -B -L BOOTPROJ SECT1 SECT2
Freescale DSP Assembler Reference Manual 55

Chapter 4 Software Project Management - Example 3: Bootstrap Overlay
The assembler is invoked in absolute mode (-A option), and generates an executable and
listing file. All files on the command line are processed as a single assembly run and all
are used to produce the output. BOOTPROJ.ASM is read first and sets up the appropriate
absolute addresses for later sections. Since no explicit base address was given in the sec-
tion files, both load and runtime addresses will continue from one section to the other, e.g.
they will be contiguous. For example, if only two words of instruction were between each
of the START and END labels, the runtime value for END1 and START2 would be hex
102. However, the load address of the code associated with these labels, assuming a 16
bit target word size, would be C004 hexadecimal. Similarly, the runtime value for END2
would be 104 hex and the corresponding load address would be C008 hexadecimal.

4.8.2 Relative Mode Implementation

In relative mode each of the source files is assembled separately to create individual ob-
ject files. The object files are combined to build a single executable file. A preamble file is
not necessary to handle bootstrap files in relative mode because the addresses are es-
tablished at link time. In order to generate bytewide load addresses the LB option can be
specified on the assembler command line using the -O command line option:

ASM56300 -B -L -OLB SECT1

This command assembles the file SECT1.ASM and creates a relocatable object file called
SECT1.CLN. The listing file shows that the starting address of the section is zero; howev-
er, because of the LB option on the command line the load counter will increment at three
times the rate of the runtime counter (assuming a 24-bit DSP56300 family target proces-
sor). A similar command is used to assemble the SECT2 module. The two files are linked
as follows:

DSPLNK -BBOOTPROJ.CLD "-OPI(1):100" "-OPE(2):C000" SECT1 SECT2

The linker scans the command line and sets the base addresses for P internal and exter-
nal memory. The quotes around the -O options are necessary to avoid interpretation of
parentheses by some host command interpreters. Here the P counter number 1 is set to
hex 100 and mapped to internal memory; likewise the P counter number 2 is set to hex
C000 and mapped to external memory. Base addresses can also be established with the
linker memory control file. Since no explicit overlay base addresses were encountered in
the source files, both load and runtime addresses for the sections will be adjacent and
non-overlapping. Assuming a code size of 2 for each section and a 16 bit word size, the
value for label START1 will be hex 100 and the value for START2 will be hex 102; the
corresponding load addresses will be C000 hex and C004 hex, respectively. The execut-
able output will be written to the file BOOTPROJ.CLD.
56 DSP Assembler Reference Manual Freescale

Chapter 5 Macro Operations and Conditional Assembly

5.1 Macro Operations

Programming applications frequently involve the coding of a repeated pattern or group of
instructions. Some patterns contain variable entries which change for each repetition of
the pattern. Others are subject to conditional assembly for a given occurrence of the in-
struction group. In either case, macros provide a shorthand notation for handling these
instruction patterns. Having determined the iterated pattern, the programmer can, within
the macro, designate selected fields of any statement as variable. Thereafter by invoking
a macro the programmer can use the entire pattern as many times as needed, substituting
different parameters for the designated variable portions of the statements.

When the pattern is defined it is given a name. This name becomes the mnemonic by
which the macro is subsequently invoked (called). If the name of the macro is the same
as an existing assembler directive or mnemonic opcode, the macro will replace the direc-
tive or mnemonic opcode, and a warning will be issued. The warning can be avoided by
the use of the RDIRECT directive, which is used to remove entries from the assembler’s
directive and mnemonic tables. If directives or mnemonics are removed from the assem-
bler’s tables, then no warning will be issued when the assembler processes macros
whose names are the same as the removed directive or mnemonic entries. However, if
a macro is defined through the MACLIB directive which has the same name as an existing
directive or opcode, it will not automatically replace that directive or opcode as previously
described. In this case, the RDIRECT directive must be used to force the replacement.
See the description of the MACLIB directive below.

The macro call causes source statements to be generated. The generated statements
may contain substitutable arguments. The statements produced by a macro call are rel-
atively unrestricted as to type. They can be any processor instruction, almost any assem-
bler directive, or any previously-defined macro. Source statements resulting from a macro
call are subject to the same conditions and restrictions that are applied to statements writ-
ten by the programmer.

To invoke a macro, the macro name must appear in the operation code field of a source
statement. Any arguments are placed in the operand field. By suitably selecting the ar-
guments in relation to their use as indicated by the macro definition, the programmer
causes the assembler to produce in-line coding variations of the macro definition.
Freescale DSP Assembler Reference Manual 57

Chapter 5 Macro Operations and Conditional Assembly - Macro Libraries
The effect of a macro call is to produce in-line code to perform a predefined function. The
code is inserted in the normal flow of the program so that the generated instructions are
executed with the rest of the program each time the macro is called.

An important feature in defining a macro is the use of macro calls within the macro defini-
tion. The assembler processes such nested macro calls at expansion time only. The
nesting of one macro definition within another definition is permitted. However, the nested
macro definition will not be processed until the primary macro is expanded. The macro
must be defined before its appearance in a source statement operation field.

5.2 Macro Libraries

The Freescale DSP assembler allows for the maintenance of macro libraries with the MA-
CLIB directive. This directive is used to specify the pathname (as defined by the host op-
erating system) of a directory that contains macro definitions. Each macro definition must
be in a separate file, and the file must be named the same as the macro with the extension
.ASM added. For example, BLOCKMV.ASM would be a file that contained the definition
of the macro called BLOCKMV.

If a MACLIB directive has been specified in the source code and the assembler encoun-
ters a name in the operation field that is not a previously defined macro or is not contained
in the directive or mnemonic tables, the directory specified in the MACLIB directive will be
searched for a file of that name (with the .ASM extension added). If such a file is found,
the current source line will be saved, and the file will be opened for input as an INCLUDE
file. When the end of the file is encountered, the source line is restored and processing
is resumed.

Because the source line is restored, the processed file must have a macro definition of the
unknown name, or an error will result when the source line is restored and processed.
However, the processed file is not limited to macro definitions, and can include any legal
source code statements. Multiple MACLIB directives may be given, in which case the as-
sembler will search each directory in the order in which they were specified.

5.3 Macro Definition

The definition of a macro consists of three parts: the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or skel-
eton source statements; and the terminator. The header is the MACRO directive, its label,
and the dummy argument list. The body contains the pattern of standard source state-
ments. The terminator is the ENDM directive.

The header of a macro definition has the form:

<label> MACRO [<dummy argument list>] [<comment>]
58 DSP Assembler Reference Manual Freescale

Chapter 5 Macro Operations and Conditional Assembly - Macro Definition
The required label is the symbol by which the macro will be called. The dummy argument
list has the form:

[<dumarg>[,<dumarg>,...,<dumarg>]]

The dummy arguments are symbolic names that the macro processor will replace with ar-
guments when the macro is expanded (called). Each dummy argument must obey the
same rules as global symbol names. Dummy argument names that are preceded by an
underscore are not allowed. Dummy arguments are separated by commas.

For example, consider the following macro definition:

N_R_MUL MACRO NMUL,AVEC,BVEC,RESULT header
;
;This macro implements N real multiplies
;RESULT(I) = AVEC(I) * BVEC(I) I=1..NMUL
;where
; NMUL = number of multiplications
; AVEC = base address of array AVEC(I)
; BVEC = base address of array BVEC(I)
; RESULT = base address of array RESULT(I)
;

MOVE #AVEC,R0 body
MOVE #BVEC,R4
MOVE #RESULT,R1
MOVE X:(R0)+,D4.S Y:(R4)+,D7.S
DO #NMUL,_ENDLOOP
FMPY.S D4,D7,D0 X:(R0)+,D4.S Y:(R4)+,D7.S
MOVE D0.S,X:(R1)+

_ENDLOOP
ENDM terminator

When a macro call is executed, the dummy arguments within the macro definition
(NMUL,AVEC,BVEC,RESULT in the example above) are replaced with the correspond-
ing argument as defined by the macro call.

All local labels within a macro are considered distinct for the currently active level of macro
expansion (unless the macro local label override is used, see below). These local labels
are valid for the entire macro expansion and are not considered bounded by non-local la-
bels. Therefore, all local labels within a macro must be unique. This mechanism allows
the programmer to freely use local labels within a macro definition without regard to the
number of times that the macro is expanded. Non-local labels within a macro expansion
are considered to be normal labels and thus cannot occur more than once unless used
with the SET directive (see Chapter 6).
Freescale DSP Assembler Reference Manual 59

Chapter 5 Macro Operations and Conditional Assembly - Macro Calls
When specifying a local label within the body of a macro, the programmer must be aware
that the label symbol is valid for the entire body of the current level of macro expansion.
It is not valid for any nested macros within the current level of expansion. The example
above shows why the local label feature is useful. If the macro N_R_MUL were called
several times, there would be several _ENDLOOP labels resulting from the macro expan-
sions. This is acceptable because each _ENDLOOP label is considered private to a par-
ticular instance of macro expansion.

It is sometimes desirable to pass local labels as macro arguments to be used within the
macro as address references (e.g. MOVE #_LABEL,R0). The assembler effectively dis-
allows this, however, since underscore label references within a macro invocation are re-
garded as labels local to that expansion of the macro. A macro local label override is
provided which causes local symbol lookup to have normal scope rather than macro call
scope. If a circumflex (^) precedes an expression containing an underscore label, at ex-
pansion the associated term will be evaluated using the normal local label list rather than
the macro local label list. The operator has no effect on normal labels or outside a macro
expansion.

5.4 Macro Calls

When a macro is invoked the statement causing the action is termed a macro call. The
syntax of a macro call consists of the following fields:

[<label>] <macro name> [<arguments>] [<comment>]

The argument field can have the form:

[<arg>[,<arg>,...,<arg>]]

The macro call statement is made up of three fields besides the comment field: the <la-
bel>, if any, will correspond to the value of the location counter at the start of the macro
expansion; the operation field which contains the macro name; and the operand field
which contains substitutable arguments. Within the operand field each calling argument
of a macro call corresponds one-to-one with a dummy argument of the macro definition.
For example, the N_R_MUL macro defined earlier could be invoked for expansion (called)
by the statement:

N_R_MUL CNT+1,VEC1,VEC2,OUT

where the operand field arguments, separated by commas and taken left to right, corre-
spond to the dummy arguments "N" through "RESULT", respectively. These arguments
are then substituted in their corresponding positions of the definition to produce a se-
quence of instructions.

Macro arguments consist of sequences of characters separated by commas. Although
these can be specified as quoted strings, to simplify coding the assembler does not re-
quire single quotes around macro argument strings. However, if an argument has an em-
bedded comma or space, that argument must be surrounded by single quotes ('). An
60 DSP Assembler Reference Manual Freescale

Chapter 5 Macro Operations and Conditional Assembly - Dummy Argument Operators
argument can be declared null when calling a macro. However, it must be declared ex-
plicitly null. Null arguments can be specified in four ways: by writing the delimiting com-
mas in succession with no intervening spaces, by terminating the argument list with a
comma and omitting the rest of the argument list, by declaring the argument as a null
string, or by simply omitting some or all of the arguments. A null argument will cause no
character to be substituted in the generated statements that reference the argument. If
more arguments are supplied in the macro call than appear in the macro definition, a
warning will be output by the assembler.

5.5 Dummy Argument Operators

The assembler macro processor provides for text substitution of arguments during macro
expansion. In order to make the argument substitution facility more flexible, the assem-
bler also recognizes certain text operators within macro definitions which allow for trans-
formations of the argument text. These operators can be used for text concatenation,
numeric conversion, and string handling.

5.5.1 Dummy Argument Concatenation Operator - \

Dummy arguments that are intended to be concatenated with other characters must be
preceded by the concatenation operator, '\' to separate them from the rest of the charac-
ters. The argument may precede or follow the adjoining text, but there must be no inter-
vening blanks between the concatenation operator and the rest of the characters. To
position an argument between two alphanumeric characters, place a backslash both be-
fore and after the argument name. For example, consider the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
MOVE R\REG1,X0
MOVE R\REG2,R\REG1
MOVE X0,R\REG2
ENDM

If this macro were called with the following statement,

SWAP_REG 0,1

then for the macro expansion, the macro processor would substitute the character 0 for
the dummy argument REG1, and the character 1 for the dummy argument REG2. The
concatenation operator (\) indicates to the macro processor that the substitution charac-
ters for the dummy arguments are to be concatenated in both cases with the character R.
The resulting expansion of this macro call would be:

MOVE R0,X0
MOVE R1,R0
MOVE X0,R1
Freescale DSP Assembler Reference Manual 61

Chapter 5 Macro Operations and Conditional Assembly - Dummy Argument Operators
5.5.2 Return Value Operator - ?

Another macro definition operator is the question mark (?) that returns the value of a sym-
bol. When the macro processor encounters this operator, the ?<symbol> sequence is
converted to a character string representing the decimal value of the <symbol>. For ex-
ample, consider the following modification of the SWAP_REG macro described above:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
MOVE R\?REG1,X0
MOVE R\?REG2,R\?REG1
MOVE X0,R\?REG2
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1

SWAP_SYM AREG,BREG

then the sequence of events would be as follows: the macro processor would first substi-
tute the characters AREG for each occurrence of REG1 and BREG for each occurrence
of REG2. For discussion purposes (this would never appear on the source listing), the
intermediate macro expansion would be:

MOVE R\?AREG,X0
MOVE R\?BREG,R\?AREG
MOVE X0,R\?BREG

The macro processor would then replace ?AREG with the character 0 and ?BREG with
the character 1, since 0 is the value of the symbol AREG and 1 is the value of BREG. The
resulting intermediate expansion would be:

MOVE R\0,X0
 MOVE R\1,R\0

MOVE X0,R\1

Next, the macro processor would apply the concatenation operator (\), and the resulting
expansion as it would appear on the source listing would be:

MOVE R0,X0
MOVE R1,R0
MOVE X0,R1
62 DSP Assembler Reference Manual Freescale

Chapter 5 Macro Operations and Conditional Assembly - Dummy Argument Operators
5.5.3 Return Hex Value operator - %

The percent sign (%) is similar to the standard return value operator except that it returns
the hexadecimal value of a symbol. When the macro processor encounters this operator,
the %<symbol> sequence is converted to a character string representing the hexadecimal
value of the <symbol>. Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL STMT

ENDM

This macro generates a label consisting of the concatenation of the label prefix argument
and a value that is interpreted as hexadecimal. If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,'NOP'

the macro processor would first substitute the characters HEX for LAB, then it would re-
place %VAL with the character A, since A is the hexadecimal representation for the dec-
imal integer 10. Next, the macro processor would apply the concatenation operator (\).
Finally, the string 'NOP' would be substituted for the STMT argument. The resulting ex-
pansion as it would appear in the listing file would be:

HEXA NOP

The percent sign is also the character used to indicate a binary constant. If a binary con-
stant is required inside a macro it may be necessary to enclose the constant in parenthe-
ses or escape the constant by following the percent sign by a backslash (\).

5.5.4 Dummy Argument String Operator - "

Another dummy argument operator is the double quote ("). This character is replaced with
a single quote by the macro processor, but following characters are still examined for
dummy argument names. The effect in the macro call is to transform any enclosed dummy
arguments into literal strings. For example, consider the following macro definition:

STR_MAC MACRO STRING
DC "STRING"
ENDM

If this macro were called with the following macro expansion line,

STR_MAC ABCD

then the resulting macro expansion would be:

DC 'ABCD'
Freescale DSP Assembler Reference Manual 63

Chapter 5 Macro Operations and Conditional Assembly - Dummy Argument Operators
Double quotes also make possible DEFINE directive expansion within quoted strings. Be-
cause of this overloading of the double quotes, care must be taken to insure against inap-
propriate expansions in macro definitions. Since DEFINE expansion occurs before macro
substitution, any DEFINE symbols are replaced first within a macro dummy argument
string:

DEFINE LONG 'short'
STR_MAC MACRO STRING

MSG 'This is a LONG STRING'
MSG "This is a LONG STRING"
ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be:

MSG 'This is a LONG STRING'
MSG 'This is a short sentence'

5.5.5 Macro Local Label Override Operator - ^

It may be desirable to pass a local label as a macro argument to be used as an address
reference within the macro body. If a circumflex (^) precedes an expression containing
an underscore label, during macro expansion the associated term will be evaluated with
normal local label scope rather than macro call scope. Such interpretation disables the
usual local label semantics for this particular reference within the macro call. Here is an
example:

LOAD MACRO ADDR
MOVE P:^ADDR,R0
ENDM

The macro local label override operator causes the ADDR argument to be interpreted as
a local label outside the macro if the expanded argument has a leading underscore. If
there is no leading underscore on the actual argument then the override operator has no
effect. Consider the following macro call:

_LOCAL
LOAD _LOCAL

Without the local label override in the macro definition, an error would occur at the macro
call because a symbol _LOCAL was not defined in the body of the macro. Because the
circumflex was used the value of _LOCAL gets moved to R0. Note that any arbitrary string
may be used as the actual parameter to the LOAD macro. The override operator has an
effect only with underscore labels. Care must be exercised, however, in not defining a
64 DSP Assembler Reference Manual Freescale

Chapter 5 Macro Operations and Conditional Assembly - DUP, DUPA, DUPC, DUPF Di-
macro label called _LOCAL and attempting to reference it as in the above example. In
that case the macro local label override operator prevents the assembler from seeing the
local label definition for that reference, and an error would result.

5.6 DUP, DUPA, DUPC, DUPF Directives

The DUP, DUPA, DUPC, and DUPF directives are specialized macro forms. They can be
thought of as a simultaneous definition and call of an unnamed macro. The source state-
ments between the DUP, DUPA, DUPC, and DUPF directives and the ENDM directive fol-
low the same rules as macro definitions, including (in the case of DUPA, DUPC, and
DUPF) the dummy operator characters described previously. For a detailed description of
these directives, refer to Chapter 6.

5.7 Conditional Assembly

Conditional assembly facilitates the writing of comprehensive source programs that can
cover many conditions. Assembly conditions may be specified through the use of argu-
ments in the case of macros, and through definition of symbols via the DEFINE, SET, and
EQU directives. Variations of parameters can then cause assembly of only those parts
necessary for the given conditions. The built-in functions of the assembler provide a ver-
satile means of testing many conditions of the assembly environment (see Section 3.8 for
more information on the assembler built-in functions).

Conditional directives can also be used within a macro definition to ensure at expansion
time that arguments fall within a range of allowable values. In this way macros become
self-checking and can generate error messages to any desired level of detail.

The conditional assembly directive IF has the following form:

IF <expression>
.
.
[ELSE] (the ELSE directive is optional)
.
.
ENDIF

A section of a program that is to be conditionally assembled must be bounded by an IF-
ENDIF directive pair. If the optional ELSE directive is not present, then the source state-
ments following the IF directive and up to the next ENDIF directive will be included as part
of the source file being assembled only if the <expression> had a nonzero result. If the
<expression> has a value of zero, the source file will be assembled as if those statements
between the IF and the ENDIF directives were never encountered. If the ELSE directive
is present and <expression> has a nonzero result, then the statements between the IF
and ELSE directives will be assembled, and the statements between the ELSE and
ENDIF directives will be skipped. Alternatively, if <expression> has a value of zero, then
Freescale DSP Assembler Reference Manual 65

Chapter 5 Macro Operations and Conditional Assembly - Conditional Assembly
the statements between the IF and ELSE directives will be skipped, and the statements
between the ELSE and ENDIF directives will be assembled.
66 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives

6.1 Introduction

This chapter describes the directives that are recognized by the Freescale DSP Assem-
bler. The assembler directives are instructions to the assembler rather than instructions
to be directly translated into object code. In addition, this chapter describes special char-
acters that are considered significant to the assembler.

6.2 Assembler Significant Characters

There are several one and two character sequences that are significant to the assembler.
Some have multiple meanings depending on the context in which they are used. Special
characters associated with expression evaluation are described in Chapter 3. Other as-
sembler-significant characters are:

; - Comment delimiter
;; - Unreported comment delimiter
\ - Line continuation character or

Macro dummy argument concatenation operator
? - Macro value substitution operator
% - Macro hex value substitution operator
^ - Macro local label override operator
" - Macro string delimiter or

Quoted string DEFINE expansion character
@ - Function delimiter
* - Location counter substitution
++ - String concatenation operator
[] - Substring delimiter
<< - I/O short addressing mode force operator
< - Short addressing mode force operator
> - Long addressing mode force operator
- Immediate addressing mode operator
Freescale DSP Assembler Reference Manual 67

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
#< - Immediate short addressing mode force operator
#> - Immediate long addressing mode force operator

6.3 Assembler Directives

Assembler directives can be grouped by function into seven types:

1. Assembly control
2. Symbol definition
3. Data definition/storage allocation
4. Listing control and options
5. Object file control
6. Macros and conditional assembly
7. Structured programming

6.3.1 Assembly Control

The directives used for assembly control are:

COMMENT - Start comment lines
DEFINE - Define substitution string
END - End of source program
FAIL - Programmer generated error message
FORCE - Set operand forcing mode
HIMEM - Set high memory bounds
INCLUDE - Include secondary file
LOMEM - Set low memory bounds
MODE - Change relocation mode
MSG - Programmer generated message
ORG - Initialize memory space and location counters
RADIX - Change input radix for constants
RDIRECT - Remove directive or mnemonic from table
SCSJMP - Set structured control branching mode
SCSREG - Reassign structured control statement registers
UNDEF - Undefine DEFINE symbol
WARN - Programmer generated warning
68 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
6.3.2 Symbol Definition

The directives used to control symbol definition are:

ENDSEC - End section
EQU - Equate symbol to a value
GLOBAL - Global section symbol declaration
GSET - Set global symbol to a value
LOCAL - Local section symbol declaration
SECTION - Start section
SET - Set symbol to a value
XDEF - External section symbol definition
XREF - External section symbol reference

6.3.3 Data Definition/Storage Allocation

The directives used to control constant data definition and storage allocation are:

BADDR - Set buffer address
BSB - Block storage bit-reverse
BSC - Block storage of constant
BSM - Block storage modulo
BUFFER - Start buffer
DC - Define constant
DCB - Define constant byte
DS - Define storage
DSM - Define modulo storage
DSR - Define reverse carry storage
ENDBUF - End buffer

6.3.4 Listing Control and Options

The directives used to control the output listing are:

LIST - List the assembly
LSTCOL - Set listing field widths
NOLIST - Stop assembly listing
OPT - Assembler options
PAGE - Top of page/size page
PRCTL - Send control string to printer
STITLE - Initialize program subtitle
TABS - Set listing tab stops
TITLE - Initialize program title
Freescale DSP Assembler Reference Manual 69

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
6.3.5 Object File Control

The directives used for control of the object file are:

COBJ - Comment object code
IDENT - Object code identification record
SYMOBJ - Write symbol information to object file

6.3.6 Macros and Conditional Assembly

The directives used for macros and conditional assembly are:

DUP - Duplicate sequence of source lines
DUPA - Duplicate sequence with arguments
DUPC - Duplicate sequence with characters
DUPF - Duplicate sequence in loop
ENDIF - End of conditional assembly
ENDM - End of macro definition
EXITM - Exit macro
IF - Conditional assembly directive
MACLIB - Macro library
MACRO - Macro definition
PMACRO - Purge macro definition

6.3.7 Structured Programming

The directives used for structured programming are:

.BREAK - Exit from structured loop construct

.CONTINUE - Continue next iteration of structured loop

.ELSE - Perform following statements when .IF false

.ENDF - End of .FOR loop

.ENDI - End of .IF condition

.ENDL - End of hardware loop

.ENDW - End of .WHILE loop

.FOR - Begin .FOR loop

.IF - Begin .IF condition

.LOOP - Begin hardware loop

.REPEAT - Begin .REPEAT loop

.UNTIL - End of .REPEAT loop

.WHILE - Begin .WHILE loop
70 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
Individual descriptions of each of the assembler special characters and directives follow.
They include usage guidelines, functional descriptions, and examples. Some directives
require a label field, while in many cases a label is optional. If the description of an as-
sembler directive does not indicate a mandatory or optional label field, then a label is not
allowed on the same line as the directive. Structured programming directives are dis-
cussed separately in Chapter 7.
Freescale DSP Assembler Reference Manual 71

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
;
Comment Delimiter Character

Any number of characters preceded by a semicolon (;), but not part of a literal string, is
considered a comment. Comments are not significant to the assembler, but they can be
used to document the source program. Comments will be reproduced in the assembler
output listing. Comments are normally preserved in macro definitions, but this option can
be turned off (see the OPT directive, this chapter).

Comments can occupy an entire line, or can be placed after the last assembler-significant
field in a source statement. A comment starting in the first column of the source file will
be aligned with the label field in the listing file. Otherwise, the comment will be shifted right
and aligned with the comment field in the listing file.

EXAMPLE:

; THIS COMMENT BEGINS IN COLUMN 1 OF THE SOURCE FILE

LOOP JSR COMPUTE ; THIS IS A TRAILING COMMENT
; THESE TWO COMMENTS ARE PRECEDED
; BY A TAB IN THE SOURCE FILE
72 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
;;
 Unreported Comment Delimiter Characters

Unreported comments are any number of characters preceded by two consecutive semi-
colons (;;) that are not part of a literal string. Unreported comments are not considered
significant by the assembler, and can be included in the source statement, following the
same rules as normal comments. However, unreported comments are never reproduced
on the assembler output listing, and are never saved as part of macro definitions.

EXAMPLE:

;; THESE LINES WILL NOT BE REPRODUCED
;; IN THE SOURCE LISTING
Freescale DSP Assembler Reference Manual 73

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
\
Line Continuation Character or

Macro Argument Concatenation Character

Line Continuation

The backslash character (\), if used as the last character on a line, indicates to the assem-
bler that the source statement is continued on the following line. The continuation line will
be concatenated to the previous line of the source statement, and the result will be pro-
cessed by the assembler as if it were a single line source statement. The maximum
source statement length (the first line and any continuation lines) is 512 characters.

EXAMPLE:

; THIS COMMENT \
EXTENDS OVER \
THREE LINES

Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of a macro dummy argument
with other adjacent alphanumeric characters. For the macro processor to recognize dum-
my arguments, they must normally be separated from other alphanumeric characters by
a non-symbol character. However, sometimes it is desirable to concatenate the argument
characters with other characters. If an argument is to be concatenated in front of or be-
hind some other symbol characters, then it must be followed by or preceded by the back-
slash, respectively.

EXAMPLE:

Suppose the source input file contained the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\REG1,D4.L
MOVE R\REG2,R\REG1
MOVE D4.L,R\REG2
ENDM
74 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
The concatenation operator (\) indicates to the macro processor that the substitution char-
acters for the dummy arguments are to be concatenated in both cases with the character
R. If this macro were called with the following statement,

SWAP_REG 0,1

the resulting expansion would be:

MOVE R0,D4.L
MOVE R1,R0
MOVE D4.L,R1
Freescale DSP Assembler Reference Manual 75

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
?
Return Value of Symbol Character

The ?<symbol> sequence, when used in macro definitions, will be replaced by an ASCII
string representing the value of <symbol>. This operator may be used in association with
the backslash (\) operator. The value of <symbol> must be an integer (not floating point).

EXAMPLE:

Consider the following macro definition:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1

 MOVE D4.L,R\?REG2
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1

SWAP_SYM AREG,BREG

the resulting expansion as it would appear on the source listing would be:

MOVE R0,D4.L
MOVE R1,R0
MOVE D4.L,R1
76 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
%
Return Hex Value of Symbol Character

The %<symbol> sequence, when used in macro definitions, will be replaced by an ASCII
string representing the hexadecimal value of <symbol>. This operator may be used in as-
sociation with the backslash (\) operator. The value of <symbol> must be an integer (not
floating point).

EXAMPLE:

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL STMT

ENDM

If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,'NOP'

The resulting expansion as it would appear in the listing file would be:

HEXA NOP
Freescale DSP Assembler Reference Manual 77

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
^
Macro Local Label Override

The circumflex (^), when used as a unary expression operator in a macro expansion, will
cause any local labels in its associated term to be evaluated at normal scope rather than
macro scope. This means that any underscore labels in the expression term following the
circumflex will not be searched for in the macro local label list. The operator has no effect
on normal labels or outside of a macro expansion. The circumflex operator is useful for
passing local labels as macro arguments to be used as referents in the macro. Note that
the circumflex is also used as the binary exclusive OR operator.

EXAMPLE:

Consider the following macro definition:

LOAD MACRO ADDR
MOVE P:^ADDR,R0
ENDM

If this macro were called as follows,

_LOCAL
LOAD _LOCAL

the assembler would ordinarily issue an error since _LOCAL is not defined within the body
of the macro. With the override operator the assembler recognizes the _LOCAL symbol
outside the macro expansion and uses that value in the MOVE instruction.
78 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
"
Macro String Delimiter or

Quoted String DEFINE Expansion Character

Macro String

The double quote ("), when used in macro definitions, is transformed by the macro pro-
cessor into the string delimiter, the single quote ('). The macro processor examines the
characters between the double quotes for any macro arguments. This mechanism allows
the use of macro arguments as literal strings.

EXAMPLE:

Using the following macro definition,

CSTR MACRO STRING
DC "STRING"
ENDM

and a macro call,

CSTR ABCD

the resulting macro expansion would be:

DC 'ABCD'

Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a DEFINE directive will
not be expanded if the character sequence is contained within a quoted string. Assembler
strings generally are enclosed in single quotes ('). If the string is enclosed in double
Freescale DSP Assembler Reference Manual 79

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
quotes (") then DEFINE symbols will be expanded within the string. In all other respects
usage of double quotes is equivalent to that of single quotes.

EXAMPLE:

Consider the source fragment below:

DEFINE LONG 'short'
STR_MAC MACRO STRING

MSG 'This is a LONG STRING'
MSG "This is a LONG STRING"
ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be:

MSG 'This is a LONG STRING'
MSG 'This is a short sentence'
80 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
@
Function Delimiter

All assembler built-in functions start with the @ symbol. See Section 3.8 for a full discus-
sion of these functions.

EXAMPLE:

SVAL EQU @SQT(FVAL) ; OBTAIN SQUARE ROOT
Freescale DSP Assembler Reference Manual 81

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
*
Location Counter Substitution

When used as an operand in an expression, the asterisk represents the current integer
value of the runtime location counter.

EXAMPLE:

ORG X:$100

XBASE EQU *+$20 ; XBASE = $120
82 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
++
String Concatenation Operator

Any two strings can be concatenated with the string concatenation operator (++). The two
strings must each be enclosed by single or double quotes, and there must be no interven-
ing blanks between the string concatenation operator and the two strings.

EXAMPLE:

'ABC'++'DEF' = 'ABCDEF'
Freescale DSP Assembler Reference Manual 83

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
[]
Substring Delimiter

[<string>,<offset><length>]

Square brackets delimit a substring operation. The <string> argument is the source
string. <offset> is the substring starting position within <string>. <length> is the length of
the desired substring. <string> may be any legal string combination, including another
substring. An error is issued if either <offset> or <length> exceed the length of <string>.

EXAMPLE:

DEFINE ID ['DSP56300',3,5] ; ID = '56300'
84 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
<<
I/O Short Addressing Mode Force Operator

Many DSP instructions allow an I/O short form of addressing. If the value of an absolute
address is known to the assembler on pass one, then the assembler will always pick the
shortest form of addressing consistent with the instruction format. If the absolute address
is not known to the assembler on pass one (that is, the address is a forward or external
reference), then the assembler will pick the long form of addressing by default. If this is
not desired, then the I/O short form of addressing can be forced by preceding the absolute
address by the I/O short addressing mode force operator (<<).

EXAMPLE:

Since the symbol IOPORT is a forward reference in the following sequence of source
lines, the assembler would pick the long absolute form of addressing by default:

BTST #4,Y:IOPORT
IOPORT EQU Y:$FFF3

Because the long absolute addressing mode would cause the instruction to be two words
long instead of one word for the I/O short absolute addressing mode, it would be desirable
to force the I/O short absolute addressing mode as shown below:

BTST #4,Y:<<IOPORT
IOPORT EQU Y:$FFF3
Freescale DSP Assembler Reference Manual 85

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
<
Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the value of an absolute ad-
dress is known to the assembler on pass one, or the FORCE SHORT directive is active,
then the assembler will always pick the shortest form of addressing consistent with the
instruction format. If the absolute address is not known to the assembler on pass one (that
is, the address is a forward or external reference), then the assembler will pick the long
form of addressing by default. If this is not desired, then the short absolute form of ad-
dressing can be forced by preceding the absolute address by the short addressing mode
force operator (<).

See also: FORCE

EXAMPLE:

Since the symbol DATAST is a forward reference in the following sequence of source
lines, the assembler would pick the long absolute form of addressing by default:

MOVE D0.L,Y:DATAST
DATAST EQU Y:$23

Because the long absolute addressing mode would cause the instruction to be two words
long instead of one word for the short absolute addressing mode, it would be desirable to
force the short absolute addressing mode as shown below:

MOVE D0.L,Y:<DATAST
DATAST EQU Y:$23
86 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
>
Long Addressing Mode Force Operator

Many DSP instructions allow a long form of addressing. If the value of an absolute ad-
dress is known to the assembler on pass one, then the assembler will always pick the
shortest form of addressing consistent with the instruction format, unless the FORCE
LONG directive is active. If this is not desired, then the long absolute form of addressing
can be forced by preceding the absolute address by the long addressing mode force op-
erator (>).

See also: FORCE

EXAMPLE:

Since the symbol DATAST is a not a forward reference in the following sequence of
source lines, the assembler would pick the short absolute form of addressing:

DATAST EQU Y:$23
MOVE D0.L,Y:DATAST

If this is not desirable, then the long absolute addressing mode can be forced as shown
below:

DATAST EQU Y:$23
MOVE D0.L,Y:>DATAST
Freescale DSP Assembler Reference Manual 87

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
#
Immediate Addressing Mode

The pound sign (#) is used to indicate to the assembler to use the immediate addressing
mode.

EXAMPLE:

CNST EQU $5
MOVE #CNST,D0.L
88 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
#<
Immediate Short Addressing Mode Force Operator

Many DSP instructions allow a short immediate form of addressing. If the immediate data
is known to the assembler on pass one (not a forward or external reference), or the
FORCE SHORT directive is active, then the assembler will always pick the shortest form
of immediate addressing consistent with the instruction. If the immediate data is a forward
or external reference, then the assembler will pick the long form of immediate addressing
by default. If this is not desired, then the short form of addressing can be forced using the
immediate short addressing mode force operator (#<).

See also: FORCE

EXAMPLE:

In the following sequence of source lines, the symbol CNST is not known to the assembler
on pass one, and therefore, the assembler would use the long immediate addressing form
for the MOVE instruction.

MOVE #CNST,D0.L
CNST EQU $5

Because the long immediate addressing mode makes the instruction two words long in-
stead of one word for the immediate short addressing mode, it may be desirable to force
the immediate short addressing mode as shown below:

MOVE #<CNST,D0.L
CNST EQU $5
Freescale DSP Assembler Reference Manual 89

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
#>
Immediate Long Addressing Mode Force Operator

Many DSP instructions allow a long immediate form of addressing. If the immediate data
is known to the assembler on pass one (not a forward or external reference), then the as-
sembler will always pick the shortest form of immediate addressing consistent with the in-
struction, unless the FORCE LONG directive is active. If this is not desired, then the long
form of addressing can be forced using the immediate long addressing mode force oper-
ator (#>).

See also: FORCE

EXAMPLE:

In the following sequence of source lines, the symbol CNST is known to the assembler
on pass one, and therefore, the assembler would use the short immediate addressing
form for the MOVE instruction.

CNST EQU $5
MOVE #CNST,D0.L

If this is not desirable, then the long immediate form of addressing can be forced as shown
below:

CNST EQU $5
MOVE #>CNST,D0.L
90 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
BADDR
Set Buffer Address

BADDR <M | R>,<expression>

The BADDR directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of <expression>. The buffer
type may be either Modulo or Reverse-carry. If the runtime location counter is not zero,
this directive first advances the runtime location counter to a base address that is a mul-
tiple of 2k, where 2k >= <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Unlike other buffer allocation directives, the
runtime location counter is not advanced by the value of the integer expression in the op-
erand field; the location counter remains at the buffer base address. The block of memory
intended for the buffer is not initialized to any value.

The result of <expression> may have any memory space attribute but must be an abso-
lute integer greater than zero and cannot contain any forward references (symbols that
have not yet been defined). If a Modulo buffer is specified, the expression must fall within
the range 2 <= <expression> <= m, where m is the maximum address of the target DSP.
If a Reverse-carry buffer is designated and <expression> is not a power of two a warning
will be issued.

A label is not allowed with this directive.

See also: BSM, BSB, BUFFER, DSM, DSR

EXAMPLE:

ORG X:$100
M_BUF BADDR M,24 ; CIRCULAR BUFFER MOD 24
Freescale DSP Assembler Reference Manual 91

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
BSB
Block Storage Bit-Reverse

[<label>] BSB <expression>[,<expression>]

The BSB directive causes the assembler to allocate and initialize a block of words for a
reverse-carry buffer. The number of words in the block is given by the first expression,
which must evaluate to an absolute integer. Each word is assigned the initial value of the
second expression. If there is no second expression, an initial value of zero is assumed.
If the runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2k, where 2k is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references) or if the expression has a value of less than
or equal to zero. Also, if the first expression is not a power of two a warning will be gener-
ated. Both expressions can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSC, BSM, DC

EXAMPLE:

BUFFER BSB BUFSIZ ; INITIALIZE BUFFER TO ZEROS
92 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
BSC
Block Storage of Constant

[<label>] BSC <expression>[,<expression>]

The BSC directive causes the assembler to allocate and initialize a block of words. The
number of words in the block is given by the first expression, which must evaluate to an
absolute integer. Each word is assigned the initial value of the second expression. If
there is no second expression, an initial value of zero is assumed. If the first expression
contains symbols that are not yet defined (forward references) or if the expression has a
value of less than or equal to zero, an error will be generated. Both expressions can have
any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSM, BSB, DC

EXAMPLE:

UNUSED BSC $2FFF-@LCV(R),$FFFFFFFF ; FILL UNUSED EPROM
Freescale DSP Assembler Reference Manual 93

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
BSM
Block Storage Modulo

[<label>] BSM <expression>[,<expression>]

The BSM directive causes the assembler to allocate and initialize a block of words for a
modulo buffer. The number of words in the block is given by the first expression, which
must evaluate to an absolute integer. Each word is assigned the initial value of the second
expression. If there is no second expression, an initial value of zero is assumed. If the
runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2k, where 2k is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references), has a value of less than or equal to zero, or
falls outside the range 2 <= <expression> <= m, where m is the maximum address of the
target DSP. Both expressions can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSC, BSB, DC

EXAMPLE:

BUFFER BSM BUFSIZ,$FFFFFFFF ; INITIALIZE BUFFER TO ALL ONES
94 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
BUFFER
Start Buffer

 BUFFER <M | R>,<expression>

The BUFFER directive indicates the start of a buffer of the given type. Data is allocated
for the buffer until an ENDBUF directive is encountered. Instructions and most data def-
inition directives may appear between the BUFFER and ENDBUF pair, although BUFF-
ER directives may not be nested and certain types of directives such as MODE, ORG,
SECTION, and other buffer allocation directives may not be used. The <expression> rep-
resents the buffer size. If less data is allocated than the size of the buffer, the remaining
buffer locations will be uninitialized. If more data is allocated than the specified size of the
buffer, an error is issued.

The BUFFER directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of <expression>. The buffer
type may be either Modulo or Reverse-carry. If the runtime location counter is not zero,
this directive first advances the runtime location counter to a base address that is a mul-
tiple of 2k, where 2k >= <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Unlike other buffer allocation directives, the
runtime location counter is not advanced by the value of the integer expression in the op-
erand field; the location counter remains at the buffer base address.

The result of <expression> may have any memory space attribute but must be an abso-
lute integer greater than zero and cannot contain any forward references (symbols that
have not yet been defined). If a Modulo buffer is specified, the expression must fall within
the range 2 <= <expression> <= m, where m is the maximum address of the target DSP.
If a Reverse-carry buffer is designated and <expression> is not a power of two a warning
will be issued.

A label is not allowed with this directive.

See also: BADDR, BSM, BSB, DSM, DSR, ENDBUF

EXAMPLE:

ORG X:$100
BUFFER M,24 ; CIRCULAR BUFFER MOD 24

M_BUF DC 0.5,0.5,0.5,0.5
DS 20 ; REMAINDER UNINITIALIZED
ENDBUF
Freescale DSP Assembler Reference Manual 95

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
COBJ
Comment Object File

COBJ <string>

The COBJ directive is used to place a comment in the object code file. The <string> will
be put in the object file as a comment (refer to the object format description in Appendix
D).

A label is not allowed with this directive.

See also: IDENT

EXAMPLE:

COBJ 'Start of filter coefficients'
96 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
COMMENT
Start Comment Lines

COMMENT <delimiter>
.
.
<delimiter>

The COMMENT directive is used to define one or more lines as comments. The first non-
blank character after the COMMENT directive is the comment delimiter. The two delimit-
ers are used to define the comment text. The line containing the second comment delim-
iter will be considered the last line of the comment. The comment text can include any
printable characters and the comment text will be reproduced in the source listing as it ap-
pears in the source file.

A label is not allowed with this directive.

EXAMPLE:

COMMENT + This is a one line comment +
COMMENT * This is a multiple line

comment. Any number of lines
can be placed between the two delimiters.

 *
Freescale DSP Assembler Reference Manual 97

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DC
Define Constant

[<label>] DC <arg>[,<arg>,...,<arg>]

The DC directive allocates and initializes a word of memory for each <arg> argument.
<arg> may be a numeric constant, a single or multiple character string constant, a symbol,
or an expression. The DC directive may have one or more arguments separated by com-
mas. Multiple arguments are stored in successive address locations. If multiple argu-
ments are present, one or more of them can be null (two adjacent commas), in which case
the corresponding address location will be filled with zeros. If the DC directive is used in
L memory, the arguments will be evaluated and stored as long word quantities. Other-
wise, an error will occur if the evaluated argument value is too large to represent in a sin-
gle DSP word.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Integer arguments are stored as is; floating point numbers are converted to binary values.
Single and multiple character strings are handled in the following manner:

1. Single character strings are stored in a word whose lower seven bits repre-
sent the ASCII value of the character.

EXAMPLE: 'R' = $000052

2. Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of
characters is not an even multiple of the number of bytes per DSP word, then the
last word will have the remaining characters left aligned and the rest of the word
will be zero-filled. If the NOPS option is given, each character in the string is stored
in a word whose lower seven bits represent the ASCII value of the character.

EXAMPLE:

'ABCD' = $414243
$440000

See also: BSC, DCB

EXAMPLE:

TABLE DC 1426,253,$2662,'ABCD'
CHARS DC 'A','B','C','D'
98 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DCB
Define Constant Byte

[<label>] DCB <arg>[,<arg>,...,<arg>]

The DCB directive allocates and initializes a byte of memory for each <arg> argument.
<arg> may be a byte integer constant, a single or multiple character string constant, a
symbol, or a byte expression. The DCB directive may have one or more arguments sep-
arated by commas. Multiple arguments are stored in successive byte locations. If multi-
ple arguments are present, one or more of them can be null (two adjacent commas), in
which case the corresponding byte location will be filled with zeros.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Integer arguments are stored as is, but must be byte values (e.g. within the range 0-255);
floating point numbers are not allowed. Single and multiple character strings are handled
in the following manner:

1. Single character strings are stored in a word whose lower seven bits repre-
sent the ASCII value of the character.

EXAMPLE: 'R' = $000052

2. Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of
characters is not an even multiple of the number of bytes per DSP word, then the
last word will have the remaining characters left aligned and the rest of the word
will be zero-filled. If the NOPS option is given, each character in the string is stored
in a word whose lower seven bits represent the ASCII value of the character.

EXAMPLE:

'AB',,'CD' = $414200
$434400

See also: BSC, DC

EXAMPLE:

TABLE DCB 'two',0,'strings',0
CHARS DCB 'A','B','C','D'
Freescale DSP Assembler Reference Manual 99

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DEFINE
Define Substitution String

DEFINE <symbol> <string>

The DEFINE directive is used to define substitution strings that will be used on all follow-
ing source lines. All succeeding lines will be searched for an occurrence of <symbol>,
which will be replaced by <string>. This directive is useful for providing better documen-
tation in the source program. <symbol> must adhere to the restrictions for non-local la-
bels. That is, it cannot exceed 512 characters, the first of which must be alphabetic, and
the remainder of which must be either alphanumeric or the underscore(_). A warning will
result if a new definition of a previously defined symbol is attempted. The assembler out-
put listing will show lines after the DEFINE directive has been applied and therefore rede-
fined symbols will be replaced by their substitution strings (unless the NODXL option in
effect; see the OPT directive).

Macros represent a special case. DEFINE directive translations will be applied to the
macro definition as it is encountered. When the macro is expanded any active DEFINE
directive translations will again be applied.

DEFINE directive symbols that are defined within a section will only apply to that section.
See the SECTION directive.

A label is not allowed with this directive.

See also: UNDEF

EXAMPLE:

If the following DEFINE directive occurred in the first part of the source program:

DEFINE ARRAYSIZ '10 * SAMPLSIZ'

then the source line below:

DS ARRAYSIZ

would be transformed by the assembler to the following:

DS 10 * SAMPLSIZ
100 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DS
Define Storage

[<label>] DS <expression>

The DS directive reserves a block of memory the length of which in words is equal to the
value of <expression>. This directive causes the runtime location counter to be advanced
by the value of the absolute integer expression in the operand field. <expression> can
have any memory space attribute. The block of memory reserved is not initialized to any
value. The expression must be an integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined).

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

See also: DSM, DSR

EXAMPLE:

S_BUF DS 12 ; SAMPLE BUFFER
Freescale DSP Assembler Reference Manual 101

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DSM
Define Modulo Storage

[<label>] DSM <expression>

The DSM directive reserves a block of memory the length of which in words is equal to
the value of <expression>. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2k, where
2k >= <expression>. An error will be issued if there is insufficient memory remaining to es-
tablish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined). The expression also must fall
within the range 2 <= <expression> <= m, where m is the maximum address of the target
DSP.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

See also: DS, DSR

EXAMPLE:

ORG X:$100
M_BUF DSM 24 ; CIRCULAR BUFFER MOD 24
102 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DSR
Define Reverse Carry Storage

[<label>] DSR <expression>

The DSR directive reserves a block of memory the length of which in words is equal to the
value of <expression>. If the runtime location counter is not zero, this directive first ad-
vances the runtime location counter to a base address that is a multiple of 2k, where
2k >= <expression>. An error will be issued if there is insufficient memory remaining to
establish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined). Since the DSR directive is use-
ful mainly for generating FFT buffers, if <expression> is not a power of two a warning will
be generated.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

See also: DS, DSM

EXAMPLE:

ORG X:$100
R_BUF DSR 8 ; REVERSE CARRY BUFFER FOR 16 POINT FFT
Freescale DSP Assembler Reference Manual 103

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DUP
Duplicate Sequence of Source Lines

[<label>] DUP <expression>
 .
 .
 ENDM

The sequence of source lines between the DUP and ENDM directives will be duplicated
by the number specified by the integer <expression>. <expression> can have any mem-
ory space attribute. If the expression evaluates to a number less than or equal to 0, the
sequence of lines will not be included in the assembler output. The expression result must
be an absolute integer and cannot contain any forward references (symbols that have not
already been defined). The DUP directive may be nested to any level.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUP directive processing.

See also: DUPA, DUPC, DUPF, ENDM, MACRO

EXAMPLE:

The sequence of source input statements,

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR D0
ENDM

would generate the following in the source listing:

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR D0
ASR D0
ASR D0
ENDM
104 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
Note that the lines

DUP COUNT ;ASR BY COUNT
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

ASR D0
ASR D0
ASR D0

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.
Freescale DSP Assembler Reference Manual 105

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DUPA
Duplicate Sequence With Arguments

[<label>] DUPA <dummy>,<arg>[<,<arg>,...,<arg>]
.
.
ENDM

The block of source statements defined by the DUPA and ENDM directives will be repeat-
ed for each argument. For each repetition, every occurrence of the dummy parameter
within the block is replaced with each succeeding argument string. If the argument string
is a null, then the block is repeated with each occurrence of the dummy parameter re-
moved. If an argument includes an embedded blank or other assembler-significant char-
acter, it must be enclosed with single quotes.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPA directive processing.

See also: DUP, DUPC, DUPF, ENDM, MACRO

EXAMPLE:

If the input source file contained the following statements,

DUPA VALUE,12,32,34
DC VALUE
ENDM

then the assembled source listing would show

DUPA VALUE,12,32,34
DC 12
DC 32
DC 34
ENDM
106 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
Note that the lines

DUPA VALUE,12,32,34
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 12
DC 32
DC 34

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.
Freescale DSP Assembler Reference Manual 107

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DUPC
Duplicate Sequence With Characters

[<label>] DUPC <dummy>,<string>
 .
 .
 ENDM

The block of source statements defined by the DUPC and ENDM directives will be repeat-
ed for each character of <string>. For each repetition, every occurrence of the dummy
parameter within the block is replaced with each succeeding character in the string. If the
string is null, then the block is skipped.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPC directive processing.

See also: DUP, DUPA, DUPF, ENDM, MACRO

EXAMPLE:

If input source file contained the following statements,

DUPC VALUE,'123'
DC VALUE
ENDM

then the assembled source listing would show:

DUPC VALUE,'123'
DC 1
DC 2
DC 3
ENDM

Note that the lines

DUPC VALUE,'123'
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 1
DC 2
DC 3

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.
108 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
DUPF
Duplicate Sequence In Loop

[<label>] DUPF <dummy>,[<start>],<end>[,<increment>]
 .
 .
 ENDM

The block of source statements defined by the DUPF and ENDM directives will be repeat-
ed in general (<end> - <start>) + 1 times when <increment> is 1. <start> is the starting
value for the loop index; <end> represents the final value. <increment> is the increment
for the loop index; it defaults to 1 if omitted (as does the <start> value). The <dummy>
parameter holds the loop index value and may be used within the body of instructions.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPF directive processing.

See also: DUP, DUPA, DUPC, ENDM, MACRO

EXAMPLE:

If input source file contained the following statements,

DUPF NUM,0,7
MOVE #0,R\NUM
ENDM

then the assembled source listing would show:

DUPF NUM,0,7
MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7
ENDM
Freescale DSP Assembler Reference Manual 109

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
Note that the lines

DUPF NUM,0,7
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.
110 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
END
End of Source Program

END [<expression>]

The optional END directive indicates that the logical end of the source program has been
encountered. Any statements following the END directive are ignored. The optional ex-
pression in the operand field can be used to specify the starting execution address of the
program. <expression> may be absolute or relocatable, but must have a memory space
attribute of Program or None. The END directive cannot be used in a macro expansion.

A label is not allowed with this directive.

EXAMPLE:

END BEGIN ; BEGIN is the starting execution address
Freescale DSP Assembler Reference Manual 111

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
ENDBUF
End Buffer

ENDBUF

The ENDBUF directive is used to signify the end of a buffer block. The runtime location
counter will remain just beyond the end of the buffer when the ENDBUF directive is en-
countered.

A label is not allowed with this directive.

See also: BUFFER

EXAMPLE:

ORG X:$100
BUF BUFFER R,64 ; uninitialized reverse-carry buffer

ENDBUF
112 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
ENDIF
End of Conditional Assembly

ENDIF

The ENDIF directive is used to signify the end of the current level of conditional assembly.
Conditional assembly directives can be nested to any level, but the ENDIF directive al-
ways refers to the most previous IF directive.

A label is not allowed with this directive.

See also: IF

EXAMPLE:

IF @REL()
SAVEPC SET * ; Save current program counter

ENDIF
Freescale DSP Assembler Reference Manual 113

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
ENDM
End of Macro Definition

ENDM

Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an ENDM direc-
tive.

A label is not allowed with this directive.

See also: DUP, DUPA, DUPC, MACRO

EXAMPLE:

SWAP_SYM MACRO REG1,REG ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1

 MOVE D4.L,R\?REG2
ENDM
114 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
ENDSEC
End Section

ENDSEC

Every SECTION directive must be terminated by an ENDSEC directive.

A label is not allowed with this directive.

See also: SECTION

EXAMPLE:

SECTION COEFF
ORG Y:

VALUES BSC $100 ; Initialize to zero
ENDSEC
Freescale DSP Assembler Reference Manual 115

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
EQU
Equate Symbol to a Value

<label> EQU [{X: | Y: | L: | P:}]<expression>

The EQU directive assigns the value and memory space attribute of <expression> to the
symbol <label>. If <expression> has a memory space attribute of None, then it can op-
tionally be preceded by any of the indicated memory space qualifiers to force a memory
space attribute. An error will occur if the expression has a memory space attribute other
than None and it is different than the forcing memory space attribute. The optional forcing
memory space attribute is useful to assign a memory space attribute to an expression that
consists only of constants but is intended to refer to a fixed address in a memory space.

The EQU directive is one of the directives that assigns a value other than the program
counter to the label. The label cannot be redefined anywhere else in the program (or sec-
tion, if SECTION directives are being used). The <expression> may be relative or abso-
lute, but cannot include a symbol that is not yet defined (no forward references are
allowed).

See also: SET

EXAMPLE:

A_D_PORT EQU X:$4000

This would assign the value $4000 with a memory space attribute of X to the symbol
A_D_PORT.

COMPUTE EQU @LCV(L)

@LCV(L) is used to refer to the value and memory space attribute of the load location
counter. This value and memory space attribute would be assigned to the symbol COM-
PUTE.
116 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
EXITM
Exit Macro

EXITM

The EXITM directive will cause immediate termination of a macro expansion. It is useful
when used with the conditional assembly directive IF to terminate macro expansion when
error conditions are detected.

A label is not allowed with this directive.

See also: DUP, DUPA, DUPC, MACRO

EXAMPLE:

CALC MACRO XVAL,YVAL
IF XVAL<0
FAIL 'Macro parameter value out of range'
EXITM ; Exit macro
ENDIF
.
.
.
ENDM
Freescale DSP Assembler Reference Manual 117

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
FAIL
Programmer Generated Error

FAIL [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The FAIL directive will cause an error message to be output by the assembler. The total
error count will be incremented as with any other error. The FAIL directive is normally
used in conjunction with conditional assembly directives for exceptional condition check-
ing. The assembly proceeds normally after the error has been printed. An arbitrary num-
ber of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified optionally to describe the nature of the generated error.

A label is not allowed with this directive.

See also: MSG, WARN

EXAMPLE:

FAIL 'Parameter out of range'
118 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
FORCE
Set Operand Forcing Mode

FORCE {SHORT | LONG | NONE}

The FORCE directive causes the assembler to force all immediate, memory, and address
operands to the specified mode as if an explicit forcing operator were used. Note that if
a relocatable operand value forced short is determined to be too large for the instruction
word, an error will occur at link time, not during assembly. Explicit forcing operators over-
ride the effect of this directive.

A label is not allowed with this directive.

See also: <, >, #<, #>

EXAMPLE:

FORCE SHORT ; force operands short
Freescale DSP Assembler Reference Manual 119

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
GLOBAL
Global Section Symbol Declaration

GLOBAL <symbol>[,<symbol>,...,<symbol>]

The GLOBAL directive is used to specify that the list of symbols is defined within the cur-
rent section, and that those definitions should be accessible by all sections. This directive
is only valid if used within a program block bounded by the SECTION and ENDSEC di-
rectives. If the symbols that appear in the operand field are not defined in the section, an
error will be generated.

A label is not allowed with this directive.

See also: SECTION, XDEF, XREF

EXAMPLE:

SECTION IO
GLOBAL LOOPA ; LOOPA will be globally accessible by other sections
.
.
.
ENDSEC
120 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
GSET
Set Global Symbol to a Value

<label> GSET <expression>

GSET <label> <expression>

The GSET directive is used to assign the value of the expression in the operand field to
the label. The GSET directive functions somewhat like the EQU directive. However, labels
defined via the GSET directive can have their values redefined in another part of the pro-
gram (but only through the use of another GSET or SET directive). The GSET directive is
useful for resetting a global SET symbol within a section, where the SET symbol would
otherwise be considered local. The expression in the operand field of a GSET must be
absolute and cannot include a symbol that is not yet defined (no forward references are
allowed).

See also: EQU, SET

EXAMPLE:

COUNT GSET 0 ; INITIALIZE COUNT
Freescale DSP Assembler Reference Manual 121

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
HIMEM
Set High Memory Bounds

HIMEM <mem>[<rl>]:<expression>[,...]

The HIMEM directive establishes an absolute high memory bound for code and data gen-
eration. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P). <rl> is one
of the letters R for runtime counter or L for load counter. The <expression> is an absolute
integer value within the address range of the machine. If during assembly the specified
location counter exceeds the value given by <expression>, a warning is issued.

A label is not allowed with this directive.

See also: LOMEM

EXAMPLE:

HIMEM XR:$7FFF,YR:$7FFF ; SET X/Y RUN HIGH MEM BOUNDS
122 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
IDENT
Object Code Identification Record

[<label>] IDENT <expression1>,<expression2>

The IDENT directive is used to create an identification record for the object module. If <la-
bel> is specified, it will be used as the module name. If <label> is not specified, then the
filename of the source input file is used as the module name. <expression1> is the ver-
sion number; <expression2> is the revision number. The two expressions must each
evaluate to an integer result. The comment field of the IDENT directive will also be passed
on to the object module.

See also: COBJ

EXAMPLE:

If the following line was included in the source file,

FFILTER IDENT 1,2 ; FIR FILTER MODULE

then the object module identification record would include the module name (FFILTER),
the version number (1), the revision number (2), and the comment field (; FIR FILTER
MODULE).
Freescale DSP Assembler Reference Manual 123

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
IF
Conditional Assembly Directive

IF <expression>
.
.
[ELSE] (the ELSE directive is optional)
.
.
ENDIF

 Part of a program that is to be conditionally assembled must be bounded by an IF-ENDIF
directive pair. If the optional ELSE directive is not present, then the source statements
following the IF directive and up to the next ENDIF directive will be included as part of the
source file being assembled only if the <expression> has a nonzero result. If the <expres-
sion> has a value of zero, the source file will be assembled as if those statements be-
tween the IF and the ENDIF directives were never encountered. If the ELSE directive is
present and <expression> has a nonzero result, then the statements between the IF and
ELSE directives will be assembled, and the statements between the ELSE and ENDIF di-
rectives will be skipped. Alternatively, if <expression> has a value of zero, then the state-
ments between the IF and ELSE directives will be skipped, and the statements between
the ELSE and ENDIF directives will be assembled.

The <expression> must have an absolute integer result and is considered true if it has a
nonzero result. The <expression> is false only if it has a result of 0. Because of the nature
of the directive, <expression> must be known on pass one (no forward references al-
lowed). IF directives can be nested to any level. The ELSE directive will always refer to
the nearest previous IF directive as will the ENDIF directive.

A label is not allowed with this directive.

See also: ENDIF

EXAMPLE:

IF @LST>0
DUP @LST ; Unwind LIST directive stack
NOLIST
ENDM
ENDIF
124 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
INCLUDE
Include Secondary File

INCLUDE <string> | <<string>>

This directive is inserted into the source program at any point where a secondary file is to
be included in the source input stream. The string specifies the filename of the secondary
file. The filename must be compatible with the operating system and can include a direc-
tory specification. If no extension is given for the filename, a default extension of .ASM is
supplied.

The file is searched for first in the current directory, unless the <<string>> syntax is used,
or in the directory specified in <string>. If the file is not found, and the -I option was used
on the command line that invoked the assembler, then the string specified with the -I op-
tion is prefixed to <string> and that directory is searched. If the <<string>> syntax is given,
the file is searched for only in the directories specified with the -I option. Refer to Chapter
1, Running the Assembler.

A label is not allowed with this directive.

See also: MACLIB

EXAMPLE:

INCLUDE 'headers/io.asm' ; Unix example

INCLUDE 'storage\mem.asm' ; MS-DOS example

INCLUDE <data.asm> ; Do not look in current directory
Freescale DSP Assembler Reference Manual 125

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
LIST
List the Assembly

LIST

Print the listing from this point on. The LIST directive will not be printed, but the subse-
quent source lines will be output to the source listing. The default is to print the source
listing. If the IL option has been specified, the LIST directive has no effect when encoun-
tered within the source program.

The LIST directive actually increments a counter that is checked for a positive value and
is symmetrical with respect to the NOLIST directive. Note the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.

A label is not allowed with this directive.

See also: NOLIST, OPT

EXAMPLE:

IF LISTON
LIST ; Turn the listing back on
ENDIF
126 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
LOCAL
Local Section Symbol Declaration

LOCAL <symbol>[,<symbol>,...,<symbol>]

The LOCAL directive is used to specify that the list of symbols is defined within the current
section, and that those definitions are explicitly local to that section. It is useful in cases
where a symbol is used as a forward reference in a nested section where the enclosing
section contains a like-named symbol. This directive is only valid if used within a program
block bounded by the SECTION and ENDSEC directives. The LOCAL directive must ap-
pear before <symbol> is defined in the section. If the symbols that appear in the operand
field are not defined in the section, an error will be generated.

A label is not allowed with this directive.

See also: SECTION, XDEF, XREF

EXAMPLE:

SECTION IO
LOCAL LOOPA ; LOOPA local to this section
.
.
.
ENDSEC
Freescale DSP Assembler Reference Manual 127

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
LOMEM
Set Low Memory Bounds

LOMEM <mem>[<rl>]:<expression>[,...]

The LOMEM directive establishes an absolute low memory bound for code and data gen-
eration. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P). <rl> is one
of the letters R for runtime counter or L for load counter. The <expression> is an absolute
integer value within the address range of the machine. If during assembly the specified
location counter falls below the value given by <expression>, a warning is issued.

A label is not allowed with this directive.

See also: HIMEM

EXAMPLE:

LOMEM XR:$100,YR:$100 ; SET X/Y RUN LOW MEM BOUNDS
128 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
LSTCOL
Set Listing Field Widths

LSTCOL [<labw>[,<opcw>[,<oprw>[,<opc2w>[,<opr2w>[,<xw>[,<yw>]]]]]]]

Sets the width of the output fields in the source listing. Widths are specified in terms of
column positions. The starting position of any field is relative to its predecessor except for
the label field, which always starts at the same position relative to page left margin, pro-
gram counter value, and cycle count display. The widths may be expressed as any pos-
itive absolute integer expression. However, if the width is not adequate to accommodate
the contents of a field, the text is separated from the next field by at least one space.

Any field for which the default is desired may be null. A null field can be indicated by two
adjacent commas with no intervening space or by omitting any trailing fields altogether. If
the LSTCOL directive is given with no arguments all field widths are reset to their default
values.

A label is not allowed with this directive.

See also: PAGE

EXAMPLE:

LSTCOL 40,,,,,20,20 ; Reset label, X, and Y data field widths
Freescale DSP Assembler Reference Manual 129

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
MACLIB
Macro Library

MACLIB <pathname>

This directive is used to specify the <pathname> (as defined by the operating system) of
a directory that contains macro definitions. Each macro definition must be in a separate
file, and the file must be named the same as the macro with the extension .ASM added.
For example, BLOCKMV.ASM would be a file that contained the definition of the macro
called BLOCKMV.

If the assembler encounters a directive in the operation field that is not contained in the
directive or mnemonic tables, the directory specified by <pathname> will be searched for
a file of the unknown name (with the .ASM extension added). If such a file is found, the
current source line will be saved, and the file will be opened for input as an INCLUDE file.
When the end of the file is encountered, the source line is restored and processing is re-
sumed. Because the source line is restored, the processed file must have a macro defi-
nition of the unknown directive name, or else an error will result when the source line is
restored and processed. However, the processed file is not limited to macro definitions,
and can include any legal source code statements.

Multiple MACLIB directives may be given, in which case the assembler will search each
directory in the order in which it is encountered.

A label is not allowed with this directive.

See also: INCLUDE

EXAMPLE:

MACLIB 'macros\mymacs\' ; IBM PC example
MACLIB 'fftlib/' ; UNIX example
130 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
MACRO
Macro Definition

<label> MACRO [<dummy argument list>]
.
.
<macro definition statements>
.
.
ENDM

The dummy argument list has the form:

[<dumarg>[,<dumarg>,...,<dumarg>]]

The required label is the symbol by which the macro will be called. If the macro is named
the same as an existing assembler directive or mnemonic, a warning will be issued. This
warning can be avoided with the RDIRECT directive.

The definition of a macro consists of three parts: the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or skel-
eton source statements; and the terminator. The header is the MACRO directive, its label,
and the dummy argument list. The body contains the pattern of standard source state-
ments. The terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor will replace with ar-
guments when the macro is expanded (called). Each dummy argument must obey the
same rules as symbol names. Dummy argument names that are preceded by an under-
score are not allowed. Within each of the three dummy argument fields, the dummy ar-
guments are separated by commas. The dummy argument fields are separated by one
or more blanks.

Macro definitions may be nested but the nested macro will not be defined until the primary
macro is expanded.

Chapter 5 contains a complete description of macros.

See also: DUP, DUPA, DUPC, DUPF, ENDM

EXAMPLE:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
MOVE R\?REG1,X0
MOVE R\?REG2,R\?REG1
MOVE X0,R\?REG2
ENDM
Freescale DSP Assembler Reference Manual 131

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
MODE
Change Relocation Mode

MODE <ABS[OLUTE] | REL[ATIVE]>

Causes the assembler to change to the designated operational mode. The MODE direc-
tive may be given at any time in the assembly source to alter the set of location counters
used for section addressing. Code generated while in absolute mode will be placed in
memory at the location determined during assembly. Relocatable code and data are
based from the enclosing section start address. The MODE directive has no effect when
the command line -A option is issued. See Chapter 4 for more information on modes, sec-
tions, and relocation.

A label is not allowed with this directive.

See also: ORG

EXAMPLE:

MODE ABS ; Change to absolute mode
132 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
MSG
Programmer Generated Message

MSG [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The MSG directive will cause a message to be output by the assembler. The error and
warning counts will not be affected. The MSG directive is normally used in conjunction
with conditional assembly directives for informational purposes. The assembly proceeds
normally after the message has been printed. An arbitrary number of strings and expres-
sions, in any order but separated by commas with no intervening white space, can be
specified optionally to describe the nature of the message.

A label is not allowed with this directive.

See also: FAIL, WARN

EXAMPLE:

MSG 'Generating sine tables'
Freescale DSP Assembler Reference Manual 133

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
NOLIST
Stop Assembly Listing

NOLIST

Do not print the listing from this point on (including the NOLIST directive). Subsequent
source lines will not be printed.

The NOLIST directive actually decrements a counter that is checked for a positive value
and is symmetrical with respect to the LIST directive. Note the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.

A label is not allowed with this directive.

See also: LIST, OPT

EXAMPLE:

IF LISTOFF
NOLIST ; Turn the listing off
ENDIF
134 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
OPT
Assembler Options

OPT <option>[,<option>,...,<option>] [<comment>]

The OPT directive is used to designate the assembler options. Assembler options are giv-
en in the operand field of the source input file and are separated by commas. Options
also may be specified using the command line -O option (see Chapter 1). All options have
a default condition. Some options are reset to their default condition at the end of pass
one. Some are allowed to have the prefix NO attached to them, which then reverses their
meaning.

Options can be grouped by function into five different types:

1. Listing format control
2. Reporting options
3. Message control
4. Symbol options
5. Assembler operation

Listing Format Control

These options control the format of the listing file:

FC - Fold trailing comments
FF - Form feeds for page ejects
FM - Format messages
PP - Pretty print listing
RC - Relative comment spacing
Freescale DSP Assembler Reference Manual 135

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
Reporting Options

These options control what is reported in the listing file:

CEX - Print DC expansions
CL - Print conditional assembly directives
CRE - Print symbol cross-reference
DXL - Expand DEFINE directive strings in listing
HDR - Generate listing headers
IL - Inhibit source listing
LOC - Print local labels in cross-reference
MC - Print macro calls
MD - Print macro definitions
MEX - Print macro expansions
MU - Print memory utilization report
NL - Print conditional assembly and section nesting levels
S - Print symbol table
U - Print skipped conditional assembly lines

Message Control

These options control the types of assembler messages that are generated:

AE - Check address expressions
MSW - Warn on memory space incompatibilities
UR - Flag unresolved references
W - Display warning messages

Symbol Options

These options deal with the handling of symbols by the assembler:

DEX - Expand DEFINE symbols within quoted strings
IC - Ignore case in symbol names
NS - Support symbol scoping in nested sections
SCL - Scope structured control statement labels
SCO - Structured control statement labels to listing/object file
SO - Write symbols to object file
XLL - Write local labels to object file
XR - Recognize XDEFed symbols without XREF
136 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
Assembler Operation

Miscellaneous options having to do with internal assembler operation:

CC - Enable cycle counts
CK - Enable checksumming
CM - Preserve comment lines within macros
CONST - Make EQU symbols assembly time constants
CONTCK - Continue checksumming
DLD - Do not restrict directives in loops
GL - Make all section symbols global
GS - Make all sections global static
INTR - Perform interrupt location checks
LB - Byte increment load counter
LDB - Listing file debug
MI - Scan MACLIB directories for include files
PS - Pack strings
PSM - Programmable short addressing mode
RP - Generate NOP to accommodate pipeline delay
RSV - Check reserve data memory locations
SI - Interpret short immediate as long or sign extended
SVO - Preserve object file on errors

Following are descriptions of the individual options. The parenthetical inserts specify de-
fault if the option is the default condition, and reset if the option is reset to its default state
at the end of pass one.

A label is not allowed with this directive.

AE (default, reset) Check address expressions for appropriate arithmetic opera-
tions. For example, this will check that only valid add or subtract operations
are performed on address terms.

CC Enable cycle counts and clear total cycle count. Cycle counts will be shown
on the output listing for each instruction. Cycle counts assume a full instruc-
tion fetch pipeline and no wait states.

CEX Print DC expansions.

CK Enable checksumming of instruction and data values and clear cumulative
checksum. The checksum value can be obtained using the @CHK() function
(see Chapter 3).

CL (default, reset) Print the conditional assembly directives.
Freescale DSP Assembler Reference Manual 137

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
CM (default, reset) Preserve comment lines of macros when they are defined.
Note that any comment line within a macro definition that starts with two con-
secutive semicolons (;;) is never preserved in the macro definition.

CONST EQU symbols are maintained as assembly time constants and will not be sent
to the object file. This option, if used, must be specified before the first symbol
in the source program is defined.

CONTC Re-enable cycle counts. Does not clear total cycle counts. The cycle count
for each instruction will be shown on the output listing.

CONTCK Re-enable checksumming of instructions and data. Does not clear cumula-
tive checksum value.

CRE Print a cross reference table at the end of the source listing. This option, if
used, must be specified before the first symbol in the source program is de-
fined.

DEX Expand DEFINE symbols within quoted strings. Can also be done on a case-
by-case basis using double-quoted strings.

DLD Do not restrict directives in DO loops. The presence of some directives in DO
loops does not make sense, including some OPT directive variations. This op-
tion suppresses errors on particular directives in loops.

DXL (default, reset) Expand DEFINE directive strings in listing.

FC Fold trailing comments. Any trailing comments that are included in a source
line will be folded underneath the source line and aligned with the opcode
field. Lines that start with the comment character will be aligned with the label
field in the source listing. The FC option is useful for displaying the source
listing on 80 column devices.

FF Use form feeds for page ejects in the listing file.

FM Format assembler messages so that the message text is aligned and broken
at word boundaries.

GL Make all section symbols global. This has the same effect as declaring every
section explicitly GLOBAL. This option must be given before any sections are
defined explicitly in the source file.

GS (default, reset in absolute mode) Make all sections global static. All section
counters and attributes will be associated with the GLOBAL section. This op-
tion must be given before any sections are defined explicitly in the source file.

HDR (default, reset) Generate listing header along with titles and subtitles.

IC Ignore case in symbol, section, and macro names. This directive must be is-
sued before any symbols, sections, or macros are defined.
138 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
IL Inhibit source listing. This option will stop the assembler from producing a
source listing.

INTR (default, reset in absolute mode) Perform interrupt location checks. Certain
DSP instructions may not appear in the interrupt vector locations in program
memory. This option enables the assembler to check for these instructions
when the program counter is within the interrupt vector bounds.

LB Increment load counter (if different from runtime) by number of bytes in DSP
word to provide byte-wide support for overlays in bootstrap mode. This option
must appear before any code or data generation.

LDB Use the listing file as the debug source file rather than the assembly language
file. The -L command line option to generate a listing file must be specified for
this option to take effect.

LOC Include local labels in the symbol table and cross-reference listing. Local la-
bels are not normally included in these listings. If neither the S or CRE options
are specified, then this option has no effect. The LOC option must be speci-
fied before the first symbol is encountered in the source file.

MC (default, reset) Print macro calls.

MD (default, reset) Print macro definitions.

MEX Print macro expansions.

MI Scan MACLIB directory paths for include files. The assembler ordinarily
looks for included files only in the directory specified in the INCLUDE directory
or in the paths given by the -I command line option. If the MI option is used
the assembler will also look for included files in any designated MACLIB di-
rectories.

MSW (default, reset) Issue warning on memory space incompatibilities.

MU Include a memory utilization report in the source listing. This option must ap-
pear before any code or data generation.

NL Display conditional assembly (IF-ELSE-ENDIF) and section nesting levels on
listing.

NOAE Do not check address expressions.

NOCC (default, reset) Disable cycle counts. Does not clear total cycle count.

NOCEX (default, reset) Do not print DC expansions.

NOCK (default, reset) Disable checksumming of instruction and data values.

NOCL Do not print the conditional assembly directives.
Freescale DSP Assembler Reference Manual 139

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
NOCM Do not preserve comment lines of macros when they are defined.

NODEX (default, reset) Do not expand DEFINE symbols within quoted strings.

NODLD (default, reset) Restrict use of certain directives in DO loop.

NODXL Do not expand DEFINE directive strings in listing.

NOFC (default, reset) Inhibit folded comments.

NOFF (default, reset) Use multiple line feeds for page ejects in the listing file.

NOFM (default, reset) Do not format assembler messages.

NOGS (default, reset in relative mode) Do not make all sections global static.

NOHDR Do not generate listing header. This also turns off titles and subtitles.

NOINTR (default, reset in relative mode) Do not perform interrupt location checks.

NOMC Do not print macro calls.

NOMD Do not print macro definitions.

NOMEX (default, reset) Do not print macro expansions.

NOMI (default, reset) Do not scan MACLIB directory paths for include files.

NOMSW Do not issue warning on memory space incompatibilities.

NONL (default, reset) Do not display nesting levels on listing.

NONS Do not allow scoping of symbols within nested sections.

NOPP Do not pretty print listing file. Source lines are sent to the listing file as they
are encountered in the source, with the exception that tabs are expanded to
spaces and continuation lines are concatenated into a single physical line for
printing.

NOPS Do not pack strings in DC directive. Individual bytes in strings will be stored
one byte per word.

NORC (default, reset) Do not space comments relatively.

NORP (default, reset) Do not generate instructions to accommodate pipeline delay.

NOSCL Do not maintain the current local label scope when a structured control state-
ment label is encountered.

NOSI (DSP56300 only) (default, reset) Interpret an eight-bit short immediate value
moved to a fractional register as a short unless forced long.
140 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
NOU (default, reset) Do not print the lines excluded from the assembly due to a con-
ditional assembly directive.

NOUR (default, reset) Do not flag unresolved external references.

NOW Do not print warning messages.

NS (default, reset) Allow scoping of symbols within nested sections.

PP (default, reset) Pretty print listing file. The assembler attempts to align fields
at a consistent column position without regard to source file formatting.

PS (default, reset) Pack strings in DC directive. Individual bytes in strings will be
packed into consecutive target words for the length of the string.

RC Space comments relatively in listing fields. By default, the assembler always
places comments at a consistent column position in the listing file. This option
allows the comment field to float: on a line containing only a label and opcode,
the comment would begin in the operand field.

RP Generate NOP instructions to accommodate pipeline delay. If an address
register is loaded in one instruction then the contents of the register is not
available for use as a pointer until after the next instruction. Ordinarily when
the assembler detects this condition it issues an error message. The RP op-
tion will cause the assembler to output a NOP instruction into the output
stream instead of issuing an error.

S Print symbol table at the end of the source listing. This option has no effect if
the CRE option is used.

SCL (default, reset) Structured control statements generate non-local labels that
ordinarily are not visible to the programmer. This can create problems when
local labels are interspersed among structured control statements. This op-
tion causes the assembler to maintain the current local label scope when a
structured control statement label is encountered.

SCO Send structured control statement labels to object and listing files. Normally
the assembler does not externalize these labels. This option must appear be-
fore any symbol definition.

SI (DSP56300 only) Interpret an eight-bit short immediate value moved to a frac-
tional register as a long unless forced short.

SO Write symbol information to object file. This option is recognized but performs
no operation in COFF assemblers.

SVO Preserve object file on errors. Normally any object file produced by the as-
sembler is deleted if errors occur during assembly. This option must be given
before any code or data is generated.
Freescale DSP Assembler Reference Manual 141

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
U Print the unassembled lines skipped due to failure to satisfy the condition of a
conditional assembly directive.

UR Generate a warning at assembly time for each unresolved external reference.
This option works only in relocatable mode.

W (default, reset) Print all warning messages.

WEX Add warning count to exit status. Ordinarily the assembler exits with a count
of errors. This option causes the count of warnings to be added to the error
count.

XLL Write underscore local labels to object file. This is primarily used to aid de-
bugging. This option, if used, must be specified before the first symbol in the
source program is defined.

XR Causes XDEFed symbols to be recognized within other sections without be-
ing XREFed. This option, if used, must be specified before the first symbol in
the source program is encountered.

EXAMPLE:

OPT CEX,MEX ; Turn on DC and macro expansions
OPT CRE,MU ; Cross reference, memory utilization
142 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
ORG
Initialize Memory Space and Location Counters

 ORG <rms>[<rlc>][<rmp>]:[<exp1>][,<lms>[<llc>][<lmp>]:[<exp2>]]

 ORG <rms>[<rmp>][(<rce>)]:[<exp1>][,<lms>[<lmp>][(<lce>)]:[<exp2>]]

The ORG directive is used to specify addresses and to indicate memory space and map-
ping changes. It also can designate an implicit counter mode switch in the assembler and
serves as a mechanism for initiating overlays.

A label is not allowed with this directive.

<rms>

Which memory space (X, Y, L, or P) will be used as the runtime memory
space. If the memory space is L, any allocated datum with a value greater
than the target word size will be extended to two words; otherwise, it is trun-
cated.

<rlc>

Which runtime counter H, L, or default (if neither H or L is specified), that is
associated with the <rms> will be used as the runtime location counter.

<rmp>

Indicates the runtime physical mapping to DSP memory: I - internal, E - ex-
ternal, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

<rce>

Non-negative absolute integer expression representing the counter number
to be used as the runtime location counter. Must be enclosed in parenthe-
ses. Should not exceed the value 65535.

<exp1>

Initial value to assign to the runtime counter used as the <rlc>. If <exp1> is
a relative expression the assembler uses the relative location counter. If
<exp1> is an absolute expression the assembler uses the absolute location
counter. If <exp1> is not specified, then the last value and mode that the
counter had will be used.

<lms>

Which memory space (X, Y, L, or P) will be used as the load memory space.
If the memory space is L, any allocated datum with a value greater than the
target word size will be extended to two words; otherwise, it is truncated. If
Freescale DSP Assembler Reference Manual 143

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
the memory space is E, then depending on the memory space qualifier, any
generated words will be split into bytes, one byte per word, or a 16/8-bit
combination.

<llc>

Which load counter, H, L, or default (if neither H or L is specified), that is as-
sociated with the <lms> will be used as the load location counter.

<lmp>

Indicates the load physical mapping to DSP memory: I - internal, E - exter-
nal, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

<lce>

Non-negative absolute integer expression representing the counter number
to be used as the load location counter. Must be enclosed in parentheses.
Should not exceed the value 65535.

<exp2>

Initial value to assign to the load counter used as the <llc>. If <exp2> is a
relative expression the assembler uses the relative location counter. If
<exp2> is an absolute expression the assembler uses the absolute location
counter. If <exp2> is not specified, then the last value and mode that the
counter had will be used.

If the last half of the operand field in an ORG directive dealing with the load memory space
and counter is not specified, then the assembler will assume that the load memory space
and load location counter are the same as the runtime memory space and runtime loca-
tion counter. In this case, object code is being assembled to be loaded into the address
and memory space where it will be when the program is run, and is not an overlay.

If the load memory space and counter are given in the operand field, then the assembler
always generates code for an overlay. Whether the overlay is absolute or relocatable de-
pends upon the current operating mode of the assembler and whether the load counter
value is an absolute or relative expression. If the assembler is running in absolute mode,
or if the load counter expression is absolute, then the overlay is absolute. If the assembler
is in relative mode and the load counter expression is relative, the overlay is relocatable.
Runtime relocatable overlay code is addressed relative to the location given in the runtime
144 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
location counter expression. This expression, if relative, may not refer to another overlay
block.

See also: MODE

EXAMPLES:

ORG P:$1000

Sets the runtime memory space to P. Selects the default runtime counter (counter
0) associated with P space to use as the runtime location counter and initializes it
to $1000. The load memory space is implied to be P, and the load location counter
is assumed to be the same as the runtime location counter.

ORG PHE:

Sets the runtime memory space to P. Selects the H load counter (counter 2) as-
sociated with P space to use as the runtime location counter. The H counter will
not be initialized, and its last value will be used. Code generated hereafter will be
mapped to external (E) memory. The load memory space is implied to be P, and
the load location counter is assumed to be the same as the runtime location
counter.

ORG PI:OVL1,Y:

Indicates code will be generated for an overlay. The runtime memory space is P,
and the default counter is used as the runtime location counter. It will be reset to
the value of OVL1. If the assembler is in absolute mode via the -A command line
option then OVL1 must be an absolute expression. If OVL1 is an absolute expres-
sion the assembler uses the absolute runtime location counter. If OVL1 is a relo-
catable value the assembler uses the relative runtime location counter. In this case
OVL1 must not itself be an overlay symbol (e.g. defined within an overlay block).
The load memory space is Y. Since neither H, L, nor any counter expression was
specified as the load counter, the default load counter (counter 0) will be used as
the load location counter. The counter value and mode will be whatever it was the
last time it was referenced.

ORG XL:,E8:

Sets the runtime memory space to X. Selects the L counter (counter 1) associated
with X space to use as the runtime location counter. The L counter will not be ini-
tialized, and its last value will be used. The load memory space is set to E, and the
qualifier 8 indicates a bytewise RAM configuration. Instructions and data will be
generated eight bits per output word with byte-oriented load addresses. The de-
fault load counter will be used and there is no explicit load origin.
Freescale DSP Assembler Reference Manual 145

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
ORG P(5):,Y:$8000

Indicates code will be generated for an absolute overlay. The runtime memory
space is P, and the counter used as the runtime location counter is counter 5. It
will not be initialized, and the last previous value of counter 5 will be used. The load
memory space is Y. Since neither H, L, nor any counter expression was specified
as the load counter, the default load counter (counter 0) will be used as the load
location counter. The default load counter will be initialized to $8000.
146 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
PAGE
Top of Page/Size Page

PAGE [<exp1>[,<exp2>...,<exp5>]]

The PAGE directive has two forms:

1. If no arguments are supplied, then the assembler will advance the listing to the top
of the next page. In this case, the PAGE directive will not be output.

2. The PAGE directive with arguments can be used to specify the printed format of
the output listing. Arguments may be any positive absolute integer expression.
The arguments in the operand field (as explained below) are separated by com-
mas. Any argument can be left as the default or last set value by omitting the ar-
gument and using two adjacent commas. The PAGE directive with arguments will
not cause a page eject and will be printed in the source listing.

A label is not allowed with this directive.

The arguments in order are:

PAGE_WIDTH <exp1>

Page width in terms of number of output columns per line (default 80, min 1, max
255).

PAGE_LENGTH <exp2>

Page length in terms of total number of lines per page (default 66, min 10, max
255). As a special case a page length of 0 (zero) turns off all headers, titles, sub-
titles, and page breaks.

BLANK_TOP <exp3>

Blank lines at top of page. (default 0, min 0, max see below).

BLANK_BOTTOM <exp4>

Blank lines at bottom of page. (default 0, min 0, max see below).

BLANK_LEFT <exp5>

Blank left margin. Number of blank columns at the left of the page. (default 0, min
0, max see below).
Freescale DSP Assembler Reference Manual 147

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
The following relationships must be maintained:

BLANK_TOP + BLANK_BOTTOM <= PAGE_LENGTH - 10

BLANK_LEFT < PAGE_WIDTH

See also: LSTCOL

EXAMPLE:

PAGE 132,,3,3 ; Set width to132, 3 line top/bottom margins
PAGE ; Page eject
148 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
PMACRO
Purge Macro Definition

PMACRO <symbol>[,<symbol>,...,<symbol>]

The specified macro definition will be purged from the macro table, allowing the macro ta-
ble space to be reclaimed.

A label is not allowed with this directive.

See also: MACRO

EXAMPLE:

PMACRO MAC1,MAC2

This statement would cause the macros named MAC1 and MAC2 to be purged.
Freescale DSP Assembler Reference Manual 149

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
PRCTL
Send Control String to Printer

PRCTL <exp>I<string>,...,<exp>I<string>

PRCTL simply concatenates its arguments and ships them to the listing file (the directive
line itself is not printed unless there is an error). <exp> is a byte expression and <string>
is an assembler string. A byte expression would be used to encode non-printing control
characters, such as ESC. The string may be of arbitrary length, up to the maximum as-
sembler-defined limits.

PRCTL may appear anywhere in the source file and the control string will be output at the
corresponding place in the listing file. However, if a PRCTL directive is the last line in the
last input file to be processed, the assembler insures that all error summaries, symbol ta-
bles, and cross-references have been printed before sending out the control string. This
is so a PRCTL directive can be used to restore a printer to a previous mode after printing
is done. Similarly, if the PRCTL directive appears as the first line in the first input file, the
control string will be output before page headings or titles.

The PRCTL directive only works if the -L command line option is given; otherwise it is ig-
nored. See Chapter 1 for more information on the -L option.

A label is not allowed with this directive.

EXAMPLE:

PRCTL $1B,'E' ; Reset HP LaserJet printer
150 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
RADIX
Change Input Radix for Constants

RADIX <expression>

Changes the input base of constants to the result of <expression>. The absolute integer
expression must evaluate to one of the legal constant bases (2, 10, or 16). The default
radix is 10. The RADIX directive allows the programmer to specify constants in a pre-
ferred radix without a leading radix indicator. The radix prefix for base 10 numbers is the
grave accent (`). Note that if a constant is used to alter the radix, it must be in the appro-
priate input base at the time the RADIX directive is encountered.

A label is not allowed with this directive.

EXAMPLE:

_RAD10 DC 10 ; Evaluates to hex A
RADIX 2

_RAD2 DC 10 ; Evaluates to hex 2
RADIX `16

_RAD16 DC 10 ; Evaluates to hex 10
RADIX 3 ; Bad radix expression
Freescale DSP Assembler Reference Manual 151

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
RDIRECT
Remove Directive or Mnemonic from Table

RDIRECT <direc>[,<direc>,...,<direc>]

The RDIRECT directive is used to remove directives from the assembler directive and
mnemonic tables. If the directive or mnemonic that has been removed is later encoun-
tered in the source file, it will be assumed to be a macro. Macro definitions that have the
same name as assembler directives or mnemonics will cause a warning message to be
output unless the RDIRECT directive has been used to remove the directive or mnemonic
name from the assembler’s tables. Additionally, if a macro is defined through the MACLIB
directive which has the same name as an existing directive or opcode, it will not automat-
ically replace that directive or opcode as previously described. In this case, the RDIRECT
directive must be used to force the replacement.

Since the effect of this directive is global, it cannot be used in an explicitly-defined section
(see SECTION directive). An error will result if the RDIRECT directive is encountered in
a section.

A label is not allowed with this directive.

EXAMPLE:

RDIRECT PAGE,MOVE

This would cause the assembler to remove the PAGE directive from the directive table
and the MOVE mnemonic from the mnemonic table.
152 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
SCSJMP
Set Structured Control Statement Branching Mode

SCSJMP {SHORT | LONG | NONE}

The SCSJMP directive is analogous to the FORCE directive, but it only applies to branch-
es generated automatically by structured control statements (see Chapter 7). There is no
explicit way, as with a forcing operator, to force a branch short or long when it is produced
by a structured control statement. This directive will cause all branches resulting from
subsequent structured control statements to be forced to the specified mode.

Just like the FORCE pseudo-op, errors can result if a value is too large to be forced short.
For relocatable code, the error may not occur until the linking phase.

See also: FORCE, SCSREG

A label is not allowed with this directive.

EXAMPLE:

SCSJMP SHORT ; force all subsequent SCS jumps short
Freescale DSP Assembler Reference Manual 153

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
SCSREG
Reassign Structured Control Statement Registers

SCSREG [<srcreg>[,<dstreg>[,<tmpreg>[,<extreg>]]]]

The SCSREG directive reassigns the registers used by structured control statement
(SCS) directives (see Chapter 7). It is convenient for reclaiming default SCS registers
when they are needed as application operands within a structured control construct. <sr-
creg> is ordinarily the source register for SCS data moves. <dstreg> is the destination
register. <tmpreg> is a temporary register for swapping SCS operands. <extreg> is an
extra register for complex SCS operations. With no arguments SCSREG resets the SCS
registers to their default assignments.

The SCSREG directive should be used judiciously to avoid register context errors during
SCS expansion. Source and destination registers may not necessarily be used strictly as
source and destination operands. The assembler does no checking of reassigned regis-
ters beyond validity for the target processor. Errors can result when a structured control
statement is expanded and an improper register reassignment has occurred. It is recom-
mended that the MEX option (see the OPT directive) be used to examine structured con-
trol statement expansion for relevant constructs to determine default register usage and
applicable reassignment strategies.

See also: OPT (MEX), SCSJMP

A label is not allowed with this directive.

EXAMPLE:

SCSREG Y0,B ; reassign SCS source and dest. registers
154 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
SECTION
Start Section

SECTION <symbol> [GLOBAL | STATIC | LOCAL]
.
.
<section source statements>
.
.
ENDSEC

The SECTION directive defines the start of a section. All symbols that are defined within
a section have the <symbol> associated with them as their section name. This serves to
protect them from like-named symbols elsewhere in the program. By default, a symbol
defined inside any given section is private to that section unless the GLOBAL or LOCAL
qualifier accompanies the SECTION directive.

Any code or data inside a section is considered an indivisible block with respect to relo-
cation. Code or data associated with a section is independently relocatable within the
memory space to which it is bound, unless the STATIC qualifier follows the SECTION di-
rective on the instruction line.

Symbols within a section are generally distinct from other symbols used elsewhere in the
source program, even if the symbol name is the same. This is true as long as the section
name associated with each symbol is unique, the symbol is not declared public (XDEF/
GLOBAL), and the GLOBAL or LOCAL qualifier is not used in the section declaration.
Symbols that are defined outside of a section are considered global symbols and have no
explicit section name associated with them. Global symbols may be referenced freely
from inside or outside of any section, as long as the global symbol name does not conflict
with another symbol by the same name in a given section.

If the GLOBAL qualifier follows the <section name> in the SECTION directive, then all
symbols defined in the section until the next ENDSEC directive are considered global.
The effect is as if every symbol in the section were declared with GLOBAL. This is useful
when a section needs to be independently relocatable, but data hiding is not desired.

If the STATIC qualifier follows the <section name> in the SECTION directive, then all code
and data defined in the section until the next ENDSEC directive are relocated in terms of
the immediately enclosing section. The effect with respect to relocation is as if all code
and data in the section were defined within the parent section. This is useful when a sec-
tion needs data hiding, but independent relocation is not required.

If the LOCAL qualifier follows the <section name> in the SECTION directive, then all sym-
bols defined in the section until the next ENDSEC directive are visible to the immediately
enclosing section. The effect is as if every symbol in the section were defined within the
parent section. This is useful when a section needs to be independently relocatable, but
data hiding within an enclosing section is not required.
Freescale DSP Assembler Reference Manual 155

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
The division of a program into sections controls not only labels and symbols, but also mac-
ros and DEFINE directive symbols. Macros defined within a section are private to that
section and are distinct from macros defined in other sections even if they have the same
macro name. Macros defined outside of sections are considered global and may be used
within any section. Similarly, DEFINE directive symbols defined within a section are pri-
vate to that section and DEFINE directive symbols defined outside of any section are glo-
bally applied. There are no directives that correspond to XDEF for macros or DEFINE
symbols, and therefore, macros and DEFINE symbols defined in a section can never be
accessed globally. If global accessibility is desired, the macros and DEFINE symbols
should be defined outside of any section.

Sections can be nested to any level. When the assembler encounters a nested section,
the current section is stacked and the new section is used. When the ENDSEC directive
of the nested section is encountered, the assembler restores the old section and uses it.
The ENDSEC directive always applies to the most previous SECTION directive. Nesting
sections provides a measure of scoping for symbol names, in that symbols defined within
a given section are visible to other sections nested within it. For example, if section B is
nested inside section A, then a symbol defined in section A can be used in section B with-
out XDEFing in section A or XREFing in section B. This scoping behavior can be turned
off and on with the NONS and NS options respectively (see the OPT directive, this chap-
ter).

Sections may also be split into separate parts. That is, <section name> can be used mul-
tiple times with SECTION and ENDSEC directive pairs. If this occurs, then these separate
(but identically named) sections can access each others symbols freely without the use of
the XREF and XDEF directives. If the XDEF and XREF directives are used within one
section, they apply to all sections with the same section name. The reuse of the section
name is allowed to permit the program source to be arranged in an arbitrary manner (for
example, all statements that reserve X space storage locations grouped together), but re-
tain the privacy of the symbols for each section.

When the assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the source
a set of location counters is allocated for each DSP memory space. These counters are
used to maintain offsets of data and instructions relative to the beginning of the section.
At link time sections can be relocated to an absolute address, loaded in a particular order,
or linked contiguously as specified by the programmer. Sections which are split into parts
or among files are logically recombined so that each section can be relocated as a unit.

Sections may be relocatable or absolute. In the assembler absolute mode (command line
-A option) all sections are considered absolute. A full set of locations counters is reserved
for each absolute section unless the GS option is given (see the OPT directive, this chap-
ter). In relative mode, all sections are initially relocatable. However, a section or a part of
156 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
a section may be made absolute either implicitly by using the ORG directive, or explicitly
through use of the MODE directive.

A label is not allowed with this directive.

See also: MODE, ORG, GLOBAL, LOCAL, XDEF, XREF

EXAMPLE:

SECTION TABLES ; TABLES will be the section name
Freescale DSP Assembler Reference Manual 157

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
SET
Set Symbol to a Value

<label> SET <expression>

SET <label> <expression>

The SET directive is used to assign the value of the expression in the operand field to the
label. The SET directive functions somewhat like the EQU directive. However, labels de-
fined via the SET directive can have their values redefined in another part of the program
(but only through the use of another SET directive). The SET directive is useful in estab-
lishing temporary or reusable counters within macros. The expression in the operand field
of a SET must be absolute and cannot include a symbol that is not yet defined (no forward
references are allowed).

See also: EQU, GSET

EXAMPLE:

COUNT SET 0 ; INITIALIZE COUNT
158 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
STITLE
Initialize Program Sub-Title

STITLE [<string>]

The STITLE directive initializes the program subtitle to the string in the operand field. The
subtitle will be printed on the top of all succeeding pages until another STITLE directive is
encountered. The subtitle is initially blank. The STITLE directive will not be printed in the
source listing. An STITLE directive with no string argument will cause the current subtitle
to be blank.

A label is not allowed with this directive.

See also: TITLE

EXAMPLE:

STITLE 'COLLECT SAMPLES'
Freescale DSP Assembler Reference Manual 159

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
SYMOBJ
Write Symbol Information to Object File

SYMOBJ <symbol>[,<symbol>,...,<symbol>]

The SYMOBJ directive causes information for each <symbol> to be written to the object
file. This directive is recognized but currently performs no operation in COFF assemblers
(see Appendix D,).

A label is not allowed with this directive.

EXAMPLE:

SYMOBJ XSTART,HIRTN,ERRPROC
160 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
TABS
Set Listing Tab Stops

TABS <tabstops>

The TABS directive allows resetting the listing file tab stops from the default value of 8.

A label is not allowed with this directive.

See also: LSTCOL

EXAMPLE:

TABS 4 ; Set listing file tab stops to 4
Freescale DSP Assembler Reference Manual 161

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
TITLE
Initialize Program Title

TITLE [<string>]

The TITLE directive initializes the program title to the string in the operand field. The pro-
gram title will be printed on the top of all succeeding pages until another TITLE directive
is encountered. The title is initially blank. The TITLE directive will not be printed in the
source listing. A TITLE directive with no string argument will cause the current title to be
blank.

A label is not allowed with this directive.

See also: STITLE

EXAMPLE:

TITLE 'FIR FILTER'
162 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
UNDEF
Undefine DEFINE Symbol

UNDEF [<symbol>]

The UNDEF directive causes the substitution string associated with <symbol> to be re-
leased, and <symbol> will no longer represent a valid DEFINE substitution. See the DE-
FINE directive for more information.

A label is not allowed with this directive.

See also: DEFINE

EXAMPLE:

UNDEF DEBUG ; UNDEFINES THE DEBUG SUBSTITUTION STRING
Freescale DSP Assembler Reference Manual 163

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
WARN
Programmer Generated Warning

WARN [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The WARN directive will cause a warning message to be output by the assembler. The
total warning count will be incremented as with any other warning. The WARN directive
is normally used in conjunction with conditional assembly directives for exceptional con-
dition checking. The assembly proceeds normally after the warning has been printed. An
arbitrary number of strings and expressions, in any order but separated by commas with
no intervening white space, can be specified optionally to describe the nature of the gen-
erated warning.

A label is not allowed with this directive.

See also: FAIL, MSG

EXAMPLE:

WARN 'parameter too large'
164 DSP Assembler Reference Manual Freescale

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
XDEF
External Section Symbol Definition

XDEF <symbol>[,<symbol>,...,<symbol>]

The XDEF directive is used to specify that the list of symbols is defined within the current
section, and that those definitions should be accessible by sections with a corresponding
XREF directive. This directive is only valid if used within a program section bounded by
the SECTION and ENDSEC directives. The XDEF directive must appear before <sym-
bol> is defined in the section. If the symbols that appear in the operand field are not de-
fined in the section, an error will be generated.

A label is not allowed with this directive.

See also: SECTION, XREF

EXAMPLE:

SECTION IO
XDEF LOOPA ; LOOPA will be accessible by sections with XREF
.
.
.
ENDSEC
Freescale DSP Assembler Reference Manual 165

Chapter 6 Assembler Significant Characters and Directives - Assembler Directives
XREF
External Section Symbol Reference

XREF <symbol>[,<symbol>,...,<symbol>]

The XREF directive is used to specify that the list of symbols is referenced in the current
section, but is not defined within the current section. These symbols must either have
been defined outside of any section or declared as globally accessible within another sec-
tion using the XDEF directive. If the XREF directive is not used to specify that a symbol
is defined globally and the symbol is not defined within the current section, an error will be
generated, and all references within the current section to such a symbol will be flagged
as undefined. The XREF directive must appear before any reference to <symbol> in the
section.

A label is not allowed with this directive.

See also: SECTION, XDEF

EXAMPLE:

SECTION FILTER
XREF AA,CC,DD ; XDEFed symbols within section
.
.
.
ENDSEC
166 DSP Assembler Reference Manual Freescale

Chapter 7 Structured Control Statements

7.1 Introduction

An assembly language provides an instruction set for performing certain rudimentary op-
erations. These operations in turn may be combined into control structures such as loops
(FOR, REPEAT, WHILE) or conditional branches (IF-THEN, IF-THEN-ELSE). The as-
sembler, however, accepts formal, high-level directives that specify these control struc-
tures, generating the appropriate assembly language instructions for their efficient
implementation. This use of structured control statement directives improves the read-
ability of assembly language programs, without compromising the desirable aspects of
programming in an assembly language.

7.2 Structured Control Directives

The following directives are used for structured control. Note the leading period, which
distinguishes these keywords from other directives and mnemonics. Structured control
directives may be specified in either upper or lower case, but they must appear in the op-
code field of the instruction line (e.g. they must be preceded either by a label, a space,
or a tab).

.BREAK .ENDI .LOOP

.CONTINUE .ENDL .REPEAT

.ELSE .ENDW .UNTIL

.ENDF .FOR .WHILE
.IF

In addition, the following keywords are used in structured control statements:

AND DOWNTO TO
BY OR
DO THEN

Note that AND, DO, and OR are reserved assembler instruction mnemonics.
Freescale DSP Assembler Reference Manual 167

Chapter 7 Structured Control Statements - Syntax
7.3 Syntax

The formats for the .BREAK, .CONTINUE, .FOR, .IF, .LOOP, .REPEAT, and .WHILE
statements are given in sections 7.3.4 through 7.3.2. Syntactic variables used in the for-
mats are defined as follows:

<expression> A simple or compound expression (section 7.4).

<stmtlist> Zero or more assembler directives, structured control statements,
or executable instructions.

Note than an assembler directive (Chapter 6) occurring within a structured control
statement is examined exactly once -- at assembly time. Thus the presence of a
directive within a .FOR, .LOOP, .REPEAT, or .WHILE statement does not imply re-
peated occurrence of an assembler directive; nor does the presence of a directive
within an .IF-THEN-.ELSE structured control statement imply conditional assem-
bly.

<op1> A user-defined operand whose register/memory location holds
the .FOR loop counter. The effective address must use a memo-
ry alterable addressing mode (e.g. it cannot be an immediate val-
ue).

<op2> The initial value of the .FOR loop counter. The effective address
may be any mode, and may represent an arbitrary assembler ex-
pression (Chapter 3).

<op3> The terminating value of the .FOR loop counter. The effective ad-
dress may be any mode, and may represent an arbitrary assem-
bler expression (Chapter 3).

<op4> The step (increment/decrement) of the .FOR loop counter each
time through the loop. If not specified, it defaults to a value of #1.
The effective address may be any mode, and may represent an
arbitrary assembler expression (Chapter 3).

<cnt> The terminating value in a .LOOP statement. This can be any ar-
bitrary assembler expression (Chapter 3).

All structured control statements may be followed by normal assembler comments on the
same logical line.

7.3.1 .BREAK Statement

SYNTAX:

.BREAK
168 DSP Assembler Reference Manual Freescale

Chapter 7 Structured Control Statements - Syntax
FUNCTION:

The .BREAK statement causes an immediate exit from the innermost en-
closing loop construct (.WHILE, .REPEAT, .FOR, .LOOP).

NOTES:

A .BREAK statement does not exit an .IF-THEN-.ELSE construct. If a
.BREAK is encountered with no loop statement active, a warning is issued.

.BREAK should be used with care near .ENDL directives or near the end of
DO loops. It generates a jump instruction which is illegal in those contexts.

EXAMPLE:

.WHILE x:(r1)+ <GT> #0 ;loop until zero is found

.

.

.

.IF <cs>

.BREAK ;causes exit from WHILE loop

.ENDI

.

. ;any instructions here are skipped

.

.ENDW
;execution resumes here after .BREAK

7.3.2 .CONTINUE Statement

SYNTAX:

.CONTINUE

FUNCTION:

The .CONTINUE statement causes the next iteration of a looping construct
(.WHILE, .REPEAT, .FOR, .LOOP) to begin. This means that the loop ex-
pression or operand comparison is performed immediately, bypassing any
subsequent instructions.

NOTES:

If a .CONTINUE is encountered with no loop statement active, a warning is
issued.
Freescale DSP Assembler Reference Manual 169

Chapter 7 Structured Control Statements - Syntax
.CONTINUE should be used with care near .ENDL directives or near the
end of DO loops. It generates a jump instruction which is illegal in those
contexts.

One or more .CONTINUE directives inside a .LOOP construct will generate
a NOP instruction just before the loop address.

EXAMPLE:

.REPEAT

.

.

.

.IF <cs>

.CONTINUE ;causes immediate jump to .UNTIL

.ENDI

.

. ;any instructions here are skipped

.

.UNTIL x:(r1)+ <EQ> #0 ;evaluation here after .CONTINUE

7.3.3 .FOR Statement

SYNTAX:

.FOR <op1> = <op2> {TO | DOWNTO} <op3> [BY <op4>] [DO]

<stmtlist>

.ENDF

FUNCTION:

Initialize <op1> to <op2> and perform <stmtlist> until <op1> is greater (TO)
or less than (DOWNTO) <op3>. Makes use of a user-defined operand,
<op1>, to serve as a loop counter. .FOR-TO allows counting upward, while
.FOR-DOWNTO allows counting downward. The programmer may specify
an increment/decrement step size in <op4>, or elect the default step size of
#1 by omitting the BY clause. A .FOR-TO loop is not executed if <op2> is
greater than <op3> upon entry to the loop. Similarly, a .FOR-DOWNTO
loop is not executed if <op2> is less than <op3>.

NOTES:

<op1> must be a writable register or memory location. It is initialized at the
beginning of the loop, and updated at each pass through the loop. Any im-
mediate operands must be preceded by a pound sign (#). Memory refer-
170 DSP Assembler Reference Manual Freescale

Chapter 7 Structured Control Statements - Syntax
ences must be preceded by a memory space qualifier (X:, Y:, or P:). L
memory references are not allowed. Operands must be or refer to single-
word values.

The logic generated by the .FOR directive makes use of several DSP data
registers (see Appendix E). In fact, two data registers are used to hold the
step and target values, respectively, throughout the loop; they are never re-
loaded by the generated code. It is recommended that these registers not
be used within the body of the loop, or that they be saved and restored prior
to loop evaluation.

The DO keyword is optional.

EXAMPLE:

.FOR X:CNT = #0 TO Y:(targ*2)+114 ; loop on X:CNT

.

.

.

.ENDF

7.3.4 .IF Statement

SYNTAX:

.IF <expression> [THEN]
<stmtlist>
[.ELSE
<stmtlist>]
.ENDI

FUNCTION:

If <expression> is true, execute <stmtlist> following THEN (the keyword
THEN is optional); if <expression> is false, execute <stmtlist> following
.ELSE, if present; otherwise, advance to the instruction following .ENDI.
Freescale DSP Assembler Reference Manual 171

Chapter 7 Structured Control Statements - Syntax
NOTES:

In the case of nested .IF-THEN-.ELSE statements, each .ELSE refers to the
most recent .IF-THEN sequence.

EXAMPLE:

.IF <EQ> ; zero bit set?

.

.

.

.ENDI

7.3.5 .LOOP Statement

SYNAX:

.LOOP <cnt>
<stmtlist>
.ENDL

FUNCTION:

Execute <stmtlist> <cnt> times. This is similar to the .FOR loop construct,
except that the initial counter and step value are implied to be #1. It is ac-
tually a shorthand method for setting up a hardware DO loop on the DSP,
without having to worry about addressing modes or label placement.

NOTES:

Since the .LOOP statement generates instructions for a hardware DO loop,
the same restrictions apply as to the use of certain instructions near the end
of the loop, nesting restrictions, etc.

One or more .CONTINUE directives inside a .LOOP construct will generate
a NOP instruction just before the loop address.

EXAMPLE:

.LOOP LPCNT ; hardware loop LPCNT times

.

.

.

.ENDL
172 DSP Assembler Reference Manual Freescale

Chapter 7 Structured Control Statements - Syntax
7.3.6 .REPEAT Statement

SYNTAX:

.REPEAT
<stmtlist>
.UNTIL <expression>

FUNCTION:

<stmtlist> is executed repeatedly until <expression> is true. When expres-
sion becomes true, advance to the next instruction following .UNTIL.

NOTES:

The <stmtlist> is executed at least once, even if <expression> is true upon
entry to the .REPEAT loop.

EXAMPLE:

.REPEAT

.

.

.

.UNTIL x:(r1)+ <EQ> #0 ; loop until zero is found

7.3.7 .WHILE Statement

SYNTAX:

.WHILE <expression> [DO]

<stmtlist>

.ENDW

FUNCTION:

The <expression> is tested before execution of <stmtlist>. While <expres-
sion> remains true, <stmtlist> is executed repeatedly. When <expression>
evaluates false, advance to the instruction following the .ENDW statement.

NOTES:

If <expression> is false upon entry to the .WHILE loop, <stmtlist> is not ex-
ecuted; execution continues after the .ENDW directive.
Freescale DSP Assembler Reference Manual 173

Chapter 7 Structured Control Statements - Simple and Compound Expressions
The DO keyword is optional.

EXAMPLE:

.WHILE x:(r1)+ <GT> #0 ; loop until zero is found

.

.

.

.ENDW

7.4 Simple and Compound Expressions

Expressions are an integral part of .IF, .REPEAT, and .WHILE statements. Structured
control statement expressions should not be confused with the assembler expressions
discussed in Chapter 3. The latter are evaluated at assembly time and will be referred to
here as "assembler expressions"; they can serve as operands in structured control state-
ment expressions. The structured control statement expressions described below are
evaluated at run time and will be referred to in the following discussion simply as "expres-
sions".

A structured control statement expression may be simple or compound. A compound ex-
pression consists of two or more simple expressions joined by either AND or OR (but not
both in a single compound expression).

7.4.1 Simple Expressions

Simple expressions are concerned with the bits of the Condition Code Register (CCR).
These expressions are of two types. The first type merely tests conditions currently spec-
ified by the contents of the CCR (section 7.4.1.1). The second type sets up a comparison
of two operands to set the condition codes, and afterwards tests the codes (section
7.4.1.2).

7.4.1.1 Condition Code Expressions

A variety of tests (identical to those in the Jcc instruction) may be performed, based on
the CCR condition codes. The condition codes, in this case, are preset by either a user-
generated instruction or a structured operand-comparison expression (section 7.4.1.2).
Each test is expressed in the structured control statement by a mnemonic enclosed in an-
gle brackets; the mnemonics are described in Appendix E, Condition Code Mnemonics.
174 DSP Assembler Reference Manual Freescale

Chapter 7 Structured Control Statements - Simple and Compound Expressions
When processed by the assembler, the expression generates an inverse conditional jump
to beyond the matching .ENDx/.UNTIL directive. For example:

.IF <EQ> ;zero bit set?
+ bne Z_L00002 ;code generated by assembler

CLR D1 ;user code
.ENDI

+ Z_L00002 ;assembler-generated label
.REPEAT ;subtract until D0 < D7

+ Z_L00034 ;assembler-generated label
SUB D7,D0 ;user code
.UNTIL <LT>

+ bge Z_L00034 ;code generated by assembler

7.4.1.2 Operand Comparison Expressions

Two operands may be compared in a simple expression, with subsequent transfer of con-
trol based on that comparison. Such a comparison takes the form:

<op1> <cc> <op2>

where <cc> is a condition mnemonic enclosed in angle brackets (as described in section
7.4.1.1), and <op1> and <op2> are register or memory references, symbols, or assembler
expressions. When processed by the assembler, the operands are arranged such that a
compare/jump sequence of the following form always results:

CMP <reg1>,<reg2>
(J|B)cc <label>

where the jump conditional is the inverse of <cc>. Ordinarily <op1> is moved to the
<reg1> data register and <op2> is moved to the <reg2> data register prior to the compare.
This is not always the case, however: if <op1> happens to be <reg2> and <op2> is
<reg1>, an intermediate register is used as a scratch register. In any event, worst case
code generation for a given operand comparison expression is generally two moves, a
compare, and a conditional jump.

Jumps or branches generated by structured control statements are forced long because
the number and address of intervening instructions between a control statement and its
termination are not known by the assembler. The programmer may circumvent this be-
havior by use of the SCSJMP directive (see Chapter 6).

Any immediate operands must be preceded by a pound sign (#). Memory references
must be preceded by a memory space qualifier (X:, Y:, or P:). L memory references are
not allowed. Operands must be or refer to single-word values.
Freescale DSP Assembler Reference Manual 175

Chapter 7 Structured Control Statements - Statement Formatting
Note that values in the <reg1> and <reg2> data registers are not saved before expression
evaluation. This means that any user data in those registers will be overwritten each time
the expression is evaluated at runtime. The programmer should take care either to save
needed contents of the registers, reassign data registers using the SCSREG directive, or
not use them at all in the body of the particular structured construct being executed. The
data registers used by the structured control statements are listed in Appendix E.

7.4.2 Compound Expressions

A compound expression consists of two or more simple expressions (section 7.4.1) joined
by a logical operator (AND or OR). The boolean value of the compound expression is de-
termined by the boolean values of the simple expressions and the nature of the logical
operator. Note that the result of mixing logical operators in a compound expression is un-
defined:

.IF X1 <GT> B AND <LS> AND R1 <NE> R2 ;this is OK

.IF X1 <LE> B AND <LC> OR R5 <GT> R6 ;undefined

The simple expressions are evaluated left to right. Note that this means the result of one
simple expression could have an impact on the result of subsequent simple expressions,
because of the condition code settings stemming from the assembler-generated com-
pare.

If the compound expression is an AND expression and one of the simple expressions is
found to be false, any further simple expressions are not evaluated. Likewise, if the com-
pound expression is an OR expression and one of the simple expressions is found to be
true, any further simple expressions are not evaluated. In these cases, the compound ex-
pression is either false or true, respectively, and the condition codes reflect the result of
the last simple expression evaluated.

7.5 Statement Formatting

The format of structured control statements differs somewhat from normal assembler us-
age. Whereas a standard assembler line is split into fields separated by blanks or tabs,
with no white space inside the fields, structured control statement formats vary depending
on the statement being analyzed. In general, all structured control directives are placed
in the opcode field (with an optional label in the label field) and white space separates all
distinct fields in the statement. Any structured control statement may be followed by a
comment on the same logical line.

7.5.1 Expression Formatting

Given an expression of the form:

<op1> <LT> <op2> OR <op3> <GE> <op4>
176 DSP Assembler Reference Manual Freescale

Chapter 7 Structured Control Statements - Effects on the Programmer’s Environment
there must be white space (blank, tab) between all operands and their associated opera-
tors, including boolean operators in compound expressions. Moreover, there must be
white space between the structured control directive and the expression, and between the
expression and any optional directive modifier (THEN, DO). An assembler expression
(Chapter 3) used as an operand in a structured control statement expression must not
have white space in it, since it is parsed by the standard assembler evaluation routines:

.IF #@CVI(@SQT(4.0)) <GT> #2 ; no white space in first operand

7.5.2 .FOR/.LOOP Formatting

The .FOR and .LOOP directives represent special cases. The .FOR structured control
statement consists of several fields:

.FOR <op1> = <op2> TO <op3> BY <op4> DO

There must be white space between all operands and other syntactic entities such as =,
TO, BY, and DO. As with expression formatting, an assembler expression used as an
operand must not have white space in it:

.FOR X:CNT = #0 TO Y:(targ*2)+1 BY #@CVI(@POW(2.0,@CVF(R)))

In the example above, the .FOR loop operands represented as assembler expressions
(symbol, function) do not have embedded white space, whereas the loop operands are
always separated from structured control statement keywords by white space.

The count field of a .LOOP statement must be separated from the .LOOP directive by
white space. The count itself may be any arbitrary assembler expression, and therefore
must not contain embedded blanks.

7.5.3 Assembly Listing Format

Structured control statements begin with the directive in the opcode field; any optional la-
bel is output in the label field. The rest of the statement is left as is in the operand field,
except for any trailing comment; the X and Y data movement fields are ignored. Com-
ments following the statement are output in the comment field (unless the unreported
comment delimiter is used; see Chapter 6).

Statements are expanded using the macro facilities of the assembler. Thus the generated
code can be sent to the listing by specifying the MEX assembler option, either via the OPT
directive (Chapter 6) or the -O command line option (Chapter 1).

7.6 Effects on the Programmer’s Environment

During assembly, global labels beginning with "Z_L" are generated. They are stored in the
symbol table and should not be duplicated in user-defined labels. Because these non-lo-
cal labels ordinarily are not visible to the programmer there can be problems when local
Freescale DSP Assembler Reference Manual 177

Chapter 7 Structured Control Statements - Effects on the Programmer’s Environment
(underscore) labels are interspersed among structured control statements. The SCL op-
tion (see the OPT directive, Chapter 6) causes the assembler to maintain the current local
label scope when a structured control statement label is encountered.

In the .FOR loop, <op1> is a user-defined symbol. When exiting the loop, the memory/
register assigned to this symbol contains the value which caused the exit from the loop.

A compare instruction is produced by the assembler whenever two operands are tested
in a structured statement. At runtime, these assembler-generated instructions set the
condition codes of the CCR (in the case of a loop, the condition codes are set repeatedly).
Any user-written code either within or following a structured statement that references
CCR directly (move) or indirectly (conditional jump/transfer) should be attentive to the ef-
fect of these instructions.

Jumps or branches generated by structured control statements are forced long because
the number and address of intervening instructions between a control statement and its
termination are not known by the assembler. The programmer may circumvent this be-
havior by use of the SCSJMP directive (see Chapter 6).

In all structured control statements except those using only a single condition code ex-
pression, registers are used to set up the required counters and comparands. In some
cases, these registers are effectively reserved; the .FOR loop uses two data registers to
hold the step and target values, respectively, and performs no save/restore operations on
these registers. The assembler, in fact, does no save/restore processing in any structured
control operation; it simply moves the operands into appropriate registers to execute the
compare. See Appendix E for a list of registers used by the assembler in support of struc-
tured control statements on a particular processor. The SCSREG directive (Chapter 6)
may be used to reassign structured control statement registers. The MEX assembler op-
tion (see the OPT directive, Chapter 6) may be used to send the assembler-generated
code to the listing file for examination of possible register use conflicts.
178 DSP Assembler Reference Manual Freescale

Appendix A ASCII Character Codes

Decimal Hex ASCII Decimal Hex ASCII

0 00 NUL 64 40 @
1 01 SOH 65 41 A
2 02 STX 66 42 B
3 03 ETX 67 43 C
4 04 EOT 68 44 D
5 05 ENQ 69 45 E
6 06 ACK 70 46 F
7 07 BEL 71 47 G
8 08 BS 72 48 H
9 09 HT 73 49 I
10 0A LF 74 4A J
11 0B VT 75 4B K
12 0C FF 76 4C L
13 0D CR 77 4D M
14 0E S0 78 4E N
15 0F S1 79 4F O
16 10 DLW 80 50 P
17 11 DC1 81 51 Q
18 12 DC2 82 52 R
19 13 DC3 83 53 S
20 14 DC4 84 54 T
21 15 NAK 85 55 U
22 16 SYN 86 56 V
23 17 ETB 87 57 W
24 18 CAN 88 58 X
25 19 EM 89 59 Y
26 1A SUB 90 5A Z
27 1B ESC 91 5B [
28 1C FS 92 5C \
29 1D GS 93 5D]
30 1E RS 94 5E ^
31 1F US 95 5F _
32 20 SP 96 60 ‘
33 21 ! 97 61 a
34 22 " 98 62 b
35 23 # 99 63 c
Freescale DSP Assembler Reference Manual 179

Appendix A ASCII Character Codes -
Decimal Hex ASCII Decimal Hex ASCII

36 24 $ 100 64 d
37 25 % 101 65 e
38 26 & 102 66 f
39 27 ’ 103 67 g
40 28 (104 68 h
41 29) 105 69 i
42 2A * 106 6A j
43 2B + 107 6B k
44 2C , 108 6C l
45 2D - 109 6D m
46 2E . 110 6E n
47 2F / 111 6F o
48 30 0 112 70 p
49 31 1 113 71 q
50 32 2 114 72 r
51 33 3 115 73 s
52 34 4 116 74 t
53 35 5 117 75 u
54 36 6 118 76 v
55 37 7 119 77 w
56 38 8 120 78 x
57 39 9 121 79 y
58 3A : 122 7A z
59 3B ; 123 7B {
60 3C < 124 7C |
61 3D = 125 7D }
62 3E > 126 7E ~
63 3F ? 127 7F DEL
180 DSP Assembler Reference Manual Freescale

Appendix B Directive Summary

Assembler directives can be grouped by function into seven types:

1. Assembly control
2. Symbol definition
3. Data definition/storage allocation
4. Listing control and options
5. Object file control
6. Macros and conditional assembly
7. Structured programming

B.1 Assembly Control

The directives used for assembly control are:

COMMENT - Start comment lines
DEFINE - Define substitution string
END - End of source program
FAIL - Programmer generated error message
FORCE - Set operand forcing mode
HIMEM - Set high memory bounds
INCLUDE - Include secondary file
LOMEM - Set low memory bounds
MODE - Change relocation mode
MSG - Programmer generated message
ORG - Initialize memory space and location counters
RADIX - Change input radix for constants
RDIRECT - Remove directive or mnemonic from table
SCSJMP - Set structured control branching mode
SCSREG - Reassign structured control statement registers
UNDEF - Undefine DEFINE symbol
WARN - Programmer generated warning
Freescale DSP Assembler Reference Manual 181

Appendix B Directive Summary - Symbol Definition
B.2 Symbol Definition

The directives used to control symbol definition are:

ENDSEC - End section
EQU - Equate symbol to a value
GLOBAL - Global section symbol declaration
GSET - Set global symbol to a value
LOCAL - Local section symbol declaration
SECTION - Start section
SET - Set symbol to a value
XDEF - External section symbol definition
XREF - External section symbol reference

B.3 Data Definition/Storage Allocation

The directives used to control constant data definition and storage allocation are:

BADDR - Set buffer address
BSB - Block storage bit-reverse
BSC - Block storage of constant
BSM - Block storage modulo
BUFFER - Start buffer
DC - Define constant
DCB - Define constant byte
DS - Define storage
DSM - Define modulo storage
DSR - Define reverse carry storage
ENDBUF - End buffer

B.4 Listing Control and Options

The directives used to control the output listing are:

LIST - List the assembly
LSTCOL - Set listing field widths
NOLIST - Stop assembly listing
OPT - Assembler options
PAGE - Top of page/size page
PRCTL - Send control string to printer
STITLE - Initialize program subtitle
TABS - Set listing tab stops
TITLE - Initialize program title
182 DSP Assembler Reference Manual Freescale

Appendix B Directive Summary - Object File Control
B.5 Object File Control

The directives used for control of the object file are:

COBJ - Comment object code
IDENT - Object code identification record
SYMOBJ - Write symbol information to object file

B.6 Macros and Conditional Assembly

The directives used for macros and conditional assembly are:

DUP - Duplicate sequence of source lines
DUPA - Duplicate sequence with arguments
DUPC - Duplicate sequence with characters
DUPF - Duplicate sequence in loop
ENDIF - End of conditional assembly
ENDM - End of macro definition
EXITM - Exit macro
IF - Conditional assembly directive
MACLIB - Macro library
MACRO - Macro definition
PMACRO - Purge macro definition

B.7 Structured Programming

The directives used for structured programming are:

.BREAK - Exit from structured loop construct

.CONTINUE - Continue next iteration of structured loop

.ELSE - Perform following statements when .IF false

.ENDF - End of .FOR loop

.ENDI - End of .IF condition

.ENDL - End of hardware loop

.ENDW - End of .WHILE loop

.FOR - Begin .FOR loop

.IF - Begin .IF condition

.LOOP - Begin hardware loop

.REPEAT - Begin .REPEAT loop

.UNTIL - End of .REPEAT loop

.WHILE - Begin .WHILE loop
Freescale DSP Assembler Reference Manual 183

Appendix B Directive Summary - Structured Programming
184 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages

C.1 Introduction

Assembler messages are grouped into four categories:

Command Line Errors

These errors indicate invalid command line options, missing filenames, file open
errors, or other invocation errors. Command line errors generally cause the as-
sembler to stop processing.

Warnings

Warnings notify the programmer of suspect constructs but do not otherwise affect
the object file output.

Errors

These errors indicate problems with syntax, addressing modes, or usage. In these
cases the resulting object code is generally not valid.

Fatal

Fatal errors signify serious problems encountered during the assembly process
such as lack of memory, file not found, or other internal errors. The assembler
halts immediately.

The assembler also will provide information on the source field location of the error, if it
can be ascertained. If a listing file is produced, messages ordinarily will appear immedi-
ately before the line containing the error. One exception is when the relationship between
the first and last instructions in a DO loop produces an error. In this case the error text
will appear after the last instruction at the end of the loop. Messages are always routed
to standard output.
Freescale DSP Assembler Reference Manual 185

Appendix C Assembler Messages - Command Line Errors
C.2 Command Line Errors

Cannot open command file
Cannot open listing file
Cannot open object file

The file associated with a -F, -L, or -B command line option was not found.

Cannot open source file

The assembly source input file was not found.

Duplicate listing file specified - ignored
Duplicate object file specified - ignored

The -L and -B command line options were encountered more than once on the
command line. Only the first occurrence of each option is used. The assembler
continues processing.

Illegal command line -D option argument

The symbol name given in a -D command line option is invalid (possibly too long
or does not begin with an alphabetic character), or the substitution string is not en-
closed in single quotes.

Illegal command line -I option argument

A problem occurred when attempting to save the include file path string.

Illegal command line -M option argument

A problem occurred when attempting to save the MACLIB file path string.

Illegal command line -P option argument

The string provided as the processor type is not valid.

Illegal command line -R option argument

The string provided as the revision level is not valid.

Illegal command line option

The option specified on the command line was not recognized by the assembler.

Interrupted

The assembler was interrupted by a keyboard break (Control-C).
186 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Command Line Errors
LDB option with no listing file specified; using source file

The LDB option was given on the command line without a corresponding -L to gen-
erate a listing file. If a listing file is not produced, debugging packages cannot use
it for source tracking. Therefore the assembler uses the default assembly language
file as input for source tracking.

Missing command line option argument

The expected arguments following a command line option specifier were missing.

Missing source filename

There must be at least one source filename specified on the command line.

Source file name same as listing file name
Source file name same as object file name

One of the source files appeared to the assembler to have the same name as the
specified listing or object file. The assembler aborts rather than potentially writing
over a source input file.
Freescale DSP Assembler Reference Manual 187

Appendix C Assembler Messages - Warnings
C.3 Warnings

Absolute address involves incompatible memory spaces

The memory space attribute is regarded by the assembler as a type, in the same
sense that high level languages use type for variables. Symbols may have memory
space attributes of X, Y, L, P(rogram), or N(one); only N is fully compatible with all
other attributes. In this case, an operand was evaluated with a different memory
space attribute than that specified in the instruction.

Absolute address too large to use I/O short - long substituted

The absolute address is not within the range specifying an I/O short address, even
though the I/O short forcing operator has been used. The assembler substitutes
long absolute addressing.

Absolute address too large to use short - long substituted

The absolute address value being forced short will not fit in the storage allocated
for a short address. The assembler substitutes long absolute addressing.

Absolute address too small to use I/O short - long substituted

The absolute address is not within the range specifying an I/O short address, even
though the I/O short forcing operator has been used. The assembler substitutes
long absolute addressing.

Address involves incompatible memory spaces

The memory space attribute is regarded by the assembler as a type, in the same
sense that high level languages use type for variables. Symbols may have memory
space attributes of X, Y, L, P(rogram), or N(one); only N is fully compatible with all
other attributes. In this case, an operand was evaluated with a different memory
space attribute than that specified in the instruction.

Cannot force short addressing for source and destination

In a MOVEP or MOVES instruction an attempt was made to force both operands
to short or I/O short. The second operand defaults to long.

Cannot force short immediate with this parallel move

The immediate operand in the X field of a parallel X memory and register move
cannot be forced short. The mode is changed to long immediate.

Contents of assigned register in previous instruction not available -
generating NOP instruction

Due to pipelining, if an address register (Rn or Nn) is changed in the previous in-
struction, the new contents are not available for use as a pointer until the next in-
struction. If the RP option is in effect (see the OPT directive, Chapter 6) the
188 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Warnings
assembler produces this warning and generates a NOP prior to the offending in-
struction.

Debug directives ignored - use command line debug option

A source-level debug directive was encountered but the assembler command line
-G option was not given.

Destination operand assumed I/O short

Neither operand in a MOVEP instruction is explicitly declared I/O short; however,
the source operand does not qualify, so the destination operand is assumed to be
the I/O short operand.

Directive not allowed in command line absolute mode

The MODE directive is ignored when the assembler command line -A option is ac-
tive.

Duplicate listing file specified - ignored
Duplicate object file specified - ignored

The -B or -L command line options were given more than once.

ENDDO instruction not inside DO loop

An ENDDO instruction was found outside the scope of an active DO loop.

Explicit bottom margin ignored with page length of zero
Explicit top margin ignored with page length of zero

The top or bottom margin parameters to a PAGE directive are ignored because the
page length parameter was zero.

Expression involves incompatible memory spaces

The memory space attribute is regarded by the assembler as a type, in the same
sense that high level languages use type for variables. Symbols may have memory
space attributes of X, Y, L, P(rogram), or N(one); only N is fully compatible with all
other attributes. In this case, two operands were evaluated with different memory
space attributes, neither of which was N.

Expression value outside fractional domain

The expected fractional value was not within the range -1.0 <= m < 1.

Extra dimensions ignored

A source-level debug .DIM directive contained more than four arguments specify-
ing the dimensions of an array.
Freescale DSP Assembler Reference Manual 189

Appendix C Assembler Messages - Warnings
FMPY suffix ignored - using secondary opcode suffix

The single or extended precision suffix on a dual-opcode instruction has been ig-
nored. The precision is taken from the suffix on the secondary opcode.

Immediate value too large to use short - long substituted

An immediate data value being forced short is too large to fit in the space allocated
for a short immediate value. The assembler substitutes long immediate address-
ing.

Improper nesting of DO loops

The end address of a subordinate (nested) DO loop is greater than or equal to the
end address of the loop enclosing it. The end address of a nested DO instruction
must be less than the end address of the enclosing loop.

Instruction cannot appear in interrupt vector locations

Some instructions cannot be used reliably as interrupt code. These instructions in-
clude RTI, RTS, DO, and ENDDO.

Instruction does not allow data movement specified - using MOVE encoding
Instruction does not allow data movement specified - using MOVEP encoding
Instruction does not allow data movement specified - using MOVES encoding

An inappropriate MOVE-type instruction was written given the type of the oper-
ands. The assembler substitutes a valid encoding for the operands in question.

Invalid destination register for this instruction - using TFR3 encoding

The destination register for a TFR2 instruction was not either X or Y.

Invalid interrupt vector address - using SWI address

Currently only the SWI address is supported by the TRAPcc instruction.

I/O short absolute address cannot be forced

I/O short absolute addressing is not valid for this operation. An appropriate ad-
dressing mode (long absolute, short jump, short absolute) is substituted.

I/O short absolute address cannot be forced - long substituted

I/O short absolute addressing is not valid for this operation. The assembler substi-
tutes long absolute addressing.

I/O short address cannot be forced

I/O short addressing is not valid for this operation. An appropriate addressing
mode (long, short, short jump) is substituted.
190 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Warnings
I/O short address cannot be forced - long substituted

I/O short addressing is not valid for this operation. The assembler substitutes long
addressing.

Label field ignored

The assembler directive does not allow a label, so the assembler will not store the
label value in the symbol table.

Load location counter overflow
Load location counter underflow

The load location counter exceeded its maximum or minimum value. The assem-
bler wraps the counter value around and continues.

Load origin involves incompatible memory spaces

The memory space attribute is regarded by the assembler as a type, in the same
sense that high level languages use type for variables. Symbols may have memory
space attributes of X, Y, L, P(rogram), or N(one); only N is fully compatible with all
other attributes. In this case, an operand was evaluated with a different memory
space attribute than that specified in the directive.

Load reserved address space violation

The load location counter has incremented into a reserved area of data address
space.

Long absolute address cannot be forced

Long absolute addressing is not valid for this operation. An appropriate addressing
mode (I/O absolute, short jump, short absolute) is substituted.

Long absolute address cannot be forced - substituting I/O short addressing

Long absolute addressing is not valid for this operation. The assembler substitutes
I/O short addressing.

Long absolute address cannot be forced - substituting short addressing

Long absolute addressing is not valid for this operation. The assembler substitutes
short absolute addressing.

Long immediate cannot be forced

Long immediate data is not valid for this operation. An appropriate size for the tar-
get DSP is substituted.
Freescale DSP Assembler Reference Manual 191

Appendix C Assembler Messages - Warnings
Long PC-relative address cannot be forced

Long PC-relative addressing is not valid for this operation. An appropriate ad-
dressing mode (short PC-relative) is substituted.

Macro expansion not active

A macro must have been called prior to using the @ARG() or @CNT() functions
(see Chapter 3).

Macro name is the same as existing assembler directive
Macro name is the same as existing assembler mnemonic

The name of the macro being defined conflicts with the name of an assembler di-
rective or mnemonic. Either use a different macro name or use the RDIRECT di-
rective to remove the directive or mnemonic name from the assembler lookup
tables.

No control registers accessed - using MOVE encoding

A MOVEC-type instruction was given but no control registers were used as oper-
ands. The assembler substitutes a valid encoding for the operands in question.

No looping construct found - .BREAK ignored
No looping construct found - .CONTINUE ignored

A .BREAK or .CONTINUE structure control statement was encountered outside of
any active looping construct (.FOR, .LOOP, .REPEAT, .WHILE).

Number of macro expansion arguments is greater than definition
Number of macro expansion arguments is less than definition

A discrepancy exists between the number of arguments specified in a macro defi-
nition and the number of arguments provided in the macro call.

Options for both debug and strip specified - strip ignored

Both the -G and -Z options were given on the command line. The -G option takes
precedence.

P space not accessed - using MOVE encoding

A MOVEP-type instruction was given but a P memory reference was not used as
an operand. The assembler substitutes a valid encoding for the operands in ques-
tion.

Page directive with no arguments ignored with page length of zero

A PAGE directive with no arguments, which ordinarily produces a form feed in the
listing output, is ignored because a previous PAGE directive specified a page
length of zero.
192 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Warnings
PC-relative address involves incompatible memory spaces

The memory space attribute is regarded by the assembler as a type, in the same
sense that high level languages use type for variables. Symbols may have memory
space attributes of X, Y, L, P(rogram), or N(one); only N is fully compatible with all
other attributes. In this case, an operand was evaluated with a different memory
space attribute than that specified in the instruction.

PC-relative address too large to use short - long substituted

The PC-relative offset is not within the range specifying a short PC-relative offset,
even though the short forcing operator has been used. The assembler substitutes
long PC-relative addressing.

Post-update operation will not occur on destination register

If the source operand in a MOVE operation specifies a post-update addressing
mode and the destination register is the same as the source operand register then
the post-update operation will not take place.

PRCTL directive ignored - no explicit listing file

The PRCTL directive takes effect only if the -L option is used on the command line
to explicitly specify a listing file.

Redefinition of symbol

A symbol used in a DEFINE directive has been redefined without an intervening
UNDEF directive. The assembler discards the previous definition and replaces it
with the new definition.

Rounding not available with LMS move - using MAC/MPY encoding

A MACR or MPYR instruction was specified in conjunction with LMS move syntax.

Runtime location counter overflow
Runtime location counter underflow

The runtime location counter exceeded its maximum or minimum value. The as-
sembler wraps the counter value around and continues.

Runtime origin involves incompatible memory spaces

The memory space attribute is regarded by the assembler as a type, in the same
sense that high level languages use type for variables. Symbols may have memory
space attributes of X, Y, L, P(rogram), or N(one); only N is fully compatible with all
other attributes. In this case, an operand was evaluated with a different memory
space attribute than that specified in the directive.
Freescale DSP Assembler Reference Manual 193

Appendix C Assembler Messages - Warnings
Runtime reserved address space violation

The runtime location counter has incremented into a reserved area of data address
space.

Short absolute address cannot be forced

Short absolute addressing is not valid for this operation. An appropriate addressing
mode (long absolute) is substituted.

Short absolute address cannot be forced - long substituted

Short absolute addressing is not valid for this operation. The assembler substitutes
long absolute addressing.

Short immediate cannot be forced

Short immediate data is not valid for this operation. An appropriate size is substi-
tuted.

Short PC-relative address cannot be forced

Short PC-relative addressing is not valid for this operation. An appropriate ad-
dressing mode (long PC-relative) is substituted.

Signed operand must come first in signed/unsigned combinations

In a MPYSU, MACSU, or DMACSU instruction, the signed operand must come first
in the operand ordering.

Source operand assumed I/O short

Neither operand in a MOVEP instruction is explicitly declared I/O short; however,
the destination operand does not qualify, so the source operand is assumed to be
the I/O short operand.

Storage block size not a power of 2

The expression in a DSR directive did not evaluate to a power of 2. Since the DSR
directive is generally used to allocate FFT buffers for reverse carry operations, the
size of the buffer may be in error.

String truncated in expression evaluation

Only the first four characters of a string constant are used during expression eval-
uation except for arguments to the DC directive (see Chapter 6).

Strip not valid in relocatable mode - ignored

The -Z option is valid only when the -A option is also given.
194 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Warnings
Unresolved external reference

Ordinarily the assembler does not flag unresolved references in relative mode, as-
suming they will be resolved at link time. If the UR option is specified, the assem-
bler will generate this warning if any symbols are undefined during the second
pass.
Freescale DSP Assembler Reference Manual 195

Appendix C Assembler Messages - Errors
C.4 Errors

Absolute address contains forward reference - force short or I/O short address

The assembler attempted a default to short addressing which failed. Either the ab-
solute address is too large or it needs to be forced I/O short.

Absolute address must be either short or I/O short

The absolute address is too large for a short address and outside the range of valid
I/O short addresses.

Absolute address too large to use I/O short
Absolute address too small to use I/O short

The absolute address being forced short is outside the range of valid I/O short ad-
dresses. This usually means that the I/O short address has not been ones extend-
ed.

Absolute address too large to use short

The absolute address value is too large to be forced short.

Absolute addressing mode not allowed

Absolute operands are not allowed with some instructions, in particular parallel XY
data memory moves.

Address mode syntax error - expected ')'
Address mode syntax error - expected '+'
Address mode syntax error - expected '+' or '-'
Address mode syntax error - expected comma
Address mode syntax error - expected comma or end of field
Address mode syntax error - expected offset register
Address mode syntax error - extra characters
Address mode syntax error - probably missing ')'

A syntax error was detected when scanning the source line operand and/or X and
Y data fields. These errors may indicate omission of a source operand, insufficient
white space between fields, or improper specification of address register indirect
addressing modes.

Argument outside function domain

An argument to one of the transcendental built-in functions was inappropriate.

Arithmetic exception

An internal floating point exception occurred while evaluating an expression. The
result of the evaluation is probably not valid.
196 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Assembler directive or mnemonic not found

An argument to the RDIRECT directive was not a recognized assembler directive
or mnemonic.

Base argument larger than machine word size

The base parameter of a @FLD() function has a value larger than can fit in the tar-
get machine word.

Binary constant expected

A character other than ASCII '0' or '1' either followed the binary constant delimiter
(%) or appeared in an expression where a binary value was expected by default.

Bit mask cannot span more than eight bits

If the first operand of a BFxxx-type instruction was shifted one bit to the right until
the low-order bit was a 1, the resulting value must not exceed $FF hexadecimal.

Cannot conditionally repeat write to memory

A move to memory cannot be preceded by a REPcc-type instruction.

Cannot nest section inside itself

A section of a given name may not have another SECTION directive with the same
name declared inside it.

Cannot nest symbol definitions

A source-level debug .DEF directive was encountered inside another .DEF-.EN-
DEF pair.

Cannot open include file

The specified INCLUDE file cannot be found, or the operating system limit on open
files has been exceeded.

Cannot repeat this instruction
Cannot repeat two-word instruction

The REP instruction cannot be used to repeat two-word instructions or instructions
that change program flow. Instructions that cannot be repeated include DO, Jcc,
JCLR, JMP, JSET, JScc, JSCLR, JSR, JSSET, REP, RTI, RTS, and SWI.

CONST option must be used before any label

This option, which prevents EQU symbols from being exported to the object file,
must be given before any label is encountered in the source file.
Freescale DSP Assembler Reference Manual 197

Appendix C Assembler Messages - Errors
Contents of assigned register in previous instruction not available

Due to pipelining, if an address register (Rn or Nn) is changed in the previous in-
struction, the new contents are not available for use as a pointer until the next in-
struction.

Count must be an integer value

The argument to a DUP directive did not evaluate as an integer expression.

CRE option must be used before any label

The CRE option must be activated before any labels are encountered so that the
assembler can append cross-reference data to all applicable symbol table entries.

Data allocation exceeds buffer size

Data allocated between a BUFFER-ENDBUF sequence exceeded the size speci-
fied in the BUFFER directive.

Decimal constant expected

A character other than ASCII '0' through '9' either followed the decimal constant de-
limiter (‘) or appeared in an expression where a decimal value was expected by de-
fault.

DEFINE symbol must be a global symbol name

A local label (a symbol beginning with the underscore character) may not be used
as a DEFINE directive symbol.

Displacement address mode not allowed

Long displacement addressing is not allowed with some instructions, in particular
parallel XY data memory moves.

Divide by zero

The expression evaluator detected a divide by zero.

DO loop address must be in current section

The loop address of a DO loop cannot fall outside the bounds of its enclosing sec-
tion. This is particularly important in relative mode as the loop address is calculat-
ed based on the starting address of the section.

Dummy argument not found

The dummy argument name given as an argument to the @ARG() function was
not found in the macro dummy argument list.
198 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Duplicate destination register not allowed

If the opcode-operand portion of an instruction specifies a destination register, the
same register or portion of that register may not be specified as a destination in the
parallel data bus move operation.

Duplicate source and destination register not allowed

If the opcode-operand portion of an instruction specifies a source register, the
same register or portion of that register may not be specified as a destination in the
parallel data bus move operation.

Either source or destination memory space must be X or Y

One of the operands in a MOVEP instruction must reference a location in X or Y
memory.

ELSE without associated IF directive

An ELSE directive was encountered without a preceding IF conditional assembly
directive.

.ELSE without associated .IF directive

An .ELSE directive was encountered before a matching .IF conditional structured
control statement.

Empty bit mask field

The first operand of a BFxxx-type instruction was zero.

End of structure or union without matching definition

A source-level debug end-of-structure symbol declaration was recognized without
a preceding structure or union definition.

ENDBUF without associated BUFFER directive

An ENDBUF directive was encountered without a preceding BUFFER directive.

.ENDEF without associated .DEF directive

A source-level debug .ENDEF directive was encountered without a preceding
.DEF directive.

.ENDF without associated .FOR directive

.ENDI without associated .IF directive

An end-of-conditional or end-of-loop directive was encountered before a matching
conditional or loop structured control statement.
Freescale DSP Assembler Reference Manual 199

Appendix C Assembler Messages - Errors
ENDIF without associated IF directive

An ENDIF directive was encountered without a preceding IF conditional assembly
directive.

.ENDL without associated .LOOP directive

An end-of-loop directive was encountered before a matching loop structured con-
trol statement.

ENDM without associated MACRO directive

An ENDM directive was encountered without a preceding MACRO directive.

ENDSEC without associated SECTION directive

An ENDSEC directive was encountered without a preceding SECTION directive.

.ENDW without associated .WHILE directive

An end-of-loop directive was encountered before a matching loop structured con-
trol statement.

EQU requires label

The EQU directive must have a label to associate with the equated expression.

EXITM without associated MACRO directive

An EXITM directive was encountered without a preceding MACRO directive.

Expression cannot have a negative value

Some directives do not allow negative expression arguments, as for example in the
PAGE directive controls.

Expression contains forward references

Some directives do not allow expression arguments which have not yet been de-
fined in the source, as for example in the IF, EQU, or SET directives.

Expression involves incompatible memory spaces

The memory space attribute is regarded by the assembler as a type, in the same
sense that high level languages use type for variables. Symbols may have memory
space attributes of X, Y, L, P(rogram), or N(one); only N is fully compatible with all
other attributes. In this case, two operands were evaluated with different memory
space attributes, neither of which was N.

Expression must be greater than zero

Some directives require a nonzero argument, as for example in the BSC directive.
200 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Expression result must be absolute

Certain directives and some assembler usage require absolute values as argu-
ments or operands.

Expression result must be integer

Certain directives and some assembler usage require integer values as arguments
or operands.

Expression result too large

The expression evaluated to a value greater than the acceptable range. This error
can occur when an expression result exceeds the native word size of the target
DSP.

External reference not allowed in expression

References to external symbols (e.g. symbols not defined in the current assembly
source input) are not allowed in some types of byte or integer expressions.

External reference not allowed in function

References to external symbols (e.g. symbols not defined in the current assembly
source input) are not allowed as direct or indirect arguments to any built-in function.

Extra characters beyond expression

The expression evaluator found extra characters after the end of a valid expres-
sion. Unbalanced parentheses can cause this error.

Extra characters following string

An end-of-string delimiter was followed by unexpected characters on the source
line.

Extra characters following symbol name

A non-alphanumeric character other than the underscore (_) was encountered in a
symbol name.

Extra characters in function argument or missing ')' for function

Mismatched parentheses or wrong number of parameters in a function invocation.

Extra characters in operand field

The PAGE directive contains too many operands.

Extra fields ignored

There were extra fields specified in an assembler directive.
Freescale DSP Assembler Reference Manual 201

Appendix C Assembler Messages - Errors
First data move destination accumulator same as operand destination accumulator

The destination of the data move field is the same as the Data ALU destination.

First data move field required with this instruction

A TFR3 instruction requires a register and a data move operand field.

First data move source accumulator same as operand destination accumulator

The source of the data move field is the same as the Data ALU destination.

Floating point constant expected

A character other than ASCII '0' through '9', 'e' or 'E', or '.' appeared in an expres-
sion where a floating point value was expected by default.

Floating point not allowed in relative expression

Relative expressions are generally used for address computation, therefore a float-
ing point value would not be appropriate.

Floating point value not allowed

An immediate value expressed in floating point notation is only valid in a MOVE-
type instruction.

Forcing not specified

The type of forcing operand was not given in a FORCE directive.

Function result out of range

The result computed by a transcendental function was too large to be represented
on the host machine.

GL option must be used before any section

The GL option must be activated before any explicit sections are encountered so
that the assembler can insure that all section symbols are global.

GLOBAL without preceding SECTION directive

A GLOBAL directive was encountered outside any previously defined section.

GS option must be used before any section

The GS option must be activated before any explicit sections are encountered so
that the assembler can use the appropriate counters for section relocation.
202 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Hex constant expected

A character other than ASCII '0' through '9', 'a' through 'f', or 'A' through 'F' either
followed the hexadecimal constant delimiter ($) or appeared in an expression
where a hexadecimal value was expected by default.

IC option must be used before any symbol, section, or macro definition

The IC option must be activated before any symbols, sections, or macros are de-
fined so that the assembler can remain consistent when storing label names in the
symbol table.

IDENT directive must contain revision number
IDENT directive must contain version number

The version and revision numbers are both required arguments for the IDENT di-
rective.

Illegal directive in buffer declaration

A directive was encountered between a BUFFER-ENDBUF pair that is not allowed
in that context. Some invalid directives include any other buffer-type directive
(DSM, DSR, etc.), section directives, or any directive which alters the current loca-
tion counter designation (MODE, ORG).

Illegal directive inside .DEF-.ENDEF declaration
Illegal directive outside .DEF-.ENDEF declaration

Some source-level debug directives, such as .FILE, make no sense and are not
allowed inside .DEF-.ENDEF declarations. Conversely, other directives such as
.VAL are not allowed outside of a .DEF-.ENDEF declaration.

Illegal directive inside DO loop

A directive was encountered inside a DO loop that is not allowed in that context.
Some invalid directives include any buffer-type directive (DSM, DSR, etc.), section
directives, or any directive which alters the current location counter designation
(MODE, ORG).

Illegal function argument

An invalid argument was passed to one of the assembler built-in functions, in par-
ticular the @LCV() function.

Illegal instruction in single-instruction DO loop

A conditional break instruction (BRKcc) cannot be used as the only instruction in
a DO loop.
Freescale DSP Assembler Reference Manual 203

Appendix C Assembler Messages - Errors
Illegal memory counter specified

The memory counter designation supplied in the ORG directive was not one of H
(high), L (low), or a positive integer expression in parentheses.

Illegal memory map character

The memory map character supplied in the ORG directive was not one of I (inter-
nal), E (external), R (ROM), A (port A), or B (port B).

Illegal memory space specified
Illegal memory space specified - L:
Illegal memory space specified - P:
Illegal memory space specified - X:
Illegal memory space specified - Y:

The memory space given is either invalid or inappropriate for the desired operation.

Illegal move field destination specified
Illegal move field destination register specified

The destination operand in a data memory move is invalid for the type of instruction
specified.

Illegal move field source specified

The source operand in a data memory move is invalid for the type of instruction
specified.

Illegal operator for floating point element

Bitwise operators are invalid for floating point values.

Illegal option

An argument to the OPT directive is invalid.

Illegal processor type

The argument to the -P command line option is invalid.

Illegal revision

The argument to the -R command line option is invalid.

Illegal secondary mnemonic

The secondary mnemonic to an FMPY instruction was not one of FADD, FSUB, or
FADDSUB.
204 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Illegal use of SSH as loop count operand

The contents of the system stack high register may not be used as the loop count
operand of a DO instruction.

Illegal X field destination specified
Illegal X field destination register specified
Illegal Y field destination specified

The destination operand in an X or Y memory data move is invalid for the type of
instruction specified.

Illegal Y field source specified

The source operand in an X memory data move is invalid for the type of instruction
specified.

Immediate addressing mode not allowed

Immediate operands are not allowed with some instructions, in particular program
memory moves (MOVEM).

Immediate operand not allowed

Immediate operands are not allowed with some instructions, in particular program
memory moves (MOVEM).

Immediate operand required

The ANDI and ORI instructions must have an immediate value as the source op-
erand.

Immediate value too large

The immediate operand value is too large for the space allotted in the instruction.

Immediate value too large to use short

The immediate value being forced short is too large to fit into the instruction word.

Increment value cannot be zero

The increment parameter to a DUPF directive must be greater than zero.

Indexed address mode not allowed

XY parallel data moves and the LEA instruction do not allow indexed addressing
mode.
Freescale DSP Assembler Reference Manual 205

Appendix C Assembler Messages - Errors
Initial debug directive must be .FILE

In a source file containing debug directives being assembled with the -G option the
.FILE directive must be the first source-level debug directive in the input stream.

Instruction cannot appear at last address of a DO loop
Instruction cannot appear at next to last address of a DO loop
Instruction cannot appear within last 2 words of a DO loop
Instruction cannot appear within last 3 words of a DO loop

Some instructions are restricted within a variable range of the DO instruction loop
address. These instructions include DO, ENDDO, JMP, Jcc, JCLR, JSET, and
moves to or from particular control registers.

Instruction cannot appear immediately after control register access

Some instructions must not appear immediately after certain control registers have
been accessed. These instructions include RTI, RTS, DO, and ENDDO.

Instruction does not allow data movement specified

The desired operation may only be done with a MOVE instruction.

Invalid address expression

An attempt was made to evaluate an expression consisting of two relative terms
with the same sign.

Invalid addressing mode

The addressing mode of one of the operands in the instruction was not recognized.

Invalid buffer type

The buffer type specified in a BADDR or BUFFER directive was not one of M (mod-
ulo) or R (reverse-carry).

Invalid conditional register transfer syntax

The syntax for an IFcc or FFcc conditional address register move was incorrect.

Invalid destination register

The first data move destination register in a double memory read operation was not
valid.

Invalid dummy argument name

Macro argument names cannot be local symbols, e.g. they cannot begin with the
underscore (_) character.
206 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Invalid force type

The argument to a FORCE directive must be SHORT, LONG, or NONE.

Invalid function name

The name following the function invocation character (@) was not recognized.

Invalid label field width specified

The argument given to the LSTCOL directive does not allow enough room on the
listing line for the remaining fields to be output.

Invalid macro name

Macro names cannot be local symbols, e.g. they cannot begin with the underscore
(_) character.

Invalid memory space attribute

The memory space attribute given is not one of the letters X, Y, L, or P.

Invalid mode

The mode specified in a MODE directive was not either RELATIVE or ABSOLUTE.

Invalid opcode field width specified
Invalid opcode 2 field width specified
Invalid operand field width specified
Invalid operand 2 field width specified

The argument given to the LSTCOL directive does not allow enough room on the
listing line for the remaining fields to be output.

Invalid page length specified

The minimum page length allowed by the PAGE directive is 10 lines per page. The
maximum is 255.

Invalid page width specified

The minimum page width allowed by the PAGE directive is 1 column per line. The
maximum is 255.

Invalid radix expression

The expression in the RADIX directive does not evaluate to one of the supported
constant bases (2, 8, 10, or 16).

Invalid register combination

The source operand registers in a FMPY instruction cannot be used together.
Freescale DSP Assembler Reference Manual 207

Appendix C Assembler Messages - Errors
Invalid register specified

The direct register operand is incorrect for this instruction.

Invalid relative expression

The terms of a relative expression may only participate in addition and subtraction
operations and must have opposing signs.

Invalid secondary opcode

The opcode in the second operation field is not one of the instructions FADD,
FSUB, or FADDSUB.

Invalid section directive modifier

The qualifier specified in a SECTION directive was not either GLOBAL or STATIC.

Invalid section name

Section names cannot be local symbols, e.g. they cannot begin with the under-
score (_) character.

Invalid shift amount

A shift expression must evaluate to within the range 0 <= n <= m, where m is the
maximum address of the target DSP.

Invalid source address mode

The source address mode in a MOVEP instruction was not valid.

Invalid source address register
Invalid source register

The source register in a double memory read operation was not valid.

Invalid storage class

The storage class given in a source-level debug symbol declaration is unknown.

Invalid tabs stops specified

The argument to the TAB directive is out of range.

Invalid X field destination address mode
Invalid X field source address mode

The address mode in the source or destination of the X data move field was invalid.
208 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Invalid X field width specified
Invalid Y field width specified

The argument given to the LSTCOL directive does not allow enough room on the
listing line for the remaining fields to be output.

Invalid XY address register specification

In some XY memory parallel data moves, if the register forming the effective ad-
dress of the X data field is from the set R0-R3, the effective address register in the
Y field must be from the set R4-R7. Conversely, if the register forming the effective
address of the X data field is from the set R4-R7, the effective address register in
the Y field must be from the set R0-R3.

Invalid XY data register specification

In some XY memory parallel data moves, if the data register of the X data field is
from the set D0-D3, the data register in the Y field must be from the set D4-D7.
Conversely, if the data register of the X data field is from the set D4-D7, the data
register in the Y field must be from the set D0-D3.

I/O short addressing mode not allowed

An operand was forced I/O short when I/O short addressing was not allowed.

Jump based on SSH or SSL cannot follow update of SP
Jump via SSH or SSL cannot follow write to SP

A JSET, JCLR, JSSET, or JSCLR instruction which tested a bit in either the SSH
or SSL register was immediately preceded by a MOVE to the SP register.

L space specified for load, but not for runtime
L space specified for runtime, but not for load

Since L memory space is the only double-wide memory space, if L memory space
is the runtime memory space, the only valid load memory space is L. Likewise, L
memory space can never be specified as the load memory space if runtime mem-
ory space is X, Y, or P.

LB option must be used before any code or data generation

The LB option must be specified before any code or data in order for the assembler
to increment the location counter appropriately.

LDB option must be used before any code or data generation

The LDB option must be specified before any code or data in order for the assem-
bler to establish the debug source file appropriately.
Freescale DSP Assembler Reference Manual 209

Appendix C Assembler Messages - Errors
Left margin exceeds page width

The blank left margin value in the PAGE directive exceeds the default or specified
page width parameter.

Length value greater than string size

The length parameter in a substring construct is larger than the composite length
of the input string argument.

Line too long

Source statements, including continuation lines, cannot exceed 512 characters in
length.

LOC option must be used before any local label

The LOC option must appear before any local label so that the assembler can keep
the local label lists synchronized.

LOCAL directive not valid in global section

The LOCAL directive is not allowed inside an implicit or explicit global section.

Local symbol names cannot be used with GLOBAL
Local symbol names cannot be used with LOCAL
Local symbol names cannot be used with XDEF
Local symbol names cannot be used with XREF

Underscore labels are not allowed with this directive.

LOCAL without preceding SECTION directive

A LOCAL directive was encountered outside any previously defined section.

Long absolute address cannot be used

An operand was forced long where only a short or I/O short address was valid.

Long absolute cannot be used - force short or I/O short

A forward reference was forced long where only a short or I/O short address was
valid.

Macro cannot be redefined

A macro name cannot be used as the label for a second macro definition in the
same source file unless the macro is defined and used within a declared section
(see the SECTION directive, Chapter 6).
210 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Macro not defined

The macro name was not found in the macro lookup table.

Macro value substitution failed

The evaluation of a macro argument expression failed.

Memory bounds greater than maximum address

The bounds argument in a LOMEM or HIMEM directive is invalid.

Memory counter designator value too large

The integer counter designator in an ORG directive is greater than 65535.

Memory space must be P or NONE

An END directive was encountered while the runtime memory space was X, Y, or L.

Missing '(' for function

All assembler built-in functions require at least one argument which must be en-
closed in parentheses.

Missing ')' in expression

Parentheses are not balanced in an expression.

Missing argument

The argument to a DUPA or DUPC directive was not found.

Missing definition string

The substitution string for a DEFINE directive is missing.

Missing delimiter in substring

A substring construct was missing the closing square bracket.

Missing dimension

The .DIM directive had no arguments.

Missing directive name

The argument to an RDIRECT directive is missing.

Missing expression

An expression was expected by the expression evaluator.
Freescale DSP Assembler Reference Manual 211

Appendix C Assembler Messages - Errors
Missing filename

No filename was provided as an argument to the INCLUDE directive.

Missing line number

No line number was provided as an argument to the .LINE directive.

Missing macro name

A MACRO directive was encountered without a label or the macro name was omit-
ted from a PMACRO directive.

Missing memory space specifier

One of the operands of an instruction was expected to have a memory space spec-
ifier (X:, Y:, L:, or P:) preceding the address mode specifier.

Missing option

The OPT directive was specified without an argument.

Missing or illegal memory space specifier

One of the operands of an instruction was expected to have a memory space spec-
ifier (X:, Y:, L:, or P:) preceding the address mode specifier.

Missing or mismatched quote

A single or double quote character was expected by the string parsing routines.

Missing pathname

No pathname was provided as an argument to the MACLIB directive.

Missing processor type

There was no argument provided for the -P command line option.

Missing quote
Missing quote in string

A single or double quote character was expected by the string parsing routines.

Missing revision

There was no argument provided for the -R command line option.

Missing section name

No section name was given as an argument to the SECTION directive.
212 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Missing size argument

No size value was given as an argument to the .SIZE directive.

Missing string after concatenation operator

The string concatenation operator (++) must be followed by another quoted string.

Missing symbol name

The SYMOBJ, XDEF, and XREF directives require at least one symbol name as
an argument.

Missing symbol value

No symbol value was given as an argument to the .VAL directive.

Missing tag for end of structure or union

A source-level debug structure or union declaration was found without a corre-
sponding tag definition.

Missing tag name

No tag name was given as an argument to the .TAG directive.

Mnemonic must indicate precision using .S or .X suffix

Floating point instructions generally must indicate the precision of their operation
by appending either .S for single precision or .X for single-extended precision.

Mode not specified

The MODE directive was not followed by either RELATIVE or ABSOLUTE.

Move from SSH or SSL cannot follow move to SP
Move from SSH or SSL cannot follow update to SP

A MOVE instruction using the system stack (SSH or SSL) as a source operand
cannot immediately follow a MOVE which uses the stack pointer (SP) as a desti-
nation operand.

MU option must be used before any code or data generation

The MU option must be given before any data allocation directive (BSC, DC, DS,
DSM, DSR) or any instruction appears in the source file.

Negative immediate value not allowed

The immediate count value for a DO or REP instruction cannot be less than zero.
Freescale DSP Assembler Reference Manual 213

Appendix C Assembler Messages - Errors
Negative or empty DO loop not allowed

The loop address given in a DO instruction must specify an address at least one
greater than the current program counter value.

NOGS option must be used before any section

The NOGS option must be activated before any explicit sections are encountered
so that the assembler can use the appropriate counters for section relocation.

No previous function declaration

A .EF debugging directive was encountered without a corresponding .BF directive.

Not enough fields specified for instruction

There were no operands specified for a MOVE, MOVEC, MOVEM, or MOVEP in-
struction.

No-update mode not allowed

The no-update register addressing mode is not allowed for this instruction (e.g., the
LEA instruction).

Offset register number must be the same as address register number

The explicit offset register number in an operand using post-increment, post-dec-
rement, or indexed by offset addressing mode (Nn) is different from the number
specified for the address register (Rn). The offset register number may be omitted
from these types of indirect addressing modes; the assembler defaults to the ad-
dress register number.

Offset value greater than string size

The offset parameter in a substring construct is larger than the composite length of
the input string argument.

Only absolute addressing allowed

The instruction allows only absolute addressing.

Only absolute and register direct addressing allowed

The instruction allows only absolute and register direct addressing.

Only immediate addressing allowed

The instruction allows an immediate source operand only.

Only immediate and register direct addressing allowed

The instruction allows only immediate and register direct addressing modes.
214 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Only immediate and register direct and indirect addressing allowed

The instruction allows only immediate, register direct, and register indirect ad-
dressing modes.

Only PC-relative addressing allowed

The instruction allows only PC-relative addressing.

Only PC-relative and register direct addressing allowed

The instruction allows only PC-relative and register direct addressing.

Only post-increment by offset addressing allowed with LMS move

The initial data move destination operand in an LMS move must use post-incre-
ment by offset addressing.

Only post-increment or post-increment by offset addressing allowed

Moves to P memory allow only post-increment or post-increment by offset address-
ing.

Only register direct addressing allowed

The instruction allows only register direct addressing.

Only register direct and indirect addressing allowed

The instruction allows only register direct and indirect addressing.

Only register indirect addressing allowed

The instruction allows only register indirect addressing.

Operation not allowed with address term

Only addition and subtraction are allowed in expressions involving addresses or
relative terms.

Page length too small for specified top and bottom margins

The sum of the top and bottom margins specified in the PAGE directive is greater
than the page length - 10.

Page length too small to allow default bottom margin

The bottom margin exceeds the page length specified in the PAGE directive.

PC-relative address too large to use short

The PC-relative offset being forced short is too large to fit into the instruction word.
Freescale DSP Assembler Reference Manual 215

Appendix C Assembler Messages - Errors
PC-relative addressing mode not allowed

The PC-relative addressing mode is not allowed for this instruction. The restriction
applies, for example, to bit manipulation instructions and some jump-type instruc-
tions.

Phasing error

The value associated with a symbol has changed between pass 1 of the assembly
and pass 2. This error can occur spontaneously in conjunction with other errors.
The assembler is designed to avoid phasing errors in general. If a phasing error
occurs without any other errors this may represent an internal error which should
be reported to Freescale.

One exception is the use of the checksumming function @CHK() with the EQU di-
rective. Instruction encoding may be incomplete after the first pass due to forward
referencing, causing the checksum value to change between passes. Because of
this the SET directive must be used to assign the checksum value to a symbol.

Possible invalid white space between operands or arguments

The assembler verifies that fields which should not contain operands or values are
empty. If these fields are not empty the assembler produces this error.

Post-decrement addressing mode not allowed

The post-decrement addressing mode is not allowed for this instruction. The re-
striction applies, for example, to bit manipulation instructions and some jump-type
instructions.

Post-decrement by offset addressing mode not allowed

The post-decrement by offset addressing mode is not allowed for this instruction.
The restriction applies, for example, to bit manipulation instructions and some
jump-type instructions.

Post-increment addressing mode not allowed

The post-increment addressing mode is not allowed for this instruction. The restric-
tion applies, for example, to bit manipulation instructions and some jump-type in-
structions.

Post-increment by offset addressing mode not allowed

The post-increment by offset addressing mode is not allowed for this instruction.
The restriction applies, for example, to bit manipulation instructions and some
jump-type instructions.
216 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Pre-decrement addressing mode not allowed

The pre-decrement addressing mode is not allowed for this instruction. The restric-
tion applies, for example, to instructions which include parallel XY memory data
transfers.

RDIRECT directive not allowed in section

Since the effect of the RDIRECT directive is global, it cannot be used within a sec-
tion which has been declared using the SECTION directive. Move the RDIRECT
directive outside the declared section to avoid this error.

Redefinition would overflow line

A substitution string declared using the DEFINE directive will cause the current
source line to overflow if substitution occurs.

Reference outside of current buffer block
Reference outside of current overlay block

Reference was made to an underscore local label which fell outside the current
buffer or overlay definition.

Register direct addressing not allowed

Register direct addressing mode is not allowed for this instruction. The restriction
applies, for example, to bit manipulation instructions, some jump-type instructions,
and parallel XY data memory moves.

Register displacement valid only with address register R2

Only address register R2 is valid as a displacement register.

Relative equate must be in same section

An EQU directive with a relative expression operand must be defined in the same
section as the section associated with the operand expression.

Relative expression must be integer

A relative expression must evaluate to an integer value.

Relative expression not allowed

Relative expressions are not allowed as arguments to the assembler built-in func-
tions.

Relative SET must be in same section

A SET directive with a relative expression operand must be defined in the same
section as the section associated with the operand expression.
Freescale DSP Assembler Reference Manual 217

Appendix C Assembler Messages - Errors
Relative terms from different sections not allowed

Relative terms defined in different sections are not allowed in expressions. This is
because the relationship between the terms is based on where the enclosing sec-
tions are located in memory.

Reserved name used for symbol name

One of the DSP register names has been used as a label, operand, or directive ar-
gument. These register names, in either upper or lower case, are reserved by the
assembler. See Appendix E for a list of DSP register names.

Runtime space must be P

An instruction was encountered and the runtime memory space was not set to P
(Program).

SCO option must be used before any label

The SCO option sends structured control statements to the object file and thus
must be specified before any symbols are defined in the source file.

Second data move destination accumulator same as operand destination
accumulator

The destination accumulator in a double memory read instruction is the same as
the DALU accumulator specification.

Secondary opcode not allowed

The secondary opcode field is allowed only with the FMPY instruction.

Section not encountered on pass 1

The section declared in a SECTION directive was not encountered during the first
pass of the assembler. This situation indicates an internal assembler error and
should be reported to Freescale.

SET requires label

The SET directive must have a label in order to associate the directive argument
with a symbol name.

SET symbol names cannot be used with GLOBAL
SET symbol names cannot be used with LOCAL
SET symbol names cannot be used with XDEF

A symbol defined using the SET directive cannot be exported from a section using
GLOBAL, LOCAL, or XDEF.
218 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Short absolute address too large

The flagged operand value is greater than the maximum short address of the target
DSP.

Short I/O absolute address too large
Short I/O absolute address too small

The flagged operand value is outside the I/O address range of the target DSP.

Short or I/O short address expected

A short or I/O short address was expected as the second operand of a JCLR,
JSET, JSCLR, or JSSET instruction.

Short PC-relative address too large

The flagged operand value is greater than the maximum PC-relative address of the
target DSP.

SSH cannot be both source and destination register

In a MOVE instruction, the SSH register cannot be both the source and destination
operand.

Start argument greater than machine word size

The start parameter of a @FLD() function has a value larger than can fit in the tar-
get machine word.

Start position greater than source string size

The start parameter in a @POS() function is larger than the total length of the
source string argument.

Storage block size must be greater than zero

The size of a buffer allocated with the DSM, DSR, BSM, BSB, and other buffer di-
rectives was too small.

Storage block size out of range

The size of the buffer in a DSM, DSR, BSM, BSB, or other buffer directive is too
large to be allocated.

Storage block too large

The runtime location counter overflowed while the assembler was attempting to al-
locate storage through a DSM or DSR directive. The assembler automatically ad-
vances the program counter to the next valid base address given the size of the
modulo or reverse carry buffer. This error occurs when the sum of the expression
Freescale DSP Assembler Reference Manual 219

Appendix C Assembler Messages - Errors
in the DSM or DSR directive and the runtime location counter value exceed avail-
able memory in the current memory space.

Structure or union tag mismatch

A matching tag name could not be found for the current source-level debug struc-
ture or union declaration.

Subroutine branch to loop address not allowed

A BSR, BScc, BSSET, or BSCLR instruction cannot have as its target the loop ad-
dress of the current DO loop.

Subroutine jump to loop address not allowed

A JSR, JScc, JSSET, or JSCLR instruction cannot have as its target the loop ad-
dress of the current DO loop.

SVO option must be used before any code or data generation

The SVO option must be given before any data allocation directive (BSC, DC, DS,
DSM, DSR) or any instruction appears in the source file.

Symbol already defined as GLOBAL
Symbol already defined as LOCAL
Symbol already defined as XDEF
Symbol already defined as XREF

The symbol used in an GLOBAL, LOCAL, XDEF, or XREF directive has already
been defined in a previous directive of the same type.

Symbol already defined as global

A symbol specified in an XDEF directive has already been defined as global out-
side the current section.

Symbol already defined in current section

A symbol specified in an XREF directive has already been defined as private within
the current section.

Symbol already used as SET symbol

The label has already been used in a SET directive. A symbol defined with SET
cannot be redefined except through another SET directive.

Symbol cannot be set to new value

The label has been defined previously other than with the SET directive. Only sym-
bols defined using the SET directive may be redefined.
220 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Symbol defined in current section before GLOBAL directive
Symbol defined in current section before XDEF directive

The GLOBAL or XDEF directive must appear within a section prior to the definition
of any symbols in its argument list. Any symbols within a section which must be
accessible outside the section should be declared in a GLOBAL or XDEF directive
immediately following the SECTION directive.

Symbol name too long

Symbols are limited to 512 characters. The first character must be alphabetic or the
underscore character (A-Z, a-z, _). The remaining characters must be alphanu-
meric, including the underscore character (A-Z, a-z, 0-9, _).

Symbol not previously defined

The symbol specified in an UNDEF directive was not previously defined in a DE-
FINE directive.

Symbol redefined

The symbol has already been used as a label in a previous context.

Symbol tag mismatch

A matching tag reference could not be found for a tagged symbol table entry.

Symbol undefined on pass 2

The symbol used as an operand or directive argument was never defined in the
source program.

Symbols must start with alphabetic character

Symbol names must begin with an upper or lower case alphabetic character or the
underscore character (_).

SYMOBJ symbol must be a global symbol name

Arguments to the SYMOBJ directive cannot be preceded by an underscore.

Syntax error - expected '):'

In an ORG directive using numeric counter designations the parenthesis/colon pair
separating the load or runtime address from the memory space, counter, or map-
ping characters was not found.

Syntax error - expected ':'

In an ORG directive the colon separating the load or runtime address from the
memory space, counter, or mapping characters was not found.
Freescale DSP Assembler Reference Manual 221

Appendix C Assembler Messages - Errors
Syntax error - expected '>'

The closing angle bracket in a non-local INCLUDE directive argument was not
found.

Syntax error - expected comma

The comma separating operands in an instruction or directive was not found.

Syntax error - expected keyword BY

In a .FOR structured control statement something other than the optional step
clause preceded by the keyword BY was encountered.

Syntax error - expected keyword DO

In a .WHILE structured control statement something other than the optional DO
keyword was encountered at the end of the statement.

Syntax error - expected keyword TO or DOWNTO

In a .FOR structured control statement something other than the loop target clause
preceded by the keyword TO or DOWNTO was encountered.

Syntax error - expected quote

The assembler was expecting the start of a quoted string.

Syntax error - extra characters

Extra characters were found after an instruction or directive operand.

Syntax error - invalid assignment operator

The loop assignment operator in a .FOR structured control statement is not an
equals sign (=).

Syntax error - invalid compound operator

Structured control statement compound operators are either AND or OR.

Syntax error - invalid conditional operator

The conditional operator in a structure control statement expression is not valid.

Syntax error - invalid statement terminator

There were extra or invalid characters found at the end of a structured control
statement.

Syntax error - missing address mode specifier

An instruction operand was not specified.
222 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Syntax error - missing operand

An operand in a structured control statement expression was missing.

Syntax error in directive name list

A character other than a comma was found separating the arguments in an RDI-
RECT or SYMOBJ directive name list.

Syntax error in dummy argument list

A character other than a comma was found separating the dummy arguments in a
macro definition (MACRO directive), or a dummy argument began with the under-
score character (_).

Syntax error in macro argument list

A character other than a comma was found separating the arguments in a macro
call.

Syntax error in macro name list

A character other than a comma was found separating the arguments in a PMAC-
RO directive name list.

Syntax error in symbol name list

A character other than a comma was found separating the arguments in an XDEF
or XREF directive name list.

Tag name not found

A matching tag name could not be found for the current source-level debug struc-
ture or union declaration.

Too many fields specified for instruction

An instruction field that was expected to be empty contained data other than a com-
ment. This can happen when an instruction using only the X data transfer field en-
counters data other than a comment in the Y data transfer field.

Two dummy arguments are the same

Two dummy arguments in a macro definition (MACRO directive) have the same
name.

UNDEF symbol must be a global symbol name

The argument to an UNDEF directive cannot be a local label, e.g. a name starting
with the underscore character (_).
Freescale DSP Assembler Reference Manual 223

Appendix C Assembler Messages - Errors
Unexpected end of file - missing .ENDF
Unexpected end of file - missing .ENDI
Unexpected end of file - missing .ENDL
Unexpected end of file - missing .ENDW
Unexpected end of file - missing .UNTIL

The matching end-of-conditional or end-of-loop directive for a conditional or loop-
ing structured control statement was never found.

Unexpected end of file - missing COMMENT delimiter

The second occurrence of the delimiter character in a COMMENT directive was
never found.

Unexpected end of file - missing ENDBUF

A BUFFER directive was encountered without a closing ENDBUF directive.

Unexpected end of file - missing ENDIF

An IF directive was encountered without a closing ENDIF directive.

Unexpected end of file - missing ENDM

A macro definition was started using the MACRO directive, but the end of the
source file was encountered before a closing ENDM directive was found.

Unexpected end of file - missing ENDSEC

A SECTION directive was found without a closing ENDSEC directive.

Unknown math error

A transcendental math function returned an error that could not be classified as out
of range or outside the function domain.

Unrecognized mnemonic

A symbol in the assembler opcode field was not a defined macro, an instruction
mnemonic, or a directive.

Unrecognized secondary mnemonic

A symbol in the assembler secondary opcode field was not one of the instructions
FADD, FSUB, or FADDSUB.

.UNTIL without associated .REPEAT directive

An .UNTIL directive was encountered before a matching .REPEAT structured con-
trol statement.
224 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Errors
Value argument larger than machine word size

The value parameter of a @FLD() function has a value larger than can fit in the tar-
get machine word.

Width argument greater than machine word size

The width parameter of a @FLD() function has a value larger than can fit in the tar-
get machine word.

XDEF without preceding SECTION directive
XREF without preceding SECTION directive

An XDEF or XREF directive was encountered outside any previously defined sec-
tion.

XLL option must be used before any local label

The XLL option must be activated before any local labels are encountered so that
the assembler can make the appropriate entries in the symbol table.

XR option must be used before any label

The XR option must be activated before any labels are encountered so that the as-
sembler can make the appropriate entries in the symbol table.
Freescale DSP Assembler Reference Manual 225

Appendix C Assembler Messages - Fatal Errors
C.5 Fatal Errors

<mode> encoding failure

A bad address mode indicator or register number was passed to the assembler en-
coding routines. <mode> represents the register set or addressing mode in ques-
tion. This is a serious internal error that should be reported to Freescale.

Absolute mode select failure

The mode indicator passed to the absolute addressing mode selection logic was
not valid. This is a serious internal error that should be reported to Freescale.

Arithmetic exception

An internal floating point exception occurred while evaluating an expression. The
assembler cannot continue.

Cannot encode instruction
Cannot encode branch instruction
Cannot encode jump instruction

The correspondence between the source opcode mnemonic and the internal op-
code type has been corrupted. This is an internal error that should be reported to
Freescale.

Cannot seek to start of line number entries
Cannot seek to start of object data
Cannot seek to start of object file
Cannot seek to start of relocation entries
Cannot seek to start of section headers
Cannot seek to start of string table
Cannot seek to start of symbol table

An I/O error occurred which prevented the assembler from positioning correctly in
the output object file.

Cannot write file header to object file
Cannot write line number entries to object file
Cannot write optional header to object file
Cannot write relocation entries to object file
Cannot write section headers to object file
Cannot write string table to object file
Cannot write symbols to object file

An I/O error occurred which prevented the assembler from writing data to the out-
put object file.
226 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Fatal Errors
Cannot write control string to listing file
Cannot write left margin to listing file
Cannot write new line to listing file
Cannot write new page to listing file
Cannot write page header to listing file
Cannot write string to listing file

An I/O error occurred which prevented the assembler from writing data to the out-
put listing file.

Compare select error

The comparison indicator passed to the evaluator selection logic was not valid.
This is a serious internal error that should be reported to Freescale.

Debug symbol type failure

The symbol type indicator passed to the debug selection logic was not valid. This
is a serious internal error that should be reported to Freescale.

Directive select error

The directive indicator passed to the directive selection logic was not valid. This is
a serious internal error that should be reported to Freescale.

DO stack out of sequence

The assembler maintains an internal stack representing DO loop nesting levels.
The internal stack pointers have been corrupted.

Error in mnemonic table

The indicator passed to the instruction processing logic was not valid. This is a se-
rious internal error that should be reported to Freescale.

Expression operator failure

Expression operator lookup has failed. This is a serious internal error that should
be reported to Freescale.

Expression stack underflow

An attempt has been made to free an expression when there are none to be freed.
This is an internal error that should be reported to Freescale.

Fatal segmentation or protection fault
Contact Freescale DSP Operation

A program error has caused the assembler to access an invalid host system ad-
dress. This generally indicates a bug in the assembler software.
Freescale DSP Assembler Reference Manual 227

Appendix C Assembler Messages - Fatal Errors
File info out of sequence

File debug information is scrambled. This is a serious internal error that should be
reported to Freescale.

File not encountered on pass 1

The file in the source input list was never processed by the assembler during pass
1. This is an internal error that should be reported to Freescale.

Immediate mode select error

The mode indicator passed to the immediate addressing mode selection logic was
not valid. This is a serious internal error that should be reported to Freescale.

Input mode stack out of sequence

The stack for recording whether input is from a file or a macro expansion has been
corrupted. This is an internal error that should be reported to Freescale.

Invalid DO loop range check

The value passed to the end-of-DO-loop verification logic is bad. This is an internal
error that should be reported to Freescale.

Invalid instruction class

The saved MAC-type instruction class has been corrupted. This is an internal error
that should be reported to Freescale.

Invalid tag storage class

The saved tag storage class has been corrupted. This is an internal error that
should be reported to Freescale.

I/O error writing data word to object file

An I/O error occurred which prevented the assembler from writing data to the out-
put object file.

Location bounds selection failure

The logic for selecting the appropriate bounds array based on the current memory
space has returned a bad value. This is an internal error that should be reported to
Freescale.

Option select error

The option indicator passed to the option selection logic (OPT directive) was not
valid. This is a serious internal error that should be reported to Freescale.
228 DSP Assembler Reference Manual Freescale

Appendix C Assembler Messages - Fatal Errors
Out of memory - assembly aborted

There is not enough internal memory to perform dynamic storage allocation. Since
the assembler keeps all working information in memory, including the symbol table
and macro definitions, there is the possibility that memory will be exhausted if many
symbols or macros are defined in a single assembly run.

PC-relative mode select failure

The mode indicator passed to the PC-relative addressing mode selection logic was
not valid. This is a serious internal error that should be reported to Freescale.

Register selection failure

The register number passed to the multiply mask selection logic was not valid. This
is a serious internal error that should be reported to Freescale.

Section counter sequence failure

The ordering of location counter structures has been corrupted. This is an internal
error that should be reported to Freescale.

Section stack mode error

The assembler expected to restore a nested section but found the section list emp-
ty. This is an internal error that should be reported to Freescale.

Too many lines in source file

An individual source file contained more than 2**31 lines of code.

Too many sections in module

There is a limit of 255 discrete sections in a given source file.

Unrecognized transformation mnemonic

The lookup of an FADD or FSUB secondary operand failed. This is an internal error
that should be reported to Freescale.
Freescale DSP Assembler Reference Manual 229

Appendix C Assembler Messages - Fatal Errors
230 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF)

D.1 Introduction

The Freescale DSP assembler and linker produce a binary object file in a modified form
of the AT&T Common Object File Format (COFF). COFF is a formal definition for the
structure of machine code files. It originated with Unix System V but has sufficient flexi-
bility and generality to be useful in non-hosted environments. In particular, COFF sup-
ports user-defined sections and contains extensive information for symbolic software
testing and debugging.

Later sections describe the COFF implementation for the Freescale family of digital signal
processors. The DSP COFF format has been altered to support multiple memory spaces
and normalized to promote transportability of object files among host processors. See
section D.4 for a list of differences between the Freescale DSP object file format and stan-
dard COFF. For a more general discussion of COFF the following reference may be use-
ful:

Gintaras R. Gircys, Understanding and Using COFF, O’Reilly & Associates,
1988 (ISBN 0-937175-31-5).

D.2 Object File Structure

A DSP COFF object file consists of up to eight groups of object file information. Some of
these groups are optional, depending on the type of object file generated, and others may
have repeating occurrences. The basic object file components are:

• File header

• Optional header

• Section headers

• Section data

• Relocation information

• Line numbers

• Symbol table

• String table
Freescale DSP Assembler Reference Manual 231

Appendix D Freescale DSP Object File Format (COFF) - Object File Structure
The general layout of the object file is illustrated in Figure E-1.

Figure E-1 COFF File Basic Structure

The file header contains object file information such as timestamp, number of sections,
pointer to the symbol table, and file status flags. Depending on how the object file was
generated the optional header holds link or run time information. The optional header is
followed by a list of section headers. Each section header contains pointers to section
data, relocation information, and line number entries. After the section headers comes
the raw data for all sections. If the object file is relocatable the raw data may be followed
by a block of relocation entries for all sections. If the original source file was compiled or
assembled with the -G debug option, the relocation information is followed by source line
number address entries. The symbol table contains information on program symbols use-
ful by both the linker and the debugger. The string table may contain very long symbolic
names, comment text, or relocation expressions. Note that the last four groups (relocation
info, line number entries, symbol table, and string table) may not appear if the linker -S
option is used to strip symbols from the object file.

FILE HEADER

OPTIONAL HEADER

Section 1 Header
•
•

Section n Header

Section 1 Contents
•
•

Section n Contents

Section 1 Relocation Info
•
•

Section n Relocation Info

Section 1 Line Numbers
•
•

Section n Line Numbers

SYMBOL TABLE

STRING TABLE
232 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
D.3 Object File Components

Following are detailed descriptions of each of the DSP COFF object file components. The
descriptions include the purpose of the component, its structure in the object file, and
meanings of individual fields within the component.

D.3.1 File Header

The file header is the first component in a COFF object file. It contains information about
the object file itself and is used for negotiating other components within the file. There is
only one file header per object file. Figure E-2 shows the structure of the COFF file head-
er.

Figure E-2 File Header Format

The magic number is a special code indicating the target machine for the object file
(DSP56300, etc.). The number of sections is useful for scanning the list of section head-
ers. The date and time stamp is kept in binary form and may contain a host-dependent
time value. The f_symptr field contains a file byte offset to the beginning of the symbol
table. The number of symbol table entries provides an upper bound for looping through
the symbol table and an indirect means for accessing the start of the string table. The size
of the optional header allows for jumping to the start of the section header list.

Bytes Declaration Name Description

 0-3 unsigned long f_magic Magic number

 4-7 unsigned long f_nscns Number of sections

 8-11 long int f_timdat Time and date when file was
created

12-15 long int f_symptr File pointer to the start of the
symbol table

16-19 long int f_nsyms Number of symbol table
entries

20-23 unsigned long f_opthdr Number of bytes in the optional
header

24-27 unsigned long f_flags Flags (see Figure E-3)
Freescale DSP Assembler Reference Manual 233

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
The flags field is a set of bit flags which convey status information about the object file. It
is used primarily by linkers, debuggers, and other loader software to determine whether
the file is valid for a particular requested operation. The individual bit flags are shown in
Figure E-3.

Figure E-3 File Header Flags

D.3.2 Optional Header

The COFF optional header ordinarily is used to hold system-dependent or runtime infor-
mation. This allows different operating environments to store data that only that environ-
ment uses without forcing all COFF files to save space for that information. General utility
programs can be made to work properly with any common object file. This is done by
seeking past the optional header using the f_opthdr size field in the file header record.

The optional header in a Freescale DSP object file may contain two distinct types of infor-
mation, depending upon how the file was generated. If the file is a relocatable object file
it will have an optional header containing linker information. If the file is an absolute object
file it will have an optional header containing runtime information. The runtime header is
similar to standard COFF a.out optional header formats.

Figure E-4 shows the linker optional header. The module size field gives the size of the
entire object module. The data size field reflects the size of the entire raw data block with-
in the module. The endstr field points to an expression in the string table which originated
with the assembler END directive (see Chapter 6); it indicates the starting address of the
module. If this field is negative or zero there is no end expression. The logical section
count is the count of sections in the object module created via the assembler SECTION
directive (see Chapter 6). The counter count represents the number of COFF sections in
the file (analogous to the file header f_nscns field). The relocation entry and line number
counts hold the number of all relocation entries and line number records in the file. The

Mnemonic Flag Meaning

F_RELFLG 0000001 Relocation information stripped from file

F_EXEC 0000002 File is executable (no unresolved external
references)

F_LNNO 0000004 Line numbers stripped from file

F_LSYMS 0000010 Local symbols stripped from file

F_CC 0010000 File produced by C compiler (Freescale
DSP only)
234 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
buffer and overlay counts give counts for each instance of a buffer or overlay in the mod-
ule. The major version, minor version, and revision number fields reflect the assembler
and linker versions to insure linker backward compatibility. The optional header flags hold
special mode flags for the linker.

Figure E-4 Freescale DSP Optional Link Header Format

Figure E-5 illustrates the runtime optional header. This header is similar to the standard
COFF a.out header but there are differences. The magic number in this header is not the
same as the magic number in the file header; this magic number is used indicate the file
type to a host operating system. The magic number and version stamp fields currently
are not used by the Freescale DSP tools and are set to zero. The text size field gives the
size of all text-type data (executable code) in the object file. The data size field holds a
count of all initialized data (apart from code) in the file. The uninitialized data size field is
not used and is set to zero.

Bytes Declaration Name Description

 0-3 long int modsize Object module size

 4-7 long int datasize Module raw data size

 8-11 long int endstr End directive expression string

 12-15 long int secnt Logical section count

16-19 long int ctrcnt Counter count

20-23 long int relocnt Relocation entry count

24-27 long int lnocnt LIne number entry count

28-31 long int bufcnt Buffer count

32-35 long int ovlcnt Overlay count

36-39 long int majver Major version number

40-43 long int minver Minor version number

44-47 long int revno Revision number

48-51 long int optflags Optional header flags
Freescale DSP Assembler Reference Manual 235

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
The program entry field represents the address given in the assembler END directive.
The text start and data start values contain the low addresses for text and data segments,
respectively. The text and data end values contain the high addresses for text and data
segments, respectively. Note that addresses are expressed in terms of the C language
typedef CORE_ADDR. A CORE_ADDR is a structure containing a long (4 byte) address
and an enumeration type which classifies the address according to memory space (X, Y,
L, P) and memory mapping (internal, external, etc.). See section D.4.1 for more informa-
tion on the CORE_ADDR structure.

Figure E-5 Freescale DSP Optional Runtime Header Format

D.3.3 Sections

A section is the smallest portion of an object file that is treated as one separate and distinct
entity. Sections can accommodate program text, initialized and uninitialized data, and
block data. COFF sections in DSP object files may be grouped under a logical section
defined by the assembler SECTION directive (see Chapter 6).

It is a mistake to assume that every COFF file will have a specific number of sections, or
to assume characteristics of sections such as their order, their location in the object file,
or the address at which they are to be loaded. This information is available only after the

Bytes Declaration Name Description

 0-3 long int magic Magic number

 4-7 long int vstamp Version stamp

 8-11 long int tsize Size of text in words

 12-15 long int dsize Size of data in words

16-19 long int bsize Size of uninitialized data in words

20-27 CORE_ADDR entry Program entry point

28-35 CORE_ADDR text_start Base address of text

36-43 CORE_ADDR data_start Base address of data

44-51 CORE_ADDR text_end End address of text

52-59 CORE_ADDR data_end End address of data
236 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
object file has been created. Programs manipulating COFF files should obtain it from file
and section headers in the file.

D.3.3.1 Section Headers

Every object file has a table of section headers to specify the layout of data within the file.
The section header table consists of one entry for every section in the file. The information
in the section header is described in Figure E-6.

Figure E-6 Section Header Format

The section name is an 8-byte character array padded with null (zero) bytes if required.
In Freescale relocatable object files section names may be longer than eight characters.
In this case the convention used for long symbol names is followed where if the least sig-
nificant four bytes of the section name field contain zeroes, the name is in the symbol table
at the offset given by the most significant four bytes of the name field. See section D.3.4.1
for more information on the handling of long symbol names.

The physical address is the address where the section text or data will reside in memory.
The address value depends upon whether the section is absolute or relocatable. If the
section is absolute then the physical address is the actual address where the section will
be loaded into memory. If the section is relocatable then the physical address is an offset

Bytes Declaration Name Description

 0-7 char s_name Section name (null padded)

 8-15 CORE_ADDR s_paddr Physical address

16-23 CORE_ADDR s_vaddr Virtual address

24-27 long int s_size Section size in words

28-31 long int s_scnptr File pointer to raw data

32-35 long int s_relptr File pointer to relocation entries

36-39 long int s_lnnoptr File pointer to line number entries

40-43 unsigned long s_nreloc Number of relocation entries

44-47 unsigned long s_nlnno Number of line number entries

48-51 long int s_flags Section flags (see Figure E-7)
Freescale DSP Assembler Reference Manual 237

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
from the start of the logical section (implicit or defined by the SECTION directive) in which
the section is defined.

In most cases the virtual address is the same as the physical address. However, for block
data sections in Freescale DSP object files the virtual address field holds the repeat count
for the single raw data value associated with this section. For example, if the assembly
language source file included a directive of the form BSC $400,$FFFF the s_vaddr field
would contain the value $400, the s_size field would be 1 (or 2 if in L memory), and the
single raw data word associated with the section would be $FFFF.

The section size is the count of raw data words associated with the section. This is in con-
trast to standard COFF section sizes which usually are given in bytes. Raw data words
currently are stored in the object file as long (4-byte) integers independent of the target
processor word size.

The file pointer fields are file byte offsets into the object file to the start of the current sec-
tion raw data, relocation entries, and line number information. The counts of relocation
and line number entries provide an upper bound for scanning these tables. The section
flags comprise the section attributes and are described in Figure E-7.
238 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-7 Section Header Flags

Text sections are reserved for code to be loaded into program memory (P space). Data
sections hold initialized data, generated by assembler DC directives for example, bound
for data (X, Y, L) memory. Bss sections are used for uninitialized blocks resulting from
assembler DS and similar directives. Padding sections are generated to provide align-
ment when a modulo or reverse-carry buffer is declared. The block section attribute flags
a block data section, described above. The overlay flag indicates the section is part of an
overlay. Macro sections represent code and data generated during a macro expansion.
Dummy sections are used internally by the assembler to mark empty sections after the
first assembly pass. Empty sections may still appear in the object file if a symbol is asso-
ciated with a section which contains no data. The noload, group, and copy attributes are
not used at present.

D.3.3.2 Relocation Information

Object files have one relocation entry for each relocatable reference in the text or data.
The relocation information consists of entries with the format described in Figure E-8.

Mnemonic Flag Meaning

STYP_REG $0000 Regular section

STYP_DSECT $0001 Dummy section

STYP_NOLOAD $0002 Noload section

STYP_GROUP $0004 Grouped section

STYP_PAD $0008 Padding section

STYP_COPY $0010 Copy section

STYP_TEXT $0020 Executable text section

STYP_DATA $0040 Initialized data section

STYP_BSS $0080 Uninitialized data section

STYP_BLOCK $0400 Block data section

STYP_OVERLAY $0800 Overlay section

STYP_MACRO $1000 Macro section
Freescale DSP Assembler Reference Manual 239

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-8 Relocation Entry Format

The address field represents the relocatable address within the section raw data where a
modification is needed. In standard COFF the r_symndx field points to an entry in the
symbol table corresponding to the reference requiring modification. The relocation type
encodes how the raw data is to be changed to reflect the resolved symbol value.

In Freescale DSP COFF r_symndx is an offset into the string table which points to a re-
location expression. The linker interprets this expression and updates the word at
r_vaddr with the result of the expression evaluation. The relocation type is always zero.
See section D.5, Object File Data Expression Format for more information on relocation
expressions.

D.3.3.3 Line Numbers

When the compiler or assembler is invoked with the -G debug option an entry is made in
the object for every source line where a breakpoint can be inserted. It is then possible to
reference source line numbers when using a debugger. The structure of an object file line
entry is shown in Figure E-9.

Figure E-9 Line Number Entry Format

All line numbers in a section are grouped by function as shown in Figure E-10. The first
entry in a function grouping has line number 0 and has, in place of the physical address,

Bytes Declaration Name Description

 0-3 long r_vaddr Address of reference

 4-7 long r_symndx String table index

 8-11 unsigned long r_type Relocation type

Bytes Declaration Name Description

 0-3 long l_symndx Function name symbol table index

 0-7 CORE_ADDR l_paddr Line number physical address

 8-11 unsigned long l_lnno Source file line number
240 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
an index into the symbol table for the entry containing the function name. Subsequent
entries have actual line numbers and addresses of the program text corresponding to the
line numbers. The line number entries are relative to the beginning of the function, and
appear in increasing order of address.

Figure E-10 Line Number Grouping

D.3.4 Symbol Table

The COFF symbol table serves a dual purpose: it provides resolution for symbolic refer-
ences in relocation expressions during linking, and it establishes a framework for the han-
dling of symbolic debug information. The symbol table consists of at least one fixed-
length entry per symbol with some symbols followed by auxiliary entries of the same size.

Because of symbolic debugging requirements the order of symbols in the symbol table is
very important. Whereas an individual symbol table entry can completely describe a sin-
gle debugging entity, the entities exist within the framework of the source language that
produced them. For example, symbol scoping and function blocks in C are represented
by the appropriate ordering of begin-end block entries in the symbol table. Symbols in the
symbol table appear in the sequence shown in Figure E-11.

Symbol index 0

Physical address Line number

Physical address Line number

. .

. .

. .

Symbol index 0

Physical address Line number

Physical address Line number
Freescale DSP Assembler Reference Manual 241

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-11 COFF Symbol Table Ordering

The entry for each symbol is a structure that holds the symbol value, its type, and other
information. There are symbol table entries used for relocation and linking and there are
special symbols used only for debugging. The two kinds of entries are distinguished by
combinations of field values in the symbol record. The structure of a symbol table entry
is illustrated in Figure E-12.

Filename 1

Function 1

Local symbols for function 1

Function 2

Local symbols for function 2

. . .

Statics

. . .

Filename 2

Function 1

Local symbols for function 1

. . .

Statics

. . .

Defined global symbols

Undefined global symbols
242 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-12 Symbol Table Entry Format

D.3.4.1 Symbol Name

The first eight bytes in the symbol table entry are a union of a character array and two
longs. If the symbol name is seven characters or less, the null-padded symbol name is
stored there. If the symbol name is longer than seven characters, then the entire symbol
name is stored in the string table. In this case, the eight bytes contain two long integers:
the first is zero and the second is the offset (relative to the beginning of the string table)
of the name in the string table. Since there can be no symbols with a null name, the ze-
roes on the first four bytes serve to distinguish a symbol table entry with an offset from
one with a name in the first eight bytes.

D.3.4.2 Symbol Value

The symbol value is a union of a CORE_ADDR typedef and an array of two longs. If the
symbol value is an address the contents will be stored as a CORE_ADDR structure with
memory and mapping attributes. Otherwise the contents are stored in the n_val field.
Whether the symbol value is an address or not depends on the storage class of the sym-
bol. See section D.3.4.5 for more information on the relationship of symbol value and stor-
age class.

Bytes Declaration Name Description

 0-7 char n_name Symbol name (null padded)

 0-3 long int n_zeroes Zero in this field indicates name
is in string table

 4-7 long int n_offset Offset of name in string table

 8-15 CORE_ADDR n_address Symbol address value

 8-15 unsigned long n_val[2] Symbol value

16-19 long int n_scnum Symbol section number

20-23 unsigned long n_type Symbol basic and derived type

24-27 long int n_sclass Symbol storage class

28-31 long int n_numaux Number of auxiliary entries
Freescale DSP Assembler Reference Manual 243

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
D.3.4.3 Section Number

The section number maps a symbol to its corresponding section in the object file (e.g. the
section in which the symbol is defined). A special section number (-2) marks symbolic
debugging symbols, including structure/union/enumeration tag names, typedefs, and the
name of the file. A section number of -1 indicates that the symbol has a value but is not
relocatable. Examples of absolute-valued symbols include automatic and register vari-
ables, function arguments, and end-of-structure symbols. A section number of 0 flags a
relocatable external symbol that is not defined in the current file. Section numbers greater
than zero correlate to the ordinal sequence of sections in the object file.

D.3.4.4 Symbol Type

The type field in the symbol table entry contains information about the basic and derived
type for the symbol. This information is generated by the compiler and assembler only if
the -G debug option is used. Each symbol has exactly one basic or fundamental type but
can have more than one derived type. The type information is encoded as sets of bits in
the field. Bits 0 through 3 hold one of the fundamental type values given in Figure E-13.
244 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-13 Fundamental Types

Bits 4 through 15 are arranged as six 2-bit subfields. These subfields represent levels of
the derived types given in Figure E-14.

Mnemonic Value Type

T_NULL 0 Type not assigned

T_VOID 1 Void

T_CHAR 2 Character

T_SHORT 3 Short integer

T_INT 4 Integer

T_LONG 5 Long integer

T_FLOAT 6 Floating point

T_DOUBLE 7 Double word floating point

T_STRUCT 8 Structure

T_UNION 9 Union

T_ENUM 10 Enumeration

T_MOE 11 Member of enumeration

T_UCHAR 12 Unsigned character

T_USHORT 13 Unsigned short

T_UINT 14 Unsigned integer

T_ULONG 15 Unsigned long
Freescale DSP Assembler Reference Manual 245

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-14 Derived Types

As an example of encoding fundamental and derived types, consider a function returning
a pointer to a character. The fundamental type is character, giving bits 0-3 of the symbol
type field the value 2. Bits 4-5 would hold a 2 for the derived type of function and bits 6-7
would contain a 1 for the pointer derived type. The value in the symbol entry type field
would result in %01100010 binary, or $62 hexadecimal.

D.3.4.5 Symbol Storage Class

The symbol storage class indicates how a symbol will be used during execution or debug-
ging. Some storage classes actually reflect how a symbol will be stored, e.g. as a register
parameter. Other storage classes provide information for special symbols used in debug-
ging, such as the beginning of blocks or the end of functions. Storage classes are outlined
in Figure E-15.

Mnemonic Value Type

DT_NON 0 No derived type

DT_PTR 1 Pointer

DT_FCN 2 Function

DT_ARY 3 Array
246 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-15 Storage Classes

Mnemonic Value Type

C_EFCN -1 Physical end of function

C_NULL 0 No storage class

C_AUTO 1 Automatic variable

C_EXT 2 External symbol

C_STAT 3 Static symbol

C_REG 4 Register variable

C_EXTDEF 5 External definition

C_LABEL 6 Label

C_ULABEL 7 Undefined label

C_MOS 8 Member of structure

C_ARG 9 Function argument

C_STRTAG 10 Structure tag

C_MOU 11 Member of union

C_UNTAG 12 Union tag

C_TPDEF 13 Type definition

C_USTATIC 14 Uninitialized static

C_ENTAG 15 Enumeration tag

C_MOE 16 Member of enumeration

C_REGPARAM 17 Register parameter

C_FIELD 18 Bit field
Freescale DSP Assembler Reference Manual 247

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-15 Storage Classes (continued)

The value of a symbol depends on its storage class. This relationship is summarized in
Figure E-16.

Mnemonic Value Type

C_BLOCK 100 Beginning and end of block

C_FCN 101 Beginning and end of function

C_EOS 102 End of structure

C_FILE 103 C language source filename

C_LINE 104 -

C_ALIAS 105 Duplicated tag

C_HIDDEN 106 -

A_FILE 200 Assembly source filename

A_SECT 201 Beginning and end of section

A_BLOCK 202 Beginning/end of COFF section

A_MACRO 203 Macro expansion

A_GLOBAL 210 Global assembly language symbol

A_XDEF 211 XDEFed symbol

A_XREF 212 XREFed symbol

A_SLOCAL 213 Section local label

A_ULOCAL 214 Underscore local label

A_MLOCAL 215 Macro local label
248 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-16 Storage Class and Value

Storage Class Value

C_AUTO Stack offset in words

C_EXT Relocatable address

C_STAT Relocatable address

C_REG Register number

C_LABEL Relocatable address

C_MOS Offset in words

C_ARG Stack offset in words

C_STRTAG 0

C_MOU 0

C_UNTAG 0

C_TPDEF 0

C_ENTAG 0

C_MOE Enumeration value

C_REGPARAM Register number

C_FIELD Bit displacement

C_BLOCK Relocatable address

C_FCN Relocatable address

C_EOS Size of structure in words

C_FILE (see below)

C_ALIAS Tag index

C_HIDDEN Relocatable address
Freescale DSP Assembler Reference Manual 249

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-16 Storage Class and Value (continued)

If a symbol has storage class C_FILE or A_FILE, the value of that symbol equals the sym-
bol table entry index of the next C_FILE or A_FILE symbol. That is, the C_FILE and
A_FILE entries form a one-way linked list in the symbol table. If there are no more C_FILE
or A_FILE entries in the symbol table, the value of the symbol is the index of the first global
symbol.

Relocatable symbols have a value equal to the relocatable address of that symbol. When
the section is relocated by the linker, the value of these symbols changes.

D.3.4.6 Auxiliary Entries

Every symbol table entry may have zero, one, or more auxiliary entries. These auxiliary
entries are used to hold additional information about the primary symbol. The number of
auxiliary entries associated with a given symbol can be determined by examining the
n_numaux field of the main symbol entry.

An auxiliary symbol table entry contains the same number of bytes as its associated sym-
bol table entry and is contiguous with the primary entry in the object file. Unlike primary
symbol table entries, however, the format of an auxiliary entry depends on the type and
storage class of the main symbol.

Storage Class Value

A_FILE (see below)

A_SECT String table offset to section name

A_BLOCK Relocatable address

A_MACRO String table offset to macro name

A_GLOBAL Relocatable address

A_XDEF Relocatable address

A_XREF String table offset to symbol name

A_SLOCAL Relocatable address

A_ULOCAL Relocatable address

A_MLOCAL Relocatable address
250 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
D.3.4.6.1 Filenames

The auxiliary table entry for a filename contains a 14-character array followed by an un-
signed long integer. If the integer is zero then the filename is in the array. Otherwise it is
in the string table at the offset given by the integer value. The x_ftype field indicates the
memory space used for the stack in compiled modules.

Figure E-17 Filename Symbol Auxiliary Entry

D.3.4.6.2 Sections

Section auxiliary entries have the format shown in Figure E-18. This information is anal-
ogous to selected fields in the corresponding section header. If the object file is relocat-
able a section symbol entry will have a second auxiliary entry with the format shown in
Figure E-19.

Figure E-18 Section Symbol Auxiliary Entry

Bytes Declaration Name Description

 0-13 char x_fname Source file name

 14-17 unsigned long x_foff String table offset to file name

 18-21 unsigned long x_ftype Memory space used by stack

Bytes Declaration Name Description

 0-3 long int x_scnlen Section length

 4-7 unsigned long x_nreloc Number of relocation entries

 8-11 unsigned long x_nlinno Number of line numbers

12-31 - - Unused (zero filled)
Freescale DSP Assembler Reference Manual 251

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-19 Relocatable Section Auxiliary Entry

The logical section number is the ordinal related to a SECTION directive in the assembler
source file. The relocation section number usually is the same as the logical section num-
ber, but may be different if the logical section is static within an enclosing section. The
memory mapping is an alternate encoding of the CORE_ADDR information in the section
header. Section type flags indicate whether this COFF section represents a buffer or
overlay block. If the current COFF section is a buffer or overlay block a third auxiliary entry
is produced. The layout of that entry is shown in Figure E-19.

Figure E-20 Relocatable Buffer/Overlay Auxiliary Entry

Buffers and overlays are mutually exclusive so their respective fields share storage space
in the object file. The buffer section number is really the buffer instance count in this file.

Bytes Declaration Name Description

 0-3 long int secno Logical section number

 4-7 long int rsecno Logical relocation section number

 8-11 long int flags Section type flags

12-27 struct mematt mem Section memory attributes

28-31 - - Unused (zero filled)

Bytes Declaration Name Description

 0-3 long int bufcnt Buffer section number

 4-7 long int buftyp Buffer type

 8-11 long int buflim Buffer limit

 0-15 struct mematt ovlmem Overlay memory attributes

16-19 long int ovlcnt Overlay section number

20-23 long int ovlstr Overlay origin expression

24-31 - - Unused (zero filled)
252 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Buffer type is either modulo or reverse carry. The buffer limit gives the upper bound for
the buffer size even though the block may contain less initialized data than this limit sug-
gests. The overlay memory structure gives the runtime memory attributes for this block.
The overlay section number is really the overlay instance count in this file. The overlay
origin expression is the expression given for the runtime counter in the assembler ORG
directive (see Chapter 6).

D.3.4.6.3 Tag Names

Auxiliary entries for C language structure and union tag names have the format described
in Figure E-21. Note that in Freescale DSP COFF the size of the associated structure or
union is in words as opposed to bytes as in standard COFF. The x_endndx field is used
to create a linked list of tag name entries through the symbol table.

Figure E-21 Tag Name Symbol Auxiliary Entry

D.3.4.6.4 End of Structures

The format for C language end-of-structure auxiliary entries is given in Figure E-22. Note
that the size of the structure, union, or enumeration is given in words rather than bytes.
The tag index holds the symbol table index for the tag record associated with this struc-
ture.

Bytes Declaration Name Description

 0-7 - - Unused (zero filled)

 8-11 unsigned long x_size Size of structure, union, or
enumeration in words

12-15 - - Unused (zero filled)

16-19 long int x_endndx Index of next structure, union, or
enumeration entry

20-31 - - Unused (zero filled)
Freescale DSP Assembler Reference Manual 253

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
Figure E-22 End of Structure Auxiliary Entry

D.3.4.6.5 Functions

Function auxiliary entries have the format shown in Figure E-23. Note that the size of the
function is given in words rather than bytes. The function tag index holds the symbol table
index to the begin-function symbol for this function. The x_endndx field points to the next
function symbol table entry. The x_lnnoptr field contains a byte offset pointer within the
object file to the line number entry that signals the start of this function (see section
D.3.3.3, Line Numbers, for more information).

Figure E-23 Function Symbol Auxiliary Entry

Bytes Declaration Name Description

 0-3 long int x_tagndx Tag index

 4-7 - - Unused (zero filled)

 8-11 unsigned long x_size Size of structure, union, or
enumeration in words

12-31 - - Unused (zero filled)

Bytes Declaration Name Description

 0-3 long int x_tagndx Tag index

 4-7 long int x_fsize Size of function in words

 8-11 - - Unused (zero filled)

12-15 long int x_lnnoptr File pointer to line number entry

16-19 long int x_endndx Index of next function entry

20-31 - - Unused (zero filled)
254 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
D.3.4.6.6 Arrays

The format for C language array auxiliary entries is given in Figure E-24. The tag index
contains the offset to the next array symbol in the symbol table. The line number field
gives the source file line number for the array declaration.

Figure E-24 Array Symbol Auxiliary Entry

D.3.4.6.7 End of Blocks and Functions

The format for C language symbol entries for the end of blocks and functions is given in
Figure E-25. Only the source file line number for the end of the block or function is stored.

Figure E-25 End of Block or Function Auxiliary Entry

Bytes Declaration Name Description

 0-3 long int x_tagndx Tag index

 4-7 unsigned long x_lnno Line number of array declaration

 8-11 unsigned long x_size Size of array

12-15 unsigned long x_dimen[0] First array dimension

16-19 unsigned long x_dimen[1] Second array dimension

20-23 unsigned long x_dimen[2] Third array dimension

24-27 unsigned long x_dimen[3] Fourth array dimension

28-31 - - Unused (zero filled)

Bytes Declaration Name Description

 0-3 - - Unused (zero filled)

 4-7 unsigned long x_lnno Source file line number

 8-31 - - Unused (zero filled)
Freescale DSP Assembler Reference Manual 255

Appendix D Freescale DSP Object File Format (COFF) - Object File Components
D.3.4.6.8 Beginning of Blocks and Functions

The format for C language symbol entries for the beginning of blocks and functions is de-
scribed in Figure E-26. The source file line number is retained. The x_endndx provides
a link to the next beginning of block or function symbol in the symbol table.

Figure E-26 Beginning of Block or Function Auxiliary Entry

D.3.4.6.9 Structure, Union, and Enumeration Names

The format for auxiliary entries related to structure, union, and enumeration names is giv-
en in Figure E-27. The tag index is used to access the tag symbol record that describes
this structure. Note that in Freescale DSP COFF the size of the associated structure or
union is in words as opposed to bytes as in standard COFF.

Bytes Declaration Name Description

 0-3 - - Unused (zero filled)

 4-7 unsigned long x_lnno Source file line number

 8-15 - - Unused (zero filled)

16-19 long int x_endndx Index of next beginning of
block or function

 20-23 unsigned long x_type Function prologue/epilogue index

24-31 - - Unused (zero filled)
256 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Differences in DSP Object For-
Figure E-27 Structure, Union, or Enumeration Name Auxiliary Entry

D.3.4.7 Object File Comments

Object file comments are stored in a single COFF symbol table entry. The symbol name
field contains the special comment string .cmt. The n_address field points to the com-
ment text as an offset into the string table. Comments generated automatically by the as-
sembler or via the IDENT directive have an n_scnum field with value of -1. Comments
produced with the COBJ directive generally have the section number of the COFF section
in which they reside. The type and storage class fields are both zero.

D.3.5 String Table

Symbol and section names longer than seven characters and comment text are stored
contiguously in the string table with each string delimited by a zero byte. The first four
bytes represent the size of the string table in bytes; offsets into the string table, therefore,
are always greater than or equal to 4. An empty string table has a length field with value
zero.

D.4 Differences in DSP Object Format and Standard COFF

Freescale DSP COFF is substantially the same as generic COFF and usage of format el-
ements is similar. However, the original COFF specification did not envision aspects of
machine architecture which the Freescale DSP family possesses. Moreover, standard
COFF encompasses a file format which is quite adaptable among host processors, but is
not necessarily portable among those hosts. It is straightforward enough to adapt COFF
to a new host machine, but the intent is that the derived host format will be recognized and
executed only on that target host. For Freescale DSP COFF the format had to be extend-
ed for cross-development such that a given object file would be usable on all targeted host
systems. The following sections outline the differences and changes between standard
COFF and Freescale DSP COFF.

Bytes Declaration Name Description

 0-3 long int x_tagndx Tag index

 4-7 - - Unused (zero filled)

 8-11 unsigned long x_size Size of structure, union, or
enumeration in words

12-31 - - Unused (zero filled)
Freescale DSP Assembler Reference Manual 257

Appendix D Freescale DSP Object File Format (COFF) - Differences in DSP Object For-
D.4.1 Multiple Memory Spaces

Standard COFF has no built-in mechanism for accommodating multiple memory spaces.
It does handle the notion of separate text and data sections, and a possible extension
would have been to define section types for the new memory areas. This quickly be-
comes unwieldy when mapping information (internal, external, port A/B) is considered as
well.

The solution was to extend addressing information to include the memory and mapping
with the address value itself. This is done by defining a C language typedef called
CORE_ADDR which holds both the memory and mapping data along with the memory ad-
dress. For any address context in the COFF file a CORE_ADDR is used rather than, for
example, an unsigned long. A description of the CORE_ADDR format is shown in Figure
E-28.

Figure E-28 CORE_ADDR Format

The enumeration values for the memory mapping field are shown in order in Figure E-29.

Bytes Declaration Name Description

 0-3 long w0.l Memory address

 4-7 enum w1.mape Memory mapping
258 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Differences in DSP Object For-
Figure E-29 Memory Mapping Enumerations

D.4.2 Object File Transportability

There are many different structure definitions in the COFF specification. These definitions
consist of fields comprised of varying C data types. These data types are recognized by
any reasonable C compiler, but their characteristics and sizes may change from machine
to machine. This is acceptable if the COFF files are to be used only on a particular ma-
chine architecture. But if COFF files are produced on one machine to be used on another
several problems may arise. One is that since the data fields can vary in size there could
be alignment problems when accessing structures or individual fields. Another issue is
byte ordering between machines. Given an arbitrary byte stream, some machines store
the bytes in a word starting at the least significant bit (LSB) end of the word, while others
store bytes starting at the most significant bit (MSB) end of the word.

Mnemonic Value Mnemonic Value

memory_map_p 0 memory_map_xa 16

memory_map_x 1 memory_map_xb 17

memory_map_y 2 memory_map_xe 18

memory_map_l 3 memory_map_xi 19

memory_map_none 4 memory_map_xr 20

memory_map_laa 5 memory_map_ya 21

memory_map_lab 6 memory_map_yb 22

memory_map_lba 7 memory_map_ye 23

memory_map_lbb 8 memory_map_yi 24

memory_map_le 9 memory_map_yr 25

memory_map_li 10 memory_map_pt 26

memory_map_pa 11 memory_map_pf 27

memory_map_pb 12 memory_map_emi 28

memory_map_pe 13 memory_map_e0-63 29-92

memory_map_pi 14 memory_map_error 666666

memory_map_pr 15
Freescale DSP Assembler Reference Manual 259

Appendix D Freescale DSP Object File Format (COFF) - Differences in DSP Object For-
The Freescale DSP version of COFF addresses these potential problems by normalizing
the object file. Normalization occurs in a number of ways. All structure and union ele-
ments are converted to long values, and raw data is stored in 4-byte quantities indepen-
dent of the word size of the target processor. In some cases this wastes space in the
object file and in memory but it was considered worth the price for transportability among
supported hosts. Also it is not a completely portable solution by any means (e.g. for ma-
chines with larger than 4-byte word sizes).

The byte ordering issue was dealt with by establishing a baseline ordering, providing com-
pliance for foreign hosts with conversion code. This introduces overhead logic on ma-
chines that do not support the baseline word order but again it was seen as a reasonable
trade-off to insure transportability of object files among development environments. Note
that byte swapping logic only comes into play for fields that are not byte-atomic, such as
integer fields. Character arrays in structures, for example, should not have their bytes ex-
changed.

The byte ordering for Freescale DSP COFF is shown in Figure E-30. It adheres to what
sometimes is called the big-endian approach to byte and word ordering.

Figure E-30 Freescale DSP COFF Byte Ordering

D.4.3 Structure Size Fields

In some of the COFF data structures there is a size field which gives the size of a block
in the target processor environment. For example, there are several symbol table auxil-
iary entries that specify the size of a structure or union for debug purposes. In standard
COFF these sizes ordinarily are in bytes but in Freescale DSP COFF they are given in
words unless otherwise indicated. The use of word sizes for debug entities should be dis-
tinguished from file pointer offset values in the object file. File pointers are indeed byte
offsets within the object file that are used by utilities to process information in the object
file itself.

D.4.4 Relocation Information

In standard COFF the r_symndx field of any given relocation record points to an entry in
the symbol table corresponding to a symbol reference requiring modification. When the
standard COFF linker performs symbol resolution, pairing symbol definitions with match-
ing references, it updates the relocation entry to point to the symbol definition and dis-

Addr n Addr n+1 Addr n+2 Addr n+3

 MSB MSB - 1 LSB + 1 LSB
260 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Data Expression For-
cards the reference symbol. When the relocation entries are processed, the resolved
symbol value is used to modify the raw data indicated by the relocation entry at r_vaddr.

In Freescale DSP COFF r_symndx is an offset into the string table which points to a re-
location expression. The linker interprets this expression and updates the entire word at
r_vaddr with the result of the expression evaluation. The relocation type is always zero.
See section D.5, Object File Data Expression Format for more information on relocation
expressions.

D.4.5 Block Data Sections

Generic COFF does not make allowance for a block data section. A block data section
results from use of the assembler BSC directive, where a large block of memory is initial-
ized with a single value. Block data sections are handled in Freescale DSP COFF by
making special use of the section s_vaddr field and adding an informative flag.

In most cases the section virtual address is the same as the physical address. However,
for block data sections in Freescale DSP object files the virtual address field holds the re-
peat count for the single raw data value associated with the section. For example, if the
assembly language source file included a directive of the form BSC $400,$FFFF the
s_vaddr field would contain the value $400, the s_size field would be 1 (or 2 if in L mem-
ory), and the single raw data word associated with the section would be $FFFF. In addi-
tion, the STYP_BLOCK flag is set in the section s_flags field.

D.4.6 Other Extensions

If the object file is relocatable there are extra structures which the assembler and linker
generate to support special constructs such as logical sections, buffers, and overlays.
The optional link file header contains information which the linker requires; it is described
in section D.3.2. Every symbol table entry for a section in a relocatable file has an extra
auxiliary entry described in section D.3.4.6.2.

One special DSP COFF structure not documented elsewhere is the comment symbol. A
comment symbol table entry is emitted either indirectly via the assembler IDENT directive
or directly with the COBJ directive (see Chapter 6). A comment symbol table entry may
be identified by a symbol name of .cmt and a type and storage class of zero. The value
field of a comment symbol holds the offset into the string table of the comment text. The
section number for a comment symbol produced with the IDENT directive is always -1.
Comment symbols generated with the COBJ directive have the section number of the
section where the COBJ directive appears in the source file. Comment symbols have no
auxiliary entry.

D.5 Object File Data Expression Format

Object file data expressions are used in data relocation records to represent values to be
loaded into memory. An expression is a combination of symbols, constants, operators,
Freescale DSP Assembler Reference Manual 261

Appendix D Freescale DSP Object File Format (COFF) - Object File Data Expression For-
and parentheses. Expressions may contain user-defined labels, integers, floating point
numbers, or literal strings. An object file data expression generally follows the guidelines
of assembler expressions, except that functions are not supported (e.g. they must be
evaluated at assembly time), and operators are provided for linker-specific operations. Al-
so, floating point terms found in these expressions are converted to binary values.

D.5.1 Data Expression Generation

Link file data expressions are generated when external or relocatable operands are en-
countered during assembly or incremental link processing. In most cases the operand ex-
pression is copied verbatim from the source and embellished with link evaluation control
constructs. For example, consider the source line below:

MOVE #FOO,R0

The DSP96000 assembler produces the following encoding for this line in the object file:

$3A8D2000 {FOO}@0#0

Since the symbol FOO is not known to the assembler it generates a two-word instruction
and places a relocation reference to the expression in the position of the second instruc-
tion word. The braces ({ }) indicate that this is a user expression that should adhere to
certain integrity constraints such as those governing absolute and relative terms. Other-
wise the braces are treated much like parentheses. The at sign (@) is a binary operator
indicating the memory space of the left operand by the right. The pound sign (#) is a binary
operator signifying the size in bits of the left operand by the right. More information on
these special operators and their operands is given below.

Here is another example of data expression generation:

JCLR #1,X:LOC,LABEL

For this conditional jump the assembler produces the following object file code:

(($02A00481&~(~(~0<<8)<<12))I(({LOC}@1#8&~(~0<<8))<<12)) {LABEL}@0#0

The first expression is evaluated such that the relative address LOC, resolved at link time,
is shifted and masked into the middle eight bits of the base instruction word ($02A00481).
The expression could have been more complex if the bit number was an external refer-
ence. The relative value of the symbol LABEL occupies the second instruction word.

D.5.2 Data Expression Interpretation

Object file data expressions are similar to standard assembler expressions which gener-
ally follow the rules of algebra and boolean arithmetic. They are written using infix nota-
tion in conjunction with unary and binary operators and parentheses. There are also
extensions to the usual set of assembler arithmetic and grouping operators. These are
control constructs that assist the linker in determining the size, type, and characteristics
of an expression operand.
262 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Data Expression For-
D.5.2.1 User Expression - { ... }

The curly braces ({ }) delimit a user expression within a data expression. A user expres-
sion is that part of a data expression that was written by the programmer and not gener-
ated by the assembler or linker as part of its control requirements. It is useful to isolate the
user expression in order to check for relationships among absolute and relative terms. In
all other respects the curly braces behave like parentheses.

D.5.2.2 Relocatable Expression - [...]

The square brackets ([]) are used to enclose a relocatable expression. The value con-
tained in the square brackets is an offset from the base of the current section. Usually this
grouping operator is placed around the value of an assembler local label (underscore la-
bel) since these symbols do not migrate to the link file.

D.5.2.3 Memory Space Operator - @

The at sign (@) is a binary operator that checks the memory space compatibility of the left
operand based on the value of the right operand. The right operand can have the follow-
ing values:

0 = None
1 = X space
2 = Y space
3 = L space
4 = P space
5 = E space

The compatibility check is made based on the matrix outlined in section 3.3, Expression
Memory Space Attribute.

D.5.2.4 Bit Size Operator - #

The pound sign (#) is a binary operator used to verify the size in bits of the left operand
given the value of the right operand. The following bit sizes and operand type correspon-
dences are defined:

-16 - 16-bit signed short immediate or offset
-15 - 15-bit signed short PC-relative address
 -7 - 7-bit signed short immediate or offset
 -6 - 6-bit signed short PC-relative address
 -5 - 5-bit signed short offset
 -1 - Negated immediate shift
 0 - DSP word size immediate or absolute
 1 - Immediate shift
Freescale DSP Assembler Reference Manual 263

Appendix D Freescale DSP Object File Format (COFF) - Object File Data Expression For-
 5 - 5-bit short absolute
 6 - 6-bit short immediate or absolute
 7 - 7-bit short immediate, absolute, or offset
 8 - 8-bit short immediate or absolute
12 - 12-bit short immediate or absolute
19 - 19-bit short immediate
85,86,87 - 5,6,7-bit I/O short absolute

D.5.2.5 Memory Attribute Operator - :

The colon (:) is used to assign a memory space and counter encoded in the right operand
to the left operand. The low sixteen bits of the right operand contain the counter designa-
tor for the left operand. The high sixteen bits contain the memory space designator for
the left operand. The value here corresponds to the memory space values given for the
memory space operator (@) described above.

D.5.2.6 Line Number Operator - !

The exclamation point (!) is a binary operator that associates the source file line number
of the left operand to the value of the right operand. The left operand is a decimal value
representing the source file line number. The right operand is an arbitrary relocation ex-
pression. The line number operator assists the linker in correlating source line numbers
to expression terms which could be evaluated erroneously at link time, e.g. forced oper-
ands which do not fit into the instruction word after relocation.

D.5.2.7 BFxxx Instruction Mask Function - @FBF()

The @FBF() function is generated by the assembler when the mask operand for a bitfield
instruction is external. The assembler passes a relocation expression to the function as
an argument. The linker evaluates the expression in parentheses and adjusts the associ-
ated instruction accordingly.

D.5.2.8 Local Relocatable Reference Function - @LRF()

The @LRF() function attempts to encapsulate more detail about a relocatable expression
than is generated with other operators such as @ and :. Its main purpose is to provide
sufficient information for evaluating local relocatable expressions that are referenced out-
side a defining context. For example, the assembler might produce an @LRF() function
for a reference to an underscore label that is outside its defining section. The function ar-
guments consist of the original relocatable expression, the memory space/mapping value,
the location counter designation, the defining and relocation section numbers, and any
buffer or overlay sequence numbers associated with the expression.
264 DSP Assembler Reference Manual Freescale

Appendix D Freescale DSP Object File Format (COFF) - Object File Data Expression For-
D.5.2.9 Alternate Encoding Function - @ENC()

The @ENC() provides two encoding expressions for the same instruction. This is useful
in cases where the unknown value of an external operand can affect which expression is
used for the final encoding. The function takes four arguments. The first argument to the
function is the external operand expression. The second argument is the absolute value
beyond which the second encoding expression is used over the first. The third argument
is the first encoding expression and the last argument is the second encoding expression.
Freescale DSP Assembler Reference Manual 265

Appendix D Freescale DSP Object File Format (COFF) - Object File Data Expression For-
266 DSP Assembler Reference Manual Freescale

Appendix E Instruction Set Information

E.1 DSP56300 Information

The Freescale DSP56300 refers to a family of high-speed, low power programmable
CMOS processors. The DSP56300 supports 24-bit signed fixed-point fractional arith-
metic.

E.1.1 Instruction Set Summary

DSP56300 instructions can be grouped by function into six types:

1. Arithmetic instructions
2. Logical instructions
3. Bit manipulation instructions
4. Loop instructions
5. Move instructions
6. Program control instructions

E.1.1.1 Arithmetic Instructions

The DSP56300 instructions used for arithmetic operations are:

ABS - Absolute value*
ADC - Add long with carry*
ADD - Add*
ADDL - Shift left then add*
ADDR - Shift right then add*
ASL - Arithmetic shift accumulator left*
ASR - Arithmetic shift accumulator right*
CLR - Clear accumulator*
CMP - Compare*
CMPM - Compare magnitude*

*Instruction allows parallel data move.
Freescale DSP Assembler Reference Manual 267

Appendix E Instruction Set Information - DSP56300 Information
DEC - Decrement accumulator
DIV - Divide iteration
INC - Increment accumulator
MAC - Signed multiply-accumulate*
MACR - Signed multiply-accumulate and round*
MPY - Signed multiply*
MPYR - Signed multiply and round*
NEG - Negate accumulator*
NORM - Normalize accumulator iteration
RND - Round accumulator*
SUB - Subtract*
SUBL - Shift left then subtract*
SUBR - Shift right then subtract*
Tcc - Transfer conditionally
TFR - Transfer data ALU register*
TST - Test*

E.1.1.2 Logical Instructions

The DSP56300 instructions used for logical operations are:

AND - Logical AND*
ANDI - AND Immediate with control register
EOR - Logical exclusive OR*
LSL - Logical shift accumulator left*
LSR - Logical shift accumulator right*
NOT - Logical complement on accumulator*
OR - Logical inclusive OR*
ORI - OR immediate with control register
ROL - Rotate accumulator left*
ROL - Rotate accumulator right*

E.1.1.3 Bit Manipulation Instructions

The DSP56300 instructions used for bit manipulation are:

BCHG - Bit test and change
BCLR - Bit test and clear
BSET - Bit test and set
BTST - Bit test on memory

*Instruction allows parallel data move.
268 DSP Assembler Reference Manual Freescale

Appendix E Instruction Set Information - DSP56300 Information
E.1.1.4 Loop Instructions

The DSP56300 instructions used for loop operations are:

DO - Start hardware loop
ENDDO - Exit from hardware loop

E.1.1.5 Move Instructions

The DSP56300 instructions used for move operations are:

LUA - Load updated address
MOVE - Move data*
MOVEC - Move control register
MOVEM - Move program memory
MOVEP - Move peripheral data

E.1.1.6 Program Control Instructions

The DSP56300 instructions used for program control are:

DEBUG - Enter debug mode
DEBUGcc - Enter debug mode conditionally
ILLEGAL - Illegal instruction interrupt
Jcc - Jump conditionally
JCLR - Jump if bit clear
JMP - Jump
JScc - Jump to subroutine conditionally
JSCLR - Jump to subroutine if bit clear
JSET - Jump if bit set
JSSET - Jump to subroutine if bit set
JSR - Jump to subroutine
NOP - No operation
REP - Repeat next instruction
RESET - Reset on-chip peripheral devices
RTI - Return from interrupt
RTS - Return from subroutine
STOP - Stop processing (low power standby)
SWI - Software interrupt
WAIT - Wait for interrupt (low power standby)

*Instruction allows parallel data move.
Freescale DSP Assembler Reference Manual 269

Appendix E Instruction Set Information - DSP56300 Information
E.1.2 Register Names and Usage

The following DSP56300 register names, in either upper or lower case, cannot be used
as symbol names in an assembly language source file:

X A AB
X0 A0 BA
X1 A1 A10
Y B B10
Y0 B0 A2
Y1 B1 B2

R0 N0 M0 MR
R1 N1 M1 CCR
R2 N2 M2 SR
R3 N3 M3 LC
R4 N4 M4 LA
R5 N5 M5 SSH
R6 N6 M6 SSL
R7 N7 M7 OMR

The following DSP56300 registers are used by the assembler in structured control state-
ment processing (Chapter 7):

A X0 Y0

E.1.3 Condition Code Mnemonics

Following are the DSP56300 condition code mnemonics which correspond to the condi-
tional instructions based on the CCR condition codes. These tests may be used in an op-
erand comparison expression within a structured control statement (Chapter 7).

<CC> - carry clear
<CS> - carry set
<EC> - extension clear
<EQ> - equal
<ES> - extension set
<GE> - greater or equal
<GT> - greater than
<HS> - higher or same
<LC> - limit clear
<LE> - less or equal
<LO> - lower
<LS> - limit set
270 DSP Assembler Reference Manual Freescale

Appendix E Instruction Set Information - DSP56300 Information
<LT> - less than
<MI> - minus
<NE> - not equal
<NN> - not normalized
<NR> - normalized
<PL> - plus
Freescale DSP Assembler Reference Manual 271

Appendix E Instruction Set Information - DSP56300 Information
272 DSP Assembler Reference Manual Freescale

INDEX

Index
! 20
- 20, 21
!= 22
" 67, 79
67, 88
#< 68, 89
#> 68, 90
% 21, 67, 77
& 22
&& 22
* 21, 67, 82
+ 20, 21
++ 67, 83, 84
/ 21
; 67, 72
;; 67, 73
< 22, 67, 86
<< 21, 67, 85
<= 22
== 22
> 22, 67, 87
>= 22
>> 21
? 67, 76
@ 67, 81
\ 67, 74
^ 22, 67, 78
| 22
|| 22
~ 20

— A —

Absolute expression 17
Absolute mode 2, 9
Address assignment 42
Addressing

I/O short 85
immediate 88
long 87
long immediate 90
short 86
short immediate 89

Assembler
command line 1
device 267
error 196
fatal error 226
installation 1
mode 132
operation 1
option 6, 135
output 15
processing 8
verbose 7
warning 142, 188

Assembly language 1

— B —

Bootstrap mode 54
Buffer 9

address 91
circular 47
Freescale DSP Assembler Reference Manual 273

Index
end 112

— C —

Checksum 137, 138
COFF 231, 257
Command line 1

input 4
Command line option 2

-A 2
-B 3
-D 3
-EA 4
-EW 4
-F 4
-G 4
-I 5
-L 5
-M 6
-O 6
-P 6
-Q 6
-V 7
-Z 7

Comment 97
delimiter 72
object file 96, 257, 261
unreported 73

Comment field 15
Conditional assembly 57, 65, 124, 137
Constant 19

binary 19
decimal 19
define 98, 99
hexadecimal 19
storage 93
string 20

Cycle count 137, 138

— D —

Data

block 261
Data hiding 38
Data transfer field 14
Debug 4
Directive 67

.BREAK 70, 168, 183

.CONTINUE 70, 169, 183

.ELSE 70, 183

.ENDF 70, 183

.ENDI 70, 183

.ENDL 70, 183

.ENDW 70, 183

.FOR 70, 170, 183

.IF 70, 171, 183

.LOOP 70, 172, 183

.REPEAT 70, 173, 183

.UNTIL 70, 183

.WHILE 70, 173, 183
assembly control 68, 181
BADDR 69, 91, 182
BSB 69, 92, 182
BSC 69, 93, 182
BSM 69, 94, 182
BUFFER 69, 95, 182
COBJ 70, 96, 183
COMMENT 68, 97, 181
data definition 69, 182
DC 69, 98, 182
DCB 69, 99, 182
DEFINE 3, 68, 79, 100, 138, 181
DS 69, 101, 182
DSM 69, 102, 182
DSR 69, 103, 182
DUP 65, 70, 104, 183
DUPA 65, 70, 106, 183
DUPC 65, 70, 108, 183
DUPF 65, 70, 109, 183
END 68, 111, 181
ENDBUF 69, 112, 182
ENDIF 70, 113, 183
274 DSP Assembler Reference Manual Freescale

Index
ENDM 58, 70, 114, 183
ENDSEC 69, 115, 182
EQU 69, 116, 182
EXITM 70, 117, 183
FAIL 68, 118, 181
FORCE 68, 119, 181
GLOBAL 69, 120, 182
GSET 69, 121, 182
HIMEM 68, 122, 181
IDENT 70, 123, 183
IF 65, 70, 124, 183
in loop 138
INCLUDE 68, 125, 181
LIST 69, 126, 182
listing control 69, 182
LOCAL 69, 127, 182
LOMEM 68, 128, 181
LSTCOL 69, 129, 182
MACLIB 6, 58, 70, 130, 183
MACRO 58, 70, 131, 183
macro 70, 183
MODE 41, 68, 132, 181
MSG 68, 133, 181
NOLIST 69, 134, 182
object file 70, 183
OPT 6, 69, 135, 182
ORG 43, 68, 143, 181
PAGE 69, 147, 182
PMACRO 70, 149, 183
PRCTL 69, 150, 182
RADIX 68, 151, 181
RDIRECT 57, 68, 152, 181
SCSJMP 68, 153, 181
SCSREG 68, 154, 181
SECTION 69, 155, 182
SET 39, 69, 158, 182
STITLE 69, 159, 182
structured control 70, 183
symbol definition 69, 182
SYMOBJ 70, 160, 183

TABS 69, 161, 182
TITLE 69, 162, 182
UNDEF 68, 163, 181
WARN 68, 164, 181
XDEF 38, 69, 165, 182
XREF 38, 69, 166, 182

DSP56300 267
condition code 270
instruction set 267
register 270

DSPASMOPT 2

— E —

Environment variable 2
Error

command line 186
fatal 226
output 4

Expression 17
absolute 17
address 137
compound 176
condition code 174
constant 19
formatting 176
function 23
internal representation 19
object file 261
operand comparison 175
operator 20
radix 151
relative 17
simple 174

— F —

File
command line 4
include 5, 125
input 11
listing 5, 15, 139
Freescale DSP Assembler Reference Manual 275

Index
macro 6
object 3, 231
output 7
source 7, 11

Function 23, 81
ABS 24, 26
ACS 24, 26
ARG 25, 26
ASN 24, 27
AT2 24, 27
ATN 24, 27
CCC 26, 27
CEL 24, 27
CHK 26
CNT 25, 28
COH 24, 28
conversion 25
COS 24, 28
CTR 26, 28
CVF 25, 29
CVI 25, 29
CVS 25, 29
DEF 26, 29
EXP 26, 29
FLD 25, 30
FLR 24, 30
FRC 25, 30
INT 26, 30
L10 24, 30
LCV 26, 31
LEN 25, 31
LFR 25, 31
LNG 25, 31
LOG 24, 32
LST 26, 32
LUN 25, 32
MAC 25, 32
macro 25
mathematical 24
MAX 24, 32

MIN 24, 33
miscellaneous 26
MSP 26, 33
MXP 25, 33
POS 25
POW 24, 33, 34
REL 26, 34
RND 24, 34
RVB 25, 34
SCP 25, 34
SGN 24, 35
SIN 24, 35
SNH 24, 35
SQT 24, 35
string 25
TAN 24, 35
TNH 24, 36
UNF 25, 36
XPN 24, 36

— I —

Include file 5, 125

— L —

Label 13
local 13, 59, 64, 139, 142

Label field 13
Line continuation 74
Line number 240
Listing file 5, 15, 139

format 129, 138, 141, 147, 161
sub-title 159
title 162

Load address 8
Load location counter 9
Load memory space 8, 9
Local label 13

macro 13
Location counter 82, 143
276 DSP Assembler Reference Manual Freescale

Index
— M —

Macro 57
call 60, 139
comment 138
definition 58, 131, 139
directive 131
end 114
exit 117
expansion 60, 139
file 6
library 58, 130, 139
purge 149

Macro argument
concatenation operator 61, 74
local label override 64
local label override operator 78
return hex value operator 63, 77
return value operator 62, 76
string operator 63

Memory
limit 122, 128
utilization 15, 139

Memory space 8, 139, 143
attribute 17

— O —

Object file 3
auxiliary entry 250
comment 96, 257, 261
data expression 261
differences 257
file header 233
format 231
identification 123
line number 240
optional header 234
relocation 239, 260
section 236
section number 244
storage class 246

structure 231
structure size 260
symbol 141, 160
symbol name 243
symbol table 241
symbol type 244
symbol value 243
transportability 259

Operand field 14
Operation field 14
Operator 20

arithmetic 21
bitwise 22
logical 22
precedence 23
relational 22
shift 21
unary 20

Option
AE 136, 137
assembler operation 137
CC 137
CEX 136, 137
CK 137
CL 136, 137
CM 137, 138
CONST 137, 138
CONTC 138
CONTCK 137, 138
CRE 136, 138
DEX 136, 138
DLD 137, 138
DXL 136, 138
FC 135, 138
FF 135, 138
FM 135, 138
GL 137, 138
GS 137, 138
HDR 136, 138
IC 136, 138
Freescale DSP Assembler Reference Manual 277

Index
IL 136, 139
INTR 137, 139
LB 137, 139
LDB 137, 139
listing format 135
LOC 136, 139
MC 136, 139
MD 136, 139
message 136
MEX 136, 139
MI 137, 139
MSW 136, 139
MU 136, 139
NL 136, 139
NOAE 139
NOCC 139
NOCEX 139
NOCK 139
NOCL 139
NOCM 140
NODEX 140
NODLD 140
NODXL 140
NOFC 140
NOFF 140
NOFM 140
NOGS 140
NOHDR 140
NOINTR 140
NOMC 140
NOMD 140
NOMEX 140
NOMI 140
NOMSW 140
NONL 140
NONS 140
NOPP 140
NOPS 140
NORC 140
NORP 140

NOSCL 140
NOSI 140
NOU 141
NOUR 141
NOW 141
NS 136, 141
PP 135, 141
PS 137, 141
PSM 137
RC 135, 141
reporting 136
RP 137, 141
RSV 137
S 136, 141
SCL 136, 141
SCO 136, 141
SI 137, 141
SO 136, 141
SVO 137
symbol 136
U 136, 142
UR 136, 142
W 136, 142
WEX 142
XLL 136, 142
XR 136, 142

Overlay 8, 45, 51
bootstrap 54

— P —

Program counter 82, 143

— R —

Relative expression 17
Relative mode 9
Relocation 239, 260
Runtime address 8
Runtime location counter 9
Runtime memory space 8, 9
278 DSP Assembler Reference Manual Freescale

Index
— S —

Section 37, 155
block data 261
data hiding 38
end 115
fragmented 40
global 39, 120, 138, 155
header 237
local 39, 127, 155
macro 40
nested 40, 141
relocation 41
static 42, 138, 155
symbol 38

Source file 7, 11
end 111
format 12

String 11
concatenation 12, 83, 84
delimiter 79
packed 141
position 33
substring 12

Symbol 11
case 138
cross-reference 138
equate 116, 138
global 138
listing 141
set 121, 158
strip 7
undefined 142

— W —

Warning 142, 188
Freescale DSP Assembler Reference Manual 279

	Freescale DSP Assembler Reference Manual
	Contact Information
	Preface
	Contents
	List of Figures
	Chapter 1 Freescale DSP Assembler
	1.1 Introduction
	1.2 Assembly Language
	1.3 Installing the Assembler
	1.4 Running the Assembler
	1.5 Assembler Processing
	1.6 Definition of Terms
	1.7 Assembler Support for Digital Signal Processing

	Chapter 2 Writing Assembly Language Programs
	2.1 Input File Format
	2.2 Symbol Names
	2.3 Strings
	2.4 Source Statement Format
	2.4.1 Label Field
	2.4.2 Operation Field
	2.4.3 Operand Field
	2.4.4 Data Transfer Fields
	2.4.5 Comment Field

	2.5 Assembler Output

	Chapter 3 Expressions
	3.1 Introduction
	3.2 Absolute and Relative Expressions
	3.3 Expression Memory Space Attribute
	3.4 Internal Expression Representation
	3.5 Constants
	3.5.1 Numeric Constants
	3.5.2 String Constants

	3.6 Operators
	3.6.1 Unary operators
	3.6.2 Arithmetic operators
	3.6.3 Shift operators
	3.6.4 Relational operators
	3.6.5 Bitwise operators
	3.6.6 Logical operators

	3.7 Operator Precedence
	3.8 Functions
	3.8.1 Mathematical Functions
	3.8.2 Conversion Functions
	3.8.3 String Functions
	3.8.4 Macro Functions
	3.8.5 Assembler Mode Functions

	Chapter 4 Software Project Management
	4.1 Introduction
	4.2 Sections
	4.3 Sections and Data Hiding
	4.3.1 Sections and Symbols
	4.3.2 Sections and Macros
	4.3.3 Nested and Fragmented Sections

	4.4 Sections and Relocation
	4.5 Address Assignment
	4.5.1 The ORG Directive
	4.5.2 Overlays
	4.5.3 Address Assignment Examples
	4.5.4 Circular Buffers

	4.6 Example 1: Multi-Programmer Environment
	4.6.1 Absolute Mode Implementation
	4.6.2 Relative Mode Implementation

	4.7 Example 2: Overlays
	4.7.1 Absolute Mode Implementation
	4.7.2 Relative Mode Implementation

	4.8 Example 3: Bootstrap Overlay
	4.8.1 Absolute Mode Implementation
	4.8.2 Relative Mode Implementation

	Chapter 5 Macro Operations and Conditional Assembly
	5.1 Macro Operations
	5.2 Macro Libraries
	5.3 Macro Definition
	5.4 Macro Calls
	5.5 Dummy Argument Operators
	5.5.1 Dummy Argument Concatenation Operator - \
	5.5.2 Return Value Operator - ?
	5.5.3 Return Hex Value operator - %
	5.5.4 Dummy Argument String Operator - "
	5.5.5 Macro Local Label Override Operator - ^

	5.6 DUP, DUPA, DUPC, DUPF Directives
	5.7 Conditional Assembly

	Chapter 6 Assembler Significant Characters and Directives
	6.1 Introduction
	6.2 Assembler Significant Characters
	6.3 Assembler Directives
	6.3.1 Assembly Control
	6.3.2 Symbol Definition
	6.3.3 Data Definition/Storage Allocation
	6.3.4 Listing Control and Options
	6.3.5 Object File Control
	6.3.6 Macros and Conditional Assembly
	6.3.7 Structured Programming

	Chapter 7 Structured Control Statements
	7.1 Introduction
	7.2 Structured Control Directives
	7.3 Syntax
	7.3.1 .BREAK Statement
	7.3.2 .CONTINUE Statement
	7.3.3 .FOR Statement
	7.3.4 .IF Statement
	7.3.5 .LOOP Statement
	7.3.6 .REPEAT Statement
	7.3.7 .WHILE Statement

	7.4 Simple and Compound Expressions
	7.4.1 Simple Expressions
	7.4.1.1 Condition Code Expressions
	7.4.1.2 Operand Comparison Expressions
	7.4.2 Compound Expressions

	7.5 Statement Formatting
	7.5.1 Expression Formatting
	7.5.2 .FOR/.LOOP Formatting
	7.5.3 Assembly Listing Format

	7.6 Effects on the Programmer’s Environment

	Appendix A ASCII Character Codes
	Appendix B Directive Summary
	B.1 Assembly Control
	B.2 Symbol Definition
	B.3 Data Definition/Storage Allocation
	B.4 Listing Control and Options
	B.5 Object File Control
	B.6 Macros and Conditional Assembly
	B.7 Structured Programming

	Appendix C Assembler Messages
	C.1 Introduction
	C.2 Command Line Errors
	C.3 Warnings
	C.4 Errors
	C.5 Fatal Errors

	Appendix D Freescale DSP Object File Format (COFF)
	D.1 Introduction
	D.2 Object File Structure
	D.3 Object File Components
	D.3.1 File Header
	D.3.2 Optional Header
	D.3.3 Sections
	D.3.4 Symbol Table
	D.3.5 String Table

	D.4 Differences in DSP Object Format and Standard COFF
	D.4.1 Multiple Memory Spaces
	D.4.2 Object File Transportability
	D.4.3 Structure Size Fields
	D.4.4 Relocation Information
	D.4.5 Block Data Sections
	D.4.6 Other Extensions

	D.5 Object File Data Expression Format
	D.5.1 Data Expression Generation
	D.5.2 Data Expression Interpretation

	Appendix E Instruction Set Information
	E.1 DSP56300 Information
	E.1.1 Instruction Set Summary
	E.1.2 Register Names and Usage
	E.1.3 Condition Code Mnemonics

	Index
	- A -
	- B -
	- C -
	- D -
	- E -
	- F -
	- I -
	- L -
	- M -
	- O -
	- P -
	- R -
	- S -
	- W -

