US006061067A

United States Patent [(1] Patent Number: 6,061,067
Silva et al. [45] Date of Patent: *May 9, 2000
[54] APPLYING MODIFIERS TO OBJECTS 5,745,122 4/1998 Gay et al. ceeveecrerrerrereecrecnne 345/433
BASED ON THE TYPES OF THE OBJECTS 5,796,400 8/1998 Atkinson et al. . 345/441 X
5,801,709 9/1998 Suzuki et al. vvvverereeereerrnnnnn 345/433
[75] Inventors: Daniel David Silva, San Rafael, Calif ; 5,818,452 10/1998 Atkinson et al.c........ 345/441 X
Rolf Walter Berteig, Seattle, Wash.;
Donald Lee Brittain, Santa Barbara, OTHER PUBLICATIONS
Calif..; Thomas. Dene Hudson, Port Lau—Kee et al., “VPL: An Active, Declarative Visual Pro-
Washington, Wis.; Gary S. Yost, San gramming System”, IEEE, pp. 4046, 1991.
Francisco, Calif. 3D Studio Max User Manual vol. 1 and 2 and Tutorial,
.) . Kinetix, Autodesk Inc., pp. 1-14 through 1-15, 6—1 through
[73] Assignee: Autodesk, Inc., San Rafacl, Calif. 6-12, 13—1 through 1316 and tutorial 6-10 through 6-12,
[*] Notice: This patent is subject to a terminal dis- Mar. 1996.
claimer. Primary Examiner—Mark K. Zimmerman
[21] Appl. No. 08/903,958 Attorney, Agent, or Firm—McDermott, Will & Emery
ppl. No.: y
[57] ABSTRACT
[22] Filed: Jul. 31, 1997
A three dimensional (3D) modeling system for generating a
Related U.S. Application Data 3D representation of a modeled object on a display device of
[60] Provisional application No. 60/025,117, Aug. 2, 1996. a computer system. The modeled object is represented by an
7 initial definition of an object and a set of modifiers. Each
[;] glts (él] ... G06§4§Z;g modifier modifies some portion of the definition of an object
[52] ST T e that may result in a change in appearance of the object when
[58] Field of Searchocooevvveveeeeen. 345/433, 441, rendered. The modifiers are ordered so that the first modifier
345/522, 437, 438, 439, 349 modifies some portion of the initial definition of the object
56 Ref Cited and produces a modified definition. The next modifier modi-
[56] elerences Lite fies the results of the previous modifier. The results of the
U.S. PATENT DOCUMENTS last modifier are then used in rendering processes to generate
the 3D representation. Each modifier is associated with a
g’jg;’égz 11/ ggg ‘;;’hlilson etal s ;g/ 343‘; three dimensional representation so that the user can more
5490246 2;1996 Bfotzi;f: al 3 45% 49 easily visualize the effect of the modifier.
5,583,977 12/1996 Seidl 345/433
5,731,819 3/1998 Gagne et al. ...cocovvuvinviriincnncn. 345/433 16 Claims, 14 Drawing Sheets
= 3D Studio MAX-Untitled [+1% 1DAMpdetlling
File Edit Group Views Rendering He|P /—_ nimation
h ToIBIm A 12 Lol ol view 12 [BRXIYT2 (]] P FRER)i [1]8] Interface
SEREAEN e el
[Bfe]v [Sle =]
Bound 8 [tendard Primitives 4]
Cylinder ox —— OhedTwe
810 830
5 [—_Hm
2
Aﬁ;%! 15
2 AT
A A [_Tepenciin
W / /)11/ Length: 20 &1
\ I Width: 7227 0
Wave - 7 Height: (753503 T8
World / / \ \ Lenath Segs: [T 9
L— Space Width Segs: [(T____TH
Modifier HeightSeg: [T 1)
800 [:]Genelale Mapping Coords
// !
- - Ta] 11615 |[50961 [[00_ [Gng=100 | «41 > l»IQ@ﬁ B
é|ic;:1:;t:ddrsngl::l::gin creation process {ollefl={ sl -] Amm =ll20
Frame
Indicator

840

6,061,067

Sheet 1 of 14

May 9, 2000

U.S. Patent

| ainbi4

001 wasAg Jsindwo?

oLl oci
J0ssan0ld (s)aoineq indy)
GEl
a%euau] uolewIuYy L ————————0G| shg
g Buapopy ae
\

AL RED

/ 0c 1 8dineq Aeldsiq ov| Aowen
u.. S — 5 L2 | Shl
MH_,A ; | - 7 7/ _ / uoiedljddy uonewiuy g 6ullpoW AE
—
= |\
2 \[////
— AR AL LB ve 261 061
=1 & = NS /77777 souIpon JoUIPON salseN
— = \N.vw\\\/\ 1Sy puag aqnj
| ~ .'///717/

 MEBAACEA L BT CEE S E N T ED
[4 - ap Ml 5wl o wi of L)
RO \ o sv, gahS a¢ / =

ZEL M3l aAdadsiad /

vel cozm.:mmmawm jeaydeso) s,aqny pasuaq

U.S. Patent

May 9, 2000

Sheet 2 of 14

6,061,067

Application Control

200

]

Derived Object
Representation
246

Derived
Object
270

World Space
Modifier
240

Object

Space
Modifier
220

Master
Object
210

Modifier Stack
280

Rendering Pipeline
250

Pixel Data
256

Display Buffer
260

Figure 2

6,061,067

Sheet 3 of 14

May 9, 2000

U.S. Patent

¢ ainbi

0L€ /
uonuYaQ

aqni

Gel
CRIIVE|
uonewiuy 3
Buiapon ag

31 Eveov|jubiaH

50| [NERESIEIE ss300.d UoyEaJd UBaq o} BeJp puB PII
M M W mﬂ__m_ [« _‘_,ov W) | __ AF v_u_ Lw 0o[lresvs+]] zav'ee [B] pajps|es ”“.ooro]
000 |
uo aans (] N T T ﬁ \ 7 va vi
yjoows X
1 sas
mﬂu”ﬂcmsmwm den
Dumzmsmwm WbiaH

(5] ¥8c'pl:g snipey
sl 9//7¢]:1 smpey

_/

e NN e
[Ki)u3 pieoghay i
19430 @ 8p30 / / / | \ \\ \\ e ’
EIE L] AN R W —f—F
0| ol NN 77 g
Y~ i0]0) puv sweN ¥ //// \ \ \
[Jodesy | [eipay | AN MY \ \ \\ \
E I | e e
[(Csmior | [tepuiAg |
[oouds J[_xe8 /l 00¢ 8qni
___JaA[3algg 1
[4T semnuig piepusss)
BEEIBER
BleL]| 9
B IolHE Gl AR A el N O L WEINERRIMHES

day Bulepusy SMAIA dnosg Wp3 A

paiilun-XyW oipms dt

(o==]

6,061,067

Sheet 4 of 14

May 9, 2000

U.S. Patent

 ainbi4

EIAM[E) (S [[ao] | RIERREIEIN 5199140 193195 0} BeIp puUB Y31|D Jo Y2119
0lo[el| [er] «] o] IR 00| 810'12|} L09'cs [0] pajoe|ag pajoelao |
L spund { 0010
Vi / /
Z® A0 XO
sixy puag -
zl___006]uonsang
Bl 006)aisuy Y
g / 77
QECIMALE| F
:o_wwmoo A (4]) fpelac-ans] \ \ \ \
U:wm [9Aa7 U033 777 \ \ \ \ P
clunjub 7 e
Tv_ u_._mm_ 5| - / / / / \K\
mom mw TN N L)) E— el 7
V_ow.m - L _J[usonpa | ¥ [/
J21J1pO [43ed wp3 | [dew maAn |
o [awEl |{epnilx3 | 7
[TesioN [ML |
[T aedey | pueg | 0ch
E [S35) 0N owz|9 puag
O
[SRPON |
L 10%9n 1
womwmwﬂc_ AR €z A xeiE]+ DIoH M R wiRNEERMA R
uoljewiuy g \ day Buuepuay smelA dnosp Jp3 9l
Butlepopy ag PERAUN-XVI OIS GF =

6,061,067

Sheet 5 of 14

May 9, 2000

U.S. Patent

G ainbi4

0¢s
MOpUIM 3ip3
A0€1S
13Y1IPON

1Y)
aoejialu|
uofewILY ¥
Butjapow a¢

SAENE ST [_‘.L_To__%T?..q:G__E 5399[qo Joaes 0} BeJp pue 3914 Jo ¥31D
g |o[@{ofd[o]«]ww N D ool cecior]| zreses (O] Paiales pajoalqo §
5
\ [/ / /
_1 LoEuz
d
Ity asdejjo) \
]
pd
(@
A oot =
s N S VN N © i g
i b / TN/ /
[usted up3 §or]S J8lJIpoOp VP33 / _|= /// / / /\/t i v
[esoN [smy | \
[sedey 1{ pusg | 00¢ °aqnlL
ﬁ [ses | [o0on | 01§
O 3oels
SIIIPON i3 181JIpON
_H__ -ownzh_ s, eqnl
B[] .
A B ORI E | A ez ADqedE] *en DR FiEl wEINEERMHME
diey Buuepuey swaiA dnosg WPT Pl
15 POIUN-XYW OIPMIS Q€ =

6,061,067

Sheet 6 of 14

May 9, 2000

U.S. Patent

0€9 Jojeadipu|

S€1

9 ainbi4

mIFIAE)((E 0]faq] | BIECERIE0N |N0_puB U] WoOZ 0} UMOp pus dn Beip pue X
o lo|@|ofide] «[w]m Y vor=pug o0l{see'es (] esvvs [O] paloa|as pajaslao |

I
st N N — — 77 7

sixy puag -

&l___006]uoyeug

’N©>0xo N\ / / / 7 /] /7

] 006]eBuy
puag -
BEIENEILE -t

2P

(41 |feela0-ans|
[ELERRILTIRETER

.

@ [1A] [T

(5] puog] [

E Numum ho_m_ﬂoﬂ *.

L — J[usem ¥p3 |

[wEdupI | [den man |

(SN][w1 |
[iadey [pueg |
@ [Ps] [3en]

O

il zo9an, |
EIEIE

_ oﬁu._L— ouikxt <

0cy I\

PHO PE 009 1smL
o " %%ﬂ_wwmm_o pue puag
yim aqny yum agny

[AE & A eaF W BIOEEEL wANEEMNME S

soepial| /] BOENSEREE]

uonewiuy g
Buiiepol gg

. djoy Buuepusy sMaiA dnoyg WP A

$1a]

PaiRun-XVIN oiPNiS Q€ =

6,061,067

Sheet 7 of 14

May 9, 2000

U.S. Patent

J 8inbi4

RIEINGE o) | BEQERIRIn spelqo ajejol pue 23§95 0} Bep pue XD
o o [er|oa|[e [<Tw]w =_5<_ 0'0b= Pu9 _ Il 9] Pajales paioalqo |
(ool
C " Jouen
g hzL owzio)
iy @sdejjo) 191}1po
1 s
1 o] ~] /
3 X :
ﬁ AT
m] /r ww/wﬂ/\\/\ \\ 7 i Aﬂﬂ
MOPUIM N ya— 1
1p3 Yorys — | \W Lo 1 G 7~ e
13iPON f ¥oe)S J31lIPOW 1P3 A T
[owon][e] 0L J5L1PON \
[_seder][pued] J31JIPOW WiojSues] 009 IStmL
ﬂ [sPs | [eon wJojsuel] pue pajqesid pus pusg
g pue pajgesia pusg Yym aqny
L__luibon pusg uiim aqnL Ym aqn
i zosqn! | 10 081G JaLIPON
Swmw u IRl CIFYE
o o ETORE E]| AN DR O E AR VMENEENNA S
ucllewliuy ¥ diay Buuspusy SMaIA dnoid WPI @Ml
buiepoN A€ [3T4] PEINUN-XY OPMIS Q€ =

6,061,067

Sheet 8 of 14

May 9, 2000

U.S. Patent

0v8

g aInbi4 e

Gl
a0e}I8)u|
uojewuy ¥

Builspoy g¢

s = T d uonjeald uifaq o) Besp pue YD
EIANES] o[fae T_E< BIERERIEI0 ssav04d uol _
)| <! LI 0°01= PU9 D] pa13)3g PA323140 |
olofe{ofl[«!] <] L “ | [e] 000
T T i 7 / \
‘spioon buiddey sjessusn (] 008
_HD :bag 1ybioH JOIJIPON
1) sbes uipim oumaw —

L7505 wbv1 / N\

Gl 1ei2] yybien

PHOM

cl_zzzd wem /VA}I% /
gl 07) :ybusy
i8]

%3 piesgkay ¥}

POUjaW Donearg -} <

r x08@ e O X ,f

Ol g@g
10]07) pue aWweN = N

[Jodesy 7} [[®PeH |
[(ewog J [eany |
[_sniop] [Csepuiiiy |

[(osayds] [xo8 |

FEEIL)
[§] seamwud piepuess]

EERREEY
AENEE S

018
Jopuljho
punog

/

disH

[ah] ~ Ao mE E] TR E A W O = wEINEERME RN

Busepuay sMalA dnoi® 3P3 Al

§1s]

papuun-XYW olpms ge

=

0v8

6 2.nbi4 /s

ssad0.1d uoyeasd uifaq o} Buip pue YII
payalag payealqo |

6,061,067

Sheet 9 of 14

May 9, 2000

U.S. Patent

l

‘sp100) Buiddeyy sjeieuagn 0

G ER
1) 509 wpth

N

oom
_mc_cos_
oomaw —_

= 1] :s6ag yibuay

PIOM

Gl 89v 23] qubien
gl _zzd wipm

= SHE _wv :@:9
o s s

AW
Fanv s

ol 072 wbuen

L SENEICEREN ¥

/wv}f/r/

[_Anu3 pseogAayf +1

/ AN W L A

x08@® aqnp Q
POUISN UoHE3i0 N,

! Loxog]

Y~ 16[0) pug awWEN Y

[Tetop 7 [eant |
[snoi™] [epunfa |
[Cosauds] [xeg |

[Jodeaf 7} [[eipaH || EF—x

058 / 018

ELLYREEILD) | x0g Japullkd
[¢] sompuig piepug;s| punog
BEBRBRER
Sel L[B[Q[F[8]|
soeyall wonETo) B] A & oz Ax]ea =B EL WEINEENNEA S
uoReWwILY 3 doy Bupapusy SM3AtA dnoup P33l
Suilapon ag an PSIUN-XVYIW OlPMIS GF =

6,061,067

Sheet 10 of 14

May 9, 2000

08
101e91p U
0} 21nb4 Vs _
s 1d uoneald uiBaq o) Beip pus D
mIEIAN[E)(S] 02[jae FUwY 1=l .o__oTv +|slle = . 2)29(25 p9123[q0 |
ool [T[] 0'0}= PUD 00| ses0sH] srets [O] paist :
gl|o __: T — _ _‘ _ leodﬂod\J \
7

"spioo)) Buiddey sjeisuan 008

D Bag Jybray 13ItPON

Gl ____1]:s6as wpipd aoedg —

e[1):sBag yibuan \ \ \ PHOM

G _£06°SE] yb1sm SAEM

al_Lezd wem /

ol 072 :ybuay

51 =

[_Fiugpreog/ay ___+]

1 :[0] aqno O
[N EVEIEENR) .

ﬁ C oo

J0j0) pue alWeN :l_.

_ jodes | _ _ 8ipay _
[Cewog J[Caany |
[sniol] [epuikg |

{Teiaydg | [xeg |
- -

2340

[4] senmwid pispueis|

BERIBNEL

048
xog

/ 018

19putjhQ
punog

U.S. Patent

mm_‘ <)
30BI9}U) AR @ Lz A X R * W BIoFH [=] WEINEFRMH S
uofjewiuy 9 I\ day Bupapusy SMAIA dnoi9 WP3 ajtd

PalillunN-XVIN oIpms G =

Butjspony gg $1s]

6,061,067

Sheet 11 of 14

May 9, 2000

U.S. Patent

0v8

L1 8inbi4 i

olekE@] el fuuy

[[[TeTo-{Isll@

ssaso.d uojeaid uifaq o} Beip pus JUD

oo« <] | 00i=pug _ i (] . pajpalas pajaldo |
g
~ AN T Y T T 7 7 \

‘spioo) Buiddeyy ejeiauen (0 008
1) 6es wbieH FENT
Gl 1)s63s yipim soedg ——
|E|P :sBag yjbua / / / \ \ \ \ PHOM
G 722725) qybien IAEM
i e AV
o072 :wbuen

r_ EYEINE P n—. \\\j

[Xiju3 pieoghay]

_ﬁ x0g@® agno O

poylop uonsaiy)

0L s oxog|
: 10]07) pue aWeN -}

(Dodea; | [epad |
[suog | [Cam
_ SNJOL _ JapujjA
_ alaydg _ xXog
A LY 8 - [(o
(3] senpulg piepuaig]

BERNBREE)

€1

/ 018

JELMITSS)
punog

048
xog

TAEP A z A X RaE] W EIoF R [E] il

a0eLalu|
uopewuy 3 —/

CNEEFRMAE

djay Bupispuay SM3IIA dnoio WP3 aji4

Buijapon ag $ sl

P3uN-XVIN oipMms dE

=

6,061,067

Sheet 12 of 14

May 9, 2000

U.S. Patent

1BAIBI) AUpHEA

leAsaju) Aupriep

lenalu) Auplien

leAsaiu| Aupijep

{eAsa) Auptiea

0921 (suueyd 0SZ1 jsuueyd 0¥Z\ I3uueyd 0€Z| |duueyd 0zzi olet
uoij0alas Aeidsi adk | |jeoqng 13S UOD3IaS depy amnxa] jpuueyd Ayewo9n | jpuuey) ABojodot
1924 1521 (3 743 ezl (X443 (3¥4%

leasaju| Aupiepn

3

08¢
10ElS JaYIPON

0Lc

€924
leasaju Auplen

€521
{easaju] AppljeA

13243
ieasaiu) AupiieA

£eZ!
1easauf AypiieA

€221
leadayu) Applien

¥4}
jeAsajuf Apyen

18iq0
JajseiN

02z
Jayipo

S9Z1
leasajug Aypien

§6Z1L
fersajuy Appiea

174!
leAsau) Aupijep

5521
[eAI3jU| AHIPlBA

144}
leAsaju] AuplieA

Sici
leAsa)ut AupiBA

3

aoedg
19la0

0ec

1921
leasaju) Aupien

1521
feasajup Aupiiea

el
Jeasajut APHEA

1£2}
feasau) Appyea

YraAl
leasaju) AupijeA

LLeh
(easaiy| Aupiien

wiojsues)

vz
J3141POI

!
L

!

!

!

!

!

¢l ainbi4

gz uonejuasaiday 10slqQ paausQ

aoeds pHOM

U.S. Patent May 9, 2000 Sheet 13 of 14 6,061,067

=

Yes l

Cache Final
Channel Values
1380

Determine Modified
Channel Values

1320

odified Channel Values
Stable for X Frames?
1330

¢—~No

Yes

ext Element Change:
Modified Channel Values in
Next Frame?
1340

—No

Yes

v

Cache Modified
Channel Values
1350

Figure 13

6,061,067

Sheet 14 of 14

May 9, 2000

U.S. Patent

ozclh
jsuuey) Anawoas

!

12z
(Anuyuy-0)
leAsaju; Aitprea

Sivl
ayoe) jpuuey)d
A1jPWoas uuojsuesj

sZyl
(Anuyui-0)

jeasaju) Auplea

(1174}
tauueyn ABojodo |

!

Livl

08
¥OBIS JolIpPOIN

oivL
18lqo

(Auuyui-0)
{eAs2)u] Aupijea

Sivl

19)sep
J8pullA)

)57

(Anuyui-0)

feasalu) AupieA

Lyl
ayoen
Jauuey) AN3Wwoad WSA
[

L9¥)
ayoe)d
{auuey) ABojodo s WSM

2z
(Anuyul-0z)

leasaiu) Aupliep

!

Livl

wojsues |

ove
JalJipon

(Anuyur-0)

jeasaju] ANpieA

'
_J

y| anbid

Yo
oy | uonejuasasday JepullAD paausg

aoedg pUOM

6,061,067

1

APPLYING MODIFIERS TO OBJECTS
BASED ON THE TYPES OF THE OBJECTS

RELATED APPLICATIONS

This application claims the benefit of U.S. provisional
patent application No. 60/025,117, entitled, “Three Dimen-
sional Modeling and Animation System,” filed Aug. 2, 1996,
by inventors Rolf Walter Berteig, Daniel David Silva,
Donald Lee Brittain, Thomas Dene Hudson, and Gary S.
Yost, which is incorporated herein by reference.

COPYRIGHT DISCLAIMER

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as its
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND OF THE INVENTION

A. Field of the Invention

The invention relates generally to field of three dimen-
sional modeling and animation. In particular, the invention
relates to an improved three dimensional modeling and
animation system having an object oriented architecture.

B. Related Art

Three dimensional modeling systems allow users to gen-
erate models of three dimensional objects using computers.
In previous systems, a user defines a simple three dimen-
sional (3D) object and then applies various modifications
(e.g., stretch, bend) to that object. The modifications change
the way the object looks. To apply a modification, a user is
prompted with a dialog box to fill in the values of the
modification. The user then applies the modification to the
object and views the results.

One problem with such a system is that the user does not
have a good idea of how a specific modification will affect
an object until after the modification is applied to the object.
Additionally, it can be difficult to understand exactly how a
specific modification affects an object from the look of the
object after the modification is applied. This is because it can
be difficult to understand the interactions between various
modifications, already applied to the object, and the new
modification

Therefore, it is desirable to have a 3D modeling system
that is simpler for the user to use by allowing the user to
better understand how a particular modification to an object
will affect the look of that object.

SUMMARY OF THE INVENTION

One embodiment of the invention includes a method of
generating a three dimensional (3D) representation of a
modeled object on a display device of a computer system.
The modeled object is represented by an initial definition of
an object and a set of modifiers. Each modifier modifies
some portion of the definition of an object that may result in
a change in appearance of the object when rendered. The
modifiers are ordered so that the first modifier modifies some
portion of the initial definition of the object and produces a
modified definition. The next modifier modifies the results of
the previous modifier. The results of the last modifier are
then used in rendering processes to generate the 3D repre-
sentation.

10

15

20

25

30

35

40

45

50

60

65

2

In one embodiment, the modifiers are easily shared, the
order of the modifiers is easily changed, and the values
associated with the modifiers is also easily changed. These
features provide the user with great flexibility in modeling
and animation.

In one embodiment, the modifiers are associated with
three dimensional visual representations that allow a user to
better visualize and change the effect of a particular modi-
fier.

In one embodiment, intermediate channel results created
during the generation of a representation of an object are
cached thereby increasing the speed of this embodiment. In
particular, the representation of the object is generated in
multiple channels, each channel representing some portion
of that representation. Intermediate channel results are gen-
erated in each channel by elements in that object’s list of
modifiers. Depending on for how long these intermediate
channel results are valid, the intermediate channel results
may or may not be cached. In particular, in one embodiment,
if it is determined that one set of intermediate channel results
will be valid for a predetermined period of time, while the
next intermediate channel results in that channel will not be
valid for a predetermined period of time, then the interme-
diate channel results are cached.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the invention
will become more apparent to those skilled in the art from
the following detailed description in conjunction with the
appended drawings in which:

FIG. 1 illustrates a 3D modeling and animation system
according to one embodiment of the invention.

FIG. 2 illustrates a how objects are rendered in the 3D
modeling and animation system of FIG. 1.

FIG. 3 illustrates an object.

FIG. 4 illustrates an object having an object space modi-
fier and corresponding gizmo.

FIG. 5 illustrates a second object space modifier applied
to the object of FIG. 4.

FIG. 6 illustrates changes to the modifier stack of the
object of FIG. 5.

FIG. 7 illustrates further changes to the modifier stack of
the object of FIG. §.

FIG. 8 illustrates a key frame and the start of an animation
sequence.

FIG. 9 illustrates a “between frame” of the animation
sequence.

FIG. 10 illustrates a second key frame of the animation
sequence.

FIG. 11 illustrates a third key frame of the animation
sequence.

FIG. 12 illustrates an example of the use of channels in
generating a derived object’s representation.

FIG. 13 illustrates one embodiment of a method of
caching.

FIG. 14 illustrates an example of caching.

The figures illustrate the invention by way of example,
and not limitation. In the figures, like references indicate
similar elements.

DETAILED DESCRIPTION
A. Terminology
In this description, the term “instance” means an instance
of class as in an object oriented programming language. In

6,061,067

3

particular, “instance” does not mean an instance as defined
in the 3D Studio Max™ User Guide, Volume 1 and 2, unless
specifically noted. Also note that an “instance” in the object
oriented sense can also be an “instance” in the 3D Studio
Max™ application sense.

The term “reference” generally means a reference created
through the use of the ReferenceTarget and ReferenceMaker
classes, or the like, as described below.

B. System Overview

One embodiment of the invention includes an apparatus
and method of generating a three dimensional (3D) repre-
sentation of a modeled object on a display device of a
computer system. The description of specific applications is
provided only as examples. Various modifications to the
preferred embodiments will be readily apparent, and the
general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the invention. Thus, the invention is not
intended to be limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles
and features disclosed herein.

C. Computer System

FIG. 1 illustrates a computer system 100 that can be used
to implement the one embodiment of the invention. FIG. 1
also illustrates an example of a tube as modeled by one
embodiment of the invention. The following describes the
elements of FIG. 1 and then their operation.

The computer system 100 comprises a processor 110, a
memory 140, an input device 120 and a display device 130.
These components can communicate with each other via a
bus 150. The memory 140 includes software such as the 3D
modeling and animation application 145. The 3D modeling
and animation application 145 includes, among other things,
a scene 142. The scene 142 includes at least a first node 144,
a corresponding derived tube 146 and a tube modifier stack
199. The tube modifier stack 199 includes a tube master 190,
a bend modifier 192, and a twist modifier 194. The display
device 130 displays the 3D modeling and animation inter-
face 135 which shows a 3D representation of the derived
tube 146 and the corresponding tube modifier stack 199.

The computer system 100 includes an IBM compatible
personal computer, available from Hewlett-Packard, Inc. of
Mountain View, Calif. In another embodiment, the computer
system 100 includes one of a Macintosh™ computer, avail-
able from Apple Computer, Inc. of Cupertino, Calif. a
SparcStation™ workstation, available from Sun
Microsystems, Inc., of Mountain View, Calif. and a work-
station from Silicon Graphics, Inc. of Mountain View, Calif.
In one embodiment, the computer system 100 executes an
operating system such as Windows 95™ or Windows NT™,
available from Microsoft, Inc. of Redmond, Wash.

The computer system 100 need only have some type of
processor 110 for executing instructions and manipulating
data. In one embodiment, the processor 110 includes a
distributed processing system such that processing is done
by a number of networked microprocessors.

The memory 140 stores data and instructions. The
memory 140 includes one or more of a random access
memory, a read only memory and a hard disk memory.

The input device 120 allows the user to interact with the
3D modeling and animation application 145. The input
device 120 includes one or more of a keyboard, a mouse, and
a trackball. Importantly, the input device 120 includes some
device allowing the user to interact with the 3D modeling
and animation application 145.

The display device 130 displays the 3D modeling and
animation interface 135. The display device 130 includes a

10

15

20

25

30

35

40

45

50

55

60

65

4

cathode ray tube (CRT) display, flat panel display, or some
other display device. In the example of FIG. 1, the 3D
representation of the scene 142 is shown in a perspective
view 132.

The 3D modeling and animation application 145 includes
data and instructions for creating 3D models, photo-realistic
still images, and film quality animation. The 3D modeling
and animation application 145 uses a process called “ren-
dering” to determine the correct display device 130 repre-
sentation of the scene 142. One embodiment of the invention
includes the application 3D Studio Max™, available from
Autodesk, Inc. of San Rafael, Calif.

The scene 142 includes all the objects to be displayed in
the 3D modeling and animation interface 135. An object is
thus something in a scene 142. Further, an object is a model
of a physical object, such as a cylinder, tube, box or teapot,
or an object is a non-physical object used in modeling other
objects, such as a wave, a bomb, or a deflector. Each object
corresponds to a graphical representation in the 3D model-
ing and animation interface 135. Of course, some objects
may not be displayed because, for example, the display
options in the 3D modeling and animation interface 135 do
not allow that particular object to be displayed, because one
object is blocking another object, or because the user has
requested that the object not be displayed. Objects are
described in greater detail below.

The scene 142 is made up of a number of nodes, such as
node 144. Each node is associated with some object. In the
example of FIG. 1, the node 144 is associated with a derived
tube 146 object. The derived tube 146 is a model of a
physical object; in this case, a tube that has been bent and
twisted. The bent and twisted tube is shown as the derived
tube’s graphical representation 134. Note the invention
allows for much more visually complex objects to be
rendered, but for FIG. 1, an example of a relatively simple
object is described.

The derived tube 146 has a modifier stack, labeled as tube
modifier stack 199. The tube modifier stack 199 is a sim-
plified example of a modifier stack. The modifier stack is
described in greater detail below. The tube modifier stack
199 includes the tube master 190 (a parametric object), the
bend modifier 192 and the twist modifier 194. The tube
master 190 includes a parametric definition of a tube, ¢.g. a
tube has an inner radius, an out radius and a height. The bend
modifier 192 modifies the definition of the tube so that the
tube will appear bent. The twist modifier 194 modifies the
definition of the bent tube so that the bent tube is also
twisted. How the modifiers work in connection with the
master objects is described in greater detail below. However,
importantly, the use of modifier stacks, in one embodiment
of the invention, provides the user with previously
unequaled ease of use and flexibility in 3D modeling and
animation.

The following describes the general operations in the
computer system 100 used in the rendering process. The
computer system 100, using the processor 110 and the
memory 140, executes the 3D modeling and animation
application 145 which renders a three-dimensional (3D)
representation of the scene 142 on the display device 130. As
part of the rendering process, the derived tube 146 provides
a parametric definition of a bent and twisted tube for use by
the 3D modeling and animation application 145. In this step,
the derived tube 146 accesses the tube modifier stack 199 to
generate the parametric definition of the bent and twisted
tube. The 3D modeling and animation application 145 uses
the parametric definition and various rendering techniques to
generate the derived tube’s graphical representation 134.

6,061,067

5

The 3D modeling and animation application 145 then causes
the display device to display the perspective view 132,
including the derived tube’s graphical representation 134.
Thus, given a scene with a derived object, the computer
system 100 can render a representation of that object.

The above has described an overview of a computer
system that supports 3D modeling and animation using
modifier stacks. The next section describes the class hierar-
chy used in the 3D modeling and animation application 145
that enable the use of modifier stacks. Following the next
section is a description of the how these classes are used
together in the application.

D. Objects and Their Relation to Scenes

In one embodiment of the invention, the 3D modeling and
animation application 145 has an object oriented design.
Thus, the application has a class hierarchy that supports
inheritance. This section describes the class hierarchy used
to create modifier stacks. Table 1 illustrates the class hier-
archy in one embodiment of the 3D modeling and animation
application 145. Each of the classes is described below.

TABLE 1
Animatable
ReferenceMaker
ReferenceTarget
BaseObject
Modifier
Object
GeometricObject
TriObject
SimpleObject
PatchObject
ParticleObject
SimpleParticle
ShapeObject
SplineShape
SimpleSpline
LinearShape
SimpleShape

WorldSpaceModifierObject
SimpleWorldSpaceModifierObject

1. Animatable Class

The Animatable class is the superclass of all the animat-
able classes. Although no instances of Animatable are used,
instances of the Animatable’s subclasses include methods
that support the animation of an instance of that particular
subclass. Also, the Animatable class includes a class iden-
tifier and associated properties.

ii. ReferenceMaker & ReferenceTarget

The ReferenceMaker class and the ReferenceTarget
classes work together to support references between objects
in a scene. A reference within a scene occurs when one
object depends upon another object for rendering. For
example, one embodiment of the invention allows different
objects (e.g. two derived tubes) to share the same master
object. In this example, the master object becomes the target
of references from the objects. The reference allows a scene
to be rendered and allows for the use of modifiers by
multiple objects. As is described below, this use feature
provides a user with significant benefits over previous
systems. The reference also allows changes in the master
object to be broadcast to any objects that are referring to that
master object. The ReferenceMaker class includes the meth-
ods for indicating that a particular instance depends on
another instance. The ReferenceMaker class also includes
methods for receiving messages from reference target
objects when changes are made to that reference target
object. The ReferenceTarget class includes the methods for
indicating that a particular instance is a target of a reference.

10

15

20

25

30

35

40

45

50

55

60

65

6

The ReferenceTarget class supports the broadcast of mes-
sages to all referring reference maker objects about changes
to that reference target object. As with the Animatable class,
no instances of ReferenceMaker or ReferenceTarget are
used in the application, instances of these classes’ subclasses
are used instead.

In one embodiment of the invention, references support a
technique called lazy evaluation. Lazy evaluation increases
the performance of the 3D modeling and animation appli-
cation 145. The purpose of lazy evaluation is to reduce the
number of unnecessary calculations by not performing any
evaluations until specifically requested.

The following describes an example of lazy evaluation.
Assume that to properly render a first object, that first object
must receive data from a second object (e.g., the first object
includes an instance of a LinkedXForm which uses the local
coordinate space of the second object to scale the first object.
LinkedXForms are described below). This relationship is
established via a reference from the first object to the second
object. If the data in the second object is changed, then the
second object will broadcast the change to the first object. In
lazy evaluation, the first object does not recalculate any
changed values (e.g., its geometry parameters) until the first
object is specifically requested (e.g., a request to provide a
derived object representation, described below). In lazy
evaluation, the first object merely marks its dependent
values as no longer valid. Thus, the first object does not
precompute the new values until it needs to provide these
values.

iii. BaseObject

The BaseObject class includes the methods for providing
a three dimensional graphical representation of an object on
the display device 130. The BaseObject class includes
methods for providing different display methods (e.g.,
bounding box, wireframe) for each of its subclasses. In one
embodiment, these display methods are overridden by
equivalently named methods in the BaseObject’s subclasses.

iv. Modifier

The Modifier class includes the methods for modifying
objects during the rendering process. Instances of the Modi-
fier’s subclasses provide a set of very powerful and flexible
features that greatly enhance the usability of the 3D mod-
eling and animation application 145. Each instance of a
Modifier subclass has methods for causing a particular
modification of an object, such as a bend or a twist.
Modifiers change the look of an object by, for example,
changing the object’s vertices or the object’s topology.
Modifiers can be stacked together so that the output of one
modifier is fed into the input of another modifier. This
provides a user with a virtually endless number of combi-
nations. Modifiers can also be shared through references.

In one embodiment, each Modifier subclass modifies only
specific types of objects. For example, in this embodiment,
instances of the Bend class can modify geometric objects
and shape objects while instances of the EditSpline class can
only modify shape objects.

There are two main subclasses of Modifier: ObjectSpace-
Modifier and WorldSpaceModifier. These classes are
described next.

V. ObjectSpaceModifier

The ObjectSpaceModifier class is a subclass of the Modi-
fier class. The ObjectSpaceModifier class is the superclass of
the object space modifier classes. Before further describing
the class, the various coordinate spaces relevant to one
embodiment of the invention are described.

Different spaces are used in one embodiment of the
invention to differentiate different sets of spatial coordinate

6,061,067

7

systems. In one embodiment of the invention there are two
relevant spatial coordinate systems, object space and world
space.

Object space is the coordinate system unique to each
object in the scene 142. In one embodiment, every object has
a local center and coordinate system defined by the location
and orientation of the object’s pivot point. The local center
and coordinate system of an object combine to define that
object’s object space.

World space is the universal coordinate system used to
track objects in a scene 142. World space relates the coor-
dinates defining an object to the other objects in the scene
142. An object in a scene is located in world space by that
object’s position, rotation and scale (its transforms).

Returning to the description of the ObjectSpaceModifier
class, instances of the subclasses of ObjectSpaceModifier
modify an object in object space. For example, a bend is an
object space modifier that causes an object’s definition to
change so that some portion of the object is bent relative to
some other portion of that object.

The following describes the types of object space modi-
fiers available in one embodiment of the invention. Object
space modifiers can be divided into general, specialized and
edit shape modifiers. The general object space modifiers
have real-world equivalents and are relatively simple to
understand. In one embodiment, the general object space
modifiers include: bends, ripples, skews, tapers, twists, and
waves. In this embodiment, the special modifiers include:
displace, noise, and optimize. Also in this embodiment, the
edit shape modifiers include edit splines, extrudes and
lathes. In one embodiment, Bend, Ripple, Skew, Taper,
Twist, Wave, Displace, Noise, Optimize, XForm,
LinkedXForm, VolumeSelection, EditSpline, Extrude and
Lathe are all subclasses of the superclass ObjectSpaceModi-
fier.

Bend—produces a uniform bend in an object’s geometry.
The angle and direction of the bend is set as well as the bend
axis. The bend modifier has a limit value that limits the bend
to a particular section of an object’s geometry. Ripple—
produces a concentric rippling effect in an object’s geom-
etry. The size of the waves of the ripple are set. Ripple has
a corresponding modifier in the world space.

Wave—produces a wave effect in an object’s geometry.
The size and phase of the wave is set. One embodiment of
the invention supports a decay value that decreases or
increases the size of the wave. Wave also has a correspond-
ing world space modifier.

Skew—produces a uniform offset in an object’s geometry.
The amount and direction are set for each instance of skew.
A skew’s effect can also be limited so that only a portion of
an object is skewed.

Taper—produces a tapered contour by scaling one end of
an object’s geometry. Each taper instance has values for the
amount of tape and curve of the taper on two sets of axes.
The taper’s effect can also be limited to a section of the
object’s geometry.

Twist—produces a twist like a screw’s thread in an
object’s geometry. Each instance of Twist has values for the
angle of the twist on any of three axes, and a bias that
compresses the threads relative to the pivot point of the
object. The twist’s effect can also be limited to a section of
the object’s geometry.

Displace—reshapes the geometry with a variable force.
One embodiment of the invention has a corresponding
Displace class that is a subclass of WorldSpaceModifier.

Noise—simulates random motion in an animated object.
Noise also produces fractal effects that are useful in creating
terrain features, for example.

10

15

20

25

30

35

40

45

50

55

60

65

8

Optimize—reduces the number of faces and vertices in an
object. The purpose of Optimize is to simplify the geometry
and increase the speed of rendering while maintaining an
acceptable image.

XForm—acts as a transform for all or a portion of an
object but is evaluated as a modifier. The importance of the
order of execution of modifiers and transforms is described
in greater detail below.

LinkedXForm—works in the same way as XForm except
that the LinkedXForm uses the coordinate system of another
object.

EditSpline—changes the splines, segments and vertices of
a shape object. Shape objects are described below in con-
junction with the description of the Object class.

Extrude—creates a 3D object by sweeping a shape along
a straight line. Lathe—creates a 3D object by revolving a
shape along an axis.

(1) Manipulating Object Space Modifiers

Before describing world space modifiers, a description of
a method of interacting with object space modifiers is
provided. One embodiment of the invention not only allows
a user to change the parameters of an object space modifier
by directly entering the values of the parameters, but also
allows the user to manipulate a 3D representation of the
modifier.

In one embodiment, the 3D representation of the modifier
is called a gizmo. The gizmo is a wireframe representation
of that gizmo’s modifier. A gizmo acts like a mechanical
apparatus that transfers the modification to the object that
gizmo is attached to. That is, by changing the gizmo, the user
is changing the values of the parameters of the modifier. A
user can move, scale and rotate a gizmo as is done with any
other object.

In one embodiment, the gizmo represents parameters of a
modifier that are not otherwise easily definable and/or
accessible by a user. For example, a modifier may have a
center, defined by an {x, y, z} coordinate, a scale along each
axis, and a rotation along each axis. This is a great deal of
information. However, by providing the user with a three
dimensional representation of this modifier information, the
user can quickly visualize this information and change it,
thereby changing these values and in turn changing the effect
of the modifier on the object.

In one embodiment, world space modifiers also have
gizmos. In another embodiment, an instance of a world
space modifier uses a world space modifier object to change
the parameters of the world space modifier.

vi. World Space Modifier

Like instances of the ObjectSpaceModifier class,
instances of the WorldSpaceModifier class affect the appear-
ance of other objects. The difference being that world space
modifiers affect objects in world space coordinates. Also like
the ObjectSpaceModifier class, WorldSpaceModifier has a
number of subclasses that can be instanced to modify objects
in different ways.

One or more objects are modified by a world space
modifier by binding those objects to the world space modi-
fier. In one embodiment, the binding process is performed by
creating a reference between the world space modifier and
each object that is bound to that world space modifier. A
world space modifier has no effect on an object in a scene
142 that is not bound to the world space modifier.
Importantly, when multiple objects are bound to the same
world space modifier, the world space modifier’s parameters
affects all the objects equally. However, each object’s dis-
tance from, and spatial orientation to, the world space
modifier can change the world space modifier’s effect.

6,061,067

9

Because of this spatial effect, simply moving an object
through the world space can change the world space modi-
fier’s effect. This last feature provides a user with a powerful
tool in animations. For example, to show a dolphin
swimming, a user need only model the dolphin and then bind
the dolphin to an instance of a Wave world space modifier.
As the dolphin object translates through the world space, the
dolphin will be modified by the wave to appear to be
swimming. Additionally, an object can be bound to multiple
world space modifiers.

In one embodiment, each world space modifier includes a
graphical representation of itself As noted above, this
graphical representation is a gizmo in one embodiment, and
in another embodiment, this graphical representation is an
instance of a subclass of the Object class.

The following is a list of subclasses of
WorldSpaceModifier, in one embodiment:

Bomb—explodes a geometric object into individual faces
that over time become disjoint in space. Thus, the Bomb
subclass is particularly useful in animations.

Deflector—acts as a shield to repel the particles generated
by a particle system object. A deflector can be used to
simulate pavement being struck by rain, or a rock in the
middle of a waterfall.

Displace—acts much like the ObjectSpaceModifier Dis-
place class except the effect is in world space.

Gravity—simulates the effects of gravity on particles
generated by a particle system object. Gravity instances are
directional. To create a waterfall with a rock in the middle,
instances of Gravity and Deflector classes can be combined.

Ripple—acts much like the ObjectSpaceModifier Ripple
class except the effect is in world space.

Wave—acts much like the ObjectSpaceModifier Wave
class except the effect is in world space.

Wind—simulates the effect of wind blowing particles
generated by a particle system object.

As noted above, each Modifier subclass knows which
objects it can modify. In the above embodiment, the Bomb,
Display, Gravity, Ripple and Wave classes modify geometric
objects. The Deflector, Displace, Gravity and Wind modifi-
ers modify particle system objects.

One embodiment of the invention includes a plug-in
architecture that allows additional object space and world
space modifiers to be added to the 3D modeling and ani-
mation application 1485.

vii. Object

As noted above, the term object refers to something in the
scene 142. In one embodiment, all objects are defined by
three general properties: a collection of creation parameters,
a pivot point, and a bounding box. The properties describe
the form, local origin, initial orientation, and the extent of an
object.

The Object class is the superclass of all the different types
of objects in a scene. In one embodiment, the Object class
has the following subclasses: GeomObject (geometry
object), ShapeObject, WorldSpaceModifierObject, and Deri-
vedObject.

The GeomObject class is the superclass of basic render-
able objects, such as tubes, cylinders, boxes, polyhedra,
spheres, torus, and cones. One embodiment of the invention
includes the following geometric object categories.

Standard Primitives—3D geometric objects such as Box,
Sphere, and Cylinder.

Patch Grids—are 2D surfaces.

Particle Systems—are animated objects that simulate rain,
snow, dust and similar collections of small objects.
Shapes—include 2D objects line lines and donuts and 3D

10

15

20

25

30

35

40

45

50

55

60

65

10

spline-based shapes like a helix. Shape objects are not
directly renderable in one embodiment. The shape objects
need to first be modified before they are renderable.

World Space Modifier Object—is not a renderable object,
but is still visible to the user. A world space modifier object
is like a gizmo for an object space modifier. The world space
modifier object provides a visual representation of a world
space modifier that allows the user to bind an object to the
corresponding world space modifier.

Derived Object—includes a list of modifier objects and a
pointer to the master object. In rendering a scene, a user
always sees a derived object, even if no modifiers are
applied to an object. The reason for this is that the derived
object not only ensures that a particular object is correctly
rendered, but also that an appropriate cache is maintained for
that particular object. The caching abilities of the derived
objects is an important performance enhancing feature of
one embodiment of the invention and is described in greater
detail below.

The above class hierarchy illustrates only one class hier-
archy. Other embodiments include other class hierarchies.
For example, in one embodiment, the classes under the
ShapeObject are moved under the GeometricObject class. In
another embodiment, the methods in the Animatable, Ref-
erenceMaker and ReferenceTarget classes are combined into
the BaseObject class. In another embodiment, the Referen-
ceTarget is a superclass of the ReferenceMaker. In another
embodiment written in a language that supports multiple
inheritance, ReferenceMaker does not inherit from
Animatable, nor does BaseObject inherit directly from
ReferenceTarget, however the Modifier class and the Object
class multiply inherit from the Animatable, ReferenceTarget
and BaseObject.

E. Pipeline for Rendering

FIG. 2 and the following describe how objects in a scene
142 are rendered in one embodiment of the 3D modeling and
animation application 145. So as not to obscure this embodi-
ment of the invention, FIG. 2 has been simplified. The
following first describes the elements of FIG. 2 and then the
operation of those elements.

FIG. 2 includes an application control module 200, a
derived object 270, a modifier stack 280, a master object
210, an object space modifier 220, a transform 230, a world
space modifier 240, a rendering pipeline 250 and a display
buffer 260. These elements work together to render a graphi-
cal representation of the derived object onto the display
device 130.

The application control 200 controls the operation and
interaction between the elements of FIG. 2. In one
embodiment, the application control 200 includes the 3D
Studio MaX™ core software architecture. However, what is
important is that there is some method of controlling the
various elements in FIG. 2.

The derived object 270 is part of a scene 142 (not shown)
and is responsible for ensuring that a modified object is
properly rendered. The derived object is an instance of the
DerivedObject class. The derived object instance is created
when a user creates an object in a scene.

In one embodiment, each derived object 270 maintains a
modifier stack 280. In one embodiment, the modifier stack
280 includes a list of modifiers (e.g. object space modifier
220 and world space modifier 240), a transform, and a
pointer to a master object 210. In another embodiment, the
derived object 270 maintains a reference to the master object
210, a reference to the transform 230, and a list of modifiers.
However, what is important is that the derived object 270
maintains the information necessary to generate a descrip-

6,061,067

11

tion of a modified object (labeled as the derived object
representation 246).

A more detailed description of the elements in the modi-
fier stack 280 is now provided. The master object 210
includes a parametric definition of an instance of a subclass
of Object (e.g. the topology (e.g., mesh, direction of faces)
and geometry (e.g., vertices and edges)). Importantly, the
user does not see the master object 210 but sees the rendered
result of the modifiers and transform identified by the
derived object 270. The object space modifier 220 is an
instance of a subclass of the class ObjectSpaceModifier. The
transform 230 is responsible for transforming points in the
object space coordinate system to corresponding points in
the world space coordinate system. Unlike modifiers, the
transform 230 are independent of an object’s internal struc-
ture. The transform 230 acts directly on the object’s local
coordinate system. The local coordinate system for an object
can be expressed as a matrix of values that specify the
following information in world space: position of the
object’s center, rotation of the object in world space, and the
scale of the object along its local axes. The world space
modifier 240 is an instance of a subclass of the class
WorldSpaceModifier. The modifier stack 280 includes zero
or more object space modifiers and world space modifiers.

In response to a request for a representation of itself, the
derived object 270 provides the application control 200 with
a derived object representation 246. Depending on the type
of rendering being done and the type of master object 210,
the derived object 270 will provide a bounding box,
topology, geometry and/or texture map description of the
modified and transformed master object 210. How the
derived object 270 creates the derived object representation
246 is described below.

The derived object representation 246 is then used by the
rendering pipeline 250 to create a bit pixel data 256 repre-
sentation of the modified and transformed object. The ren-
dering pipeline 250 includes processes for converting the
parameter information in the derived object representation
246 into pixel data. In one embodiment, the rendering
pipeline includes rendering processes such as smoothing,
highlighting, facets, lit wireframe, wireframe and bound
box. In one embodiment, known rendering techniques are
used in the rendering pipeline 250. The pixel data 256
includes the pixel information for display on display device
130. The display buffer 260 holds the pixel data for display
by the display device 130.

How the derived object 270 creates the derived object
representation 246 is now described. When a derived object
270 is asked by the application control 200 to provide a
renderable description of itself, the derived object 270
evaluates the master object 210, then any object space
modifiers, the transform, and then any world space
modifiers, to generate the derived object representation 246.
That is the master object 210 provides the basic description
of the object. This basic description is then provided to the
first object space modifier in the modifier stack 280. The
object space modifier modifies this basic description to
generate a modified description. The next object space
modifier is then evaluated to modify the previous modified
description. This process continues until each object space
modifier has been evaluated. Importantly, the object space
modifiers are evaluated in the order they appear in the object
modifier stack 280. Next the transform 230 is evaluated.
Each derived object 270 has only a single transform 230 and
that transform is always evaluated after the object space
modifiers 220. If a user wishes to apply a transform before
one or more object space modifiers, the user can use an

10

15

20

25

30

35

40

45

50

55

60

65

12

instance of the XForm object space modifier class. After the
transform 230, the world space modifiers 240 are evaluated.
The world space modifiers are evaluated in a manner similar
to the object space modifiers. In particular, the world space
modifiers 240 are evaluated in the order that they are added
to the modifier stack 280.

As noted above, the modifier stack 280 makes modeling
and animation significantly easier for the user. Some advan-
tages of having the modifier stack 280 are described below.

F. Using the Modifier Stack

This section describes how to use the modifier stack 280
and provides examples of using the modifier stack for
modeling and animation. FIG. 3 through FIG. 7 illustrate an
example of creating and modifying a tube using a modifier
stack 280. FIG. 8 through FIG. 11 illustrate an example of
animating a cylinder using a modifier stack 280.

i. Modeling and the Modifier Stack

Each time a new object is instantiated by a user, a derived
object 270 is created. In the example of FIG. 3, a tube 300
is created and rendered to the 3D modeling and animation
interface 135. To the right of the interface, the parameters
defining the tube are shown in the tube definition 310. At this
point, the modifier stack 280 only includes the reference to
the tube master object 210 and the transform 230 for the
tube.

FIG. 4 illustrates a bend modifier as it is applied to the
tube 300. When the tube 300 is selected, the 3D modeling
and animation interface displays the modifier stack interface
420 for the tube 300. The modifier stack interface 420 shows
that the bend modifier has been selected for display. Because
the bend is selected, the bend definition 410 appears. The
bend definition 410 shows the parameters for the bend. In
this case, the angle of the bend is ninety degrees and the
direction is ninety degrees, both along the Z axis.

Also shown in FIG. 4 is an example of a gizmo, the bend
gizmo 430. The bend gizmo allows the user to change the
values of the bend modifier without having to enter the
values directly into the bend definition 410 interface.

FIG. 5 illustrates an additional twist modifier as it is
applied to the bent tube 300. The modifier stack edit window
520 is also displayed. The modifier stack edit window 520
shows that the tube 300 has a bend applied first and then a
twist. Importantly, the modifier stack 280 allows a user to
easily add modifiers to an object and view not only the
results of the new modifiers but also view a list of all the
modifiers that apply to an object.

The modifier stack 280 also allows a user to edit modifiers
that are anywhere in the modifier stack 280. For example,
the user can change the values of the bend modifier without
having to “undo” the twist modifier first.

In one embodiment, the user can change the order of the
modifiers. As noted above the order of evaluation of the
modifiers is important for some modifiers. For example,
applying a bend before a twist can have a significantly
different look than applying a twist before the bend.

Additionally, the user can disable a particular modifier,
but keep the modifier in the modifier stack 280. FIG. 6
illustrates an example of this feature. The tube with the bend
and twist 600 is the same tube as is illustrated in FIG. 5. The
tube with the bend disabled 610 shows the same modified
object except that the bend modifier has been disabled in this
tube’s modifier stack. The bend disabled indicator 630
indicates that the bend modifier for the tube 610 has been
disabled. In one embodiment, to enable the bend, the user
need only select the bend disabled indicator 630.

FIG. 7 illustrates the tube with a bend and twist 600 as
well as a tube with a bend disabled and a transform modifier

6,061,067

13
710. The modifier stack of the tube with the bend disabled
and the transform modifier 730 is also shown. Importantly,
the user was able to easily change the order of the twist and
bend, keep the bend disabled, and insert an XForm instance
between the two modifiers.

ii. Animation and the Modifier Stack

As noted above, in addition to helping in modeling, the
modifier stack 280 is helpful in animating a model. Before
describing the examples of FIG. 8 through FIG. 11, it is
helpful to describe the animation process first.

The user creates key frames that record values of various
parameters at the beginning and end of each animated
sequence. The values at the keyframes are called keys. The
3D modeling and animation application 145 determines the
interpolated values between each key to produce “between
frames” that complete the animation. The 3D modeling and
animation application 145 can animate many parameters in
a scene 142. For example, modifier parameters can be
animated such as a bend angle, and a taper amount.

Note that other embodiments of the invention allow the
user to create an animation by not using key frames but by
using controllers which are not key based, e.g., noise.

FIG. 8 illustrates the beginning of a thirty frame anima-
tion sequence (frame zero is shown in the frame indicator
840). FIG. 9 illustrates results of the animation at frame
fifteen. FIG. 10 illustrates the results of the animation at
frame twenty. FIG. 11 illustrates the end of the animation
sequence at frame thirty.

The elements in FIG. 8 through FIG. 11 are: the bound
cylinder 810, the wave world space modifier 800 and the box
850. The bound cylinder 810 is bound to the wave world
space modifier 800.

FIG. 8 shows the bound cylinder 810 rendered to the left
side of the perspective view. The box 850 is relatively short.
FIG. 8 is a key frame that defines the position, size, rotation,
and the effects of any modifiers on the bound cylinder 810
and the box 850 at frame zero of the animation.

FIG. 9 shows the bound cylinder 810 partly translated to
the right. FIG. 9 is not a key frame, but an interpolated frame
from the values defined in the frame zero key frame and the
key frame at frame twenty. Note that the wave world space
modifier 800 has modified the look of the bound cylinder
810. Also shown in FIG. 9 is that the box is now taller than
in FIG. 8.

FIG. 10 shows the key frame where the bound cylinder
810 has completed its translation across the screen. To create
this key frame, the user accessed the modifier stack 280 of
the bound cylinder at frame twenty and changed the position
of the bound cylinder 810 by modifying the values of the
transform 230 for the bound cylinder 810. The 3D modeling
and animation application 145 interpolated the values of the
transform at the key frame zero and the key frame twenty to
create the between frames including the between frame
shown in FIG. 9.

FIG. 11 shows the last key frame in the sequence, frame
thirty. In this frame, the bound cylinder 810 has not changed
location because after frame twenty, there were no more key
frames that affected the bound cylinder 810. However, frame
thirty has a key value for the box 850. Thus, the box 850 has
continued to grow in size from frame twenty. Again to
enable the box to grow until frame thirty, the user had
previously changed the value of the transform in the modi-
fier stack 280 of the box 850 at frame thirty.

Importantly, the user can animate many of the parameters
in the modifier stacks 280 of the objects in a scene. Thus, the
animation of objects is much easier than in previous sys-
tems.

10

15

20

25

30

35

40

45

50

55

60

65

14

G. Caching

As noted above, one embodiment of the invention pro-
vides a significant speed increase over prior systems. This
embodiment of the invention achieves the speed increase by
caching portions of the derived object representation 246
within each derived object 270. The following describes
how the values of the derived object representation 246 are
determined and then how these values are cached.

i. Channels

In one embodiment of the invention, each derived object
270 provides the derived object representation 246 in
response to a request to provide that information. However,
the contents of that information may vary depending on the
type of request. For example, a bounding box representation
need not have the same detailed information as a smoothed
representation. Additionally, during an animation, for
example, only part of a derived object representation 246
may change. For example, as shown in FIG. 8 through FIG.
11, during the animation, the topology of the bound cylinder
does not change, but the geometry does change. Therefore,
even though the same request may be made of the derived
cylinder (e.g., wireframe representation request), only the
geometry values are changing in each frame of the anima-
tion. Given that different types of data may need to gener-
ated because of the different types of messages, and that
even for the same request only some of the data may change
in the next frame, one embodiment of the invention divides
the derived object representation 246 creation into value
generating channels.

A channel corresponds to a different portion of a derived
object representation 246. Each channel is responsible for
generating its own portion of the derived object represen-
tation 246. Each element in the modifier stack 280 affects
values in one or more of the channels. The results of an
evaluation of a modifier in a channel is called an channel
intermediate result. In one embodiment, providing a derived
object representation 246 includes determining which chan-
nels need to be accessed. Next, evaluating the elements in
the modifier stack 280 that affect the values in those chan-
nels. Evaluating the elements affecting that channel involves
generating a series of channel intermediate results until the
last element is evaluated. The results of evaluating the last
element in the modifier stack is that channel’s portion of the
derived object representation 246.

For example, the transform 230 affects values in at least
the geometry channel in the derived object representation
246. Therefore, an evaluation of the transform 230 in the
geometry channel generates a set of geometry channel
intermediate results. These intermediate results can then be
passed onto the next element in the modifier stack 280 that
effects the geometry channel. When the last element is
evaluated, the geometry values are included in the derived
object representation 246.

As shown in FIG. 12, one embodiment supports a topol-
ogy channel 1210, a geometry channel 1220, a texture map
channel 1230, a selection set channel 1230, a subcell type
channel 1250 and a display selection channel 1260. The
topology channel 1210 determines the topology (e.g., the
normal direction of the faces an object) of the derived object
270. The geometry channel 1220 determines the geometry
(e.g., vertices) of the derived object 270. Most modifiers
modify the geometry of the derived object 270. The texture
map channel 1230 determines the texture mapping coordi-
nates of any texture mapped to the derived object 270. The
selection set channel 1240 determines an array of bits
indicating which vertices are selected by a selection modi-
fier. The subcell type channel 1250 determines the type of

6,061,067

15

selection (e.g., for a mesh object, the selection type can be
an edge or a vertex). The display selection channel 1260
determines how parts of the derived object are to be dis-
played (e.g., are vertices ticks to be displayed for the derived
object 270). Not every derived object 270 needs all of these
channels. For example, if no texture map is mapped onto an
object, the texture map channel 1240 is not needed by the
derived object 270.

ii. Caching in Channels

One embodiment of the invention includes the caching of
the intermediate channel results. This embodiment of the
invention not only includes determining the intermediate
channel results, but also determining a time period for which
those results are valid. This time period is called the validity
interval. An example of a validity interval is where, for
frame nineteen of the animation in FIG. 8 through FIG. 11,
the bound cylinder 810 has a geometry channel 1220 valid-
ity interval, for the wave world space modifier 800, of frame
twenty to frame infinity. Because the length of time an
intermediate result of the derived object 270 is known to be
valid, the validity interval helps optimize the caching of the
intermediate channel results.

As shown in FIG. 12, each element in the modifier stack
280 has an associated validity interval in each topology
channel. For example, the object space modifier 220 has a
validity interval 1213 for the topology channel 1210, a
validity interval 1223 for the geometry channel 1220, a
validity interval 1233 for the texture map channel 1230, a
validity interval 1243 for the selection set channel 1240, a
validity interval 1253 for the subcell type channel 1250 and
a validity interval 1263 for the display selection channel
1260.

In conjunction with FIG. 13, the following describes how
the validity interval is used in the caching process. FIG. 13
illustrates the process of determining what to cache during
the evaluation of elements for a specific channel of a derived
object 270.

Prior to the first step in FIG. 13, the derived object 270 has
received a request to provide a corresponding derived object
representation 246. The derived object 270 then determines
which channels need to be evaluated. The derived object 270
also is aware of the time (e.g., which frame) the request is
being made for.

At step 1310, a test is made to determine whether each
element in the modifier stack 280 has been processed. If all
the elements have been processed, then step 1360 is per-
formed. Otherwise, step 1320 is performed. In one
embodiment, this includes testing whether the “present
element” is the last element in the modifier stack 1280.

At step 1320, the next element in the modifier stack 1280,
now identified as the “present element”, generates a corre-
sponding set of intermediate channel results for that par-
ticular element and channel.

At step 1330, the validity interval is determined, if not
already determined from the last execution of these steps, for
the present element. The present element’s validity interval
is tested to determine whether the present element is valid
for the next X frames. (In another embodiment, the validity
interval is tested to determine whether the present element’s
intermediate results are valid for a predetermined time
period, a number of frames being only one example of the
time period.) In one embodiment, X is ten. If the present
element’s validity interval is valid for the next X frames,
then step 1340 is executed. Otherwise, step 1310 is
executed.

10

15

20

25

30

35

40

45

50

55

60

65

16

At step 1340, the validity interval for the next element
after the present element in the modifier stack 280 is
generated. This validity interval is tested to determine
whether the intermediate results generated by the next
element are valid for a predetermined period of time (e.g.,
the next frame, or the next five frames). If the next element
is the top of the modifier stack, then this test returns false.
The next elements validity interval is stored in one embodi-
ment for use in step 1330 during the next iteration of these
steps. If the next element’s validity interval is not valid for
the predetermined period of time, then the step 1350 is
executed. Otherwise, step 1310 is executed.

At step 1350, the intermediate channel results generated
in step 1310 are stored in a cache for this derived object.
Because of the tests performed in step 1330 and step 1340,
the system knows that the data in the cache is valid for at
least the next N frames. Therefore, the next time this channel
is evaluated (e.g., the next frame), rather than evaluating all
of the elements in the modifier stack 280 below the present
element, the derived object need only begin the evaluation
at the next element in the modifier stack 280 for this channel.

At step 1360, the results of evaluating the last element in
the modifier stack 280 are cached. The results of the last
element in the modifier stack 280 represent that channel’s
portion of the derived object 270. Therefore, in one
embodiment, if an derived object 270 is requested to provide
its derived object representation 246, with nothing changed
in the derived object 270, that derived object 270 need only
provide the cached value. This greatly reduces the number of
evaluations performed in the system.

FIG. 14 illustrates one example of the caching performed
for the bound cylinder 810. In the example of FIG. 14, the
cache is shown for frame nineteen of the animation. Also, in
this example, only the topology channel 1210 and the
geometry channel 1220 are shown. The following describes
how the steps of FIG. 13 are used to cache intermediate
results in the topology channel 1210 and the geometry
channel for the bound cylinder 810. The value for “X” in
step 1330 is ten in this example.

For the topology channel 1210, first step 1310 is executed
which leads to step 1320. At step 1320, the cylinder master
object is accessed (the present element of the bound cylin-
der’s modifier stack) and the intermediate topology channel
results are generated. In this case, the intermediate topology
channel results are the GeometricObject instance topology
definition with no modifications. At step 1330, the topology
channel validity interval 1411 for the cylinder master object
is determined to be zero to infinity. Also at step 1330, the
validity interval 1411 is determined to be greater than ten
frames; therefore, step 1340 is executed. At step 1340, the
validity interval 1415 for the transform 230 is determined to
also be zero to infinity. Therefore, the intermediate topology
channel results for the cylinder master object are not cached.

Step 1310 through step 1350 are repeated for each of the
transform and the wave world space modifier 800. Because
step 1340 evaluates as false during the processing of the
elements effecting the topology channel 1210, no interme-
diate channel results are cached during these steps.
However, at step 1360, the final results for the topology
channel are stored in the world space modifier topology
channel cache 1467. Thus, the results in the cache 1467 are
valid for at least the next ten frames of an animation.

Step 1310 through step 1360 are then executed for all the
elements that affect the geometry channel 1210. Note that
during the processing of the transform element 230, at step
1340, the interval level 1227 for the next element indicates
that the intermediate channel results generated for the next

6,061,067

17

element will not be valid in the next frame of the animation.
Thus, step 1350 is executed resulting in the caching of the
intermediate channel results in the transform geometry chan-
nel cache 1475. Therefore, in the next animation frame, the
bound cylinder need only begin evaluating the geometry
channel 1220 from the intermediate channel results in the
cache 1475 instead of from the cylinder master object 1410
intermediate channel results. Where an object has many
modifiers, being able to use the intermediate channel results
from a modifier, greatly improves the speed of the system
because many calculation are saved. At step 1360, the
geometry channel 1220 portion of the derived cylinder
representation 1446 is stored in the WSM geometry channel
cache 1477.

Note also that the combination of lazy evaluation and the
caching in the channels further improve the speed of the
system. Lazy evaluation of the channels further reduces the
number of unnecessary calculations the entire derived object
representation may not be needed to be recalculated in
response to a broadcast of changes through a reference from
another object. That is, only certain channels may be
affected by a set of changes therefore only the caches in
these channels need be invalidated.

What is claimed is:

1. A method of modifying a visual representation of a
virtual object displayed by a graphical modeling system on
a graphical display device, comprising the computer-
implemented steps of:

defining, by information stored in a storage device, one or

more modifiers that may be applied to the object to
thereby change the visual appearance of the object;
applying the one of the modifiers to the object;

generating and displaying a second visual representation
of the object from the object and the one of the
modifiers;

associating each of the modifiers with a type of object;

and

applying the one of the modifiers to the object only when

the object is of the type associated with the one of the
modifiers.

2. A method of modifying a visual representation of a
virtual object displayed by a graphical modeling system on
a graphical display device, comprising the computer-
implemented steps of:

defining, by information stored in a storage device, one or

more modifiers that may be applied to the object to
thereby change the visual appearance of the object;
applying the one of the modifiers to the object;
generating and displaying a second visual representation
of the object from the object and the one of the
modifiers;
defining, by information stored in a storage device, a
world space coordinate system that contains the object;

defining one or more world space modifiers that represent
graphical modification operations that can be carried
out on all objects that are within the world space
coordinate system;

binding the object to one or more of the world space

modifiers;

whereby the one or more of the world space modifiers

operate to graphically modify all objects that are within
the world space coordinate system and that are bound
to the one or more of the world space modifiers;
graphically modifying all objects that are within the world
space coordinate system and that are bound to the one

5

10

15

20

25

30

40

45

50

55

60

65

18

or more of the world space modifiers, using the one or
more world space modifiers; and

wherein the graphical modification carried out on a par-
ticular object depends on a distance and spatial orien-
tation of the object within the world space coordinate
system.

3. A method of modifying a visual representation of a
virtual object displayed by a graphical modeling system on
a graphical display device, comprising the computer-
implemented steps of:

defining, by information stored in a storage device, one or

more modifiers that may be applied to the object to
thereby change the visual appearance of the object;

applying the one of the modifiers to the object by:
generating and storing a derived object based on the
object and the one of the modifiers; and
generating and storing a derived object representation
based on the derived object; and

generating and displaying a second visual representation
of the object based on the derived object representation;

in which the step of generating and storing a derived
object further comprises the steps of storing, in asso-
ciation with the object, a modifier stack comprising a
list of zero or more modifiers, information identifying
a transform operation to be carried out on the object,
and information identifying a master object associated
with the object; and generating the derived object based
on the modifier stack; and

associating the modifier stack with a frame of an anima-
tion sequence that includes the object, whereby a
plurality of animation frames showing the object in the
animation sequence are interpolated based on the modi-
fier stack.

4. A method of modifying a visual representation of a
virtual object displayed by a graphical modeling system on
a graphical display device, comprising the computer-
implemented steps of:

defining, by information stored in a storage device, one or

more modifiers that may be applied to the object to
thereby change the visual appearance of the object;
applying the one of the modifiers to the object by:
generating and storing a derived object based on the
object and the one of the modifiers; and
generating and storing a derived object representation
based on the derived object; and
generating and displaying a second visual representation
of the object based on the derived object representation;

in which the step of generating and storing a derived
object further comprises the steps of storing, in asso-
ciation with the object, a modifier stack comprising a
list of zero or more modifiers, information identifying
a transform operation to be carried out on the object,
and information identifying a master object associated
with the object; and generating the derived object based
on the modifier stack;

caching one or more portions of the derived object

representation within a derived object, by:

storing one or more channels, in which each of the
channels is associated with one of the one or more
portions of the derived object representation, and in
which each channel stores a value that is determined
by the modifiers, the information identifying a trans-
form operation to be carried out on the object, or
information identifying a master object associated
with the object that are stored in the modifier stack.

6,061,067

19

5. The method recited in claim 4, further comprising the
steps of:

computing a channel intermediate result value based on
the value stored in each of the channels.
6. The method recited in claim 4, further comprising the
steps of:

storing, in each of the channels, a validity time value that
identifies a period of time in which the value stored in
that channel is valid.
7. The method recited in claim 4, further comprising the
steps of:

determining which of the channels need to be accessed;

evaluating each element in the modifier stack that affects
values in each of the channels identified in the deter-
mining step, by generating one or more channel inter-
mediate result values that are based on the values stored
in each of the channels;

storing a result of the last evaluation carried out in the
evaluating step as that channel’s portion of the derived
object representation.

8. The method recited in claim 7, in which the evaluating
step further comprises the steps of:

computing a modified value for each of the values stored

in the channels; and

caching the modified values when all the modified chan-

nel values are stable for a predetermined number of
frames of an animation sequence.

9. A method of modifying a visual representation of a
virtual object displayed by a graphical modeling system on
a graphical display device, comprising the computer-
implemented steps of:

defining by information stored in a storage device, one or

more modifiers that may be applied to the object to
thereby change the visual appearance of the object;
applying the one of the modifiers to the object by:
generating and storing a derived object based on the
object and the one of the modifiers; and
generating and storing a derived object representation
based on the derived object; and
generating and displaying a second visual representation
of the object based on the derived object representation;

in which the step of generating and storing a derived
object further comprises the steps of storing, in asso-
ciation with the object, a modifier stack comprising a
list of zero or more modifiers, information identifying
a transform operation to be carried out on the object,
and information identifying a master object associated
with the object; and generating the derived object based
on the modifier stack;

caching one or more portions of the derived object

representation within a derived object, by:

storing one or more channels selected from among a
topology channel, a geometry channel, a texture map
channel, a selection set channel, a subcell type
channel, and a display selection channel, in which
each such channel is associated with one of the one
or more portions of the derived object representation,
and in which each channel stores a value that is
determined by the modifiers, the information iden-
tifying a transform operation to be carried out on the
object, or information identifying a master object
associated with the object that are stored in the
modifier stack.

10. A method of modifying a visual appearance of a
virtual object displayed by a graphical modeling system on

5

15

25

35

45

50

55

60

20
a graphical display device, comprising the computer-
implemented steps of:
defining, by information stored in a storage device, one or
more modifiers that may be applied to the object to
thereby change the visual appearance of the object;

applying one of the modifiers to the object by generating
and storing a derived object based on the object and the
one of the modifiers, and by generating and storing a
derived object representation based on the derived
object;

caching one or more portions of the derived object
representation within the derived object, by storing one
or more channels, in which each of the channels is
associated with one of the one or more portions of the
derived object representation, and in which each chan-
nel stores a value that is determined by an element of
the derived object representation;

generating and displaying a second visual representation
of the object based on the derived object representation.
11. The method recited in claim 10, further comprising the
steps of:
computing a channel intermediate result value based on
the value stored in each of the channels.
12. The method recited in claim 10, further comprising the
steps of:
storing, in each of the channels, a validity time value that
identifies a period of time in which the value stored in
that channel is valid.
13. The method recited in claim 10, further comprising the
steps of:
determining which of the channels need to be accessed;
evaluating each element in the modifier stack that affects
values in each of the channels identified in the deter-
mining step, by generating one or more channel inter-
mediate result values that are based on the values stored
in each of the channels;

storing a result of the last evaluation carried out in the
evaluating step as that channel’s portion of the derived
object representation.
14. The method recited in claim 10, further comprising the
steps of:
caching one or more portions of the derived object
representation within a derived object, by:
storing one or more channels selected from among a
topology channel, a geometry channel, a texture map
channel, a selection set channel, a subcell type
channel, and a display selection channel, in which
each such channel is associated with one of the one
or more portions of the derived object representation,
and in which each channel stores a value that is
determined by the modifiers, the information iden-
tifying a transform operation to be carried out on the
object, or information identifying a master object
associated with the object that are stored in the
modifier stack.
15. The method recited in claim 10, in which the evalu-
ating step further comprises the steps of:
computing a modified value for each of the values stored
in the channels; and
caching the modified values when all the modified chan-
nel values are stable for a predetermined number of
frames of an animation sequence.
16. A method of modifying a visual appearance of a
virtual object displayed by a graphical modeling system,
comprising the computer-implemented steps of:

6,061,067

21

displaying a visual representation of the object on a
graphical display device;

defining, by information stored in a storage device, one or
more deformations that may be applied to the object to
thereby change the visual appearance of the object;

applying the one of the deformations to the object; and

generating and displaying a second visual representation
of the object based on the object and the one of the
deformations;

22

storing the deformations in an ordered stack, whereby the
deformations are applied to the object according to an
order of the stack;

in which the step of defining includes the steps of iden-
tifying a deformation type from among a set of different
deformations, and storing values of one or more param-
eters that define a direction and limits of the one of the
deformations.

