
IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, NOVEMBER 2003

Contributed Paper
Manuscript received July 29, 2003 0098 3063/00 $10.00 © 2003 IEEE

1402

Embedded Linux Implementation
on a Commercial Digital TV System

Sang-Pil Moon, Joo-Won Kim, Kuk-Ho Bae, Jae-Cheon Lee and Dae-Wha Seo, Member, IEEE

Abstract — A Digital TV system is necessary for not only

video and audio, but also data processing. Especially in the
case of bidirectional broadcasting, it should manage the
return channel created by the Internet, PSTN, and so on.
Because of many functionalities and multitasking jobs, it
needs an Operating System. Embedded Linux, as open source
program can increase cost effectiveness in the market and has
many advantages-reusable device drivers and application
programs, more convenient development environment using
shell and file system, and easy resolution of problem within
the Open Source Community. In this paper, we modified the
embedded Linux kernel and the cross development
environment for a big-endian system, redesigned device
drivers for kernel execution, and configured system memory
map in order to load the Linux kernel. Also we developed a
device driver for the entire system control.1

Index Terms — Embedded Linux, Digital TV

I. INTRODUCTION
According to the trend of multimedia in TV system, in order

to increase the competitiveness of ground broad- casting
services, digital broadcasting services are applied widely.
Consequently, the demand for digital TV system is increased.

While designing digital TV systems, the hardware applied to
existing analog TV systems is not able to support various
receiving functions in digital TV systems because it need to
perform data processing as well as video and audio. Therefore,
a digital TV system needs a high-performance processor and a
large amount of memory. Because of this reason, an embedded
operating system that can efficiently manage hardware
resources is required.

There are commercial embedded operating systems such as
pSOSTM in digital TV systems. However, the cost of
production is high due to expensive royalties when those are
used.

But if an embedded Linux operating system with open
source is used, cost of production can be reduced. In addition,
there are other advantages-reduced development time because

1S. P. Moon and D. W. Seo are with the school of Electrical engineering
and Computer science, Kyungpook National University, Daegu, Korea (e-
mail: octor@palgong.knu.ac.kr, dwseo@ee.knu.ac.kr).

J. W. Kim, K. H. Bae, and J. C. Lee are with the Display Product Research
Lab., LG electronics Inc.(e-mail: integer7@lge.com, kukhobae@lge.com,
jaecheon@lge.com)

 This work was supported in part by the LG electronics Inc.

of open source device drivers and reusable applications,
convenient development environment configuration using
module function, shell utility and file systems, and easy
resolution of a problem from open source communities.

In this paper, we will describe an embedded Linux porting
in digital LCD projection TV that is able to receive Korean
type digital broadcasting program. In order to port it into a
digital TV system, we modified the kernel library and the cross
development environment into a big endian memory access,
redesigned the essential device driver for kernel operations,
and configured the system memory map for loading the kernel
into main memory. Also, we designed a bus interface device
driver to control the entire system.

In the remainder of this paper, section 2 discusses the role
and necessity of digital TV operating systems. Section3
describes commercial digital TV system structures and its
hardware components. Section 4 describes the procedure of
Linux porting. Section 5 depicts development environment.
Section 6 shows the results of device control and screen
output. Finally, concluding is given in section 7.

II. DIGITAL TV OPERATING SYSTEM
Digital TV provides higher video and audio qualities than

analog TV. It has improved scanning line and horizontal
resolution for high quality video, and applied AC3 or MPEG2
for high quality audio. However, a more innovative advantage
is that it supports data broadcasting services. Data
broadcasting services are program dependent, independent
services or interactive services using return channel. For these
services, a large amount of data needs to be processed. That is,
the data to be captured from the digital input stream need to be
sorted, stored, and modified for screen output, and on-air TV
program would be stored in an embedded hard disk. In
addition, if an interactive service should begin, return channels
which are created by the Internet and PSTN would be
managed and applications such as T-commerce would be
performed in digital TV system. Therefore, more data
processing would be required [1].

A digital broadcasting signal received by a TV antenna is a
stream which includes video, audio, and data. It is
demodulated by a RF module, and is extracted MPEG
II(video), AC3 or MPEG II(audio), and PAT, CAT, PMT,
TSDT(atsc) or NIT, SDT, EIT, TDT(dvb) from a
stream[2][3].

S.-P. Moon et al.: Embedded Linux Implementation on a Commercial Digital TV System 1403

For example, in the case of an EPG (electronic program
guide) service, the extracted data are modified, stored, and
printed onto OSD (On-Screen Display) as a frame. In this
procedure, continuously received program information is
sorted and stored. At the same time, frames for screen displays
are created. These tasks need an operating system to execute
simultaneously (Fig. 1).

Operating System
Digital TV

User Input

Store program or caption
data

Contents provider

Broad casting station

File System

Data Sorting

Network System

Program Guide (EPG)
Real Time weather casting

.

Internet Shopping Mall
Internet banking service

E-mail service
.

OSD

Video, Audio, Data
Stream

Services

Return Channel
ex. Internet

Fig. 1 role of digital TV operating system

Digital TV systems on the market have included commercial

operating systems such as pSOSTM (Windriver Inc.). These
operating systems have advantages of reliability and system
optimization. However, there are expensive royalties paid
whenever manufacturing system. Whereas, in the case of
applying an embedded Linux into a digital TV system, cost
effectiveness would be increased since there are no royalties to
be paid. Some other advantages are as follows:

 Reusability of open source device drivers and application
programs.

 Convenient development environment configuration
using shell, file system, and the module function.

 Fast problem resolution for problems through open
source community.

In order to utilize the advantages mentioned above and port

Linux into the digital TV system, we should analyze the
system structure and optimize an operating system for its goal.
In the next section, we will describe the structure and function
of commercial digital TV system as a basis for Linux porting.

III. COMMERCIAL DIGITAL TV SYSTEM

A. Structure of digital TV
The digital TV system consists of digital processing, video

processing, RF, LCD driving, and analog output module (Fig.
2.)

Digital Module

Digital Processing
Module

Video Processing
Module RF Module LCD Driving

Module
Analog Output

Module

D
M

A

Clock

Data

I2C Bus

Fig. 2 Digital TV system module structure

The digital processing module controls other modules and
execute programs such as EPG(Electronic Program Guide). It
consists of MCU, SDRAM, Flash Memory, UART, and I2C
bus interface.

The video processing module decodes the data captured by
the RF module into video, audio, and text information. It
consists of a Signal Processor Unit (SPU) and SDRAM which
contains data frames being displayed. The RF module receives
the digital broadcasting signal, and demodulates it into data
stream. The LCD driving module controls the LCD panel
which is used to emit light. The analog output module controls
video-audio output, deflecting plate, and output signals.

The digital processing module controls the RF, LCD, and
analog output modules through the I2C(Inter IC)bus. It also
controls the video processing module using DMA.

When we port an embedded Linux, the most important
component is the digital processing module which includes the
CPU, Memory, and bus interfaces between the CPU and
external output devices. In the next section, we explain the
hardware components of the digital processing module.

B. Hardware components.
In digital TV system, the role of the Linux kernel is to

provide effective resource management in order to support a
multi-programming environment. For an operating system to
manage hardware resources efficiently, it is necessary to
analyze the basic hardware components, such as the following:

 CPU structure and function
 Endianess
 Memory map
 Interrupt controller
 Timer
 Serial bus interface
 External bus interface

In order to port an embedded Linux, we should study low
level language by taking a closer look at the CPU structure and
function. An understanding of instruction sets, system registers
and status registers, CPU operation modes, and exception
processing are required.

The study on memory devices includes memory map and access
method. Before the system operates, the embedded Linux kernel is
stored in a flash ROM, and is copied to the ram when in operation.
In addition to ROM and RAM, the external devices are used
frequently. These devices are mapped to a linear memory map and
could be accessed in the same manner. So, it is required that we
have a deeper understanding of the memory capacity, bus width,
and other features. In addition to the memory map, it is important
for us to know how the CPU accesses the memory; either big or
little enidan.

 It is also required to analyze the system timer, interrupt
controller, and the external bus interface device for an
operating system. For example, a scheduler, which is a core
function of an operating system, needs a timer that produces
periodic interrupts and an interrupt controller that signals the
CPU when an interrupt occurs.

IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, NOVEMBER 2003

Finally, an analysis of the system bus connecting the system
devices as well as external bus interface between MCU and
external devices is required.

1) CPU structure and function
The processor core of the digital processing module is the

ARM7TDMITM which is a 16/32bit RISC processor. It doesn’t
include the MMU(Memory Management Unit). Therefore,
while we made application programs, the virtual memory and
memory protection didn’t work. Actually, it is possible to
directly access memory areas mapped to a device without the
OS kernel. The processor core consists of 31 system registers
and 6 status registers, has 6 operating modes, and generates 5
exception events-FIQ, IRQ, Abort, Software Interrupt, and
Undefined Instruction Trap [4].

2) Endianess
The ARM7TDMI processor core supports both big endian

and little endian memory access. But, the MCU(Main Control
Unit) which is used in digital TV systems supports only the big
endian memory access[5].

3) Memory map
The memory resources of the digital processing module are

flash memory which contains the executable programs when
the power is off, a SDRAM in which codes are executed, a
external I/O area, and MCU’s internal registers. A programmer
considers these things as linear address space.

0x00000000

0x00800000

0x01800000

0x03ff0000

0x03ffffff

0x02000000

SDRAM

Special Register Bank

External I/O device
(16KB fixed size)

FLASH ROM

Not Used

External I/O device
(16KB fixed size)

External I/O device
(16KB fixed size)

External I/O device
(16KB fixed size) Not Used

SPU

PCF 8584

Not Used

Fig. 3 System Memory Map

The memory map is configured by the system management

registers within the MCU. There are 8M bytes flash ROM,
16M bytes SDRAM, SPU of the video processing module, I2C
bus interface device, integrated internal devices, and
configuration registers in the system memory map. All of those
are divided as banks, and can be configured by special
registers (system management registers, external bus control
registers, and refresh registers) according to memory type,
access clock cycle, capacity and bus width (Fig. 3).

4) Interrupt controller
The interrupt controller of the MCU includes 21 interrupt

resources (17 from integrated internal devices, 4 from external
devices). When the internal or external interrupt signal is
transferred, it sends the interrupt request within an interrupt
pending register to the CPU[5]. When the CPU receives the
interrupt requests, it switches the operating mode to IRQ or FIQ
modes according to the interrupt types, branches into a proper
service routine for the interrupt with the highest priority among
pended requests, and executes that routine. After processing, the
CPU switches back to its original mode [4].

5) Timer
The timer of the digital processing module is a 32bit interval

mode timer. In order to generate 10msec periodic clock ticks
which are the default system time for Linux kernel scheduling,
it is configured by setting the counter value and the data
register.

6) Serial bus interface
A console device is required for messages which are printed

during the boot process and is associated with program errors.
Because there isn’t any dedicated console devices in a small
embedded system, we can check the kernel message using a
serial port device such as UART (Universal Asynchronous
Receiver Transmitter). The MCU includes 2 identical UART
ports and its structure and control block diagram are depicted
in Fig. 4.

BaudRate Divisor
UBRDIV0-1

(Address : 0x3ffd014, 0x3ffe014)
Control Register

UCON0-1
(Address : 0x3ffd004, 0x3ffe004)

Line Control Register
ULCON0-1

(Address : 0x3ffd000, 0x3ffe000)
Status Register

USTAT0-1
(Address : 0x3ffd008, 0x3ffe008)

Buffer
Status

Line
Status

RX

Receive Shift Register

Receive Buffer Register
URXBUF0-1

(Address : 0x3ffd010, 0x3ffe010)

TX

Transmit Buffer Register
UTXBUF0-1

(Address : 0x3ffd00c, 0x3ffe00c)

Transmit Shift Register
BaudRate

Configuration
Value

S
Y
S
T
E
M

B
U
S

Fig. 4 UART structure and control block diagram

The RX/TX buffer and shift registers, which are mapped to

the system memory map, provide actual I/O spaces. Line
control, UART control, and status registers play a role of
checking errors and making decisions for switching between
RX/TX modes. In the case of transmission, after the CPU
checks the status register to see whether the data in the TX
buffer register can be transferred or not, and if the data can be
transferred, it would be transferred to a serial line a selected
mode and baud-rate of UART control register.

7) External bus interface
Since the RF, LCD driving, and analog output modules are

controlled through the I2C bus by the MCU, an interface
between MCU’s parallel bus and I2C serial bus line are
required. In this paper, the PCF8584 (Philips Inc.) has been
used. Fig. 5 represents the connection between the MCU and
I2C serial bus line.

MCU

/

A0 (register select)

INT(IRQ)

ECS1(Chip Select.)

CLK(12MHz)

8(data)

Control
reigister

Shift
reigsiter

SCL

EXT1
0x2004000~0x2008000

PCF8584

Parallel bus
control block

Write/Read
buffer

SDL
Parallel bus

Control signals
and clock

I2C bus

Fig. 5 Connection between MCU and I2C bus

1404

S.-P. Moon et al.: Embedded Linux Implementation on a Commercial Digital TV System 1405

The data written in the address spaces which are mapped
into the MCU as external bus memory are transferred to the
write buffer of the PCF8584 device and sent to the SDL (serial
data line) by the shift register. At the same time, clock signals
are sent to the SCL (serial clock line) by the parallel bus
control block. These data and clock transfers are controlled by
the control register within the PCF algorithm for the I2C bus
protocol- I2C bus protocol is what defines fixed slave
addresses, transfer modes, ACK, start transfer, and end
transfer for inter IC communication[6], and PCF algorithm is
the control algorithm for the PCF8584 device for the I2C bus
protocol[7].

IV. LINUX PORTING
In this section, we will explain the sequence of porting

Linux with respect to the analysis of the component. The
sequence consists of the modification of the kernel
initialization codes and the creation of the device driver.

A. Rebuilding of kernel initialization code
In order to load Linux kernel to an embedded system, a

rebuild of hardware dependent kernel initialization codes is
required. This is a setting the memory map for loading a Linux
image and modifying the devices which is necessary for a
kernel operation.

1) Setting the memory map
The Linux image to be zipped is contained in a flash

memory, moved to a SDRAM and unzipped while in
execution. The unzipped kernel codes are relocated into the
beginning address of the SDRAM to remove the codes for the
zipped Linux image and the unzip program. Fig. 6 shows
memory map setting sequence.

When the system resets, the CPU recognizes only the flash
ROM area and executes a boot loader at the bottom of flash
rom. It plays a role of downloading codes from a host PC and
storing them into a flash rom.

< process a > the boot loader copies the Linux image of a
host PC into a SDRAM in the digital
processing module.

< process b > the downloaded Linux image in the SDRAM
is stored in a flash rom above the boot
loader.

< process c > then, the system is initialized and the boot
loader calls an execution code(head.o)
included in the Linux image. And it copies
the entire flash ROM contents into the
SDRAM.

< process d > using the system management registers, the
CPU exchanges the beginning address of the
flash ROM and with that of the SDRAM.

As a result, it is possible to execute a code (head.o) without

changing the program counter when the image in the flash ROM
is loaded into SDRAM. Fig. 7 shows the final memory map.

0x00000000

0x00800000

0x01800000

0x03ff0000

0x03ffffff

0x02000000

Host PCDownload
Image

FLASH
ROM

SDRAM

Special Register Bank

Linux Image

Not Used

External I/O device

Boot Loader

abc d

d

0x00000000

0x01800000

0x01000000

0x03ff0000

0x03ffffff

0x02000000

FLASH ROM

Special Register Bank

Linux Image

Not Used

External I/O device

Boot Loader

SDRAM

Fig. 6 Kernel image loading sequence Fig. 7 Final memory map

The Linux image copied to SDRAM would be executable

by being unzipped. In order to perform extractaction, memory
spaces such as bss_section, user_stack, and malloc are
required. Those memory allocations are performed by link
script which is used for an image creation. In these spaces, a
zipped Linux image is extracted by gunzip tool.

The extracted codes are located in the next address from the
malloc space. And relocation process is required since the data
under the malloc space isn’t needed. In this process, since the
relocation code under the malloc space would be overwritten,
it should be moved to the end of the extracted codes.

2) Essential devices for the kernel
The essential devices are the interrupt controller, timer, and

console device. These devices are mapped to internal registers
of the MCU and provide necessary function, by modifying the
internal registers.

B. Device driver design
There are a video processing device and an analog output

device as well as essential devices for the kernel in a digital
TV system. In this paper, we designed and implemented a
device driver for the I2C bus interface (PCF8584).

I2C Bus Slave device
(MSP3440)

I2C Bus Master device
(PCF8584)

Adapter module
(i2c-adaptor.o)

SCL SDL

 /8

Algorithm module
(i2c-pcf.o)

Core module
(i2c-core.o)

Interface module
(i2c-dev.o)

Fig. 8 Structure of device driver

The PCF8584 device driver consists of the interface, core,

algorithm, and adaptor modules (Fig. 8). The functions of each
module are as follows:

 Interface module
A. Provide interface between device driver and

application program.
B. Define device file operations (open, read, write, ioctl,

release).
C. Initialize device file (/dev/i2c0).

 Core module
A. Add/remove an adaptor.
B. Define the function of I2C bus.
C. Initialize a status information file system (/proc).

IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, NOVEMBER 2003

 Algorithm module
A. Initialize PCF8584 device
B. Define the function of PCF8584 (i2c_start,

i2c_stop(), wait_for_pin()).
 Adaptor module

D. Transfer the data through the memory address to be
mapped to MCU.

In order to drive the PCF8584 interface device, module

initializing are required. In general Linux systems, device
drivers are included and initialized at run time. However, in
the case of an embedded Linux as a single binary image, these
are included statically and initialized at the boot process.
Initializing routines within 4 modules are stored in the ‘__init’
symbol of ‘.init’ section and performed by the ‘do_initcalls()’
function while booting.

Control data are transferred sequentially beginning from the
interface, core, algorithm, and finally to the adaptor modules.
The interface module requested by application programs
(open, write, read, and ioctl) calls functional interface routines
of the core module (master_send(), master_receive(),
transfer()) with parameters which are received by application
programs. Those of the core module pass the data including
slave address, flags and message length to the algorithm
module. The algorithm module checks the I2C bus status and
the slave address, and sets the control register of the PCF8584.
Finally, the adaptor module writes and reads data into the
address space which are mapped to the external bus.

V. IMPLEMENTATION
 For Linux porting, we installed a cross development

environment on the host PC, set a test environment using the
test board which has similar specification, and finally, applied
it to the digital TV system.

A. Installation of cross development environment
Build binutil

Kernel Library modify

Build glibc

Build gcc(with glibc)

Install elf2flt, genromfs

Build gcc(without glibc)

Fig. 9 Procedure for cross development environment

Fig. 9 shows the installation procedure for the cross

development environment. First, make binary utilities-linker,
assembler, and other object tools (objcopy, objdump)-which is
used in all procedures in making a binary Linux image.
Second, modify the architecture dependent codes (partial
checksum, etc…) in the kernel library because the MCU only
support big endian memory access. Third, make cross-
compiler and cross-library (Between them, there is a mutual
dependent relationship-to make a cross-compiler, a cross-

library is required and likewise in order to make a cross-
library, a cross-compiler is needed. In order to resolve this
problem, first of all, make a cross-compiler using a dummy
library (libchack) without the cross-library. And then, create a
cross-library using the created cross-compiler. Finally, rebuild
the cross-compiler with the cross-library [8].). Fourth, install
the tool to make a binary file system image because a ported
Linux operates under a ROM file system (read-only) in
memory. And install the conversion tool which changes the
executable binary format- from a large ELF(Executable and
Linkable format) to a small BFLT(Binary Flat format).

B. Development environment
The development environment consists of SNDS100TM

(Samsung) for the test board, JEENITM (Jtag EmbeddedICE
Ethernet Interface) for the remote debugger, and the digital TV
board(LG Electronics Inc.). Table 1 shows each composition.

TABLE 1 DEVELOPMENT ENVIRONMENT

 Composition Function

SNDS100
Test Board

Samsung s3c4510B (ARM 7TDMI),
16MByte SDRAM, 1MByte flash
ROM, status LED, RJ45 Connector.

Network application
development board.

Digital TV
Board-LG
electronics

Samsung s3c4500(ARM 7TDMI),
16MByte SDRAM, 8MByte flash
ROM, pcf8584, SPU (LG electro-
nics), 32MByte SDRAM.

Digital processing
module.

JEENITM
EPI, Two hardware breakpoints,
Ethernet host interface, Internal
ARM 710A cached processor.

Remote debugging
environment.

Software

gcc-2.95.3, glibc-2.1.3, binutils-
2.12, genromfs-0.5.1, elf2flt, gdb-
5.0, ADS(ARMTM Developer Suite)
evaluation ver. 1.1.

Tools for cross
development and
debugging.

The development process was proceeded to make a binary
Linux image in the host PC and transfer it to the development
board through the serial line. And using JEENI, the remote
debugging environment was installed. Also, we made a JTAG
(Joint Test Action Group) cable (Fig. 10). The flash ROM
boot-block was protected and could not be written on. Thus,
we had to detach it from the digital TV board and insert a boot
loader into the flash ROM using a ROM programmer, and
reattached the flash ROM using IC test socket (Fig. 11).

 Fig. 10 Development environment Fig. 11 Development board

VI. EXPERIMENTAL RESULT
 As a result, we controlled an audio output IC through the

PCF8584. That is, the MSP3440 (Micronas Inc.) which
converts digital data to audio output signals. We could hear a
beep sound and checks I2C bus signal using a digital
oscilloscope. Fig. 12 shows all the data transferred to produce
beep sound of some frequency. The first of them is 0x80 (slave

1406

S.-P. Moon et al.: Embedded Linux Implementation on a Commercial Digital TV System 1407

address), the next is 0x12 0x00 0x14(sub address), and the last
is 0x7f (volume) and 0x4e(frequency)[10]. Fig. 13 represents
the screen output of the digital TV systems in which the
embedded Linux was applied.

Fig. 12 Entire data output Fig. 13 Digital TV output

VII. CONCLUSIONS
 With the demand for digital TVs, many commercial models

have appeared in the market. These require operating systems
for supporting multi-programming environment in which
multitasking can be executed. General digital TV systems have
used expensive commercial operating systems, which have
advantages of code optimization and reliability. But these
operating systems increase the overall cost of the products
because of the expensive running royalty. If we apply an
embedded Linux instead of a commercial operating system, we
are able to reduce the cost of the products since Linux is an
open-source program, and to provide a more convenient
development environment. In this paper, a digital TV system
which is currently in the market and is able to receive Korean
type digital broadcasting programs is used. It consists of
digital processing, RF, video processing, analog output, and
LCD driving modules. And the most important component of
all the modules is the digital processing module which includes
a CPU, memory, and bus interfaces between the CPU and
external output devices.

The research proceeded through five phases: (i) The first
was the analysis of hardware components of the digital
processing module. (ii) We modified the Linux kernel codes
based on the above analysis. (iii) We designed an I2C bus
interface device driver for controlling entire system. (iv)We
installed the development environment by modifying target
board and tested on a test board with similar specifications
with that of the target board.

Finally, we confirmed the result through a beep sound from
the external audio output control device and captured the data
using a digital oscilloscope on the I2C bus.

 REFERENCES
[1] Korea Broadcasting System 2001th annual report-data broadcasting

http://tri.kbs.co.kr/pdf/publish/01/6.pdf.

[2] Digital Video Broadcasting (DVB): Specification for Service

Information (SI) in DVB systems, ETSI EN 300 468 V1.5.1.

[3] ATSC Digital Television Standard, Rev.B, ATSC Standard A/53B with

Amendment 1.

[4] Steve Furber, Stephen B., ARM system-on-chip architecture, Addison-

Wesley, 2000.

[5] s3c4510B user manual ,http://www.samsung.com/Products/Semicond

uctor/SystemLSI/Networks/Personal/NTASSP/CommunicationProcessor
/S3C4510B/um_s3c4510b_rev1.pdf

[6] I2C bus specification, http://www.semiconductors.phiips.com/acroba

t/literature/9398 /39340011.pdf.

[7] PCF8584 specification, http://www.semiconductors.philips.com/acrob

at /datasheets/PCF 8584_ 4.pdf.

[8] Craig Hollabaugh, Embedded Linux, Hardware, Software, and

Interfacing, Addison Wesley 2002.

[9] Embedded Linux/Microcontroller Project, http://www.uclinux.org

/description.
[10] “MSP3440G data sheet”, http://www.micronas.com/products/document

ation/consumer/msp 34x0g/down loads/msp34x0g_1ds.pdf .

[11] John L. Hennessy, David A. Patterson, Computer organization and

design: the hardware/software interface, 2nd ed. Morgan Kaufmann
Publishers, 1998.

[12] Richard Stones, Neil Matthew, Beginning Linux programming, 2nd ed.

Wrox press, 1999.

Sang-Pil Moon was born in Pusan, Korea, in 1976. He
received B.S degree from Kyungpook National
University, Daegu, Korea, in 2002. He is currently with
the school of Electrical engineering and Computer
science, Kyungpook National University, Daegu, Korea.
His research interests are in the areas of operating
system, wireless communication, and computer

architectures.

Joo-Won Kim received the B.S. degrees in Electronics
from Kyungpook National University, Daegu, Korea, in
1986 the M.S. degrees in Electronics from POSTECH,
Pohang, Korea, in 1996. He is a member of the chief
research engineer at the LG electronics, Kumi, Korea.
His current research interests are in the areas of digital
television system and embedded software.

Kuk-Ho Bae received the B.S. degree in Electronics from Kyungpook
National University, Daegu, Korea, in 1986 the M.S. degree in Electronics
from POSTECH, Pohang, Korea, in 1997. He is a member of the chief
research engineer at the LG electronics, Kumi, Korea. His current research
interests are in the areas of digital television system and software
development process.

Jae-Cheon Lee received the B.S. and the M.S degrees
in Electronics from Kyung-book National University,
Daegu, Korea, in 1980 and 1997, respectively. He is a
member of the research fellow at the LG electronics,
Kumi, Korea. His current research interests are in the
areas of digital television system and display pannels

Dae-Wha Seo (M’95) received the B.S degree from
Kyungpook National University, Daegu, Korea, in 1981
and the M.S and Ph. D. degrees received in Korea
Advanced Institute of Science and Technology, Daejun,
Korea, in 1983 and 1993, respectively. He was a
researcher at the Electronics and Telecommunications
Research Institute(ETRI), Daejun, Korea, from 1983 to

1995. He He is currently an associate professor with the school of Electrical
engineering and Computer science, Kyungpook National University. His
research interests are in the areas of distributed operating systems, parallel &
distributed systems and mobile computing.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

