

DataSnap Developer Reference

SDI-12 Data Recorder

Part Number: ACC-AGR-D01

Contents

Introduction	2
Basic Operation	2
Definitions and Conventions used in this document	
Character Code Definitions	
Special Font Use	
Command Interfaces	3
Command Triggers	3
SDI-12 Command overview	3
DataSnap Command overview	3
DataSnap Commands	4
DataSnap Command Table	4
HELP Command	5
VER Command (Version)	5
VER Command (Version)STATUS Command	6
CONFIG Command (Configuration)	6
Factory Reset Command	8
SENSOR Command	8
LOG Command	

Introduction

This guide is designed to provide developers or advanced users with knowledge of how the DataSnap works and how to use the DataSnap without the Acclima SnapView software. It is intended for advanced users who have a strong knowledge of Microsoft Windows and computer hardware, and wish to interface with the DataSnap using a terminal program or custom software. For normal operating use or for general features and guidelines, please refer to the **DataSnap User Manual**.

Note: The command interface outlined here is not intended for interchangeable use with the Acclima SnapView software. DataSnaps and sensors that have been configured using the DataSnap command interface outlined here may not work as intended when connected to the SnapView software.

Basic Operation

When the DataSnap is properly installed on a computer USB port, it will implement a generic COM port on that computer. This COM port should be visible in Device Manager as 'Acclima Virtual COM port'. The communications settings for this COM port are unimportant, and can be ignored, since the output of the DataSnap is fixed as the SDI-12 protocol. This means that the DataSnap will operate regardless of the BAUD rate, stop bits, parity, or flow control settings. Interfacing with the DataSnap requires software that can open and send/receive data over a COM port.

Definitions and Conventions used in this document

Character Code Definitions

Some characters are not easily printed. These characters are shown instead by special sequences as defined here:

Character Sequence	Name	Decimal Value	Description
<cr></cr>	Carriage Return	13	The character usually generated by pressing the Enter key. In C and C# programming languages, this is the "\r" character.
<lf></lf>	Line Feed	10	Sometimes known as a new line character. This character is represented as "\n" in the C and C# programming languages.

Special Font Use

Throughout this document, the use of Courier Font will be used to indicate information that is sent to or from the DataSnap over the USB communications channel. Courier Italics are used to indicate portions of a command string that should be replaced by one or more optional key words or character sequences. For example, consider the following text:

```
SENSOR action item=value<CR>
```

In this example, we will replace action and item=value with appropriate sub strings to perform a desired action. The data that will actually be transmitted to the DataSnap might look like this:

```
SENSOR READ ADDR=1<CR>
```

This command will cause the DataSnap to read the sensor found at SDI-12 address 1. Note the sequence <CR> is actually only 1 character that is not printable in document format.

Command Interfaces

The DataSnap provides a USB communications interface for two different sets of commands: SDI-12 commands and DataSnap commands. Both of these command interfaces are active at the same time. The DataSnap determines which command was intended and processes that command appropriately through the use of command triggers. Until a command trigger is received, the DataSnap will collect and queue received characters, but will not evaluate or act on them in any way.

Command Triggers

Trigger	Description	Action (when detected)
Character		
!	SDI-12 end of command character	All buffered characters up to this point are sent out the SDI-12 port with the timing (breaks, marks, etc) as required by the SDI-12 protocol version 1.3.
<cr></cr>	Carriage Return character: End of logger command	Previous characters in the buffer are examined for a command match. If a match is found, the internal command is executed. Finally, the buffer contents to this point are deleted even if a match is not found.
>127	All non-ASCII or extended ASCII characters greater than 127 decimal	Extended ASCII characters are not allowed. These characters will trigger the same response as the internal version command: VER <cr>. All received data previous to the illegal byte value will be deleted from the receive buffer.</cr>

SDI-12 Command overview

The DataSnap acts as a transparent USB-to-SDI12 bridge for SDI-12 commands. The DataSnap transfers SDI-12 commands from the USB port to the SDI-12 port without modification to the command string. However, any required break signals, address mark, or other timing specific requirements are handled by the DataSnap. This removes the burden of SDI-12 timing from the computer, and simplifies the programming requirements for computer software, while providing a modern USB interface. Due to this architecture, all SDI-12 commands and capabilities are present when using the DataSnap, provided that the software using it is not limited. The SnapView software provided with the DataSnap can communicate with all types of SDI-12 sensors and is not limited to Acclima sensors.

Some of the detail on how the DataSnap handles SDI-12 commands can be adjusted through configuration settings. Please refer to the CONFIG command outlined in this document, with focus on the ECHO and RETRY items.

For more information about the SDI-12 protocol and associated commands, please visit the SDI-12 website at www.sDI-12.org
For more information on the Acclima SDI-12 Sensor, please visit www.acclima.com

DataSnap Command overview

The primary purpose of this document is to describe the DataSnap command set. These commands are used to configure and alter the behavior of the DataSnap data logger. Refer to the following sections for more information about the DataSnap command set.

DataSnap Commands

The DataSnap provides a command interface for setting the modes of operation and other tasks. This interface works over the same communication port and shares the connection with the SDI-12 communications. The DataSnap will determine if the command is intended as an internal function or as an SDI-12 command, and process it accordingly.

The DataSnap monitors and queues all incoming data until a command trigger (or end of command character) has been received. Once a command trigger has been received, all buffered characters up to and including the command trigger are acted on (the command is executed) and then the characters are deleted from the buffer.

Note: The command interface outlined here is not intended for interchangeable use with the Acclima SnapView software. DataSnaps and sensors that have been configured using the DataSnap command interface outlined here may not work as intended when connected to the SnapView software.

DataSnap Command Table

Root Commands	Name	Description
HELP <cr></cr>	Help	List the commands that are available
VER <cr></cr>	Version	Report the version of the DataSnap
CONFIG item=value <cr></cr>	Configuration	Set the indicated configuration item to a new value. This is used to change global configuration items within the DataSnap, such as Time, Date, Logging Interval, etc.
STATUS <cr></cr>	Logger Status	Show the current status of the Logger, including: date, time, operating voltage, log memory status, etc.
LOG action <cr></cr>	Logs	Read or erase sensor data that has been recorded in the logger's internal memory.
Factory_Reset <cr></cr>	Factory Reset	Erase all configuration and log data within the logger. Some data cannot be erased and will remain intact (such as LASTLOGID).
SENSOR action item=value <cr></cr>	Sensors	Read, configure, or automatically locate sensors on the SDI-12 bus.
<cr></cr>	Unrecognized	If the data preceding the carriage return <cr> is not recognized as a command, then no action is taken other than to purge the data up to and including the <cr> from the buffer.</cr></cr>

Note: The command interface is case-sensitive. For example, sending Ver<CR> instead or VER<CR> will not be recognized and will only purge the communications buffer.

Parameters are passed in and out of the DataSnap through the use of *item=value* fields. Multiple fields may be included on a single command line, and multiple fields are often reported by commands. These fields will be separated by a space and the entire command response will be terminated by a <CR><LF>. Some commands report multiple sets of data (such as SENSOR GET which will report all active sensor configurations). In this case, each record will terminate with a <LF><CR> and the entire command sequence after all records have been reported will terminate with the usual <CR><LF>. See individual command descriptions for more information.

HELP Command

Command Sequence:

```
HELP<CR> or HELP command<CR>
```

The HELP command can be used to gather usage information from the DataSnap command interface using a terminal program. Typing HELP<CR> by itself will list the available commands. Including another command after the word HELP will print more detailed information specific to that command.

For example, the response to <code>HELP<CR></code> may look something like this:

```
****** HELP Menu *******

HELP = Show this menu

HELP < cmd> = Show specific help about other commands in this menu

VER = Display product and version information

STATUS = Show the current status of the Data Snap logger

CONFIG = Read or Set global configuration data

LOG = Read/Delete Logs stored within the Data Snap

SENSOR = ADD/MODIFY/DELETE/READ Sensors

Factory_Reset = Erase all logs and configuration data

Note: All commands are case-sensitive
```

As another example, the response to <code>HELP VER<CR></code> may look like this:

```
**** VER (Version) Command Help ****
This command reports information about the logger
Command format: VER
No arguments or parameters expected
Output format: Label=Data pairs
MFG=Manufacturer (Variable length string, no spaces no quotes)
MODEL=Model_Name (Variable length string, no spaces no quotes)
VERSION=M.N.B (M=Major rev, N=Minor Rev, B=Build)
ID=Unique_ID (64-bit number in Hexadecimal format)
```

VER Command (Version)

Command Sequence:

VER<CR>

This command returns a string that shows the product information and version of the DataSnap. No sensor information is returned.

The Data reported by this command includes:

Item name	Description	Format
MFG	Reports the Manufacturer (Acclima, Inc.)	String, terminated by space
MODEL	Reports the device model name (DataSnap)	String, terminated by space
VERSION	Reports the firmware version	Three integers separated by periods: M.N.B=Major.Minor.Build Each number is an independent field; the decimal is used as a separator only. (.21 is bigger than .9!)
ID	ID number that identifies this particular DataSnap	64-bit number in Hexadecimal format

For example, the response to VER<CR> may look like this:

```
MFG=Acclima MODEL=DataSnap VERSION=0.1.21 ID=495782488D93087D<CR><LF>
```

STATUS Command

Command Sequence:

STATUS<CR>

This command reports the current operating status of the DataSnap

The Data reported includes:

Item name	Description	Format
DATE	The current date	dd/mm/yyyy
	(To set the date, see CONFIG command)	
TIME	The current time	hh:mm:ss (24-hour format)
	(to set the time, see CONFIG command)	
SUPPLY_VOLTAGE	The operating voltage (Volts) inside of the DataSnap	Floating point number xx.xx (Volts)
OUTPUT_CURRENT	Shows the output current in Amps.	Floating point number: x.xx (Amps)
	Current limit will occur at approximately 0.23	
SDI12_POWER	Shows if the SDI-12 power is currently on or off	ON = SDI-12 sensors are powered
		OFF = SDI-12 sensors are not powered
SHORT_CIRCUIT	Reports the status of the over-current protection	NO = No over-current conditions exist (OK!)
	circuit. While over-current protection is active, the	YES = Current limit active. The voltage source is
	output voltage to the SDI-12 sensors may drop and	protected, but sensors may be experiencing low
	cause unreliable readings.	voltage.
FIRSTLOGID	The unique ID of the first data record in log memory	64-bit unsigned integer
	(oldest).	
LASTLOGID	The unique ID of the last data record written to log	64-bit unsigned integer
	memory (most recent). This number will increment	
	with each data point (log) that is written.	
MEM_USED	Shows the amount of log memory that currently	Integer percent (0 to 100), no percent sign is
	holds data. The memory space is circular, so instead	printed
	of filling completely, older data is overwritten. If this	
	number is greater than 95, then it is very likely that	
	old data has been overwritten by new data. The	
	total log space can hold 59392 records.	

For example, the response to STATUS<CR> may look like this:

DATE=06/02/2012 TIME=12:05:00 SUPPLY_VOLTAGE=11.92 OUTPUT_CURRENT=0.00 SDI12_POWER=ON SHORT_CIRCUT=NO FIRSTLOGID=0 LASTLOGID=15262 MEM_USED=25<CR><LF>

CONFIG Command (Configuration)

Command Sequence:

CONFIG<CR> or CONFIG item=value item=value ...<CR>

This command is used to read and to set items within the global configuration for the DataSnap. These configuration items will affect the operation of the DataSnap and all attached sensors (if any). For configuring specific sensors, see the SENSOR command.

The output from the CONFIG command will always include all available items accessible through the CONFIG command. To read the configuration, no arguments are required. To write configuration items, the items must be specified after the CONFIG command in item=value format with spaces between items. Note that there should not be a space on either side of the =. Any number of items may be specified on the command line. If an item is specified twice, only the last item will be recognized. The total string length should not exceed 1500 bytes.

The items set by the CONFIG command are committed to internal non-volatile memory. These settings will be saved even if power to the DataSnap has been lost. After sending this command, there must be a one second delay before the DataSnap can be powered off.

Items recognized and reported by the CONFIG command:

Item name	Description	Format
DATE	Set the current date	dd/mm/yyyy
TIME	Set the current time	hh:mm:ss (24-hour format)
NAME	The customizable name of this DataSnap	Delimited string format, 40 chars max
		Delimiter = vertical bar
		Illegal characters in the string: Delimiter, Command triggers
		Example: NAME= My new DataSnap
INTERVAL	Number of minutes between automatic	Integer value = minutes
	sensor readings. All configured sensors will	Read Range = 1 to 43200 (minutes)
	read on the same interval.	Other values (like 0) = Disable automatic sensor readings
STARTUP	Number of milliseconds to wait for sensors to	Integer value = milliseconds
	be ready after they have been powered on.	Range = 0 to 5000
	This value is only used if IDLE_POWER=OFF.	
		Example: STARTUP=200
IDLE_POWER	This setting controls the SDI-12 PWR wire	ON = Always leave the SDI-12 sensors powered
	when the DataSnap is sleeping between	OFF = Turn off power to the SDI-12 sensors when the
	sensor readings. For lowest power	DataSnap is idle (and sleeping).
	consumption, use the OFF setting. When the	
	USB connection is valid, the DataSnap will not	Example: IDLE_POWER=OFF
	sleep, and the SDI-12 PWR will always be ON	
	regardless of this setting.	
ECHO	Turn on or off the echo feature inside the	ON = Transmit received characters and responses
	DataSnap. When ECHO=ON, any characters	OFF = only transmit responses
	received over the USB connection will be	
	transmitted back over the same link. This can	Example: ECHO=ON
	be useful when using a terminal program so	
	that typed characters will appear on the	
	terminal.	
RETRY	Turn on or off automatic retries of SDI-12	ON = Retry failed SDI-12 commands up to 9 times.
	pass-through commands. This setting only	OFF = Automatic retry disabled.
	applies to SDI-12 commands issued through	See "Retry Mode" below for more information
	the USB connection. Internal logging	
	functions will always retry.	

Retry Mode

The DataSnap is capable of automatically performing retries as outlined in the SDI-12 Protocol Specification version 1.3. This capability has some impact on timing and response format as received by the host program on the other side of the USB connection. Retry mode only impacts SDI-12 pass-though commands from the host program. Internal logging functions will always retry where appropriate. Retry mode behaves as follows:

RETRY=OFF

When retry mode is disabled, any data that appears on the SDI-12 bus will immediately be sent to the USB COM port without further examination or delay. In this mode, the DataSnap acts as a transparent bridge device, and if any retries are desired, then the host software is responsible for detecting the "no response" condition and performing the appropriate retries. This mode will return SDI-12 character data without the delays caused by the buffering and analysis that occurs in the Retry On mode. Break timing and address mark timing are still applied by the DataSnap as required by the SDI-12 specification.

RETRY=ON

The DataSnap will monitor and buffer the response sent by the SDI-12 sensor. If an SDI-12 response terminator is found (<CR><LF>), then the entire message is relayed to the computer. If a response terminator is not found, or if there are parity errors, then the DataSnap will transmit again (up to 9 total attempts) as outlined in the SDI-12 Protocol Specification version 1.3.

If there was no response after 9 attempts:

The DataSnap sends only <CR><LF> to the computer. The listening computer or terminal software will know that the command is complete when the <CR><LF> has been received. If there is no data preceding the <CR><LF>, then there was no response from the SDI-12 sensor.

If there were Parity errors:

The DataSnap sends the received SDI-12 message, including the terminating <CR><LF> to the host computer. Wherever a parity error occurred, the character will be replaced by $\acute{\rm E}$ (decimal value 144). The host software can search the received string for this character to detect parity errors.

Factory_Reset Command

Command Sequence:

Factory_Reset<CR>

This command will erase all sensor data and configuration data from the DataSnap.

Progress will be output and re-output periodically as follows:

Erasing... 3%<CR>

Once the DataSnap has been erased and reset, the output will be:

Factory Reset Complete. LASTLOGID=12345<CR><LF>

Where LASTLOGID shows the current value of the auto-incrementing, unique data record ID. (See LOG command)

SENSOR Command

Command Sequence:

SENSOR action item=value<CR>

This command performs several operations or actions regarding sensors or their configuration. The action is a required argument, while item=value arguments are optional in many cases.

SENSOR actions:

Item name	Description	Additional Requirements
GET	Read the configuration for the indicated sensors. Automatic logging will only occur for configured sensors.	Show all sensors: None
	will only occur for configured sensors.	Show one sensor: ADDR=value or ID=value
SET	Add a sensor or modify its configuration. Automatic logging will only occur for configured sensors. When adding a sensor to the configuration, NAME and IDENTITY will default to empty strings if no value is assigned. ID will default to an automatically generated Unique ID if not specified. When modifying a sensor configuration, unspecified values will remain unchanged.	Add: ADDR=value Modify: ADDR=value or ID=value
DEL	Delete a sensor from the configuration. All remaining sensor configurations will be output as a result of this command (similar to GET <cr>)</cr>	ADDR=value or ID=value
READ	Read the indicated sensor. Return a log entry in the same format that is used in the LOG command.	ADDR=value or ID=value
ACCFIND	Scan for Acclima SDI-12 sensors. This feature requires special extended commands and special communications hardware, and works only with Acclima sensors.	None

SENSOR GET, SET, DEL

These commands are used to modify the configured sensors in the DataSnap sensor configuration. Once a sensor is configured, the DataSnap will automatically record up to 5 readings from that sensor every INTERVAL minutes (see the CONFIG command).

The SET action returns the entire configuration record for the sensor. The GET action can return a single sensor configuration record if ADDR or ID is specified, but will otherwise return all sensor configuration records. The DEL action returns all remaining configuration records after the DEL action is applied.

Items recognized and reported by the SENSOR GET/SET/DEL command:

Item name	Description	Format
ADDR	This is the SDI-12 address of the configured	Use SDI-12 address guidelines.
	sensor. This must be unique among the	Recommended addresses: 1-9, A-Z, a-z
	sensors that are attached to a particular	Not Recommended: 0
	DataSnap. This can be used to identify which	While address 0 is allowed, it is not recommended since
	sensor to perform an operation on (READ,	sensors may be programmed to that value by default.
	DEL, etc).	Avoiding address 0 may help prevent address conflicts.
ID	This number should uniquely identify a	32-bit unsigned integer
	particular SDI-12 sensor. This number and the	
	address item are used to identify sensors in	
	the sensor logs. For Acclima sensors, this is	
	the sensor serial number.	
NAME	The customizable name of the sensor.	Delimited string format, 40 chars max
		Delimiter = vertical bar
		Illegal characters in the string: Delimiter, Command triggers
		Example: NAME= Sensor 1: 3" deep
IDENTITY	This value is used by the SnapView software,	Delimited string format, 34 chars max
	but is not required for the DataSnap to	Delimiter = vertical bar
	operate independently. For independent	Illegal characters in the string: Delimiter, Command triggers
	developers, this value can be customized.	Example:
		IDENTITY= B13Acclima 0030317.06002553

For a single configuration record, the output may look like this:

ADDR=9 ID=567890 NAME=|Sensor4| IDENTITY=|913Acclima 0030317.0567890|<LF><CR><LF>

For multiple sensors, the output format will look like this:

```
ADDR=B ID=6002553 NAME=|Sensor1| IDENTITY=|B13Acclima 0030317.06002553|<LF><CR>
ADDR=1 ID=6003561 NAME=|Sensor2| IDENTITY=|113Acclima 0030317.06003561|<LF><CR>
ADDR=5 ID=12345 NAME=|Sensor3| IDENTITY=|513Acclima 0030317.012345|<LF><CR>
ADDR=9 ID=567890 NAME=|Sensor4| IDENTITY=|913Acclima 0030317.0567890|<LF><CR><LF>
```

SENSOR READ

This command is used to read a sensor that has been added to the sensor configuration. Only one sensor can be read at a time, and the ADDR or ID must be specified to identify which sensor to read. The output from this command will be in the CSV format (same as the LOG command) as follows:

```
DATE, TIME, Type, ID, ADDR, R1, R2, R3, R4, R5, <CR><LF>
```

In the LOG command, the last field would be populated with the LOGID, but since this reading was not written to the logs, the LOGID field will be empty. For more information regarding this format, see the LOG command.

SENSOR ACCFIND

This command causes the DataSnap to search for Acclima SDI-12 sensors on the SDI-12 bus. This capability to communicate with multiple unaddressed sensors is unique to Acclima sensors. This function will only work if all sensors connected to the DataSnap are made by Acclima.

This command causes the DataSnap to enter a special 'sensor search' mode. While the DataSnap is searching for sensors, it will not be available to process additional commands. Any additional data sent to the DataSnap will be queued and processed later after the scan is complete.

As sensors are located, their identity string is reported to the computer. Each sensor identity is terminated by a <LF><CR> character pair. The identity string itself is delimited with vertical bars (|). When the entire scan sequence is complete, the DataSnap ends the scan mode by sending a <CR><LF> to the computer. Each individual sensor identity will look similar to this:

```
IDENTITY=|113Acclima 0030317.01231234|<LF><CR>
```

Refer to the SDI-12 Protocol Specification found at www.SDI-12.org for more information about the format of the response to the identify command (aI!).

The result of a scan involving 4 sensors might look something like this:

```
IDENTITY=|113Acclima 0030317.01231234|<LF><CR>
IDENTITY=|213Acclima 0030317.01232345|<LF><CR>
IDENTITY=|A13Acclima 0030317.01233456|<LF><CR><CF><
```

LOG Command

Command Sequence:

LOG action item=value<CR>

This command is used to read sensor data that has been recorded in the DataSnap's memory or to erase that memory. The action is a required argument, while item=value arguments are optional.

About Logs

The memory that contains historical sensor data within the DataSnap is called the log space. Each record within the log space is called a log. Each individual log can contain either sensor data or error data. If the log contains sensor data, up to 5 data points can be stored for a particular sensor within a single log. Each log contains an identifier that uniquely identifies that particular log entry. This identifier is called the Log ID, and it automatically increments each time a sensor log or error log is written, or when the log space is erased. The Log ID is useful for synchronization purposes where much of the data has already been downloaded and only a portion of the data is yet unknown.

LOG actions

Item name	Description	Additional Requirements
GET	Read sensor data that is stored in the DataSnap internal memory.	Read all logs:
	Use LASTLOGID and NUMLOGS items to control the results.	None
		Read logs starting from:
		LASTLOGID=value
		Read at most:
		NUMLOGS=value
DEL	Delete all sensor data and error data from internal memory.	None

LOG GET

LOG GET is used to read the historical sensor data and error data that are stored in the log space. Since the DataSnap can hold up to 59392 log entries, some additional arguments are accepted to allow finer control over the data download.

Accepted Arguments:

Argument	Description	Format
LASTLOGID	This is used to synchronize only the data that has not been	Positive 64-bit integer (unsigned)
	downloaded already. LASTLOGID should be set to the value of the	
	LOGID that was most recently collected. The DataSnap will output	Example:
	any logs that have a log ID greater than this number.	LASTLOGID=123456789
NUMLOGS	This specifies the maximum number of logs to return. If this number	Positive integer
	is not specified, then all the logs will be output by the DataSnap.	Range = 1 to 59392
	Since this may take several minutes, the use of NUMLOGS and	
	LASTLOGID in combination allows downloading data in a more	Example:
	controlled fashion.	NUMLOGS=100

The output of the LOG GET command appears as a table of values in comma separated values (CSV) format. No header row appears, and it is assumed to be:

DATE,TIME,TYPE,ID,ADDR,DATA1,DATA2,DATA3,DATA4,DATA5,LOGID

Each row of data is terminated by <LF><CR>

The end of the command (and end of the table) is signaled by <CR><LF>

If there is no data present for a particular column, then a number will not appear there but the commas separating the columns will remain in place.

Each Data column can be decoded as follows:

Column Name	Description	Format
DATE	The date that this data was recorded	dd/mm/yyyy
TIME	The time of day that this data was recorded	hh:mm:ss (24-hour format)
TYPE	The type of log entry	0 = Error data
		1 = Sensor data
ID	The ID of the sensor that caused this data to be written	32-bit unsigned integer
	This will be zero for system errors.	
ADDR	The SDI-12 address of the sensor that caused this data to be	ASCII Character (not a number)
	written. For system errors, this column is "Don't Care".	"0"-"9"; "A"-"Z"; "a"-"z"
DATA1	For errors: This is the error code	floating point, 6 places after the decimal
	For sensor data: This is the 1 st data point returned by the sensor.	Example: 19.500000
DATA2	For errors: Not used	floating point, 6 places after the decimal
	For sensor data: This is the 2 nd data point returned by the sensor.	Example: 19.500000
DATA3	For errors: Not used	floating point, 6 places after the decimal
	For sensor data: This is the 3 rd data point returned by the sensor.	Example: 19.500000
DATA4	For errors: Not used	floating point, 6 places after the decimal
	For sensor data: This is the 4 th data point returned by the sensor.	Example: 19.500000
DATA5	For errors: Not used	floating point, 6 places after the decimal
	For sensor data: This is the 5 th data point returned by the sensor.	Example: 19.500000
LOGID	This number uniquely identifies this particular log entry for this	64-bit unsigned integer
	DataSnap. This number automatically increments with each log	
	written.	

Possible error codes in DATA1 of an error log:

Error Code	Error Name	Description
0.10	RTC Failure	The real-time clock has failed and it is not running
0.20	Short Circuit	The SDI-12 PWR output is overloaded. Voltage output may not be optimal.
1.00	No Response	No response from the indicated SDI-12 sensor
1.10	Parity Error	A parity error occurred while communicating with the indicated SDI-12 sensor. Check for address conflicts.
1.20	Bad Sensor Index	Internal error: Unable to locate the requested sensor configuration
1.30	Bad Response	Unable to decode the sensor's response to the last SDI-12 command
1.40	No Data	No data was returned by the indicated sensor after taking a measurement
2.00	Time Changing	Written before the time and date are changed on the DataSnap. The will happen as a result of the CONFIG command where TIME or DATE are specified.
2.10	Time Changed	Written after the time has been changed.
2.20	Power Restored	Power was lost

The following example illustrates the log download process:

Command Sent:

LOG GET LASTLOGID=15000 NUMLOGS=5

Data Received:

```
06/02/2012,07:49:03,1,6003561,1,0.000000,19.000000,1.010000,0.000000,,15001<LF><CR>
06/02/2012,07:49:04,0,12345,5,1.000000,,,,,15002<LF><CR>
06/02/2012,07:49:05,0,567890,9,1.000000,,,,,15003<LF><CR>
06/02/2012,07:50:02,1,6002553,B,0.000000,19.400000,1.070000,0.000000,,15004<LF><CR>
06/02/2012,07:50:03,1,6003561,1,0.000000,19.100000,1.010000,0.000000,,15005<LF><CR><CR><LF>
```

In this example there are 3 valid sensor readings that contain 4 data points each, and 2 errors that show the sensors located at addresses 5 and 9 are not responding.