
ELECTRONIC PUBLISHING, VOL. 6(4), 447–456 (DECEMBER 1993)

MarkItUp! An incremental approach to document
structure recognition
PETER FANKHAUSER AND YI XU

GMD-IPSI
Dolivostr. 15
D-64293 Darmstadt, Germany

email: fankhaus@darmstadt.gmd.de, xuyi@darmstadt.gmd.de

SUMMARY
This paper presents MarkItUp!, a system to recognize the structure of untagged electronic
documents which contain sub–documents with similar format. For these kinds of documents
manual structure recognition is a highly repetitive task. On the other hand, the specification
of recognition grammars requires significant intellectual effort. Our approach uses manually
structured examples to incrementally generate recognition grammars by means of techniques
for learning by example. Users can structure example portions of a document by inserting
mark–ups. MarkItUp! then abstracts and unifies the structure of the examples. On this basis it
tries to structure anotherexample with similar format. Users can corrector accept the produced
structure. With every accepted example thereby a grammar is acquired and gradually refined,
which can be used to successfully structure the other portions of the document.

KEY WORDS Document structure recognition Learning by example Structure unification SGML

1 INTRODUCTION

The purpose of document recognition is to extract information from documents. This ranges
from character recognition and the identification of the layout of printed documents [1–6],
the recognition of the (logical) structure of documents [7], and at the high end to the (largely
domain dependent) extraction of semantic content. In this paper we focus on recognizing
the logical structure of untagged electronic documents to transform them into structured
SGML (Standard Generalized Markup Language) documents [8–10]. This application
plays an important role in the publication cycle. Structured documents can much better
be exchanged and further processed to produce hyper–documents, individualized printed
documents or databases.

Our approach aims at publicly available electronic information sources, such as public
databases, bulletin boards, and electronic mail. These sources usually provide repetitively
structured documents, i.e., the documents consist of (nested) sequences of sub–documents
with similar structure. However, the information providers use different and inconsistent
formatting conventions to express the structure, even within one source or document.
In order to incorporate such documents into an integrated publication environment, their
structure has to be made explicit and homogenized, arriving at a consistent structure
expressed by means of a formal language, in our case SGML. Structuring the documents
manually is a highly repetitive task. But also the specification of recognition grammars [11]

CCC 0894–3982/93/040447–10 Received 15 August 1993
1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

© 1998 by University of Nottingham.

448 P. FANKHAUSER AND YI XU

user

 structure editor

scanner

string abstraction

unification &
 abstraction

 grammar
 base

example grammar

abstracted grammar 1

old grammar

assumption markup

abstracted grammar 2

parser

document

new grammar

structured
document

example

 knowledge
 base

example selection

marked–up example

Figure 1. Markup cycle

based on a complete definition of the structure requires significant intellectual effort due to
structural differences and formatting inconsistencies among the sub–documents.

The repetitive structure of the documents under consideration lends itself to a machine
learning approach, using manually structured example portions to generate recognition
grammars for automatically structuring the rest of the document. In this paper we present
MarkItUp!, a system which uses techniques for editing by example [12,13] and more gen-
erally learning by example [14,15] to gradually acquire recognition grammars. MarkItUp!
supports a structure editor which can be used to transform example portions of documents
into SGML–documents by inserting markups. Predefined recognition patterns, such as de-
limiters or application specific formats, are used to abstract from the content and format of
the example, and rewrite rules are used to abstract from its structure. Thereby a preliminary
recognition grammar is generated. This grammar can be used to parse another example
by means of the parser generator DREAM [11] developed at our institute, which has spe-
cific features to support fault–tolerant parsing. The resulting structure assumption can be
accepted or modified by the user, and a refined recognition grammar can be generated by
unifying the original structure with the new structure. By repeating this cycle of (manually)
marking up, and (automatically) abstracting, unifyingand parsing, the grammar is gradually
refined, and the amount of manual structuring is gradually reduced.

2 OVERALL APPROACH

Figure 1 represents the overall approach of MarkItUp! according to the data flow.
The system always ‘starts’ when the user tries to mark up an example portion of the

document. For this purpose, the user selects an example (example selection), which is sent
to the parser. Since initially there is no grammar, the parser does not further structure the
example. Otherwise, it tries to parse the example with as much structure as possible. If
the user is not satisfied with the produced structure, the user can provide new markups by
means of a simple yet comfortable structure editor.

AN INCREMENTAL APPROACH TO DOCUMENT STRUCTURE RECOGNITION 449

The marked–up example is then stored as structured document, and passed to a
scanner, which generates a grammar describing the format and structure of the example.
A nonterminal of the grammar corresponds to a markup (tag). Its definition in the form of
a rule is generated on the basis of the example structure. A terminal stands for an atomic
string. We distinguish two kinds of terminals: ‘cut string’ which was deleted explicitly, or
which is not properly surrounded by begin and end tags; and ‘copy string’ for the rest. Only
‘copy string’s constitute the contents of the structured document.

The initial grammar thus can parse and mark up only the original example. In order to
mark up subsequent examples, the grammar has to be abstracted such that it parses different
content and slightly different structure.

For this purpose, we first abstract the terminals (string abstraction) by using a prede-
fined but extensible knowledge base containing a lattice of typical string patterns, such as
delimiters or alphabetic characters (see Section 3).

Then we unify the new grammar with the grammar acquired from previous examples
(initially empty) and generalize it at structural level (unification & abstraction), in order
to reflect structural deviations, such as missing or multiply occurring elements. For this
purpose, we use heuristic rewrite rules derived from our experience in specifying recogni-
tion grammars for DREAM [11]. The new grammar is memorized and can be used to parse
a new example, whereby the cycle is closed.

3 LEARNING AT THE STRING LEVEL

The goal of abstracting a string is to arrive at patterns for the content level which accept
similar strings also, i.e., strings which belong to the same concept. As we are not interested in
analyzing the semantics of the document but only in the syntactic structure, fairly syntactic
concepts like ‘alphanumeric character’, ‘word’, ‘delimiter’, suffice for our purposes. For
specific classes of documents (like public databases, or tex–files) one can even identify
more specific concepts like ‘field–name’ or ‘tex–macro’. These string concepts can be
easily described by means of regular expressions. Based on the partial ordering of regular
expressions [16] the concepts can be organized in a lattice with root<any string>. A concept
thereby describes a superset of the set of strings described by its subconcepts.

A string is abstracted by determining the most specific sequence of concepts which
matches the string. If the concept lattice is deeply nested, this first abstraction may still
be too specific. Thus, we produce a number of more generic abstractions for each nesting
depth, from which the user may choose the most suitable one - by default we take the
most specific one. Finally, subsequent occurrences of equal patterns are abstracted to an
arbitrarily long repetition of this pattern.

The result of applying string abstraction to the marked up example is thus a sequence
of markups, cut patterns, and copy patterns. What remains to be done, is to determine the
context of a cut pattern. Given a rule like element = ..., element1, cut(pattern), element2,
..., cut(pattern) can be either included into the preceding element1, the following element2,
or remain within the context of element. We have considered three strategies: (1) let the
user decide by explicitly cutting a string within the context of an element, (2) recognize
not explicitly cut strings when they occur between two (different) begin (or end) tags, and
leave them where they are, (3) keep the common substrings in all (not explicitly) cut strings
of a sequence within the sequence, and include the non common prefixes into the preceding

450 P. FANKHAUSER AND YI XU

<bibentry><code> \ rp</code>

! <author><fname>Abadi</fname> <lname>Martin</lname></author>
<location> @ Stanford Un. * CSD</location>

<title> " Temporal-Logic Theorem Proving " </title>
<category> > DBDlogic</category>
</bibentry>

Figure 2. Marked-up example

element and the non common suffixes into the following element, respectively. Currently,
only strategies (1) and (2) are supported.

Figures 2 and 3 give an example of applying string abstraction and the strategies for
determining the context of a cut string. For simplicity, we assumed a very simple set of
recognition concepts only ([A-Z]; [a-z]; [a-zA-Z]; and single character patterns for all
special characters). The ‘!’ and the ‘ ’ in element <author> are recognized as a ‘cut string’
by strategy (2) whereas all other ‘cut strings’ (denoted in Figure 2 by string) are cut
explicitly.

4 LEARNING AT THE STRUCTURAL LEVEL

We use a subset of SGML [9] for representing the logical structure of documents – also
called document type definitions (DTDs). DTDs are grammars consisting of rules which
break down logical elements into more simple elements using a number of operators for
sequence(‘,’), repeated elements(‘+’), optional elements(‘?’), and alternatives(‘|’).

The goal of learning at structural level is to incrementally construct a grammar from a
finite number of structured examples in such a way that also the similar but not necessarily
identical structure of other examples can be recognized automatically. We can distinguish
two steps in this process: First, we describe how new example structures are unified with
an already existing grammar such that the resulting grammar can recognize exactly the
structure of the additional example. Then, we extend the strict unification to heuristics for
abstraction, whereby the resulting grammar can anticipate small structural deviations also.

The most straightforward way of unifying grammars derived from several structured
examples would be to simply form a top level disjunction. However, such a grammar would
soon get highly redundant and, more gravely, give no clue for further abstraction. The simple
disjunction (enumeration) of all different example substructures of each element does not
carry us much further. Each element would be defined as an alternative of highly overlapping
sequences. The unification rules described in the following merge new structures with
existing element–rules such that the commonalities are represented only once and the
structural deviations are made explicit.

<bibentry><code>cut(\), copy([a-z]+)</code>
cut(!)<author><fname>copy([A-Z][a-z]+)</fname>
cut()<lname>copy([A-Z][a-z]+)</lname></author>
<location>cut(@), copy([a-zA-Z *.]+)</location>
<title>cut("), copy(([A-Z][a-z]+(\-[A-Z][a-z]+)?()?)+), cut(")</title>
<category>cut(>),copy([A-Z]+[a-z]+)</category>
</bibentry>

Figure 3. String abstracted example

AN INCREMENTAL APPROACH TO DOCUMENT STRUCTURE RECOGNITION 451

Rules for Unification:

All unification rules take two parameters. One parameter is the already acquired definition
of some element, the other parameter is the (possibly empty) sequence of elements derived
from the new example. The two parameters are separated by symbol ‘;’ in a rule. By
applying the rules exhaustively in order of their specification we arrive at grammars where
for each element definition the following holds: For each alternative (A1| . . . |An) and for
all Ai, Aj,i 6= j, unify(Ai; Aj) = Ai|Aj, or in other words, the grammar can not be further
simplified.

1. Unification of elements or sequences with an empty element ε:
unify(A;ε) = A?
A is an arbitrary expressions (except A = ε).

2. Unification of an expression with a more specific expression:
unify(A;B) = A if A ≤ B
A, B are arbitrary expressions. The relationship≤ denotes the usual partial ordering
on regular expressions (see Section 3)

3. Unification of optional elements:

unify(A?;B) =
{

A∗ if B = A+
(unify(A;B))? otherwise

A, B are arbitrary expressions.
4. Unification of sequences with a common prefix or suffix:

(a) unify(A, B; A′,C) = A, unify(B;C) if A′ ≤ A
(b) unify(B, A;C, A′) = unify(B;C), A if A′ ≤ A
A, A′, B,C are arbitrary expressions

5. Unification of alternatives:

unify(A1|...|An;B) =


A1|...|An|B if unify(Ai;B) = Ai|B for all i

C1|...|Cn Ci =

 unify(Ai;B)
if unify(Ai;B) 6= Ai|B

Ai otherwise

Ai, B are arbitrary expressions except alternative, 1 ≤ i ≤ n.

If unify(Ai;B) = Ai|B for all i, i.e., there exist only trivial unifications between
B and Ai, then we simply add B as an additional alternative. Otherwise, we merge B
with all those Ai for which there exists a non trivial unification of Ai and B.

6. Trivial unification:
if none of the above rules applies
unify(A;B) = A|B
A,B are arbitrary expressions

In addition to these unification rules, we utilize a number of simplification rules which
take the associativity of sequence and alternative into account.

Rules for Abstraction:

We distinguish three kinds of abstraction: (1) Implicit abstraction arises from the fact that
we unify each right–hand side of each rule with an eventually occurring new example,

452 P. FANKHAUSER AND YI XU

regardless of the nesting depth. Obviously, the resulting grammar will be more generic
than the top level disjunction of the old grammar with the grammar derived from the new
example. (2) Another kind of abstraction takes place during merging when only trivial
unification is possible. (3) The third kind of abstraction is applied after the example has
been merged into the old grammar to further simplify the inferred grammar.

For merging new examples with the existing grammar in a more tolerant way (2)
we introduce three additional rules: Whereas the unification Rules 4a and 4b merge only
sequences with a common prefix or suffix, the abstraction Rules 7a-c merge sequences with
a number of common subsequences interleaved by distinct subsequences.

7. Abstraction merge of sequences:

(a) abstract-merge(A, B1, . . . , Bn;C1, . . . ,Cn)
= A?,unify(B1, . . . , Bn;C1, . . . ,Cn)
A, Bj ,Ch are arbitrary expressions, Bj,Ch no sequences
A 6= C1, . . . ,Cn and B1, . . . , Bn, Bi < Ci (or Ci < Bi)
(this restriction excludes the applicability of unification rules).

(b) abstract-merge(B1, . . . , Bm, A;C1, . . . ,Cn)
= unify(B1, . . . , Bm;C1, . . . ,Cn), A?
with similar restrictions as above

(c) abstract-merge(A1, . . . , Ak, B1, . . . , Bn;D1, . . . , Dk, C1, . . . ,Cn)
= unify(A1, . . . , Ah; D1, . . . , Dk),unify(B1, . . . , Bn;C1, . . . ,Cn)
Ai, Bj,Cp, Dq are arbitrary expressions except sequence
if A1, . . . , Ak 6= D1, . . . , Dk and Bi < Ci (or Ci < Bi)
or B1, . . . ,Bn 6= C1, . . . ,Cn and Aj < Dj (or Dj < Aj)

In 7a and 7b subsequences, which do not occur in the new example and vice versa,
become optional, in 7c some binary partition of the old sequence and the new sequence is
chosen for further unification. By imposing the restrictions we achieve a deterministic merge
of maximum common subsequences and consequently identify only distinct subsequences
with minimum length as optional. We have also experimented with a consistent weighting
scheme for measuring the degree of abstraction performed by a certain rule and with using
the weight for pruning abstractions more continuously. However, as the goal of identifying
only maximal common subsequences is crisp, at least this kind of structural abstraction can
be achieved by a crisp strategy.

To further simplify the grammar (3), Rule 8 groups finite sequences of consecutive
equal subsequences in a similar way as for abstraction at string level.

8. Abstraction of repeated elements:
abstract(A,(B1, . . . , Bm),(B1, . . . , Bm), . . . ,(B1, . . . , Bm),C)
= A,(B1, . . . , Bm) + ,C
A,C are arbitrary expressions, Bi not an ordered sequence, 1 ≤ i ≤ m

Examples:

The following examples shall illustrate the usage of the above rules. For sparing some
parentheses we assume the binding precedence (? + |).

AN INCREMENTAL APPROACH TO DOCUMENT STRUCTURE RECOGNITION 453

Example 1 Unification of sequences with a maximum common prefix or suffix:

unify(a,b,c,d,e;a,d) 4a⇒ a, unify(b,c,d,e;d)⇒ a, abstract–merge(b,c,d,e;d)
7a⇒ a,(b,c)?,unify(d,e;d)
4a⇒ a,(b,c)?,d,unify(e;ε)
1⇒ a,(b,c)?,d,e?

Example 2 Unification of alternative elements:

unify(a|(b,d)|c;d) 5⇒ a|unify(b,d;d)|c
4b⇒ a|(unify(b;ε),d)|c
1⇒ a|(b?,d)|c

5 IMPLEMENTATION AND EXAMPLE SESSION

The main components of MarkItUp!, i.e., the structure editor, the scanner, the algorithms for
string abstraction and structure unification and abstraction are implemented in Smalltalk.
The actual parser DREAM is implemented in C++. These components interact as follows:

A document to be marked up is first loaded into the structure editor where the user can
select and mark up parts of a document. The marked up example (see Figure 2) is passed
to the scanner which generates an initial grammar. Each terminal element (copy string) in
the grammar rules is abstracted based on the concept lattice (see Section 3).

From this grammar a DREAM grammar is generated in two steps: First, the SGML
structure is built, then the cut–copy groups at string level are used to form the expressions at
string level. To parse also subsequent examples with slightlydeviating structure and content
which are not yet properly described by the abstractions at string level, each ELEMENT
name gets associated with a fallback rule (anything), which parses all those parts which
can not be parsed by one of the available ELEMENT definitions. Such portions, which
are surrounded by <anything> and </anything>, can then be easily identified and further
disambiguated by the user.

Figure 4 shows a complete DREAM grammar (DSD) generated (with the full set of
abstraction concepts).

<!DOCTYPE bibdoc [
<!ELEMENT bibentry - - code, author, location, title, category >
<!ELEMENT code - - (anything#, cut(ˆ?"\\ "), copy(([a-z])+ | ([a-zA-Z])+))? >
<!ELEMENT location - - (anything#, cut($ˆ"@ "),

copy([A-Z]([a-z])+[\][A-Z][a-z][.][\][*][\]([A-Z])+
| ([a-zA-Z])+[\ * \]([a-zA-Z])+[.]([\ * \])+([a-zA-Z])+))? >

<!ELEMENT fname - - (anything#, copy([A-Z]([a-z])+ | ([a-zA-Z])+))? >
<!ELEMENT title - - (anything#, cut($ˆ"\" "),

copy([A-Z]([a-z])+[\-]([A-Z]([a-z])+[\])+[A-Z]([a-z])+
| ([a-zA-Z])+[\-](([a-zA-Z])+[\ * \])+([a-zA-Z])+))? >

<!ELEMENT category - - (anything#, cut(" \""$ˆ"> "),
copy(([A-Z])+([a-z])+ | ([a-zA-Z])+), cut($ˆ))? >

<!ELEMENT lname - - (anything#, cut(" "), (copy([A-Z]([a-z])+ | ([a-zA-Z])+)))? >
<!ELEMENT author - - (anything#, cut(" "$ˆ"! "), fname, lname)? >
<!ELEMENT anything- - copy(.#) >]>

Figure 4. The DREAM DSD of the example grammar

454 P. FANKHAUSER AND YI XU

<!DOCTYPE bibdoc>
<bibentry><code>rp</code>
<author><fname>Abarbanel</fname>
<lname>Robert</lname>
</author>
<location></location>
<title></title>
<category><anything>! John Williams
" A Relational Representation for Knowledge Bases "</anything>
> DBDkb</category>
</bibentry>

Figure 5. An incompletely marked-up example generated by DREAM DSD

The effect of the fallback rule <anything> when applying the DSD to a new example
is shown in Figure 5. For instance, in the new example there are now two <author>s (lines
starting with ‘!’) instead of one and no <location> (lines start with ‘@’). As the original
example contained only one <author> and one <location>, the second <author> and the
following items are now marked up as <anything>. However, the subsequent <category>
(‘> DBDkb’) is properly marked up.

The user can correct the result (see Figure 6) by means of the structure editor.
The corrected example passes the above components step–by–step, producing the fol-

lowing rule for <bibentry>:

<!ELEMENT bibentry - - code, author, author, title, category>

Since there are repeated elements for <author> the new element of <bibentry> is
abstracted by Rule 8 first, resulting in

<!ELEMENT bibentry - - code, author+, title, category>

<!DOCTYPE bibdoc>
<bibentry><code>rp</code>
<author><fname>Abarbanel</fname>
<lname>Robert</lname>
</author>
<author><fname>John</fname>
<lname>Williams</lname>
</author>
<title>A Relational Representation for Knowledge Bases</title>
<category>DBDkb</category>
</bibentry>

Figure 6. The corrected markup

AN INCREMENTAL APPROACH TO DOCUMENT STRUCTURE RECOGNITION 455

This rule is unified with the original rule for <bibentry> (see Figure 4) as follows:

unify(code,author,location,title,category;code,author + ,title,category)
4a⇒ code,author + ,unify(location,title,category;title,category)
4b⇒ code,author + ,unify(location;ε),title,category
1⇒ code,author + ,location?,title,category

The other elements in the SGML–DSDs are abstracted and unified in a similar manner,
but not exhibited here due to space limitations.

6 CONCLUSION

We have presented a system for the incremental generation of structure recognition gram-
mars from example structures. Techniques for generating initial recognition grammars
from marked-up examples, for abstracting them at string level and for merging the struc-
ture of multiple examples have been devised for this purpose. MarkItUp! incorporates
these techniques into a simple structure editor, which can be used to structurally enrich
inconsistently formatted electronic documents with repetitive but implicit structure. Future
work will be devoted to the following extensions of the presented approach:

(a) Integration with the techniques for structure recognition for scanned documents (as
opposed to electronic documents without a layout component) developed at our institute in
CAROL (Cataloging by Automated Recognition Of Literature) [7]: In contrast to MarkItUp!
CAROL uses much more powerful recognition styles for evaluating layout information of
scanned document blocks, such as font (size, family), and (two dimensional) position. On
the other hand, CAROL is currently limited to flat document types as used by title pages
of PhD theses and research report titles. Thus, MarkItUp! can significantly benefit from
CAROL with respect to the expressive power of recognition styles, and CAROL can benefit
from the learning approach used in MarkItUp!, especially from the techniques devised for
structural abstraction.

(b) Improvement of the implementation: Currently, MarkItUp! does not represent the
incrementally structured document as structured object. Thus, examples have to be struc-
tured completely, before an according grammar can be generated. Often a more flexible
strategy is desirable, i.e., first, a relatively flat structure is applied to the entire document,
which is then gradually refined on demand. For this purpose selective access to arbitrary
portions of already marked–up documents is required.

(c) Inclusion of restructuring: In many applications, documents have to be restructured
to fit into some other application, for example, a reader’s view, a hyperdocument with
pre-existing document type, a (virtually) integrated database. At our institute currently
a parser generator for restructuring SGML documents is being developed [17]. Just as
MarkItUp! generates grammars for DREAM by example markups, it could be very useful
to generate restructuring rules by example restructurings, adapting techniques developed
in the field of database integration for coping with structural discrepancies [18]. In fact, the
regularity of SGML as opposed to the cyclicity of object–oriented database schemas and
the more specific mapping which can be inferred from example restructurings should make
simplified solutions to the restructuring problem feasible.

456 P. FANKHAUSER AND YI XU

REFERENCES

1. J. Handley and S. Weibel, ‘ADAPT: Automated DocumentAnalysis Processing and Tagging’, in
Proceedingsof the International Conferenceon Electronic Publishing, DocumentManipulation,
and Typography(EP90), ed., R. Furuta, 183–192,Cambridge University Press, Cambridge, UK,
(1990).

2. R. Ingold, ‘Text Structure Recognition in Optical Reading’, in Structured Documents, 133–141,
Cambridge University Press, Cambridge, UK, (1989).

3. R. Ingold, R.P. Bonvin, and G. Coray, ‘Structure recognition of printed documents’, in Document
Manipulationd and Typography: Proceedings of the International Conference on Electronic Pub-
lishing, Document Manipulation and Typography (EP88), ed., J.C. van Vliet, 59–70, Cambridge
University Press, Cambridge, UK, (1988).

4. H. Kida, O. Iwaki, and K. Kawada, ‘Document recognition system for office automation’, in
Proceedings of the Eighth International Conference on Pattern Recognition, 446–448, IEEE
Computer Society Press, Washington, DC, (1986).

5. S.N. Srihari and G.W. Zack, ‘Document Image Analysis’, in Proceedings of the Eighth Interna-
tional Conferenceon Pattern Recognition, 434–436, IEEE Computer Society Press,Washington,
DC, (1986).

6. L.D. Wilcox and A.L. Spitz, ‘Automatic recognition and representation of documents’, in
Document Manipulation and Typography: Proceedings of the International Conference on
Electronic Publishing, Document Manipulation and Typography (EP88), ed., J.C. van Vliet,
47–57, Cambridge University Press, Cambridge, UK, (1988).

7. J. Schmidt and W. Putz, ‘Knowledge Acquisition and Representation for Document Structure
Recognition: the CAROL Project’, in Proceedings of the Ninth IEEE Conference on Artificial
Intelligence in Applications, eds., F. Bancilhonand D. DeWitt, 183–194,IEEE Computer Society
Press, (1993).

8. D. Barron, ‘Why use SGML?’, Electronic Publishing, 2(1), 3–24, (1989).
9. M. Bryan, An Author’s Guide to the Standard Generalized Markup Language, Addison-Wesley,

Wokingham, 1989.
10. C.F. Goldfarb, The SGML Handbook, Oxford University Press, Oxford, 1990.
11. T. Göttke and P. Fankhauser, ‘Dream 2.0 user manual’, Technical report, Gesellschaft für Math-

ematik und Datenverarbeitung (GMD), Germany, (1992). Arbeitspapiere der GMD, No. 660.
12. D.H. Mo and I.H. Witten, ‘Learning text editing tasks from examples: a procedural approach’,

Behavior & Information Technology, 11(1), 32–45, (1992).
13. R. Nix, ‘Editing by example’, in Proceedings of the 11th ACM Symposium on Principles of

Programming Languages, 186–195, (January 1984).
14. P.R. Cohen and E.A. Feigenbaum, The handbook of artificial intelligence, volume 3, William

Kaufmann, Los Altos, CA, 1982.
15. I.H. Witten and B.A. MacDonald, ‘Using concept learning for knowledge acquisition’, Interna-

tional Journal of Man-Machine Studies, 29(2), 171–196, (1988).
16. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-

Wesley, Reading, MA, 1986.
17. G. Ihnofeld, Spezifikation eines Hypertext Composing Prozesses und Entwicklung einer Regel-

sprache für die Transformation von strukturierten Dokumenten anhand einer beispielhaften
Anwendung, Master’s thesis, TH–Darmstadt, Germany, 1991. (Specification of a Hypertext
Composing Process and Development of a Rule Language for the Transformation of Structured
Documents based on an Example Application — in German.)

18. E.J. Neuhold and M. Schrefl, ‘Dynamic Derivation of Personalized Views’, in Proceedings of
the 14th International Conference on Very Large Databases (VLDB ’88), eds., F. Bancilhon and
D. DeWitt, 183–194, (August/September 1988).

	SUMMARY
	1 INTRODUCTION
	2 OVERALL APPROACH
	3 LEARNING AT THE STRING LEVEL
	4 LEARNING AT THE STRUCTURAL LEVEL
	Rules for Unification:
	Rules for Abstraction:
	Examples:
	Example 1
	Example 2

	5 IMPLEMENTATION AND EXAMPLE SESSION
	6 CONCLUSION
	REFERENCES

