

Introduction

Bentley Hevacomps AM 11 document can be found below. Please note that AM 11 is a statement about simulation software, and is not an accredited item.

Appendix B Checklist for choosing BEEM software

This checklist complements section 4 of the CIBSE Applications Manual AM11:1998 Building Energy and Environmental Modelling

B1 GeneralB1.1 Program descriptionName, vendor, origins

Program name	Design Simulation
Version	V2
Date of current release	Feb 2008
Vendor's name	Bentley Systems (UK) Ltd
Contact name	Stephen Brown
Vendor's address	Smithywood House, Smithywood Crescent
	Sheffield S8 0NU
Tel	0114 255 6680
Fax	0114 255 6638

support@hevacomp.com

Program type¹

E-mail

Thermal analysis: Load calculation	V	Plant and controls	M	Energy simulation	
Lighting and visualisation: Electric lighting	Ø	Daylighting	V	Combined	M
Air movement	$\mathbf{\overline{N}}$				
Specialist tool	M				
Further description	-				

¹ The classification of programs is explained in Section 2. A program may have a number of listed capabilities. Space is provided to elucidate the description.

Program history²

Description Design simulation was first produced in 2007 and incorporates Hevacomp CAD input. The simulation engine is EnergyPlus.

² List previous names by which program known, significant advances in functionality and dates of these, changes of platform and changes of vendors. This information will help in the understanding of published literature, especially about validation studies.

B1.2 Computer specification Platform and operating system

PC Unix® Apple Macintosh®	ps2 Yes Yes	os® ows 95® 		No Windows 3.x® Windows nt® os2 No No	K K K K C C K K C C K K C C K K C C K K C
Comments machi	Control from			the Server Machir run from a server	
Processor, storage and p Processor speed Minimum RAM Minimum disk space Other devices:	Deripherals 3 1 10	GHz, recomme GB, recomme GB	-		
Floppy disk cd-rom drive Printer Plotter Digitising tabl	Yes Yes Yes Yes e Yes		고 고 고	No No No No	8 0 0 0 0 0 0 0 0 0
Other Other requirements ³	Screen reso	lution > 800x60 update patches	0, Inte	onnection is required ernet connection vork connection re	
Suitable machines ⁴ software.	Most modern	n PCs will have	no tro	puble running the	

 ³ Consider screen size, video RAM, Internet connection, local area network connection, etc.
 ⁴ List types of machine known to be suitable

B1.3 Program code Type of code

Compiled code only	Yes	$\mathbf{\nabla}$	No	
Source code available	Yes		No	$\mathbf{\nabla}$
Extra £ for source code	Yes		No	$\mathbf{\nabla}$
Programming language	Fortran	$\mathbf{\overline{\mathbf{N}}}$	C/C++	×
Notes	-			

B1.4 Modelling methods

The Design Simulation program uses the EnergyPlus simulation engine

В1.5 Туре	Input interface of interface GUI Other	V	Menu-driven			Comm	nand lin	e	
Digita	al data file Program produces acc human readable digita Legibility of digital fi Is entire problem defi Are all simulation par	al data f ile inition c	files? ⁵	Yes Good Yes Yes	<u>র</u> র র	No Poor No No		Bad	
Data	checking Does program check and plausibility of inp		sistency	Yes	V	No			

⁵ Interfaces may generate files (e.g. binary files) which cannot be read by people but only by the program interface. These are much less useful and old (binary) files may cease to be readable by new versions of the interface.

 $[\]frac{6}{2}$ Check that all the data are included — e.g. geometry, construction and occupancy data — and that the weather file used is noted.

 $^{^{7}}$ Check that all the simulation control information — such as time-step length, length of preconditioning and convergence criteria — is given.

	Output interface of interface GUI	Tabula	10			Digita	1	-
	GUI 🗹	Tabula	ſ			Digita	1	
Digita	al data Is digital output accessible? Legibility of digital file Is all output contained? Are algorithm level outputs ac	ccessibl	Yes Good Yes e?	\mathbf{A}	No Poor No Yes		Bad No	
B1.7	Linked modules CAD input Vendor's own interface ⁸ Other cad system(s) (name)	AutoC	Yes Yes AD DX	□ ☑ (F files	No No	D D		
					AutoCA	AD DXI	⁻ files a	as a
B1.8	Associated databases Thermophysical properties Basic material properties Properties of complete constru- Transmission of windows Comment ⁹		Yes Yes Yes Yes	N N N N N N N N	No No No			
	Weather data Worldwide Number of sites		Yes Yes 7900	$\overline{\mathbf{A}}$	No No			
	Comment	-						
	Other databases	-						

 ⁸ Check that the modules are available and working; consult vendors about likely future releases.
 ⁹ Ask how many entries are in each database; ask to see some of their contents.

B1.9 User support Manuals

Bentley HEVACOMP

Manu	als					
	User manual	Yes	$\mathbf{\nabla}$	No		
	Hard copy	Yes		No	N	
	On-line	Yes	\mathbf{N}	No		
	Date of the latest copy	Februa	ry 2009)		
	Does it include example problems with the expected answers?	Yes	V	No		
	Do the problems exercise all program modules?	Yes		No	\blacksquare	
	Does it explain how to use every module? Comments ¹⁰ -	Yes	$\mathbf{\nabla}$	No		
	Comments					
	Technical manual	Yes	$\mathbf{\nabla}$	No		
	Hard copy	Yes		No	\mathbf{N}	
	On-line (1997)	Yes	$\mathbf{\nabla}$	No		
	On-line help Comments -	Yes	Ø	No		
Case	studies					
	Vendor's case study examples		-		_	
	obtained?	Yes		No	⊡ ⊠	
	Case studies of others obtained?	Yes		No		
Hotlin	le					
	Hotline support	Yes	$\mathbf{\nabla}$	No		
	Turn round	Instant		1 day	\mathbf{N}	>1 day 🗖

 $^{^{10}}$ Ask to see the manual. Ensure that it contains all the useful features and that it is up to date.

Software

Updates provided Media for disseminati	on Flop	Yes opy disk		No CD	$\mathbf{\nabla}$	Internet 🗹
Training Courses provided Cost Length Frequency			☑ 350 s avai s avai			
B1.10 User base Numbers Users in UK	10,500		Users	worldv	vide	11,800

Sites in UK1,500Sites worldwide1,630UK building services engineersUK architectsUK buildersUK others10,500Is there a user club?YesNo	Users in UK	10,500	Users worldwide	1,000
UK architects - UK builders - UK others 10,500	Sites in UK	1,500	Sites worldwide	1,630
UK builders - UK others 10,500	UK building servic	es engineers	-	
UK others 10,500	UK architects		-	
·	UK builders		-	
Is there a user club? Yes \Box No \blacksquare	UK others		10,500	
	Is there a user club	?	Yes 🗖 No 🗹	

Contacts

Name Address	Support and Sales Bentley Systems (UK) Ltd Smithywood House
	Smithywood Crescent Sheffield S8 0NU
Tel	0114 255 6680
Fax	0114 255 6638
E-mail	support@hevacomp.com

B1.11 Cost Software and associated databases

Core program	n	£2000 first seat
		£1000 additional seats
Modules	Name	£
	Name	£
	Name	£
Databases	Name	£
	Name	£
First year user /licer	nce fee	£
Total software and o	lata	£

Computer

Name	£
Annual recurring licence fee after first year of use	£
Typical training course fees per year	£

B1.12 Accuracy

Has the program been evaluated? Does the vendor exercise routine	Yes	Ø	No	
in-house quality testing?	Yes	\mathbf{N}	No	

Complete the table below to document the validation history

Date tested	Independently (i) or by vendor (v)	Type of test A, C, E	Source of information	Comments on the results
Aug 07	(i)	E	CLG Part L	Accreditation test
Nov 07	(i)	А	ASHRAE	HVAC Tests
Nov 07	(i)	А	ASHRAE	Fabric tests
Nov 07	(i)	А	ASHRAE 120	
Nov 07	(i)	А	BESTest	

A Analytical verification, C Intermodel comparison, E Empirical validation

B2 Thermal simulation programs: theoretical basis

B2.1 Conduction and thermal storage¹¹

]	on method Explicit finite difference Respnse factor Other	∑ ∑	Implicit finite difference Weighting factors		
	Step length User specified	Ø	Calculated by program		
	e surface: conduction m One-dimensional	odel ☑	Three-dimensional		
applicat	He layers: node placemen Fixed at (number) ble Other	t ☑	User specified		Not
	g: conduction model Resistance or U-value Other	-	Multi-layer with nodes	M	
	os User specified resistance Other	-	Program calculated resistance		
	node temperature User specified Notes	-	Program calculated	$\mathbf{\nabla}$	
	nditioning time User specified		Program recommended	\square	

¹¹ Validation work indicates that conduction and thermal storage are well modelled in the programs studied. Alternative approaches generally have little impact on results and a small impact on program run times. The ability to conduct three-dimensional analyses is rarely needed. For modelling a large area of glass, especially heat-absorbing glass, windows are best modelled as multi-layer constructions.

B2.2 Solar radiation

External solar radiation ¹² Direct and diffuse combined		Separate treatment of direct and diffuse	Q
Ground reflection of radi Considered	ation ¹³ ☑	Not considered	
Diffuse radiation sky mo Isotropic Notes	del ¹⁴	Anisotropic	Ŋ
Window transmission — User specified Other/notes	direct ¹⁵	Program calculated	Ø
Window transmission — User specified Other/notes	diffuse ☑ -	Program calculated	Ŋ
Internal solar distribution User specified (fixed) one or more surfaces Calculated at each time step Notes	to	Calculated once by program	

¹² Solar radiation and its reflection are best calculated if the direct and diffuse radiation components are separated.

¹³ Ground reflection must be calculated, especially for more highly glazed spaces (such as atria).

Anistropic diffuse solar radiation models are generally considered superior.

¹⁵ Window transmission may be calculated by the program, or the user may specify incidence angle dependent values. For direct solar radiation, incidence angle dependent transmission and reflection (or absorption) properties are necessary; a single value is often used for diffuse radiation. Correct specification for direct radiation is most important. Software is available to calculate incidence angle dependent values if programs require users to specify these and databases are inadequate.
¹⁶ The distribution of internal solar radiation is usually important only where glazed areas are large, surfaces have very different thermal

¹⁰ The distribution of internal solar radiation is usually important only where glazed areas are large, surfaces have very different thermal mass or a number of surfaces are glazed. The retransmission through other glazed surfaces can be very important for modelling e.g. conservatories or atria— note the treatment of this effect.

B2.3	Surface heat exchange			
Intern	nal surfaces¹⁷ Combined convection and radiation coefficient		Separate convection and radiation networks	V
Intern	nal combined coefficients ¹ Fixed user defined Calculated at each time-step Notes		Program calculated once	
Intern	Tal convection coefficients Fixed user defined Calculated at each time-step Notes	s ¹⁹	Program calculated once	
Intern	nal longwave exchange²⁰ Star network Notes		IntersuArface exchange	V
Exter	nal surfaces ²¹ Combined convection and radiation coefficient		Separate radiation and convection networks	V

External combined coefficients

¹⁷Some programs calculate heat exchange between surfaces and the enclosed air using a coefficient which describes both the convective and longwave effects. With such an approach the calculated space temperature is not a true air temperature; it is often termed the enclosure temperature. The true effects of highly asymmetric radiant environments (e.g. a radiant ceiling panel) are poorly predicted. The approach is, however, adequate for most spaces and where long-term (energy use) predictions are required. Note whether the approach used for glazing is the same as that used for opaque surfaces. ¹⁸ Ignore if separate convective and radiant exchange networks are employed.

 ¹⁹ Ignore if combined coefficients used. In reality coefficients vary depending on the surface-to-air temperature difference, surface length (or height), roughness etc. Note the algorithm used to describe these effects. ²⁰ Ignore if combined coefficient used. A star network balances radiation exchange at a fictitious central node. Radiation actually occurs by

intersurface exchange. A view factor calculation is needed to describe the intersurface visibility. Note whether exact or approximate view factors are used and whether the program calculates these. 21

The heat exchange at external surfaces may be calculated using a simple combined surface heat transfer coefficient or by separating out convection and radiation and modelling each of these in detail. Note whether the approach used for glazing is the same as that used for opaque surfaces.

Fixed user defined
Calculated at each time-step

 \Box

Program calculated once

Exter	nal convection coefficient Fixed user defined Calculated at each time-step Notes		Program calculated once	
Exter	nal longwave exchange ²³ User or program calculated coefficient Notes	-	Detailed algorithm	M
B2.4	Heating, cooling and cas		1	
	i louing, oo onig und oud	sual ya	ins	
	input ²⁴ Combined radiant and convective Notes		Separate fixed radiant and convective components	M

²² If a separate treatment is adopted for external convection, note whether a fixed coefficient is used or a more detailed algorithm which may account for wind speed, direction and surface orientation is used. Although a rigorous approach is theoretically preferable, wind speeds and directions close to surfaces are difficult to calculate.

²³ Longwave heat loss to surroundings has a significant impact on the temperature of external surfaces and, for glazed surfaces (and other poorly insulated areas), the temperature of the interior spaces. This has a significant impact on the comfort conditions, and perhaps the demands for heating, in highly glazed spaces such as atria. The exchange may be modelled by a single coefficient or a detailed algorithm may be adopted. The algorithm may calculate exchange to both the sky and surrounding surfaces (ground and buildings) or to just the sky. The method of calculating the sky temperature should be noted.

²⁴ Heat input from plant and casual sources (people, lights and equipment) may have fixed radiant and convective components or the user may be able to specify these. The ability to specify will be important if, for example, a highly radiant source is used or if highly radiant sources are combined with convective sources. The ability to specify the latent proportion of casual heat gains may be similarly important, particularly regarding cooking equipment. Some programs use detailed models (e.g. which incorporate a time delay and an exponential temperature rise) so that heating plant can be more accurately modelled. This is less important for long-term (energy) calculations than for short term temperature predictions.

²⁵ An ability to calculate the latent cooling load will be particularly important in humid environments. The ability to do this implies that the moisture content of the air is tracked by the program - few programs do this.

Controlling plant²⁶

	Free-float Idealised control Ideal preheat/cool Fixed heat injection On/off thermostat Accelerator Proportional Proportional plus integral Proportional plus integral plus derivative Advanced (a.g. furgue logic adoption colf	Yes Yes Yes Yes Yes Yes Yes Yes	র র র র র র র র	No No No No No No No	
	Advanced (e.g. fuzzy logic, adaptive, self- tuning, neural network) Other	Yes		No	V
Sche	dules ²⁷ Repeated daily schedule Repeated hourly schedule Seasonal variations Flexible hourly schedule Notes	Yes Yes Yes Yes	র র র	No No No	
Sens	or types Sensing air temperature Mixed radiation and convection sensing Surface temperature sensing Intraconstruction sensing Notes	Yes Yes Yes Yes		No No No	300

²⁶ Most programs assume perfect control is possible, i.e. that a specified set point can be quickly achieved (provided plant capacities are sufficient); this is usually adequate for long-term energy calculations. In some programs the impact on temperature of alternative forms of control can be explored.

control can be explored. ²⁷
The ability to schedule heating and cooling plant and the occurrence of internal heat gains is important. Some programs are very flexible enabling minute-by-minute variations, others are less flexible.

B2.5 Observations²⁸

²⁸ Record here any other general observations about the capabilities of the program which have not been covered elsewhere. For example, some programs impose geometric description limits on the maximum numbers of zones, surfaces per zone or windows per surface.