

TConnector
Data Acquisition ActiveX Control

Version 2.4

User Documentation

17 September 2013

TEC-IT Datenv erarbei tung GmbH

W agnerstrasse 6
A-4400 Steyr, Austr ia

t ++43 (0)7252 72720

f ++43 (0)7252 72720 77
of f ice@tec-i t .com

www.tec- i t .com

Page 2 of 47

TConnector User Documentation

1 Content

1 Content 2
1.1 Table of Figures 4
1.2 List of Tables 4

2 Disclaimer 5

3 Introduction 6
3.1 About TConnector 6
3.2 Supported Interfaces 6
3.3 System Requirements 6
3.4 Version History 6

4 Installation 7

5 Using TConnector 8
5.1 Synchronous mode 8

5.1.1 Visual Basic Example 8
5.2 Asynchronous Mode 9

5.2.1 Example in Visual Basic 9
5.3 Simulating Keystrokes 9

5.3.1 Application Scenario 10

6 Property Pages 11
6.1 Introduction 11
6.2 Property Page Connection 11

6.2.1 IOType 11
6.2.2 Button About 12
6.2.3 Button license 12

6.3 Property Page Connection for IOType None 12
6.4 Property Page Connection for IOType NULL 12
6.5 Property Page Connection for IOType File 12

6.5.1 File 12
6.6 Property Page Connection for IOType Serial 13

6.6.1 Port 13
6.6.2 Data Bits 13
6.6.3 Stop Bits 13
6.6.4 Parity 13
6.6.5 Protocol 13

6.7 Property Page Connection for IOType Parallel 14
6.7.1 Port 14

6.8 Property Page Connection for IOType TCP 15
6.8.1 Host (or IP-Address) 15
6.8.2 Service/Port 15

6.9 Property Page Connection for IOType Bluetooth 16
6.9.1 Address 16
6.9.2 Service/Port 16

6.10 Property Page Transmission 17
6.10.1 No. of Bytes 17
6.10.2 Timeout 17
6.10.3 Infinite 17
6.10.4 Data Prefix 17
6.10.5 Data Postfix 17
6.10.6 Send Keystrokes 17
6.10.7 Use Delimiter 18
6.10.8 Delimiter 18
6.10.9 Include Delimiter 18

7 ActiveX Programming Interface 19
7.1 General 19

7.1.1 Prog ID, Class ID 19
7.2 Properties 19

7.2.1 Connection Properties+ 19
7.2.1.1 IOType 19
7.2.1.2 Device 19
7.2.1.3 Baud 20
7.2.1.4 Data 20
7.2.1.5 Stop 20
7.2.1.6 Parity 20
7.2.1.7 XonXOff 21
7.2.1.8 DTRDSR 21

Page 3 of 47

TConnector User Documentation

7.2.1.9 RTSCTS 22
7.2.1.10 DTRDefault 22
7.2.1.11 RTSDefault 22
7.2.1.12 Host (Address) 22
7.2.1.13 Service 23

7.2.2 Transmission Properties 23
7.2.2.1 Data Collection during Async Mode 23
7.2.2.2 NoOfBytes 24
7.2.2.3 Timeout 24
7.2.2.4 Timeout_Infinite 24
7.2.2.5 Prefix 24
7.2.2.6 Postfix 24
7.2.2.7 SendKeyStrokes 25
7.2.2.8 UseDelimiter 25
7.2.2.9 Delimiter 25
7.2.2.10 IncludeDelimiter 26

7.2.3 Other properties 26
7.2.3.1 StateAsTxt 26

7.3 Methods 26
7.3.1 Connection Methods 26

7.3.1.1 Open 26
7.3.1.2 Close 27

7.3.2 Synchronous Methods 27
7.3.2.1 Read 27
7.3.2.2 GetNoOfBytesRead 27
7.3.2.3 ClearBuffer 28
7.3.2.4 Write 28

7.3.3 Asynchronous Methods 29
7.3.3.1 StartListen 29
7.3.3.2 StopListen 29

7.3.4 Other methods 29
7.3.4.1 AboutBox 29
7.3.4.2 EscapeZeroBytes 29
7.3.4.3 LicenseMe 30
7.3.4.4 Licensing 30
7.3.4.5 TranslateErrorNo 30
7.3.4.6 SetDebugLevel 31
7.3.4.7 GetStates 31
7.3.4.8 GetStateArraySize 31
7.3.4.9 GetStateFromArray 32
7.3.4.10 SetStates 32
7.3.4.11 SetSingleState 32
7.3.4.12 EmulateKeys 33
7.3.4.13 UseCodePage 33

7.4 Events 34
7.4.1.1 OnClose 34
7.4.1.2 OnData 34
7.4.1.3 OnError 35
7.4.1.4 OnStatusChange 35

8 Licensing 36
8.1 Manual Licensing 36
8.2 Automatic Licensing 37

9 Redistribution 38
9.1 Dependencies 38
9.2 Redistribution 38

10 Sample Applications 39
10.1 Sample code 39

11 Troubleshooting / FAQ 40
11.1 How can I eliminate the CR/LF after each data input? 40
11.2 How TConnector supports debugging? 40
11.3 What can I do if the COM port is not accessible? 40
11.4 How can I specify a COM port > COM9? 41
11.5 Zero Bytes are truncated in my input data! 41

12 Contact and Support Information 42

Appendix A : State Enumerations 43
A.1 Serial States 43

A.1.1 OnStatusChange 43
A.1.2 GetState 43
A.1.3 SetState 43

Page 4 of 47

TConnector User Documentation

A.2 TCP States 44
A.2.1 OnStatusChange 44

A.3 Parallel States 44
A.3.1 GetState 44

Appendix B : Escape Sequences 45

Appendix C : Wiring and Pin Out 46
C.1 RS232 Connector Signal Description 46
C.2 Parallel Port DB-25 Pin Out 46
C.3 Related Links 47

C.3.1 RS232 47
C.3.1.1 Wiring and Pin Out Reference 47

C.3.2 Parallel Port 47
C.3.2.1 Wiring and Pin Out Reference 47
C.3.2.2 General Overview 47

1.1 Table of Figures

Fig. 1: Property Page Connection 11

Fig. 2: IO-Type File 12

Fig. 3: IO-Type Serial 13

Fig. 4: IO-Type Parallel 14

Fig. 5: IO-Type TCP 15

Fig. 6: IO-Type Bluetooth 16

Fig. 7: Property Page Transmission 17

Fig. 8: Event Triggering in Async Mode 23

Fig. 9: Open the license dialog 36

Fig. 10: License dialog 36

1.2 List of Tables

Table 1: Supported Interface Types 12

Table 2: Supported Handshake Protocols 14

Table 3: Codepage List (partial) 34

Table 4: License Enumeration Equivalents 37

Table 5: Serial State Enumerators (OnStatusChange) 43

Table 6: Serial State Enumerators (GetState) 43

Table 7: Serial State Enumerators (SetState) 43

Table 8: TCP State Enumerators 44

Table 9: Parallel State Enumerators 44

Table 10: Escape Sequences 45

Table 11: Keycode Table 45

Table 12: RS232 Pin Description 46

Table 13: Parallel (Centronics) Pin Description 47

Page 5 of 47

TConnector User Documentation

2 Disclaimer

The actual version of this product (document) is available as is. TEC-IT declines all warranties
which goes beyond applicable rights. The licensee (or reader) bears all risks that might take place
during the use of the system (the documentation). TEC-IT and its contractual partners cannot be
penalized for direct and indirect damages or losses (this includes non-restrictive, damages through
loss of revenues, constriction in the exercise of business, loss of business information or any kind
of commercial loss), which is caused by use or inability to use the product (documentation),
although the possibility of such damage was pointed out by TEC-IT.

We reserve all rights to this document and the information contained therein. Reproduction,
use or disclosure to third parties without express authority is strictly forbidden.

Für dieses Dokument und den darin dargestellten Gegenstand behalten wir uns alle Rechte
vor. Vervielfältigung, Bekanntgabe an Dritte oder Verwendung außerhalb des vereinbarten
Zweckes sind nicht gestattet.

© 1998-2013
TEC-IT Datenverarbeitung GmbH
Wagnerstr. 6

A-4400 Austria
t.: +43 (0)7252 72720
f.: +43 (0)7252 72720 77
http://www.tec-it.com

http://www.tec-it.com/

Page 6 of 47

TConnector User Documentation

3 Introduction

3.1 About TConnector

TConnector is a software tool, which allows communication with various external devices with a
very slim and unified programming interface.

TConnector conforms to Microsoft
®
 ActiveX

®
 specifications and can therefore be used in many

standard applications (like Microsoft
®
 Excel

®
, Microsoft Access, Microsoft Word, …) and in most

Windows
®
 programming environments (like Microsoft Visual Basic

®
, Microsoft Visual Studio

®

(C/C++/C#), .NET, C#, Delphi, …).

TConnector supports serial interfaces, parallel ports and even TCP/IP connections. It can also be
used to read or write from simple files.

TConnector is controlled by a set of properties which are used to adjust basic interface parameters
(like connection speed or IP-address). In addition a few programming methods are used to connect
to the device and read or write data.

A unique feature of TConnector is the unified programming interface. In other words: TConnector
offers the user always the same program methods– regardless of the physical interface used at the
moment.

3.2 Supported Interfaces

 Null device

 Serial communication (COM)

 Parallel communication (LPT) – limited read functionality

 File-Input/Output

 TCP/IP (Client)

3.3 System Requirements

TConnector may be used with the following operating systems:

 Windows 98

 Windows ME

 Windows NT (version 4.x)

 Windows 2000

 Windows 2003

 Windows XP

 Windows Vista

► Please note: Windows 95 is not supported.

3.4 Version History

The product history containing version info, evolution in functionality and changes in the COM
interface can be accessed at our web site http://www.tec-it.com (Software ► Data Acquisition ►

TConnector ► More Info ► Version History).

http://www.tec-it.com/

Page 7 of 47

TConnector User Documentation

4 Installation

Execute following steps to install TConnector to your PC:

1. Download the demo version from the TEC-IT Web Site www.tec-it.com

2. If you downloaded a ZIP file, extract the zipped files into an arbitrary directory

3. Execute the setup application and follow the instructions

4. TConnector can now be used by any application that supports Microsoft ActiveX technology

http://www.tec-it.com/

Page 8 of 47

TConnector User Documentation

5 Using TConnector

TConnector is an ActiveX object and can be inserted in various applications supporting the ActiveX
technology. TConnector is implemented as invisible ActiveX control – meaning that no window or
visual effects are displayed during runtime.

Calling the Open method starts a communication. Open has to be called after the properties are set

but before any other IO-operation is executed. To close an active connection call Close. Each

connection opened with Open must be closed with Close.

You can communicate with the device in synchronous mode (Read, Write…) or in asynchronous

mode (StartListen, StopListen, OnData, OnStatusChange…).

 Synchronous means that a function call returns only after data was read (written) or a
timeout occurred.

 Asynchronous means that the called function returns immediately. Whenever data was
received an event is fired. An event handler provided by the user processes the event (and
the data).

5.1 Synchronous mode

After Open has been called, data can be written and received using the Write and Read methods.

When Write or Read is called, the application waits until data was written (read) or a timeout

occurred and the method returns.

5.1.1 Visual Basic Example

A typical sequence looks like this:

Dim Data As String 'string for data

Dim Bytes As Long 'number of bytes to receive or to send

Dim Timeout As Long 'timeout for the read/write method

' Open connection

Connector2.Open

' Receive data

Bytes = 100 'receive 100 bytes

Timeout = 10000 'in 10 sec

Data = Connector2.Read (Bytes, Timeout)

' Data contains the received data

' Send data

NoBytesToWrite = 100 'send 100 bytes

Timeout = 10000 'in 10 sec

Data = "Hello World!" 'Text to send

NoBytesWritten = Connector2.Write (NoBytesToWrite, Timeout, Data)

' Close connection

Connector2.Close

► "Connector2" is the name of the TConnector2 object in this sample code.

Page 9 of 47

TConnector User Documentation

5.2 Asynchronous Mode

After Open has been called, you can activate the Asyncronous Mode with StartListen. The

method StartListen instructs TConnector to perform continuous reads in the background.

StartListen returns immediately.

When data is received from the device, the application is informed by an OnData event. If status

lines are changing, the OnStatusChange event is fired. StopListen ends the asynchronous

mode.

With this mode you don’t have to perform multiple reads to check always for new data –
TConnector does this for you.

► You can call the Write method to send data. But you can’t use the Read method, which is

reserved for the Synchronous Mode.

5.2.1 Example in Visual Basic

A typical sequence looks like this:

' Open connection

Connector2.Open

' Start listen mode

Connector2.StartListen

' From now on OnData events will be sent if data is received!

' During listen mode also OnError and OnStatusChanged events can be fired.

...

' Stop listen mode

Connector2.StopListen

' Close connection

Connector2.Close

Sample of a simple event handler:

'This method is called if data is received in listen mode

Private Sub Connector2_OnData (ByVal Data As String)

 MsgBox "OnData event occurred, received data:" + Data

End Sub

5.3 Simulating Keystrokes

In Asynchronous Mode TConnector is able to translate incoming data to keystrokes. That means
that the received data is directly sent to the currently active window, so as if the data was entered
by the user on the keyboard.

► To enable this feature you have to select the Send Keystrokes check box in the

Transmission property page.

In Synchronous mode you could call the EmulateKeys() method after data was received with

Read().

Page 10 of 47

TConnector User Documentation

5.3.1 Application Scenario

Some data should be read by a bar code scanner. The scanners are connected via the serial port.
It is not desired to integrate the communication process directly into your applications. So just plug
in TConnector ActiveX into a small program, that does nothing but communicate with the serial
scanners. The received data is automatically transmitted to the active window – without changing
your application.

You can insert special actions after each OnData event by customizing the prefix and postfix

property - e.g. you can simulate pressing F10, Tab or Return keys (and many more).

If supported by the used scanner, you can also configure it to send <CR> or <tab> at the end of a

data stream. Doing this you can instruct the system to automatically jump from one edit field to the
next without additionally programming.

If you enable the keystroke feature, all events in the asynchronous mode (OnData, OnError,

OnStatusChange) are not disabled. They can be handled as usual.

► You may also give another product of TEC-IT a try. It is called TWedge and performs the
above mentioned functionality as ready to run application. Download a demo of TWedge
from www.tec-it.com

Page 11 of 47

TConnector User Documentation

6 Property Pages

6.1 Introduction

TConnector is a full featured ActiveX control. It provides so-called “property pages”. These property
pages offer the possibility to change all TConnector related options without programming.

In most applications the property pages can be accessed with a right mouse-click directly onto the
object. After right clicking, the appearing menu [TConnector-Object] - [Properties] offers access to
the settings of the object.

The property pages are described in the following sections.

► Beside the property pages you can use the menu option "Properties" in some Microsoft
Office applications - in this window you have a list of “property - value” pairs, which allows
you to change the characteristics of the control.

6.2 Property Page Connection

In the Connection page you can set all properties necessary to open a connection via the

specified interface. The properties you have to enter depend on the selected device type.

Fig. 1: Property Page Connection

6.2.1 IOType

This setting adjusts the type of the used interface.

Interface Type Description

None no connection specified

NULL null device

File reading from and writing to files

Serial Serial device (COM1…)

Parallel Parallel device (LPT1…)

TCP TCP/IP connection

Bluetooth Bluetooth connection

Page 12 of 47

TConnector User Documentation

Table 1: Supported Interface Types

Depending on the selected type, the appearance of the property dialog changes.

6.2.2 Button About

Pressing this button opens the About-dialog where the version information is displayed.

6.2.3 Button license

This button opens the License dialog. Enter your license data in this dialog to unlock the demo
version and to remove any demo-restrictions.

6.3 Property Page Connection for IOType None

IOType is set to None. In this mode no communication is possible.

6.4 Property Page Connection for IOType NULL

IOType is set to NULL (null device). In this mode the control connects to a dummy device, which

has no functionality. The NULL mode is usually used for testing only.

6.5 Property Page Connection for IOType File

Fig. 2: IO-Type File

IOType is set to File – file input/output. In this mode TConnector connects to a file that can be

read or written to.

6.5.1 File

Specifies the full filename including the path; with you can browse for an existing file.

Page 13 of 47

TConnector User Documentation

6.6 Property Page Connection for IOType Serial

Fig. 3: IO-Type Serial

IOType is set to Serial – serial communication. In this mode TConnector is able to communicate

via a serial port (“COM Port”). You can specify usually used settings for this kind of communication
(port, baud rate…) including support for software and hardware handshake.

6.6.1 Port

Specifies the name of the serial port (COM1, COM2…). Port names not available in the list box
can be entered directly – see How can I specify a COM port > COM9?

Baud rate

Specifies the communication speed used for this serial line (in bits per second). It is important to
choose exactly the same value as adjusted in your external device (110, …, 9600,…, 115200, …,
256000).

6.6.2 Data Bits

Specifies the number of bits used for one data-word. It is important to choose exactly the same
value as adjusted in your external device.

6.6.3 Stop Bits

Specifies the number of bits used for marking the end of a data-word. It is important to choose
exactly the same value as adjusted in your external device.

6.6.4 Parity

Specifies if a parity bit is used and which type of parity (even/odd). It is important to choose exactly
the same value as adjusted in your external device.

6.6.5 Protocol

The handshake modes listed below can be configured. Please not that it is possible to combine
multiple handshake methods. You should select the same handshake protocols as used in your
external device.

Page 14 of 47

TConnector User Documentation

Protocol Description

XOn/XOff use XOn/XOff software handshake

RTS/CTS use RTS/CTS hardware handshake

DTR/DSR use DTR/DSR hardware handshake

Table 2: Supported Handshake Protocols

6.7 Property Page Connection for IOType Parallel

Fig. 4: IO-Type Parallel

IOType is set to Parallel – communication over a parallel port. In this mode TConnector opens a

connection to a parallel port, usually for writing (for example to a printer).

► Please note: Reading from a parallel port is not fully supported (depends on Bios, Windows
Driver, communication chip set and the connected devicce).

6.7.1 Port

Specifies the name of the parallel port (LPT1, LPT2…). Port names not available in the list box can
be entered directly – see How can I specify a COM port > COM9?

Page 15 of 47

TConnector User Documentation

6.8 Property Page Connection for IOType TCP

Fig. 5: IO-Type TCP

IOType is set to TCP – communication over TCP/IP. In this mode TConnector opens a connection

to an IP port. The user can specify host name and service name (or port number).

► TConnector can act as a “client”, who connects to a server – i.e. the remote device (or
computer) must act as a server. It is not possible to connect to another client.

► Please note: For TCP connections you can additionally specify a keep-alive time. This
allows TConnector to detect a lost connection within a reasonable time. The keep-alive time
must be appended in the field Service/Port. Add a hash and then the keep-alive time in
milliseconds (e.g. 80#1000 for 1 sec. keep-alive).

6.8.1 Host (or IP-Address)

Host name of a TCP/IP server (e.g. www.tec-it.com), or a TCP address (like ‘127.0.0.1’ = local
host)

6.8.2 Service/Port

Specifies a service name or port number (e.g. “http”, “80”…)

http://www.tec-it.com/

Page 16 of 47

TConnector User Documentation

6.9 Property Page Connection for IOType Bluetooth

Fig. 6: IO-Type Bluetooth

IOType is set to Bluetooth. In this mode TConnector opens a connection to a Bluetooth device.

The user can specify the unique address of the Bluetooth device (a series of hex codes).

6.9.1 Address

Bluetooth address (like ‘1B:F3:E1:10:01:21’). Retrieve the unique Bluetooth address from your
device. For programmatically access: The address is stored in the COM Property “Host”.

6.9.2 Service/Port

Specifies a service name or port number, enter ‘0’ as default.

Page 17 of 47

TConnector User Documentation

6.10 Property Page Transmission

In the Transmission page you can specify all properties that have to do with data transmission.

► Only methods using the asynchronous mode are concerned by these properties
(StartListen, StopListen, OnData,…). Methods using the synchronous calls (like

Read, Write) are not concerned.

Fig. 7: Property Page Transmission

6.10.1 No. of Bytes

Maximum number of bytes, which should be receive in one turn.

6.10.2 Timeout

Timeout for one asynchronous read (only available if property Infinite is not checked)

6.10.3 Infinite

Determine if time out should be infinite or the value set in the property Timeout.

6.10.4 Data Prefix

String prefixes the incoming data stream (values can be selected from the list or typed in directly)

6.10.5 Data Postfix

String postfixes the incoming data stream (values can be selected from the list or typed in directly)

6.10.6 Send Keystrokes

If enabled, the incoming data is translated into corresponding keystrokes (can be used to enter data
automatically into input fields).

Page 18 of 47

TConnector User Documentation

6.10.7 Use Delimiter

You can use a “Delimiter” to trigger an OnData event, if special characters occur in the input data.
A delimiter consists of one or more characters and is used to separate blocks of data not by length,
but by the given character.

6.10.8 Delimiter

Delimiter characters (e.g. \x0d for Carriage Return)

6.10.9 Include Delimiter

Include delimiter into byte block or strip off from the input data. If this option is checked, the
received text contains the delimiter character(s) otherwise the delimiter is removed before firing the
OnData event.

Page 19 of 47

TConnector User Documentation

7 ActiveX Programming Interface

7.1 General

Most programming environments support the use of ActiveX objects. TConnector conforms to
Microsoft’s ActiveX specification and can therefore be used in a very comfortable and easy way.

The TConnector object can be inserted on a form (e.g. in Visual Basic) but it can also be created
as (invisible) instance of an object (without needing a form). TConnector is not limited to Microsoft
applications – it can be used with all development environments in common use.

To learn more about object-oriented programming languages and get further information about
COM objects we refer to the appropriate technical literature. For specific questions you can also
contact our support.

7.1.1 Prog ID, Class ID

Prog ID TConnector2 = „ TConnector2.TConnector2“

Class ID TConnector2 = {126C289A-607B-4251-BF31-1555A5951948}

7.2 Properties

Object properties are essentially identical to those, which are used in the Property Pages – so we
recommend the reading of the section Property Pages too.

The object characteristics (Properties) are discussed below.

7.2.1 Connection Properties+

This section contains all properties that are necessary to open a connection to a specified device.

7.2.1.1 IOType

IOType is the main property in this section that determines which kind of connection should be

opened. In dependence of IOType, some properties get different meanings. Particular properties

are used only with certain communication types and are ignored by others (details see below).

Default Value eNone

Get/Set Get/Set

Data Type Enumeration e_DeviceType

Value Range eNone no connection

eNULL null device

eFILE file

eCOM serial port

eLPT parallel port

eTCP TCP

eBTH Bluetooth

See also Device, Host, Service

7.2.1.2 Device

This property specifies the name of the interface or target file. The value is used only with the
communication types File, Serial, and Parallel.

Default Value Empty

Page 20 of 47

TConnector User Documentation

Get/Set Get/Set

Value Range Any valid filename or port-name

See also IOType

The exact meaning depends on the currently selected IOType:

IOType Meaning Example

eFILE File name (full path) C:\Test.txt

eCOM Serial port name COM1, COM2…

eLPT Parallel port name LPT1, LPT2…

Else Not used -

7.2.1.3 Baud

This property is only used for IOType Serial.

Specifies the communication speed used for this serial line (in bits per second). It is important to
choose exactly the same value as adjusted in your external device (110, …, 9600,…, 115200, …,
256000).

Default Value 9600

Get/Set Get/Set

Data Type String

Value Range 110, …, 9600,…, 115200, …, 256000

See also

7.2.1.4 Data

This property is only used for IOType Serial.

Specifies the number of bits used for one data-word. It is important to choose exactly the same
value as adjusted in your external device.

Default Value 8

Get/Set Get/Set

Data Type String

Value Range 5, 6, 7 or 8

See also

7.2.1.5 Stop

This property is only used for IOType Serial.

Specifies the number of bits used for marking the end of a transmitted data-word. It is important to
choose exactly the same value as adjusted in your external device.

Default Value 1

Get/Set Get/Set

Data Type String

Value Range 1, 1.5 or 2

See also

7.2.1.6 Parity

This property is only used for IOType Serial.

Page 21 of 47

TConnector User Documentation

Specifies the calculation method used for the parity bit. It is important to choose exactly the same
value as adjusted in your external device.

Default Value None (N)

Get/Set Get/Set

Data Type String

Value Range N None

O Odd

E Even

M Mark

S Space

See also

7.2.1.7 XonXOff

This property is only used for IOType Serial.

Xon/XOff is a software protocol for data flow-control (handshaking)
1
. If your external device uses

this protocol, enable it. Software handshaking is usually disabled if hardware handshaking
(DTRDSR and/or RTSCTS) is used. To enable Xon/Xoff handshaking set the property to True, to

disable set it to False. It is important to choose exactly the same flow control as adjusted in your

external device.

► If you want to transmit binary data, use hardware handshaking. Xon/XOff are control
characters, which may interfere with binary data.

Default Value False

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also

7.2.1.8 DTRDSR

This property is only used for IOType Serial.

DTR (Data Terminal Ready) and DSR (Data Set Ready) are lines of the RS-232 Interface.
Sometimes these lines are used for flow-control - in this case, enabled this property. To enable
DTR/DSR hardware handshaking set the property to True, to disable set it to False. It is

important to choose exactly the same flow control as adjusted in your external device.

► Be aware that some serial devices need a specific state of the DTR line. If DTR/DSR
handshake is not used, the DTR line is controlled by the property DTRDefault.

Default Value False

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also

1
 Flow control means the ability to slow down the flow of Bytes in a wire. For serial ports this means the ability to stop and then

restart the flow without any loss of Bytes.

Page 22 of 47

TConnector User Documentation

7.2.1.9 RTSCTS

This property is only used for IOType Serial.

RTS (Ready To Send) and CTS (Clear To Send) are lines for hardware based flow control.
Sometimes RTS/CTS is combined with DTR/DSR handshaking. To enable RTS/CTS hardware
handshaking set the property to True, to disable set it to False. It is important to choose exactly

the same flow control as adjusted in your external device!

► If RTS/CTS handshake is not used, the RTS line is controlled by the property RTSDefault.

Default Value False

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also

7.2.1.10 DTRDefault

This property is only used for IOType Serial.

If no DTR/DSR handshake is set, this property controls the state of the DTS line after the Open()

command. The default setting is true, so the DTS-line will be high (if no handshaking is set).

Default Value True

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also

7.2.1.11 RTSDefault

This property is only used for IOType Serial.

If no RTS/CTS handshake is set, this property controls the state of the RTS line after the Open()

command. The default setting is true, so the RTS-line will be high (if no handshaking is set).

Default Value True

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also RTSCTS, DTRDSR

7.2.1.12 Host (Address)

For IOType TCP this property specifies the hostname or IP-address (www.tec-it.com,
“127.0.0.1“…). For IOType Bluetooth (BTH) this property stores the Bluetooth address.

► You can connect to an IP address as a client (like a telnet client) - the remote address must
act as a server. Connecting to another client is not possible.

Default Value Empty

http://www.tec-it.com/

Page 23 of 47

TConnector User Documentation

Get/Set Get/Set

Data Type String

Value Range - Any valid IP-address or (resolvable) hostname

- Bluetooth address: nn:nn:nn:nn:nn:nn

See also

7.2.1.13 Service

This property is used for IOType TCP and BTH.

Specifies the service name (e.g. telnet) or port-number (e.g. 22) when using IOType TCP.

Default Value Empty

Get/Set Get/Set

Data Type String

Value Range Any valid service name or port-number

See also

7.2.2 Transmission Properties

This section contains the transmission properties for TConnector’s asynchronous mode.

► Only methods using the asynchronous mode (like StartListen, StopListen, OnData)

are concerned by these properties. Methods using the synchronous calls (like Read, Write)

are not concerned.

7.2.2.1 Data Collection during Async Mode

You have different options to control data collection during the asynchronous mode. In
Asynchronous mode, input data is collected in the background and is passed to the application by
the OnData event.

Usually it is not intended that the user receives the data byte for byte; so there are options to
collect the input data and transmit a “bunch of bytes” at one time. Several conditions can be
configured to limit data collection and trigger the OnData event.

Fig. 8: Event Triggering in Async Mode

In the figure above Byte 1 and Byte 2 are passed to the application within the OnData event. Byte 3
will be passed in the next event.

The OnData event can be triggered after a specific Timeout elapsed since the first byte was
received. Also TConnector reserves an input buffer with the size of NoOfBytes. and fires always an
event if this limitation has been reached.

Page 24 of 47

TConnector User Documentation

7.2.2.2 NoOfBytes

The maximum number of bytes to receive before an OnData event is fired. If NoOfBytes is 0 then

all bytes received within the timeout period will be sent with the next OnData event.

Default Value 100

Get/Set Get/Set

Data Type Long

Value Range 0…64000

See also Timeout

7.2.2.3 Timeout

The timeout period measured in 0.001 seconds. During the timeout period all data is collected (until
NoOfBytes is reached) and then an OnData event is fired. The event will be fired , even if less

than NoOfBytes bytes were received.

To suppress the timeout period, you can set the property Timeout_Infinite to false.

Default Value 1000

Get/Set Get/Set

Data Type Long

Value Range 0…64000

See also Timeout_Infinite

7.2.2.4 Timeout_Infinite

If set to true, there is no timeout period in asynchronous mode. The events are fired when a certain
amount of bytes (specified in NoOfBytes) was received. This mode is not supported with HTTP

connections (here always a timeout is required).

Default Value True

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also Timeout

7.2.2.5 Prefix

Prefix defines a string that is placed in front of all other data characters sent by the OnData

event. Prefix can contain arbitrary ASCII characters and predefined escape sequences.

Please see Keyboard Emulation – Escape Sequences for more information about possible

virtual key codes.

Default Value Empty

Get/Set Get/Set

Data Type String

Value Range Any string

See also Postfix

7.2.2.6 Postfix

Type: String

Page 25 of 47

TConnector User Documentation

Postfix defines a string that is appended to a data package sent by the OnData event. Postfix

can contain arbitrary ASCII characters and predefined escape sequences.

Default Value Empty

Get/Set Get/Set

Data Type String

Value Range Any string

See also Prefix

Please see Keyboard Emulation – Escape Sequences for more information about possible

virtual key codes.

7.2.2.7 SendKeyStrokes

If this value is true, the incoming data is translated into corresponding keystrokes. These
characters are transmitted as if they have been entered on the keyboard.

This feature can be used to enter data automatically into input fields. The incoming data characters
are passed to the input field of the current active foreground window.

Default Value False

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also Prefix, Postfix

Please see Keyboard Emulation – Escape Sequences for more information about possible

virtual key codes.

7.2.2.8 UseDelimiter

Type: Boolean

If this value is true, the data read is not only limited by length (or by timeout), but also by one or
more delimiter characters (see property Delimiter). If a delimiter is detected in the input data

read by TConnector, the read data is returned by the OnData event immediately.

Default Value False

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also Delimiter

7.2.2.9 Delimiter

Delimiter String - used to fire the OnData event if this character combination occurs in the data

read from the device. For special ASCII characters (e.g. CR or LF) use escape sequences with
hexadecimal codes. The additional property IncludeDelimiter adjusts whether the delimiter

string itself is passed as part of the data package by OnData or not.

Default Value Empty

Get/Set Get/Set

Data Type String

Value Range Any string

Page 26 of 47

TConnector User Documentation

See also UseDelimiter, IncludeDelimiter

Samples:

Delimiter sequence Meaning

\x0d Hexadezimal 0D = decimal 13 = Carriage Return (CR)

The OnData event will be fired after CR occurred in the input data.

\x0a Hexadezimal 0A = decimal 10 = Line Feed (LF)

The OnData event will be fired after LF occurred in the input data.

\x0d\0xa Hexadecimal 0d0a is ASCII CR/LF

The OnData event will be fired after CR/LF occurred in the input data.

7.2.2.10 IncludeDelimiter

If the value of this property is true, the delimiter characters (property Delimiter) are included in

the data passed over by the OnData event. Is set to false delimiter characters are stripped from

the input data.

Default Value False

Get/Set Get/Set

Data Type Boolean

Value Range True

False

See also Delimiter

Can be used to strip off the CR/LF characters after reading one line (one shot with a bar code
scanner) of data.

7.2.3 Other properties

7.2.3.1 StateAsTxt

StateAsTxt

(

eState As e_TC_State

) As String

The StateAsTxt property translates a state number (received from OnStatusChange event or

from GetStates / GetSingleState method) to its text representation. See also section Status

Enumeration.

Default Value Empty

Get/Set Get

Data Type String

Value Range See section Status Enumeration

See also See section Status Enumeration

7.3 Methods

7.3.1 Connection Methods

7.3.1.1 Open

Opens a connection to a device by using the interface parameters currently adjusted in the
property settings. Changing the properties after calling Open will not effect the active connection.

Page 27 of 47

TConnector User Documentation

Open must be the called before any other method that uses a connection is called. Otherwise an

error occurs.

Open ()

Return Value None

Exceptions On error an exception is thrown

7.3.1.2 Close

Closes a connection and releases the opened port.

This method should always be called when you want to close an open connection (at least before
object destruction).

Close ()

Return Value None

Exceptions On error an exception is thrown

7.3.2 Synchronous Methods

7.3.2.1 Read

Used for reading data.

Reads maximal nNoOfBytes bytes from the active port within the period defined by nTimeout

(synchronous).

Read returns as soon as the specified number of bytes has been received from the device - or
when the timeout period has expired. If no bytes were received during the timeout period, an
exception (refer to the error codes below) will be released. To get the number of bytes received
during the last successful read, use the GetNoOfBytesRead() method.

Read

(

nNoOfBytes As Long,

nTimeout As Long

) As String

nNoOfBytes Number of bytes to receive

nTimeout Timeout period in milliseconds

Return Value Data received from the device

Exceptions On error an exception is thrown

See also GetNoOfBytesRead, ClearBuffer

Possible errors (constants):

Error Code Meaning

E_TIMEOUT (-2147023436) Timeout-Error: no data was read before timeout

E_END_OF_FILE (-2147024858) End of File-Error: end of file reached

7.3.2.2 GetNoOfBytesRead

Return the number of bytes received during the last Read method. If a timeout occurred the return

value can be 0, if an error occurred, it is –1.

GetNoOfBytesRead () As Long

Return Value -1 in case of error

Page 28 of 47

TConnector User Documentation

0..x otherwise

Exceptions None

See also Read, UseCodePage

► Depending on the selected code page (see UseCodePage()) the number of bytes can be
different from the number of characters in the received string. MultiByte character sets may
use more than one byte for a single character.

7.3.2.3 ClearBuffer

Deletes all data from the input buffer.

Most interfaces can receive data in the background by caching in an internal system buffer. This
data is also read in the Read()call.

Place ClearBuffer() before Read() if you want to ensure that you receive only “new” data (and

not reading “old” data).

ClearBuffer ()

Return Value None

Exceptions None

See also Read

7.3.2.4 Write

Used for sending data.

Transmits nBytes bytes of the specified string bstrData within the period defined by nTimeout

to the device (or writes them to the file).

Write

(

nBytes As Long,

nTimeout As Long,

bstrData As String

)

As Long

nBytes Number of bytes to send

nTimeout Timeout period in milliseconds

bstrData Data to send

Return Value Number of bytes sent/written within the timeout period

Exceptions On error an exception is thrown

See also Read

Possible errors (constants):

Error Code Meaning

E_TIMEOUT (-2147023436) Timeout-Error: no data was sent before timeout

► Depending on the selected Code Page (see UseCodePage()) the number of bytes

sent/written can be different from the number of characters in bstrData.

Page 29 of 47

TConnector User Documentation

7.3.3 Asynchronous Methods

7.3.3.1 StartListen

Starts the asynchronous mode. OnData events will be generated if data has been received. You

can handle the OnStatusChange event if you want to know more about status line changes.

StartListen ()

Return Value None

Exceptions On error an exception is thrown

See also Read, Write

7.3.3.2 StopListen

Stops the asynchronous mode. Should be called after StartListen if the asynchronous mode

should be stopped.

StopListen ()

Return Value None

Exceptions On error an exception is thrown

See also Read, Write

7.3.4 Other methods

7.3.4.1 AboutBox

Shows information dialog (containing the version number) about TConnector.

AboutBox ()

Return Value None

Exceptions None

See also

7.3.4.2 EscapeZeroBytes

Strings or Data containing Zero Bytes (binary value = 0x00) can be truncated by some COM
wrappers (such as used by Visual Basic). To avoid the truncation of data with Zero Bytes you can
escape them with backslash zero: “\0”.

► This works for the OnData event (and in V2.4.3 also for Read() and Write() method).

► Your software must convert the \0 back to the binary value during processing of the data.

Turn on the escaping before you call StartListen()

EscapeZeroBytes (bEnable)

bEnable True: Enable Escaping of Zero Bytes in the OnData event

False: Disable Escaping of Zero Bytes (Default)

Return Value None

Exceptions None

See also

Page 30 of 47

TConnector User Documentation

7.3.4.3 LicenseMe

Licenses TConnector with the license key provided by TEC-IT. Licensing removes any demo-mode
restrictions. You receive the license key from TEC-IT Datenverarbeitung GmbH after you have
ordered a license. This method enables the user to license TConnector automatically from the
applications source code (for a more detailed description see chapter Licensing).

TEC-IT suggests calling this method every time your application starts up. For license keys not
starting with “Mem:” this call can be executed once (when installing your product).

If the license key starts with “Mem: xxxxxxxx” the product stays licensed until TConnector will be

unloaded from memory.

LicenseMe

(

bstrLicensee As String,

eKind As e_LicenseKind, /* As Long if enumeration is not available */

nLicenses As Long,

bstrLicenseKey As String,

eProductID As e_LicenseProduct /* As Long if enumeration is not available */

)

bstrLicensee String containing the name of the Licensee. Provided by TEC-IT after ordering.

eKind The type of the license. Provided by TEC-IT after ordering.

Possible values:

eLicKindSingle (1)

eLicKindSite (2)

eLicKindDeveloper (3)

nLicenses The number of available licenses. Provided by TEC-IT after ordering.

bstrLicenseKey String containing the license key Provided by TEC-IT after ordering.

eProductID The type of the licensed product variant. Always eLicprodStd

Return Value None

Exceptions None

See also

► If the license key received by TEC-IT looks like “HKCU:xxxxxxxx” the product is licensed

in the section “HKEY Current User” of the Windows registry.

► If the license key received by TEC-IT looks like “xxxxxxxx” or “HKLM:xxxxxxxx” the

product is licensed within the section “HK Local Machine” of the Windows Registry (this is
the default).

7.3.4.4 Licensing

Call the dialog-box for manual licensing of TConnector. License data can be entered in the
upcoming dialog.

Licensing ()

Return Value None

Exceptions None

See also

7.3.4.5 TranslateErrorNo

Returns the error description text for the error number given by the OnError event.

TranslateErrorNo

(

hr As Long

)

Page 31 of 47

TConnector User Documentation

As String

Hr Error number

Return Value Error text

Exceptions None

See also

7.3.4.6 SetDebugLevel

Enables tracing of TConnector’s internal activities into a log-file. A higher debug level logs more
details.

The created log file is named “TConnector.log” and is placed within the actual users temporary
directory (path depends on operating system and settings).

Example Log File Path : C:\Documents and Settings\Susan\Local Settings\Temp

SetDebugLevel

(

nLevel As long /* debugging level */

)

nLevel Possible values:

0: No debug (default)

1: Tracing errors within the ActiveX and other important information

2: 1 + low level errors (API functions here called LIB)

3: 2 + ActiveX function-calls…

4: 3 + LIB information

5: 4 + all other information (this will result in big data amount for the log

file).

Return Value None

Exceptions -

See also

► Make sure that you disable the log level after debugging. Logging can fill your disk and slow
down execution of programs.

7.3.4.7 GetStates

This function may be called in synchronous and asynchronous mode (after a device has been
opened). It returns an array of actually set states. Unset states are not included. See chapter Status
Enumeration to get the list of possible states. The Variant data type is VT_ARRAY | VT_I4.

GetStates () As Variant

Return Value Array of state flags (as numbers)

Exceptions -

See also

7.3.4.8 GetStateArraySize

Returns the size of the State Array passed in the OnStatusChange() event or from the

GetStates() method. This function is used together with GetStateFromArray().

GetStateArraySize

(

vStates As Variant

) As Long

vStates Variant array with the status info

Page 32 of 47

TConnector User Documentation

Return Value Size of vStates array (max index = size - 1)

Exceptions -

See also GetStates, GetStateFromArray

7.3.4.9 GetStateFromArray

This function is used to retrieve a single element of the variant array passed in the
OnStatusChange() event or from the GetStates() method. See chapter Status Enumeration

to get the list of possible states.

GetStateFromArray

(

nIndex As Long,

vStates As Variant

) As etag_TC_State

nIndex Index of the array element to be retrieved

vStates Variant array with the status info

Return Value Enumeration of state info (enum type long int)

Exceptions -

See also GetStates, GetStateArraySize

7.3.4.10 SetStates

This function may be called as soon a device has been opened (in synchronous and asynchronous
mode). Fill in the states to be set into an array of 4-byte integer and pass it as argument to the
SetState function.

SetStates

(

vStates As Variant

)

Parameters: vStates - array of states to be set (element type integer, element size 4)

vStates Array of states to be set (element type integer, element size 4), see chapter State

Enumeration to get the list of possible states.

Supported Variant types = VT_ARRAY | VT_I4 and VT_ARRAY | VT_VARIANT.

Return Value -

Exceptions -

See also SetSingleState

7.3.4.11 SetSingleState

Like SetStates(), but only to set a single state.

SetSingleState

(

eState As etag_TC_State

)

eState Enumeration of the state that you want to set (enum type = long int), see chapter State

Enumeration to get the list of possible states.

Return Value -

Exceptions -

See also SetStates

Page 33 of 47

TConnector User Documentation

7.3.4.12 EmulateKeys

Use this method to send keystrokes and keystroke combinations to the active application.
EmulateKeys translates an input string into virtual key strokes and puts them into the keyboard

events message queue.

For virtual key codes (e.g. function key F10) you can enable bTransEscSequ. For an overview

about the possible escape sequences, please check out #Keyboard Emulation – Escape
Sequences

EmulateKeys

(

strData As String,

bTransEscSeq As Bool,

nDelay As Long

) As Long

strData The string of keystrokes to send

bTransEscSeq Translate escape sequences on/off

nDelay Delay in milliseconds (100 = 0.1 sec)

If not zero, an inter character or “inter key stroke” delay will be added (sometimes programs

need slow typing and don’t like fast input)

Return Value Number of generated key strokes

Exceptions See below

See also

► Don’t generate key strokes in synchronous and asynchronous mode at the same time. The
function will raise an exception if called during asynchronous mode (StartListen) with

the property SendKeystroke activated.

► When using escape sequences (bTransEscSeq=True), check your input data for

backslashes. Convert a ‘\’ into ‘\\’ if it is no escape sequence.

7.3.4.13 UseCodePage

Adjusts Codepage to be used for Unicode-MultiByte string conversion.

All string-parameters for Read/Write/OnData are using Unicode characters (16 Bit per character
according to ActiveX/COM Standard). But the available input/output channels are Byte-based (8-
Bit). The value range 0x00 - 0xff in the Unicode standard corresponds to the ASCII table and is
transmitted as a Single Byte. If you use characters outside of the ASCII range it may be necessary
to perform a Unicode-MultiByte conversion, which can be enabled by selecting a specific
CodePage.

The default codepage is ANSI (0). For a complete list of codepage Identifiers use this URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/unicode_81rn.asp

► The available Codepages can be dependent on your operating system.

UseCodePage

(

nCodePage As UINT

)

nCodePage CodePage number for Unicode - Multibyte conversion.

Return Value Number of generated key strokes

Exceptions See below

See also

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/unicode_81rn.asp

Page 34 of 47

TConnector User Documentation

Codepage Examples:

Codepage number Description

437 OEM - United States

932 ANSI/OEM - Japanese, Shift-JIS

949 ANSI/OEM - Korean (Unified Hangeul Code)

950 ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)

1250 ANSI - Central European

20932 JIS X 0208-1990 & 0121-1990

28592 ISO 8859-2 Central Europe

65000 Unicode UTF-7

65001 Unicode UTF-8

Table 3: Codepage List (partial)

Beside this, the following values are supported by Windows (C/C++):

// Code Page Default Values.

#define CP_ACP 0 // default to ANSI code page

#define CP_OEMCP 1 // default to OEM code page

#define CP_MACCP 2 // default to MAC code page

#define CP_THREAD_ACP 3 // current thread's ANSI code page

#define CP_SYMBOL4 2 // SYMBOL translations

#define CP_UTF7 65000 // UTF-7 translation

#define CP_UTF8 65001 // UTF-8 translation

► The methods GetNoOfBytesRead() and Write() return the number of bytes

before/after conversion. Depending on the selected code page the return value can be
different from the count of characters in the input/result string.

7.4 Events

7.4.1.1 OnClose

This event is used in IOType TCP. It informs the client (=TConnector) that the server has just
terminated the connection. The Close() method is called automatically and the connection will be

reset.

OnClose

7.4.1.2 OnData

This event is used in the asynchronous mode. Each time when data is received an OnData event

is thrown. The data read from the device is returned with the Data argument.

OnData

(

Data As String

)

Data Data received from the connected device

See also Asynchronous Mode

Depending on the selected code page (see UseCodePage()) the number of bytes transmitted

can be different from the number of Characters in the received string. During conversion (Multi-
Byte to Unicode) several bytes can be combined to one character in the Unicode string.

Page 35 of 47

TConnector User Documentation

7.4.1.3 OnError

This event will be fired when an error occurs (only available during Asynchronous mode). The
value passed is the error number to be converted to the error text using TranslateErrorNo.

OnError

(

hr As Long

)

Data Error number

See also TranslateErrorNo

7.4.1.4 OnStatusChange

This event is used in the asynchronous mode. Each time when the state of the currently opened
interface changes an OnStatusChange event is thrown. The list of state flags is returned with the

vStates argument. If your application or your scripting language hasn’t sufficient support for the

used Variant data type, you can use the methods GetStateArraySize() and

GetStateFromArray() to access the status info.

To make it easier for the user to handle the values of a state array, an enumeration type
e_TC_State is defined that has a 1:1 relationship with the states returned. To convert the state

flags to text representation use the property StateAsTxt.

OnStatusChange

(

vStates As Variant

)

vStates Array of state flags that show which states have been changed.

See also GetStates, SetStates, SetState

Page 36 of 47

TConnector User Documentation

8 Licensing

When you download TConnector from http://www.tec-it.com you will get a demo version of this
product. During unlicensed mode this version inserts demo data at random periods of time.

To switch the demo into the full version you have to license TConnector by applying a license key.
This can be done manually in the license dialog or by program code from within your application.

The license data (including the license key to unlock the demo) can be ordered TEC-IT
Datenverarbeitung GmbH (www.tec-it.com) or any reseller of TEC-IT software.

► Licensing is not the same as Registering. “Licensing” means that you enable the full-
featured version by applying a license key. “Registering” means to register the
“tconnector2.dll” file (TConnector ActiveX) in your Windows system. All ActiveX Controls
have to be “registered” in the system before you can use them. Registering is usually done
with the setup tool (but can also be done manually using regsvr32.exe).

8.1 Manual Licensing

Fig. 9: Open the license dialog

To license manually you have to execute following steps:

1. Insert TConnector ActiveX into your application (when not already done)

2. Right click the inserted object and select TConnector2-Object/License… from the popup
menu.

3. The license dialog (Fig. 10) should now open

4. Enter the license data, that you get from TEC-IT Datenverarbeitung GmbH, into the
according fields

Fig. 10: License dialog

http://www.tec-it.com/
http://www.tec-it.com/

Page 37 of 47

TConnector User Documentation

8.2 Automatic Licensing

If you want to distribute TConnector with your self-written applications you should license the
control programmatically.

Include a statement like the following into your program code (the sample is written in Visual Basic,
the license key is abbreviated).

TC2.LicenseMe (“LicenseeName”, eLicKindDeveloper, 1, “1E4D21…”, eLicProdStd)

► Do not use the license data exactly as shown in this sample but use the license data that
TEC-IT Datenverarbeitung GmbH sends/will send you after you have ordered a license for
TConnector ActiveX.

If your programming language doesn’t support enumerations, use these values:

Enumeration Name Value

ELicKindSingle 1

eLicKindSite 2

eLicKindDeveloper 3

eLicProdStd 7

Table 4: License Enumeration Equivalents

Page 38 of 47

TConnector User Documentation

9 Redistribution

This chapter explains what is important when redistributing a custom application that uses the
TConnector ActiveX control.

 In most cases you need a developer license for re-distribution of TConnector (except for in-
house applications which are bound to one or more sites).

9.1 Dependencies

An application that uses TConnector requires the following files:

File Description

TConnector2.dll This is the ActiveX DLL. This file is mandatory

TConnectorps.dll This file is a proxy file required for the OnData event.

These files are located in the folder C:\Program Files\TEC-IT\TConnector2.

TConnector requires also the Visual Studio Runtime Components (Microsoft VC90 CRT and
ATL DLLs). See next section how to distribute them with your application.

9.2 Redistribution

When redistributing a custom application the files described above need to be redistributed
together with the application. The DLLs should be located in the same folder as the executable.
Other files than those listed above must not be redistributed.

You may have to redistribute the Visual C++ 2008 SP1 runtime components (MS CRT 9.0 and
ATL 9.0 DLLs) with your application and ensure they are installed on the target computer.

There are two options to install them:

 You can install these components with the Microsoft Visual C++ 2008 SP1 Redistributable
Package (x86) available at
http://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-
3802B2AF5FC2&displaylang=en.
The package installs all required runtime DLLs.

 If you use a setup tool and your installer supports merge modules (*.msm files) you can add
the required msm packages to your setup:

 Microsoft_VC90_CRT_x86.msm

 policy_9_0_Microsoft_VC90_CRT_x86.msm

 Microsoft_VC90_ATL_x86.msm

 policy_9_0_Microsoft_VC90_ATL_x86.msm

► The most simply way to deploy TConnector along with your application is to use the original
MSI setup you can download from TEC-IT. The MSI package includes all dependencies
(also Visual Studio Runtimes). MSI packages also allow a “silent setup” mode (no dialogs).

► Please contact TEC-IT Support if you need help.

Page 39 of 47

TConnector User Documentation

10 Sample Applications

10.1 Sample code

Additional sample code for Microsoft Access
®
, Borland

®
/Inprise

®
 Delphi®, Internet Explorer®

(Javascript
®
/VBScript

®
), ASP

®
 (VBScript) can be downloaded from TEC-IT’s web site:

http://www.tec-it.com/download/ ► Data Acquisition.

Samples for Microsoft Excel® and Visual Basic® are included in the setup of TConnector.

http://www.tec-it.com/download/

Page 40 of 47

TConnector User Documentation

11 Troubleshooting / FAQ

11.1 How can I eliminate the CR/LF after each data input?

You are attempting to route scanned data into an existing application, so you need just the raw
data, no “Carriage Return” or “Line Feed”.

Follow the steps below to clip CR/LF at the end of your data (these steps apply if you are working
in asynchronous mode).

 Open the property page Configuration ► Interface and change to the tab
Transmission

 For the delimiter enter: \x0d\x0a (these are the hex codes for CR+LF). Enter only \x0d if
you need only CR stripped off.

 Leave the “Include Delimter” option unchecked.

Now if a CR/LF is found in the input data the data will be processed immediately but the CR/LF will
be filtered out (because “Include Delimiter” is unchecked).

11.2 How TConnector supports debugging?

For easier problem solving you can instruct TConnector to write a log file. Call the method
SetDebugLevel in your program code (at the very first beginning at startup) and then TConnector

writes internal trace information into the file “TConnector.log”.

Follow this link to read more about SetDebugLevel.

11.3 What can I do if the COM port is not accessible?

Make sure that the COM port is really free and not occupied by another process (= another
application or driver, e.g. mouse driver).

It can be that you need to disable the "Direct Connection Between 2 Computers" device AND
uninstall it.

If you can’t get it working, we suggest writing a log (trace) file:

Place this command as the first command, which is performed by TConnector in your program.

[TConn2ObjectID].SetDebugLevel (5)

Next open the port. A TConnector2.log file will be created in the actual user temp directory (use

file search if you don’t find it)

Follow this link to read more about SetDebugLevel.

The log file can tell you more, why a connection can’t be established. Also our support can help
you.

Page 41 of 47

TConnector User Documentation

11.4 How can I specify a COM port > COM9?

First you have to edit the properties through the ActiveX property dialog available from your
application (not the through the Property Pages of TConnector itself). Then you can enter the name
of the port without restriction.

You need to specify COM ports > COM9 as follows:

Com port String passed to Property Port

COM1 COM1

COM10 \\.\COM10

COM255 \\.\COM255

► On systems running Windows 95, Windows 98 or Windows ME this feature is not possible.
These systems are limited to 9 com-ports.

11.5 Zero Bytes are truncated in my input data!

Some COM wrappers truncate strings if they contain a binary zero. So the data string won’t pass
the COM interface of TConnector without being truncated.

TConnector offers a workaround for this problem by using Escape Sequences. You can convert
Bytes with binary values of 0x00 to an Escape Sequence like “\0”. This workaround is available for
the OnData event and starting with V2.4.3 also for Read() and Write() method.

Enable the escaping feature with EscapeZeroBytes (true) – for more details see 7.3.4.2.

file://./COM10
file://./COM255

Page 42 of 47

TConnector User Documentation

12 Contact and Support Information

TEC-IT Datenverarbeitung GmbH

Address: Wagnerstr. 6

AT-4400 Steyr

Austria/Europe

Phone: +43 / (0)7252 / 72 72 0

Fax: +43 / (0)7252 / 72 72 0 – 77

Email: mailto:support@tec-it.com

Web: http://www.tec-it.com

AIX is a registered trademark of IBM Corporation.
HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C, World Wide Web Consortium, Laboratory for Computer
Science NE43-358, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139.
JAVA® is a registered trademark of Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 USA.
JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by Netscape.

Microsoft®, Windows®, Microsoft Word®, Microsoft Excel® are registered trademarks of Microsoft Corporation.
Navision is a registered trademark of Microsoft Business Solutions ApS in the United States and/or other countries.
Oracle® is a registered trademark of Oracle Corporation.
PCL® is a registered trademark of the Hewlett-Packard Company.
PostScript is a registered trademark of Adobe Systems Inc.
SAP, SAP Logo, R/2, R/3, ABAP, SAPscript are trademarks or registered trademarks of SAP AG in Germany (and in several other countries).

All other products mentioned are trademarks or registered trademarks of their respective companies. If any trademark on our web site or in this
document is not marked as trademark (or registered trademark), we ask you to send us a short message (mailto:office@tec-it.com).

mailto:support@tec-it.com
http://www.tec-it.com/
mailto:office@tec-it.com

Page 43 of 47

TConnector User Documentation

Appendix A: State Enumerations

This chapter offers a list of possible state values. Use this enumerations for GetStates(),

SetStates(), OnStatusChange() and related state functions.

A.1 Serial States

A.1.1 OnStatusChange

Name Number Description

e_State_COM_EV_BREAK 1000 A break was detected on input.

e_State_COM_EV_CTS 1001 The CTS (clear-to-send) signal changed state

e_State_COM_EV_DSR 1002 The DSR (data-set-ready) signal changed state

e_State_COM_EV_ERR 1003 A line-status error occurred

e_State_COM_EV_PERR 1004 A printer error occurred

e_State_COM_EV_RING 1005 A ring indicator was detected

e_State_COM_EV_RLSD 1006 The RLSD (receive-line-signal-detect) signal changed state

e_State_COM_EV_RXCHAR 1007 A character was received and placed in the input buffer

e_State_COM_EV_RX80FULL 1008 The receive buffer is 80% full

e_State_COM_EV_TXEMPTY 1009 The last character in the output buffer was sent

Table 5: Serial State Enumerators (OnStatusChange)

A.1.2 GetState

Name Number Description

e_State_COM_GET_CTS 1100 The CTS (clear-to-send) signal is on

e_State_COM_GET_DSR 1101 The DSR (data-set-ready) signal is on

e_State_COM_GET_RING 1102 The ring indicator signal is on

e_State_COM_GET_RSLD 1103 The RLSD (receive-line-signal-detect) signal is on

Table 6: Serial State Enumerators (GetState)

A.1.3 SetState

Name Number Description

e_State_COM_SET_DTRCLR 1200 Clears the DTR (data-terminal-ready) signal

e_State_COM_SET_RTSCLR 1201 Clears the RTS (request-to-send) signal

e_State_COM_SET_DTRSET 1202 Sends the DTR (data-terminal-ready) signal

e_State_COM_SET_RTSSET 1203 Sends the RTS (request-to-send) signal

e_State_COM_SET_XOFF 1204 Causes transmission to act as if an XOFF character has been

received

e_State_COM_SET_XON 1205 Causes transmission to act as if an XON character has been

received

e_State_COM_SET_BREAKCLR 1206 Restores character transmission and places the transmission

line in a nonbreak state

e_State_COM_SET_BREAKSET 1207 Suspends character transmission and places the transmission

line in a break state

Table 7: Serial State Enumerators (SetState)

Page 44 of 47

TConnector User Documentation

A.2 TCP States

A.2.1 OnStatusChange

Name Number Description

e_State_TCP_EV_READ 2000 Data received

e_State_TCP_EV_WRITE 2001 Data sent

e_State_TCP_EV_OOB 2002 Out of band data received

e_State_TCP_EV_ACCEPT 2003 Notification of incoming connections

e_State_TCP_EV_CONNECT 2004 Notification of completed connection

e_State_TCP_EV_CLOSE 2005 Connection was closed

e_State_TCP_EV_QOS 2006 Quality of service changed

e_State_TCP_EV_GROUP_QOS 2007 Not implemented yet.

e_State_TCP_EV_ROUTING_INTERFACE

_CHANGE

3008 Routing interface changed

e_State_TCP_EV_ADDRESS_LIST_CHAN

GE

2009 Address list changed

Table 8: TCP State Enumerators

A.3 Parallel States

A.3.1 GetState

Name Number Description

e_State_PAR_GET_INIT 3000 Device is initializing

e_State_PAR_GET_AUTOFEED 3001 Auto feed line set

e_State_PAR_GET_PAPER_EMPTY 3002 Out of paper

e_State_PAR_GET_OFF_LINE 3003 Device is offline

e_State_PAR_GET_POWER_OFF 3004 Device is shut off

e_State_PAR_GET_NOT_CONNECTED 3005 No device connected

e_State_PAR_GET_BUSY 3006 Device is busy

e_State_PAR_GET_SELECTED 3007 Selected line set

Table 9: Parallel State Enumerators

Page 45 of 47

TConnector User Documentation

Appendix B: Escape Sequences

Following escape sequences can be used together with keyboard emulation:

Sequence Meaning

\n Line feed (LF)

\r Carriage return (CR)

\t Tab

\xnn ASCII value in hex (2 digits)

\0nnn ASCII value in octal (3digits)

Table 10: Escape Sequences

Key codes can be used with keyboard emulation (SendKeyStrokes / EmulateKeys)

► Note: if used in the prefix/suffix with the OnData event, they are simulated as key events

but filtered out in the data string passed to the event.

Sequence Meaning

\1 Cursor up

\2 Cursor down

\3 Cursor left

\4 Cursor right

\5 Page up

\6 Page down

\Vxnn nn … Virtual Key Code (in Hex format)

Example: \Vx79 = F10 function key

Please use this link to get an overview of possible virtual key codes:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/winui/winui/windowsuserinterface/userinput/virtualkeycodes.asp

Table 11: Keycode Table

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/userinput/virtualkeycodes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/userinput/virtualkeycodes.asp

Page 46 of 47

TConnector User Documentation

Appendix C: Wiring and Pin Out

C.1 RS232 Connector Signal Description

25 Pin

DCE

9 Pin

DTE

Signal Direction Description Note

1 FG Frame Ground

2 3 TD PC --> Device Transmitted Data (TXD) required

3 2 RD Device -> PC Received Data (RXD) required

4 7 RTS PC --> Device Request to Send for hardware handshaking

5 8 CTS Device -> PC Clear to Send for hardware handshaking

6 6 DSR Device -> PC Data Set Ready for hardware handshaking

7 5 SG Signal Ground required

8 1 DCD Device -> PC Data Carrier Detect used for modem control

9 Device -> PC Positive DC Test Voltage not EIA standard

10 Device -> PC Negative DC Test Voltage not EIA standard

11

12 SDCD Device -> PC Sec. Data Carrier Detect

13 SCTS Device -> PC Sec. Clear to Send

14 STD Device -> PC Sec. Transmitted Data

15 TC Device -> PC Negative DC Test Voltage optional (not EIA)

16 SRD Device -> PC Sec. Received Data

17 RC (DD) Device -> PC Receiver Clock synchronous communication

18

19 SRTS PC --> Device Sec. Request to Send

20 4 DTR PC --> Device Data Terminal Ready for hardware handshaking

21 SQ Device -> PC Signal Quality Detector

22 9 RI Device -> PC Ring Indicator used for modem control

23 CI PC --> Device Data Ready Selector (Data Signal

Rate Selector)

optional (not EIA)

24 TC (TA) PC --> Device Transmitter Clock Timing synchronous communication

25

Table 12: RS232 Pin Description

C.2 Parallel Port DB-25 Pin Out

Line In/Out Signal

1 Out Strobe

2 Out Data 0

3 Out Data 1

4 Out Data 2

5 Out Data 3

6 Out Data 4

7 Out Data 5

8 Out Data 6

9 Out Data 7

10 In !ACK

Page 47 of 47

TConnector User Documentation

11 In BUSY

12 In Paper End

13 SLCT Select

14 Out Autofeed (active on low signal! low = signal on)

15 In Error (active on low signal! low = signal on)

16 Out Reset (active on low signal! low = signal on)

17 SLCTIN (Select In)

18-25 Signal GND

Table 13: Parallel (Centronics) Pin Description

C.3 Related Links

C.3.1 RS232

C.3.1.1 Wiring and Pin Out Reference

http://www.arcelect.com/rs232.htm
http://www.airborn.com.au/rs232.html
http://www.commlinx.com.au/RS232_pinouts.htm

C.3.2 Parallel Port

C.3.2.1 Wiring and Pin Out Reference

http://www.ctips.com/spp.html
http://www.lvr.com/files/pppinout.pdf (Acrobat PDF document)

C.3.2.2 General Overview

http://www.lvr.com/parport.htm

http://www.arcelect.com/rs232.htm
http://www.airborn.com.au/rs232.html
http://www.commlinx.com.au/RS232_pinouts.htm
http://www.ctips.com/spp.html
http://www.lvr.com/files/pppinout.pdf
http://www.lvr.com/parport.htm

