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Important 
Since the writing of this manual, many additions and enhancements have been made to PEST 

and its utilities. Most of these pertain to the use of PEST in contexts of highly parameterized 

inversion and in implementing parameter and predictive uncertainty analysis. They include 

the following. 

 improved methodologies for SVD-assisted parameter estimation; 

 use of the LSQR method in place of SVD for highly parameterized inversion; 

 computation of parameter identifiability and other useful statistics; 

 linear and nonlinear uncertainty and error variance analysis; 

 assessment of parameter contributions to the uncertainty of a prediction of interest; 

 optimization of data acquisition; 

 null-space Monte-Carlo analysis of calibration-constrained predictive uncertainty; 

 matrix manipulation utilities; 

 improved handling of the Marquardt lambda; 

 mitigation of the deleterious effects of poor model numerical performance; 

 running in Pareto mode for improved regularized inversion and predictive 

uncertainty analysis. 

Please see the addendum to this manual for details.  
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Preface to First Edition 
This document describes the use of PEST, a model-independent parameter optimiser.  

Nonlinear parameter estimation is not new. Many books and papers have been devoted to the 

subject; subroutines are available in many of the well-known mathematical subroutine 

libraries; many modelling packages from all fields of science include parameter estimation as 

a processing option; most statistical and data-analysis packages allow curve-fitting to a user-

supplied data set. However in order to take advantage of the nonlinear parameter estimation 

facilities offered by this software, you must either undertake a modelling task specific to a 

particular package, you must alter the source code of your model so that it meets the interface 

requirements of a certain optimisation subroutine, or you must re-cast your modelling 

problem into a language specific to the package you are using. 

While PEST has some similarities to existing nonlinear parameter estimation software (it uses 

a powerful, yet robust, estimation technique that has been extensively tested on a wide range 

of problem types), it has been designed according to a very different philosophy. What is new 

about PEST is that it allows you to undertake parameter estimation and/or data interpretation 

using a particular model, without the necessity of having to make any changes to that model 

at all. Thus PEST adapts to an existing model, you don't need to adapt your model to PEST. 

By wrapping PEST around your model, you can turn it into a non-linear parameter estimator 

or sophisticated data interpretation package for the system which your model simulates. The 

model can be simple or complex, home-made or bought, and written in any programming 

language. 

As far as I know, PEST is unique. Because of its versatility and its ability to meet the 

modeller “where he or she is at”, rather than requiring the modeller to reformulate his/her 

problem to suit the optimisation process, I believe that PEST will place the nonlinear 

parameter estimation method into the hands of a wider range of people than has hitherto been 

possible, and will allow its application to a wider range of problem types than ever before. I 

sincerely hope that this will result in a significant enhancement in the use of computer 

modelling in understanding processes and interpreting data in many fields of study. 

However you should be aware that nonlinear parameter estimation can be as much of an art as 

it is a science. PEST, or any other parameter estimator, can only be used to complement your 

own efforts in understanding a system and inferring its parameters. It cannot act as a 

substitute for discernment; it cannot extract more information from a dataset than the inherent 

information content of that dataset. Furthermore, PEST will work differently with different 

models. There are many adjustments which you can make to PEST to tune it to a specific 

model, and you need to know what these adjustments are; often it is only by trial and error 

that you can determine what are its best settings for a particular case. The fact that PEST’s 

operation can be tuned in this manner is one of its strengths; however this strength can be 

properly harnessed only if you are aware of what options are available to you. 

So I urge you to take the time to understand the contents of this manual before using PEST to 

interpret real-world data. In this way you will maximise your chances of using PEST 

successfully. Experience has shown that for some difficult or “messy” models, the setting of a 

single control variable can make the difference between PEST working for that model or not. 
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Once the correct settings have been determined, PEST can then be used with that model 

forevermore, maybe saving you days, perhaps weeks, of model calibration time for each new 

problem to which that model is applied. Hence a small time investment in understanding the 

contents of this manual could yield excellent returns. 

So “good luck” in your use of PEST; I hope that it provides a quantum leap in your ability to 

calibrate models and interpret field and laboratory data.  

 

John Doherty 

February, 1994 

 

Preface to Second Edition 
Since the first version of PEST was released in early 1994 it has been used all over the world 

by scientists and engineers working in many different fields, including biology, geophysics, 

geotechnical, mechanical, aeronautical and chemical engineering, ground and surface water 

hydrology and other fields. Through the use of PEST in model calibration and data 

interpretation, many PEST users have been able to use their models to much greater 

advantage than was possible when such tasks were attempted manually by trial and error 

methods. 

This second edition of the PEST manual coincides with the release of version 3.5 of PEST. 

Some of the enhancements that were included in this new PEST have arisen out of my own 

experience in the application of PEST to the calibration of large and complex models. Others 

have been included at the suggestion of various PEST users, some of whom are applying 

PEST in unique and interesting situations. For those already familiar with PEST a brief 

summary of new features follows. 

A version of PEST called “Parallel PEST” has been created. This allows PEST to run a model 

on different machines across a PC network, thereby reducing overall optimisation time 

enormously. 

By popular demand, parameter, observation, parameter group and prior information names 

can now be up to 8 characters in length. The previous limit of 4 characters per name was set 

as a memory conservation strategy, a matter of diminishing concern as computing hardware 

continues to improve. 

Observations can now be collected into groups and the contribution made to the objective 

function by each group reported through the optimisation process. This information is 

extremely helpful in the assignment of weights to different measurement types. 

PEST no longer ceases execution with an error message if a parameter has no effect on 

observations; rather it simply holds the offending parameter at its initial value. 

PEST can be asked to run a model only once and then terminate execution. In this way PEST 

can be used simply for objective function calculation. Alternatively, it can be asked to run the 

model only as many times as is necessary in order to calculate the parameter covariance 
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matrix and related statistics based on initial parameter estimates. 

Two new programs have been added to the PEST suite. These are SENSAN, a model-

independent sensitivity analyser, and PARREP, a utility that facilitates the commencement of 

a new PEST run using parameter values generated on a previous PEST run. 

However by far the most important changes to PEST are the improved capabilities that it 

offers for user intervention in the parameter estimation process. Every time that it calculates 

the Jacobian matrix, PEST now stores it on file for possible later use. It records on another 

file the overall sensitivity of each parameter, this being related to the magnitude of the vector 

comprising the column of the Jacobian matrix pertaining to that parameter. Thus, at any stage 

of the optimisation process, sensitive and insensitive parameters can be distinguished. It is the 

insensitive parameters that can cause most problems in the calibration of complex models 

(especially where parameters are many and correlation is high). 

At any stage of the optimisation process a user can request that certain, troublesome, 

parameters be held at their current values. Such parameters can be demarcated either 

individually, or according to whether their sensitivity drops below a certain threshold in the 

course of the parameter estimation process. Alternatively, a user can request that the x least 

sensitive parameters within a certain group be held while the parameter upgrade vector is 

calculated, where x is supplied by the user according to his/her knowledge and intuition with 

regard to the current parameter estimation problem. As well as this, certain variables 

controlling how the parameter upgrade vector is calculated can now be altered during a PEST 

run. 

Calculation of the parameter upgrade vector can now be repeated. Thus if a user thinks that 

PEST could have done a better job of lowering the objective function during a certain 

optimisation iteration, he/she can halt PEST execution, instruct PEST to hold certain 

parameters at current values, and ask PEST to calculate the parameter upgrade vector again. 

This can be done without the need to re-calculated the Jacobian matrix (the most time-

consuming part of PEST’s operations) because the latter is stored every time it is calculated in 

anticipation of just such a request. 

As an aid to identification of recalcitrant parameters, PEST now records the parameters that 

underwent maximum factor and relative changes during any parameter upgrade event, these 

often being the parameters that create problems. 

It is important to note that even though PEST has changed somewhat and includes a number 

of new and powerful features, file protocols used with previous versions of PEST are 

identical to those used by the latest version of PEST, with one exception; this is the addition 

of observation group data to the PEST control file. However the new version of PEST is able 

to recognise a PEST control file written for an older PEST version, and will read it without 

complaint, assigning a dummy group name to all observations. 

PEST has stood the test of time. When it was initially released it offered entirely new 

possibilities for model calibration and data interpretation. Slowly but surely the PEST user 

base is expanding as more and more scientists and engineers are realising the benefits that can 

be gained through the use of these possibilities. The latest version of PEST, which includes 

Parallel PEST and the options for user intervention briefly outlined above, allows the use of 
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PEST to be extended to the calibration of large and complex models to which the application 

of nonlinear parameter estimation techniques would have hitherto been considered 

impossible. It is hoped that new and existing PEST users can apply PEST to new and exciting 

problems as a result of these enhancements, and that they will be able to harness the potential 

for more sophisticated and efficient use of models than ever before. 

John Doherty 

October, 1998 

Preface to the Third Edition 
Production of the third edition of the PEST manual coincides with the release of Version 4.01 

of PEST, also known as PEST2000. The principal addition to PEST functionality 

encapsulated in PEST2000 is the provision of predictive analysis capabilities to complement 

PEST’s existing parameter estimation capabilities. 

With the increasing use of nonlinear parameter estimation techniques in model calibration, 

there is a growing realisation among modellers of the extent of nonuniqueness associated 

with parameter values derived through the model calibration process. This realisation is 

accompanied by a growing desire to examine the effect of parameter nonuniqueness on the 

uncertainty of predictions made by calibrated models. The importance of quantifying 

predictive uncertainty cannot be understated. It can be argued that model parameters are often 

something of an abstraction, sometimes bearing only a passing resemblance to quantities that 

can be measured or even observed in real-world systems. However the same is not true of 

model predictions, for these are the reason why the model was built in the first place. If model 

predictions are being relied upon to serve as a basis for sound environmental management (as 

they often are), then an ability to quantify the uncertainty associated with such predictions is 

as important as the ability to make such predictions in the first place. 

The concept of a “prediction” can be broadened to describe PEST’s use in those fields where 

parameter estimation is an end in itself. This is especially the case in the geophysical context 

where PEST is used to infer earth properties from measurements made at the surface and/or 

down a number of boreholes. In this case it would appear that model parameters (as 

determined through the nonlinear parameter estimation process) are of overriding importance, 

and indeed that the concept of a “model prediction” is inapplicable. However this is not the 

case; in fact PEST’s predictive analysis capabilities have proved an extremely useful addition 

to the exploration geophysicist’s arsenal. Use of PEST in predictive analysis mode allows the 

geophysical data interpreter to ask (and have answered) such questions as “is it possible that a 

hole drilled at a certain location will not intersect any conductive material?”, or “what is the 

maximum possible depth extent of the conductor giving rise to anomalous surficial 

measurements?” 

The term “predictive analysis” as used in this manual describes the task of calculating the 

effect of parameter uncertainty, as estimated through the calibration process, on predictive 

uncertainty. A number of methods have been documented for undertaking such an analysis, 

for example Monte-Carlo methods and linear uncertainty propagation. However unlike many 

other methods, the PEST predictive analysis algorithm relies on no assumptions concerning 

the linearity of a model; furthermore, notwithstanding the fact that calculation of model 

predictive uncertainty is a numerically laborious procedure, PEST’s predictive analysis 
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algorithm is less numerically intensive than any other method of nonlinear predictive analysis. 

It is hoped that the use of PEST’s predictive analyser will allow modellers from all fields of 

science and engineering to make yet another quantum leap in the productive use of computer 

simulation models in whatever field of study they are currently engaged. 

          John Doherty 

          October, 1999 

 

Preface to the Fourth Edition 
Production of the fourth edition of the PEST manual marks two important milestones in the 

development of PEST. The first of these is the addition of advanced and powerful 

regularisation functionality underpinning the release of version 5.0 of PEST, otherwise 

known as PEST-ASP (“ASP” stands for “Advanced Spatial Parameterisation”). The second is 

PEST’s change in status from that of a commercial product to that of a public domain 

package.  

Over the last few years, the continued development of PEST has focussed on its ability to 

work successfully with complex, highly-parameterised models. First there was PEST’s user-

intervention functionality, this allowing the user to hold troublesome parameters (normally 

insensitive and/or highly correlated parameters) at their current values so that the parameter 

estimation process could proceed without the damaging effects that these parameters have on 

that process. The second was the incorporation of PEST’s nonlinear predictive analysis 

functionality, this denoting a recognition of the fact that increased parameterisation normally 

results in increased parameter nonuniqueness at the same time as any semblance of model 

linearity rapidly fades from view. Now, with PEST-ASP, comes the advent of advanced 

regularisation functionality. At the time of writing this preface PEST’s new regularisation 

functionality has already proven itself enormously useful in the parameterisation of 

heterogeneous two- and three-dimensional spatial model domains, especially when 

accompanied by the use of flexible methods of spatial parameter definition such as “pilot 

points” (see the PEST Ground Water Data Utility Suite). Use of PEST in “regularisation 

mode” allows the modeller to estimate many more parameters than would otherwise be 

possible. Thus, when working with spatial models, PEST is able to “find for itself” regions of 

anomalous physical or hydraulic properties rather than requiring that such areas be delineated 

in advance by the modeller using zones of piecewise parameter constancy. Furthermore, the 

process is numerically very stable, avoiding the deleterious effects on this process of 

parameter insensitivity or excessive correlation that often accompanies an attempt to estimate 

too many parameters. 

The decision to place PEST in the public domain was not taken lightly. However two factors 

made the decision almost impossible to avoid. One of these was the advent of competing, 

public domain software which, while not having anything like the functionality of PEST, is 

nevertheless highly visible and has US government auspice. The other consideration was of a 

more philanthropic nature. My instincts tell me that the biggest issue in environmental 

modelling over the next decade will be that of predictive uncertainty analysis. PEST has a 

substantial contribution to make in this regard. It is my hope that by making PEST freely 
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available to all modellers at zero cost, it will make an even more important contribution to 

environmental management based on computer simulation of real-world systems than it 

already has to date. 

Other new features found in PEST-ASP that were not available in previous versions of PEST 

include the following. 

 All names pertaining to parameters, parameter groups, observations, observation 

groups and prior information items can now be up to twelve characters in length. 

 Prior information items must now be assigned to observation groups. 

 Uncertainties in observations and prior information equations used in the inversion 

process can now be expressed in terms of covariance matrices, rather than simply in 

terms of weights. 

 If derivatives of model outputs with respect to adjustable parameters can be calculated 

by the model, rather than by PEST through the use of finite differences, then PEST 

can use these derivatives if they are supplied to it through a file written by the model. 

 Different commands can be used to run the model for different purposes for which the 

model is used by PEST (viz. testing parameter upgrades, calculating derivatives with 

respect to different parameters, etc). 

 PEST can now send “messages” to a model, allowing the model to adjust certain 

aspects of its behaviour depending on the purpose for which it is run by PEST. 

 PEST stores the Jacobian matrix corresponding to the best set of parameters achieved 

up to any stage of the parameter estimation process in a special binary file which is 

updated as the parameter estimation process proceeds. A new utility program named 

JACWRIT re-writes the Jacobian matrix in text format for user-inspection. 

 PEST prints out a more comprehensive suite of information on composite parameter 

sensitivities than was available in previous versions. 

 A new utility named PAR2PAR has been added to the PEST suite. This is a 

“parameter preprocessor” which allows the user to manipulate parameters according 

to mathematical equations of arbitrary complexity before these parameters are 

supplied to the model. 

 

          John Doherty 

          January, 2002 

Preface to the Fifth Edition 
Since publication of the fourth edition of the PEST manual, major improvements have been 

made to PEST. All of these have been made with the intention of improving PEST’s 

performance in the calibration of large complex models, where many parameters require 
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estimation through a regularised inversion process.  

The most profound advance is the “SVD-assist” scheme. This method combines two 

important regularisation methodologies, viz. “truncated singular value decomposition” and 

“Tikhonov regularisation”. The result is a methodology that has the numerical stability of the 

former scheme and the “parameter friendliness” of the latter scheme. What is more, however, 

is that regularised inversion can now be carried out with stunning gains in model run 

efficiency. This is because the number of model runs required per optimisation iteration no 

longer needs to equal or exceed the number of parameters being estimated; in fact, in some 

cases, it can be as few as one tenth the number of estimable parameters. The repercussions of 

this are profound, for it makes regularised inversion easy with models for which it would 

previously have been considered impossible. 

Other PEST improvements include the following:- 

 Regularisation constraints can now be subdivided into separate groups in order to 

facilitate the application of these constraints in ratios that are best tuned to the current 

parameter estimation problem. 

 An “adaptive regularisation” scheme has been introduced, through which PEST is 

able to enforce regularisation constraints more strongly where they are needed most in 

order to achieve numerical stability in highly parameterised, complex calibration 

contexts. This methodology can be used in conjunction with, or separately from, 

SVD-assisted regularised inversion. 

 Truncated singular value decomposition is offered as a parameter estimation option. 

 As an alternative to truncated singular value decomposition, “automatic user 

intervention” can be employed to reduce the dimensionality of a parameter estimation 

problem in order to prevent the onset of numerical instability where data is 

insufficient for the simultaneous estimation of all parameters. 

 PEST’s parallelisation functionality has undergone considerable improvement. Slaves 

can now enter the parallelisation process late. Furthermore a special restart function 

has been provided for Parallel PEST, allowing it to restart at the very run where its 

execution was previously interrupted. 

 PEST writes a number of new output files as it undertakes the parameter estimation 

process. The condition number of the parameter estimation problem is now available 

at any time, as are residuals pertaining to the latest upgraded parameter set. If singular 

value decomposition is employed, information on singular values and (optionally) 

parameter eigenvalues is also available at any time. 

 The Jacobian and other matrices can now be stored in compressed form. This allows 

greater memory and runtime efficiency when estimating parameters en masse in 

highly regularised settings. 

 A number of new utility programs have been added to the PEST suite to enhance 

manipulation of its input dataset and to aid in postprocessing of PEST output. 
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As time goes on, the simulation of environmental processes as an aid to the management of 

natural resources is becoming more and more commonplace. If a model is to be used to 

predict future environmental behaviour, that model must be capable of replicating historical 

behaviour of that system. Hence it must be calibrated. Where a system is complex (as all 

systems are), then tens, hundreds or even thousands of parameters may require estimation. In 

many cases these parameters cannot be uniquely estimated. Attempts are thus often made to 

simplify the representation of environmental processes by a model, reducing the number of 

parameters that require estimation. 

Regularised inversion recognises the fact that the number of parameters that can be estimated 

during the model calibration process is limited by the information content of the dataset 

available for calibration. However it does not rely on inappropriate or “artificial” methods of 

model simplification as the price to be paid for numerical stability of the inversion process. 

Instead, the philosophy that underpins regularised inversion is “let the inversion process itself 

determine the dimensionality of the parameter estimation problem, in accordance with the 

information content of the data”. Hence simplification is undertaken in a manner that allows 

the estimation of as many different combinations of parameters as the data will allow, while 

imposing smoothness, equality, or other constraints on those combinations of parameters 

which cannot be estimated. Because a user rarely knows in advance the optimal simplification 

strategy for a given calibration context, the use of many parameters gives the calibration 

process the freedom that it needs to simplify model parameterisation in a manner that is 

perfectly tuned to that context. Hence the use of many parameters provides the means of 

extracting maximum information content from a given dataset (which is often very expensive 

to acquire), and of allowing as much of this information as possible to be reflected in the 

parameterisation of a model used to simulate salient environmental processes. However, in 

doing this, the unwanted effects of “overfitting” are prevented through the imposition of a 

suitable “fitting limit”, this being set at a level that is appropriate to the measurement and 

“structural noise” content of the calibration dataset. 

PEST is by far the most advanced parameter estimation package available to environmental 

modellers. Yet its development is still continuing apace. In recognition of the fact that 

regularised inversion allows the user to include in his/her model that level of system 

complexity that must exist to explain the data, but that this level of complexity may fall well 

short of that which actually does exist, continued PEST development is now being targeted at 

“filling in the parameter gaps”. This can only be done in a probabilistic sense. However the 

cost of ignoring such complexity may be the introduction of substantial bias in critical model 

predictions. Hence further PEST development is now being aimed at the assessment of 

uncertainty in model predictions as it depends not just on measurement and structural noise 

(as is presently handled using PEST’s predictive analyser) but also on the probabilistic 

behaviour of system complexity that may exist, but simply cannot be captured by the 

calibration process. 

I personally have found the development of PEST to be a truly exiting endeavour, allowing 

modellers to make better use of their sophisticated and ingenious models as a mechanism for 

interpreting complex environmental data, with the aim of managing the environment better. I 

hope that as more model users also become PEST users, they share my excitement in the 

opportunities available to them for wringing every ounce of information out of hard-won data, 

thereby allowing them to make important environmental decisions in a more enlightened 
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manner than would otherwise be possible. 

          John Doherty 

          July, 2004 

 

Bugs 
In the unlikely event that you discover a bug in PEST, please report it to me, John Doherty, at 

the following email address:- 

johndoherty@ozemail.com.au 
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1. Introduction 
Don’t forget to see the addendum to this manual for further details of PEST functionality, 

particularly as it pertains to highly parameterized inversion and uncertainty analysis. 

1.1 Installation 

Installation instructions are provided on the PEST web site and/or on the printed sheet 

accompanying this manual; follow these instructions to transfer PEST executable and support 

files to your machine’s hard disk.  

Your autoexec.bat should be modified before you run PEST; the PEST directory should be 

added to the PATH statement.  

1.2 The PEST Concept 

1.2.1 A Model’s Data Requirements 

There is a mathematical model for just about everything. Computer programs have been 

written to describe the flow of water in channels, the flow of electricity in conductors of 

strange shape, the growth of plants, the population dynamics of ants, the distribution of stress 

in the hulls of ships and on and on. Modelling programs generally require data of four main 

types. These are: 

 Fixed data. These data define the system; for example in a ground water model the 

shape of the aquifer is fixed, as are the whereabouts of any extraction and injection 

wells. 

 Parameters. These are the properties of the system; parameters for a ground water 

model include the hydraulic conductivity and storage capacity of the rocks through 

which the water flows, while for a stress model parameters include the elastic 

constants of the component materials. A model may have many parameters, each 

pertaining to one particular attribute of the system which affects its response to an 

input or excitation. In spatial models a particular system property may vary from place 

to place; hence the parameter data needed by the model may include either individual 

instances of that property for certain model subregions, or some numbers which 

describe the manner in which the property is spatially distributed. 

 Excitations. These are the quantities which “drive” the system, for example climatic 

data in a plant growth model, and the source and location of electric current in 

electromagnetic boundary-value problems. Like parameters, excitations may have 

spatial dependence. 

 Control data. These data provide settings for the numerical solution method by 

which the system equations are solved. Examples are the specifications of a finite 

element mesh, the convergence criteria for a preconditioned conjugate gradient matrix 
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equation solver, and so on. 

The distinction between these different data types may not always be clear in a particular 

case. 

The purpose of a mathematical model is to produce numbers. These numbers are the model’s 

predictions of what a natural or man-made system will do under a certain excitation regime. It 

is for the sake of these numbers that the model was built, be it a ten line program involving a 

few additions and subtractions, or a complex numerical procedure for the solution of coupled 

sets of nonlinear partial differential equations. 

Where a model simulates reality it often happens that the model-user does not know what 

reality is; in fact models are often used to infer reality by comparing the numbers that they 

produce with numbers obtained from some kind of measurement. Thus if a model’s parameter 

and/or excitation data are “tweaked”, or adjusted, until the model produces numbers that 

compare well with those yielded by measurement, then perhaps it can be assumed that the 

excitations or parameters so obtained have actually told us something which we could not 

obtain by direct observation. Thus if a ground water model is able to reproduce the variations 

in borehole water levels over time (a quantity which can be obtained by direct observation), 

the hydraulic conductivity values that we assign to different parts of the model domain in 

order to achieve this match may be correct; this is fortunate as it is often difficult or expensive 

to measure rock hydraulic conductivities directly. Similarly, if the resistivities and thicknesses 

that we assign to a layered half-space reproduce voltage/current ratios measured at various 

electrode spacings on the surface of the half-space, then perhaps these resistivities and 

thicknesses represent a facet of reality that it may not have been possible to obtain by direct 

observation.  

1.2.2 The Role of PEST 

PEST is all about using existing models to infer aspects of reality that may not be amenable to 

direct measurement. In general its uses fall into three broad categories. These are: 

 Interpretation. In this case an experiment is set up specifically to infer some property 

of a system, often by disturbing or exiting it in some way. A model is used to relate 

the excitations and system properties to quantities that can actually be measured. An 

interpretation method may then be based on the premise that if the excitation is known 

it may be possible to estimate the system properties from the measurement set. 

Alternatively, if system properties are known it may be possible to use the model to 

infer something about the excitation by adjusting model input excitation variables 

until model outcomes match measurements. (In some cases it may even be possible to 

estimate both excitations and parameters.) A good deal of geophysical software falls 

into this category, where sometimes very elegant mathematical models are developed 

in order to infer aspects of the earth’s structure from measurements that are confined 

either to the earth’s surface or to a handful of boreholes. 

 Calibration. If a natural or man-made system is subject to certain excitations, and 

numbers representing these same excitations are supplied to a model for that system, it 

may be possible to adjust the model’s parameters until the numbers which it generates 

correspond well with certain measurements made of the system which it simulates. If 
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so, it may then be possible to conclude that the model will represent the system’s 

behaviour adequately as the latter responds to other excitations as well - excitations 

which we may not be prepared to give the system in practice. A model is said to be 

“calibrated” when its parameters have been adjusted in this fashion. 

 Predictive Analysis. Once a parameter set has been determined for which model 

behaviour matches system behaviour as well as possible, it is then reasonable to ask 

whether another parameter set exists which also results in reasonable simulation by the 

model of the system under study. If this is the case, an even more pertinent question is 

whether predictions made by the model with the new parameter set are different. 

Depending on the system under study and the type of model being used to study this 

system, the ramifications of such differences may be extremely important. 

The purpose of PEST (which is an acronym for Parameter ESTimation) is to assist in data 

interpretation, model calibration and predictive analysis. Where model parameters and/or 

excitations need to be adjusted until model-generated numbers fit a set of observations as 

closely as possible then, provided certain continuity conditions are met (see the next section), 

PEST should be able to do the job. PEST will adjust model parameters and/or excitations 

until the fit between model outputs and laboratory or field observations is optimised in the 

weighted least squares sense. Where parameter values inferred through this process are 

nonunique, PEST will analyse the repercussions of this nonuniqueness on predictions made 

by the model. The universal applicability of PEST lies in its ability to perform these tasks for 

any model that reads its input data from one or a number of ASCII (ie. text) input files and 

writes the outcomes of its calculations to one or more ASCII output files. Thus a model does 

not have to be recast as a subroutine and recompiled before it can be used within a parameter 

estimation process. PEST adapts to the model, the model does not need to adapt to PEST.  

Thus PEST, as a nonlinear parameter estimator, can exist independently of any particular 

model, yet can be used to estimate parameters and/or excitations, and carry out various 

predictive analysis tasks, for a wide range of model types. Because of this PEST can turn just 

about any existing computer model, be it a home-made model based on an analytical solution 

to a simple physical problem, a semi-empirical description of some natural process, or a 

sophisticated numerical solver for a complex boundary-value problem, into a powerful 

nonlinear parameter estimation package for the system which that model simulates. 

1.3 What Pest Does 

Models produce numbers. If there are field or laboratory measurements corresponding to 

some of these numbers, PEST can adjust model parameter and/or excitation data in order that 

the discrepancies between the pertinent model-generated numbers and the corresponding 

measurements are reduced to a minimum. It does this by taking control of the model and 

running it as many times as is necessary in order to determine this optimal set of parameters 

and/or excitations. You, as the model user, must inform PEST of where the adjustable 

parameters and excitations are to be found on the model input files. Once PEST is provided 

with this information, it can rewrite these model input files using whatever parameters and 

excitations are appropriate at any stage of the optimisation process. You must also teach 

PEST how to identify those numbers on the model output files that correspond to 

observations that you have made of the real world. Thus, each time it runs the model, PEST is 
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able to read those model outcomes which must be matched to field or laboratory observations. 

After calculating the mismatch between the two sets of numbers, and evaluating how best to 

correct that mismatch, it adjusts model input data and runs the model again. 

For PEST to take control of an existing model in this fashion in order to optimise its 

parameters and/or excitations, certain conditions must be met. These are as follows: 

 While a model may read many input files, some of which may be binary and some of 

which may be ASCII, the file or files containing those excitations and/or parameters 

which PEST is required to adjust must be ASCII (ie. text) files. 

 While a model may write many output files, some of which may be binary and some 

of which may be ASCII, the file or files containing those model outcomes which 

complement field or laboratory measurements must be ASCII (ie. text) files. 

 The model must be capable of being run using a system command, and of requiring no 

user intervention to run to completion (see below for further details). 

 PEST uses a nonlinear estimation technique known as the Gauss-Marquardt-

Levenberg method. The strength of this method lies in the fact that it can generally 

estimate parameters using fewer model runs than any other estimation method, a 

definite bonus for large models whose run times may be considerable. However the 

method requires that the dependence of model-generated observation counterparts on 

adjustable parameters and/or excitations be continuously differentiable.  

PEST must be provided with a set of input files containing the data which it needs in order to 

effectively take control of a particular model. Specifications for these files will be described 

later in the manual; their preparation is a relatively simple task. Amongst the data which must 

be supplied to PEST is the name of the model of which it must take control. In the simplest 

case, this may be the name of a single executable file, ie. a program that simulates a system 

for which parameterisation or excitation estimation is required. In more complex cases the 

name may pertain to a batch program which runs a number of executable programs in 

succession. Thus output data from one model can feed another, or a model postprocessor may 

extract pertinent model outputs from a lengthy binary file and place them into a smaller, 

“tidy” file in ASCII format for easy PEST access. 

Models which receive their data directly from the user through keyboard entry and write their 

results directly to the screen can also be used with PEST. Keyboard inputs can be typed ahead 

of time into a file, and the model directed to look to this file for its input data using the “<” 

symbol on the model command line; likewise model screen output can be redirected to a file 

using the “>” symbol. PEST can then be instructed to alter parameters and/or excitations on 

the input file and read numbers matching observations from the output file. Thus it can run 

the model as many times as it needs to without any human intervention. 

PEST can be used with models written in any programming language; they can be home-

made or bought. You do not need to have the source code or know much about the internal 

workings of the model. Models can be small and fast, finishing execution in the blink of an 

eye, or they can be large and slow, taking minutes or even hours to run; it does not matter to 

PEST. 
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1.4 An Overview of PEST 

PEST can be subdivided into three functionally separate components whose roles are: 

 parameter and/or excitation definition and recognition,  

 observation definition and recognition, and 

 the nonlinear estimation and predictive analysis algorithm. 

Though the workings of PEST will be described in detail in later chapters, these three 

components are discussed briefly so that you can become acquainted with PEST’s 

capabilities. 

1.4.1 Parameter Definition and Recognition 

From this point on, the single word “parameter” is used to describe what has hitherto been 

referred to as “parameters and/or excitations”. 

Of the masses of data of all types that may reside on a model’s input files, those numbers 

must be identified which PEST is free to alter and optimise. Fortunately, this is a simple 

process which can be carried out using input file “templates”. If a model requires, for 

example, five input files, and two of these contain parameters which PEST is free to adjust, 

then a template file must be prepared for each of the two input files containing adjustable 

parameters. To construct a template file, simply start with a model input file and replace each 

space occupied by a parameter by a set of characters that both identify the parameter and 

define its width on the input file. Then whenever PEST runs the model it copies the template 

to the model input file, replacing each parameter space with a parameter value as it does so. 

PEST template files can be constructed from model input files using any text editor. They can 

be checked for syntactical correctness and consistency using the utility programs PESTCHEK 

and TEMPCHEK. 

An important point to note about template files is that a given parameter (identified by a 

unique name of up to twelve characters in length) can be referenced once or many times. The 

fact that it can be referenced many times may be very useful when working with large 

numerical models. For example, a finite-difference model may be used to calculate the 

electromagnetic fields within a half-space, the half-space being subdivided into a number of 

zones of constant electrical conductivity. The model may need to be supplied with a large two 

(or even three) dimensional array in which conductivity values are disposed in a manner 

analogous to their disposition in the half-space. Each half-space zone is defined by that part 

of the array containing elements of a particular value, this value providing the conductivity 

pertaining to that zone. It may be these zone conductivity values that we wish to optimise. 

Fortunately, creating a template for the model input file holding the array is a simple matter, 

for each occurrence of a particular zone-defining number in the original input file can be 

replaced by the parameter identifier specific to that zone. Hence every time PEST rewrites the 

array, all array elements belonging to a certain zone will have the same value, specific to that 

zone. 
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On a particular PEST run a parameter can remain fixed if desired. Thus, while the parameter 

may be identified on a template file, PEST will not adjust its value from that which you 

supply at the beginning of the parameter estimation process. Another feature is that one or a 

number of parameters can be “tied” to a “parent” parameter. In this case, though all such tied 

parameters are identified on template files, only the parent parameter is actually optimised; 

the tied parameters are simply varied with this parameter, maintaining a constant ratio to it. 

PEST requires that upper and lower bounds be supplied for adjustable parameters (ie. 

parameters which are neither fixed not tied); this information is vital to PEST, for it informs 

PEST of the range of permissible values that a parameter can take. Many models produce 

nonsensical results, or may incur a run-time error, if certain inputs transgress permissible 

domains. For example, parameters such as electrical conductivity and solute concentration 

should never be provided with negative values. Also, if a parameter occurs as a divisor 

anywhere in the model’s code, it can never be zero. 

For many models it has been found that if the logarithms of certain parameters are optimised, 

rather than the parameters themselves, the rate of convergence to optimal parameter values 

can be considerably hastened; PEST allows such logarithmic transformation of selected 

parameters. 

Often there is some information available from outside of the parameter estimation process 

about what value a parameter should take. Alternatively, you may know that the sum or 

difference of two or more parameters (or their product or quotient in the case of 

logarithmically-transformed parameters) should assume a certain value. PEST allows you to 

incorporate such prior information into the estimation process by increasing the value of the 

objective function (ie. the sum of squared deviations between model and observations - see 

the next section) in proportion to the extent to which these articles of prior information are 

transgressed. 

Finally, parameters adjusted by PEST can be scaled and offset with respect to the parameters 

actually used by the model. Thus you may wish to subtract 273.15 from an absolute 

temperature before writing that temperature to a model input file which requires Celcius 

degrees; or you may wish to negate a model parameter which never becomes positive so that 

it can be log-transformed by PEST for greater optimisation efficiency. 

1.4.2 Observation Definition and Recognition 

From this point onwards, those numbers on a model output file for which there are 

corresponding “real-world” values to which they must be matched will be referred to simply 

as “observations”. Of the masses of data produced by a model, only a handful of numbers 

may actually be “observations”. For example, a population dynamics model may calculate 

population figures on a daily basis, yet measurements may only have been taken every week. 

In this case most of the model’s output data will be redundant from the point of view of 

model calibration. Similarly, a model for the stress field surrounding an excavation may 

calculate stress figures for each of the thousands of nodes of a finite-element mesh, through 

the use of which the system differential equations are solved; however stress measurements 

may be available at only a handful of points, viz. at the locations of specially-installed stress 

sensors in the rocks surrounding the excavation. Again PEST must be able to identify a 

handful of numbers (viz. stress values calculated at those points for which stress 
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measurements are available) out of the thousands that may be written to the model’s output 

file. 

In order to peruse a model output file and read the observation values calculated by the 

model, PEST must be provided with a set of instructions. Unfortunately, the template concept 

used for model input files will not work for model output files as the latter may change from 

run to run, depending on parameter values. However, if a person is capable of locating a 

pertinent model output amongst the other data on a model output file, then so too is a 

computer. As it turns out, the instruction set by which this can be achieved is relatively 

simple, involving only a handful of basic directives. 

PEST requires, then, that for each model output file which must be opened and perused for 

observation values, an instruction file be provided detailing how to find those observations. 

This instruction file can be prepared using any text editor. It can be checked for syntactical 

correctness and consistency using the utility programs PESTCHEK and INSCHEK. 

Once interfaced with a model, PEST’s role is to minimise the weighted sum of squared 

differences between model-generated observation values and those actually measured in the 

laboratory or field; this sum of weighted, squared, model-to-measurement discrepancies is 

referred to as the “objective function”. The fact that these discrepancies can be weighted 

makes some observations more important than others in determining the optimisation 

outcome. Weights should be inversely proportional to the standard deviations of observations, 

“trustworthy” observations having a greater weight than those which cannot be trusted as 

much. Also, if observations are of different types (for example solute concentration and 

solvent flow rates in a chemical process model) the weights assigned to the two observation 

types should reflect the relative magnitudes of the numbers used to express the two quantities; 

in this way the set of larger numbers will not dominate the parameter estimation process just 

because the numbers are large. A particular observation can be provided with a weight of zero 

if you do not wish it to affect the optimisation process at all. 

Like parameters, you must provide each observation with a name. However, unlike parameter 

names which must be twelve characters or less in length, observation names can be up to 

twenty characters in length; PEST uses this name to provide you with information about that 

observation. 

1.4.3 The Parameter Estimation Algorithm 

The Gauss-Marquardt-Levenberg algorithm used by PEST is described in detail in the next 

chapter. For linear models (ie. models for which observations are calculated from parameters 

through a matrix equation with constant parameter coefficients), optimisation can be achieved 

in one step. However for nonlinear problems (most models fall into this category), parameter 

estimation is an iterative process. At the beginning of each iteration the relationship between 

model parameters and model-generated observations is linearised by formulating it as a 

Taylor expansion about the currently best parameter set; hence the derivatives of all 

observations with respect to all parameters must be calculated. This linearised problem is then 

solved for a better parameter set, and the new parameters tested by running the model again. 

By comparing parameter changes and objective function improvement achieved through the 

current iteration with those achieved in previous iterations, PEST can tell whether it is worth 
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undertaking another optimisation iteration; if so the whole process is repeated. 

At the beginning of a PEST run you must supply a set of initial parameter values; these are 

the values that PEST uses at the start of its first optimisation iteration. For many problems 

only five or six optimisation iterations will be required for model calibration or data 

interpretation. In other cases convergence will be slow, requiring many more optimisation 

iterations. Often a proper choice of whether and what parameters should be logarithmically 

transformed has a pronounced effect on optimisation efficiency; the transformation of some 

parameters may turn a highly nonlinear problem into a reasonably linear one. 

Unless a model can calculate them itself, derivatives of observations with respect to 

parameters must be calculated by PEST using finite differences. During every optimisation 

iteration the model is run once for each adjustable parameter, a small user-supplied increment 

being added to the parameter value prior to the run. The resulting observation changes are 

divided by this increment in order to calculate their derivatives with respect to the parameter. 

This is repeated for each parameter. This technique of derivatives calculation is referred to as 

the method of “forward differences”. 

Derivatives calculated in this way are approximate. If the increment is too large the 

approximation will be poor; if the increment is too small roundoff errors will detract from 

derivatives accuracy. Both of these effects will degrade optimisation performance. To combat 

the problem of derivatives inaccuracy, PEST allows derivatives to be calculated using the 

method of “central differences”. Using this method, two model runs are required to calculate 

a set of observation derivatives with respect to any parameter. For the first run an increment is 

added to the current parameter value, while for the second run the increment is subtracted. 

Hence three observation-parameter pairs are used in the calculation of any derivative (the 

third pair being the current parameter value and corresponding observation value). The 

derivative is calculated either by (i) fitting a parabola to all three points, (ii) constructing a 

best-fit straight line for the three points or (iii) by simply using finite differences on the outer 

two points (its your choice). 

It is normally best to commence an optimisation run using the more economical forward 

difference method, allowing PEST to switch to central differences when the going gets tough. 

PEST will make the switch automatically according to a criterion which you supply to it prior 

to the commencement of the run. 

PEST’s implementation of the Gauss-Marquardt-Levenberg method is extremely flexible; 

many aspects of it can be varied to suit the problem at hand, allowing you to optimise PEST’s 

performance for your particular model. How you do this is described later in this manual. In 

the course of the estimation process PEST writes what it is doing to the screen; it 

simultaneously writes a more detailed run record to a file. You can pause PEST execution at 

any time to inspect its outputs in detail; when you have finished looking at these, PEST will 

recommence execution exactly where it was interrupted. Alternatively, you can shut down 

PEST completely at any stage. It can then be restarted later; you can direct it to recommence 

execution either at the beginning of the optimisation iteration in which it was interrupted or at 

that point within the current or previous iteration at which it last attempted to upgrade 

parameter values. 

As it calculates derivatives, PEST records the sensitivity of each parameter with respect to the 
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observation dataset to a file which is continuously available for inspection. If it is judged that 

PEST’s performance is being inhibited by the behaviour of certain parameters (normally the 

most insensitive ones) during the optimisation process, these parameters can be temporarily 

held at their current values while PEST calculates a suitable upgrade for the rest of the 

parameters. If desired, PEST can be requested to repeat its determination of the parameter 

upgrade vector with further parameters held fixed. Certain variables governing the operation 

of the Gauss-Marquardt-Levenberg method in determining the optimum upgrade vector can 

also be adjusted prior to repeating the calculation. Thus you can interact with PEST, assisting 

it in its determination of optimum parameter values in difficult situations if you so desire. 

Alternatively, this whole process can be automated using PEST’s “automatic user 

intervention” functionality. As a further alternative for enhancing PEST’s performance in 

difficult situations plagued by parameter insensitivity and/or correlation, truncated singular 

value decomposition can be employed as a basis for calculating parameter values. 

At the end of the parameter estimation process (the end being determined either by PEST or 

by you) PEST writes a large amount of useful data to its run record file. PEST records the 

optimised value of each adjustable parameter together with that parameter’s 95% confidence 

interval. It tabulates the set of field measurements, their optimised model-calculated 

counterparts, the difference between each pair, and certain functions of these differences. 

(These are also recorded on a special file ready for immediate importation into a spreadsheet 

for further processing.) Then it calculates and prints/displays three matrices, viz. the 

parameter covariance matrix, the parameter correlation coefficient matrix and the matrix of 

normalised eigenvectors of the covariance matrix.  

1.4.4 Predictive Analysis 

When used to calibrate a model (the traditional use of PEST), PEST is asked to minimise an 

objective function comprised of the sum of weighted squared deviations between certain 

model outcomes and their corresponding field-measured counterparts. When undertaking this 

task, PEST is run in “parameter estimation mode”.   

It is a sad fact of model usage that there are often many different sets of parameter values for 

which the objective function is at its minimum or almost at its minimum. Thus there are many 

different sets of parameters which could be considered to calibrate a model. A question that 

then arises is: “if I use different sets of parameter values when using the model to make 

predictions (all of these sets being considered to calibrate the model), will I get different 

values for key model outcomes?”. This question can be answered by running PEST in 

“predictive analysis mode”. To run PEST in predictive analysis mode the user informs PEST 

of the objective function value below which the model can be considered to be calibrated; this 

value is normally just slightly above the minimum objective function value as determined in a 

previous PEST calibration run. A key model prediction is then identified on one of the model 

output files; this may involve setting up a “dual model” (run by PEST through a batch file) 

consisting of the model run under both calibration and predictive conditions. PEST is then 

asked to find that parameter set which results in the maximum or minimum model prediction 

while still calibrating the model. In doing this, PEST uses an iterative solution procedure 

similar in many ways to that used for solution of the parameter estimation problem. The key 

model prediction made with a parameter set calculated in this way defines the upper or lower 

bound of the uncertainty interval associated with that prediction. 
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Most aspects of PEST usage in predictive analysis mode are identical to PEST’s usage in 

parameter estimation mode. In particular, bounds can be placed on adjustable parameters, one 

parameter can be tied to another, parameters can be logarithmically transformed for greater 

problem linearity, troublesome parameters can be temporarily held while the parameter 

upgrade vector is re-calculated, etc. However the end-point of the iterative solution process is 

no longer a minimised objective function; it is a maximised or minimised prediction with the 

objective function being as close as possible to that defining the acceptable limit for model 

calibration. 

Once a key model prediction has been identified, it is also possible to ask another important 

question of PEST. The question is, “is it possible to find a parameter set for which the key 

model prediction is a certain value while still maintaining the calibration objective function at 

or below the acceptable calibration limit?” This is similar to the question that is answered by 

running PEST in predictive analysis mode. However it differs slightly from that question in 

that a maximum or minimum prediction is no longer being sought; rather the acceptability of 

a certain prediction in terms of the model’s ability to satisfy calibration constraints is being 

tested. Once again a “dual model” is required in which the model is run under both 

calibration and predictive conditions. PEST answers the question by attempting to minimise a 

new objective function which incorporates not just the differences between model-generated 

and observed quantities under calibration conditions, but the difference between the key 

prediction and the user-specified value of this prediction when the model is run under 

predictive conditions. Thus PEST is run in its traditional parameter estimation mode with a 

slightly altered objective function. When run in this manner, PEST’s run-time outputs are 

adjusted such that information on the key model prediction is recorded, together with 

information on all other aspects of the parameter estimation process. 

1.4.5 Regularisation 

In its broadest sense, “regularisation” is a term used to describe the process whereby a large 

number of parameters can be simultaneously estimated without incurring the numerical 

instability that normally accompanies parameter nonuniqueness. Numerical stability is 

normally achieved through the provision of “supplementary information” to the parameter 

estimation process. Such “supplementary information” often takes the form of preferred 

values for parameters, or for relationships between parameters. Thus if, for a particular 

parameter, the information content of the observation dataset is such that a unique value 

cannot be estimated for that parameter on the basis of that dataset alone, uniqueness can 

nevertheless be achieved by using the supplementary information provided for that parameter 

through the regularisation process. 

A problem that arises when using such supplementary information as part of a traditional 

parameter estimation exercise is the determination of how much notice should be taken of 

this information in comparison to the notice taken of the observation dataset against which 

the model is being calibrated. If the supplementary information is given too much weight in 

the parameter estimation process the observation dataset may be ignored. On the other hand, 

if it is given too little weight, the stabilisation potential of the supplementary dataset will not 

be realised. When using PEST in “regularisation mode” PEST takes care of this problem, for 

PEST calculates the relative weighting given to the two sets of information itself. In this way, 

the supplementary information is used only to the extent necessary to ensure stability of the 

parameter estimation process. Or, looked at another way, if the information content of the 
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calibration dataset is insufficient to provide unique estimation of certain parameters, then 

PEST will automatically elevate the status of the supplementary information such that this 

provides the grounds for unique estimation of those parameters. 

PEST’s regularisation functionality is useful in many types of modelling – particularly where 

many different parameters must be estimated for complex systems. It is particularly useful in 

estimating values for parameters which describe the spatial distribution of some property over 

a two- or three-dimensional model domain, for example a ground water or geophysical 

model. The user is no longer required to subdivide the model domain into a small number of 

zones of piecewise parameter constancy. Rather, a large number of parameters can be used to 

describe the distribution of the spatial property and PEST’s regularisation functionality can be 

used to estimate values for these parameters. If supplementary information is provided in the 

form of a “preferentially smooth system state”, then only enough heterogeneity will be 

introduced to the system to guarantee a good fit between model outcomes and field data. 

Furthermore, PEST will determine the locations of areas of anomalous property values itself. 

This is normally a vastly superior method by which to infer the distribution of a spatial 

parameter over a model domain than to estimate parameters associated with a pre-defined 

zonation pattern. 

PEST’s regularisation functionality can also be useful when calibrating a number of models 

simultaneously (for example rainfall-runoff models in different watersheds). PEST can be 

asked to preferentially estimate identical values for the same parameter types in the different 

model domains. Differences in parameter values estimated through the regularised multi-

model calibration process will then be present because they must be present if all of the 

models are to match their corresponding field measurements well. 

1.4.6 SVD and SVD-Assist 

Another popular method of inverse problem regularisation is that known as “truncated 

singular value decomposition”, or “truncated SVD” for short. Using this technique, the 

dimensionality of parameter space is reduced to that point at which a unique solution to the 

parameter estimation problem is possible. Furthermore this simplification is carried out in a 

way that is mathematically optimal with respect to the dataset available for calibration. Thus 

it effectively allows the estimation of parameter combinations rather than parameters 

themselves, these combinations being such as to be most receptive to the data at hand. In this 

way, the problem simplification necessary to achieve numerical stability of the parameter 

estimation process, is undertaken by the process itself. Furthermore, the inclusion of many 

parameters in the model calibration process can be justified by observing that the inclusion of 

such parameterisation detail allows the truncated SVD mechanism more flexibility in 

determining an appropriate simplification strategy than by undertaken “pre-emptive 

simplification” through reducing the number of model parameters externally to the parameter 

estimation process. 

Truncated SVD is very powerful; but it also has its weaknesses. Unlike the regularisation 

methodology discussed in the previous section (which is known as “Tikhonov 

regularisation”), truncated SVD does not always result in aesthetically pleasing, or even 

physically realistic, parameter sets, as numerical stability is given precedence over all other 

factors in solving the inverse problem. 
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PEST is unique amongst parameter estimation software in including a hybrid Tikhonov-

truncated SVD regularisation method referred to herein as “SVD-assist”. Not only does this 

method combine the strengths of the two different regularisation methods while at the same 

time eliminating many of their weaknesses. It also brings huge efficiency gains to the 

calibration process; in many instances the number of model runs required for completion of a 

model calibration process is reduced by factors of between two and ten! As a direct result of 

these astounding gains in model-run efficiency, the advanced regularisation methods 

available in PEST can be used for the calibration of models for which they would have 

hitherto been considered inappropriate or even impossible. 

1.5 How to Use PEST 

The PEST suite is comprised of two versions of PEST and a number of utility programs for 

building, modifying and checking PEST input files and for processing PEST output files. A 

sensitivity analyser and a parameter preprocessor are also supplied with PEST. All of these 

programs are command-line driven programs, ie. they can be run from a command-line 

window by typing the name of the appropriate executable at the screen prompt. Note, 

however, that they are all true WINDOWS executables. 

Suites of utility programs are also available to enhance the use of PEST in certain modelling 

contexts. See, for example, the PEST Ground Water and Surface Water Modelling Utilities. 

1.5.1 The Two Versions of PEST 

The two variants of PEST are the “single window” version of PEST and “Parallel PEST”.  

In the single window version of PEST (which is run through the “pest” command), the model 

shares the same window as PEST, with the result that screen output generated by the model is 

interspersed with that generated by PEST (unless the former is re-directed to a nul file - see 

later).  

Parallel PEST (which is run through the “ppest” command) is able to run multiple instances 

of a model in parallel, either in different command-line windows on the same machine, or on 

different (networked) machines. By undertaking simultaneous model runs, enormous savings 

in overall optimisation time can be made, particularly when calibrating large and complex 

models. Preparation for a Parallel PEST run requires the creation of an extra input file; also a 

slave program (PSLAVE) must be run on each machine on which Parallel PEST runs the 

model. 

PEST execution can be interrupted or stopped at any time. To do this, run one of the 

programs PPAUSE, PUNPAUSE, PSTOP or PSTOPST to achieve the desired effect. 

1.5.2 PEST Utilities 

PEST requires three types of input file. These are: 

 template files, one for each model input file which PEST must write prior to a model 

run, 
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 instruction files, one for each model output file which PEST must read after a model 

run, and 

 a PEST control file which “brings it all together”, supplying PEST with the names of 

all template and instruction files together with the model input/output files to which 

they pertain. It also provides PEST with the model name, parameter initial estimates, 

field or laboratory measurements to which model outcomes must be matched, prior 

parameter information, and a number of PEST variables which control the 

implementation of the Gauss-Marquardt-Levenberg method. 

You must prepare the template and instruction files yourself. This can be easily done using a 

text editor; full details are provided in Chapter 3 of this manual. After you have prepared a 

template file, you can use program TEMPCHEK to check that it has no syntax errors. 

Furthermore, if you supply TEMPCHEK with a set of parameter values, it will write a model 

input file on the basis of the template file which you have just prepared. You can then run 

your model, making sure that it reads the input file correctly. In this way you can be sure, 

prior to running PEST, that PEST will write a model input file that satisfies your model’s 

requirements. 

INSCHEK does for instruction files what TEMPCHEK does for template files. INSCHEK 

checks that an instruction file is syntactically correct and consistent. Then, if you wish, 

INSCHEK will read a model output file using the directives contained in the instruction file, 

listing the values of all observations cited in the instruction file as read from the model output 

file. In this way you can be sure, prior to running PEST, that PEST will read a model output 

file correctly. 

Like template and instruction files, the PEST control file can be prepared using a text editor. 

However it is generally easier to prepare it using program PESTGEN. PESTGEN generates a 

PEST control file using parameter and observation names cited in template and instruction 

files which have already been built. However, as it uses default values for all variables which 

control PEST execution, you will probably need to make some changes to a PESTGEN-

generated PEST control file (usually not too many) in order to tune PEST to your current 

problem. 

After all PEST input files have been prepared (viz. the PEST control file and all template and 

instruction files) you can use program PESTCHEK to check that the entire PEST input 

dataset contained in these files is consistent and complete. 

Once PEST has been run and an improved parameter set obtained, you may wish to build a 

new PEST control file using the improved parameter estimates as initial estimates for another 

run. This may occur if you wish to alter some facet of the model, add prior information, alter 

a PEST variable or two, etc. prior to continuing with the optimisation process. Program 

PARREP allows you to replace initial parameter values as recorded on a PEST control file 

with those recorded in a “parameter value file”, the latter (having been written by PEST) 

containing the best parameter values achieved on the previous PEST run. 

If you wish to generate a file containing the sensitivity of each model output for which there 

is a corresponding field or laboratory measurement with respect to each adjustable parameter, 

use the JACWRIT utility program. JACWRIT translates a binary file (written by PEST) 
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containing this useful information into ASCII format for easy user inspection.  

EIGPROC is a program which provides a summary of useful information (pertaining 

especially to potentially troublesome parameters) from a number of PEST output files. 

PARAMFIX and WTFACTOR can be used to undertake complex modifications to an 

existing PEST input dataset prior to commencing another PEST run. 

Note that because PEST input files are simple text files, for which full construction details are 

provided in this manual, they can be prepared by other software, for example by a text editor 

or by a program that you may write yourself in order to automate PEST file generation for a 

specific application. Thus, if you wish, you can integrate PEST into your modelling suite so 

that model parameter estimation becomes as straightforward as modelling itself. 

1.5.3 Parameter Preprocessing 

Sometimes it is useful to undertake complex mathematical operations on model parameters 

before actually providing them to the model. This can help the parameter estimation process 

in a number of ways. For example, appropriate parameter transformation may render a model 

more linear with respect to one or more of its parameters; in other circumstances the 

calculation of “secondary parameters” (eg. monthly variation of a particular model input type) 

from a smaller number of “primary parameters” which describe the seasonal variation of the 

secondary parameter (eg. the mean, amplitude and phase of that parameter’s variation) can 

bring stability to the parameter estimation process by allowing PEST to estimate a fewer 

number of parameters while incorporating the user’s knowledge of the type of variation that 

the parameter undergoes directly into the parameter estimation process. Parameter 

transformations of this type (and many more) can be undertaken using the parameter 

preprocessor PAR2PAR supplied with PEST. PAR2PAR requires a text input file (from 

which a template file is easily prepared) describing the mathematical relationships (which can 

be of arbitrary complexity) that exist between parameters. Like PEST, it then writes its 

“secondary parameters” to one or a number of model input files using templates of those files. 

During the calibration process undertaken by PEST, PAR2PAR is run just before the actual 

model executable within a batch file comprising the “composite model”. 

1.5.4 Sensitivity Analysis 

SENSAN (which stands for “SENSitivity Analysis”) is a command-line program which 

provides the capability to carry out multiple model runs without user intervention, using 

different parameter values for each run. Thus a computer can be kept busy all night 

undertaking successive model runs, with key model outputs from each run being recorded in a 

format suitable for easy later analysis using a spreadsheet or other data processing package. 

Any or all model output files for specific model runs can also be stored in their entirety under 

separate names if desired. 

SENSAN uses the same model interface protocol as PEST does, ie. parameter values are 

supplied to a model through model input file templates, and key model-generated numbers 

are read from model output files using an instruction set. In addition, a special “SENSAN 

control file” must be built, informing SENSAN of the names of all template, instruction and 

model input/output files, the model command line, and the parameter values that must be 
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used for each model run.  

SENSAN is accompanied by a checking program named SENSCHEK. The role and operation 

of SENSCHEK are very similar to those of PESTCHEK, viz. it checks all SENSAN input 

data to verify that it is consistent and correct. SENSCHEK reads a SENSAN control file, as 

well as all template and instruction files cited therein. If any errors or inconsistencies are 

detected, appropriate messages are written to the screen. 

Note that SENSAN and SENSCHEK are both true WINDOWS executables. 

1.6 This Manual 

This introduction has provided an overview of the capabilities and components of PEST. 

However to get the most out of PEST you should take the time to read this manual in its 

entirety. Parameter estimation is a “tricky business” and will not work unless you know what 

you are doing. If PEST does not appear to be able to calibrate your model or turn your model 

into a powerful data interpretation package, the chances are that you are misusing it. Thus, 

even though it may be heavy going, you should pay particular attention to Chapter 2 which 

provides details of the PEST algorithm. As was explained above, PEST may need to be 

“tuned” to your estimation or interpretation problem. All that it may take to achieve this is the 

adjustment of a single optimisation control variable, the log-transformation of a single 

parameter, or the setting of a single derivative increment. Unless you are aware of the 

possibilities available to you for modifying PEST’s operation to suit your particular problem, 

you may never use it to its full potential. 

Chapter 3 discusses the interface between PEST and your model, describing how to make 

PEST template and instruction files. Chapter 4 teaches you how to write a PEST control file 

and discusses the effects that different control settings have on PEST’s performance. Chapter 

5 tells you how to run PEST; it also discusses problems that may arise as PEST executes, and 

how best to overcome them. Chapter 6 discusses predictive analysis while Chapters 7 and 8 

discuss regularisation (including PEST’s unique SVD-assist algorithm). Both or these aspects 

of parameterisation functionality are unique to PEST (at the time of writing) and help to make 

PEST so universally useful in calibrating models that simulate real-world systems. 

Chapter 9 discusses an advanced aspect of PEST’s performance, viz. its ability to use 

derivatives calculated by the model instead of calculating them itself through the process of 

finite parameter differences. In most cases of PEST usage the modeller need not be too 

familiar with the contents of this chapter, for it is only in special circumstances that PEST is 

able to take advantage of the fact that the model is able to supply it with “externally-

calculated derivatives”.  

Parallel PEST is described in Chapter 10, while Chapter 11 details the PEST utilities, 

TEMPCHEK, INSCHEK, PESTCHEK, PESTGEN, PARREP, PARAMFIX, WTFACTOR 

JACWRIT, EIGPROC and PAR2PAR. 

Chapter 12 discusses the sensitivity analyser SENSAN, together with its utility program 

SENSCHEK. Chapter 13 presents an example of the use of PEST in solving a practical data-

interpretation problem.  
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2. The PEST Algorithm 
Don’t forget to see the addendum to this manual for further details of PEST functionality, 

particularly as it pertains to highly parameterized inversion and uncertainty analysis. 

This chapter discusses the mathematical foundations of the PEST nonlinear parameter 

estimation algorithm and the means by which this theory has been implemented in the 

construction of the powerful parameter optimiser which is PEST. However the discussion is 

brief and no proofs are presented. The reader is referred to the limited bibliography at the end 

of the chapter for a number of books which treat the subject in much greater detail. 

2.1 The Mathematics of PEST 

2.1.1 Parameter Estimation for Linear Models 

Let us assume that a natural or man-made system can be described by the linear equation 

 Xb = c          (2.1) 

In equation 2.1 X is a m  n matrix, ie. it is a matrix with m rows and n columns. The 

elements of X are constant and hence independent of the elements of b, a vector of order n 

which, we assume, holds the system parameters. c is a vector of order m containing numbers 

which describe the system’s response to a set of excitations embodied in the matrix X, and for 

which we can obtain corresponding field or laboratory measurements by which to infer the 

system parameters comprising b. (Note that for many problems to which PEST is amenable, 

the system parameters may be contained in X and the excitations may comprise the elements 

of b. Nevertheless, in the discussion which follows, it will be assumed for the sake of 

simplicity that b holds the system parameters.) 

The word “observations” will be used to describe the elements of the vector c even though c 

is, in fact, generated by the model. This is because most models generate a wealth of data for 

which we may have only a handful of corresponding field measurements on which to base our 

estimates of the system properties. Hence, as we include in the vector c only those model 

outcomes for which there are complementary laboratory or field measurements, it is 

appropriate to distinguish them from the remainder of the model outcomes by referring to 

them as the “model-generated observations”. The complementary set of field or laboratory 

data is referred to as “measurements” or as “experimental observations” in the following 

discussion. 

Let it be assumed that the elements of X are all known. For most models these elements will 

include the effects of such things as the system dimensions, physical, chemical or other 

constants which are considered immutable, independent variables such as time and distance 

etc. For example, equation 2.1 may represent the response of the system at different times, 

where the response at time p is calculated using the equation 

 xp1 b1 + xp2  b2 + ..... + xpn  bn = cp      (2.2) 
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where xpi  is the element of X found at its p’th row and i’th column. As X has m rows, there 

are m such equations, one for each of m different times. Hence for any p, at least one of the xpi 

depends on time. 

Suppose that m is greater than n, ie. we are capable of observing the system response (and 

hence providing elements for the vector c) at more times than there are parameters in the 

vector b. Common sense tells us that we should be able to use the elements of c to infer the 

elements of b. 

Unfortunately we cannot do this by recasting equation 2.1 as another matrix equation with b 

on the right-hand side, as X is not a square matrix and hence not directly invertible. But you 

may ask “Have we not made a rod for our own back by measuring the system response at 

more times than there are parameter values, ie. elements of b?” If b was of the same order as 

c, X would indeed be a square matrix and may well be invertible. If so, it is true that an 

equation could be formulated which solves for the elements of b in terms of those of c. 

However, what if we then made just one more measurement of the system at a time not 

already represented in the n  n matrix X? We would now have n + 1 values of c; which n of 

these would we use in solving for b? And what would we do if we obtained (as we probably 

would) slightly different estimates for the components of b depending on which n of the n + 1 

values of c we used in solving for b? The problem becomes even more acute if the 

information redundancy is greater than one. 

Actually, as intuition should readily inform us, redundancy of information is a bonus rather 

than a problem, for it allows us to determine not just the elements of b, but some other 

numbers which describe how well we can trust the elements of b. This “trustworthiness” is  

based on the consistency with which the m experimental measurements satisfy the m 

equations expressed by equation 2.1 when the n optimal parameter values are substituted for 

the elements of  b. 

We define this optimal parameter set as that for which the sum of squared deviations between 

model-generated observations and experimental observations is reduced to a minimum; the 

smaller is this number (referred to as the “objective function”) the greater is the consistency 

between model and observations and the greater is our confidence that the parameter set 

determined on the basis of these observations is the correct one. Expressing this 

mathematically, we wish to minimise , where  is defined by the equation 

  = (c - Xb)
t
(c - Xb),        (2.3) 

and c now contains the set of laboratory or field measurements; the “t” superscript indicates 

the matrix transpose operation. It can be shown that the vector b which minimises  of 

equation 2.3 is given by 

 b = (X
t
X)

-1
X

t
c.        (2.4) 

Provided that the number of observations m equals or exceeds the number of parameters n, 

the matrix equation 2.4 provides a unique solution to the parameter estimation problem. 

Furthermore, as the matrix (X
t
X) is positive definite under these conditions, the solution is 

relatively easy to obtain numerically. 
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The vector b expressed by equation 2.4 differs from b of equation 2.1 (the equation which 

defines the system) in that the former is actually an estimate of the latter because c now 

contains measured data. In fact, b of equation 2.4 is the “best linear unbiased” estimator of 

the set of true system parameters appearing in equation 2.1. As an estimator, it is one 

particular realisation of the n-dimensional random vector b calculated, through equation 2.4, 

from the m-dimensional random vector c of experimental observations, of which the actual 

observations are but one particular realisation. If 
2
 represents the variance of each of the 

elements of c (the elements of c being assumed to be independent of each other) then 
2
 can 

be estimated as 

 
2
 = /(m - n)         (2.5) 

where (m - n), the difference between the number of observations and the number of 

parameters to be estimated, represents the number of “degrees of freedom” of the parameter 

estimation problem. Equation 2.5 shows that 
2
 is directly proportional to the objective 

function and thus varies inversely with the goodness of fit between experimental data and the 

model-generated observations calculated on the basis of the optimal parameter set. It can 

further be shown that C(b), the covariance matrix of b, is given by 

 C(b) = 
2
(X

t
X)

-1
        (2.6) 

Notice that, even though the elements of c are assumed to be independent (so that the 

covariance matrix of c contains only diagonal elements, all equal to 
2 

in the present case), 

C(b) is not necessarily a diagonal matrix. In fact, in many parameter estimation problems 

parameters are strongly correlated, the estimation process being better able to estimate one or 

a number of linear combinations of the parameters than the individual parameters themselves. 

In such cases some parameter variances (parameter variances constitute the diagonal elements 

of C(b) ) may be large even though the objective function  is reasonably low. If parameter 

correlation is extreme, the matrix (X
t
X) of equation 2.6 may become singular and parameter 

estimation becomes impossible. 

There are two matrices, both of which are derived from the parameter covariance matrix 

C(b), which better demonstrate parameter correlation than C(b) itself. The first is the 

correlation coefficient matrix whose elements ij   are calculated as 

 





jjii

ij

ij
=          (2.7) 

where ij represents the element at the i’th row and j’th column of C(b). The diagonal 

elements of the correlation coefficient matrix are always 1; off-diagonal elements range 

between -1 and 1. The closer are these off-diagonal elements to 1 or -1, the more highly are 

the respective parameters correlated. 

The second useful matrix is comprised of columns containing the normalised eigenvectors of 

the covariance matrix C(b). If each eigenvector is dominated by one element, individual 

parameter values may be well resolved by the estimation process. However if predominance 

within each eigenvector is shared between a number of elements (especially for those 

eigenvectors whose eigenvalues are largest), the corresponding parameters are highly 
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correlated. See Section 5.2.11 for further details. 

2.1.2 Observation Weights 

The discussion so far presupposes that all observations carry equal weight in the parameter 

estimation process. However this will not always be the case as some measurements may be 

more prone to experimental error than others. 

Another problem arises where observations are of more than one type. For example equation 

2.1 may represent a plant growth model; you may have a set of biomass and soil moisture 

content measurements which you would like to use to estimate some parameters for the 

model. However the units for these two quantities are different (kg/ha and dimensionless 

respectively); hence the numbers used to represent them may be of vastly different magnitude. 

Under these circumstances the quantity represented by the larger numbers will take undue 

precedence in the estimation process if the objective function is defined by equation 2.3; this 

will be especially unfortunate if the quantity represented by the smaller numbers is, in fact, 

measured with greater reliability than that represented by the larger numbers. 

This problem can be overcome if a weight is supplied with each observation; the larger the 

weight pertaining to a particular observation the greater the contribution that the observation 

makes to the objective function. If the observation weights are housed in an m-dimensional, 

square, diagonal matrix Q whose i’th diagonal element qii is the square of the weight wi 

attached to the i’th observation, equation 2.3 defining the objective function is modified as 

follows: 

  =  (c - Xb)
t
 Q(c - Xb)       (2.8a) 

or, to put it another way, 

 )rw(=
2

ii

m

=1i

         (2.8b) 

where ri (the i’th residual) expresses the difference between the model outcome and the actual 

field or laboratory measurement for the i’th observation. If observation weights are correctly 

assigned (ie. if they are assigned such that each weight is inversely proportional to the 

standard deviation of the observation with which it is associated), it can be shown that 

equation 2.8a is equivalent to 

  =  (c - Xb)
t
 P

-1
(c - Xb)       (2.9) 

where  

 P ( =  Q
-1

) = C(c)/
2
        (2.10) 

C(c) represents the covariance matrix of the m-dimensional observation random vector c of 

which our measurement vector is a particular realisation. Because Q is a diagonal matrix, so 

too is P, its elements being the reciprocals of the corresponding elements of Q. The 

assumption of independence of the observations is maintained through insisting that Q (and 

hence P) have diagonal elements only, the elements of Q being the squares of the observation 
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weights. (Note that the weights as defined by equation 2.8 are actually the square roots of the 

weights as defined by some other authors. However they are defined as such herein because it 

has been found that users, when assigning weights to observations, find it easier to think in 

terms of standard deviations than variances, especially when dealing with two or three 

different observation types of vastly different magnitude.) 

The quantity 
2
 is known as the reference variance; if all observation weights are unity it 

represents the variance of each experimental measurement. If the weights are not all unity the 

measurement covariance matrix is determined from equation 2.10 with 
2
 given by equation 

2.5 and  given by equation 2.8.  

With the inclusion of observation weights, equation 2.4 by which the system parameter vector 

is estimated becomes 

 b = (X
t
QX)

-1
X

t
Qc        (2.11) 

while equation 2.6 for the parameter covariance matrix becomes 

 C(b) =
2
(X

t
QX)

-1
        (2.12) 

2.1.3 The Use of Prior Information in the Parameter Estimation Process 

It often happens that we have some information concerning the parameters that we wish to 

optimise, and that we obtained this information independently of the current experiment. This 

information may be in the form of other, unrelated, estimates of some or all of the parameters, 

or of relationships between parameters expressed in the form of equation 2.2. It is often useful 

to include this information in the parameter estimation process both for the philosophical 

reason that it is a shame to withhold it, and because this information may lend stability to the 

process. The latter may be the case where parameters, as determined solely from the current 

experiment, are highly correlated. This can lead to nonunique parameter estimates because 

certain pairs or groups of parameters, if varied in concert in a certain linear combination, may 

effect very little change in the objective function. In some cases this nonuniqueness can even 

lead to numerical instability and failure of the estimation process. However if something is 

known about at least one of the members of such a troublesome parameter group, this 

information, if included in the estimation process, may remove the nonuniqueness and 

provide stability. 

Parameter estimates will also be nonunique if there are less observations then there are 

parameters; equation 2.11 is not solvable under these conditions as the matrix X
t
QX is 

singular. (Note that PEST will, nevertheless, calculate parameter estimates for reasons 

discussed later in this chapter.) However the inclusion of prior information, being 

mathematically equivalent to taking extra measurements, may alter the numerical 

predominance of parameters over observations and thus provide the system with the ability to 

supply a unique set of parameter estimates. 

Prior information is included in the estimation algorithm by simply adding rows containing 

this information to the matrix equation 2.1. This information must be of a suitable type to be 

included in equation 2.1; both simple equality, and linear relationships of the type described 

by equation 2.2 are acceptable. A weight must be included with each article of prior 
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information, this weight being inversely proportional to the standard deviation of the right 

hand side of the prior information equation, the constant of proportionality being the same as 

used for the observations comprising the other elements of the vector c of equation 2.1. In 

practice, the user simply assigns the weights in accordance with the extent to which he/she 

wishes each article of prior information to influence the parameter estimation process. 

It is sometimes helpful to view the inclusion of prior parameter information in the estimation 

process as the introduction of one or more “penalty functions”. The aim of the estimation 

process is to lower the objective function defined by equation 2.8 to its minimum possible 

value; this is done by adjusting parameter values until a set is found for which the objective 

function can be lowered no further. If there is no prior information, the objective function is 

defined solely in terms of the discrepancies between model outcomes and laboratory or field 

measurements. However with the inclusion of prior information, minimising the discrepancy 

between model calculations and experimental measurements is no longer the sole aim of the 

parameter estimation process. To the extent that any article of prior information is not 

satisfied, there is introduced into the objective function a “penalty” equal to the squared 

discrepancy between what the right hand side of the prior information equation should be, and 

what it actually is according to the current set of parameter values. This discrepancy is 

multiplied by the squared weight pertaining to that article of prior information prior to 

inclusion in the objective function. 

2.1.4 Nonlinear Parameter Estimation 

Most models are nonlinear, ie. the relationships between parameters and observations are not 

of the type expressed by equations 2.1 and 2.2.  Nonlinear models must be “linearised” in 

order that the theory presented so far can be used in the estimation of their parameters. 

Let the relationships between parameters and model-generated observations for a particular 

model be represented by the function M which maps n-dimensional parameter space into m-

dimensional observation space. For reasons which will become apparent in a moment, we 

require that this function be continuously differentiable with respect to all model parameters 

for which estimates are sought. Suppose that for the set of parameters comprising the vector 

b0 the corresponding set of model-calculated observations (generated using M) is c0, ie. 

 c0 = M(b0).         (2.13) 

Now to generate a set of observations c corresponding to a parameter vector b that differs 

only slightly from b0, Taylor’s theorem tells us that the following relationship is 

approximately correct, the approximation improving with proximity of b to b0: 

 c = c0 + J(b - b0)        (2.14) 

where J is the Jacobian matrix of M, ie. the matrix comprised of m rows (one for each 

observation), the n elements of each row being the derivatives of one particular observation 

with respect to each of the n parameters. To put it another way, Jij is the derivative of the i’th 

observation with respect to the j’th parameter. Equation 2.14 is a linearisation of equation 

2.13. 

We now specify that we would like to derive a set of model parameters for which the model-
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generated observations are as close as possible to our set of experimental observations in the 

least squares sense, ie. we wish to determine a parameter set for which the objective function 

 defined by 

  = (c - c0 - J(b - b0))
t
Q (c - c0 - J(b - b0))     (2.15) 

is a minimum, where c in equation 2.15 now represents our experimental observation vector. 

Comparing equation 2.15 with equation 2.8, it is apparent that the two are equivalent if c 

from equation 2.8a is replace by (c - c0) of equation 2.15 and b from equation 2.8a is replaced 

by (b - b0) from equation 2.15. Thus we can use the theory that has been presented so far for 

linear parameter estimation to calculate the parameter upgrade vector (b - b0) on the basis of 

the vector (c - c0) which defines the discrepancy between the model-calculated observations 

c0 and their experimental counterparts c. Denoting u as the parameter upgrade vector, 

equation 2.11 becomes 

 u = (J
t
QJ)

-1
J

t
Q(c - c0)       (2.16) 

and equation 2.12 for the parameter covariance matrix becomes 

 C(b) = 2
(J

t
QJ)

-1
        (2.17) 

The linear equations represented by the matrix equation 2.16 are often referred to as the 

“normal equations”. The matrix (J
t
QJ) is often referred to as the “normal matrix”. 

Because equation 2.14 is only approximately correct, so too is equation 2.16; in other words, 

the vector b defined by adding the parameter upgrade vector u of equation 2.16 to the current 

parameter values b0 is not guaranteed to be that for which the objective function is at its 

minimum. Hence the new set of parameters contained in b must then be used as a starting 

point in determining a further parameter upgrade vector, and so on until, hopefully, we arrive 

at the global  minimum. This process requires that an initial set of parameters b0 be 

supplied to start off the optimisation process. The process of iterative convergence towards 

the objective function minimum is represented diagrammatically for a two-parameter problem 

in Figure 2.1. 

It is an unfortunate fact in working with nonlinear problems, that a global minimum in the 

objective function may be difficult to find. For some models the task is made no easier by the 

fact that the objective function may even possess local minima, distinct from the global 

minimum. Hence it is always a good idea to supply an initial parameter set b0 that you 

consider to be a good approximation to the true parameter set. A suitable choice for the initial 

parameter set can also reduce the number of iterations necessary to minimise the objective 

function; for large models this can mean considerable savings in computer time. Also, the 

inclusion of prior information into the objective function can change its structure in parameter 

space, often making the global minimum easier to find (depending on what weights are 

applied to the articles of prior information). Once again, this enhances optimisation stability 

and may reduce the number of iterations required to determine the optimal parameter set. 
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Figure 2.1 Iterative improvement of initial parameter values toward the global objective 

function minimum. 

2.1.5 The Marquardt Parameter 

Equation 2.16 forms the basis of nonlinear weighted least squares parameter estimation. It can 

be rewritten as 

 u = (J
t
QJ)

-1
J

t
Qr        (2.18) 

where u is the parameter upgrade vector and r is the vector of residuals for the current 

parameter set. 

Let the gradient of the objective function  in parameter space be denoted by the vector g. 

The i’th element of g is thus defined as 

 
b

=g
i

i



         (2.19) 

ie. by the partial derivative of the objective function with respect to the i’th parameter. The 

parameter upgrade vector cannot be at an angle of greater than 90 degrees to the negative of 

the gradient vector. If the angle between u and -g is greater than 90 degrees, u would have a 

component along the positive direction of the gradient vector and movement along u would 

thus cause the objective function to rise, which is the opposite of what we want. However, in 

spite of the fact that -g defines the direction of steepest descent of , it can be shown that u is 

normally a far better parameter upgrade direction than -g, especially in situations where 

parameters are highly correlated. In such situations, iteratively following the direction of 

steepest descent leads to the phenomenon of “hemstitching” where the parameter set jumps 

from side to side of a valley in  as parameters are upgraded on successive iterations; 
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convergence toward the global  minimum is then extremely slow. See Figure 2.2. 
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Figure 2.2 The phenomenon of “hemstitching”. 

Nevertheless, most parameter estimation problems benefit from adjusting u such that it is a 

little closer to the direction of -g in the initial stages of the estimation process. 

Mathematically, this can be achieved by including in equation 2.18 the so-called “Marquardt 

parameter”, named after Marquardt (1963), though the use of this parameter was, in fact, 

pioneered by Levenberg (1944). Equation 2.18 becomes 

 u = (J
t
QJ + I)

-1
J

t
Qr        (2.20) 

where  is the Marquardt parameter and I is the n  n identity matrix.  

It can be shown that the gradient vector g can be expressed as 

 g = -2J
t
Qr         (2.21) 

It follows from equations 2.20 and 2.21 that when  is very high the direction of u 

approaches that of the negative of the gradient vector; when  is zero, equation 2.20 is 

equivalent to equation 2.18. Thus for the initial optimisation iterations it is often beneficial 

for  to assume a relatively high value, decreasing as the estimation process progresses and 

the optimum value of  is approached. The manner in which PEST decides on a suitable 

value for  for each iteration is discussed in Section 2.1.7. 

2.1.6 Scaling 

For many problems, especially those involving different types of observations and parameters 

whose magnitudes may differ greatly, the elements of J can be vastly different in magnitude. 
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This can lead to roundoff errors as the upgrade vector is calculated through equation 2.20. 

Fortunately, this can be circumvented to some extent through the use of a scaling matrix S. 

Let S be a square, n  n matrix with diagonal elements only, the i’th diagonal element of S 

being given by 

 Sii = (J
t
QJ)ii

-1/2
        (2.22) 

Introducing S into equation 2.20 the following equation can be obtained for S
-1

u: 

 S
-1

u = ((JS)
t
QJS + S

t
S)

-1
(JS)

t
Qr      (2.23) 

It can be shown that although equation 2.23 is mathematically equivalent to equation 2.20 it is 

numerically far superior. 

If  is zero, the matrix (JS)
t
QJS + S

t
S has all its diagonal elements equal to unity. For a 

non-zero  the diagonal elements of (JS)
t
QJS + S

t
S will be greater than unity, though in 

general they will not be equal. Let the largest element of S
t
S be denoted as , referred to 

henceforth as the “Marquardt lambda”. Then the largest diagonal element of the scaled 

normal matrix (JS)
t
QJS + S

t
S of equation 2.23 will be 1 + . 

2.1.7 Determining the Marquardt Lambda 

PEST requires that the user supply an initial value for . During the first optimisation 

iteration PEST solves equation 2.23 for the parameter upgrade vector u using that user-

supplied . It then upgrades the parameters, substitutes them into the model, and evaluates the 

resulting objective function. PEST then tries another , lower by a user-supplied factor than 

the initial . If  is lowered,  is lowered yet again. However if  was raised by reducing  

below the initial , then  is raised above the initial lambda by the same user-supplied factor, 

a new set of parameters is obtained through solution of equation 2.23, and a new  is 

calculated. If  was lowered,  is raised again. PEST uses a number of different criteria to 

determine when to stop testing new ’s and proceed to the next optimisation iteration; see 

Section 4.2.2. Normally between one and four ’s need to be tested in this manner per 

optimisation iteration. 

At the next iteration PEST repeats the procedure, using as its starting  either the  from the 

previous iteration that provided the lowest  (if  needed to be raised from its initial value to 

achieve this ) or the previous iteration’s best  reduced by the user-supplied factor. In most 

cases this process results in an overall lowering of  as the estimation process progresses. 

Testing the effects of a few different ’s in this manner requires that PEST undertake a few 

extra model runs per optimisation iteration; however this process makes PEST very “robust”. 

If the optimisation procedure appears to be “bogged”, the adjustments made to  in this 

fashion often result in the determination of a parameter upgrade vector that gets the process 

moving again. 

2.1.8 Optimum Length of the Parameter Upgrade Vector 

Inclusion of the Marquardt parameter in equation 2.23 has the desired effect of rotating the 

parameter upgrade vector u towards the negative of the gradient vector. However while the 
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direction of u may now be favourable, its magnitude may not be optimum. 

Under the linearity assumption used in deriving all equations presented so far, it can be 

shown that the optimal parameter adjustment vector is given by u, where u is determined 

using equation 2.23 and  is calculated as 
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where, once again, the vector c represents the experimental observations, c0 represents their 

current model-calculated counterparts, wi is the weight pertaining to observation i, and i is 

given by 
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j
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j

n
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i




         (2.25a) 

ie. 

  = Ju          (2.25b) 

where J represents the Jacobian matrix once again. If b0 holds the current parameter set the 

new, upgraded set is calculated using the equation 

 b = b0 + u         (2.26) 

2.1.9 Predictive Analysis 

Let X represent the action of a linear model under calibration conditions. Let b represent the 

parameter vector for this model, while c is a vector of field or laboratory observations for 

which there are model-generated counterparts. As is explained in Section 2.1.2, when 

calibrating a model, it is PEST’s task to minimise an objective function defined as 

 = (c – Xb)
t
Q(c – Xb) 

where Q is the “cofactor matrix”, a diagonal matrix whose elements are the squares of 

observation weights. 

Let Z represent the same linear model under predictive conditions. Thus the action of the 

model when used in predictive mode can be represented by the equation 

 d = d = Zb         (2.27) 

where d is a 1  1 vector (ie. a scalar, d) representing a single model outcome (ie. prediction). 

Naturally, when run in predictive mode, the model operates on the same parameter vector as 

that on which it operates in calibration mode, ie. b. 
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The aim of predictive analysis is to maximise (minimise) d while “keeping the model 

calibrated”. d will be maximised (minimised) when the objective function associated with b 

lies on the min +  contour. min is the lowest achievable value of the objective function, 

while  is an acceptable increment to the objective function minimum such that the model can 

be considered calibrated as long as the objective function is less than min + ; see the 

discussion in Chapter 6 for further details. Thus the predictive analysis problem can be 

formulated as follows:- 

Find b such as to maximise (minimise) 

 Zb          (2.28a) 

subject to 

 (c – Xb)
t
Q(c – Xb) = 0       (2.28b) 

where 

 0 = min +          (2.28c) 

It can be shown that the solution to this problem is 
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where  is defined by the equation 
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Where predictive analysis is carried out for a nonlinear model the same equations are used. 

However in this case X is replaced by the model Jacobian matrix J, and a parameter upgrade 

vector is calculated instead of a solution vector. The solution process is then an iterative one 

in which the true solution is approached by repeated calculation of an upgrade vector based 

on repeated linearisation of the problem through determination of the Jacobian matrix. For 

further details see Cooley and Vecchia (1987) and Vecchia and Cooley (1987). 

Use of the Marquardt lambda in solving the nonlinear parameter estimation problem is 

discussed above. Its use in solving the nonlinear predictive analysis problem is very similar. 

As in the parameter estimation problem, PEST continually adjusts the Marquardt lambda 

through the solution process such that its value is optimal at all stages of this process. 

As a further numerical measure to solve the predictive analysis problem for a nonlinear 

model, PEST undertakes a line search in the direction of the parameter upgrade vector to 

determine the point at which this vector crosses the 0 contour. See Chapter 6 for further 

details. 

2.1.10 Regularisation 
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The theory which underpins PEST’s regularisation functionality bears some resemblance to 

that which underpins its predictive analysis functionality. As is explained in Section 2.1.2, 

when calibrating a model it is PEST’s task to minimise an objective function defined as 

m = (c – Xb)
t
Qm(c – Xb)       (2.30a) 

The “m” subscript introduced to the left side of equation 2.30, which is otherwise equivalent 

to equation 2.8, denotes the fact that the objective function is comprised of the sum of 

weighted squared differences between model outputs and field measurements (the “m” stands 

for “measurement”). The vector c is comprised of field measurements, while the vector b is 

comprised of the parameters which must be estimated. As has already been mentioned, Qm is 

a diagonal matrix whose elements are the squares of measurement weights. 

We wish to impose the requirement that a “regularisation objective function” r be also 

minimised by the parameter set which is estimated by PEST. r is defined by the equation 

r = (d – Zb)
t
Qr(d – Zb)       (2.30b) 

where Qr is a diagonal matrix comprised of the squares of weights assigned to the various 

“regularisation observations” which collectively comprise the vector d. The relationships by 

which the model-generated counterparts to these “observations” are calculated from the 

parameter values (constituting the vector b) are encapsulated in the matrix Z. (Note that if 

these relationships are not linear, a linear approximation to them can be calculated by taking 

derivatives with respect to parameters in the same way that the Jacobian matrix is calculated 

as a linear approximation to the model function.) As an example, each row of the matrix Z 

may be comprised of 0’s, except for two elements which are 1 and -1; the 1 and -1 elements 

occur at those of its columns which pertain to two parameters whose difference is taken. The 

“observed value” of this difference (ie. the element of the corresponding row of the vector d) 

might be zero, indicating that PEST should minimise this parameter difference insofar as this 

is possible while still allowing the model to fit the field data. If there are as many rows in the 

matrix Z as there are parameters in the model domain, and if each such row represents a 

single parameter difference, and if the “observed” difference is zero in each case, then 

imposition of the regularisation criterion is the imposition of a “maximum homogeneity” 

condition. There may, in fact, be more differences represented in the matrix Z than there are 

parameters in the model domain. This may occur if, for example, differences are formed in 

both the horizontal and vertical directions (or row and column directions) of a particular 

model domain to ensure maximum parameter uniformity in both of these directions. Similar 

matrices can be formed in order to impose a minimum curvature constraint or to implement 

any other type of regularisation criterion that the user may wish to impose (see Chapter 7 for 

more details). 

When working in “regularisation mode”, PEST’s task is to minimise r while ensuring that 

m is “suitably low”. Such a “suitably low” value will normally be slightly above the 

minimum value for m that could have been achieved if regularisation conditions had not 

been imposed. It is the user’s responsibility to select this value; it will be denoted as m
l
 (ie. 

the “limiting measurement objective function”). It is this ability which PEST gives the user to 

indicate in advance of the parameter estimation process the extent of model-to-measurement 

misfit that is tolerable in order to attempt to satisfy imposed regularisation constraints on 

parameter values that makes the regularisation methodology, as implemented by PEST, so 
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powerful. Thus the regularisation process must minimise r while enforcing the condition 

that 

 m  m
l
 

or, in practice, that 

 m = m
l
         (2.31) 

because a decrease in r will nearly always require an increase in m where parameter values 

are close to optimum. 

The constrained minimisation problem described above can be formulated as an 

unconstrained minimisation problem through the use of a Lagrange multiplier . Thus, with 

regularisation constraints imposed, the parameterisation problem consists in determining the 

elements of the vector b (ie. the values of the adjustable parameters) which minimise the 

“total” objective function t defined by the equation 

 t  = r + m        (2.32) 

while simultaneously finding the value for  which causes equation 2.31 to be satisfied. 

As was mentioned above, this problem is somewhat similar to the predictive analysis problem 

discussed in the previous section in that one function is minimised (in this case the 

regularisation objective function) while the objective function based on field or laboratory 

measurements is held at some upper limit selected by the user below which the model is 

deemed to be calibrated. 

An inspection of equation 2.32 reveals that the regularisation problem can be viewed from a 

slightly different angle. It can be formulated as a traditional nonlinear parameter estimation 

problem which attempts to estimate the parameter set b that provides the best fit between a 

set of observations and corresponding model outputs, with the observations consisting of both 

“measurement observations” and “regularisation observations”. The Lagrange multiplier  can 

then be considered as a factor by which to multiply the weights pertaining to the measurement 

observations in order to ensure that equation 2.31 is satisfied when the total objective 

function t is minimised. Alternatively, if equation 2.32 is divided by , the parameter 

estimation problem can also be seen as the problem of minimising 
 
defined as 

 = t  = r + m        (2.33) 

where  is the reciprocal of . With the objective function defined in this way, the reciprocal 

of the Lagrange multiplier can be seen to be equivalent to a “regularisation weight factor”, ie. 

the factor by which all “regularisation observations” are multiplied in formulation of the 

overall objective function, now defined as . Once again, the value of  must be such that 

equation 2.31 is satisfied. 

When undertaking problem regularisation, PEST minimises the objective function  defined 

by equation 2.33. During each optimisation iteration it calculates the regularisation weight 

factor  that results in equation 2.31 being satisfied. It does this using an iterative procedure 

based on linearised model and regularisation conditions. Once  has been determined, all 
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regularisation weights (ie. weights assigned by the user to the regularisation observations) are 

multiplied by this factor; a parameter upgrade vector is then calculated in the normal way. 

The problem is then linearised again (through calculation of a new Jacobian matrix) and the 

process is repeated. 

An alternative regularisation methodology known as “truncated singular value 

decomposition” is also implemented by PEST, together with a hybrid scheme which 

combines this method with the regularisation method discussed above. See Chapter 8 for 

details. 

2.1.11 Use of an Observation Covariance Matrix 

In the theory presented in Section 2.1.2, the squares of user-supplied observation weights 

comprise the elements of the diagonal matrix Q (often referred to as the “cofactor matrix”). 

The inverse of Q is proportional to the covariance matrix of the observations, the constant of 

proportionality being the “reference variance”. Because Q  is a diagonal matrix, so too is the 

observation covariance matrix. 

The use of observation weights in calculating the objective function is based on the premise 

that observations are independent, ie. that the “uncertainty” pertaining to any one observation 

bears no relationship to the “uncertainty” pertaining to any other observation. In practice, 

observation “uncertainty” in a calibration context is determined by the level of misfit between 

these observations and corresponding model outputs, ie. by the model-to-measurement 

residuals calculated at the end of the inversion process. If these residuals are expected to be 

uncorrelated, then observation uncertainties can be expressed in terms of individual 

observation weights. However if residuals are likely to show consistency over space and/or 

time for certain observation types, then it may not be appropriate to assume statistical 

independence for these observation types. In such cases it may be preferable to describe the 

uncertainties associated with these observations using an observation covariance matrix (or a 

matrix that is proportional to this matrix), rather than using a set of individual observation 

weights. 

The theory underpinning the use of observation weights presented in Section 2.1.2 is also 

applicable to the use of an observation covariance matrix in place of individual observation 

weights if the “cofactor matrix” Q is calculated as the inverse of a user-supplied observation 

covariance matrix. Note however that, as was mentioned above, a user-supplied observation 

covariance matrix can only be considered as proportional to the true observation covariance 

matrix; the latter can be determined after the inversion process is complete by multiplying the 

user-supplied covariance matrix by the reference variance determined through equation 2.5. 

At any stage of the optimisation process the objective function is computed using equation 

2.8a; this is equivalent to equation 2.8b when Q is a diagonal matrix whose elements are the 

squares of observation weights.  

Use of PEST’s regularisation functionality does not preclude use of a covariance matrix to 

characterise either or both of measurement and regularisation observations. However when 

PEST is used in this mode the covariance matrix supplied for the regularisation observations 

must be separate from that supplied for the measurement observations. If a covariance matrix 

is provided for the regularisation observations, PEST will calculate a “weight factor” by 

which to multiply the “regularisation cofactor matrix” Qr (calculated by PEST as the inverse 
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of the user-supplied regularisation covariance matrix), in order to satisfy the goal of the 

regularisation process, ie. that the measurement component of the objective function be no 

greater than the user-supplied threshold value of m
l 

while minimising the regularisation 

objective function r. 

The remainder of this section describes the theory behind PEST’s accommodation of the use 

of one or more observation covariance matrices in place of observation weights to 

characterise the uncertainty associated with groups of measurements and/or prior information 

equations. However, as the implementation of this theory within PEST takes place “behind 

the scenes”, it is not essential to the use of PEST that this theory be fully understood. 

Let c be a vector whose elements are stochastic variables, i.e. numbers with a random 

component. For the purposes of the present discussion, consider that the elements of c are the 

set of measurements to be used in the calibration process. Suppose that these measurements 

are statistically dependent on each other, and thus that the uncertainties associated with them 

must be represented by a covariance matrix rather than by a set of individual variances. 

Suppose that the covariance matrix associated with the elements of the vector c is the matrix 

C.  

Because C is a covariance matrix, it must be positive definite (which means that it is also 

symmetric). Let R be a matrix whose columns are comprised of the normalised eigenvectors 

of C.  It is easily shown that 

R
t
 =  R

-1
         (2.34) 

ie. that the transpose of R is also its inverse. Now let us introduce another stochastic vector d, 

calculable from the vector c using the relationship 

 d = R
t
c          (2.35) 

It is easy to show that the covariance matrix of d (which will be named D) can be calculated 

from the covariance matrix of c (ie. C) using the relationship 

 D = R
t
CR         (2.36) 

and that D is a diagonal matrix whose elements are equal to the eigenvalues of C. This is a 

very important relationship, for it expresses the fact that through a simple rotational 

transformation of the original stochastic vector c, another stochastic vector d can be obtained 

whose elements are statistically independent. Hence if the “rotated” observation vector d is 

used as a basis for parameter estimation instead of the original observation vector c, weights 

can be used in the inversion equations instead of a covariance matrix. 

Equation 2.11 describes how optimised parameter values (as encapsulated in the vector b) are 

calculated from measurements (ie. the vector c) for a linear model. (For the sake of simplicity, 

the present discussion is restricted to a linear model; the theory is easily extended to a 

nonlinear model using the methodology presented above.) The equation (repeated from 

equation 2.11) is 

 b = (X
t
QX)

-1
X

t
Qc        (2.37) 
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If the elements of the measurement vector c are not statistically independent, then a properly 

chosen cofactor matrix Q of equation 2.37 should possess non-diagonal elements and, as is 

explained above, be proportional to the inverse of the covariance matrix of c. 

It is not too difficult to show that the vector of optimised parameter values b can then be 

calculated using the equation 

 b = (Y
t
TY)

-1
Y

t
Td        (2.38) 

where d is given by equation 2.35, and Y is calculated from the model matrix X using the 

equation 

 Y = R
t
X         (2.39) 

The matrix T in equation 2.38 is related to the inverse of the matrix D (the covariance matrix 

of d) by the same constant of proportionality that occurs in the relationship between the 

matrix Q of equation 2.37 and the inverse of the matrix C (the covariance matrix of c). 

Equation 2.38 thus demonstrates that the vector b can be calculated from the rotated 

measurement vector d using exactly the same mathematics as that used to compute b from the 

non-rotated measurement vector c, provided that the model matrix X is also rotated, and that 

the cofactor matrix of d is used rather than the cofactor matrix of c. What is important 

however is that, for the reasons outlined above, T is a diagonal matrix whose elements are 

proportional to the inverse of the eigenvalues of C (and can thus be expressed as a set of 

weights). Equation 2.38 (with appropriate modifications for use in the context of a nonlinear 

model) is the one used by PEST to calculate optimised parameter values; however this is 

transparent to the user. 

The relationship between the parameter covariance matrix C(b) and the observation cofactor 

matrix Q is expressed by equation 2.12, which is repeated below:- 

C(b) =
2
(X

t
QX)

-1
        (2.40) 

Recall that 
2
 is the “reference variance”. Equation 2.40 is applicable whether weights or a 

covariance matrix are used to specify observation uncertainties, ie. whether Q is a diagonal 

matrix or not. It is easily shown that the parameter covariance matrix can also be calculated 

from the rotated observation cofactor matrix T using the formula 

C(b) =
2
(Y

t
TY)

-1
        (2.41) 

Recall that T is diagonal because rotation of the vector c to yield the vector d results in an 

uncorrelated set of stochastic variables. 

It can also be shown that calculation of the objective function using equation 2.8a is 

equivalent to calculating it using the equation 

  =  (d - Yb)
t
 T(d - Yb)       (2.42) 

Once again, calculations made using equation 2.42 are based on the use of a rotated 

observation dataset, (ie. the vector d) complemented by a rotated model matrix vector (ie. the 
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matrix Y) and a rotated, diagonal, cofactor matrix T. 

2.1.12 Goodness of Fit 

When it is being used in parameter estimation mode, PEST aims to lower the objective 

function as far as it can be lowered. When used in predictive analysis mode, PEST aims to 

maximise or minimise a specified prediction while maintaining the model in a calibrated 

state, ie. while ensuring that the objective function rises no higher than a specified level. 

When working in regularisation mode PEST aims to maximise adherence to a certain 

“regularisation condition” (by minimising a regularisation objective function) while ensuring 

that the measurement objective function rises no higher than a specified level. In all of these 

cases, the extent to which model outputs are in agreement with their field-measured 

counterparts is apparent from the value of the objective function (or the “measurement 

objective function” when working in regularisation mode). 

Another measure of goodness of fit is provided by the correlation coefficient as defined in 

Cooley and Naff (1990). Unlike the objective function, the correlation coefficient is 

independent of the number of observations involved in the parameter estimation process, and 

of the absolute levels of uncertainty associated with those observations. Hence use of this 

measure of goodness of fit allows the results of different parameter estimation exercises to be 

directly compared. 

The correlation coefficient R is calculated as 
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where:- 

ci  is the i’th observation value, 

c0i   is the model-generated counterpart to the i’th observation value, 

m  is the mean value of weighted observations,  

mo is the mean of weighted model-generated counterparts to observations, and 

wi is the weight associated with the i’th observation (or “rotated observation” if a 

covariance matrix is used to specify observation uncertainty instead of 

individual observation weights). 

Generally R should be above 0.9 for the fit between model outputs and observations to be 

considered as acceptable (Hill, 1998). 

2.2 PEST’s Implementation of the Method 

So far, this chapter has discussed the theory behind PEST, viz. the method of weighted least 

squares and its application to nonlinear parameter estimation and predictive analysis. The 
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remainder of this chapter discusses the ways in which the least squares method has been 

implemented in PEST to provide a general, robust, parameter estimation and predictive 

analysis package that is useable across a wide range of model types. 

2.2.1 Parameter Transformation 

PEST allows for the logarithmic transformation of some or all parameters. It often happens 

that if PEST (or any other parameter estimation program) is asked to estimate the log of a 

parameter, rather than the parameter itself, the process is much faster and more stable than it 

would otherwise be; however sometimes the opposite can occur. 

PEST requires that each parameter be designated, in the PEST control file,  as untransformed, 

log-transformed, fixed or tied; the latter two options will be discussed shortly. If a parameter 

is log-transformed, any prior information pertaining to that parameter must pertain to the log 

(to base 10) of that parameter. Also, elements of the covariance, correlation coefficient and 

eigenvector matrices calculated by PEST pertaining to that parameter refer to the log of the 

parameter rather than to the parameter itself. However PEST parameter estimates and 

confidence intervals listed in the run record file refer to the actual parameter. 

You should never ask PEST to logarithmically transform a parameter with a negative or zero 

initial value, or a parameter that may become negative or zero in the course of the estimation 

process. Hence a log-transformed parameter must be supplied with a positive lower bound 

(see below). 

PEST is informed if a parameter is log-transformed through the parameter variable 

PARTRANS in the PEST control file; see Section 4.2.4. Note that more complex parameter 

transformations can be undertaken using the parameter preprocessor PAR2PAR; see Section 

11.11. 

2.2.2 Fixed and Tied Parameters 

A parameter can be identified in a template file (see Chapter 3) yet take no part in the 

parameter estimation process. In this case it must be declared as “fixed” so that its value does 

not vary from that assigned to it as its initial estimate in the PEST control file. 

PEST allows one or more parameters to be tied (ie. linked) to a “parent” parameter. PEST 

does not estimate a value for a tied parameter; rather it adjusts the parameter during the 

estimation process such that it maintains the same ratio with its parent parameter as that 

provided through the initial estimates of the respective parameters. Thus tied parameters 

“piggyback” on their parent parameters. Note that a parameter cannot be tied to a parameter 

which is either fixed, or tied to another parameter itself. 

PEST is informed whether a parameter is fixed or tied through the parameter variable 

PARTRANS in the PEST control file; see Section 4.2.4. 

2.2.3 Upper and Lower Parameter Bounds 

As well as supplying an initial estimate for each parameter, you are also required to supply 

parameter upper and lower bounds. These bounds define the maximum and minimum values 
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which a parameter is allowed to assume during the optimisation process. They are provided 

through the parameter variables PARLBND and PARUBND in the PEST control file. 

It is important that upper and lower parameter bounds be chosen wisely. For many models 

parameters can lie only within certain well-defined domains determined by the theory on 

which the model is based. In such cases model-generated floating-point errors may result if 

PEST is not prevented from adjusting a parameter to a value outside its allowed domain. For 

example if, at some stage during a model run, the logarithm or square root of a particular 

parameter is taken, then that parameter must be prevented from ever becoming negative (or 

zero if the model takes the log of the parameter). If the reciprocal is taken of a parameter, the 

parameter must never be zero. 

In some cases, where a large number of parameters are being estimated based on a large 

number of measurements, PEST may try to force a fit between model and measurements by 

adjusting some parameters to extremely large or extremely small values (especially if the 

measured values upon which the estimation process is based are not altogether consistent). 

Such extremely large or small values may, depending on the model, result in floating point 

errors or numerical convergence difficulties. Again, carefully chosen parameter bounds will 

circumvent this problem. 

If a parameter upgrade vector u is determined which would cause one or more parameters to 

move beyond their bounds, PEST adjusts u such that this does not occur, placing such 

parameters at their upper or lower bounds. On later iterations, special treatment is then 

provided for parameters which are at their allowed limits. If the components of both the 

upgrade vector and the negative of the gradient vector pertaining to a parameter at its upper or 

lower limit are such as to take the parameter out of bounds, then the parameter is temporarily 

frozen, and the parameter estimation problem reformulated with that parameter fixed at its 

limit; hence the new upgrade vector will not result in any adjustment to that parameter. If, 

after reformulation of the problem in this manner, there are parameters at their limits for 

which the parameter upgrade vector still points outward, with the negative of the gradient 

vector pointing inward, then these parameters, too, are temporarily frozen. This process 

continues until a parameter upgrade vector is calculated which either moves parameters from 

their bounds back into the allowed parameter domain, or leaves them fixed. 

The strength of this strategy is that it allows PEST to search along the boundaries of the 

parameter domain for the smallest  to which it has access when the global minimum of  

lies outside of the parameter domain, beyond PEST’s reach. 

At the beginning of each new optimisation iteration all temporarily-frozen parameters are 

freed, to allow them to move back inside the allowed parameter domain if solution of 

equation 2.23 deems this necessary. (However this can be overridden if desired in order to 

avoid re-calculating derivatives for frozen parameters.) The stepwise, temporary freezing of 

parameters is then repeated as described above. 

2.2.4 Scale and Offset 

For every parameter you must supply a scale and offset (variables SCALE and OFFSET in the 

PEST control file). Before writing a parameter value to a model input file, PEST multiplies 

this value by the scale and adds the offset. 
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The scale and offset variables can be very convenient in some situations. For example, in a 

particular model a certain parameter may have a non-zero base level; you may wish to 

redefine the parameter as the actual parameter minus this base level. Elevation may be such a 

parameter. If a reference elevation is subtracted from the true, model-required elevation, the 

result may be thickness; this may be a more “natural” parameter for PEST to optimise than 

elevation. In particular it may make more sense to express a derivative increment (see Section 

2.3) as a fraction of thickness than as a fraction of elevation, to which an arbitrary datum has 

been added. Also, the optimisation process may be better behaved if the thickness parameter 

is log-transformed; again it would be surprising if the log-transformation of elevation 

improved optimisation performance due to the arbitrary datum with respect to which an 

elevation must be expressed. PEST can thus optimise thickness, converting this thickness to 

elevation every time it writes a model input file by adding the reference elevation stored as 

the parameter offset.  

The scale variable is equally useful. A model parameter may be such that it can only take on 

negative values; such a parameter cannot be log-transformed. However if a new parameter is 

defined as the negative of the model-required parameter, PEST can optimise this new 

parameter, log-transforming it if necessary to enhance optimisation efficiency. Just before it 

writes the parameter to a model input file, PEST multiplies it by its SCALE variable (-1 in 

this case) so that the model receives the parameter it expects. 

If you do not wish a parameter to be scaled and offset, enter its scale as 1 and its offset as 

zero. 

It should be stressed that PEST is oblivious to a parameter’s scale and offset until the moment 

it writes its value to a model input file. It is at this point (and only this point) that it first 

multiplies by the scale and then adds the offset; the scale and offset take no other part in the 

parameter estimation process. Note also that fixed and tied parameters must each be supplied 

with a scale and offset, just like their adjustable (log-transformed and untransformed) 

counterparts. 

2.2.5 Parameter Change Limits 

As has already been discussed, no parameter can be adjusted by PEST above its upper bound 

or below its lower bound. However, there is a further limit on parameter changes, determined 

by the amount by which a parameter is permitted to change in any one optimisation iteration. 

If the model under PEST’s control exhibits reasonably linear behaviour, the updated 

parameter set determined by equations 2.23, 2.24, and 2.26 will result in a lowering of the 

objective function. However if the model is highly nonlinear, the parameter upgrade vector 

u may “overshoot” the objective function minimum, and the new value of  may actually be 

worse than the old one. This is because equations 2.23 and 2.24 are based on a linearity 

assumption which may not extend as far into parameter space from the current parameter 

estimates as the magnitude of the upgrade vector which they predict.  

To obviate the possibility of overshoot, it is good practice to place a reasonable limit on the 

maximum change that any adjustable parameter is allowed to undergo in any one optimisation 

iteration. Such limits may be of two types, viz. “relative” and “factor”. You must inform 

PEST, through the parameter variable PARCHGLIM on the PEST control file, which type of 
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change limit applies to each adjustable parameter. Two other PEST input variables, 

RELPARMAX and FACPARMAX, provide the maximum allowed relative and factor 

changes for all relative-limited and factor-limited parameters, respectively. Values for these 

variables are supplied at the beginning of the inversion process. They can also be altered part 

of the way through a PEST run if desired; see Section 5.6. Note that log-transformed 

parameters must be factor-limited. 

Let f represent the user-defined maximum allowed parameter factor change for factor-limited 

parameters (ie. FACPARMAX); f must be greater than unity. Then if b0 is the value of a 

particular factor-limited parameter at the beginning of an optimisation iteration, the value b of 

this same parameter at the beginning of the next optimisation iteration will lie between the 

limits 

 b0/f  b  fb0         (2.44a) 

if b0 is positive, and 

 fb0  b  b0/f         (2.44b) 

if b0 is negative. Note that if a parameter is subject to factor-limited changes, it can never 

change sign. 

Let r represent the user-defined maximum allowed relative parameter change for all relative-

limited parameters (ie. RELPARMAX); r can be any positive number. Then if b0 is the value 

of a particular relative-limited parameter at the beginning of an optimisation iteration, its 

value b at the beginning of the next optimisation iteration will be such that  

 b - b0/b0  r        (2.45) 

In this case, unless r is less than or equal to unity, a parameter can, indeed, change sign. 

However there may be a danger in using a relative limit for some types of parameters in that 

if r is 1 or greater, b may fall to a minute fraction of b0 (or even to zero), without 

transgressing the parameter change limit. For some types of parameters in some models this 

will be fine; in other cases a parameter factor change of this magnitude may significantly 

transgress model linearity limits. 

In implementing the conditions set by equations 2.44 and 2.45, PEST limits the magnitude of 

the parameter upgrade vector u such that neither of these equations is violated. Naturally, if 

only one type of parameter change limit is featured in a current PEST run (ie. parameters are 

all factor-limited or are all relative-limited) only the pertinent one of these equations will 

need to be obeyed. 

If, in the course of an optimisation run, PEST assigns to a parameter a value which is very 

small in comparison with its initial value, then either of equations 2.44 or 2.45 may place an 

undue restriction on subsequent parameter adjustments. Thus if b0 for one parameter is very 

small, the changes to all parameters may be set intolerably small so that equation 2.44 or 

equation 2.45 is obeyed for this one parameter. To circumvent this problem, PEST provides 

another input variable, FACORIG, which allows the user to limit the effect that an unduly 

low parameter value can have in this regard. If the absolute value of a parameter is less than 
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FACORIG times its initial absolute value and PEST wishes to adjust that parameter such that 

its absolute value will increase, then FACORIG times its initial value is substituted into 

equation 2.44 and the denominator of equation 2.45 for the parameter’s current value b0. A 

suitable value for FACORIG varies from case to case, though 0.001 is often appropriate. 

Note, however, that FACORIG is not used to adjust change limits for log-transformed 

parameters. For more information on FACORIG see Section 4.2.2. 

It should be noted that problems such as those described above incurred by parameters with 

low absolute values can also be prevented from occurring by providing such parameters with 

a suitable OFFSET value, accompanied by appropriate lower/upper bounds that prevent them 

from being assigned such troublesome values. 

2.2.6 Damping of Parameter Changes 

Parameter over-adjustment and any resulting oscillatory behaviour of the parameter 

estimation process is further mitigated by the “damping” of potentially oscillatory parameter 

changes. The method used by PEST is based on a technique described by Cooley (1983) and 

used by Hill (1992). To see how it works, suppose that a parameter upgrade vector u has just 

been determined using equations 2.23, 2.24 and 2.26. Suppose, further, that this upgrade 

vector causes no parameter values to exceed their bounds, and that all parameter changes are 

within factor and relative limits.  

For relative-limited parameters, let the parameter undergoing the proposed relative change of 

greatest magnitude be parameter i; let its proposed relative change be pi. For factor-limited 

parameters which are not log-transformed, define qj for parameter j as 

 qj = uj /(fbj - bj ) if uj  and bj  have the same sign, and 

           (2.46) 

 qj = uj  /(bj - bj /f) if uj  and bj  have the opposite sign 

where bj is the current value for the j’th parameter and f is the maximum allowed factor 

change for all factor-limited parameters. Let the parameter for which the absolute value of q 

is greatest be parameter l, and let q for this parameter be ql . Finally, let the log-transformed 

parameter for which the absolute value of u is greatest be parameter k, and let the element of 

u pertaining to this parameter be uk. Let i0, l0, k0, p0i, q0l and 0u0k define these same 

quantities for the previous iteration except that, for the previous iteration, they are defined in 

terms of actual parameter changes rather than proposed ones. Now define s1, s2 and s3 such 

that 

 s1 = pi /p0i   if i = i0;  

 s1 = 0    otherwise,     (2.47a) 

 

 s2 = ql /q0l   if l = l0; 

 s2 = 0    otherwise, and     (2.47b) 

 

 s3 = uk /0u0k   if k = k0; 

 s3 = 0    otherwise.     (2.47c) 

Let s be the minimum of s1, s2 and s3 and define  as: 
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  = (3 + s)/(3 + s)  if s  -1     (2.48a) 

  = 1/(2s)   otherwise.     (2.48b) 

Then oscillatory behaviour of the parameter estimation process can be mitigated by defining a 

new parameter upgrade vector v by 

 v = u         (2.49) 

2.2.7 Temporary Holding of Insensitive Parameters 

The possibility of a parameter estimation process running smoothly and efficiently decreases 

with the number of parameters being estimated. In highly parameterised problems some 

parameters are likely to be relatively insensitive in comparison with other parameters. As a 

result of their insensitivity, PEST may decide that large changes are required for their values 

if they are to make any contribution to reducing the objective function. However, as is 

explained in Section 2.2.5, limits are set on parameter changes. These limits are enforced in 

such a way that the magnitude (but not the direction) of the parameter upgrade vector is 

reduced (if necessary) such that no parameter transgresses these limits. The necessity for such 

limits has already been discussed. 

If a parameter is particularly insensitive, it may dominate the parameter upgrade vector, ie. 

the magnitude of the change calculated by PEST for this parameter may be far greater than 

that calculated for any other parameter. When its change has been relative- or factor-limited 

in accordance with the user-supplied settings for RELPARMAX or FACPARMAX (and the 

magnitude of the parameter upgrade vector has thus been considerably reduced), other 

parameters (including far more sensitive ones) may not change much at all, with the result 

that at the end of the optimisation iteration the objective function may have been lowered 

very little. The same process may then be repeated on the next iteration on account of the 

same, or another, insensitive parameter. The result may be that convergence takes place 

intolerably slowly (or not at all), with a huge wastage of model runs. 

This phenomenon can be avoided by temporarily holding troublesome parameters at their 

current value for an iteration or two. Such parameters are then not involved in the calculation 

of the parameter upgrade vector and hence do not get the chance to have an adverse impact on 

it. Offending parameters can be identified as those undergoing the maximum relative- or 

factor-limited changes during a particular optimisation iteration where this maximum change 

is equal to RELPARMAX or FACPARMAX, or as those parameters whose current 

sensitivity is very low, PEST recording information by which to make this assessment every 

time it calculates the Jacobian matrix. 

PEST records the “composite sensitivity” of each parameter (ie. the magnitude of the column 

of the Jacobian matrix pertaining to that parameter modulated by the weight attached to each 

observation divided by the number of observations, or Vii/m where Vii is the inverse of Sii 

defined in equation 2.22 and m is the number of observations - see equation 5.1), to a 

“parameter sensitivity file”, this file being updated during every optimisation iteration. Those 

parameters with the lowest sensitivities are the most likely to cause trouble and hence the 

most likely candidates for being temporarily held if the parameter estimation process 

proceeds too slowly as a result of one or more parameters encountering their relative or factor 

limits, thus restricting alterations made to other parameters to ineffectual levels. See Section 
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5.6 for further details. 

2.2.8 Components of the Objective Function 

As has already been discussed, the objective function is calculated as the squared sum of 

weighted residuals (including prior information). If is often of interest to know what 

contribution certain observations, or groups of observations, make to the objective function. 

This is possible through the use of “observation groups”. Each observation, and each item of 

prior information, must be assigned to a group; the number and names of such groups are 

specified by the user.  

The ability to calculate the contribution made by individual observations, or groups of 

observations, to the objective function is useful in situations where the user wishes that 

different types of information contribute an approximately equal amount to the value of the 

objective function. This ensures that no observation groupings are either “drowned” by other 

information, or dominate the inversion process.  

2.2.9 Termination Criteria 

PEST updates parameters using equations derived on the basis of a linearity assumption 

which is not met if the model is nonlinear. Nevertheless, by iteratively updating the 

parameters in accordance with these equations as many times as is necessary, an optimal 

parameter set will mostly be obtained in the end. When working in parameter estimation 

mode the optimal set of parameters is that set for which the objective function is at its 

minimum. 

PEST uses a number of different criteria to determine when to halt this iterative process. Note 

that only one of them (zero-valued objective function) is a guarantee that the objective 

function minimum has been obtained. In difficult circumstances, any of the other termination 

criteria could be satisfied when the objective function is well above its minimum and 

parameters are far from optimal. Nevertheless, in most cases these termination criteria do, 

indeed, signify convergence of the adjustable parameters to their optimal values. In any case, 

PEST has to stop executing sometime and each of the termination criteria described in this 

section provide as good a reason to stop as any. If these criteria are properly set through user-

provided PEST input variables, you can be reasonably assured that when PEST terminates the 

parameter estimation process, either the optimal parameter set has been found or further 

PEST execution will not find it. 

There are two indicators that either the objective function is at, or very close to, its minimum, 

or that further PEST execution is unlikely to get it there. The first is the behaviour of the 

objective function itself. If it has been reduced very little, or not at all, over a number of 

successive iterations, the time has come to cease execution. The exact criteria determining 

this kind of termination are set through PEST input variables PHIREDSTP, NPHISTP and 

NPHINORED. If the lowest NPHISTP ’s achieved in all iterations carried out to date are 

within a distance of PHIREDSTP of each other relative to the lowest  achieved so far, or if 

NPHINORED iterations have elapsed since the lowest  was achieved, then PEST execution 

will cease. 

The second indicator of either convergence to the objective function minimum, or of the 



The PEST Algorithm  

 

2-26 

 

unlikelihood of achieving it, is the behaviour of the adjustable parameters. If successive 

iterations are effecting little change in parameter values, there is probably little to gain in 

continuing with PEST execution. Input variables RELPARSTP and NRELPAR set the exact 

criterion; if the largest relative parameter change over the last NRELPAR iterations has been 

RELPARSTP or less, PEST will not proceed to the next iteration. 

The input variable NOPTMAX sets an upper limit on the number of optimisation iterations 

which PEST carries out. PEST will terminate execution after NOPTMAX iterations, no 

matter what the current status of the objective function or of the parameter values. 

Other termination criteria are set internally. As has already been mentioned, PEST will 

terminate the optimisation process if it calculates a parameter set for which the objective 

function is zero. Also, if the gradient of the objective function with respect to all parameters 

is zero, or if a zero-valued parameter upgrade vector is determined, or if all parameters are 

simultaneously at their limits and the parameter upgrade vector points out of bounds, PEST 

will take its deliberations no further (unless it is currently calculating derivatives using 

forward differences and the option to use central differences is available to it, in which case it 

will switch to the use of central differences for greater derivatives accuracy before moving on 

to the next iteration – see Section 2.3).  

2.2.10 Operation in Predictive Analysis Mode 

Most aspects of PEST’s operation when undertaking predictive analysis are identical to its 

operation when undertaking parameter estimation, including the use of parameter bounds, 

relative and factor change limits, switching to the use of three-point derivatives calculation, 

prior information, the linking and fixing of parameters, the holding of parameters, logarithmic 

transformation, etc. All termination criteria that are used in parameter estimation mode also 

apply to PEST’s use in predictive analysis mode. However, as discussed in Section 6.2.2, a 

number of extra termination criteria, applicable only to this mode of operation, are available. 

As is explained in Section 6.1.5, if the initial parameter estimates supplied to PEST at the 

commencement of a predictive analysis run are a long way from optimum (ie. the initial 

objective function is far above 0 of equation 2.28), PEST will work in parameter estimation 

mode until it is able to “sniff” the 0 contour. The transition to predictive analysis mode as it 

approaches this contour is a gradual one, unseen by the user. 

2.2.11 Operation in Regularisation Mode 

Within each optimisation iteration PEST’s task when working in regularisation mode is 

identical to its task when working in parameter estimation mode, ie. it must minimise an 

objective function using a linearised version of the model encapsulated in a Jacobian matrix. 

However just before calculating the parameter upgrade vector, PEST calculates the 

appropriate “regularisation weight factor” to use for that iteration. This is the factor by which 

all of the weights pertaining to regularisation information are multiplied (in accordance with 

equation 2.33) prior to formulating the overall objective function whose task it is for PEST to 

minimise on that iteration. As parameters shift and the Jacobian matrix changes (an outcome 

of the nonlinear nature of most models), the regularisation weight factor also changes. Hence 

it needs to be re-calculated during every optimisation iteration. 
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Use of PEST in regularisation mode is fully described in Chapters 7 and 8 of this manual. As 

is discussed in these Chapters, the user is required to supply a few extra control variables to 

govern PEST’s operation in this mode. One of these is the “target measurement objective 

function” (ie. m
l
 of equation 2.31). Other variables govern the procedure by which  of 

equation 2.33 is calculated, and allow slight changes to be made to the criteria that govern 

termination of a PEST run. 

2.3 The Calculation of Derivatives 

2.3.1 Forward and Central Differences 

The ability to calculate the derivatives of all observations with respect to all adjustable 

parameters is fundamental to the Gauss-Marquardt-Levenberg method of parameter 

estimation; these derivatives are stored as the elements of the Jacobian matrix. Because PEST 

is independent of any model of which it takes control, it cannot calculate these derivatives 

using formulae specific to the model. Hence it must evaluate the derivatives itself using 

model-generated observations calculated on the basis of incrementally varied parameter 

values. (Note, however, that there may be occasions where a model can calculate derivatives 

of its outputs with respect to its adjustable parameters itself. If this is the case PEST can make 

direct use of these derivatives if they can be provided to it in the correct format. This is 

further described in Section 9 of this manual. Most of the discussion in the remainder of this 

Chapter assumes that PEST must calculate parameter derivatives itself.) 

Accuracy in derivatives calculation is fundamental to PEST’s success in optimising 

parameters. Experience has shown that the most common cause of PEST’s failure to find the 

global minimum of the objective function in parameter space is the presence of roundoff 

errors incurred in the calculation of derivatives. Fortunately, on most occasions, this problem 

can be circumvented by a wise choice of those input variables which determine how PEST 

evaluates derivatives for a particular model. 

The PEST input variables affecting derivatives calculation pertain to parameter “groups”. In 

the PEST control file, each parameter must be assigned to such a parameter group. The 

assignment of derivative variables to groups, rather than to individual parameters, introduces 

savings in memory and complexity. Furthermore, in many instances, parameters naturally fall 

into one or more categories; for example if the domain of a two- or three-dimensional spatial 

model is subdivided into zones of constant parameter value, and the parameters pertaining to 

all of these zones are being estimated, parameters of the same type for each such zone would 

normally belong to the same group. However, if you wish to treat each parameter differently 

as far as derivatives calculation is concerned, this can be achieved by assigning each 

parameter to a group of its own. 

The simplest way to calculate derivatives is through the method of forward differences. To 

calculate derivatives in this manner, PEST varies each parameter in turn by adding an 

increment to its current value (unless the current parameter value is at its upper bound, in 

which case PEST subtracts the increment), runs the model, reads the altered, model-generated 

observations and then approximates the derivative of each observation with respect to the 

incrementally-varied parameter as the observation increment divided by the parameter value 

increment. (For log-transformed parameters this quotient is then multiplied by the current 
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parameter value times the natural log of 10.)  Hence if derivatives with respect to all 

parameters are calculated by the method of forward differences, the filling of the Jacobian 

matrix requires that a number of model runs be carried out equal to the number of adjustable 

parameters; as the Jacobian matrix must be re-calculated for every optimisation iteration, each 

optimisation iteration requires at least as many model runs as there are adjustable parameters 

(plus at least another one to test parameter upgrades). The calculation of derivatives is by far 

the most time-consuming part of PEST’s parameter estimation procedure. 

If the parameter increment is properly chosen (see below), this method can work well. 

However it is often found that as the objective function minimum is approached, attainment 

of this minimum requires that parameters be calculated with greater accuracy than that 

afforded by the method of forward differences. Thus PEST also allows for derivatives to be 

calculated using three parameter values and corresponding observation values rather than two, 

as are used in the method of forward differences. Experience shows that derivatives 

calculated on this basis are accurate enough for most occasions provided, once again, that 

parameter increments are chosen wisely. As three-point derivative calculations are normally 

carried out by first adding an increment to a current parameter value and then subtracting an 

increment, the method is referred to herein as  the “central” method of derivatives calculation. 

Note that if a parameter value is at its upper bound, the parameter increment is subtracted 

once and then twice, the model being run each time; if it is at its lower bound the increment is 

added once and then twice. 

PEST uses one of three methods to calculate central derivatives. In the first or “outside 

points” method, the two outer parameter values (ie. that for which an increment has been 

added and that for which an increment has been subtracted) are used in the same finite-

difference type of calculation as is used in the forward difference method. This method yields 

more accurate derivative values than the forward difference method because the (unused) 

current parameter value is at the centre of the finite difference interval (except where the 

parameter is at its upper or lower bound). The second method is to define a parabola through 

the three parameter-observation pairs and to calculate the derivative of this parabola with 

respect to the incrementally-varied parameter at the current value of that parameter. This 

method, referred to as the “parabolic” method, can yield very accurate derivatives if model-

calculated observation values can be read from the model output file with sufficient precision. 

The third method is to use the least-squares principal to define a straight line of best fit 

through the three parameter-observation pairs and to take the derivative as the slope of this 

line. This method may work best where model-calculated observations cannot be read from 

the model output file with great precision, because of either deficiencies in the model’s 

numerical solution method, or because the model writes numbers to its output file using a 

limited number of significant figures. 

If the central method of derivatives calculation is used for all parameters, each optimisation 

iteration requires that at least twice as many model runs be carried out than there are 

adjustable parameters. If the central method is used for some parameters and the forward 

method for others, the number of model runs will lie somewhere between the number of 

adjustable parameters and twice the number of adjustable parameters 

2.3.2 Parameter Increments for Derivatives Calculation 

Because of the importance of reliable derivatives calculation, PEST provides considerable 
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flexibility in the way parameter increments are chosen. Mathematically, a parameter 

increment should be as small as possible so that the finite-difference method (or one of its 

three-point variants) provides a good approximation to the derivative in a theoretical sense 

(remember that the derivative is defined as the limit of the finite difference as the increment 

approaches zero). However, if the increment is made too small, accuracy of derivatives 

calculation will suffer because of the effect of roundoff errors as two, possibly large, numbers 

are subtracted to yield a much smaller number. In most cases intuition and experience, backed 

up by trial and error, will be your best guide in reconciling these conflicting demands on 

increment size.  

There are three PEST input variables, viz. INCTYP, DERINC and DERINCLB by which you 

can set the manner in which increments are calculated for the members of a particular 

parameter group. INCTYP determines the type of increment to use, for which there are three 

options, viz. “absolute”, “relative” and “rel_to_max”. If the increment type for a parameter 

group is “absolute”, the increment used for all parameters in the group is supplied as the input 

variable DERINC; this increment is added (and subtracted for central derivatives calculation) 

directly to a particular group member when calculating derivatives with respect to that 

parameter. However if the increment type is “relative”, DERINC is multiplied by the current 

absolute value of a parameter in order to determine the increment for that parameter. In this 

way the parameter increment is adjusted upwards and downwards as the parameter itself is 

adjusted upwards and downwards; this may have the effect of maintaining significance in the 

difference between model outcomes calculated on the basis of the incrementally varied 

parameter. If the increment type for a group is “rel_to_max”, the increment for all members 

of that group is calculated as DERINC times the absolute value of the group member of 

currently greatest absolute value. This can be a useful means by which to calculate increments 

for parameters whose values can vary widely, including down to zero. The “relative” aspect 

of the “rel_to_max” option may maintain model outcome difference significance as described 

above; however, because the increment is calculated as a fraction of the maximum absolute 

value occurring within a group, rather than as a fraction of each parameter, an individual 

parameter can attain near-zero values without its increment simultaneously dropping to zero. 

A further measure to protect against the occurrence of near-zero increments for “relative” and 

“rel_to_max” increment types is provided through the PEST group input variable 

DERINCLB. This variable contains a standby absolute increment which can be used in place 

of the “relative” or “rel_to_max” increment if the increment calculated for a particular 

parameter using either of these latter methods falls below the absolute increment value 

contained in DERINCLB.  

The group input variable FORCEN determines whether derivatives for the parameters of a 

particular group are calculated using the forward-difference method, the central-difference 

method or both; FORCEN can be designated as “always_2”, “always_3” or “switch”. If it is 

supplied as “always_2”, derivatives calculation is through forward differences for all 

parameters within the group throughout the estimation process; if it is “always_3”, central (ie. 

three-point) derivatives will be used for the entirety of the estimation process. However if it is 

“switch”, PEST will commence the optimisation process using forward differences for all 

members of the group, and switch to using central differences on the first occasion that the 

relative reduction in the objective function between optimisation iterations is less than the 

value contained in the PEST input variable PHIREDSWH. 
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Two group input variables pertain specifically to the calculation of derivatives using the 

central method, viz. variables DERINCMUL and DERMTHD. The latter variable must be 

one of “outside_pts”, “parabolic” or “best_fit”; this determines the method of central 

derivatives calculation to be used by PEST, the three options having already been discussed.  

The variable DERINCMUL contains the increment multiplier; this is the value by which 

DERINC is multiplied when it is used to evaluate increments for any of the three central 

derivatives methods.  Sometimes it is useful to employ larger increments for central 

derivatives calculation than for forward derivatives calculation, especially where the model 

output dependence on parameter values is “bumpy” (see the next section). Use of the higher-

order interpolation scheme provided by the parabolic method may allow you to place 

parameter values, and hence model-generated observation values, farther apart for the 

calculation of derivatives; this may have the effect of increasing the degree of significance of 

the resulting differences involved in the derivative calculation. However if the increment is 

raised too high, derivative precision must ultimately fall. Note that through DERINCMUL 

you can also reduce the increment used for central derivatives calculation if you wish.  

For increments calculated using the “relative” and “rel_to_max” methods, the variable 

DERINCLB has the same role in central derivatives calculation as it does in forward 

derivatives calculation, viz. to place a lower limit on the increment absolute value. Note, 

however, that DERINCLB is not multiplied by DERINCMUL when derivatives are calculated 

using the central method. 

If a parameter is log-transformed then it is wise that its increment be calculated using the 

“relative” method, though PEST does not insist on this. 

As PEST reads the data contained in its input control file, it will object if a parameter 

increment (either read directly as “absolute” or calculated from initial parameter values as 

“relative” or “rel_to_max”) exceeds the range of values allowed for that parameter (as 

defined by the parameter’s upper and lower bounds) divided by 3.2, as the increment is then 

too large compared with the width of the parameter domain. However should this eventuality 

arise later in the course of the estimation process (as may happen if certain parameter values 

grow large and increments calculated from them as “relative” or “rel_to_max” then exceed 

the parameter domain width divided by 3.2) PEST will automatically adjust the increment so 

that parameter limits are not transgressed as the increment is added and/or subtracted from the 

current parameter value for the calculation of derivatives. 

When choosing an increment for a parameter, care must be taken to ensure that the parameter 

can be written to the model input file with sufficient precision to distinguish an incremented 

parameter value from one which has not been incremented. Thus, for example, if a model 

input file template is such that a particular parameter value must be written to a space which 

is four characters wide, and if the increment type for that parameter is “absolute” and the 

increment value is 0.0001 while the current parameter value is .01, it will not be possible to 

discriminate between the parameter with and without its increment added. To rectify this 

situation, you should either increase the parameter field width in the template file (making 

sure that the model can still read the parameter) or increase the increment to a value whereby 

the incremented parameter is distinguishable from the non-incremented parameter in a field 

width of only four characters. 

It should be pointed out that PEST writes a parameter value to a model input file with the 
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maximum possible precision, given the parameter field width provided in the pertinent 

template file. Also, for the purposes of derivatives calculation, PEST adjusts a parameter 

increment to be exactly equal to the difference between a current parameter value and the 

incremented value of that parameter as represented (possibly with limited precision) in the 

model input file, as read by the model.  

2.3.3 How to Obtain Derivatives You Can Trust 

Reliability of derivatives calculation can suffer if the model which you are trying to 

parameterise does not write its outcomes to its output file using many significant figures. If 

you have any control over the precision with which a model writes its output data, you should 

request that the maximum possible precision of representation be used. Although PEST will 

happily attempt an optimisation on the basis of limited-precision model-generated 

observations, its ability to find an objective function minimum decreases as the precision of 

these model-generated observations decreases. Furthermore, the greater the number of 

parameters which you are simultaneously trying to estimate, the greater will be the deleterious 

effects of limited precision of model output. 

If a model is comprised of multiple sub-model executables run by PEST through a batch file, 

then you should also ensure that numbers are transferred between these various sub-models 

with maximum precision. Thus every sub-model comprising the composite model should 

record numbers to those of its output files which are read by other sub-models with maximum 

numerical precision. 

Many models calculate their outcomes using one or a combination of numerical 

approximations to differential equations, for example the finite-difference method, finite-

element method, boundary element method etc. Problems which are continuous in space 

and/or time are approximated by discrete representations of the same problem in order that 

the partial differential equation(s) describing the original problem can be cast as a matrix 

equation of high order. The matrix equation is often solved by an iterative technique (for 

example preconditioned conjugate gradient, alternating direction implicit etc.) in which the 

solution vector is successively approximated, the approximation being fine-tuned until it is 

judged that “convergence” has been attained. Most such iterative matrix solution schemes 

judge that the solution is acceptable when no element of the solution vector varies by more 

than a user-specified tolerance between successive iterations. If this threshold is set too large, 

model precision is reduced. If it is set too small, solution convergence may not be attainable; 

in any case, the smaller it is set, the greater will be the model computation time. 

If a numerical model of this type is to be used with PEST, it is essential that any variables 

governing the numerical solution procedure be set in favour of precision over time. Although 

the model run-time may be much greater as a result, it would be false economy to give 

reduced computation time precedence over output precision. Accurate derivatives calculation 

depends on accurate calculation of model outcomes. If PEST is trying to estimate model 

parameters on the basis of imprecise model-generated observations, derivatives calculation 

will suffer, and with it PEST’s chances of finding the optimal parameter set. Even if PEST is 

still able to find the optimal parameter set (which it often will), it may require more 

optimisation iterations to do so, resulting in a greater overall number of model runs, removing 

any advantages gained in reducing the time required for a single model run. 
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Even after you have instructed the model to write to its output file with as much precision as 

possible, and you have adjusted the model’s solution settings for greatest precision, model-

generated observations may still be “granular” in that the relationship between these 

observations and the model parameters may be “bumpy” rather than continuous. In this case it 

may be wise to set parameter increments larger than you normally would. If a parameter 

increment is set too small PEST may calculate a local, erroneous “bump” derivative rather 

than a derivative that reflects an observation’s true dependence on a parameter’s value. While 

use of a large increment incurs penalties due to poor representation of the derivative by a 

finite difference (especially for highly nonlinear models), this can be mitigated by the use of 

one of the central methods of derivatives calculation available in PEST, particularly the 

parabolic and best-fit methods. Due to its second order representation of the observation-

parameter relationship, the parabolic method can generate reliable derivatives even for large 

parameter increments. However, if model outcomes are really bumpy, the best-fit method 

may be more accurate. Trial and error will determine the best method for the occasion. 

2.3.4 Model-Calculated Derivatives 

As has been discussed above, the calculation of derivatives by finite differences is both time-

consuming and numerically intensive. If a model can calculate derivatives of its outputs with 

respect to its adjustable parameters itself, use of these derivatives is normally extremely 

beneficial to the parameter estimation process. This is a result of the greater accuracy with 

which a model can normally calculate its own derivatives (especially if these are calculated 

using analytical equations), and the likelihood that a model can undertake such calculations 

comparatively quickly through modification of the calculations that it undertakes in the 

normal simulation process. Hence, if they are available, model-calculated derivatives should 

be used by PEST in preference to finite-difference based derivatives. 

Chapter 9 of this manual describes the mechanism by which PEST can receive derivatives 

calculated internally by a model. In summary, this kind of model-PEST interaction requires 

that the model generate a file in which these derivatives are recorded. Because the calculation 

of derivatives by the model may place an extra computational burden on the model’s 

shoulders, it is sometimes necessary that the model be run in a slightly different manner when 

calculating derivatives from that in which it is run when undertaking normal simulation. This 

can be accommodated through the use of multiple model command lines and through “PEST-

to-model messaging”. See Chapter 9 for a discussion of both of these. 

As is also described in Chapter 9 there will be some situations (especially those involving 

calibration and predictive analysis for complex models) in which it is possible for a model to 

calculate some of its derivatives but not others. In cases such as this, PEST can accept those 

derivatives from the model which the model is capable of calculating, while computing the 

remaining derivatives itself by the traditional method of finite differences. 
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3. The Model-PEST Interface 

3.1 PEST Input Files 

PEST requires three types of input file. These are: 

 template files, one for each model input file on which parameters are identified, 

 instruction files, one for each model output file on which model-generated 

observations are identified, and 

 an input control file, supplying PEST with the names of all template and instruction 

files, the names of the corresponding model input and output files, the problem size, 

control variables, initial parameter values, measurement values and weights, etc. 

This chapter describes the first two of these file types in detail; the PEST control file is 

discussed in Chapter 4. Template files and instruction files can be written using a general-

purpose text editor following the specifications set out in this chapter. Once built, they can be 

checked for correctness and consistency using the utility programs TEMPCHEK, INSCHEK 

and PESTCHEK; these programs are described in Chapter 11 of this manual. 

Note that in this and other chapters of this manual, the word “observations” is used to denote 

those particular model outcomes for which there are corresponding laboratory or field data. 

For clarity, these numbers are often referred to as “model-generated observations” to 

distinguish them from their laboratory- or field-acquired counterparts which are referred to as 

“measurements” or “laboratory or field observations”. 

3.2 Template Files 

3.2.1 Model Input Files 

Whenever PEST runs a model, as it must do many times in the course of the optimisation 

process, it must first write parameter values to the model input files which hold them. 

Whether the model is being run to calculate the objective function arising from user-supplied 

initial parameter values, to test a parameter upgrade, or to calculate the derivatives of 

observations with respect to a particular parameter, PEST provides a set of parameter values 

which it wants the model to use for that particular run. The only way that the model can 

access these values is to read them from its input file(s). 

Some models read some or all of their data from the terminal, the user being required to 

supply these data items in response to model prompts. This can also be done through a file. If 

you write to a file the responses which you would normally supply to a model through the 

terminal, you can “redirect” these responses to the model using the “<” symbol on the model 

command line. Thus if your model is run using the command “model”, and you type your 

responses in advance to the file file.inp, then you (and PEST) can run the model without 

having to supply terminal input using the command 

model < file.inp 
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If file.inp contains parameters which PEST must optimise, a template can be built for it as if it 

were any other model input file. 

A model may read many input files; however a template is needed only for those input files 

which contain parameters requiring optimisation. PEST does not need to know about any of 

the other model input files. 

PEST can only write parameters to ASCII (ie. text) input files. If a model requires a binary 

input file, you must write a program which translates data written to an ASCII file to binary 

form. The translator program, and then the model, can be run in sequence by listing them in a 

batch file which PEST runs as the model. The ASCII input file to the translator program will 

then become a model input file, for which a template is required. 

A model input file can be of any length. However PEST insists that it be no more than 2000 

characters in width. The same applies to template files. It is suggested that template files be 

provided with the extension “.tpl” in order to distinguish them from other types of file. 

3.2.2 An Example 

A template file receives its name from the fact that it is simply a replica of a model input file 

except that the space occupied by each parameter in the latter file is replaced by a sequence of 

characters which identify the space as belonging to that parameter. 

Consider the model input file shown in Example 3.1; this file supplies data to a program 

which computes the “apparent resistivity” on the surface of a layered half-space for different 

surface electrode configurations. Suppose that we wish to use this program (ie. model) to 

estimate the properties for each of three half-space layers from apparent resistivity data 

collected on the surface of the half-space. The parameters for which we want estimates are the 

resistivity and thickness of the upper two layers and the resistivity of the third (its thickness is 

infinite). A suitable template file appears in Example 3.2.  
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MODEL INPUT FILE 

3, 19                          no. of layers, no. of spacings 

1.0, 1.0                        resistivity, thickness: layer 1 

40.0, 20.0                     resistivity, thickness: layer 2 

5.0                            resistivity: layer 3 

1.0                            electrode spacings 

1.47 

2.15 

3.16 

4.64 

6.81 

10.0 

14.9 

21.5 

31.6 

46.4 

68.1 

100 

149 

215 

316 

464 

681 

1000 

Example 3.1 A model input file. 

ptf # 

MODEL INPUT FILE 

3, 19      no. of layers, no. of spacings 

#res1     #,#t1        #       resistivity, thickness: layer 1 

#res2     #,#t2        #       resistivity, thickness: layer 2 

#res3     #          resistivity: layer 3 

1.0      electrode spacings 

1.47 

2.15 

3.16 

4.64 

6.81 

10.0 

14.9 

21.5 

31.6 

46.4 

68.1 

100 

149 

215 

316 

464 

681 

1000 

Example 3.2 A template file. 
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3.2.3 The Parameter Delimiter 

As Example 3.2 shows, the first line of a template file must contain the letters “ptf” followed 

by a space, followed by a single character (“ptf” stands for “PEST template file”). The 

character following the space is the “parameter delimiter”. In a template file, a “parameter 

space” is identified as the set of characters between and including a pair of parameter 

delimiters. When PEST writes a model input file based on a template file, it replaces all 

characters between and including these parameter delimiters by a number representing the 

current value of the parameter that owns the space; that parameter is identified by name 

within the parameter space, between the parameter delimiters. 

You must choose the parameter delimiter yourself; however your choice is restricted in that 

the characters [a-z], [A-Z] and [0-9] are invalid. The parameter delimiter character must 

appear nowhere within the template file except in its capacity as a parameter delimiter, for 

whenever PEST encounters that character in a template file it assumes that it is defining a 

parameter space. 

3.2.4 Parameter Names 

All parameters are referenced by name. Parameter references are required both in template 

files (where the locations of parameters on model input files are identified) and on the PEST 

control file (where parameter initial values, lower and upper bounds and other information are 

provided). Parameter names can be from one to twelve characters in length, any characters 

being legal except for the space character and the parameter delimiter character. Parameter 

names are case-insensitive. 

Each parameter space is defined by two parameter delimiters; the name of the parameter to 

which the space belongs must be written between the two delimiters. 

If a model input file is such that the space available for writing a certain parameter is limited, 

the parameter name may need to be considerably less than twelve characters long in order that 

both the name and the left and right delimiters can be written within the limited space 

available. The minimum allowable parameter space width is thus three characters, one 

character for each of the left and right delimiters and one for the parameter name. 

3.2.5 Setting the Parameter Space Width  

In general, the wider is a parameter space (up to a certain limit - see below), the better PEST 

likes it, for numbers can be represented with greater precision in wider spaces than they can 

be in narrower spaces. However, unlike the case of model-generated observations where 

maximum precision is crucial to obtaining useable derivatives, PEST can adjust to limited 

precision in the representation of parameters on model input files, as long as enough precision 

is employed such that a parameter value can be distinguished from the value of that same 

parameter incremented for derivatives calculation. Hence, beyond a certain number of 

characters, the exact number depending on the parameter value and the size and type of 

parameter increment employed, extra precision is not critical. Nevertheless, it is good practice 

to endow parameter values with as much precision as the model is capable of reading them 

with, so that they can be provided to the model with the same precision with which PEST 

calculates them. 
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Generally models read numbers from the terminal or from an input file in either of two ways, 

viz. from specified fields, or as a sequence of numbers, each of which may be of any length; 

in FORTRAN the latter method is often referred to as “free field” input. If the model uses the 

former method, then somewhere within the model program the format (ie. field specification) 

for data entry is defined for every number which must be read in this fashion. 

The FORTRAN code of Example 3.3 directs a program to read five real numbers. The first 

three are read using a format specifier, whereas the last two are read in free field fashion. 

 

The relevant part of the input file may be as illustrated in Example 3.4. 

 

Notice how no whitespace or comma is needed between numbers which are read using a field 

specifier. The format statement labelled “100” in Example 3.3 directs that variable A be read 

from the first 10 positions on the line, that variable B be read from the next 10 positions, and 

that variable C be read from the 10 positions thereafter. When the program reads any of these 

numbers it is unconcerned as to what characters lie outside of the field on which its attention 

is currently focussed. However the numbers to be read into variables D and E must be 

separated by whitespace or a comma in order that the program knows where one number ends 

and the next number begins. 

Suppose all of variables A to E are model parameters, and that PEST has been assigned the 

task of optimising them. For convenience we provide the same names for these parameters as 

are used by the model code (this, of course, will not normally be the case). The template 

fragment corresponding to Example 3.4 may then be as set out in Example 3.5. Notice how 

the parameter space for each of parameters A, B and C is 10 characters wide, and that the 

parameter spaces abut each other in accordance with the expectations of the model as defined 

through the format specifier of Example 3.3. If the parameter space for any of these 

parameters were greater than 10 characters in width, then PEST, when it replaces each 

parameter space by the current parameter value, would construct a model input file which 

would be incorrectly read by the model. (You could have designed parameter spaces less than 

10 characters wide if you wished, as long as you placed enough whitespace between each 

parameter space in order that the number which will replace each such space when PEST 

writes the model input file falls within the field expected by the model. However, defining the 

parameter spaces in this way would achieve nothing as there would be no advantage in using 

less than the full 10 characters allowed by the model.) 

 READ(20,100) A,B,C 

100 FORMAT(3F10.0) 

 READ(20,*) D,E 

Example 3.3 Formatted and free field input. 

      6.32  1.42E-05123.456789 

34.567, 1.2E17 

Example 3.4 Numbers read using the code of Example 3.3 



The Model-PEST Interface  

 

3-6 

 

 

Parameters D and E are treated very differently to parameters A, B and C. As Example 3.3 

shows, the model simply expects two numbers in succession. If the spaces for parameters D 

and E appearing in Example 3.5 are replaced by two numbers (each will be 13 characters 

long) the model’s requirement for two numbers in succession separated by whitespace or a 

comma will have been satisfied, as will PEST’s preference for maximum precision. 

Comparing Examples 3.4 and 3.5, it is obvious that the spaces for parameters D and E on the 

template file are greater than the spaces occupied by the corresponding numbers on the model 

input file from which the template file was constructed; the same applies for the parameter 

spaces defined in Example 3.2 pertaining to the model input file of Example 3.1. In most 

cases of template file construction, a model input file will be used as the starting point. In 

such a file, numbers read using free field input will often be written with trailing zeros 

omitted. In constructing the template file you should recognise which numbers are read using 

free field input and expand the parameter space (to the right) accordingly beyond the original 

number, making sure to leave whitespace or a comma between successive spaces, or between 

a parameter space and a neighbouring character or number. 

Similarly, numbers read through field-specifying format statements may not occupy the full 

field width in a model input file from which a template file is being constructed (eg. variable 

A in Example 3.4). In such a case you should, again, expand the parameter space beyond the 

extent of the number (normally to the left of the number only) until the space coincides with 

the field defined in the format specifier with which the model reads the number. (If you are 

not sure of this field because the model manual does not inform you of it or you do not have 

the model’s source code, you will often, nevertheless, be able to make a pretty good guess as 

to what the field width is. As long as the parameter space you define does not transgress the 

bounds of the format-specified field, and the space is wide enough to allow discrimination 

between a parameter value and an incrementally-varied parameter value, this is good enough.) 

3.2.6 How PEST Fills a Parameter Space with a Number 

PEST writes as many significant figures to a parameter space as it can. It does this so that 

even if a parameter space must be small in order to satisfy the input field requirements of a 

model, there is still every chance that a parameter value can be distinguished from its 

incrementally-varied counterpart so as to allow proper derivatives calculation with respect to 

that parameter. Also, as has already been discussed, even though PEST adjusts its internal 

representation of a parameter value to the precision with which the model can read it so that 

PEST and the model are using the same number, in general more precision is better. 

Two user-supplied control variables, PRECIS and DPOINT affect the manner in which PEST 

writes a parameter value to a parameter space. Both of these variables are provided to PEST 

through the PEST control file; see Section 4.2.2 for details. PRECIS is a character variable 

which must be supplied as either “single” or “double”. It determines whether single or double 

precision protocol is to be observed in writing parameter values; unless a parameter space is 

greater than 13 characters in width it has no bearing on the precision with which a parameter 

#  A     ##    B   ##  C     # 

#   D       #, #  E        # 

Example 3.5 Fragment of a template file corresponding to Example 3.4 
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value is written to a model input file, as this is determined by the width of the parameter 

space. If PRECIS is set to “single”, exponents are represented by the letter “e”; also if a 

parameter space is greater than 13 characters in width, only the last 13 spaces are used in 

writing the number representing the parameter value, any remaining characters within the 

parameter space being left blank. For the “double” alternative, up to 23 characters can be used 

to represent a number and the letter “d” is used to represent exponents; also, extremely large 

and extremely small numbers can be represented. 

If a model’s input data fields are small, and there is nothing you can do about it, every effort 

must be made to “squeeze” as much precision as possible into the limited parameter spaces 

available. PEST will do this anyway, but it may be able to gain one or more extra significant 

figures if it does not need to include a decimal point in a number if the decimal point is 

redundant. Thus if a parameter space is 5 characters wide and the current value of the 

parameter to which this field pertains is 10234.345, PEST will write the number as “1.0e4” or 

as “10234” depending on whether it must include the decimal point or not. Similarly, if the 

parameter space is 6 characters wide, the number 106857.34 can be represented as either 

“1.07e5” or “1069e2” depending on whether the decimal point must be included or not.  

By assigning the string “nopoint” to the PEST control variable DPOINT, you can instruct 

PEST to omit the decimal point in the representation of a number if it can. However this 

should be done with great caution. If the model is written in FORTRAN and numbers are read 

using free field input, or using a field width specifier such as “(F6.0)” or “(E8.0)”, the 

decimal point is not necessary. However in other cases the format specifier will insert its own 

decimal point (eg. for specifiers such as “(F6.2)”), or enforce power-of-10 scaling (eg. for 

specifiers such  as “(E8.2)”) if a decimal point is absent from an input number. Hence if you 

are unsure what to do, assign the string “point” to the control variable DPOINT; this will 

ensure that all numbers written to model input files will include a decimal point, thus 

overriding point-location or scaling conventions implicit in some FORTRAN format 

specifiers. 

Note that if a parameter space is 13 characters wide or greater and PRECIS is set to “single”, 

PEST will include the decimal point regardless of the setting of “DPOINT”, for there are no 

gains to be made in precision through leaving it out. Similarly, if PRECIS is set to “double”, 

no attempt is made to omit a decimal point if the parameter space is 23 characters wide or 

more. 

Table 3.1 shows how the setting of DPOINT affects the representation of the number 

12345.67. In examining this table, remember that PEST writes a number in such a way that 

the maximum possible precision is “squeezed” into each parameter space. 
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As explained below, a template file may contain multiple spaces for the same parameter. In 

such a case, PEST will write the parameter value to all those spaces using the minimum 

parameter space width specified for that particular parameter; for the wider spaces the number 

will be right-justified, with spaces padded on the left. In this way a consistent parameter value 

is written to all spaces pertaining to the one parameter. 

3.2.7 Multiple Occurrences of the Same Parameter 

Large numerical models which calculate the variation of some scalar or vector over two or 

three-dimensional space may require on their input files large amounts of system property 

data written in the form of two- or three-dimensional arrays. For example, a finite-difference 

ground water model may read arrays representing the distribution of hydraulic conductivity, 

storage coefficient, and other aquifer properties over the modelled area, each element within 

each array pertaining to one rectangular, finite-difference “cell”. A finite-element model used 

in simulating geophysical traverse results over an orebody may require an array containing 

conductivity values for the various elements into which the orebody and surrounding earth are 

subdivided. For large grids or networks used to spatially discretise two- or three-dimensional 

inhomogeneous systems of this kind, hundreds, perhaps thousands, of numbers may be 

required to represent the distributed system properties. 

If it is required that field measurements be used to infer system properties (using models such 

as these to link these properties to system response) certain assumptions regarding the 

variation in space of the distributed parameters must be made. A common assumption is that 

the model domain is “zoned”. According to this assumption the system is subdivided into a 

number of areas or volumes in each of which a certain physical property is constant. Hence 

while the input arrays will still contain hundreds, maybe thousands, of elements, each element 

will be one of only n different numbers, where n is the number of zones into which the model 

domain has been subdivided. 

   Table 3.1 Representations of the number 12345.67 

parameter space width 

(characters) 

DPOINT 

 “point” “nopoint” 

8 

7 

6 

5 

4 

3 

2 

    12345.67 

     12345.7 

      12346. 

       1.2e4 

        1.e4 

         *** 

          ** 

   12345.67 

    12345.7 

     12346. 

      12346 

       12e3 

        1e4 

         ** 
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It is a simple matter to construct a PEST template file for a model such as this. Firstly prepare 

for a model run in the usual way. Using the model preprocessor, assign n different values for 

a particular property to each of the n different model zones, writing the model input arrays to 

the model input files in the usual manner. Then, using the “search and replace” facility of a 

text editor, edit the model input file such that each occurrence within a particular array of the 

number representing the property of a certain zone is altered to a parameter space identifier 

(such as #  ro1     #); remember to make the parameter space as wide as the model will allow 

in order to ensure maximum precision. If this is done in turn for each of the n different 

numbers occurring in the array, using a different parameter name in place of each different 

number, the array of numbers will have been replaced by an array of parameter spaces. When 

PEST writes the model input file it will, as usual, replace each such parameter space with the 

corresponding current parameter value; hence it will reconstruct an array containing 

hundreds, maybe thousands, of elements, but in which only n different numbers are 

represented. 

The occurrence of multiple incidences of the same parameter is not restricted to the one file. 

If a model has multiple input files, and if a particular parameter which you would like to 

optimise appears on more than one of these files, then at least one space for this parameter 

will appear on more than one template file. PEST passes no judgement on the occurrence of 

parameters within template files or across template files. However it does require that each 

parameter cited in the PEST control file (see Chapter 4) occur at least once on at least one 

template file, and that each parameter cited in a template file be provided with bounds and an 

initial value in the PEST control file. 

3.2.8 Preparing a Template File 

Preparation of a template file is a simple procedure. For most models it can be done in a 

matter of moments using a text editor to replace parameter values on a typical model input 

file by their respective parameter space identifiers. 

Once a template file has been prepared, it can be checked for correctness using the utility 

program TEMPCHEK; see Chapter 11. TEMPCHEK also has the ability to write a model 

input file on the basis of a template file and a user-supplied list of parameter values. If you 

then run your model, providing it with such a TEMPCHEK-prepared input file, you can 

verify that the model will have no difficulties in reading input files prepared by PEST. 

3.3 Instruction Files 

Of the possibly voluminous amounts of information that a model may write to its output 

file(s), PEST is interested in only a few numbers, viz. those numbers for which corresponding 

field or laboratory data are available and for which the discrepancy between model output and 

measured values must be reduced to a minimum in the weighted least squares sense. These 

particular model-generated numbers are referred to as “observations” or “model-generated 

observations” in the discussion which follows (in order to distinguish them from those model 

outcomes which are not used in the parameter estimation process), while the field or 

laboratory data to which they are individually matched are referred to as “measurements”. 

For every model output file containing observations, you must provide an instruction file 
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containing the directions which PEST must follow in order to read that file. Note that if a 

model output file is more than 2000 characters in width PEST will be unable to read it; 

however a model output file can be of any length. 

Some models write some or all of their output data to the terminal. You can redirect this 

screen output to a file using the “>” symbol and teach PEST how to read this file using a 

matching instruction file in the usual manner. 

It is suggested that instruction files be provided with the extension “.ins” in order to 

distinguish them from other types of file. 

3.3.1 Precision in Model Output Files 

As was discussed in the previous chapter, if there are any model input variables which allow 

you to vary the precision with which its output data are written, they should be adjusted for 

maximum output precision. Unlike parameter values, for which precision is important but not 

essential, precision in the representation of model-generated observations is crucial. The 

Gauss-Marquardt-Levenberg method of nonlinear parameter estimation, upon which the 

PEST algorithm is based, requires that the derivative of each observation with respect to each 

parameter be evaluated once for every optimisation iteration. PEST calculates these 

derivatives using the finite difference technique or one of its three-point variants. In all cases, 

the derivative value depends on the difference between two or three observations calculated 

on the basis of incrementally-varied parameter values. Unless the observations are 

represented with maximum precision, this is a recipe for numerical disaster.  

3.3.2 How PEST Reads a Model Output File 

PEST must be instructed on how to read a model output file and identify model-generated 

observations. For the method to work, model output files containing observations must be 

text files; PEST cannot read a binary file. If your model produces only binary files, you will 

need to write a simple program which reads this binary data and rewrites it in ASCII form; 

PEST can then read the ASCII file for the observations it needs. Note that, as described in 

Section 4.2.8, when PEST runs a model, this “model” can actually consist of a number of 

programs run in succession. 

Unfortunately, observations cannot be read from model output files using the template 

concept. This is because many models cannot be relied upon to produce an output file of 

identical structure on each model run. For example, a model which calculates the stress 

regime in an aircraft wing may employ an iterative numerical solution scheme for which 

different numbers of iterations are required to achieve numerical convergence depending on 

the boundary conditions and material properties supplied for a particular run. If the model 

records on its output file the convergence history of the solution process, and the results of its 

stress calculations are recorded on the lines following this, the latter may be displaced 

downwards depending on the number of iterations required to calculate them.  

So instead of using an output file template, you must provide PEST with a list of instructions 

on how to find observations on an output file. Basically, PEST finds observations on a model 

output file in the same way that a person does. A person runs his/her eye down the file 

looking for something which he/she recognises - a “marker”; if this marker is properly 
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selected, observations can usually be linked to it in a simple manner. For example, if you are 

looking for the outcome of the above stress model’s deliberations at an elapsed time of 100 

milliseconds, you may instruct PEST to read its output file looking for the marker 

STRESS CALCULATED AT FINITE ELEMENT NODES: ELAPSED TIME = 100 MSEC 

A particular outcome for which you have a corresponding experimental measurement may 

then be found, for example, between character positions 23 and 30 on the 4th line following 

the above marker, or as the 5th item on the 3rd line after the marker, etc. Note that for simple 

models, especially “home-made”, single-purpose models where little development time has 

been invested in highly descriptive output files, no markers may be necessary, the default 

initial marker being the top of the file. 

Markers can be of either primary or secondary type. PEST uses a primary marker as it scans 

the model output file line by line, looking for a reference point for subsequent observation 

identification or further scanning. A secondary marker is used for a reference point as a single 

line is examined from left to right. 

3.3.3 An Example Instruction File 

Example 3.6 shows an output file written by the model whose input file appears in Example 

3.1. Suppose that we wish to estimate the parameters appearing in the template file of 

Example 3.2 (ie. the resistivities of the three half-space layers and the thicknesses of the 

upper two) by comparing apparent resistivities generated by the model with a set of apparent 

resistivities provided by field measurement. Then we need to provide instructions to PEST on 

how to read each of the apparent resistivities appearing in Example 3.6. An appropriate 

instruction file is shown in Example 3.7. 
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SCHLUMBERGER ELECTRIC SOUNDING 

 

Apparent resistivities calculated using the linear filter method 

 

electrode spacing  apparent resistivity 

    1.00            1.21072     

    1.47            1.51313     

    2.15            2.07536     

    3.16            2.95097     

    4.64            4.19023     

    6.81            5.87513     

    10.0            8.08115     

    14.7            10.8029     

    21.5            13.8229     

    31.6            16.5158     

    46.4            17.7689     

    68.1            16.4943     

    100.            12.8532     

    147.            8.79979     

    215.            6.30746     

    316.            5.40524     

    464.            5.15234     

    681.            5.06595     

    1000.           5.02980 

Example 3.6 A model output file. 

pif @ 

@electrode@ 

l1 [ar1]21:27 

l1 [ar2]21:27 

l1 [ar3]21:27 

l1 [ar4]21:27 

l1 [ar5]21:27 

l1 [ar6]21:27 

l1 [ar7]21:27 

l1 [ar8]21:27 

l1 [ar9]21:27 

l1 [ar10]21:27 

l1 [ar11]21:27 

l1 [ar12]21:27 

l1 [ar13]21:27 

l1 [ar14]21:27 

l1 [ar15]21:27 

l1 [ar16]21:27 

l1 [ar17]21:27 

l1 [ar18]21:27 

l1 [ar19]21:27 

Example 3.7 A PEST instruction file. 
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3.3.4 The Marker Delimiter 

The first line of a PEST instruction file must begin with the three letters “pif” which stand for 

“PEST instruction file”. Then, after a single space, must follow a single character, the marker 

delimiter. The role of the marker delimiter in an instruction file is not unlike that of the 

parameter delimiter in a template file. Its role is to define the extent of a marker; a marker 

delimiter must be placed just before the first character of a text string comprising a marker 

and immediately after the last character of the marker string. In treating the text between a 

pair of marker delimiters as a marker, PEST does not try to interpret this text as a list of 

instructions. 

You can choose the marker delimiter character yourself; however your choice is limited. A 

marker delimiter must not be one of the characters A - Z, a - z, 0 - 9, !, [, ], (, ), :, or &; the 

choice of any of these characters may result in confusion, as they may occur elsewhere in an 

instruction file in a role other than that of marker delimiter. Note that the character you 

choose as the marker delimiter should not occur within the text of any markers as this, too, 

will cause confusion. 

3.3.5 Observation Names 

In the same way that each parameter must have a unique name, so too must each observation 

be provided with a unique name. Observation names must be twenty characters or less in 

length. These twenty characters can be any ASCII characters except for [, ], (, ), or the marker 

delimiter character. 

As discussed above, a parameter name can occur more than once within a parameter template 

file; PEST simply replaces each parameter space in which the name appears with the current 

value of the pertinent parameter. However the same does not apply to an observation name. 

Every observation is unique and must have a unique observation name. In Example 3.6, 

observations are named “ar1”, “ar2” etc. These same observation names must also be cited in 

the PEST control file where measurement values and weights are provided; see the next 

chapter for further details. 

There is one observation name, however, to which these rules do not apply, viz. the dummy 

observation name “dum”. This name can occur many times, if necessary, in an instruction 

file; it signifies to PEST that, although the observation is to be located as if it were a normal 

observation, the number corresponding to the dummy observation on the model output file is 

not actually matched with any laboratory or field measurement. Hence an observation named 

“dum” must not appear in the PEST control file where measurement values are provided and 

observation weights are assigned. As is illustrated below, the dummy observation is simply a 

mechanism for model output file navigation. 

3.3.6 The Instruction Set 

Each of the available PEST instructions is now described in detail. When creating your own 

instruction files, the syntax provided for each instruction must be followed exactly. If a 

number of instruction items appear on a single line of an instruction file, these items must be 

separated from each other by at least one space. Instructions pertaining to a single line on a 

model output file are written on a single line of a PEST instruction file. Thus the start of a 
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new instruction line signifies that PEST must read at least one new model output file line; just 

how many lines it needs to read depends on the first instruction on the new instruction line. 

Note, however, that if the first instruction on the new line is the character “&”, the new 

instruction line is simply a continuation of the old one. Like all other instruction items, the 

“&” character used in this context must be separated from its following instruction item by at 

least one space. 

PEST reads a model output file in the forward (top-to-bottom) direction, looking to the 

instructions in the instruction file to tell it what to do next. Instructions should be written with 

this in mind; an instruction cannot direct PEST to “backtrack” to a previous line on the model 

output file. Also, because PEST processes model output file lines from left to right, an 

instruction cannot direct PEST backwards to an earlier part of a model output file line than 

the part of the line to which its attention is currently focussed as a result of the previous 

instruction. 

Primary Marker 

Unless it is a continuation of a previous line, each instruction line must begin with either of 

two instruction items, viz. a primary marker or a line advance item. The primary marker has 

already been discussed briefly. It is a string of characters, bracketed at each end by a marker 

delimiter. If a marker is the first item on an instruction line, then it is a primary marker; if it 

occurs later in the line, following other instruction items, it is a secondary marker, the 

operation of which will be discussed below. 

On encountering a primary marker in an instruction file PEST reads the model output file, 

line by line, searching for the string between the marker delimiter characters. When it finds 

the string it places its “cursor” at the last character of the string. (Note that this cursor is never 

actually seen by the PEST user; it simply marks the point where PEST is at in its processing 

of the model output file.) This means that if any further instructions on the same instruction 

line as the primary marker direct PEST to further processing of this line, that processing must 

pertain to parts of the model output file line following the string identified as the primary 

marker. 

Note that if there are blank characters in a primary (or secondary) marker, exactly the same 

number of blank characters is expected in the matching string on the model output file. 

Often, as in Example 3.7, a primary marker will be part or all of some kind of header or label; 

such a header or label often precedes a model’s listing of the outcomes of its calculations and 

thus makes a convenient reference point from which to search for the latter. It should be 

noted, however, that the search for a primary marker is a time-consuming process as each line 

of the model output file must be individually read and scanned for the marker. Hence if the 

same observations are always written to the same lines of a model output file (these lines 

being invariant from model run to model run), you should use the line advance item in 

preference to a primary marker. 

A primary marker may be the only item on a PEST instruction line, or it may precede a 

number of other items directing further processing of the line containing the marker. In the 

former case the purpose of the primary marker is simply to establish a reference point for 

further downward movement within the model output file as set out in subsequent instruction 
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lines. 

Primary markers can provide a useful means of navigating a model output file. Consider the 

extract from a model output file shown in Example 3.8 (the dots replace one or a number of 

lines not shown in the example in order to conserve space). The instruction file extract shown 

in Example 3.9 provides a means to read the numbers comprising the third solution vector. 

Notice how the “SOLUTION VECTOR” primary marker is preceded by the “PERIOD NO. 

3” primary marker. The latter marker is used purely to establish a reference point from which 

a search can be made for the “SOLUTION VECTOR” marker; if this reference point were not 

established (using either a primary marker or line advance item) PEST would read the 

solution vector pertaining to a previous time period. 

 

Line Advance 

The syntax for the line advance item is “ln” where n is the number of lines to advance; note 

that “l” is “el”, the twelfth letter of the alphabet, not “one”.  The line advance item must be 

the first item of an instruction line; it and the primary marker are the only two instruction 

  . 

  . 

TIME PERIOD NO. 1 ---> 

  . 

  . 

SOLUTION VECTOR: 

  1.43253  6.43235  7.44532  4.23443  91.3425  3.39872   

  . 

  . 

TIME PERIOD NO. 2 ---> 

  . 

  . 

SOLUTION VECTOR 

  1.34356  7.59892  8.54195  5.32094  80.9443  5.49399 

  . 

  . 

TIME PERIOD NO. 3 ---> 

   . 

  . 

SOLUTION VECTOR 

  2.09485  8.49021  9.39382  6.39920  79.9482  6.20983 

Example 3.8 Extract from a model output file. 

pif * 

 . 

 . 

*PERIOD NO. 3* 

*SOLUTION VECTOR* 

l1 (obs1)5:10 (obs2)12:17 (obs3)21:28 (obs4)32:37 (obs5)41:45 

& (obs6)50:55 

 . 

 . 

Example 3.9 Extract from an instruction file. 
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items which can occupy this initial spot. As was explained above, the initial item in an 

instruction line is always a directive to PEST to move at least one line further in its perusal of 

the model output file (unless it is a continuation character). In the case of the primary marker, 

PEST stops reading new lines when it finds the pertinent text string. However for a line 

advance it does not need to examine model output file lines as it advances. It simply moves 

forward n lines, placing its processing cursor just before the beginning of this new line, this 

point becoming the new reference point for further processing of the model output file. 

Normally a line advance item is followed by other instructions. However if the line advance 

item is the only item on an instruction line this does not break any syntax rules. 

In Example 3.6 model-calculated apparent resistivities are written on subsequent lines. Hence 

before reading each observation, PEST is instructed to move to the beginning of a new line 

using the “l1” line advance item; see Example 3.7. 

If a line advance item leads the first instruction line of a PEST instruction file, the reference 

point for line advance is taken as a “dummy” line just above the first line of the model output 

file. Thus if the first instruction line begins with “l1”, processing of the model output file 

begins on its first line; similarly, if the first instruction line begins with “l8”, processing of the 

model output file begins at its eighth line. 

Secondary Marker 

A secondary marker is a marker which does not occupy the first position of a PEST 

instruction line. Hence it does not direct PEST to move downwards on the model output file 

(though it can be instrumental in this - see below); rather it instructs PEST to move its cursor 

along the current model output file line until it finds the secondary marker string, and to place 

its cursor on the last character of that string ready for subsequent processing of that line. 

Example 3.10 shows an extract from a model output file while Example 3.11 shows the 

instructions necessary to read the potassium concentration from this output file. A primary 

marker is used to place the PEST cursor on the line above that on which the calculated 

concentrations are recorded for the distance in which we are interested. Then PEST is 

directed to advance one line and read the number following the “K:” string in order to find an 

observation named “kc”; the exclamation marks surrounding “kc” will be discussed shortly. 

 

 

  . 

  . 

DISTANCE = 20.0: CATION CONCENTRATIONS:- 

Na: 3.49868E-2  Mg: 5.987638E-2  K: 9.987362E-3  

  . 

  . 

Example 3.10 Extract from a model output file. 
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A useful feature of the secondary marker is illustrated in Examples 3.12 and 3.13 of a model 

output file extract and a corresponding instruction file extract, respectively. If a particular 

secondary marker is preceded only by other markers (including, perhaps, one or a number of 

secondary markers and certainly a primary marker), and the text string corresponding to that 

secondary marker is not found on a model output file line on which the previous markers' 

strings have been located, PEST will assume that it has not yet found the correct model 

output line and resume its search for a line which holds the text from all three markers. Thus 

the instruction “%TIME STEP 10%” will cause PEST to pause on its downward journey 

through the model output file at the first line illustrated in Example 3.12. However, when it 

does not find the string “STRAIN” on the same line it recommences its perusal of the model 

output file, looking for the string “TIME STEP 10” again. Eventually it finds a line 

containing both the primary and secondary markers and, having done so, commences 

execution of the next instruction line. 

It is important to note that if any instruction items other than markers precede an unmatched 

secondary marker, PEST will assume that the mismatch is an error condition and abort 

execution with an appropriate error message. Note also that secondary markers may be used 

sequentially. For example if the STRAIN variable is always in position 2, then the pertinent 

line in the instruction file of Example 3.13 could be replaced by "l1 %=% %=% !str1!".  This 

is handy for comma-delimited output files. 

 

pif ~ 

 . 

 . 

~DISTANCE = 20.0~ 

l1 ~K:~ !kc! 

 . 

 . 

Example 3.11 Extract from an instruction file. 

  . 

  . 

TIME STEP 10 (13 ITERATIONS REQUIRED) STRESS ---> 

X = 1.05 STRESS = 4.35678E+03 

X = 1.10 STRESS = 4.39532E+03 

  . 

  . 

TIME STEP 10 (BACK SUBSTITUTION) STRAIN ---> 

X = 1.05 STRAIN = 2.56785E-03 

X = 1.10 STRAIN = 2.34564E-03 

  . 

  . 

Example 3.12 Extract from a model output file. 
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Whitespace 

The whitespace instruction is similar to the secondary marker in that it allows the user to 

navigate through a model output file line prior to reading a non-fixed observation (see below). 

It directs PEST to move its cursor forwards from its current position until it encounters the 

next blank character. PEST then moves the cursor forward again until it finds a nonblank 

character, finally placing the cursor on the blank character preceding this nonblank character 

(ie. on the last blank character in a sequence of blank characters) ready for the next 

instruction. The whitespace instruction is a simple “w”, separated from its neighbouring 

instructions by at least one blank space.  

Consider the model output file line represented below: 

MODEL OUTPUTS:  2.89988  4.487892  -4.59098   8.394843 

The following instruction line directs PEST to read the fourth number on the above line: 

%MODEL OUTPUTS:% w w w w !obs1! 

The instruction line begins with a primary marker, allowing PEST to locate the above line on 

the model output file. After this marker is processed the PEST cursor rests on the “:” 

character of “OUTPUTS:”, ie. on the last character of the marker string. In response to the 

first whitespace instruction PEST finds the next whitespace and then moves its cursor to the 

end of this whitespace, ie. just before the “2” of the first number on the above model output 

file line. The second whitespace instruction moves the cursor to the blank character preceding 

the first “4” of the second number on the above line; processing of the third whitespace 

instruction results in PEST moving its cursor to the blank character just before the negative 

sign. After the fourth whitespace instruction is implemented, the cursor rests on the blank 

character preceding the last number; the latter can then be read as a non-fixed observation 

(see below). 

Tab 

The tab instruction places the PEST cursor at a user-specified character position (ie. column 

number) on the model output file line which PEST is currently processing. The instruction 

syntax is “tn” where n is the column number. The column number is obtained by counting 

character positions (including blank characters) from the left side of any line, starting at 1. 

Like the whitespace instruction, the tab instruction can be useful in navigating through a 

model output file line prior to locating and reading a non-fixed observation. For example, 

consider the following line from a model output file: 

pif % 

 . 

 . 

%TIME STEP 10% %STRAIN% 

l1 %STRAIN =% !str1! 

l1 %STRAIN =% !str2! 

 . 

 . 

Example 3.13 Extract from an instruction file. 
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TIME(1): A = 1.34564E-04, TIME(2): A = 1.45654E-04, TIME(3): A = 1.54982E-04 

The value of A at TIME(3) could be read using the instruction line: 

l4 t60 %=% !a3! 

Here it is assumed that PEST was previously processing the fourth line prior to the above line 

in the model output file; the marker delimiter character is assumed to be “%”. Implementation 

of the “t60” instruction places the cursor on the “:” following the “TIME(3)” string, for the 

colon is in the sixtieth character position of the above line. PEST is then directed to find the 

next  “=” character. From there it can read the last number on the above line as a non-fixed 

observation (see below). 

Fixed Observations 

An observation reference can never be the first item on an instruction line; either a primary 

marker or line advance item must come first in order to place PEST’s cursor on the line on 

which one or more observations may lie. If there is more than one observation on a particular 

line of the model output file, these observations must be read from left to right, backward 

movement along any line being disallowed. 

Observations can be identified in one of three ways. The first way is to tell PEST that a 

particular observation can be found between, and including, columns n1 and n2 on the model 

output file line on which its cursor is currently resting. This is by far the most efficient way to 

read an observation value because PEST does not need to do any searching; it simply reads a 

number from the space identified. Observations read in this way are referred to as “fixed 

observations”.  

Example 3.14 shows how the numbers listed in the third solution vector of Example 3.8 can 

be read as fixed observations. The instruction item informing PEST how to read a fixed 

observation consists of two parts. The first part consists of the observation name enclosed in 

square brackets, while the second part consists of the first and last columns from which to 

read the observation. Note that no space must separate these two parts of the observation 

instruction; PEST always construes a space in an instruction file as marking the end of one 

instruction item and the beginning of another (unless the space lies between marker 

delimiters).  

Reading numbers as fixed observations is useful when the model writes its output in tabular 

form using fixed-field-width specifiers. However you must be very careful when specifying 

the column numbers from which to read the number. The space defined by these column 

pif * 

. 

 . 

*PERIOD NO. 3* 

*SOLUTION VECTOR* 

l1 [obs1]1:9 [obs2]10:18 [obs3]19:27 [obs4]28:36 [obs5]37:45  

& [obs6]46:54 

 . 

 . 

Example 3.14 Extract from an instruction file. 
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numbers must be wide enough to accommodate the maximum length that the number will 

occupy in the course of the many model runs that will be required for PEST to optimise the 

model’s parameter set; if it is not wide enough, PEST may read only a truncated part of the 

number or omit a negative sign preceding the number. However the space must not be so 

wide that it includes part of another number; in this case a run-time error will occur and PEST 

will terminate execution with an appropriate error message. 

Where a model writes its results in the form of an array of numbers, it is not an uncommon 

occurrence for these numbers to abut each other. Consider, for example, the following 

FORTRAN code fragment: 

 A=1236.567 

 B=8495.0 

 C=-900.0 

 WRITE(10,20) A,B,C 

20 FORMAT(3(F8.3)) 

The result will be 

1236.5678495.000-900.000 

In this case there is no choice but to read these numbers as fixed observations. (Both of the 

alternative ways to read an observation require that the observation be surrounded by either 

whitespace or a string that is invariant from model run to model run and can thus be used as a 

marker.) Hence to read the above three numbers as observations A, B and C the following  

instruction line may be used: 

l1 [A]1:8 [B]9:16 [C]17:24 

If an instruction line contains only fixed observations there is no need for it to contain any 

whitespace or tabs; nor will there be any need for a secondary marker, (unless the secondary 

marker is being used in conjunction with a primary marker in determining which model 

output file line the PEST cursor should settle on - see above). This is because these items are 

normally used for navigating through a model output file line prior to reading a non-fixed 

observation (see below); such navigation is not required to locate a fixed observation as its 

location on a model output file line is defined without ambiguity by the column numbers 

included within the fixed observation instruction. 

Semi-Fixed Observations 

Example 3.9 demonstrates the use of semi-fixed observations. Semi-fixed observations are 

similar to fixed observations in that two numbers are provided in the pertinent instruction 

item, the purpose of these numbers being to locate the observation’s position by column 

number on the model output file. However, in contrast to fixed observations, these numbers 

do not locate the observation exactly. When PEST encounters a semi-fixed observation 

instruction it proceeds to the first of the two nominated column numbers and then, if this 

column is not occupied by a non-blank character, it searches the output file line from left to 

right beginning at this column number, until it reaches either the second identified column or 

a non-blank character. If it reaches the second column before finding a non-blank character, 

an error condition arises. However if it finds a non-blank character, it then locates the nearest 

whitespace on either side of the character; in this way, it identifies one or a number of non-
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blank characters sandwiched between whitespace (“whitespace” includes the beginning 

and/or the end of the model output file line). It tries to read these characters as a number, this 

number being the value of the observation named in the semi-fixed observation instruction. 

Obviously the width of this number can be greater than the difference between the column 

numbers cited in the semi-fixed observation instruction. 

Like a fixed observation, the instruction to read a semi-fixed observation consists of two 

parts, viz. the observation name followed by two column numbers, the latter being separated 

by a colon; the column numbers must be in ascending order. However for semi-fixed 

observations, the observation name is enclosed in round brackets rather than square brackets. 

Again, there must be no space separating the two parts of the semi-fixed observation 

instruction. 

Reading a number as a semi-fixed observation is useful if you are unsure how large the 

representation of the number could stretch on a model output file as its magnitude grows 

and/or diminishes in PEST-controlled model runs; it is also useful if you do not know 

whether the number is left or right justified. However you must be sure that at least part of the 

number will always fall between (and including) the two nominated columns and that, 

whenever the number is written and whatever its size, it will always be surrounded either by 

whitespace or by the beginning or end of the model output file line. If, when reading the 

model output file, PEST encounters only whitespace between (and including) the two 

nominated column numbers, or if it encounters non-numeric characters or two number 

fragments separated by whitespace, an error condition will occur and PEST will terminate 

execution with an appropriate error message. 

As for fixed observations, it is normally not necessary to have secondary markers, whitespace 

and tabs on the same line as a semi-fixed observation, because the column numbers provided 

with the semi-fixed observation instruction determine the location of the observation on the 

line. As always, observations must be read from left to right on any one instruction line; 

hence if more than one semi-fixed observation instruction is provided on a single PEST 

instruction line, the column numbers pertaining to these observations must increase from left 

to right. 

For the case illustrated in Examples 3.6 and 3.7, all the fixed observations could have been 

read as semi-fixed observations, with the difference between the column numbers either 

remaining the same or being reduced to substantially smaller than that shown in Example 3.7. 

However it should be noted that it takes more effort for PEST to read a semi-fixed 

observation than it does for it to read a fixed observation as PEST must establish for itself the 

extent of the number that it must read. 

After PEST has read a semi-fixed observation its cursor resides at the end of the number 

which it has just read. Any further processing of the line must take place to the right of that 

position. 

Non-Fixed Observations 

Examples 3.11 and 3.13 demonstrate the use of non-fixed observations. A non-fixed 

observation instruction does not include any column numbers because the number which 

PEST must read is found using secondary markers and/or other navigational aids such as 
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whitespace and tabs which precede the non-fixed observation on the instruction line. 

If you do not know exactly where, on a particular model output file line, a model will write 

the number corresponding to a particular observation, but you do know the structure of that 

line, then you can use this knowledge to navigate your way to the number. In the PEST 

instruction file, a non-fixed observation is represented simply by the name of the observation 

surrounded by exclamation marks; as usual, no spaces should separate the exclamation marks 

from the observation name as PEST interprets spaces in an instruction file as denoting the end 

of one instruction item and the beginning of another. 

When PEST encounters a non-fixed observation instruction it first searches forward from its 

current cursor position until it finds a non-blank character; PEST assumes this character is the 

beginning of the number representing the non-fixed observation. Then PEST searches 

forward again until it finds either a blank character, the end of the line, or the first character of 

a secondary marker which follows the non-fixed observation instruction in the instruction 

file; PEST assumes that the number representing the non-fixed observation finishes at the 

previous character position. In this way it identifies a string of characters which it tries to read 

as a number; if it is unsuccessful in reading a number because of the presence of non-numeric 

characters or some other problem, PEST terminates execution with a run-time error message. 

A run time error message will also occur if PEST encounters the end of a line while looking 

for the beginning of a non-fixed observation. 

Consider the output file fragment shown in Example 3.15. The species populations at 

different times cannot be read as either fixed or semi-fixed observations because the numbers 

representing these populations cannot be guaranteed to fall within a certain range of column 

numbers on the model output file because “iterative adjustment” may be required in the 

calculation of any such population. Hence we must find our way to the number using another 

method; one such method is illustrated in Example 3.16. 

 

  . 

  . 

SPECIES POPULATION AFTER 1 YEAR  = 1.23498E5 

SPECIES POPULATION AFTER 2 YEARS = 1.58374E5 

SPECIES POPULATION AFTER 3 YEARS (ITERATIVE ADJUSTMENT REQUIRED)= 1.78434E5 

SPECIES POPULATION AFTER 4 YEARS = 2.34563E5 

  . 

  . 

Example 3.15 Extract from a model output file. 
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A primary marker is used to move the PEST cursor to the first of the lines shown in Example 

3.15. Then, noting that the number representing the species population always follows a “=” 

character, the “=” character is used as a secondary marker. After it processes a secondary 

marker, the PEST cursor always resides on the last character of that marker, in this case on 

the “=” character itself. Hence after reading the “=” character, PEST is able to process the 

!sp1! instruction by isolating the string “1.23498E5” in the manner described above. 

After it reads the model-calculated value for observation “sp1”, PEST moves to the next 

instruction line. In accordance with the “l1” instruction, PEST reads into its memory  the next 

line of the model output file. It then searches for a “=” character and reads the number 

following this character as observation “sp2”. This procedure is then repeated for 

observations “sp3” and “sp4”. 

Successful identification of a non-fixed observation depends on the instructions preceding it. 

The secondary marker, tab and whitespace instructions will be most useful in this regard, 

though fixed and semi-fixed observations may also precede a non-fixed observation; 

remember that in all these cases PEST places its cursor over the last character of the string or 

number it identifies on the model output file corresponding to an instruction item, before 

proceeding to the next instruction.  

Consider the model output file line shown below as a further illustration of the use of non-

fixed observations. 

4.33 -20.3 23.392093 3.394382  

If we are interested in the fourth of these numbers but we are unsure as to whether the 

numbers preceding it might not be written with greater precision in some model runs (hence 

pushing the number in which we are interested to the right), then we have no alternative but 

to read the number as a non-fixed observation. However if the previous numbers vary from 

model run to model run, we cannot use a secondary marker either; nor can a tab be used. 

Fortunately, whitespace comes to the rescue, with the following instruction line taking PEST 

to the fourth number: 

l10 w w w !obs1! 

Here it is assumed that, prior to reading this instruction, the PEST cursor was located on the 

10th preceding line of the model output file. As long as we can be sure that no whitespace 

will ever precede the first number, there will always be three incidences of whitespace 

preceding the number in which we are interested. However, if it happens that whitespace may 

precede the first number on some occasions, while on other occasions it may not, then we can 

pif * 

 . 

 . 

*SPECIES* *=* !sp1! 

l1 *=* !sp2! 

l1 *=* !sp3! 

l1 *=* !sp4! 

 . 

 . 

Example 3.16 Extract from an instruction file. 
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read the first number as a dummy observation as shown below: 

l10 !dum! w w w !obs1! 

As was explained previously, the number on the model output file corresponding to an 

observation named “dum” is not actually used; nor can the name “dum” appear in the 

“observation data” section of the PEST control file (see the next chapter). The use of this 

name is reserved for instances like the present case where a number must be read in order to 

facilitate navigation along a particular line of the model output file. The number is read 

according to the non-fixed observation protocol, for only observations of this type can be 

dummy observations. 

An alternative to the use of whitespace in locating the observation “obs1” in the above 

example could involve using the dummy observation more than once. Hence the instruction 

line below would also enable the number representing “obs1” to be located and read: 

l10 !dum! !dum! !dum! !obs1! 

However had the numbers in the above example been separated by commas instead of 

whitespace, the commas should have been used as secondary markers in order to find “obs1”. 

A number not surrounded by whitespace can still be read as a non-fixed observation with the 

proper choice of secondary markers. Consider the model output file line shown below: 

SOIL WATER CONTENT (NO CORRECTION)=21.345634% 

It may not be possible to read the soil water content as a fixed observation because the “(NO 

CORRECTION)” string may or may not be present after any particular model run. Reading it 

as a non-fixed observation appears troublesome as the number is neither preceded nor 

followed by whitespace. However a suitable instruction line is 

l5 *=* !sws! *%* 

Notice how a secondary marker (viz. *%*) is referenced even though it occurs after the 

observation we wish to read. If this marker were not present, a run-time error would occur 

when PEST tries to read the soil water content because it would define the observation string 

to include the “%” character and, naturally, would be unable to read a number from a string 

which includes non-numeric characters. However by including the “%” character as a 

secondary marker after the number representing the observation “sws”, PEST will separate 

the character from the string before trying to read the number. But note that if a post-

observation secondary marker of this type begins with a numerical character, PEST cannot be 

guaranteed not to include this character with the observation number if there is no whitespace 

separating it from the observation. 

The fact that there is no whitespace between the “=” character and the number we wish to 

read causes PEST no problems either. After processing of the “=” character as a secondary 

marker, the PEST processing cursor falls on the “=” character itself. The search for the first 

non-blank character initiated by the !sws! instruction terminates on the very next character 

after the “=”, viz. the “2” character. PEST then accepts this character as the left boundary of 

the string from which it must read the soil moisture content and searches forwards for the 

right boundary of the string in the usual manner. 
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After PEST has read a non-fixed observation, it places its cursor on the last character of the 

observation number. It can then undertake further processing of the model output file line to 

read further non-fixed, fixed or semi-fixed observations, or process navigational instructions 

as directed. 

Continuation 

You can break an instruction line between any two instructions by using the continuation 

character, “&”, to inform PEST that a certain instruction line is actually a continuation of the 

previous line. Thus the instruction file fragment 

l1 %RESULTS% %TIME (4)% %=% !obs1! !obs2! !obs3! 

is equivalent to 

l1 
& %RESULTS% 
& %TIME (4)% 
& %=% 
& !obs1! 
& !obs2! 
& !obs3! 

For both these fragments, the marker delimiter is assumed to be “%”. Note that the 

continuation character must be separated from the instruction which follows it by at least one 

space.  

3.3.7 Making an Instruction File 

An instruction file can be built using a text editor. This is particularly easy in the WINDOWS 

environment where you can open two command-line windows, one to view a model output 

file, and the other to write the instruction file. If the viewing program is a text editor which 

displays cursor line and column numbers, the job is even easier; note that the text editor, 

EDIT, provides these numbers. Furthermore, with the help of the WINDOWS clipboard 

facility, you can easily copy markers from a model output file to an instruction file using the 

mouse. 

You must always exercise caution in building an instruction set to read a model output file, 

especially if navigational instructions such as markers, whitespace, tabs and dummy 

observations are used. PEST will always follow your instructions to the letter, but it may not 

read the number you intend if you get an instruction wrong. If PEST tries to read an 

observation but does not find a number where it expects to find one, a run-time error will 

occur. PEST will inform you of where it encountered the error and of the instruction it was 

implementing when the error occurred; this should allow you to find the problem. However if 

PEST actually reads the wrong number from the model output file, this may only become 

apparent if an unusually high objective function results, or if PEST is unable to lower the 

objective function on successive optimisation iterations. In this case you should interrupt 

PEST execution, asking PEST to terminate execution with a statistics printout (see Chapter 

5). Included in this printout are the current model-generated observation values; if PEST is 

reading the wrong number it will then become apparent. 

Included in the PEST suite are two programs which can be used to verify that instruction files 
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have been built correctly. Program PESTCHEK, when checking all PEST input data for 

errors and inconsistencies prior to a PEST run, reads all the instruction files cited in a PEST 

control file (see the next chapter) ensuring that no syntax errors are present in any of these 

files. Program INSCHEK, on the other hand, checks a single PEST instruction file for syntax 

errors. If an instruction file is error-free, INSCHEK can then use that instruction file to read a 

model output file, printing out a list of observation values read from that file. In this way you 

can be sure that your instruction set “works” before it is actually used by PEST. See Chapter 

11 of this manual for more details. 
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4. The PEST Control File 
Don’t forget to see the addendum to this manual for further details of PEST functionality, 

particularly as it pertains to highly parameterized inversion and uncertainty analysis. 

4.1 The Role of the PEST Control File 

Once all the template and instruction files have been prepared for a particular case, a “PEST 

control file” must be prepared which “brings it all together”. Unlike template and instruction 

files, for which there is no naming convention, there are some conventions associated with 

the name of the PEST control file. In particular, the file must have an extension of “.pst”. Its 

filename base is referred to as the PEST “case name”; PEST uses this same filename base for 

the files which it generates in the course of its run. Thus, for example, if you name the PEST 

control file calib.pst, PEST will generate files calib.rec (the run record file), calib.par (best 

parameter values achieved), calib.rst (restart information stored at the beginning of each 

optimisation iteration), calib.jac (the Jacobian matrix for a possible restart), calib.jst (the 

same file from the previous optimisation iteration), calib.prf (special Parallel PEST restart 

file), calib.jco (the Jacobian matrix pertaining to best parameters for access by the JACWRIT 

utility), calib.sen (parameter sensitivities), calib.seo (observation sensitivities), calib.res 

(tabulated observation residuals), calib.rei (interim observation residuals), calib.mtt (interim 

covariance matrix and related matrices) and some other files with the same basename, 

depending on its current mode of operation. User-supplied files calib.rmf (Parallel PEST run 

management file) and calib.hld (the “parameter hold file”) are possible PEST input files. 

Many of the data items in the PEST control file are used to “tune” PEST’s operation to the 

case in hand; such items include parameter change limits, parameter transformation types, 

termination criteria etc. As is further discussed in Chapter 5, before using PEST on a real-

world problem, you may wish to use it to estimate parameters for a case where your “field” 

data are, in fact, model-generated; in this way you know the answers that PEST should 

achieve. Through a careful examination of the PEST run record file, and perhaps a little 

experimentation with PEST input variables, you should be able to determine what PEST 

settings are best for your particular problem. (You can also test whether the observation set 

that you provide affords the determination of a unique parameter set.) 

The PEST control file can be built in one of two ways. It can be easily prepared using a text 

editor following the directions provided in this chapter. Alternatively, you can use the PEST 

utility, PESTGEN, to generate a PEST control file for your current case using default input 

variables; this file can then be modified as you see fit using a text editor. In either case the 

PEST control file can be checked for correctness and consistency using the utility program 

PESTCHEK. 

Note also that some of the programs of the PEST Ground Water and Surface Water Utilities 

can be used to write a PEST control file. 

4.2 Construction Details 



The PEST Control File  

 

4-2 

 

4.2.1 The Structure of the PEST Control File 

The PEST control file consists of integer, real and character variables. Its construction details 

are set out in Example 4.1, where variables are referenced by name. A sample PEST control 

file is provided in Example 4.2.  Note that the PEST control file demonstrated in these two 

examples pertains to the use of PEST in “parameter estimation mode” (the most usual case of 

PEST usage). Use of PEST in “predictive analysis mode” is described in Chapter 6 while use 

of PEST in “regularisation mode” is described in Chapters 7 and 8. Note also that whenever 

PEST is upgraded and additional variables are required in the PEST control file, newer 

versions of PEST will always be capable of reading old versions of the PEST control file; 

default values will simply be assigned to missing variables. 

 

pcf 

* control data 

RSTFLE PESTMODE 

NPAR NOBS NPARGP NPRIOR NOBSGP 

NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE 

RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM 

RELPARMAX FACPARMAX FACORIG 

PHIREDSWH 

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR 

ICOV ICOR IEIG 

* parameter groups 

PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD 

(one such line for each of the NPARGP parameter groups) 

* parameter data 

PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM 

(one such line for each of the NPAR parameters) 

PARNME PARTIED 

(one such line for each tied parameter) 

* observation groups 

OBGNME 

(one such line for each observation group) 

* observation data 

OBSNME OBSVAL WEIGHT OBGNME 

(one such line for each of the NOBS observations) 

* model command line 

write the command which PEST must use to run the model 

* model input/output 

TEMPFLE INFLE 

(one such line for each model input file containing parameters) 

INSFLE OUTFLE 

(one such line for each model output file containing observations) 

* prior information 

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME 

(one such line for each of the NPRIOR articles of prior information) 

 

Example 4.1 Construction details of the PEST control file. 
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A PEST control file must begin with the letters “pcf” for “PEST control file”. Scattered 

through the file are a number of section headers. These headers always follow the same 

format, viz. an asterisk followed by a space followed by text. When preparing a PEST control 

pcf 

* control data 

restart estimation 

5 19 2 2 4 

1 1 single point 1  0  0 

5.0 2.0 0.4 0.03 10   

3.0 3.0 1.0e-3 

.1 

30 .01 3 3 .01 3 

1 1 1 

* parameter groups 

ro relative .001 .00001 switch 2.0 parabolic 

h  relative .001 .00001 switch 2.0 parabolic 

* parameter data 

ro1  fixed factor  0.5   .1  10     none 1.0 0.0 1 

ro2  log   factor  5.0   .1  10     ro   1.0 0.0 1 

ro3  tied  factor  0.5   .1  10     ro   1.0 0.0 1 

h1   none  factor  2.0   .05 100    h    1.0 0.0 1 

h2   log   factor  5.0   .05 100    h    1.0 0.0 1 

ro3  ro2 

* observation groups 

group_1 

group_2 

group_3 

group_4 

* observation data 

ar1    1.21038  1.0 group_1 

ar2    1.51208  1.0 group_1 

ar3    2.07204  1.0 group_1 

ar4    2.94056  1.0 group_1 

ar5    4.15787  1.0 group_1 

ar6    5.77620  1.0 group_1 

ar7    7.78940  1.0 group_2 

ar8    9.99743  1.0 group_2 

ar9    11.8307  1.0 group_2 

ar10    12.3194  1.0 group_2 

ar11    10.6003  1.0 group_2 

ar12    7.00419  1.0 group_2 

ar13    3.44391  1.0 group_2 

ar14    1.58279  1.0 group_2 

ar15    1.10380  1.0 group_3 

ar16    1.03086  1.0 group_3 

ar17    1.01318  1.0 group_3 

ar18    1.00593  1.0 group_3 

ar19    1.00272  1.0 group_3 

* model command line 

ves 

* model input/output 

ves.tp1 ves.inp 

ves.ins ves.out 

* prior information 

pi1  1.0 * h1 = 2.0 3.0 group_4 

pi2  1.0 * log(ro2) + 1.0 * log(h2) = 2.6026 2.0 group_4 

Example 4.2 A PEST control file. 
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file, these headers must be written exactly as set out in Examples 4.1 and 4.2; however if 

there is no prior information, the “prior information” header can be omitted. 

On each line of the PEST control file, variables must be separated from each other by at least 

one space. Real numbers can be supplied with the minimum precision necessary to represent 

their value; the decimal point does not need to be included if it is redundant. If exponentiation 

is required, this can be accomplished with either the “d” or “e” symbol; note, however, that 

all real numbers are stored internally by PEST as double precision numbers.  

The data which must reside in the PEST control file is now discussed in detail section by 

section. Refer to Example 4.1 for the location within the PEST control file of each input 

variable discussed below. 

4.2.2 Control Data 

The data provided in the “control data” section of the PEST control file are used to set 

internal array dimensions, tune the optimisation algorithm to the problem at hand, and set 

some data output options. 

RSTFLE 

This character variable must be assigned one of two possible values, viz. “restart” or 

“norestart”. (Note that for this, and other character variables in the PEST control file, PEST is 

case insensitive.) If it takes the value “restart”, PEST will dump the contents of many of its 

data arrays to a binary file (named case.rst where case is the current case name) at the 

beginning of each optimisation iteration; this allows PEST to be restarted later if execution is 

prematurely terminated. If subsequent PEST execution is initiated using the “/r” command 

line switch (see Section 5.4.2), it will recommence execution at the beginning of the iteration 

during which it was interrupted. PEST will also dump the Jacobian matrix to a binary file 

named case.jac on every occasion of this matrix being filled. This allows re-commencement 

of execution with the “/j” switch which, as is explained in Section 5.6, may be useful if it is 

desired that PEST re-calculate the parameter upgrade vector with certain recalcitrant 

parameters temporarily held fixed. If run as Parallel PEST, PEST will also write a file named 

case.prf which is used for up-to-the-minute restart of a Parallel PEST run. 

If the RSTFLE variable is set to “norestart”, PEST will not intermittently dump its array or 

Jacobian data; hence a later re-commencement of execution after premature termination is 

impossible. 

PESTMODE 

This character variable must be supplied as either “estimation”, “prediction” or 

“regularisation”. If set to “estimation” PEST will run in parameter estimation mode (its 

traditional mode of operation); if set to “prediction” PEST will run in predictive analysis 

mode; if set to “regularisation” PEST will run in regularisation mode.  

If PEST is run in predictive analysis mode, you must ensure that the PEST control file 

contains a “predictive analysis” section. You must also ensure that there are at least two 

observation groups, one of which is named “predict”, and that the “predict” group has just 
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one observation. See Chapter 6 for further details. 

If PEST is run in regularisation mode you must ensure that the PEST control file contains a 

“regularisation” section. You must also ensure that there are at least two observation groups, 

one of which is named “regul”. See Chapters 7 and 8 for further details. 

Note that if PESTMODE is supplied as “estimation” there is no need to include a “predictive 

analysis” section or a “regularisation” section in the PEST control file. 

NPAR 

This is the total number of parameters used for the current PEST case, including adjustable, 

fixed and tied parameters; NPAR must be supplied as an integer. 

NOBS 

This integer variable represents the total number of observations used in the current case. 

Note that, when counting the number of observations to evaluate NOBS, any dummy 

observations (see Chapter 3) that may be referenced in one or a number of instruction files are 

ignored. 

NPARGP 

This is the number of parameter groups; parameter groups are discussed in detail below. 

NPARGP is an integer variable. 

NPRIOR 

NPRIOR, another integer variable, is the number of articles of prior information that you wish 

to include in the parameter estimation process. If there are no articles of prior information, 

NPRIOR must be zero. 

In general, you should ensure that the number of adjustable parameters is less than or equal to 

the number of observations for which there are non-zero weights plus the number of articles 

of prior information for which there are non-zero weights. If this is not the case the PEST 

“normal” matrix of equation 2.16 will not be positive definite (in fact it will be singular) and 

a unique solution to the parameter estimation problem will not achievable. Nevertheless 

PEST will probably still determine a parameter vector which minimises the objective 

function, using the Marquardt parameter to make the normal matrix positive definite; see 

equation 2.23. However, a parameter vector determined in this way is not unique; 

furthermore, PEST will be unable to determine the parameter covariance matrix and to 

calculate parameter uncertainty levels because the Marquardt lambda is not added to the 

normal matrix prior to the determination of these quantities. 

NOBSGP 

NOBSGP, another integer variable, is the number of observation groups used in the current 

case. Each observation and each prior information equation must be assigned to an 

observation group (they can all be assigned to the same group if desired). When PEST 
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evaluates the objective function it also evaluates the contribution made to the objective 

function by the observations and prior information equations belonging to each group.  

NTPLFLE 

This is an integer variable, informing PEST of the number of model input files which contain 

parameters; PEST must write each of these files prior to a model run. As there must be one 

template file for each such model input file, NTPLFLE is also equal to the number of 

template files which PEST must use in writing the current parameter set. 

A model may have many input files; however PEST is concerned only with those which it 

needs to rewrite prior to each model run, ie. those for which there are template files. As 

explained later, a single template file may, under some circumstances, be used to write more 

than one model input file. In such a case you must treat each template file - model input file 

pair separately in determining NTPLFLE. 

NINSFLE 

This is the number of instruction files. There must be one instruction file for each model 

output file containing model-generated observations which PEST uses in the determination of 

the objective function. (In some circumstances, a single model output file may be read by 

more than one instruction file; however each instruction file - model output file pair is treated 

separately in determining NINSFLE). 

PRECIS 

PRECIS is a character variable which must be either “single” or “double”. If it is supplied to 

PEST as “single”, PEST writes parameters to model input files using single precision 

protocol; ie. parameter values will never be greater than 13 characters in length (even if the 

parameter space allows for a greater length) and the exponentiation character is “e”. If 

PRECIS is supplied as “double”, parameter values are written to model input files using 

double precision protocol; the maximum parameter value length is 23 characters and the 

exponentiation symbol is “d”. See Section  3.2.6. 

DPOINT 

This character variable must be either “point” or “nopoint”. If DPOINT is provided with the 

value “nopoint” PEST will omit the decimal point from representations of parameter values 

on model input files if the decimal point is redundant, thus making room for the use of one 

extra significant figure. If DPOINT is supplied as “point”, PEST will ensure that the decimal 

point is always present. See Section 3.2.6. 

NUMCOM, JACFILE and MESSFILE 

These variables are used to control the manner in which PEST can obtain derivatives directly 

from the model if these are available; see Chapter 9. For normal operation these should be set 

at 1, 0 and 0 respectively. 
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RLAMBDA1 

This real variable is the initial Marquardt lambda. As discussed in Section 2.1.7, PEST 

attempts parameter improvement using a number of different Marquardt lambdas during any 

one optimisation iteration; however, in the course of the overall parameter estimation process, 

the Marquardt lambda generally gets smaller. An initial value of 1.0 to 10.0 is appropriate for 

most models, though if PEST complains that the normal matrix is not positive definite, you 

will need to provide a higher initial Marquardt lambda. Alternatively, if using singular value 

decomposition, it may be best to set RLAMBDA1 to zero (and NUMLAM to 1). 

As explained in Section 2.1.7, for high values of the Marquardt lambda the parameter 

estimation process approximates the steepest-descent method of optimisation. While the latter 

method is inefficient and slow if used for the entirety of the optimisation process, it often 

helps in getting the process started, especially if initial parameter estimates are poor. 

The Marquardt lambda used by PEST is subject to user-alteration midway through the 

optimisation process. See Section 5.6 for further details. 

RLAMFAC 

RLAMFAC, a real variable, is the factor by which the Marquardt lambda is adjusted; see 

Section 2.1.7. RLAMFAC must be greater than 1.0; a value of 2.0 seems to work well on 

most occasions. When PEST reduces lambda it divides by RLAMFAC; when it increases 

lambda it multiplies by RLAMFAC. PEST reduces lambda if it can. However if the normal 

matrix is not positive definite or if a reduction in lambda does not lower the objective 

function, PEST has no choice but to increase lambda. 

PHIRATSUF 

During any one optimisation iteration, PEST may calculate a parameter upgrade vector using 

a number of different Marquardt lambdas. First it lowers lambda and, if this is unsuccessful in 

lowering the objective function, it then raises lambda. If, at any stage, it calculates an 

objective function which is a fraction PHIRATSUF or less of the starting objective function 

for that iteration, PEST considers that the goal of the current iteration has been achieved and 

moves on to the next optimisation iteration. Thus PEST will commence iteration i+1 if, at 

any stage during iteration i 

 i
j
/i-1    PHIRATSUF        (4.1) 

where i-1 is the lowest objective function calculated for optimisation iteration i-1 (and hence 

the starting value for optimisation iteration i) and i
j
 is the objective function corresponding 

to a parameter set calculated using the j’th Marquardt lambda tested during optimisation 

iteration i. 

PHIRATSUF (which stands for “phi ratio sufficient”) is a real variable for which a value of 

0.3 is often appropriate. If it is set too low, model runs may be wasted in search of an 

objective function reduction which it is not possible to achieve, given the linearity 

approximation upon which the optimisation equations of Chapter 2 are based. If it is set too 

high, PEST may not be given the opportunity of refining lambda in order that its value 
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continues to be optimal as the parameter estimation process progresses. 

PHIREDLAM 

If a new/old objective function ratio of PHIRATSUF or less is not achieved as the 

effectiveness of different Marquardt lambdas in lowering the objective function is tested, 

PEST must use some other criterion in deciding when it should move on to the next 

optimisation iteration. This criterion is partly provided by the real variable PHIREDLAM. 

The first lambda that PEST employs in calculating the parameter upgrade vector during any 

one optimisation iteration is the lambda inherited from the previous iteration, possibly 

reduced by a factor of RLAMFAC (unless it is the first iteration, in which case RLAMBDA1 

is used). Unless, through the use of this lambda, the objective function is reduced to less than 

PHIRATSUF of its value at the beginning of the iteration, PEST then tries another lambda, 

less by a factor of RLAMFAC than the first. If the objective function is lower than for the 

first lambda (and still above PHIRATSUF of the starting objective function), PEST reduces 

lambda yet again; otherwise it increases lambda to a value greater by a factor of RLAMFAC 

than the first lambda for the iteration. If, in its attempts to find a more effective lambda by 

lowering and/or raising lambda in this fashion, the objective function begins to rise, PEST 

accepts the lambda and the corresponding parameter set giving rise to the lowest objective 

function for that iteration, and moves on to the next iteration. Alternatively if the relative 

reduction in the objective function between the use of two consecutive lambdas is less than 

PHIREDLAM, PEST takes this as an indication that it is probably more efficient to begin the 

next optimisation iteration than to continue testing the effect of new Marquardt lambdas. 

Thus if 

 (i
j-1

 - i
j 
)/i

j-1
    PHIREDLAM      (4.2) 

where i
j
 is the objective function value calculated during optimisation iteration i using the 

j’th trial lambda, PEST moves on to iteration i+1. 

A suitable value for PHIREDLAM is often around 0.01. If it is set too large, the criterion for 

moving on to the next optimisation iteration is too easily met and PEST is not given the 

opportunity of adjusting lambda to its optimal value for that particular stage of the parameter 

estimation process. On the other hand if PHIREDLAM is set too low, PEST will test too 

many Marquardt lambdas on each optimisation iteration when it would be better off starting a 

new iteration. 

NUMLAM 

This integer variable places an upper limit on the number of lambdas that PEST can test 

during any one optimisation iteration. It should normally be set between 5 and 10; however if 

RLAMBDA1 is set to zero (as may be wise when using singular value decomposition) it must 

be set to 1. For cases where parameters are being adjusted near their upper or lower limits, 

and for which some parameters are consequently being frozen (thus reducing the dimension 

of the problem in parameter space) experience has shown that a value closer to 10 may be 

more appropriate than one closer to 5; this gives PEST a greater chance of adjusting to the 

reduced problem dimension as parameters are frozen. 
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RELPARMAX and FACPARMAX 

As was explained in Section 2.2.5, there should be some limit placed on the amount by which 

parameter values are allowed to change in any one optimisation iteration. If there is no limit, 

parameter adjustments could regularly “overshoot” their optimal values, causing a 

prolongation of the estimation process at best, and instability with consequential estimation 

failure at worst; the dangers are greatest for highly nonlinear problems. 

PEST provides two input variables which can be used to limit parameter adjustments; these 

are RELPARMAX and FACPARMAX, both real variables. RELPARMAX is the maximum 

relative change that a parameter is allowed to undergo between optimisation iterations, 

whereas FACPARMAX is the maximum factor change that a parameter is allowed to 

undergo. Any particular parameter can be subject to only one of these constraints; ie. a 

particular parameter must be either relative-limited or factor-limited in its adjustments. 

Parameters are denoted as either relative-limited or factor-limited through the character 

variable PARCHGLIM supplied for each parameter; see below. 

The relative change in parameter b between optimisation iterations i-1 and i is defined as 

 (bi-1 - bi )/bi-1         (4.3) 

If parameter b is relative-limited, the absolute value of this relative change must be less than 

RELPARMAX. If a parameter upgrade vector is calculated such that the relative adjustment 

for one or more relative-limited parameters is greater than RELPARMAX, the magnitude of 

the upgrade vector is reduced such that this no longer occurs. 

The factor change for parameter b between optimisation iterations i-1 and i is defined as 

 bi-1 /bi  if bi-1 > bi , or 

 bi /bi-1  if bi  > bi-1      (4.4) 

If parameter b is factor-limited, this factor change (which either equals or exceeds unity 

according to equation 4.4) must be less than FACPARMAX.  If a parameter upgrade vector is 

calculated such that the factor adjustment for one or more factor-limited parameters is greater 

than FACPARMAX, the magnitude of the upgrade vector is reduced such that this no longer 

occurs. 

Whether a parameter should be relative-limited or factor-limited depends on the parameter. 

However you should note that a parameter can be reduced from its current value right down 

to zero for a relative change of only 1; as described in Section 2.2.5 it may then take many 

iterations to re-adjust upwards, this causing serious inefficiencies in the parameter estimation 

process. If you wish to limit the extent of its downward movement during any one iteration to 

less than this, you may wish to set RELPARMAX to, for example, 0.5; however this may 

unduly restrict its upward movement. It may be better to declare the parameter as factor-

limited. If so, a FACPARMAX value of, say 5.0, would limit its downward movement on any 

one iteration to 0.2 of its value at the start of the iteration and its upward movement to 5 times 

its starting value. This may be a more sensible approach for many parameters. Alternatively, 

provide the parameter with a non-zero OFFSET value and adjust its upper and lower bounds 
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such that it never becomes zero, or nearly zero. 

It is important to note that a factor limit will not allow a parameter to change sign. Hence if a 

parameter must be free to change sign in the course of the optimisation process, it must be 

relative-limited; furthermore RELPARMAX must be set at greater than unity or the change of 

sign will be impossible. Thus the utility program PESTCHEK (see Chapter 11) will not allow 

you to declare a parameter as factor-limited, or as relative-limited with the relative limit of 

less than 1, if its upper and lower bounds are of opposite sign. Similarly, if a parameter’s 

upper or lower bound is zero, it cannot be factor-limited and RELPARMAX must be at least 

unity. 

Suitable values for RELPARMAX and FACPARMAX can vary enormously between cases. 

For highly non-linear problems, these values are best set low. If they are set too low, however, 

the estimation process can be very slow. An inspection of the PEST run record will often 

reveal whether you have set these values too low, for PEST records the maximum parameter 

factor and relative changes on this file at the end of each optimisation iteration. If these 

changes are always at their upper limits and the estimation process is showing no signs of 

instability, it is quite possible that RELPARMAX and/or FACPARMAX could be increased 

(or that an insensitive parameter should be held at its current value - see Section 5.6). 

If you are unsure of how to set these parameters, a value of 5 for each of them is often 

suitable. In cases of extreme nonlinearity, be prepared to set them much lower. Note, 

however, that FACPARMAX can never be less than 1; RELPARMAX can be less than 1 as 

long as no parameter’s upper and lower bounds are of opposite sign. 

Values assigned to RELPARMAX and FACPARMAX can be adjusted in the course of the 

optimisation process through the user-intervention functionality discussed in Section 5.6. 

FACORIG 

If, in the course of the estimation process, a parameter becomes very small, the relative or 

factor limit to subsequent adjustment of this parameter may severely hamper its growth back 

to higher values, resulting in very slow convergence to an objective function minimum. 

Furthermore, for the case of relative-limited parameters which are permitted to change sign, it 

is possible that the denominator of equation 4.3 could become zero. 

To obviate these possibilities, choose a suitable value for the real variable, FACORIG. If the 

absolute value of a parameter falls below FACORIG times its original value, then FACORIG 

times its original value is substituted for the denominator of equation 4.3. For factor-limited 

parameters, a similar modification to equation 4.4 applies. Thus the constraints that apply to a 

growth in absolute value of a parameter are lifted when its absolute value has become less 

than FACORIG times its original absolute value. However, where PEST wishes to reduce the 

parameter’s absolute value even further, factor-limitations are not lifted; nor are relative 

limitations lifted if RELPARMAX is less than 1. FACORIG is not used to adjust limits for 

log-transformed parameters. 

FACORIG must be greater than zero. A value of 0.001 is often suitable. 

PHIREDSWH 
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The derivatives of observations with respect to parameters can be calculated using either 

forward differences (involving two parameter-observation pairs) or one of the variants of the 

central method (involving three parameter-observation pairs) described in Section 2.3. As 

discussed below, you must inform PEST through the variables FORCEN and DERMTHD 

which method is to be used for the parameters belonging to each parameter group. 

Using the variable FORCEN, you may wish to decree that, for a particular parameter group, 

derivatives will first be calculated using the forward difference method and later, when PEST 

is faltering in its attempts to reduce the objective function, calculated using one of the central 

methods. Alternatively, you may direct that no such switching take place, the forward or 

central method being used at all times for the parameters belonging to a particular group. In 

the former case you must provide PEST with a means of judging when to make the switch; 

this is the role of the real variable PHIREDSWH. 

If the relative reduction in the objective function between successive optimisation iterations is 

less than PHIREDSWH, PEST will make the switch to three-point derivatives calculation for 

those parameter groups for which the character variable FORCEN has the value “switch”; 

thus if, for the i’th iteration  

 (i-1 - i )/i-1     PHIREDSWH      (4.5) 

(where i is the objective function calculated on the basis of the upgraded parameter set 

determined in the i’th iteration), PEST will use central derivatives in iteration i+1 (and all 

succeeding iterations) for all parameter groups for which FORCEN is “switch”. A value of 

0.1 is often suitable for PHIREDSWH. If it is set too high, PEST may make the switch to 

three-point derivatives calculation before it needs to; the result will be that more model runs 

will be required to fill the Jacobian matrix than are really needed at that stage of the 

estimation process. If PHIREDSWH is set too low, PEST may waste an optimisation iteration 

or two in lowering the objective function to a smaller extent than would have been possible if 

it had made an earlier switch to central derivatives calculation. Note that PHIREDSWH 

should be set considerably higher than the input variable PHIREDSTP which sets one of the 

termination criteria on the basis of the relative objective function reduction between 

optimisation iterations. 

NOPTMAX 

The input variables on the ninth line of the PEST control file set the termination criteria for 

the parameter estimation process. These are the criteria by which PEST judges that the 

optimisation process has been taken as far as it can go. These should be set such that either 

parameter convergence to the optimal parameter set has been achieved, or it has become 

obvious that continued PEST execution will not bear any fruits. 

The first number required on this line is the integer variable NOPTMAX. This sets the 

maximum number of optimisation iterations that PEST is permitted to undertake on a 

particular parameter estimation run. If you want to ensure that PEST termination is triggered 

by other criteria, more indicative of parameter convergence to an optimal set or of the futility 

of further processing, you should set this variable very high. A value of 20 to 30 is often 

appropriate. 
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Two possible settings for NOPTMAX have special significance. If NOPTMAX is set to 0, 

PEST will not calculate the Jacobian matrix. Instead it will terminate execution after just one 

model run. This setting can thus be used when you wish to calculate the objective function 

corresponding to a particular parameter set and/or to inspect observation residuals 

corresponding to that parameter set. 

If NOPTMAX is set to –1, PEST will terminate execution immediately after it has calculated 

the Jacobian matrix for the first time. The parameter covariance, correlation coefficient and 

eigenvector matrices will be written to the run record file, and parameter sensitivities will be 

written to the sensitivity file; these are based on the initial parameter set supplied in the 

PEST control file. 

PHIREDSTP and NPHISTP 

PHIREDSTP is a real variable whereas NPHISTP is an integer variable. If, in the course of 

the parameter estimation process, there have been NPHISTP optimisation iterations for which 

 (i - min )/i    PHIREDSTP       (4.6) 

(i being the objective function value at the end of the i’th optimisation iteration and min 

being the lowest objective function achieved to date), PEST will consider that the 

optimisation process is at an end. 

For many cases 0.005 and 4 are suitable values for PHIREDSTP and NPHISTP respectively. 

However you must be careful not to set NPHISTP too low if the optimal values for some 

parameters are near or at their upper or lower bounds (as defined by the parameter variables 

PARLBND and PARUBND discussed below). In this case it is possible that the magnitude of 

the parameter upgrade vector may be curtailed over one or a number of optimisation iterations 

to ensure that no parameter value overshoots its bound. The result may be smaller reductions 

in the objective function than would otherwise occur. It would be a shame if these reduced 

reductions were mistaken for the onset of parameter convergence to the optimal set. 

NPHINORED 

If PEST has failed to lower the objective function over NPHINORED successive iterations, it 

will terminate execution. NPHINORED is an integer variable; a value of 3 or 4 is often 

suitable. 

RELPARSTP and NRELPAR 

If the magnitude of the maximum relative parameter change between optimisation iterations 

is less than RELPARSTP over NRELPAR successive iterations, PEST will cease execution. 

The relative parameter change between optimisation iterations for any parameter is calculated 

using equation 4.3. PEST evaluates this change for all adjustable parameters at the end of 

each optimisation iteration, and determines the relative parameter change with the highest 

magnitude. If this maximum relative change is less than RELPARSTP, a counter is advanced 

by one; if it is greater than RELPARSTP, the counter is zeroed. 

All adjustable parameters, whether they are relative-limited or factor-limited, are involved in 
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the calculation of the maximum relative parameter change. RELPARSTP is a real variable for 

which a value of 0.01 is often suitable. NRELPAR is an integer variable; a value of 3 or 4 is 

normally satisfactory. 

ICOV, ICOR and IEIG 

As is explained in Section 5.3.6, at the end of each optimisation iteration PEST writes a 

“matrix file” containing the covariance and correlation coefficient matrices, as well as the 

eigenvectors and eigenvalues of the covariance matrix based on current parameter values. The 

settings of the ICOV, ICOR and IEIG variables determine which (if any) of these data are 

recorded on the matrix file. A setting of 1 for each of these variables will result in the 

corresponding data being recorded on the matrix file. On the other hand, a setting of 0 will 

result in the corresponding data not being recorded. If all of these variables are set to zero 

none of this data will be recorded. Where a large number of parameters are being estimated 

(as might happen, for example, when PEST is being used in regularisation mode), setting all 

of these variables to 0 may result in some savings in computation time, for there is then no 

need for PEST to calculate the covariance matrix until the end of the parameter estimation 

process when these matrices and eigenvalues/eigenvectors are recorded on the run record file 

(irrespective of the settings of ICOV, ICOR and IEIG).  

When PEST is run in regularisation mode the role of these variables is slightly expanded, for 

under these circumstances the writing of the covariance, correlation coefficient and 

eigenvector matrices to the run record file is optional (in order to prevent the production of an 

excessively large run record file on occasions where hundreds, or possibly thousands, of 

parameters are being estimated). Thus when PEST is run in regularisation mode, ICOV, 

ICOR and IEIG settings of zero prevent calculation and writing of the covariance, correlation 

coefficient and eigenvector matrixes to both the matrix file and the run record files. 

4.2.3 Parameter Groups 

Each adjustable parameter (ie. each parameter which is neither fixed nor tied) must belong to 

a parameter group; the group to which each such parameter belongs is supplied through the 

parameter input variable PARGP (see below). Each parameter group must possess a unique 

name of twelve characters or less. 

The PEST input variables that define how derivatives are calculated pertain to parameter 

groups rather than to individual parameters. Thus derivative data does not need to be entered 

individually for each parameter; however, if you wish, you can define a group for every 

parameter and set the derivative variables for each parameter separately. In many cases 

parameters fall neatly into separate groups which can be treated similarly in terms of 

calculating derivatives. For example in Example 4.2, which is a PEST control file for a case 

involving the calculation of surface-measured apparent resistivities from layered-half-space 

properties, the layer resistivities can be assembled into a single group, as can the layer 

thicknesses. 

A tied or fixed parameter can be a member of a group; however, as derivatives are not 

calculated with respect to such parameters, the group to which these parameters belong is of 

no significance (except, perhaps, in calculating the derivative increment for adjustable group 

members if the increment type is “rel_to_max” - see below). Alternatively, fixed or tied 
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parameters can be assigned to the dummy group “none”. If any group name other than “none” 

is cited for any parameter input variable PARGP in the “parameter data” section of the PEST 

control file, the properties for that group must be defined in the “parameter groups” section of 

the PEST control file. Note that an adjustable parameter cannot be assigned to the dummy 

group “none”. 

As Example 4.1 shows, one line of data must be supplied for each parameter group. Seven 

entries are required in each such line; the requirements for these entries are now discussed in 

detail. 

PARGPNME 

This is the parameter group name; it must be a maximum of twelve characters in length. If 

derivative data is provided for a group named by PARGPNME, it is not essential that any 

parameters belong to that group. However if, in the “parameter data” section of the PEST 

control file, a parameter is declared as belonging to a group that is not featured in the 

“parameter groups” section of the PEST control file, an error condition will arise. 

Note that derivative variables cannot be defined for the group “none” as this is a dummy 

group name, reserved for fixed and tied parameters for which no derivatives information is 

required. 

INCTYP and DERINC 

INCTYP is a character variable which can assume the values “relative”, “absolute” or 

“rel_to_max”. If it is “relative”, the increment used for forward-difference calculation of 

derivatives with respect to any parameter belonging to the group is calculated as a fraction of 

the current value of that parameter; that fraction is provided as the real variable DERINC. 

However if INCTYP is “absolute” the parameter increment for parameters belonging to the 

group is fixed, being again provided as the variable DERINC. Alternatively, if INCTYP is 

“rel_to_max”, the increment for any group member is calculated as a fraction of the group 

member with highest absolute value, that fraction again being DERINC. See Section 2.3 for a 

full discussion of the methods used by PEST to calculate parameter derivatives. 

Thus if INCTYP is “relative” and DERINC is 0.01 (a suitable value in many cases), the 

increment for each group member for each optimisation iteration is calculated as 0.01 times 

the current value of that member. However if INCTYP is “absolute” and DERINC is 0.01, the 

parameter increment is the same for all members of the group over all optimisation iterations, 

being equal to 0.01. If INCTYP is “rel_to_max” and DERINC is again 0.01, the increment for 

all group members is the same for any one optimisation iteration, being equal to 0.01 times 

the absolute value of the group member of highest current magnitude; however the increment 

may vary from iteration to iteration. 

If a group contains members which are fixed and/or tied you should note that the values of 

these parameters are taken into account when calculating parameter increments using the 

“rel_to_max” option. 

For the “relative” and “rel_to_max” options, a DERINC value of 0.01 is often appropriate. 

However no suggestion for an appropriate DERINC value can be provided for the “absolute” 
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increment option; the most appropriate increment will depend on parameter magnitudes. 

DERINCLB 

If a parameter increment is calculated as “relative” or “rel_to_max”, it is possible that it may 

become too low if the parameter becomes very small or, in the case of the “rel_to_max” 

option, if the magnitude of the largest parameter in the group becomes very small. A 

parameter increment becomes “too low” if it does not allow reliable derivatives to be 

calculated with respect to that parameter because of roundoff errors incurred in the 

subtraction of nearly equal model-generated observation values. 

To circumvent this possibility, an absolute lower bound can be placed on parameter 

increments; this lower bound will be the same for all group members, and is provided as the 

input variable DERINCLB. Thus if a parameter value is currently 1000.0 and it belongs to a 

group for which INCTYP is “relative”, DERINC is 0.01, and DERINCLB is 15.0, the 

parameter increment will be 15.0 instead of 10.0 calculated on the basis of DERINC alone. If 

you do not wish to place a lower bound on parameter increments in this fashion, you should 

provide DERINCLB with a value of 0.0.  

Note that if INCTYP is “absolute”, DERINCLB is ignored. 

FORCEN 

The character variable FORCEN (an abbreviation of “FORward/CENtral”) determines 

whether derivatives for group members are calculated using forward differences, one of the 

variants of the central difference method, of whether both alternatives are used in the course 

of an optimisation run. It must assume one of the values “always_2”, “always_3” or “switch”. 

If FORCEN for a particular group is “always_2”, derivatives for all parameters belonging to 

that group will always be calculated using the forward difference method; as explained in 

Section 2.3, filling of the columns of the Jacobian matrix corresponding to members of the 

group will require as many model runs as there are adjustable parameters in the group. If 

FORCEN is provided as “always_3”, the filling of these same columns will require twice as 

many model runs as there are parameters within the group; however the derivatives will be 

calculated with greater accuracy and this will probably have a beneficial effect on PEST’s 

performance. If FORCEN is set to “switch”, derivatives calculation for all adjustable group 

members will begin using the forward difference method, switching to the central method for 

the remainder of the estimation process on the iteration after the relative objective function 

reduction between successive optimisation iterations is less than PHIREDSWH, a value for 

which is supplied in the “control data” section of the PEST control file.  

Experience has shown that in most instances the most appropriate value for FORCEN is 

“switch”. This allows speed to take precedence over accuracy in the early stages of the 

optimisation process when accuracy is not critical to objective function improvement, and 

accuracy to take precedence over speed later in the process when realisation of a (normally 

smaller) objective function improvement requires that derivatives be calculated with as much 

accuracy as possible, especially if parameters are highly correlated and the normal matrix thus 

approaches singularity. 
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DERINCMUL 

If derivatives are calculated using one of the three-point methods, the parameter increment is 

first added to the current parameter value prior to a model run, and then subtracted prior to 

another model run. In some cases it may be desirable to increase the value of the increment 

for this process over that used for forward difference derivatives calculation. The real variable 

DERINCMUL allows you to achieve this. If three-point derivatives calculation is employed, 

the value of DERINC is multiplied by DERINCMUL; this applies whether DERINC holds 

the increment factor, as it does for “relative” or “rel_to_max” increment types, or holds the 

parameter increment itself, as it does for “absolute” increment types. 

As discussed in Section 2.3.3, for many models the relationship between observations and 

parameters, while being in theory continuously differentiable, is often “granular” when 

examined under the microscope, this granularity being a by-product of the numerical solution 

scheme used by the model. In such cases the use of parameter increments which are too small 

may lead to highly inaccurate derivatives calculation, especially if the two or three sets of 

parameter-observation pairs used in a particular derivative calculation are on the same side of 

a “bump” in the parameter-observation relationship. Parameter increments must be chosen 

large enough to cope with model output granularity of this type. But increasing parameter 

increments beyond a certain amount diminishes the extent to which finite differences can 

approximate derivatives, the definition of the derivative being the limit of the finite difference 

as the increment approaches zero. However the deterioration in the derivative approximation 

as increments are increased is normally much greater for the forward difference method than 

for any of the central methods (particularly the “parabolic” option). Hence, the use of one of 

the central methods with an enhanced derivative increment may allow you to calculate 

derivatives in an otherwise hostile modelling environment. 

Whenever the central method is employed for derivatives calculation, DERINC is multiplied 

by DERINCMUL, no matter whether INCTYP is “absolute”, “relative” or “rel_to_max”, and 

whether FORCEN is “always_3” or “switch”. If you do not wish the increment to be 

increased, you must provide DERINCMUL with a value of 1.0. Alternatively, if for some 

reason you wish the increment to be reduced if three-point derivatives calculation is 

employed, you should provide DERINCMUL with a value of less than 1.0. Experience shows 

that a value between 1.0 and 2.0 is usually satisfactory.  

DERMTHD 

There are three variants of the central (ie. three-point) method of derivatives calculation; each 

method is described in Section 2.3. If FORCEN for a particular parameter group is 

“always_3” or “switch”, you must inform PEST which three-point method to use. This is 

accomplished through the character variable DERMTHD which must be supplied as 

“parabolic”, “best_fit” or “outside_pts”. If FORCEN is “always_2”, you must still provide 

one of these three legal values for DERMTHD; however for such a parameter group, the 

value of DERMTHD has no bearing on derivatives calculation for the member parameters. 

4.2.4 Parameter Data - First Part 

For every parameter cited in a PEST template file, up to ten pieces of information must be 

provided in the PEST control file. Conversely, every parameter for which there is information 
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in the PEST control file must be cited at least once in a PEST template file (except for 

“adaptive regularisation” parameters – see Section 8.3). 

The “parameter data” section of the PEST control file is divided into two parts; in the first 

part a line must appear for each parameter. In the second part, a little extra data is supplied for 

tied parameters (viz. the name of the parameter to which each such tied parameter is linked). 

If there are no tied parameters the second part of the “parameter data” section of the PEST 

control file is omitted. 

Each item of parameter data is now discussed in detail; refer to Example 4.1 for the 

arrangement on the PEST control file of the PEST input variables discussed below. 

PARNME 

This is the parameter name. Each parameter name must be unique and of twelve characters or 

less in length; the name is case insensitive. 

PARTRANS 

PARTRANS is a character variable which must assume one of four values, viz. “none”, 

“log”, “fixed” or “tied”.  

If you wish that a parameter be log-transformed throughout the estimation process, the value 

“log” must be provided. As discussed in Section 2.2.1, logarithmic transformation of some 

parameters may have a profound affect on the success of the parameter estimation process. If 

a parameter is log-transformed PEST optimises the log of the parameter rather than the 

parameter itself. Hence the column of the Jacobian matrix pertaining to that parameter 

actually contains derivatives with respect to the log of the parameter; likewise, data specific 

to that parameter in the covariance, correlation coefficient and eigenvector matrices computed 

by PEST, pertains to the log of the parameter. However when you supply the parameter initial 

value (PARVAL1) and its upper and lower bounds (PARUBND and PARLBND), these must 

pertain to the parameter itself; likewise at the end of the parameter estimation process, PEST 

provides the optimised parameter value itself rather than the log of its value. 

Experience has shown repeatedly that log transformation of at least some parameters can 

make the difference between a successful parameter estimation run and an unsuccessful one. 

This is because, in many cases, the linearity approximation on which each PEST optimisation 

iteration is based holds better when certain parameters are log-transformed. However caution 

must be exercised when designating parameters as log-transformed. A parameter which can 

become zero or negative in the course of the parameter estimation process must not be log-

transformed; hence if a parameter’s lower bound is zero or less, PEST will disallow 

logarithmic transformation for that parameter. (Note, however, that by using an appropriate 

scale and offset, you can ensure that parameters never become negative. Thus if you are 

estimating the value for a parameter whose domain, as far as the model is concerned, is the 

interval [-9.99, 10], you can shift this domain to [0.01, 20] for PEST by designating a scale of 

1.0 and an offset of -10.0. Similarly if a parameter’s model domain is entirely negative, you 

can make this domain entirely positive for PEST by supplying a scale of -1.0 and an offset of 

0.0. See Section 2.2.4 and the discussion on the SCALE and OFFSET variables below.) 
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If a parameter is fixed, taking no part in the optimisation process, PARTRANS must be 

supplied as “fixed”. If a parameter is linked to another parameter, this is signified by a 

PARTRANS value of “tied”. In the latter case the parameter takes only a limited role in the 

estimation process. However the parameter to which the tied parameter is linked (this 

“parent” parameter must be neither fixed nor tied itself) takes an active part in the parameter 

estimation process; the tied parameter simply “piggy-backs” on the parent parameter, the 

value of the tied parameter maintaining at all times the same ratio to the parent parameter as 

the ratio of their initial values. Note that the parent parameter for each tied parameter must be 

provided in the second part of the “parameter data” section of the PEST control file. 

If a parameter is neither fixed nor tied, and is not log-transformed, the parameter 

transformation variable PARTRANS must be supplied as “none”. 

Note that if a particular parameter estimation problem will benefit from a more complex 

parameter transformation type than logarithmic, this can be accomplished using the parameter 

preprocessor PAR2PAR; see Section 11.11 for further details. 

PARCHGLIM 

This character variable is used to designate whether an adjustable parameter is relative-

limited or factor-limited; see Section 2.2.5 and the discussion of the input variables 

RELPARMAX and FACPARMAX above. PARCHGLIM must be provided with one of two 

possible values, viz. “relative” or “factor”. For tied or fixed parameters this variable has no 

significance. 

PARVAL1 

PARVAL1, a real variable, is a parameter’s initial value. For a fixed parameter, this value 

remains invariant during the optimisation process. For a tied parameter, the ratio of 

PARVAL1 to the parent parameter’s PARVAL1 sets the ratio between these two parameters 

to be maintained throughout the optimisation process. For an adjustable parameter PARVAL1 

is the parameter’s starting value which, together with the starting values of all other 

adjustable parameters, is successively improved during the optimisation process. 

To enhance optimisation efficiency, you should choose an initial parameter value which is 

close to what you think will be the parameter’s optimised value. However you should note the 

following repercussions of choosing an initial parameter value of zero. 

 A parameter cannot be subject to change limits (see the discussion on RELPARMAX 

 and FACPARMAX) during the first optimisation iteration if its value at the start of 

that iteration is zero. Furthermore FACORIG cannot be used to modify the action of 

RELPARMAX and FACPARMAX for a particular parameter throughout the 

optimisation process, if that parameter’s original value is zero. 

 A relative increment for derivatives calculation cannot be evaluated during the first 

iteration for a parameter whose initial value is zero. If the parameter belongs to a 

group for which derivatives are, in fact, calculated as “relative”, a non-zero 

DERINCLB variable must be provided for that group. 
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 If a parameter has an initial value of zero, the parameter can be neither a tied nor a 

parent parameter as the tied:parent parameter ratio cannot be calculated. 

PARLBND and PARUBND 

These two real variables represent a parameter’s lower and upper bounds respectively. For 

adjustable parameters the initial parameter value (PARVAL1) must lie between these two 

bounds. However for fixed and tied parameters the values you provide for PARLBND and 

PARUBND are ignored. (The upper and lower bounds for a tied parameter are determined by 

the upper and lower bounds of the parameter to which it is tied and by the ratio between the 

tied and parent parameters.) 

PARGP 

PARGP is the name of the group to which a parameter belongs. As discussed already, a 

parameter group name must be twelve characters or less in length and is case-insensitive. 

As derivatives are not calculated with respect to fixed and tied parameters, PEST provides a 

dummy group name of “none” to which such tied and fixed parameters can be allocated. Note 

that it is not obligatory to assign such parameters to this dummy group; they can be assigned 

to another group if you wish. However, any group other than “none” which is cited in the 

“parameter data” section of the PEST control file must be properly defined in the “parameter 

groups” section of this file. 

SCALE and OFFSET 

Just before a parameter value is written to a model input file (be it for initial determination of 

the objective function, derivatives calculation or parameter upgrade), it is multiplied by the 

real variable SCALE, after which the real variable OFFSET is added. The use of these two 

variables allows you to redefine the domain of a parameter. Because they operate on the 

parameter value “at the last moment” before it is written to the model input file, they take no 

part in the estimation process; in fact they can “conceal” from PEST the true value of a 

parameter as seen by the model, PEST optimising, instead, the parameter bp where 

 bp = (bm - o)/s         (4.7) 

Here bp is the parameter optimised by PEST, bm is the parameter seen by the model, while s 

and o are the scale and offset for that parameter. If you wish to leave a parameter unaffected 

by scale and offset, enter the SCALE as 1.0 and the OFFSET as 0.0. 

DERCOM 

Unless using PEST’s external derivatives functionality (see Chapter 9), this variable should 

be set to 1. 

4.2.5 Parameter Data - Second Part 

The second part of the “parameter data” section of the PEST control file consists of one line 

for each tied parameter; if there are no tied parameters, the second part of the “parameter 
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data” section must be omitted.  

Each line within the second part of the “parameter data” section of the PEST control file 

consists of two entries. The first is PARNME, the parameter name. This must be the name of 

a parameter already cited in the first part of the “parameter data” section, and for which the 

PARTRANS variable was assigned the value “tied”. The second entry on the line, the 

character variable PARTIED, must hold the name of the parameter to which the first-

mentioned parameter is tied, ie. the “parent parameter” of the first-mentioned parameter. The 

parent parameter must not be a tied or fixed parameter itself. 

Note that PEST allows you to link as many tied parameters as you wish to a single parent 

parameter. However a tied parameter can, naturally, be linked to only one parent parameter. 

4.2.6 Observation Groups 

In the “observation groups” section of the PEST control file a name is supplied for every 

observation group. Observation group names must be of twelve characters or less in length 

and are case insensitive. A name assigned to one observation group must not be assigned to 

any other observation group. 

Observation group names are written one to a line. NOBSGP such names must be provided, 

where NOBSGP is listed on the fourth line of the PEST control file. If PEST is running in 

predictive analysis mode one of these group names must be “predict”. If it is running in 

regularisation mode one of these group names must be “regul”. 

If a covariance matrix is used for observation weight assignment, the name of the file holding 

the covariance matrix for a particular observation group is supplied along with the group 

name in the “observation groups” section of the PEST control file; see Section 4.3 for details. 

4.2.7 Observation Data 

For every observation cited in a PEST instruction file there must be one line of data in the 

“observation data” section of the PEST control file. Conversely, every observation for which 

data is supplied in the PEST control file must be represented in an instruction file. 

Each line within the “observation data” section of the PEST control file must contain four 

items. Each of these four items is discussed below; refer to Example 4.1 for the arrangement 

of these items. 

OBSNME 

This is a character variable containing the observation name. As discussed in Section 3.3.5, 

an observation name must be twenty characters or less in length. Observation names are case-

insensitive, but must be unique to each observation. 

OBSVAL 

OBSVAL, a real variable, is the field or laboratory measurement corresponding to a model-

generated observation. It is PEST’s role to minimise the difference between this number and 
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the corresponding model-calculated number (the difference being referred to as the 

“residual”) over all observations by adjusting parameter values until the sum of squared 

weighted residuals (ie. the objective function) is at a minimum. 

WEIGHT 

This is the weight attached to each residual in the calculation of the objective function. The 

manner in which weights are used in the parameter estimation process is discussed in Section 

2.1.2. An observation weight can be zero if you wish (meaning that the observation takes no 

part in the calculation of the objective function), but it must not be negative. 

If observations are all of the same type, weights can be used to discriminate between field or 

laboratory measurements which you can “trust” and those with whom a greater margin of 

uncertainty is associated; the trustworthy measurements should be given a greater weight. 

Weights should, in general, be inversely proportional to measurement standard deviations. 

If observations are of different types, weights are vital in setting the relative importance of 

each measurement type in the overall parameter estimation process. For example, a ground 

water model simulating pollution plume growth and decay within an aquifer may produce 

outputs of ground water head and pollutant concentration. Field measurements of both of 

these quantities may be available over a certain time period. If both sets of measurements are 

to be used in the model calibration process they must be properly weighted with respect to 

each other. Head measurements may be expressed in meters and pollutant concentrations may 

be expressed in meq/l. Heads may be of the order of tens of meters, with model-to-

measurement discrepancies of up to 0.1 m being tolerable; however pollutant concentrations 

may be of the order of 10
-4

meq/l, with model-to-measurement discrepancies of 0.110
-4

meq/l 

being tolerable. In such a case the weights for the concentration measurements should be a 

factor of 10
4
 greater than those for the head measurements so that both sets of measurements 

are equally effective in determining model parameters.  

Some parameter estimation packages offer a “log least squares” option whereby the objective 

function is calculated as the sum of squared deviations between the logarithms of the 

measurements and the logarithms of their respective model-generated counterparts. Note that, 

provided the linearity assumption upon which the estimation process is based is reasonably 

well met, it can be shown that the same effect can be achieved by providing a set of weights 

in which each weight is inversely proportional to the measurement to which it pertains 

(provided all measurements are of the same sign). 

OBGNME 

OBGNME is the name of the observation group to which the observation is assigned. When 

recording the objective function value on the run record file, PEST lists the contribution made 

to the objective function by each observation group. It is good practice to assign observations 

of different type to different observation groups. In this way the user is in a position to adjust 

observation weights in order that one measurement type does not dominate over another in 

the inversion process by virtue of a vastly greater contribution to the objective function. 

The observation group name supplied here must be one of the group names listed in the 

“observation groups” section of the PEST control file. 
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4.2.8 Model Command Line 

This section of the PEST control file supplies the command which PEST must use to run the 

model. The command line may be simply the name of an executable file, or it may be the 

name of a batch file containing a complex sequence of steps. Note that you may include the 

path name in the model command line which you provide to PEST if you wish. If PEST is to 

be successful in running the model, then either the model must be in the current directory, its 

full path must be provided, or the PATH environment variable must include the directory in 

which the executable or batch file is situated. 

Consider the case of a finite difference model for the stress field surrounding a tunnel. The 

input file may be very complicated, involving one or a number of large two or three-

dimensional arrays. While parameters can be written to such files using appropriate 

templates, you may prefer a different approach. Perhaps you wish to estimate rock properties 

within a small number of zones whose boundaries are known, these zones collectively 

covering the entire model domain. Furthermore, as is often the case, you may have some 

preprocessing software which is able to construct the large model arrays from the handful of 

parameters of interest, viz. the elastic properties of the zones into which the model domain 

has been subdivided. In this case it may be wise to run the preprocessor prior to every model 

run. This can be accomplished by including the commands to run both programs in a batch 

file called by PEST as the model; hence PEST can now write input files for the preprocessor 

rather than for the model itself. 

Similarly the model output file may be voluminous; in fact, often models of this kind write 

their data to binary files rather than ASCII files, relying on the user’s postprocessing software 

to make sense of the abundance of model-generated information. You may have a 

postprocessing program which interpolates the model-generated stress array to the locations 

of your stress sensors. In this case PEST should read the postprocessor output file rather than 

the model output file. 

Hence to use PEST in the parameterisation of the above stress-field model, a suitable model 

command line may be 

stress 

where stress.bat is a batch file containing the following sequence of commands 

prestres 
stres3d 
postres 

Here PRESTRES and POSTRES are the model pre- and postprocessors respectively; 

STRES3D is the stress model itself. 

You can get even more complicated than this if you wish. For example, a problem that can 

arises in working with large numerical models is that they do not always converge to a 

solution according to the model convergence criteria which you, the user, must supply. The 

popular United States Geological Survey ground water model, MODFLOW, requires a 

variable HCLOSE which determines the precision with which heads are calculated by its 

preconditioned conjugate gradient matrix solution package. As discussed in Section 2.3.3, 

variables such as this should be set small so that heads can be calculated with high precision; 

the accurate calculation of head derivatives depends on this. However if HCLOSE is set too 



The PEST Control File  

 

4-23 

 

low the conjugate gradient method may never converge to a point where the maximum head 

correction between successive conjugate gradient iterations is less than HCLOSE, roundoff 

errors causing slight oscillatory behaviour. In this case MODFLOW will terminate execution 

with an error message. Unfortunately, it may be very difficult to predict when this will occur; 

behaviour of the solution method may be perfect for one parameter set and unsatisfactory for 

another. Hence, as PEST continually adjusts parameters for derivatives calculation and 

parameter upgrades, there is a good chance that, on at least one occasion, there will be a 

solution failure. When this happens PEST will not find the observations it expects on the 

model output file and will terminate execution with an appropriate error message. 

One solution to this problem may be to set HCLOSE high enough such that convergence 

failure will never occur. However this may result in mediocre PEST performance because of 

inaccurate derivatives calculation. A better solution would be to recode MODFLOW slightly 

such that it reads HCLOSE from a tiny file called hclose.dat, and such that, if it terminates 

execution because of solution convergence failure, it does so with a non-zero errorlevel 

setting of, say, 100. Most compilers allow you to set the errorlevel environment variable on 

program run completion through an appropriate exit function call.) Then write two small 

programs, one named HMUL which reads hclose.dat, multiplies HCLOSE by 2 and then 

rewrites hclose.dat with the increased HCLOSE value; the second program, named 

SETORIG, should write the original, low value of HCLOSE to hclose.dat. A suitable model 

batch file may then be as shown in Example 4.3. 

(Note that there are alternative, simpler solutions to the MODFLOW convergence problem 

discussed here; the purpose of this example is to demonstrate the type of batch processing that 

may be useful as a PEST model run.) 

The variations on the content of a model batch file are endless. You can call one model 

followed by another, then by another. The third model may or may not require the outputs of 

the other two. PEST may read observations from the files generated by all the models or just 

from the file(s) generated by the last. Another possibility is that the model batch file may call 

the same model a number of times, running it over different historical time periods so that 

measurements made through all these time periods can be simultaneously used in model 

calibration. Furthermore, as shown in the example above, you can insert intelligence into the 

way component models are run through the use of the errorlevel variable. 

@echo off 

rem Set hclose to a suitably low value 

SETORIG 

rem Now run the model 

:model 

MODFLOW 

rem Did MODFLOW converge? 

if errorlevel 100 goto adjust 

goto end 

rem Multiply HCLOSE by 2 

:adjust 

HMUL 

rem Now run model 

goto model 

:end 

Example 4.3 A batch file called by PEST as the model. 
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4.2.9 Model Input/Output 

In this section of the PEST control file you must relate PEST template files to model input 

files and PEST instruction files to model output files. You will already have informed PEST 

of the respective numbers of these files through the PEST control variables NTPLFLE and 

NINSFLE. See Example 4.1 for the structure of the “model input/output” section of the PEST 

control file. 

For each model input file - PEST template file pair there should be a line within the “model 

input/output” section of the PEST control file containing two entries, viz. the character 

variables TEMPFLE and INFLE. The first of these is the name of a PEST template file while 

the second is the name of the model input file to which the template file is matched. 

Pathnames should be provided for both the template file and the model input file if they do 

not reside in the current directory. Construction details for template files are provided in 

Chapter 3 of this manual. 

It is possible for a single template file to be linked to more than one model input file. (This 

may occur if the same model is being run over more than one historical time period and 

parameter data for the model resides in a different file from excitation data.) A separate line 

must be provided for each such pair of files in the “model input/output” section of the PEST 

control file.  A model input file cannot be linked to more than one template file. 

As explained in Chapter 3, a model may have many input files. However PEST only needs to 

know about those that contain parameters. 

The second part of the “model input/output” section of the PEST control file contains 

instruction file - model output file pairs. There should be one line for each of NINSFLE such 

pairs, the value of NINSFLE having been provided to PEST in the “control data” section of 

the PEST control file. Pathnames must be provided for both instruction files and model 

output files if they do not reside in the current directory. Construction details for instruction 

files are provided in Chapter 3 of this manual. 

A single model output file may be read by more than one instruction file; perhaps you wish to 

extract the values for observations of different types from the model output file using 

different instruction files. However any particular observation can only ever be referenced 

once; hence a particular instruction file cannot be matched to more than one model output 

file. 

4.2.10 Prior Information 

If the value of NPRIOR provided in the “control data” section of the PEST control file is not 

zero, PEST expects NPRIOR articles of prior information. 

Prior information is written to this section of the PEST control file in a manner not unlike the 

way in which you would write it down on paper yourself; however certain strict protocols 

must be observed. Refer to Example 4.2 for an instance of a PEST control file containing 

prior information. 

Each item on a prior information line must be separated from its neighbouring items by at 

least one space. Each new article of prior information must begin on a new line. No prior 
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information line is permitted to exceed 300 characters in length; however a continuation 

character (“&” followed by a space at the start of a line) allows you to write a lengthy prior 

information article to several successive lines. 

Prior information lines must adhere to the syntax set out in Example 4.1. The protocol is 

repeated here for ease of reference. 

Each prior information article must begin with a prior information label (the character 

variable PILBL in Example 4.4). Like observation names, this label must be no more than 

twenty characters in length, is case insensitive, and must be unique to each prior information 

article. 

Following the prior information label is the prior information equation. To the left of the “=” 

sign there are one or more combinations of a factor (PIFAC) plus parameter name 

(PARNME), with a “log” prefix to the parameter name if appropriate. PIFAC and PARNME 

are separated by a “*” character (which must be separated from PIFAC and PARNME by at 

least one space) signifying multiplication. All parameters referenced in a prior information 

equation must be adjustable parameters; ie. you must not include any fixed or tied parameters 

in an article of prior information. Furthermore, any particular parameter can be referenced 

only once in any one prior information equation; however, it can be referenced in more than 

one equation. 

The parameter factor must never be omitted. Suppose, for example, that a prior information 

equation consists of only a single term, viz. that an untransformed, adjustable parameter 

named “par1” has a preferred value of 2.305, and that you would like PEST to include this 

information in the optimisation process with a weight of 1.0. If this article of prior 

information is given the label “pi1”, the pertinent prior information line can be written as 

pi1 1.0 * par1 = 2.305 1.0 pr_info 

If you had simply written 

pi1 par1 = 2.305 1.0 pr_info 

PEST would have objected with a syntax error. 

If a parameter is log-transformed, you must provide prior information pertinent to the log of 

that parameter, rather than to the parameter itself. Furthermore, the parameter name must be 

placed in brackets and preceded by “log” (note that there is no space between “log” and the 

following opening bracket). Thus, in the above example, if parameter “par1” is log-

transformed, the prior information article should be rewritten as 

pi1 1.0 * log(par1) = .362671 1.0  pr_info 

Note that logs are taken to base 10. Though not illustrated, you will also need to review the 

weight which you attach to this prior information article by comparing the extent to which 

 

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME 

(one such line for each of the NPRIOR articles of prior information) 

Example 4.4 The syntax of a prior information line. 
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you would permit the log of “par1” to deviate from 0.362671 with the extent to which model-

generated observations are permitted to deviate from their corresponding measurements. 

The left side of a prior information equation can be comprised of the sum and/or difference of 

a number of factor-parameter pairs of the type already illustrated; these pairs must be 

separated from each other by a “+” or “-” sign, with a space to either side of the sign. For 

example: 

pi2 1.0 * par2 + 3.43435 * par4 - 2.389834 * par3 = 1.09e3 3.00 group_pr 

Prior information equations which include log-transformed parameters must express a 

relationship between the logs of those parameters. For example if you would like the ratio 

between the estimated values of parameters “par1” and “par2” to be about 40.0, the prior 

information article may be written as 

pi3 1.0 * log(par1) - 1.0 * log(par2) = 1.60206 2.0  group_pr 

To the right of the “=” sign of each article of prior information are two real variables and a 

character variable viz. PIVAL, WEIGHT and OBGNME. The first of these is the value of the 

right side of the prior information equation. The second is the weight assigned to the article of 

prior information in the parameter estimation process. As for observation weights, the prior 

information weight should ideally be inversely proportional to the standard deviation of the 

prior information value (PIVAL); it can be zero if you wish but must not be negative. in 

practice the weights should be chosen such that the prior information equation neither 

dominates the objective function or is dwarfed by other components of the objective function. 

In choosing observation and prior information weights, remember that the weight is 

multiplied by its respective residual and then squared before being assimilated into the 

objective function. 

The final item on each line of prior information must be the observation group to which the 

prior information belongs. Recall that each observation, and each element of prior 

information, cited in a PEST control file must be assigned to an observation group. In the 

course of carrying out the parameter estimation process, PEST calculates the contribution 

made to the objective function by each such observation group. The name of any observation 

group to which an item of prior information is assigned, must also be cited in the 

“observation groups” section of the PEST control file. As was discussed above, the name of 

an observation group must be twelve characters or less in length. If desired, a particular item 

of prior information can belong to the same group as an observation cited in the “observation 

data” section of the PEST control file. However it is difficult to see why this would be done 

because, under normal circumstances, the user will want to know the relative contributions 

made to the objective function by observations and prior information separately. 

When writing articles of prior information you should note that no two prior information 

equations should say the same thing. Thus the following pair of prior information lines is 

illegal: 

pi1 2.0 * log(par1) + 2.5 * log(par2) - 3.5 * log(par3) = 1.342 1.00 obgp1 
pi2 4.0 * log(par1) + 5.0 * log(par2) - 7.0 * log(par3) = 2.684 1.00 obgp2 

If you wish to break a single prior information article into more than one line, use the 

continuation character “&”. This must be placed at the beginning of each continuation line, 

separated from the item which follows it by a space. The line break must be placed between 
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individual items of a prior information article; not within an item. Thus the following lines 

convey the same information as does the first of the above pair of prior information lines: 

pi1  
& 2.0  
& *  
& log(par1)  
& +  
& 2.5  
& *  
& log(par2)  
& -  
& 3.5  
& *  
& log(par3)  
& =  
& 1.342  
& 1.00 

& obgp1 

However the following prior information article is illegal because of the break between “log” 

and “par2": 

pi1 2.0 * log(par1) + 2.5 * log 

& (par2) - 3.5 * log(par3) = 1.342 1.00 obgp1 

4.3 Observation Covariances 

4.3.1 Using an Observation Covariance Matrix Instead of Weights 

As was discussed in Section 2.1.2, the use of observation weights in calculating the objective 

function is based on the premise that observations are independent, ie. that the “uncertainty” 

pertaining to any one observation bears no relationship to the “uncertainty” pertaining to any 

other observation. However if residuals are likely to show consistency over space and/or time 

for certain observation types, then it may not be appropriate to assume statistical 

independence of these observation types. In such cases it may be preferable to describe the 

uncertainties associated with these observations using an observation covariance matrix (or a 

matrix that is proportional to this matrix), rather than using a set of individual observation 

weights. See Section 2.1.11 for more details.  

Use of an observation covariance matrix can be particularly useful when prior information is 

employed in the inversion process, especially if this prior information comprises the 

“regularisation observations” used by PEST when running in regularisation mode. In many 

cases involving spatially-distributed parameters, individual parameter values, or the 

differences between individual parameter values, may exhibit some degree of distance-

dependent correlation (perhaps expressed by a variogram). In this case it may be a good idea 

to include that correlation in the inversion process by assigning a covariance matrix to the 

prior information equations that reflects the observed parameter interdependence, rather than 

a set of weights based on the false premise that the value of each parameter is independent of 

that of its neighbours. 

Observation correlation may be important in other situations as well. For example consider 

the case where, for a particular ground water model, the extent of outflow from the ground 

water domain into two neighbouring reaches of a stream is used in the model calibration 
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process. Consider also (as often occurs in practice) that the total outflow into both of the 

neighbouring reaches can be more accurately measured than the outflow into each individual 

reach. However it may be considered desirable for a particular model application that the 

model be calibrated using both of the individual reach outflows rather than the total outflow. 

Because the uncertainties associated with the individual reach outflow measurements will not 

be independent (for a positive “error” in one is likely to be complemented by a negative 

“error” in the other), it would be better to assign a covariance matrix to these observations 

which reflects their interdependence, rather than to ignore this interdependence through the 

assignment of separate, individual weights, when undertaking the inversion process. 

 4.3.2 Supplying the Observation Covariance Matrix to PEST 

The design of PEST is such that if PEST is supplied with a covariance matrix, that matrix 

must pertain to a specific observation group. Because prior information items can also be 

assigned to one or more observation groups, this allows a covariance matrix to be supplied for 

a group of prior information items, just as it can for a group of observations. 

More than one covariance matrix can be supplied to PEST for use in the parameter estimation 

process. In fact a covariance matrix can be supplied for every observation group. However, 

more often than not it will be supplied for only one or two such groups, with weights being 

used for the remainder of the groups. Example 4.5 shows a simple PEST control file in which 

two covariance matrices are supplied, one for the observation group “obsgp1” and the other 

for the observation group “obsgp2”, the latter being used for prior information.   
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The following rules must be obeyed when using one or more observation covariance matrices 

in a PEST run. 

1. The name of a text file containing an observation covariance matrix (or rather, a 

matrix related to an observation covariance matrix by an unknown constant of 

proportionality), can be provided in the PEST control file following the name of the 

observation group to which the matrix pertains in the “observation groups” section of 

the PEST control file; in Example 4.5 the names of these observation covariance 

matrix files are cov1.dat and cov2.dat. 

2. A covariance matrix file must contain a square symmetric matrix of dimension n, 

where n is the number of observations belonging to the observation group to which 

the covariance matrix pertains. Thus every observation belonging to the pertinent 

observation group must be involved in the covariance matrix. Example 4.6 illustrates 

a covariance matrix file. 

pcf 
* control data 
restart estimation 
3 10 1 3 3 
1 1 single point 1 0 0 
5 2 0.3 0.01 10 
2 3 0.001 0 
0.1 
30 0.01 5 5 0.01 5 
1 1 1 
* parameter groups 
ro  relative 0.001 0.0001 switch 2 parabolic 
* parameter data 
ro1 log factor  4.00 0.1 10000 ro 1 0 1 
ro2 log factor  5.00 0.1 10000 ro 1 0 1 
ro3 log factor  6.00 0.1 10000 ro 1 0 1 
* observation groups 
obsgp 

obsgp1   cov1.dat 
obsgp2   cov2.dat 
* observation data 
ar1   1.21  1.0 obsgp 
ar2   1.51  1.0 obsgp 
ar3   2.07  1.0 obsgp 
ar4   2.94  1.0 obsgp 
ar5   4.15  1.0 obsgp 
ar6   5.77  1.0 obsgp 
ar7   7.78  1.0 obsgp1 
ar8   9.99  1.0 obsgp1 
ar9   11.8  1.0 obsgp1 
ar10  12.3  1.0 obsgp1 
* model command line 
model.bat 
* model input/output 
ves.tpl   model.in1 
ves.ins   model.out 
* prior information 

pi1 1.0 * log(ro1) = 1.32 1.0 obsgp2 
pi2 1.0 * log(ro2) = 0.45 1.0 obsgp2 
pi3 1.0 * log(ro3) = 0.89 1.0 obsgp2 

 

Example 4.5. A PEST control file citing two covariance matrices. 
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3. All diagonal elements of the covariance matrix must be positive. While the matrix 

should, theoretically, be positive definite to qualify as a covariance matrix, a 

symmetric matrix will be acceptable. However the matrix must be such that it is 

possible to calculate eigenvectors and eigenvalues for that matrix without incurring 

numerical difficulties (this will rarely be a problem). 

4. Elements of the covariance matrix, as represented in the covariance matrix file, must 

be space or comma-delimited. A line of this matrix can wrap around to the next line if 

it is too long. However each row of the matrix must begin on a new line. 

5. Whether or not a covariance matrix is supplied for a particular observation group, 

weights must still be supplied for members of that group in the “observation data” 

section of the PEST control file. However these weights will be ignored by PEST 

(including a weight of zero that may be assigned to a certain observation in order to 

“take it out” of the parameter estimation process). 

6. Observation groups used for prior information and those used for actual observations 

must be separate when one or more covariance matrices are supplied for use in the 

inversion process. Thus, under these circumstances, a particular observation group 

cannot have members which are both observations and prior information equations. 

At the end of the inversion process the true covariance matrices pertaining to various 

observation groups can be calculated from user-supplied covariance matrices through 

multiplication by the reference variance determined through the parameter estimation process 

(ie. 
2
 of equation 2.5). Recall from Section 2.1.2 that variances and covariances represented 

in covariance matrices supplied to PEST by the user will be related to true observation 

variances and covariances by a constant of proportionality that is unknown before completion 

of the inversion process. For the sake of consistency with observations for which a covariance 

matrix is not supplied, this constant of proportionality should be the same as that by which 

observation variances are related to the inverse square of observation weights. In practice, 

however, the user should simply ensure that, as always, weights and covariance matrices are 

such that no observation group either dominates the parameter estimation process or is 

dominated by other observation groups. 

4.3.3 PEST Outputs 

When one or more observation covariance matrices are supplied to PEST as part of its input 

dataset, PEST’s output dataset is a little different from that which is recorded if no covariance 

matrices are supplied. While PEST outputs are treated in detail in the next chapter, these 

differences are now briefly outlined. 

 

1.0  0.1  0.0  0.0 

0.1  1.0  0.1  0.0 

0.0  0.1  1.0  0.1 

0.0  0.0  0.1  1.0 

Example 4.6 Example of a covariance matrix file. 
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4.3.3.1 Echoing of Covariance Matrices 

Before undertaking the parameter estimation process, PEST records much of the information 

that it reads from the PEST control file to its run record file. This information includes the 

contents of any covariance matrix files that are supplied to it in its input dataset. 

When echoing observation weights to its run record file, the weights supplied for 

observations belonging to an observation group for which a covariance matrix has been 

supplied are not recorded, for these weights are not used in the inversion process. Rather, the 

character string “Cov. Mat.” is recorded in place of the pertinent weights to remind the user 

that an observation covariance matrix is used in their stead. 

4.3.3.2 Objective Function 

Calculation of the objective function, and of the contribution to the objective function made 

by various observation groups, takes account of the fact that a covariance matrix is supplied 

for at least one group of observations. 

4.3.3.3 Residuals 

Measurements, together with their model-generated counterparts calculated on the basis of 

best-fit parameters, are tabulated at the end of the run record file; observation weights are also 

tabulated with this data. For those observations which are associated with a covariance 

matrix, the character string “Cov. Mat.” replaces the observation weight in this table, this 

indicating, once again, that the latter are ignored in all calculations pertaining to these 

observations undertaken by PEST. 

At the end of the parameter estimation process PEST records measurements, their model-

generated counterparts, residuals, observation weights, and a number of functions of these in 

a “residuals file”. The format of this file is such that the data contained therein is suitable for 

importation into a spreadsheet for further mathematical analysis. Where tabulated functions 

of those observations for which a covariance matrix is supplied involve observation weights, 

these functions are not calculated and recorded by PEST, for the weights supplied by the user 

for these observations are not used in the inversion process. Instead the “Cov. Mat.” string is 

written in place of the redundant observation weight, and “na” (for “not applicable”) is 

recorded in place of any functions which depend on these weights.  

A similar protocol is adopted when recording information in the “interim residuals file”, 

which is written by PEST at the beginning of every optimisation iteration. 

If at least one observation covariance matrix is supplied in its input dataset, PEST records an 

additional residuals file called a “rotated residuals file”. This has the same filename base as 

the ordinary residuals file (ie. the filename base of the PEST control file), but is given an 

extension of “.rsr”. Whereas the normal residuals file tabulates measurements, their model-

generated counterparts, the residuals calculated therefrom, and various functions of these 

quantities (see Section 5.3.4), the rotated residuals file tabulates “rotated measurements”, 

their rotated model-generated counterparts, residuals calculated therefrom, and the same 

functions of these quantities. Because, through the use of rotated observations the observation 

covariance matrix is diagonalised, weights can be used in the calculation of these various 



The PEST Control File  

 

4-32 

 

functions. As is explained in Section 2.1.11, these weights are actually the reciprocals of the 

square roots of the eigenvalues of the original observation covariance matrix supplied by the 

user. 

Where a covariance matrix is supplied for only a few of the many observations used in the 

parameter estimation process, most of the entries in the rotated residuals file will be the same 

as those found in the normal residuals file. However entries pertaining to observation groups 

for which a covariance matrix is supplied will be different. Because a new set of “rotated 

observations” is calculated for members of this group, the user-assigned names for the 

original observations are no longer applicable. Hence when PEST lists the names of the new 

observations to this file, it formulates new observation names by adding the string “_r” to the 

names of the original observations. However it is important to note that a rotated observation 

whose name is formulated by adding the string “_r” to the name of an original observation 

has no more of a direct relationship to that original observation than it does to any other 

member of the original observation group; this observation naming convention is just a 

convenience. 

4.3.3.4 Analysis of Residuals 

PEST calculates and records a number of basic statistics pertaining to optimised residuals to 

the end of its run record file. Due to the fact that these statistics are calculated on the basis of 

weighted residuals, rather than the residuals themselves, PEST calculates them using rotated 

residuals rather than true residuals for those observation groups for which a covariance matrix 

is supplied. The fact that rotated residuals, rather than direct residuals, are used in this 

calculation is recorded on the run record file. Also, where the names of any such rotated 

residuals are cited, the “_r” suffix appended to a residual’s name indicates its rotated status. 

4.4 IBOUNDSTICK and UPVECBEND 

4.4.1 General 

The values for two optional control variables may be placed on the seventh line of the PEST 

control file immediately following the value of FACORIG. In some circumstances use of 

these variables can increase the efficiency of the parameter estimation process; however they 

should both be used with caution. Both are integer variables; IBOUNDSTICK should be 

placed first, then UPVECBEND. 

4.4.2 The IBOUNDSTICK Variable 

If a model takes a long time to run, then any measures that can be taken to reduce the number 

of runs required to estimate parameters for that model will make PEST more useable with it. 

Parameter “bounds-sticking” functionality is one possible means to achieve that end. 

As is explained in Section 2.2.3, when one or more parameters are at their bounds, the 

procedure by which the parameter upgrade vector is calculated is modified to accommodate 

this situation. If, for one such parameter, the parameter upgrade vector is such that the 

parameter is directed away from its bound, back into “allowed parameter space”, then that 

parameter is free to move as it normally would. However parameters for which the upgrade 
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vector points outside of allowed parameter space (ie. above or below the upper or lower 

bound at which the parameter currently resides) are sequentially frozen; the parameter 

upgrade vector is then re-calculated with the frozen parameters omitted from these new 

upgrade calculations. The sequence in which such parameters are frozen is important; see 

Section 2.2.3 for further details. At the beginning of each new optimisation iteration, all 

frozen parameters are freed. The whole process is then repeated during the next optimisation 

iteration. 

Sometimes, particularly in highly parameterised inversion problems, some parameters can 

move to their bounds, and then back again into allowed parameter space, during the course of 

the parameter estimation process. However, in most cases, if a parameter is at its bound for 

more than a few optimisation iterations, it is more likely than not that the parameter is there to 

stay. However PEST will continue to calculate derivatives with respect to this parameter in 

order to attempt an upgrade calculation for it, even though there is a diminishing likelihood 

that the parameter will ever move from its bounds. Thus one model run per iteration (two if 

PEST is engaged in central derivatives calculation) is wasted. Where more than one 

parameter is at its bounds the number of wasted model runs rises in proportion to the number 

of such parameters. 

Through use of the IBOUNDSTICK control variable, the user can now prevent this wastage 

of model runs. IBOUNDSTICK is an integer variable which must be supplied as zero or 

greater. If it is supplied as zero, PEST’s operation is unchanged from that described above. 

However if it is set to n (where n is a positive integer), PEST will permanently “glue” a 

parameter to its upper or lower bound if that parameter has been residing there since n 

optimisation iterations ago. Once a parameter is “glued” to its bounds it will never move 

again, for PEST will no longer include this parameter in its upgrade vector calculations. Nor 

will it calculate derivatives with respect to this parameter, thus reducing the number of model 

runs required per optimisation iteration. 

You should carefully note the following points regarding the use of IBOUNDSTICK. 

1. If IBOUNDSTICK is set to 1, then parameters will be glued to their bounds from the 

moment that they strike them (beginning at the optimisation iteration immediately 

following the bounds encounter). Thus if the initial value of a parameter is at its upper 

bound and IBOUNDSTICK is set to 1, then the parameter will be glued to its bound 

from the very first optimisation iteration. 

2. If IBOUNDSTICK is set to 2, then 1 complete optimisation iteration will elapse (in 

which the parameter is free to move back into allowed parameter space) since the 

iteration at which it encountered its bound before that parameter is glued to its bound. 

3. Normally a good setting for IBOUNDSTICK is 2 to 4. 

4. Once a parameter is glued to its bound, PEST no longer calculates derivatives (ie. 

sensitivities) with respect to this parameter. Where a model is nonlinear, the sensitivity 

of a parameter depends not only on the current value of that parameter, but also on the 

values of other parameters involved in the parameter estimation process. While PEST 

has no further use of the sensitivity of a glued parameter in calculation of the parameter 

upgrade vector, it does make use of that sensitivity for listing in the sensitivity file, and 
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for calculation of the parameter covariance matrix and parameter confidence limits 

listed in the matrix file and in the run record file at the end of the PEST run. Thus these 

statistics will be somewhat in error from the moment that at least one parameter is glued 

to its bound. 

The last point is important. If you wish to see a proper set of parameter statistics calculated 

using the optimised parameter set, this can be easily achieved by running PEST again, with 

optimised parameter values as starting values, after the initial parameter estimation process is 

complete. This is most easily accomplished as follows:- 

1. Use the PARREP utility (see Section 11.5) to create a new PEST control file based on 

the original control file, but with optimised parameter values replacing the initial values 

used for the previous run. 

2. Set the NOPTMAX control variable to -1 for the new PEST run. With this setting, 

PEST will carry out only enough model runs to calculate the objective function and all 

parameter derivatives. It will then record a complete statistical printout on its usual 

output files and terminate execution. (Note that you may wish to set the FORCEN 

variable to “always_3” for more accurate derivatives calculation during this procedure; 

however lack of model linearity will probably present the greater impediment to the 

precision of finite-difference calculated derivatives than numerical errors incurred by 

forward derivatives calculation.) 

4.4.3 The UPVECBEND Variable 

UPVECBEND follows IBOUNDSTICK on the seventh line of the PEST control file. It is 

important to note that UPVECBEND cannot be supplied without a value for IBOUNDSTICK 

being placed in front of it on this line. 

UPVECBEND is an integer variable that must be set to either 0 or 1. If it is set to 1, then 

“upgrade parameter vector bending” is actuated; this is described below. Experience has 

demonstrated that, while this may result in a slight reduction in the number of model runs 

required for completion of the parameter estimation process in some situations, it can 

seriously degrade PEST’s performance in other situations. Hence it should be used with 

extreme caution. If UPVECBEND is set to 0, PEST’s operation is unchanged from that 

described in Chapter 2 of this manual. 

As is described in Section 2.2.5, the length of the parameter upgrade vector is limited during 

any one optimisation iteration by the action of the FACPARMAX and RELPARMAX 

variables. Use of these variables prevents parameter changes from exceeding by too great a 

margin the range of the linearity assumption upon which their calculation is based. In doing 

so, it brings stability to the optimisation process. 

If PEST calculates that a particular parameter must incur a factor or relative change which is 

greater than that permitted by FACPARMAX or RELPARMAX, then the changes incurred 

by all parameters are reduced so that the change incurred by the maximally-changed 

parameter does not exceed its limits; that is, the length of the upgrade vector is reduced to 

respect these limits, but not its direction. As it is often the most insensitive parameters for 

which the largest change is calculated, and on whose behalf the parameter upgrade vector is 
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thus shortened, changes incurred by the more important, sensitive, parameters can thus be 

curtailed by this shortening of the parameter upgrade vector. This, in turn, can slow down the 

parameter estimation process. 

Activation of PEST’s automatic user intervention or singular value decomposition 

functionality can remove many of the problems associated with insensitive parameters in 

many modelling contexts. However use of the former method can sometimes be a costly 

exercise in terms of the number of model runs required for its implementation, and the latter 

method can sometimes yield unrealistic parameter values. Hence “parameter upgrade vector 

bending” may be tested as an alternative stabilisation method in contexts where the number of 

insensitive parameters is small. Unfortunately, while experience has demonstrated that it can 

result in greater run efficiency in some situations, more often than not the bending of the 

parameter upgrade vector causes a deterioration in PEST’s performance. Hence it should be 

used only with extreme caution. 

If UPVECBEND is set to 1, PEST will not shorten the parameter upgrade vector to ensure 

that no parameter exceeds its factor or relative change limit. Instead it will “bend” this vector. 

It does this by allowing every parameter to change by the amount that PEST has calculated 

for it (up to the change limit pertaining to that parameter), irrespective of whether change 

limits have been imposed on other parameters. Thus changes required by sensitive parameters 

are not restricted by the change limits imposed on more insensitive parameters. 

 

 

 



Running PEST  

 

5-1 

 

5. Running PEST 

5.1 How to Run PEST 

5.1.1 Checking PEST’s Input Data 

PEST’s input file requirements have been discussed in detail in the previous two chapters. 

Before submitting these files to PEST for a parameter estimation run, you should check that 

all information contained in them is syntactically correct and consistent. This can be done 

using the utility programs PESTCHEK, TEMPCHEK and INSCHEK described in Chapter 11 

of this manual. 

PEST carries out some checking of its input dataset itself; if there are any syntax errors in any 

of these input files, or if some of the data elements are of the incorrect type (for example real 

instead of integer, integer instead of character), PEST will cease execution with an 

appropriate error message. However PEST does not carry out extensive consistency checks, 

as the coding required to achieve this would take up too much memory, this memory being 

reserved for array storage for PEST and, possibly, the model. Hence, unless you carry out 

input data checking yourself using the utility programs mentioned above, PEST may 

commence execution on the basis of an erroneous data set. Sometimes the error will be 

detected and PEST will terminate execution with an error message. In other cases PEST may 

commence the optimisation process, only to terminate execution at some later stage with a 

run-time error message that may bear little relation to the inconsistency that gave rise to the 

problem in the first place. 

5.1.2 Versions of PEST 

As explained in Chapter 1, there are two versions of PEST. Each can be run by typing the 

name of the pertinent executable file at the command prompt.  

PEST 

The “single window” version of PEST (contained in the pest.exe executable program) is the 

simpler version of PEST to use. In this version of PEST, the model and PEST share the same 

window. Hence screen output from one will cause screen output from the other to scroll away 

out of sight.  

The single window version of PEST is run using the command 

pest case [/r] [/j] 

where case is the filename base of the PEST control file (PEST automatically adds the 

extension “.pst”) and “/r” or “/j” is an optional restart switch.  

PPEST 

PPEST is Parallel PEST, the operation of which is fully described in Chapter 10. Parallel 
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PEST is contained in the ppest.exe executable. When a user runs Parallel PEST, he/she must 

also run one or a number of “slaves” which, in turn, run the model. These slaves can reside on 

the same machine as Parallel PEST, or on other machine(s) with which the PEST machine is 

networked. Because model runs can be undertaken simultaneously on different machines 

during calculation of the Jacobian matrix, the savings in overall optimisation time through the 

use of Parallel PEST can be considerable. It should be noted, however, that due to the 

overheads involved in communicating with one or a number of slaves, parameter estimation 

for a small model with a short run time may actually be larger when using Parallel PEST than 

when using the single window version of PEST. The considerable efficiencies involved in 

parallelisation of the parameter estimation process are only fully realised where model run-

times are of the order of 30 seconds or greater. 

Parallel PEST is a little more complex to run than the single window version of PEST 

because an extra PEST input file (called the “run management file”) must be prepared. Also, 

as well as starting PEST, the user must also start each of the slaves. However it is more than 

worth the extra trouble where model run times are large and adjustable parameters are many. 

While Parallel PEST was built for the purpose of running a model simultaneously on a 

number of different machines across a network, it can also be used to run a single instance of 

the model on a single machine. Doing this has the advantage that the model and PEST 

operate in different windows; hence the screen output of one does not interfere with the 

screen output of the other. 

Parallel PEST is run using the command 

ppest case [/r] [/j] [/s] 

where case is the filename base of the PEST control file (PPEST automatically adds the 

extension “.pst”) and “/r”, “/j”  and “/s” are optional restart switches. 

For more information on running Parallel PEST, see Chapter 10.  

5.2 The PEST Run Record 

5.2.1 An Example 

As PEST executes, it writes a detailed record of the parameter estimation process to file 

case.rec, where case is the filename base of the PEST control file to which it is directed 

through the PEST command line. Example 5.1 shows such a run record file; the PEST control 

file corresponding to Example 5.1 is that shown in Example 4.2. Note that this example does 

not demonstrate a very good fit between measurements and model outcomes calculated on the 

basis of the optimised parameter set. This is because it was fabricated to demonstrate a 

number of aspects of the parameter estimation process that are discussed in the following 

pages. Note also that PEST was run in parameter estimation mode in order to produce the run 

record demonstrated in Example 5.1. As will be discussed in Sections 6, 7 and 8 the run 

record produced as an outcome of a PEST run in predictive analysis or regularisation modes 

is slightly different. 
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Example 5.1 A PEST run record file; Example 4.2 shows the corresponding PEST 

control file. 

 

                       PEST RUN RECORD: CASE  manual 
 
 
Case dimensions:- 
 
   Number of parameters                 :   5 
   Number of adjustable parameters      :   3 
   Number of parameter groups           :   2 
   Number of observations               :  19 
   Number of prior estimates            :   2 
 
 
Model command line:- 
 
ves 
 

 
Model interface files:- 
 
   Templates: 
      ves.tp1 
   for model input files: 
      ves.inp 
 
   (Parameter values written using single precision protocol.) 
   (Decimal point always included.) 
 
   Instruction files: 
      ves.ins 
   for reading model output files: 
      ves.out 
 
 
Derivatives calculation:- 
 
Param Increment   Increment   Increment   Forward or    Multiplier  Method 
group type                    low bound   central       (central)   (central) 
 ro   relative    1.0000E-03  1.0000E-05   switch         2.000     parabolic 
 h    relative    1.0000E-03  1.0000E-05   switch         2.000     parabolic 
 

 
Parameter definitions:- 
 
Name  Trans-       Change       Initial        Lower          Upper       Group 
      formation    limit        value          bound          bound 
ro1   fixed          na       0.500000          na             na         none 
ro2   log          factor      5.00000       0.100000        10.0000      ro 
ro3   tied to ro2    na       0.500000          na             na         ro 
h1    none         factor      2.00000       5.000000E-02    100.000      h 
h2    log          factor      5.00000       5.000000E-02    100.000      h 
 
Name      Scale          Offset 
ro1       1.00000       0.000000     
ro2       1.00000       0.000000     
ro3       1.00000       0.000000     
h1        1.00000       0.000000     
h2        1.00000       0.000000     
 
 
Prior information:- 
 
Prior info   Factor             Parameter          Prior         Weight 
name                                               information 

  pi1        1.00000       *        h1      =      2.00000        3.000     
  pi2        1.00000       *    log[ro2]    + 
             1.00000       *    log[h2]     =      2.60260        2.000 
 
Prior Info Name   Observation Group 
  pi1                group_4 
  pi2                group_4 
 
 
Observations:- 
 
Observation name    Observation       Weight   Group 
     ar1             1.21038          1.000    group_1 
     ar2             1.51208          1.000    group_1 
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     ar3             2.07204          1.000    group_1 
     ar4             2.94056          1.000    group_1 
     ar5             4.15787          1.000    group_1 
     ar6             5.77620          1.000    group_1 
     ar7             7.78940          1.000    group_2 
     ar8             9.99743          1.000    group_2 
     ar9             11.8307          1.000    group_2 
     ar10            12.3194          1.000    group_2 
     ar11            10.6003          1.000    group_2 
     ar12            7.00419          1.000    group_2 
     ar13            3.44391          1.000    group_2 
     ar14            1.58279          1.000    group_2 
     ar15            1.10380          1.000    group_3 
     ar16            1.03086          1.000    group_3 
     ar17            1.01318          1.000    group_3 
     ar18            1.00593          1.000    group_3 
     ar19            1.00272          1.000    group_3 
 
 
 
 
Inversion control settings:- 
 

   Initial lambda                                               :  5.0000     
   Lambda adjustment factor                                     :  2.0000     
   Sufficient new/old phi ratio per iteration                   : 0.40000     
   Limiting relative phi reduction between lambdas              : 3.00000E-02 
   Maximum trial lambdas per iteration                          :  10 
 
   Maximum  factor  parameter change (factor-limited changes)   :  3.0000 
   Maximum relative parameter change (relative-limited changes) :   na 
   Fraction of initial parameter values used in computing 
   change limit for near-zero parameters                        : 1.00000E-03 
 
   Relative phi reduction below which to begin use of 
   central derivatives                                          : 0.10000      
 
   Relative phi reduction indicating convergence                : 0.10000E-01 
   Number of phi values required within this range              :   3 
   Maximum number of consecutive failures to lower phi          :   3 
   Maximum relative parameter change indicating convergence     : 0.10000E-01 
   Number of consecutive iterations with minimal param change   :   3 
   Maximum number of optimisation iterations                    :  30 
 
 
 
                                 OPTIMISATION RECORD 

 
 
INITIAL CONDITIONS:  
Sum of squared weighted residuals (ie phi) =  523.8     
Contribution to phi from observation group “group_1” = 127.3 
Contribution to phi from observation group “group_2” = 117.0 
Contribution to phi from observation group “group_3” = 185.2 
Contribution to phi from observation group “group_4” = 94.28 
 
 
      Current parameter values 
        ro1        0.500000     
        ro2         5.00000     
        ro3        0.500000     
        h1          2.00000     
        h2          5.00000     
 
 
OPTIMISATION ITERATION NO.        :    1 
   Model calls so far             :    1 
   Starting phi for this iteration:  523.8     
   Contribution to phi from observation group “group_1”: 127.3 
   Contribution to phi from observation group “group_2”: 117.0 

   Contribution to phi from observation group “group_3”: 185.2 
   Contribution to phi from observation group “group_4”: 94.28 
 
   Lambda =  5.000     -----> 
      phi =  361.4      (  0.69 of starting phi) 
 
   Lambda =  2.500     -----> 
      phi =  357.3      (  0.68 of starting phi) 
 
   No more lambdas: relative phi reduction between lambdas less than 0.0300 
   Lowest phi this iteration:  357.3     
 
      Current parameter values                 Previous parameter values 
        ro1        0.500000                       ro1        0.500000     
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        ro2         10.0000                       ro2         5.00000     
        ro3         1.00000                       ro3        0.500000     
        h1          1.94781                       h1          2.00000     
        h2          10.4413                       h2          5.00000     
   Maximum   factor parameter change:  2.088  [h2] 
   Maximum relative parameter change:  1.088  [h2] 
 
 
OPTIMISATION ITERATION NO.        :    2 
   Model calls so far             :    6 
   Starting phi for this iteration:  357.3     
   Contribution to phi from observation group “group_1”: 77.92 
   Contribution to phi from observation group “group_2”: 103.8 
   Contribution to phi from observation group “group_3”: 121.3 
   Contribution to phi from observation group “group_4”: 54.28 
 
   Lambda =  1.250     -----> 
      parameter "ro2" frozen: gradient and update vectors out of bounds 
      phi =  252.0      (  0.71 of starting phi) 
 
   Lambda = 0.6250     -----> 
      phi =  243.6      (  0.68 of starting phi) 
 

   Lambda = 0.3125     -----> 
      phi =  235.9      (  0.66 of starting phi) 
 
   Lambda = 0.1563     -----> 
      phi =  230.1      (  0.64 of starting phi) 
 
   No more lambdas: relative phi reduction between lambdas less than 0.0300 
   Lowest phi this iteration:  230.1     
 
      Current parameter values                 Previous parameter values 
        ro1        0.500000                       ro1        0.500000     
        ro2         10.0000                       ro2         10.0000     
        ro3         1.00000                       ro3         1.00000     
        h1          1.41629                       h1          1.94781     
        h2          31.3239                       h2          10.4413     
   Maximum   factor parameter change:  3.000  [h2] 
   Maximum relative parameter change:  2.000  [h2] 
 
 
OPTIMISATION ITERATION NO.        :    3 
   Model calls so far             :   13 
   Starting phi for this iteration:  230.1     
   Contribution to phi from observation group “group_1”: 29.54 
   Contribution to phi from observation group “group_2”: 84.81 

   Contribution to phi from observation group “group_3”: 91.57 
   Contribution to phi from observation group “group_4”: 24.17 
 
   All frozen parameters freed 
 
   Lambda = 7.8125E-02 -----> 
      parameter "ro2" frozen: gradient and update vectors out of bounds 
      phi =  89.49      (  0.39 of starting phi) 
 
   No more lambdas: phi is now less than 0.4000 of starting phi 
   Lowest phi this iteration:  89.49     
 
      Current parameter values                 Previous parameter values 
        ro1        0.500000                       ro1        0.500000     
        ro2         10.0000                       ro2         10.0000     
        ro3         1.00000                       ro3         1.00000     
        h1         0.472096                       h1          1.41629     
        h2          34.3039                       h2          31.3239     
   Maximum   factor parameter change:  3.000  [h1] 
   Maximum relative parameter change: 0.6667  [h1] 
 
 
OPTIMISATION ITERATION NO.        :    4 

   Model calls so far             :   17 
   Starting phi for this iteration:  89.49     
   Contribution to phi from observation group “group_1”: 9.345 
   Contribution to phi from observation group “group_2”: 34.88 
   Contribution to phi from observation group “group_3”: 21.57 
   Contribution to phi from observation group “group_4”: 23.69 
 
   All frozen parameters freed 
 
   Lambda = 3.9063E-02 -----> 
      parameter "ro2" frozen: gradient and update vectors out of bounds 
      phi =  79.20      (  0.89 of starting phi) 
 
   Lambda = 1.9531E-02 -----> 
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      phi =  79.19      (  0.88 of starting phi) 
 
   No more lambdas: relative phi reduction between lambdas less than 0.0300 
   Lowest phi this iteration:  79.19     
 
      Current parameter values                 Previous parameter values 
        ro1        0.500000                       ro1        0.500000     
        ro2         10.0000                       ro2         10.0000     
        ro3         1.00000                       ro3         1.00000     
        h1         0.157365                       h1         0.472096     
        h2          44.2189                       h2          34.3039     
   Maximum   factor parameter change:  3.000  [h1] 
   Maximum relative parameter change: 0.6667  [h1] 
 
 
OPTIMISATION ITERATION NO.        :    5 
   Model calls so far             :   22 
   Starting phi for this iteration:  79.19     
   Contribution to phi from observation group “group_1”: 6.920 
   Contribution to phi from observation group “group_2”: 22.45 
   Contribution to phi from observation group “group_3”: 14.88 
   Contribution to phi from observation group “group_4”: 34.94 
 

   All frozen parameters freed 
 
   Lambda = 9.7656E-03 -----> 
      parameter "ro2" frozen: gradient and update vectors out of bounds 
      phi =  64.09      (  0.81 of starting phi) 
 
   Lambda = 4.8828E-03 -----> 
      phi =  64.09      (  0.81 of starting phi) 
 
   Lambda = 1.9531E-02 -----> 
      phi =  64.09      (  0.81 of starting phi) 
 
   No more lambdas: relative phi reduction between lambdas less than 0.0300 
   Lowest phi this iteration:  64.09     
 
      Current parameter values                 Previous parameter values 
        ro1        0.500000                       ro1        0.500000     
        ro2         10.0000                       ro2         10.0000     
        ro3         1.00000                       ro3         1.00000     
        h1         0.238277                       h1         0.157365     
        h2          42.4176                       h2          44.2189     
   Maximum   factor parameter change:  1.514  [h1] 
   Maximum relative parameter change: 0.5142  [h1] 
 

 
OPTIMISATION ITERATION NO.        :    6 
   Model calls so far             :   28 
   Starting phi for this iteration:  64.09     
   Contribution to phi from observation group “group_1”: 6.740 
   Contribution to phi from observation group “group_2”: 18.98 
   Contribution to phi from observation group “group_3”: 10.53 
   Contribution to phi from observation group “group_4”: 27.84 
 
   All frozen parameters freed 
 
   Lambda = 1.9531E-02 -----> 
      parameter "ro2" frozen: gradient and update vectors out of bounds 
      phi =  63.61      (  0.99 of starting phi) 
 
   Lambda = 9.7656E-03 -----> 
      phi =  63.61      (  0.99 of starting phi) 
 
   No more lambdas: relative phi reduction between lambdas less than 0.0300 
   Lowest phi this iteration:  63.61     
   Relative phi reduction between optimisation iterations less than 0.1000 
   Switch to central derivatives calculation 
 

      Current parameter values                 Previous parameter values 
        ro1        0.500000                       ro1        0.500000     
        ro2         10.0000                       ro2         10.0000     
        ro3         1.00000                       ro3         1.00000     
        h1         0.265320                       h1         0.238277     
        h2          42.2249                       h2          42.4176     
   Maximum   factor parameter change:  1.113  [h1] 
   Maximum relative parameter change: 0.1135  ]h1] 
 
 
OPTIMISATION ITERATION NO.        :    7 
   Model calls so far             :   33 
   Starting phi for this iteration:  63.61     
   Contribution to phi from observation group “group_1”: 3.679 
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   Contribution to phi from observation group “group_2”: 32.58 
   Contribution to phi from observation group “group_3”: 0.111 
   Contribution to phi from observation group “group_4”: 27.24 
 
   All frozen parameters freed 
 
   Lambda = 4.8828E-03 -----> 
      parameter "ro2" frozen: gradient and update vectors out of bounds 
      phi =  63.59      (  1.00 of starting phi) 
 
   Lambda = 2.4414E-03 -----> 
      phi =  63.59      (  1.00 of starting phi) 
 
   Lambda = 9.7656E-03 -----> 
      phi =  63.59      (  1.00 of starting phi) 
 
   No more lambdas: relative phi reduction between lambdas less than 0.0300 
   Lowest phi this iteration:  63.59     
 
      Current parameter values                 Previous parameter values 
        ro1        0.500000                       ro1        0.500000     
        ro2         10.0000                       ro2         10.0000     
        ro3         1.00000                       ro3         1.00000     

        h1         0.261177                       h1         0.265320     
        h2          42.2006                       h2          42.2249     
   Maximum   factor parameter change:  1.016     [h1] 
   Maximum relative parameter change: 1.5615E-02 [h1] 
 
   Optimisation complete: the  3 lowest phi's are within a relative distance 
                          of eachother of 1.000E-02 
   Total model calls:   42 
 
 
                            OPTIMISATION RESULTS 
 
 
Adjustable parameters -----> 
 
Parameter      Estimated           95% percent confidence limits 
               value               lower limit       upper limit 
 ro2           10.0000            0.665815           150.192     
 h1           0.261177            -1.00256           1.52491     
 h2            42.2006            0.467914           3806.02     
 
Note: confidence limits provide only an indication of parameter uncertainty. 
      They rely on a linearity assumption which  may not extend as far in  
      parameter space as the confidence limits themselves - see PEST manual. 

 
 
Tied parameters -----> 
 
Parameter      Estimated value 
 ro3             1.00000     
 
 
Fixed parameters -----> 
 
Parameter      Fixed value 
 ro1            0.500000     
 
 
Observations -----> 
 
Observation    Measured        Calculated      Residual        Weight    Group 
               value           value 
 ar1           1.21038         1.64016       -0.429780         1.000    group_1 
 ar2           1.51208         2.25542       -0.743340         1.000    group_1 
 ar3           2.07204         3.03643       -0.964390         1.000    group_1 
 ar4           2.94056         3.97943        -1.03887         1.000    group_1 
 ar5           4.15787         5.04850       -0.890630         1.000    group_1 

 ar6           5.77620         6.16891       -0.392710         1.000    group_1 
 ar7           7.78940         7.23394        0.555460         1.000    group_2 
 ar8           9.99743         8.12489         1.87254         1.000    group_2 
 ar9           11.8307         8.72551         3.10519         1.000    group_2 
 ar10          12.3194         8.89590         3.42350         1.000    group_2 
 ar11          10.6003         8.40251         2.19779         1.000    group_2 
 ar12          7.00419         6.96319        4.100000E-02     1.000    group_2 
 ar13          3.44391         4.70412        -1.26021         1.000    group_2 
 ar14          1.58279         2.56707       -0.984280         1.000    group_2 
 ar15          1.10380         1.42910       -0.325300         1.000    group_3 
 ar16          1.03086         1.10197       -7.111000E-02     1.000    group_3 
 ar17          1.01318         1.03488       -2.170000E-02     1.000    group_3 
 ar18          1.00593         1.01498       -9.050000E-03     1.000    group_3 
 ar19          1.00272         1.00674       -4.020000E-03     1.000    group_3 
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Prior information -----> 
 
Prior          Provided        Calculated      Residual        Weight    Group 
information    value           value 
 pi1           2.00000        0.261177         1.73882         3.000    group_4 
 pi2           2.60260         2.62532       -2.271874E-02     2.000    group_4 
 
See file TEMP3.RES for more details of residuals in graph-ready format. 
See file TEMP3.SEO for composite observation sensitivities. 
 
Objective Function -----> 
 
  Sum of squared weighted residuals (ie phi)                =   63.59 
  Contribution to phi from observation group "group_1"      =   3.686 
  Contribution to phi from observation group "group_2"      =   32.58 
  Contribution to phi from observation group "group_3"      =  0.1115 
  Contribution to phi from observation group “group_4”      =   27.21 
 
 
Correlation Coefficient -----> 
  Correlation coefficient                                   =  0.9086 

 
 
Analysis of residuals -----> 
 
  All residuals:- 
     Number of residuals with non-zero weight               =    21 
     Mean value of non-zero weighted residuals              = -0.4399 
     Maximum weighted residual [observation "ar13"]         =   1.260 
     Minimum weighted residual [observation "pi1"]          =  -5.216 
     Standard variance of weighted residuals                =   3.533 
     Standard error of weighted residuals                   =   1.880 
 
     Note: the above variance was obtained by dividing the objective 
     function by the number of system degrees of freedom (ie. number of 
     observations with non-zero weight plus number of prior information 
     articles with non-zero weight minus the number of adjustable parameters.) 
     If the degrees of freedom is negative the divisor becomes 
     the number of observations with non-zero weight plus the number of 
     prior information items with non-zero weight. 
 
  Residuals for observation group "group_1":- 
     Number of residuals with non-zero weight               =     6 
     Mean value of non-zero weighted residuals              =  0.7424 
     Maximum weighted residual [observation "ar4"]          =   1.038 

     Minimum weighted residual [observation "ar6"]          =  0.3916 
     "Variance" of weighted residuals                       =  0.6144 
     "Standard error" of weighted residuals                 =  0.7838 
 
     Note: the above "variance" was obtained by dividing the sum of squared 
     residuals by the number of items with non-zero weight. 
 
  Residuals for observation group "group_2":- 
     Number of residuals with non-zero weight               =     8 
     Mean value of non-zero weighted residuals              =  -1.119 
     Maximum weighted residual [observation "ar13"]         =   1.260 
     Minimum weighted residual [observation "ar10"]         =  -3.424 
     "Variance" of weighted residuals                       =   4.072 
     "Standard error" of weighted residuals                 =   2.018 
 
     Note: the above "variance" was obtained by dividing the sum of squared 
     residuals by the number of items with non-zero weight. 
 
  Residuals for observation group "group_3":- 
     Number of residuals with non-zero weight               =     5 
     Mean value of non-zero weighted residuals              =  8.6256E-02 
     Maximum weighted residual [observation "ar15"]         =  0.3254 
     Minimum weighted residual [observation "ar19"]         =  4.0200E-03 

     "Variance" of weighted residuals                       =  2.2300E-02 
     "Standard error" of weighted residuals                 =  0.1493 
 
     Note: the above "variance" was obtained by dividing the sum of squared 
     residuals by the number of items with non-zero weight. 
 
Residuals for observation group "group_4":- 
     Number of residuals with non-zero weight               =     2 
     Mean value of non-zero weighted residuals              =  -2.585 
     Maximum weighted residual [observation "pi2"]          =  4.5451E-02 
     Minimum weighted residual [observation "pi1"]          =  -5.216 
     "Variance" of weighted residuals                       =   13.61 
     "Standard error" of weighted residuals                 =   3.689 
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     Note: the above "variance" was obtained by dividing the sum of squared 
     residuals by the number of items with non-zero weight. 
 
 
Covariance Matrix -----> 
 
         ro2          h1           h2 
ro2     0.3136       4.8700E-03  -0.4563     
h1      4.8700E-03   0.3618       1.3340E-02 
h2     -0.4563       1.3340E-02   0.8660     
 
 
Correlation Coefficient Matrix -----> 
 
         ro2          h1           h2 
ro2     1.000       1.4457E-02  -0.8756     
h1      1.4457E-02    1.000       2.3832E-02 
h2     -0.8756       2.3832E-02    1.000     
 
 
Normalised eigenvectors of covariance matrix -----> 
        Vector_1     Vector_2     Vector_3 
ro2    -0.8704      -3.6691E-02  -0.4909     

h1      3.5287E-02  -0.9993       1.2121E-02 
h2     -0.4910      -6.7718E-03   0.8711     
 
 
Eigenvalues -----> 
 
        5.6045E-02   0.3621        1.123       

 

The various sections of the PEST run record file are now discussed in detail. 

5.2.2 Echoing the Input Data Set 

PEST commences execution by reading all its input data. As soon as this is read, it echoes 

most of this data to the run record file. Hence the first section of this file is simply a 

restatement of most of the information contained in the PEST control file. Note that the 

letters “na” stand for “not applicable”; in Example 5.1, “na” is used a number of times to 

indicate that a particular PEST input variable has no effect on the optimisation process. Thus, 

for example, the type of change limit for parameter “ro1” is not applicable because this 

parameter is fixed. 

It is possible that the numbers cited for a parameter’s initial value and for its upper and lower 

bounds will be altered slightly from that supplied in the PEST control file. This will only 

occur if the space occupied by this parameter in a model input file is insufficient to represent 

any of these numbers to the same degree of precision as that with which they are cited in the 

PEST control file. The fact that PEST adjusts its internal representations of parameter values 

such that they are expressed with the same degree of precision as that with which they are 

written to model input files has already been discussed (see Section 3.2). For consistency, 

PEST’s internal representation of parameter bounds is adjusted in the same way. 

5.2.3 The Parameter Estimation Record 

After echoing its input data, PEST calculates the objective function arising out of the initial 

parameter set; it records this initial objective function value on the run record file together 

with the initial parameter values themselves. Then it starts the estimation process in earnest, 

beginning with the first optimisation iteration. After calculating the Jacobian matrix PEST 

attempts objective function improvement using one or more Marquardt lambdas. As it does 

this, it records the corresponding objective function value, both in absolute terms and as a 
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fraction of the objective function value at the commencement of the optimisation iteration. 

During the first iteration of Example 5.1, PEST tests two Marquardt lambdas; because the  

second lambda results in an objective function fall of less than 0.03 (ie. PHIREDLAM) 

relative to the first one tested, PEST does not test any further lambdas. Instead it progresses to 

the next optimisation iteration after listing both the updated parameter values as well as those 

from which the updated parameter set was calculated, viz. those at the commencement of the 

optimisation iteration. Note that the only occasion on which the “previous parameter values” 

recorded at the end of an optimisation iteration do not correspond with those determined 

during the previous optimisation iteration is when the switch to three-point derivatives 

calculation has just been made and the previous iteration failed to lower the objective 

function; on such an occasion, PEST adopts as its starting parameters for the new 

optimisation iteration the parameter set resulting in the lowest objective function value 

achieved so far. 

At the end of each optimisation iteration PEST records either two or three (depending on the 

input settings) very important pieces of information; in the case of Example 5.1 it is two. 

These are the maximum factor parameter change and the maximum relative parameter 

change. As was discussed in previous chapters, each adjustable parameter must be designated 

as either factor-limited or relative-limited; in Example 5.1 all adjustable parameters are 

factor-limited with a factor limit of 3.0. A suitable setting for the factor and relative change 

limits (ie. FACPARMAX and RELPARMAX) may be crucial in achieving optimisation 

stability.  Note that, along with the value of the maximum factor or parameter change 

encountered during the optimisation iteration, PEST also records the name of the parameter 

that underwent this change. This information may be crucial in deciding which, if any, 

parameters should be temporarily held at their current values should trouble be encountered in 

the optimisation process. For details of the options available for user-intervention, see Section 

5.6 of this manual. 

The recording of the maximum factor and relative parameter changes at the end of each 

iteration allows you to judge whether you have set these vital variables (ie. FACPARMAX 

and RELPARMAX) wisely. In the present case only the maximum factor change is needed 

because no parameters are relative-limited; the maximum relative parameter change is 

recorded, however, because one of the termination criteria involves the use of relative 

parameter changes. Note that had some of the parameters in Example 5.1 been relative-

limited, this part of the run record would have been slightly different in that the maximum 

factor parameter change would have been provided only for factor-limited parameters and the 

maximum relative parameter change would have been provided for relative-limited 

parameters. However a further line documenting the maximum relative parameter change for 

all parameters would have been added because of its pertinence to the aforementioned 

termination criterion. 

The PEST run record of Example 5.1 shows that in iteration 2, one of the parameters, viz. 

“h2”, incurs the maximum allowed factor change, thus limiting the magnitude of the 

parameter upgrade vector. In optimisation iterations 3 and 4, parameter “h1” limits the 

magnitude of the parameter upgrade vector through incurring the maximum allowed 

parameter factor change. It is possible that convergence for this case would have been 

achieved much faster if FACPARMAX on the PEST control file were set higher than 3.0. 
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At the beginning of the second optimisation iteration, parameter “ro2” is at its upper bound. 

After calculating the Jacobian matrix and formulating and solving equation 2.23, PEST 

notices that parameter “ro2” does not wish to move back into its domain; so it temporarily 

freezes this parameter at its upper bound and calculates an upgrade vector solely on the basis 

of the remaining adjustable parameters. The two-step process by which PEST judges whether 

to freeze a parameter which is at its upper or lower limit is explained in Section 2.2.3. Note 

that at the beginning of optimisation iteration 3, parameter “ro2” is released again in case, 

with the upgrading of the other adjustable parameters during the previous optimisation 

iteration, it wants to move back into the internal part of its domain. 

In the third optimisation iteration only a single Marquardt lambda is tested, the objective 

function having been lowered to below 0.4 times its starting value for that iteration through 

the use of this single lambda; 0.4 is the user-supplied value for the PEST control variable 

PHIRATSUF. 

During the fifth optimisation iteration three lambdas are tested. The second results in a raising 

of the objective function over the first (though this is not apparent in the run record because 

“phi”, the objective function, is not written with sufficient precision to show it), so PEST 

tests a lambda which is higher than the first. For the case illustrated in Example 5.1, when 

lambda is raised or lowered it is adjusted using a factor of 2.0, this being the user-supplied 

value for the PEST control variable RLAMFAC. For optimisation iteration 6, the first lambda 

tested is the same as the most successful one for the previous iteration, viz. 1.9531E-02. 

However, for each of the previous iterations, where the objective function was improved 

through lowering lambda during the iteration prior to that, the starting lambda is lower by a 

factor of 2.0 (ie. RLAMFAC) than the most successful lambda of the previous iteration. 

At the end of optimisation iteration 6 PEST calculates that the relative reduction in the 

objective function from that achieved in iteration 5 is less that 0.1; ie. it is less than the user-

supplied value for the PEST control variable PHIREDSWH. Hence, as the input variable 

FORCEN for at least one parameter group (both groups in the present example) is set to 

“switch”, PEST records the fact that it will be using central differences to calculate 

derivatives with respect to the members of those groups from now on. Note that in Example 

5.1, the use of central derivatives does not result in a significant further lowering of the 

objective function, nor in a dramatic change in parameter values, the objective function 

having been reduced nearly as far as possible through the use of forward derivatives only. 

However in other cases, especially those involving a greater number of adjustable parameters 

than in the above example, the introduction of central derivatives can often get a stalled 

optimisation process moving again. 

The optimisation process of Example 5.1 is terminated at the end of optimisation iteration 7, 

after the lowest 3 (ie. NPHISTP) objective function values are within a relative distance of 

0.01 (ie. PHIREDSTP) of each other. 

Note that where PEST lists the current objective function value at the start of the optimisation 

process and at the start of each optimisation iteration, it also lists the contribution made to the 

objective function by each observation group (including the observation group “group_4” 

comprised solely of prior information). This is valuable information, for if a user notices that 

one particular group is either dominating the objective function or is not “seen” as a result of 

dominance by another contributor, he/she may wish to adjust observation or prior information 
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weights and start the optimisation process again. 

5.2.4 Optimised Parameter Values and Confidence Intervals 

After completing the parameter estimation process, PEST prints the outcomes of this process 

to the third section of the run record file. First it lists the optimised parameter values. It does 

this in three stages; the adjustable parameters, then the tied parameters and, finally, any fixed 

parameters. PEST calculates 95% confidence limits for the adjustable parameters. However, 

you should note carefully the following points about confidence limits. 

 Confidence limits can only be obtained if the covariance matrix has been calculated. 

If, for any reason, it has not been calculated (eg. because J
t
QJ of equation 2.17 could 

not be inverted) confidence limits will not be provided. 

 As noted in the PEST run record itself, parameter confidence limits are calculated on 

the basis of the same linearity assumption which was used to derive the equations for 

parameter improvement implemented in each PEST optimisation iteration. If the 

confidence limits are large they will, in all probability, extend further into parameter 

space than the linearity assumption itself. This will apply especially to 

logarithmically-transformed parameters for which the confidence intervals cited in the 

PEST run record are actually the confidence intervals of the logarithms of the 

parameters, as evaluated by PEST from the covariance matrix. If confidence intervals 

are exaggerated in the logarithmic domain due to a breakdown in the linearity 

assumption, they will be very much more exaggerated in the domain of non-

logarithmically-transformed numbers. This is readily apparent in Example 5.1. 

 No account is taken of parameter upper and lower bounds in the calculation of 95% 

confidence intervals. Thus an upper or lower confidence limit can lie well outside a 

parameter’s allowed domain. In Example 5.1, the upper confidence limits for both 

“ro2” and “h2” lie well above the allowed upper bounds for these parameters, as 

provided by the parameter input variable PARUBND for each of these parameters; 

similarly the lower confidence limit for parameter “h1” lies below its lower bound 

(PARLBND) of 0.05. PEST does not truncate the confidence intervals at the 

parameter domain boundaries so as not to provide an unduly optimistic impression of 

parameter certainty. 

 The parameter confidence intervals are highly dependent on the assumptions 

underpinning the model. If the model has too few parameters to accurately simulate a 

particular system, the optimised objective function will be large and then so too, 

through equations 2.5 and 2.17, will be the parameter covariances and, with them, the 

parameter confidence intervals. However, if a model has too many parameters, the 

objective function may well be small, but some parameters may be highly correlated  

with each other due to an inability on the part of a possibly limited measurement set to 

uniquely determine each parameter of such a complex model; this will give rise to 

large covariance values (and hence large confidence intervals) for the correlated 

parameters.  

Notwithstanding the above limitations, the presentation of 95% confidence limits provides a 

useful means of comparing the certainty with which different parameter values are estimated 
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by PEST. In Example 5.1 it is obvious that parameters “ro2” and “h2” (particularly “h2”) are 

estimated with a large margin of uncertainty. This is because these two parameters are well 

correlated; this means that they can be varied in harmony and, provided one is varied in a 

manner that properly complements the variation of the other, there will be little effect on the 

objective function. Hence while the objective function may be individually sensitive to each 

one of these parameters, it appears to be relatively insensitive to both of them if they are 

varied in concert. This illustrates the great superiority of using covariance and eigenvector 

analysis over the often-used “sensitivity analysis” method of determining parameter 

reliability. 

Confidence limits are not provided for tied parameters. The parent parameters of all tied 

parameters are estimated with the tied parameters “riding on their back”; hence the 

confidence intervals for the respective parent parameters reflect their linkages to the tied 

parameters.  

Note that at the end of a PEST optimisation run a listing of the optimised parameter values 

can also be found in the PEST parameter value file case.par. 

5.2.5 Observations and Prior Information 

After it has written the optimised parameter set to the run record file, PEST records the 

measured observation values, together with their model-generated counterparts calculated on 

the basis of the optimised parameter set. The differences between the two (ie. the residuals) 

are also listed, together with the user-supplied set of observation weights. Following the 

observations, the user-supplied and model-optimised prior information values are listed; a 

prior information value is the number on the right side of the prior information equation. As 

for the observations, residuals and user-supplied weights are also tabulated. 

Tabulated residuals and weighted residuals can also be found in files case.res and case.rei; 

see Sections 5.3.4 and 5.3.5. Composite observation sensitivities can be found in file 

case.seo; see Section 5.3.3. 

5.2.6 Objective Function 

Next the objective function is listed, together with the contribution made to the objective 

function by the different observation groups. 

5.2.7 Correlation Coefficient 

The correlation coefficient pertaining to the current parameter estimation problem, calculated 

using equation 2.43, is next listed. 

5.2.8 Analysis of Residuals 

The next section of the run record file lists a number of statistics pertaining to observation 

residuals - first to all residuals, and then separately to each observation group (including any 

observation groups to which prior information was assigned). Ideally, after the parameter 

estimation process is complete, weighted residuals should have a mean of zero and be 

randomly distributed. The information contained in this section of the run record file helps to 
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assess whether this is the case. It also allows the user to immediately identify outliers (those 

observations for which the residuals are unusually high). 

In calculating residual statistics, observations with zero weight are ignored. 

5.2.9 The Parameter Covariance Matrix 

When PEST is run in parameter estimation or predictive analysis modes, three matrices are 

recorded at the end of the PEST run record file, viz the parameter covariance matrix, the 

parameter correlation coefficient matrix, and the matrix of eigenvectors of the parameter 

covariance matrix (the latter two matrices being derived from the first). When run in 

regularisation mode, these matrices are recorded only if the respective ICOV, ICOR and IEIG 

control variables are set to 1. Setting these variables to zero can thus prevent the production 

of a huge run record file on occasions where many parameters are estimated through a highly 

regularised inversion process. 

The covariance matrix is always a square symmetric matrix with as many rows (and columns) 

as there are adjustable parameters; hence there is a row (and column) for every parameter 

which is neither fixed nor tied. The order in which the rows (and columns) are arranged is the 

same as the order of occurrence of the adjustable parameters in the previous listing of the 

optimised parameter values. (This is the same as the order of occurrence of adjustable 

parameters in both the PEST control file and in the first section of the run record file.) 

Being a by-product of the parameter estimation process (see Chapter 2), the elements of the 

covariance matrix pertain to the parameters that PEST actually adjusts; this means that where 

a parameter is log-transformed, the elements of the covariance matrix pertaining to that 

parameter actually pertain to the logarithm (to base 10) of that parameter. Note also that the 

variances and covariances occupying the elements of the covariance matrix are valid only in 

so far as the linearity assumption, upon which their calculation is based, is valid. 

The diagonal elements of the covariance matrix are the variances of the adjustable 

parameters; for Example 5.1 the variances pertain, from top left to bottom right, to the 

parameters log(“ro2”), “h1” and log(“h2”) in that order. The variance of a parameter is the 

square of its standard deviation. With log(“h2”) having a variance of 0.866 (and hence a 

standard deviation of 0.931), and bearing in mind that the number “1” in the log domain 

represents a factor of 10 in untransformed parameter space, it is not hard to see why the 95% 

confidence interval cited for parameter “h2” is so wide. 

The off-diagonal elements of the covariance matrix represent the covariances between 

parameter pairs; thus, for example, the element in the second row and third column of the 

above covariance matrix represents the covariance of “h1” with log(“h2”).  

If there are more than eight adjustable parameters, the rows of the covariance matrix are 

written in “wrap” form; ie. after eight numbers have been written, PEST will start a new line 

to write the ninth number. Similarly if there are more than sixteen adjustable parameters, the 

seventeenth number will begin on a new line. Note, however, that every new row of the 

covariance matrix begins on a new line of the run record file.  

5.2.10 The Correlation Coefficient Matrix 
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The correlation coefficient matrix is calculated from the covariance matrix through equation 

2.7. The correlation coefficient matrix has the same number of rows and columns as the 

covariance matrix; furthermore the manner in which these rows and columns are related to 

adjustable parameters (or their logs) is identical to that for the covariance matrix. Like the 

covariance matrix, the correlation coefficient matrix is symmetric. 

The diagonal elements of the correlation coefficient matrix are always unity; the off-diagonal 

elements are always between 1 and -1. The closer that an off-diagonal element is to 1 or -1, 

the more highly correlated are the parameters corresponding to the row and column numbers 

of that element. Thus, for the correlation coefficient matrix of Example 5.1, the logs of  

parameters “ro2” and “h2” show medium to high correlation, as is indicated by the value of 

elements (1,3) and (3,1) of the correlation coefficient matrix, viz. -0.8756. This explains why, 

individually, these parameters are determined with a high degree of uncertainty in the 

parameter estimation process, as evinced by their wide confidence intervals. 

5.2.11 The Normalised Eigenvector Matrix and the Eigenvalues 

The eigenvector matrix is composed of as many columns as there are adjustable parameters, 

each column containing a normalised eigenvector. Because the covariance matrix is positive 

definite, these eigenvectors are real and orthogonal; they represent the directions of the axes 

of the probability “ellipsoid” in the n-dimensional space occupied by the n adjustable 

parameters. 

In the eigenvector matrix the eigenvectors are arranged from left to right in increasing order 

of their respective eigenvalues; the eigenvalues are listed beneath the eigenvector matrix. The 

square root of each eigenvalue is the length of the corresponding semiaxis of the probability 

ellipsoid in n-dimensional adjustable parameter space. 

If the ratio of a particular eigenvalue to the lowest eigenvalue pertaining to the parameter 

estimation problem is particularly large, then the respective eigenvector defines a direction of 

relative insensitivity in parameter space. The eigenvector pertaining to the highest eigenvalue 

is worthy of attention in most parameter estimation problems, for this defines the direction of 

maximum insensitivity, and hence of greatest elongation of the probability ellipsoid in 

adjustable parameter space. If this eigenvector is dominated by a single element, then the 

parameter associated with that element may be quite insensitive, the “magnitude of its 

insensitivity” being defined by the square root of the magnitude of the corresponding 

eigenvalue. However if this eigenvector contains a number of significant components rather 

than just one, then this is an indication of insensitivity associated with a group of parameters 

(ie. parameter correlation). The correlated parameters are those whose eigenvector 

components are significantly non-zero. 

The ratio of the highest to lowest eigenvalue constitutes another significant item of 

information that is forthcoming as a by-product of the parameter estimation process. The 

square root of this ratio is related to the “condition number” of the matrix that PEST must 

invert when solving for the parameter upgrade vector - see equation 2.23. If the condition 

number of a matrix is too high, then inversion of this matrix becomes numerically difficult or 

even impossible. In the present instance this is an outcome of the fact that solution of the 

inverse problem approaches nonuniqueness as elongation of the probability ellipsoid 

increases. In general, if the ratio of the highest to lowest eigenvalue is greater than about 10
8
, 
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there is a strong possibility that PEST is having difficulty in calculating the parameter 

upgrade vector because of parameter insensitivity and/or correlation. Its performance may be 

seriously degraded as a result. 

5.3 Other PEST Output Files 

5.3.1 The Parameter Value File 

At the end of each optimisation iteration PEST writes the best parameter set achieved so far 

(ie. the set for which the objective function is lowest if PEST is running in parameter 

estimation mode) to a file named case.par where case is the filename base of the PEST 

control file; this type of file is referred to as a PEST “parameter value file”. At the end of a 

PEST run, the parameter value file contains the optimal parameter set. Example 5.2 illustrates 

such a file. Note that a PEST parameter value file can be used by program TEMPCHEK in 

building a model input file based on a template file, by program PESTGEN in assigning 

initial parameter values to a PEST control file, and by program PARREP in building a new 

PEST control file from an old PEST control file; see Chapter 11 for further details. 

The first line of a parameter value file cites the character variables PRECIS and DPOINT, the 

values for which were provided in the PEST control file; see Section 4.2.2. Then follows a 

line for each parameter, each line containing a parameter name, its current value and the 

values of the SCALE and OFFSET variables for that parameter. 

5.3.2 The Parameter Sensitivity File 

5.3.2.1 The Composite Parameter Sensitivity 

Most of the time consumed during each PEST optimisation iteration is devoted to calculation 

of the Jacobian matrix. During this process the model must be run at least NPAR times, 

where NPAR is the number of adjustable parameters.  

As is explained in Section 2.2.7, based on the contents of the Jacobian matrix, PEST 

calculates a figure related to the sensitivity of each parameter with respect to all observations 

(with the latter weighted as per user-assigned weights). The “composite sensitivity” of 

parameter i is defined as 

si = (J
t
QJ)ii

1/2
 /m        (5.1) 

where J is the Jacobian matrix and Q is the “cofactor matrix”; in most instances the later will 

be a diagonal matrix whose elements are comprised of the squared observation weights. m in 

equation 5.1 is the number of observations with non-zero weights. Thus the composite 

sensitivity of the i’th parameter is the normalised (with respect to the number of observations) 

single point 
   ro1     1.000000         1.000000        0.0000000 
   ro2     40.00090         1.000000        0.0000000 
   ro3     1.000000         1.000000        0.0000000 
    h1     1.000003         1.000000        0.0000000 
    h2     9.999799         1.000000        0.0000000 

Example 5.2 A parameter value file. 
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magnitude of the column of the Jacobian matrix pertaining to that parameter, with each 

element of that column multiplied by the weight pertaining to the respective observation. 

Recall that each column of the Jacobian matrix lists the derivatives of all “model-generated 

observations” with respect to a particular parameter. 

Immediately after it calculates the Jacobian matrix, PEST writes composite parameter 

sensitivities to a “parameter sensitivity file” called “case.sen” where case is the current case 

name (ie. the filename base of the current PEST control file). Example 5.3 shows an extract 

from a parameter sensitivity file. 

The relative composite sensitivity of a parameter is obtained by multiplying its composite 

sensitivity by the magnitude of the value of the parameter. It is thus a measure of the 

composite changes in model outputs that are incurred by a fractional change in the value of 

the parameter. 

It is important to note that composite sensitivities recorded in the parameter sensitivity file are 

sensitivities “as PEST sees them”. Thus if a parameter is log-transformed, sensitivity is 

expressed with respect to the log of that parameter. The relative composite sensitivity of a log-

transformed parameter is determined by multiplying the composite sensitivity of that 

parameter by the absolute log of the value of that parameter. 

As is explained in Section 5.6, composite parameter sensitivities are useful in identifying 

those parameters which may be degrading the performance of the parameter estimation 

process through lack of sensitivity to model outcomes. The use of relative sensitivities in 

addition to normal sensitivities assists in comparing the effects that different parameters have 

on the parameter estimation process when these parameters are of different type, and possibly 

of very different magnitudes.  

Information is appended to the parameter sensitivity file during each optimisation iteration 

immediately following calculation of the Jacobian matrix. In the event of a restart, the 

parameter sensitivity file is not overwritten; rather PEST preserves the contents of the file, 

appending information pertaining to subsequent iterations to the end of the file. In this 

manner the user is able to track variations in the sensitivity of each parameter through the 

                  PARAMETER SENSITIVITIES: CASE VES4 
OPTIMISATION ITERATION NO.  1 -----> 
 Parameter_name Group  Current value    Sensitivity    Rel. Sensitivity 
   ro1          ro        4.00000          1.25387         0.754905 
   ro2          ro        5.00000         0.327518         0.228925 
   ro3          ro        6.00000          2.09172          1.62768     

   h1           hhh       5.00000         0.176724         0.123525 
   h2           hhh       4.00000       4.718210E-02      2.840646E-2 
 
 
 OPTIMISATION ITERATION NO.  2 -----> 
 Parameter_name Group  Current value    Sensitivity    Rel. Sensitivity 
   ro1          ro        3.79395          1.30721         0.756995 
   ro2          ro        15.0000         0.672146         0.790506 
   ro3          ro        4.57028          1.77164          1.16918 
   h1           hhh       2.85213         0.661729         0.301198 
   h2           hhh       4.00000         0.465682         0.280369 
 
 

Example 5.3 Part of a parameter sensitivity file. 



Running PEST  

 

5-18 

 

parameter estimation process. 

When inspecting the parameter sensitivity file, keep the following points in mind:- 

 If PEST is working in predictive analysis mode, it assumes that the weight assigned to 

the observation constituting the sole member of the observation group “predict” is 

zero. Thus there is no contribution to the composite sensitivity of any parameter from 

the sole member of this observation group. However the situation is slightly different 

for information written to the parameter sensitivity file at the end of the simulation - 

see below. 

 If PEST is working in regularisation mode, the weights assigned to members of the 

observation group “regul” vary from optimisation iteration to optimisation iteration. 

Composite parameter sensitivities for any optimisation iteration are calculated using 

the optimal weight factor (calculated on an iteration-by-iteration basis by PEST) for 

members of observation groups whose names begin with “regul”.  

 If an observation covariance matrix is supplied instead of observation weights for any 

observation group, this is automatically taken into account when computing 

composite parameter sensitivities. 

5.3.2.2 Sensitivity Information Recorded on Termination of PEST Execution 

At the end of the parameter estimation process (or if PEST is halted prematurely using the 

“stop with statistics” option), PEST provides a complete listing of composite parameter 

sensitivities based on the best sensitivity matrix (ie. Jacobian matrix) computed during the 

optimisation process. “Best” is defined in terms of the aim of the optimisation process; this 

may be to minimise the objective function (parameter estimation mode), to 

maximise/minimise a prediction subject to objective function constraints (predictive analysis 

mode), or to minimise the regularisation component of the objective function subject to 

constraints imposed on the measurement component of the objective function (regularisation 

mode). 

The point within the parameter estimation process where the “best” Jacobian matrix was 

computed will vary from run to run. It may have been computed during the last optimisation 

iteration, or it may have been computed some iterations ago, subsequent attempts to improve 

the outcome of the optimisation process since that iteration having met with no success. Note 

also that if there was a marginal improvement in the outcome of the optimisation process 

during the final optimisation iteration, but not enough to warrant the undertaking of another 

optimisation iteration, then sensitivities will not correspond exactly to optimised parameter 

values, as PEST does not compute another Jacobian matrix before ceasing execution under 

these conditions. Nevertheless sensitivities computed by PEST on the basis of the near-

optimal parameter values which it uses at the beginning of the last iteration will be a very 

close approximation to sensitivities calculated for PEST’s final parameter estimates. 

However, if you would like to ensure that sensitivities correspond exactly to optimised 

parameter values, you can do the following:- 

1. Use program PARREP (see Chapter 11) to build a new PEST control file based on 

optimised parameter values from the present run. 
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2. Set NOPTMAX in that file to -1, thus requesting that PEST compute sensitivities and 

then cease execution. 

3. Perhaps set the FORCEN variable for each parameter group to “always_3”, thus 

ensuring that PEST calculates derivatives with maximum precision. 

4. If working in regularisation mode, set the initial weight factor (WFINIT) to the 

optimal weight factor determined on the present optimisation run (unless the 

regularisation control variable IREGADJ was set to a non-zero value on the previous 

PEST run, in which case relativity of inter-regularisation group weights will have 

been disturbed and this methodology will be inapplicable). 

Then run PEST. 

When writing “completion parameter sensitivities” to the end of the parameter sensitivity file, 

PEST lists the composite sensitivity and relative composite sensitivity to each parameter of 

all observation groups, as well as of each individual observation group. The composite 

parameter sensitivity of each observation group is evaluated by calculating the magnitude of 

the respective column of the weighted Jacobian matrix using Equation 5.1, with the 

summation confined to members of that particular observation group. The magnitude is then 

divided by the number of members of that observation group which have non-zero weights. 

When PEST is run in predictive analysis mode, the observation group “predict” deserves 

special attention. As was mentioned above, it is not included in the computation of overall 

parameter sensitivities when PEST is run in this mode. However, because it is a separate 

observation group, PEST lists the composite sensitivity to each parameter of the member of 

this group, together with composite sensitivities of other observation groups, at the end of the 

parameter sensitivity file. The observation weight used in this calculation is the weight 

assigned to the observation comprising the sole member of the observation group “predict” in 

the PEST control file. When working in predictive analysis mode, this weight is ignored by 

PEST in actual predictive analysis calculations. However it is not ignored in calculating the 

sensitivity of the sole member of this group to each adjustable parameter for the purpose of 

recording composite sensitivities pertaining to each observation group at the end of the 

parameter sensitivity file. The user should consider this when assigning a weight to the sole 

member of the observation group “predict” when preparing the PEST control file for a 

predictive analysis run.  

When using PEST in regularisation mode, weights assigned to observation groups whose 

names begin with “regul” are multiplied by the optimal regularisation weight factor 

determined as part of the parameter estimation process before recording composite 

sensitivities with respect to the members of these groups, of each adjustable parameter. 

5.3.3 Observation Sensitivity File 

The composite observation sensitivity of observation oj is defined as: 

sj ={Q(JJ
T
)}j,j

1/2 
/n        (5.2) 

That is, the composite sensitivity of observation j is the magnitude of the j’th row of the 
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Jacobian multiplied by the weight associated with that observation; this magnitude is then 

divided by the number of adjustable parameters. It is thus a measure of the sensitivity of that 

observation to all parameters involved in the parameter estimation process. At the end of its 

run, PEST lists all observation values and corresponding model-calculated values, as well as 

composite sensitivities for all observations to the “observation sensitivity file”. This file is 

named case.seo. 

Though composite observation sensitivities can be of some use, they do not, in general, 

convey as much useful information as composite parameter sensitivities. In fact in some 

instances the information that they provide can even be a little deceptive. Thus while a high 

value of composite observation sensitivity would, at first sight, indicate that an observation is 

particularly crucial to the inversion process because of its high information content, this may 

not necessarily be the case. Another observation made at nearly the same time and/or place as 

the first observation may carry nearly the same information content. In this case, it may be 

possible to omit one of these observations from the parameter estimation process with 

impunity, for the information which it carries is redundant as long as the other observation is 

included in the process. Thus while a high value of composite observation sensitivity does 

indeed mean that the observation to which it pertains is possibly sensitive to many 

parameters, it does not indicate that the observation is particularly indispensable to the 

parameter estimation process, for this can only be decided in the context of the presence or 

absence of other observations with similar sensitivities. 

Example 5.4 shows part of an observation sensitivity file. 

5.3.4 The Residuals File 

At the end of its execution, PEST writes a “residuals file” listing in tabular form observation 

names, the groups to which various observations belong, measured and modelled observation 

values, differences between these two (ie. residuals), measured and modelled observation 

values multiplied by respective weights, weighted residuals, measurement standard deviations 

and “natural weights”. This file can be readily imported into a spreadsheet for various forms 

of analysis and plotting. Its name is case.res where case is the current PEST case name. 

A word of explanation is required concerning the last two data types presented in the 

residuals file. As is explained in Section 2.1.2 of this manual, after the parameter estimation 

process has been carried out and a value has been obtained for the “reference variance” 
2
, 

the standard deviation of each observation can be calculated as the inverse of its weight 

multiplied by the square root of the reference variance. Care must be taken in interpreting this 

standard deviation for, being dependent on the fit achieved between model outputs and 

Observation   Group         Measured          Modelled          Sensitivity 
  ar1          group_1        1.210380          1.639640         0.5221959 
  ar2          group_1        1.512080          2.254750         0.6824375 
  ar3          group_1        2.072040          3.035590         0.8591846 
  ar4          group_1        2.940560          3.978450         1.0338167 
  ar5          group_1        4.157870          5.047430         1.1915223 

  ar6          group_1        5.776200          6.167830         1.3226952 
  ar7          group_2        7.789400          7.232960         1.4450249 
  ar8          group_2        9.997430          8.124100         1.5881968 
  ar9          group_2        11.83070          8.724950         1.7506757 
  ar10         group_2        12.31940          8.895600         1.8875951 
  ar11         group_2        10.60030          8.402450         1.9690974 

Example 5.4 Part of an observation sensitivity file. 
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corresponding field or laboratory measurements, it is a valid measure of observation 

uncertainty only in so far as the model is a valid simulation of the processes that it is intended 

to represent. 

“Natural weights” as represented on the observation residuals file are the inverse of 

measurement standard deviations as determined above. If these weights are used in the 

parameter estimation process, the reference variance will be 1.0. 

Where a covariance matrix is supplied for one or more observation groups instead of weights, 

the residuals file is slightly modified. As well as this, an extra file called a “rotated residuals 

file” is generated by PEST. See Section 4.3.3 for further details. 

5.3.5 Interim Residuals File 

At the beginning of every optimisation iteration PEST writes a file named case.rei where case 

is the filename base of the PEST control file. This file is a “temporary” or “interim” residuals 

file. It contains six columns of data. The first two columns cite observation names and group 

names; then follow observation values (supplied by user) and their current model-generated 

counterparts. Current residuals and weights follow that. 

The following should be noted:- 

1. Model-generated observations recorded in the residuals file pertain to the best 

parameters calculated at that stage of the parameter estimation process at which the 

file was written. 

2. If an observation belongs to a group for which a covariance matrix was supplied then 

a weight cannot be assigned to each individual observation belonging to that group. 

Hence, in accordance with the convention used for storing information in file case.res 

at the end of the parameter estimation process, the string “cov. mat” is recorded in its 

place. 

3. As is explained in Chapter 7, weights pertaining to members of regularisation groups 

change throughout the parameter estimation process. Hence these weights will be 

different for different case.rei files recorded at different stages of a regularised 

parameter estimation process. 

5.3.6 The Matrix File 

During each optimisation iteration, just after it has calculated the Jacobian matrix, if any of 

the ICOV, ICOR or IEIG variables supplied in the PEST control file are set to 1, PEST 

calculates the covariance and correlation coefficient matrices, as well as the eigenvalues and 

normalised eigenvectors of the covariance matrix, for the current set of parameter values. 

Depending on the settings of the ICOV, ICOR and IEIG variables, these matrices will then be 

written to a special file named a “matrix file”. This file is named case.mtt where case is the 

current case name (ie. the filename base of the PEST control file).  Each time this file is 

written, the previous file of the same name is overwritten. Hence the matrices contained in 

the matrix file pertain to the current optimisation iteration only (or, at the end of the 

parameter estimation process, to the last optimisation iteration). 
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If any of ICOV, ICOR or IEIG are set to zero, the corresponding matrix is not written to the 

matrix file. If they are all set to zero, then no matrices are written to this file. If ICOV is set to 

1 then, as well as recording the covariance matrix to the matrix file, PEST records current 

parameter values and standard deviations. (The standard deviation of a parameter is the 

square root of its variance; parameter variances comprise the diagonal of the covariance 

matrix.) As with the elements of the covariance and associated matrices, the standard 

deviation of a parameter actually pertains to the log of that parameter if the parameter is log 

transformed during the parameter estimation process. 

The observant PEST user may notice slight differences between the matrices recorded to the 

final matrix file and those recorded to the run record file at the end of the PEST run. If the 

lowest objective function achieved during the parameter estimation process was calculated by 

PEST during the final optimisation iteration, then he/she may expect that these two sets of 

matrices will be identical. Nevertheless, there are often differences between these two sets of 

matrices. These differences result from the fact that the “reference variance” (see equation 

2.5) used in the calculation of matrices which are recorded in the matrix file is computed 

using the objective function calculated at the end of the previous optimisation iteration, 

whereas for the covariance and related matrices recorded in the run record file, the best 

objective function calculated during the whole parameter estimation process is used in 

computing the reference variance. If the best objective function was computed on the final 

parameter upgrade, this will differ slightly from that calculated at the beginning of the last 

optimisation iteration, resulting in slight differences between the matrices recorded in the 

final matrix file and those recorded in the run record file. 

5.3.7 The Condition Number File 

Unless PEST is using singular value decomposition for solution of equation 2.23, it writes the 

condition number of the matrix which it must invert to calculate parameter upgrades to a 

“condition number file”. This condition number is recorded for every Marquardt Lambda 

tested during every optimisation iteration (for on every such occasion, equation 2.23 must be 

solved).  

The condition number file is named case.cnd where case is the filename base of the current 

PEST control file. If the condition number is high (generally greater than about 10
4
), this 

signals the fact that PEST may not have been able to invert the matrix properly as a result of 

near or total singularity arising out of excessive parameter insensitivity or correlation. At the 

very least, this is an indicator of nonuniqueness in estimated parameters; at most, it means 

that PEST may not have been successful in lowering the objective function due to the fact 

that there is no unique way to achieve this. In either case, you should re-formulate the 

problem. Either hold some parameters fixed, introduce regularisation to the parameter 

estimation problem, or consider using truncated singular value decomposition as an 

alternative method of (nonuniquely) estimating parameters. 

5.3.8 Other Files 

As is discussed in Chapter 8 of this manual, if singular value decomposition is employed as a 

solution method for equation 2.23, PEST records a file named case.svd in which details of the 

singular value decomposition process are recorded.  
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If requested through the PEST control variable RSTFLE, PEST intermittently stores its data 

arrays and last two Jacobian matrices in binary files named case.rst, case.jac and case.jst. If 

PEST execution is re-commenced using the “/r” switch, it reads the first of these binary files 

in addition to its normal input files; if it is re-started with the “/j” switch it reads all of them. 

If PEST is run as Parallel PEST, an additional restart file named case.prf is recorded; the 

contents of this file are read if Parallel PEST execution is re-commenced using the “/s” 

switch. 

PEST records the Jacobian matrix corresponding to optimised parameter values in a file 

named case.jco. This is accessible by the JACWRIT utility for rewriting of the Jacobian 

matrix in text format; see Section 11.8. 

Parallel PEST uses a number of files for communication between PEST and its various 

slaves. It also writes a “run management file” documenting the communications history 

between the various programs taking part in the optimisation process. All of these files are 

described in detail in Chapter 10.  

5.3.9 PEST’s Screen Output 

As well as recording the progress of the parameter estimation process to its run record file, 

PEST also prints some of its run-time information to the screen; through this means the user 

is informed of the status of the estimation process at any time. 

If you are using the single window version of PEST and the model of which PEST has control 

writes its own output to the screen, this will interfere with PEST’s presentation of run record 

information to the screen. Perhaps this will not worry you because it allows you to check that 

the model is running correctly under PEST’s control; in any case, you can interrupt PEST 

execution to inspect the run record file at any time (see the following section). However, if 

you find it annoying, you may be able to redirect the model screen output to a file using the 

“>” symbol in the model command line; this will leave the screen free to display PEST’s run-

time information only. Thus, if program VES cited in the PEST control file of Example 4.2 

produces a verbose screen output which is of no real use in the parameter estimation process, 

the model command line cited in the “model command line” section of the PEST control file 

could be replaced by 

ves > temp.dat 

or 

ves > nul 

In the latter case screen output is simply “lost”, for there is no nul file. 

5.3.10 Run-time Errors 

As was discussed above, PEST performs limited checking of its input dataset. In the event of 

an error or inconsistency in its input data PEST will terminate execution with a run-time error 

message. Unlike PESTCHEK (see Chapter 11), PEST will not continue reading its input data 

files in order to determine whether more errors are present so that it can list them as well; 

rather it ceases execution as soon as it has noticed that something is wrong. 
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Other errors can arise later in the estimation process. For example, if the instruction set fails 

to locate a particular observation, PEST will cease execution immediately with the 

appropriate run-time error message. This may happen if the model has varied the structure of 

its output file in response to a certain set of parameter values in a way that you did not 

anticipate when you wrote the instruction set. It may also arise if the model terminated 

execution prematurely. Hence if a run-time error informs you that PEST was not able to read 

the model output file correctly, you should check both the screen and the model output file for 

a model-generated error message. If there is a compiler-generated error message on the 

screen informing you of a floating point or other error, and this is followed by a PEST run-

time error message informing you that an observation could not be found, then the model, not 

PEST, was responsible for the error. You should then carefully inspect the model output file 

for clues as to why the error occurred. In some cases you will find that one or a number of 

model parameters have transgressed their allowed domains, in which case you will have to 

adjust their upper and/or lower bounds accordingly on the PEST control file. 

Another model-related error which can lead to PEST run-time errors of this kind will occur if 

the subdirectory which contains the model executable file is not cited in either the PATH 

environment variable or in the “model command line” section of the PEST control file. In this 

case, after PEST attempts to make the first model run, you will receive the message 

Running model .....Bad command or file name 

prior to a PEST run-time error message informing you that a model output file cannot be 

opened. (Note, however, that the model path is not required if the model executable resides in 

the current directory.) 

It is normally an easy matter to distinguish PEST errors from model errors, as PEST informs 

you through its screen output when it is running the model. A model-generated error, if it 

occurs, will always follow such a message. Furthermore, a PEST run-time error message is 

clearly labelled as such, as shown in Example 5.5. If you are using Parallel PEST the model 

window will be different from the PEST window. In this case it will be much easier to 

distinguish an error originating from the model from an error originating from PEST. 

PEST run-time errors are written both to the screen and to the PEST run record file. 

5.4 Stopping and Restarting PEST 

5.4.1 Interrupting PEST Execution 

At the end of every model run PEST checks for the presence of a file named pest.stp in the 

directory from which it was invoked. If this file is present, PEST reads the first item in the 

*********************************************************************** 

Error condition prevents continued PEST execution:- 

 

Varying parameter “par1" has no affect on model output - 

Try changing initial parameter value, increasing derivative increment, 

holding parameter fixed or using it in prior information. 

*********************************************************************** 

Example 5.5 A PEST run-time error message. 
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file. If this item is “1”, PEST ceases execution immediately. If it is “2” PEST ceases 

execution after it prints out parameter statistics. If it is “3” PEST pauses execution; to resume 

PEST execution after a pause, rewrite file pest.stp with a “0” as the first entry. 

File pest.stp can be written by the user using any text editor while positioned in another 

window to that in which PEST is running. However this file can also be written using 

programs PPAUSE, PUNPAUSE, PSTOP and PSTOPST supplied with PEST simply by 

typing the name of the appropriate program as a command while situated in the PEST 

working directory in another command-line window. As the names suggest, PPAUSE writes 

a “3” to pest.stp in order to tell PEST to pause execution; PUNPAUSE writes a “0” to 

pest.stp to tell it to resume execution; PSTOP writes a “1” to tell PEST to cease execution, 

while PSTOPSTP instructs PEST to cease execution with a full parameter statistics printout 

by writing a “2” to file pest.stp. Note that if the single window version of PEST is running, 

PEST will not respond to the presence of file pest.stp until the current model run is complete. 

Parallel PEST will respond immediately; however the various incidences of the model will 

continue to run to completion in their own windows after PEST execution has ceased. 

While PEST execution is paused, the run record file can be inspected by viewing it using a 

text editor or viewer from another window. 

5.4.2 Restarting PEST with the “/r” Switch 

As was discussed in Section 4.2.2, you can instruct PEST to periodically dump the contents 

of its memory to a number of binary files so that, if its execution is terminated at any stage, it 

can later be restarted, taking advantage of the work which it has already done. Thus, for 

example, if you had been using the single window version of PEST and you had previously 

terminated its execution before the inversion process was complete, you could restart it using 

the command:- 

pest case /r 

where case is the filename base of the PEST control file. The restart option is invoked in an 

identical manner for Parallel PEST; however it may be necessary to restart the slaves first. 

When PEST is restarted in this manner, it will not resume execution exactly where it left off; 

rather it will recommence the parameter estimation process at the beginning of the 

optimisation iteration in which it was previously interrupted. 

In general it is unwise to interfere with any of PEST’s input files (ie. the PEST control file as 

well as its template and instruction files) between interrupting and restarting PEST. While 

PEST reads all of the data previously contained in its storage arrays from the binary file 

case.rst in the event of a restart, it still needs to obtain the problem dimensions and many of 

its settings from the PEST control file, the parameter templates from the respective template 

files and its instructions from the respective instruction files. If any information in any of 

these files is inconsistent with the information stored in file case.rst, PEST’s behaviour will 

be unpredictable. 

However, if you are very, very careful, you can alter a number of control variables with 

impunity. The variables which you may alter are RLAMFAC, PHIRATSUF, PHIREDLAM 

and NUMLAM which affect the way in which PEST selects Marquardt lambdas, and 
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NOPTMAX, PHIREDSTP, NPHINORED, RELPARSTP and NRELPAR which are 

termination criteria. You can also alter the derivative variables DERINC, DERINCLB, 

DERINCMUL and DERMTHD for any parameter group. Thus if, for example, PEST 

terminates execution with a run-time error message such as that shown in Example 5.5, you 

can edit the PEST control file, altering DERINC, DERINCLB and/or DERINCMUL, and 

then recommence execution using the restart option.  

Program PARREP, one of the PEST utilities described in Chapter 11, provides a much safer 

means of restarting PEST execution with one or more control variables altered. It allows a 

new PEST control file to be built from an existing PEST control file and a parameter value 

file; the latter may contain values optimised by PEST on a previous run. Thus a new PEST 

run can be restarted (with or without altered control settings) where an old one left off. 

5.4.3 Restarting PEST with the “/j” Switch 

PEST can also be restarted with the “/j” switch; this is an integral part of the user-interaction 

functionality  provided by PEST. It is discussed in Section 5.6. 

5.4.4 Restarting PEST with the “/s” Switch 

As well as case.rst, Parallel PEST writes a file named case.prf. This allows Parallel PEST to 

restart execution at exactly the same model run at which its execution was previously 

terminated if execution of the previous Parallel PEST run was interrupted during Jacobian 

matrix calculation. However if its previous execution was terminated during Marquardt 

lambda testing (normally a small consumer of model runs), Parallel PEST will re-commence 

execution at that point at which the Marquardt lambda testing procedure commenced (that is, 

at that place at which calculation of the Jacobian matrix was last complete).  

To restart Parallel PEST using the “/s” switch, use the command:- 

ppest case /s 

If an attempt is made to restart the non-parallel version of PEST with this switch, PEST will 

issue an appropriate error message. 

5.5 If PEST Won't Optimise 

5.5.1 General 

PEST allows the user to follow closely the progress of an optimisation run both through its 

screen output and through the user’s ability to inspect the run record file. Through watching 

the value of the objective function (referred to as “phi” on the PEST run record) from 

optimisation iteration to optimisation iteration, you can monitor PEST’s ability and efficiency 

in lowering the objective function to the minimum which can be achieved within the user-

provided parameter domain. 

There can be many reasons for a failure on the part of PEST to lower the objective function;  

in most cases the problem can be easily overcome by adjusting one or a number of PEST 

input variables. The fact that PEST provides so many control variables by which it can be 
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“tuned” to a particular model is one of the cornerstones of its model-independence. In other 

cases, PEST’s progress can be assisted by selectively holding either one or a few parameters 

at their current values; the user may then re-commence PEST execution at that spot at which 

the Jacobian matrix was last calculated in order to re-compute the last parameter upgrade 

vector, or simply continue execution with the selected parameters held fixed for a while. See 

the next section for details. 

If you are using a particular model for the first time with PEST, you may wish to run a 

theoretical case first. You should use the model to fabricate a sequence of observation values 

of the same type as that for which you have laboratory or field measurements, and then use 

these fabricated observations as your field or laboratory data. Then you should run PEST, 

using as your initial parameter estimates the parameters that gave rise to the fabricated 

observation set. PEST should terminate execution after the first model run with an objective 

function value of zero. (In some cases it will not be exactly zero because of roundoff errors; 

nevertheless it should be extremely small.) In this way you can check that PEST is supplying 

correct parameter values to the model, running the model correctly, and reading observation 

values correctly. 

Next you should vary the parameter initial values and run PEST again. It is at this stage, 

while working with a theoretical dataset for which you know PEST should achieve a low 

objective function value, that you can adjust PEST control variables in order to tune PEST to 

the model. Note that it is unlikely that you will achieve an objective function value of zero 

again; though, depending on the number of observations and their magnitudes and weights, 

the objective function should nevertheless be reduced to as close to zero as roundoff errors 

permit (provided the model is not beset by severe nonlinearities and/or the presence of local 

objective function minima). In most cases PEST is able to solve a parameter estimation 

problem using substantially less than 20 optimisation iterations. 

If PEST does not lower the objective function, or lowers it slowly, you should run through the 

following checklist of reasons for PEST’s poor performance. In most instances the problem 

can be rectified. 

5.5.2 Derivatives are not Calculated with Sufficient Precision 

Precise calculation of derivatives is critical to PEST’s performance. Improper derivatives 

calculation will normally be reflected in an inability on the part of PEST to achieve full 

convergence to the optimal parameter set. Sometimes, in such circumstances, PEST will 

commence an optimisation run in spectacular fashion, lowering the objective function 

dramatically in the first optimisation iteration or two. But then it “runs out of steam”, failing 

to lower it much further. 

Make sure that model outcomes are being written to the model output file with the maximum 

precision which the model allows. If the model places an upper limit on output precision, 

ensure that the parameter increments used for derivatives calculation are large enough to 

cause a useable change in all model-calculated observations, given the number of significant 

digits in which they are expressed. Try not to make parameter increments too large though, or 

finite-difference-generated derivatives will be a poor approximation to the real thing. 

However if they must be large, use one of the three-point methods of derivatives calculation. 
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Try the “parabolic” method first; if that doesn't work, use the “best-fit” method. 

Check that parameter values are written to model input files with enough significant digits to 

reflect parameter increments. If some parameters become very low as the optimisation 

process progresses, you may need to provide a suitable lower bound on  derivative increments 

through the parameter group variable DERINCLB, or calculate the increment using the 

largest member of a parameter group by denoting the group variable INCTYP as 

“rel_to_max”. 

For a model which solves large matrix equations using an iterative method, you should ensure 

that the model’s solution convergence criterion is set very low so that model-generated 

observations are calculated with a high degree of precision. However if you set it too low the 

model solution procedure may not converge; worse still, it may converge for some parameter 

sets and not for others. To overcome this you may need to make a small change to the model 

such that it prints out its solution vector even if it has not converged according to your very 

stringent convergence setting; alternatively you could employ a batch process such as was 

demonstrated in Example 4.3. 

5.5.3 High Parameter Correlation 

There is often a temptation in fitting models to data, to improve the fit between modelled and 

measured observations by increasing the number of adjustable parameters. While it is true 

that this can result in a lowered objective function, it is not always true that such an 

improvement increases a model’s ability to make reliable predictions, or that a high number 

of parameters represents a valid interpretation of the dataset to which the model’s outcomes 

are matched. Furthermore, as the number of parameters requiring estimation is increased, 

there will come a stage where PEST’s ability to lower the objective function by adjusting the 

values of these parameters is diminished due to the effects of roundoff error (particularly for 

highly nonlinear models); this applies not just to PEST but to any parameter estimation 

package. 

The trouble with increasing the number of parameters without limit is that, sooner or later, 

some parameters become highly correlated. This results from the fact that the measurement 

set upon which the parameter estimation process is based may not have the ability to 

discriminate between different combinations of parameter values, each combination giving 

rise to an equally low objective function. As has already been discussed, the extent to which 

parameter pairs and/or groups are correlated can be gleaned from an inspection of the 

correlation coefficient and/or eigenvector matrices. 

If parameters are too highly correlated the matrix J
t
QJ of equation 2.18 becomes singular. 

However because PEST adds the Marquardt parameter to the diagonal elements of this matrix 

before solving for the parameter upgrade vector (see equation 2.20), rendering it singular no 

longer, an upgrade vector can nevertheless be obtained. Eventually, unless circumvented by 

roundoff errors, an objective function minimum will be obtained through the normal iterative 

optimisation process. However the parameter set determined on this basis may not be unique. 

Hence, if you are running a theoretical case, PEST may determine a parameter set which is 

entirely different from the one which you used to generate the artificial measurement set. In 

spite of this, the objective function may be very small. 
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In addition to the nonuniqueness problem, the optimisation process may become very slow if 

there are many parameters in need of estimation. There are two reasons for this. The first is 

that PEST requires at least as many model runs as there are adjustable parameters in order to 

fill the Jacobian matrix during each optimisation iteration. The second reason is based on the 

possible near-singular condition of the normal matrix and the way in which PEST adjusts the 

Marquardt lambda upwards in response to this. In general, while high lambda values can lead 

to a rapid lowering of the objective function at the early stages of the parameter estimation 

process when parameter values are far from optimal, it is normally far better to decrease 

lambda as the objective function minimum is approached. As discussed in Section 2.1.5, use 

of a high Marquardt lambda is equivalent to the use of the “steepest descent” optimisation 

method; however this method is notoriously slow when parameters are highly correlated, due 

to the phenomenon of “hemstitching” as the parameter upgrade vector oscillates across 

narrow objective function valleys in parameter space. But if lambda cannot be lowered 

because the normal matrix would then become singular, or at best ill-conditioned, due to the 

excessive number of parameters requiring estimation, there will be no way to prevent this. 

The incorporation of prior information into the estimation process can often add stability to 

an over-parameterised system. Likewise, removing a number of parameters from the process 

by holding them fixed at strategic values may yield dramatic improvements in PEST’s 

performance. In many modelling contexts a spectacular increase in PEST’s ability to estimate 

large numbers of parameters can be achieved by running PEST in regularisation mode and/or 

by using its singular value decomposition functionality; see Chapters 7 and 8 for full details. 

5.5.4 Inappropriate Parameter Transformation 

PEST allows adjustable parameters to be either log-transformed or untransformed. A suitable 

choice for or against log transformation for each parameter can make the difference between a 

successful PEST run and an unsuccessful one. 

Trial and error is often the only means by which to judge whether certain parameters should 

be log-transformed or not. There is no general rule governing which parameters are best log-

transformed; however experience has shown that parameters whose values can vary over one 

or a number of orders of magnitude often benefit from log transformation. Log transformation 

of these parameters will often linearise the relationship between them and the observations, 

making the optimisation process more amenable to the linearity assumption upon which the 

equations of Chapter 2 are based. 

Use of suitable SCALE and OFFSET variables can be used to change the domain of a 

parameter such that logarithmic transformation, and with it the possible benefits of increased 

linearity, becomes a possibility. The use of parameter scaling and offsetting is discussed in 

Sections 2.2.4 and 4.2.4. 

More complex parameter transformations than logarithmic which may, in some 

circumstances, decrease the nonlinearity of a particular parameter estimation problems can be 

undertaken using the parameter preprocessor PAR2PAR; see Chapter 11 for details. 

5.5.5 Highly Nonlinear Problems 

If the relationship between parameters and observations is highly nonlinear, the optimisation 
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process will proceed only with difficulty. As discussed above, such nonlinearity may 

sometimes be circumvented through appropriate transformation of some parameters. 

However, in other cases this will make little difference. In such cases the Gauss-Marquardt-

Levenberg method of parameter estimation on which PEST is based may not be the most 

appropriate method to use.  

Sometimes the use of a high initial Marquardt lambda is helpful in cases of this type. Also, 

the relative and absolute parameter change limits (RELPARMAX and FACPARMAX on the 

PEST control file) may need to be set lower than normal; a careful inspection of the PEST run 

record file may suggest suitable values for these variables and, indeed, which parameters 

should be relative-limited and which should be factor-limited. Parameter increments for 

derivatives calculation should be set as low as possible without incurring roundoff errors. The 

three-point “parabolic” method may be the most appropriate method for calculating 

derivatives because of its quadratic approximation to the relationship between observations 

and parameters. The incorporation of prior information into the parameter estimation process 

(with a suitably high weight assigned to each prior information equation) may also yield 

beneficial results. 

5.5.6 Discontinuous Problems 

The equations derived in Chapter 2, upon which the Gauss-Marquardt-Levenberg algorithm is 

based, are predicated on the assumption that observations are continuously differentiable 

functions of parameters. If this assumption is violated for a particular model, PEST will have 

extreme difficulty in estimating parameters for that model. (However, it may have some 

success if the dependence is continuous, if not continuously differentiable.) 

5.5.7 Parameter Change Limits Set Too Large or Too Small 

As discussed above with respect to highly nonlinear problems, a suitable choice for relative 

and factor parameter change limits (ie. RELPARMAX and FACPARMAX) may allow 

optimisation to be carried out under hostile circumstances. However if these change limits are 

set too low, minimisation of the objective function may be hampered as the upgrade vector is 

continually shortened in order to conform to the demands of these limits. An inspection of the 

run record file should reveal immediately whether parameter upgrades are being limited by 

these variables. If the maximum relative and/or factor parameter changes per optimisation 

iteration are consistently equal to the respective user-supplied limits, then it is possible that 

these limits could be increased; however, if your model is highly nonlinear or “messy”, it may 

be better to keep RELPARMAX and FACPARMAX low as they may prevent parameter 

adjustment “overshoot”. 

You should exercise caution in choosing which parameters are relative-limited and which are 

factor-limited. Remember that if a parameter is factor-limited, or if it is relative-limited with a 

limit of less than 1, the parameter can never change sign. Conversely, if a parameter is 

relative-limited with a limit of 1 or greater, it can be reduced right down to zero in a single 

step without transgressing the limit; this may cause parameter “overshoot” problems for some 

nonlinear models and a factor limit may need to be considered. However the latter cannot be 

used if the parameter can change sign. Faced with quandaries of this type, the parameter 

OFFSET variable may be useful in shifting the parameter domain such that it does not include 
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zero. 

As described in Section 5.6, RELPARMAX and FACPARMAX can be altered midway 

through a PEST optimisation run. Furthermore, if the parameter adjustment vector is 

dominated by a particular insensitive parameter such that the change to that parameter is at its 

RELPARMAX or FACPARMAX limit and the changes to other parameters are minimal, 

then the offending parameter can be held at its current value through the user-intervention 

process described in Section 5.6. 

5.5.8 Poor Choice of Initial Parameter Values 

In general, the closer are the initial parameter values to optimal (ie. the values for which the 

objective function is at its global minimum), the faster will PEST converge to that global 

minimum. Furthermore not only does a wise choice of initial parameter values reduce the 

PEST run time, it may also make optimisation possible, especially for highly nonlinear 

models, or models for which there are local objective function minima at places removed in 

parameter space from the location of the global objective function minimum.  

5.5.9 Poor Choice of Initial Marquardt Lambda 

The PEST algorithm is such that PEST should find its way to a close-to-optimal Marquardt 

lambda at each stage of the parameter estimation process. However if you supply an initial 

Marquardt lambda which is far from optimal, the adjustment to optimal lambda may not 

occur. After attempting a parameter upgrade with the initial lambda, PEST searches for 

alternative lambdas, using the input variable RLAMFAC to calculate them. If the initial 

lambda was poor, these alternative lambdas may be little better in terms of lowering the 

objective function than the first one. Soon, in accordance with the settings provided by 

PHIREDLAM and NUMLAM on the PEST control file, PEST may move on to the next 

optimisation iteration, having achieved little in lowering the objective function. The story 

may then be repeated at the next optimisation iteration, and perhaps the next as well. Soon, 

because the objective function has not been lowered (or has been lowered very little) over a 

number of iterations, PEST will terminate execution in accordance with one of its termination 

criteria. 

In most cases, the choice of an initial Marquardt lambda of between 1.0 and 10.0 works well. 

Nevertheless, if PEST spends the first few optimisation iterations adjusting this to a vastly 

higher value (or a vastly lower value - but remember that lambda is reduced in the normal 

course of the optimisation process anyway) before making great gains in objective function 

reduction, then you will probably need to reconsider your choice of initial lambda in 

subsequent uses of PEST in conjunction with the same model. However, if the parameter 

estimation process simply does not “get off the ground”, you should start again with an 

entirely different lambda; try a much greater one first, especially if PEST has displayed 

messages to the effect that the normal matrix is not positive definite.  

To help PEST search farther afield for a suitable Marquardt lambda, perhaps you should set 

the input variable RLAMFAC high for a while. However it is bad practice to keep it high 

through the entirety of an optimisation run; hence if PEST finds a lambda which seems to 

work you should terminate PEST execution, supply that lambda as the initial lambda, reset 
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RLAMFAC to a reasonable value (eg. 2.0) and start the optimisation process again. 

Experience has shown that if the initial parameter set is poor, PEST may need a high 

Marquardt lambda to get the parameter estimation process started. Also the Marquardt 

lambda may need to be greater for highly nonlinear problems than for well-behaved 

problems.  

Note that the Marquardt lambda is one of the input variables that can be adjusted in mid-run 

through user-intervention; see Section 5.6. 

5.5.10 Observations are Insensitive to Initial Parameter Values 

For some types of models, observations can be insensitive to initial parameter values if the 

latter are not chosen wisely. For example, if you wish to optimise the resistivities and 

thicknesses of a three-layered half-space on the basis of electric current and voltage 

measurements made on the surface of that half-space, it would be a mistake to provide all the 

layer resistivities with the same initial value. If you did, the model would be insensitive to the 

thicknesses of either of the upper layers (the lowest layer extends to infinity) because the half-

space is uniform no matter what these thicknesses are. Hence PEST will set about calculating 

derivatives of observations with respect to these thicknesses and discover that the derivatives 

of all observations with respect to all thicknesses are zero. It will then issue a message such as 

“parameter “h1” has no effect on model output”.  This problem can be easily circumvented by 

choosing initial layer resistivities which are different from each other. 

In other cases the solution may not be as obvious. For some models, a certain parameter may 

have very little effect on model outcomes over part of its domain, yet it may have a much 

greater effect on these outcomes over other parts of its domain. If the optimised value lies 

within the insensitive area, a large degree of uncertainty will surround its estimate. However 

if the optimal value lies in the sensitive part of the parameter’s domain it is likely that the 

parameter will be well-determined (unless, of course, it is highly correlated with some other 

parameter). In either case you should take care to ensure that the number which you supply as 

the parameter’s initial value is within the sensitive part of its domain. 

5.5.11 Parameter Cannot be Written with Sufficient Precision 

In certain unusual cases an optimal parameter value may not be capable of representation in a 

field of limited width on the model input file. The obvious solution to this problem is to 

increase the width of the parameter field in the corresponding template file. However this 

may not be possible if model input format requirements are too rigid.. The only other 

remedial action that can be taken is to set the DPOINT variable to “nopoint”, thus allowing a 

gain of one extra significant figure in some circumstances. Before you do this, however, make 

sure that the model can still read the parameter value correctly with its decimal point omitted. 

(Note that PEST omits the decimal point only if it is redundant. However because some 

models may use format specifiers which make certain assumptions about where an absent 

decimal point should be, it is possible that a number lacking a decimal point may be 

misinterpreted; see Section 3.2.6 .) 

5.5.12 Incorrect Instructions 
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If the objective function cannot be lowered it is possible that PEST is reading the model 

output file incorrectly. If a non-numeric string is present on the model output file at a place 

where PEST has been lead to expect (through its instruction set) a number, PEST will 

terminate execution with an appropriate error message. However if a number is present where 

PEST expects one, but this number is not the one that you intended PEST to read when you 

built the instruction set, then it is unlikely that PEST’s performance in lowering the objective 

function will be good. 

You can check that PEST is reading the correct numbers by terminating PEST execution 

using the “Stop with statistics” option. PEST will then list on its run record file the model-

generated observations corresponding to its best parameter set achieved so far. As PEST also 

lists the residual corresponding to each model-generated observation, an incorrectly read 

model outcome may be apparent as that for which there is an unusually high residual. 

Note that program INSCHEK can also be used to check that an instruction file does, indeed, 

read the correct numbers from a model output file. See Chapter 11. 

5.5.13 All Parameters Insensitive or Objective Function Gradient Zero 

A message to this effect, recorded by PEST to the screen and to its run record file, often 

results from the fact that a wrong model input file is listed next to a particular template file in 

the “model input/output” section of the PEST control file. Thus PEST writes the nominated 

model input file on the basis of the template file, but the model reads another one (which does 

not change as PEST alters parameter values). This problem is easily rectified by correcting 

the mistake in the PEST control file. 

5.5.14 Upgrade Vector Dominated by Insensitive Parameters 

This is a common cause of poor PEST performance. It is discussed in greater detail in the 

following section. 

5.6 User Intervention 

5.6.1 An Often-Encountered Cause of Aberrant PEST Behaviour 

Where many parameters are being estimated and some are far more insensitive than others, it 

is not uncommon to encounter problems in the parameter estimation process. PEST, in 

response to the relative insensitivity of certain parameters, may calculate an upgrade vector in 

which these insensitive parameters are adjusted by a large amount in comparison with other, 

more sensitive, parameters; this large adjustment of insensitive parameters may be necessary 

if alterations to their values are to have any effect on the objective function. However the 

magnitude of the change that can be incurred by any parameter during any particular 

optimisation iteration is limited by the values assigned to the PEST control variables 

RELPARMAX and FACPARMAX. PEST reduces the magnitude (but not the direction) of 

the parameter upgrade vector such that no parameter undergoes a change that exceeds these 

limits. Unfortunately, if a particular insensitive parameter dominates the parameter upgrade 

vector, restricting the magnitude of the upgrade vector such that the change to the value of the 

insensitive parameter is limited to RELPARMAX or FACPARMAX (depending on its 



Running PEST  

 

5-34 

 

PARCHGLIM setting) will result in much smaller changes to other, more sensitive, 

parameters. Hence, the objective function may be reduced very little (if at all). 

Under these circumstances, increasing RELPARMAX and FACPARMAX is not necessarily 

the solution to the problem, for parameter change limits are necessary in order to avoid 

unstable behaviour in the face of problem nonlinearity.  

In normal PEST usage the occurrence of this problem is easily recognised by the fact that 

either the maximum relative parameter change or the maximum factor parameter change for a 

particular optimisation iteration (as printed to the screen and to the run record file) is equal to 

RELPARMAX or FACPARMAX respectively, and that the objective function is reduced 

very little. PEST records the names of parameters that have undergone the largest factor and 

relative changes at the end of each optimisation iteration. More often than not, an inspection 

of the parameter sensitivity file (see Section 5.3.2) will reveal that these same parameters 

possess a low sensitivity. 

5.6.2 Fixing the Problem 

Use of PEST’s singular value decomposition functionality is one possible means of rectifying 

the problem – see Chapter 8 of this manual for details. 

Another solution to the above problem is to hold parameters which are identified as being 

troublesome at their current values, at least for a while. With such recalcitrant parameters 

“out of the road”, PEST can often achieve a significant improvement in the objective 

function. Such temporarily held parameters can then be brought back into the parameter 

estimation process at a later date. 

It may be found that quite a few parameters need to be held in this manner, for once a 

particular troublesome parameter has been identified and held, it may be found that the 

problem does not go away because another insensitive parameter then dominates the 

parameter upgrade vector. When that parameter is held, yet another troublesome parameter 

may be identified, and so on. All such parameters can be temporarily held at their current 

values if desired. A user may hold such parameters one by one as they are identified in the 

manner described above, or he/she may prefer instead to take the pre-emptive measure of 

temporarily holding at their current values all parameters identified in the parameter 

sensitivity file as being particularly insensitive, and hence potentially troublesome. 

5.6.3 The Parameter Hold File 

After it calculates the Jacobian matrix, and immediately before calculating the parameter 

upgrade vector, PEST looks for a file named case.hld (where case is the filename base of the 

PEST control file) in its current directory. If it does not find it, PEST proceeds with its 

execution in the normal manner. However if it finds such a file, it opens it and reads its 

contents in order to ascertain the user’s wishes for the current optimisation iteration. 

A parameter hold file is shown in Example 5.6. 
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Entries in a parameter hold file can be in any order. Any line beginning with the “#” character 

is ignored, this being interpreted as a comment line. If any lines are in error they are also 

ignored, for PEST does not pause in its execution or clutter up either its screen display or its 

run record file with error messages pertaining to the parameter hold file. However it does 

report any alterations that it makes to its behaviour on the basis of directives obtained from 

the parameter hold file to its run record file. 

A user is permitted to alter the values of three PEST control variables using the parameter 

hold file. These are RELPARMAX, FACPARMAX and LAMBDA. The syntax is shown in 

Example 5.6, ie. the name of the variable must be followed by its new value.  It is important 

to note that if a parameter hold file is left “lying around”, any lines altering the value of 

lambda should be removed or “commented out” or PEST will be prevented from making its 

normal adjustment to lambda from iteration to iteration. This may severely hamper the 

optimisation process. 

Note that once RELPARMAX and FACPARMAX have been altered using a parameter hold 

file, they stay altered, even if the file is removed or the lines pertaining to RELPARMAX and 

FACPARMAX are subsequently deleted or commented out. 

To hold a parameter at its current value while the parameter upgrade vector is being 

calculated, use a line such as the fourth appearing in Example 5.6, ie. the string “hold 

parameter” followed by the parameter’s name. (If the parameter name is incorrect, PEST 

simply ignores the line.) If the pertinent line is removed from the parameter hold file, or the 

parameter hold file itself is removed, the parameter is then free to move in later optimisation 

iterations. 

The format for the sixth line in Example 5.6 is:-  

hold group pargpnme < x 

where pargpnme is the name of a parameter group and x is a positive number. A line such as 

this directs PEST to hold any parameter in the named parameter group temporarily fixed if 

the sensitivity of that parameter is less than the supplied number (ie. x). Held parameters can 

be freed again later by reducing x (to zero if desired), by deleting this line from the parameter 

hold file, or by deleting the parameter hold file itself. 

As is illustrated in the 7
th

 line of Example 5.6, the n most insensitive parameters in a 

particular parameter group can be held at their current values using the command:- 

hold group pargpnme lowest n 

 
relparmax 10.0 
facparmax 10.0 
lambda 200.0 
hold parameter thick1 
# hold parameter thick2 
hold group conduct < 15.0 
hold group thicknss lowest 3 
hold eigenvector 1 highest 2 

Example 5.6 Part of a parameter hold file. 
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where n is a positive integer. Such held parameters can be freed later in the parameter 

estimation process by reducing n (to zero if desired), by deleting this line from the parameter 

hold file, or by deleting the parameter hold file itself. 

The syntax of the 8
th

 line of Example 5.6 is:- 

hold eigenvector n highest m 

This option has been included in PEST’s parameter holding functionality to accommodate the 

fact that an observation dataset can be insensitive to certain groups of parameters varied in a 

specific ratio, even though observations might be individually sensitive to each parameter 

comprising the group. As is discussed in Chapter 2, this is a manifestation of the phenomenon 

of parameter correlation. The damage done to the parameter estimation process by such an 

insensitive parameter combination can be every bit as bad as that done by insensitive 

parameters on their own. Hence, in some circumstances, the parameter estimation process 

may benefit from the temporary removal of some or all members of such a damaging 

parameter combination. 

In interpreting the above parameter holding command, eigenvectors are counted in order of 

the magnitude of their corresponding eigenvalues, starting from the highest eigenvalue and 

working down. Thus eigenvector number 1 is the eigenvector associated with the highest 

eigenvalue of the covariance matrix. (This will be the eigenvector most commonly cited in 

parameter hold files supplied by the user, because the magnitude of an eigenvalue is a 

measure of the insensitivity of the objective function to parameters varied in ratios specified 

by the elements of the corresponding eigenvector.) 

Once the desired eigenvector has been identified (ie. eigenvector number n in the above 

command), PEST then selects the parameters which comprise the m largest components of 

that eigenvector. These are the parameters which are, collectively, those to which the 

observation dataset is least sensitive. PEST then holds these parameters at their current values 

while it calculates the parameter upgrade vector. 

As is discussed in Section 5.5, eigenvalues and eigenvectors are available at all stages of the 

parameter estimation process through the matrix file recorded by PEST during every 

optimisation iteration. 

While the ability to hold parameters according to their component magnitudes in various 

eigenvectors can be of use in difficult cases, care should be taken in using this functionality. 

Where excessive parameter correlation is causing problems in the inversion process, it is 

often sufficient for only 1, 2 or a very few of the correlated  parameters to be held, rather than 

all of them, when calculating an upgraded parameter set. The parameters to which the held 

parameters were formerly correlated are then free to move as PEST searches for the objective 

function minimum using the reduced parameter set. This may result in a greater objective 

function improvement than if all of the correlated parameters were held. Unless all of the held 

parameters have values close to optimal (with “optimal” in this case covering a broad range 

of values by virtue of their correlated state) there will be little benefit in holding all of them, 

for at least some of them will need to be assigned different values if the objective function is 

to be minimised. 

5.6.4 Re-calculating the Parameter Upgrade Vector 
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In normal PEST operation, the user will probably not be aware that his/her intervention is 

required until after at least one optimisation iteration has elapsed. Even if it has met with little 

success in lowering the objective function, PEST moves on to the next optimisation iteration 

commencing, once again, its time-consuming calculation of the Jacobian matrix (possibly 

having switched to the use of three-point derivatives). 

However the functionality exists within PEST to halt its execution at any time and restart it at 

that place at which it last commenced calculation of the parameter upgrade vector, ie. at the 

place at which it last completed its calculation of the Jacobian matrix. Provided the PEST 

control variable RSTFLE is set to 1, PEST stores the Jacobian matrix in a binary file each 

time it is calculated; the Jacobian matrix is easily retrieved if PEST is asked to re-calculate 

the parameter upgrade vector. 

Re-commencement of PEST execution for upgrade vector re-calculation is effected by 

running PEST using the command 

pest case /j 

or, if using Parallel PEST,  

ppest case /j 

where case is the current PEST case name, ie. the filename base of the PEST control file; “j” 

stands for “Jacobian”. Whether PEST was terminated while testing the efficacy of different 

Marquardt lambdas in lowering the objective function, or whether it was terminated after the 

iteration counter had “ticked over” and PEST was engaged in calculation of a new Jacobian 

matrix, PEST will re-commence execution at the place at which the last Jacobian matrix had 

just finished being calculated. Thus, depending on what PEST was doing when its execution 

was terminated, it may re-commence execution either within the same optimisation iteration 

as that in which it was interrupted, or in the previous iteration. In either case, it moves straight 

into calculation of the parameter upgrade vector and the testing of different Marquardt 

lambdas. 

It is through this restart mechanism that user-assistance is possible with PEST. Upon 

inspection of the run record file and the parameter sensitivity file, a user may decide that 

PEST can do better in improving the objective function if it attempts the last parameter 

upgrade again with certain parameters, or groups of parameters, held fixed. Thus the 

laborious calculation of the Jacobian matrix is not wasted, for PEST is able to get a “second 

chance” at using this important information in calculating a better parameter set. 

PEST can be stopped and restarted using the “/j” switch as many times as is desired. Thus, in 

some over-parameterised cases, a user can progressively hold more and more parameters 

fixed until a significant improvement in the objective function is realised. Then he/she can let 

PEST move on to the next optimisation iteration. 

5.6.5 Maximum Parameter Change 

As has already been discussed, at the end of each optimisation iteration PEST records on its 

run record file the maximum factor and relative changes undergone by any parameter. It also 

records the names of the parameters undergoing these maximum changes. This, in 

combination with the contents of the parameter sensitivity file, may assist the user in deciding 
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which (if any) parameters to temporarily hold at their present values using directives supplied 

in the parameter hold file. 

5.7 Automatic User Intervention 

5.7.1 Concepts 

The previous section describes PEST’s user-intervention functionality. As is discussed in that 

section, when the optimisation process undertaken by PEST appears to be going nowhere, the 

situation can often be remedied by selectively withdrawing certain parameters (normally the 

most insensitive ones) from the parameter estimation process for a while. With these 

parameters temporarily held at their current values (and thus not requiring adjustment), the 

“normal matrix” which PEST must invert in order to determine the parameter upgrade vector 

is often much better conditioned. Furthermore, because the necessity to impose relative or 

factor limits on the often broad movements of these insensitive parameters is now lifted, the 

unencumbered fruitful movement of more sensitive parameters can take place. 

This process has been automated in PEST; as a consequence, PEST’s performance in difficult 

parameter estimation contexts can be vastly improved. Whereas it is possible to “guide” 

PEST through a difficult parameter estimation problem with careful user-intervention using 

the methods discussed in the previous section, PEST can also solve such problems 

unattended. However the user is still free to undertake manual intervention if he/she wishes.  

“Automatic user intervention” (AUI) is only available if PEST is working in “parameter 

estimation” mode. If it is being used in “predictive analysis” or “regularisation” modes, then 

intervention must be manual. It is also important to note that the AUI process commences 

afresh on each new optimisation iteration. That is, all parameters which were temporarily held 

at their current values during any one optimisation iteration are free to move during the 

following optimisation iteration. In many cases the same parameters will then be held again; 

however the decision to hold any parameter during any particular optimisation iteration is 

based solely on its sensitivity as calculated during that optimisation iteration, and not on the 

sensitivity history of the parameter during previous optimisation iterations. 

Before describing PEST’s automatic user intervention functionality in detail, it should be 

pointed out that, in many respects, use of truncated singular value decomposition (SVD) as a 

parameter estimation technique, plays a similar role to that of automatic user intervention in 

that this method, too, has the capacity to remove recalcitrant parameters from the parameter 

estimation process. However, in some ways truncated SVD it is stronger than AUI in that it 

can also remove recalcitrant parameter combinations from this process, thereby overcoming 

the deleterious effects on the inversion process of high levels of parameter correlation. See 

Chapter 8 of this manual for details. 

5.7.2 The PEST Control File 

An optional section (named “automatic user intervention”) may be included in a PEST 

control file. If this section is not present in a particular PEST control file PEST can still 

undertake AUI; however it will use default values for all of the variables which govern this 

process. Like all other sections of the PEST control file, the “automatic user intervention” 
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section must be lead by a section header, the words comprising the header being preceded by 

a “*” character followed by a space. If present, the “automatic user intervention” section of 

the PEST control file must follow the “control data” section. An example is provided in 

Example 5.7. 

Example 5.7 Part of a PEST control file which includes an “automatic user 

intervention” section. 

The names of the variables featured in the “automatic user intervention” section of the PEST 

control file, and their locations within this section, are illustrated in Example 5.8..  

Example 5.8 Structure of the “automatic user intervention” section of a PEST control 

file. 

Automatic user intervention can be activated or deactivated using a special variable which 

resides in the “control data” section of the PEST control file. This resides on the 8
th

 line of 

this file, following the PHIREDSWH variable. Its name is DOAUI. This is a text variable that 

must be supplied as either “aui” or “noaui” (see Example 5.7). If it is supplied as “aui”, PEST 

will undertake automatic user intervention; if there is no “automatic user intervention” section 

present in the PEST control file, default values will be used for all AUI variables. If it is 

supplied as “noaui”, the “automatic user intervention” section of the PEST control file, if 

present, will be ignored. If no value is supplied for this variable, then a value of “noaui” will 

be assumed. However if the same PEST control file contains an “automatic user intervention” 

section, PEST will cease execution with an appropriate error message. 

The role of each of the variables appearing in the “automatic user intervention” section of a 

PEST control file is now described in detail.  

MAXAUI 

During each optimisation iteration PEST first calculates the Jacobian matrix. Then it 

pcf 
* control data 
restart estimation 
19  19    2     0    3 
2    3    single point  1  0  0 
5    2    0.03  0.03 10 
3.0  3.0  0.001  2    0 
0.1  aui 
30   0.01 3     3    0.01  3 
1    1    1  
* automatic user intervention 
8    1    .9   0 

10   0     3 
0.8  0.95  3 
* parameter groups 
ro relative 0.001 0.0001 switch 2 parabolic 
hhh relative 0.001 0.0001 switch 2 parabolic 
* parameter data 
ro1  none relative 1.000000 0.1 10000 ro 1 0 
ro2  none relative 1.000000 0.1 10000 ro 1 0 
ro3  none relative 1.000000 0.1 10000 ro 1 0 

* automatic user intervention 
MAXAUI       AUISTARTOPT     NOAUIPHIRAT   AUIRESTITN 

AUISENSRAT   AUIHOLDMAXCHG   AUINUMFREE 
AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT 
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calculates a parameter upgrade vector in which no AUI is attempted. It is at this point that 

AUI can now be introduced to the parameter estimation process in order to attempt the 

calculation of an improved parameter upgrade vector. On the first such attempt, a certain 

parameter is held at its current value and the parameter upgrade vector recalculated; on 

subsequent attempts, more parameters are held at their current values. Each such cycle in 

which an additional parameter is held and the parameter upgrade vector recalculated is 

referred to as an “automatic user intervention iteration” (or “AUI iteration”). MAXAUI 

designates the maximum number of AUI iterations that can be carried out during any one 

optimisation iteration. 

MAXAUI is an integer variable. If you do not want PEST to undertake AUI at all, set it to 

zero. Its default value is half the number of parameters which are neither tied nor fixed. 

AUISTARTOPT 

This is the optimisation iteration in which the AUI process commences. Sometimes it is 

desirable for PEST to spend some time in attempting to adjust all parameters (no matter how 

insensitive they appear to be) without any of them being held through the AUI process. AUI 

can then be introduced after a few optimisation iterations have been carried out. In some 

cases, delaying the onset of AUI in this manner can reduce the possibility of certain 

parameters being inadvertently held at inappropriate values. 

PEST’s default setting for AUISTARTOPT is 1 (thus ensuring that AUI is potentially 

introduced on the first optimisation iteration). However a setting of 2 or 3 (or even higher) is 

often appropriate. AUISTARTOPT is an integer variable. 

NOAUIPHIRAT 

If PEST can lower the objective function sufficiently well without holding any parameters at 

their current values, AUI is unnecessary. The NOAUIPHIRAT variable is used to set the 

threshold at which AUI is attempted. If, on any particular optimisation iteration, PEST is able 

to lower the objective function such that it is below NOAUIPHIRAT of its value on the 

previous optimisation iteration, PEST will not attempt AUI during that optimisation iteration. 

PEST’s default value for NOAUIPHIRAT is 0.9. 

There is an important interplay between NOAUIPHIRAT and PHIREDSWH. Recall from 

Section 4 of this manual that if the objective function is not reduced by a relative amount of 

PHIREDSWH during any particular optimisation iteration, PEST will commence the use of 

three-point derivatives calculation during the next optimisation iteration for any parameter 

groups for which the FORCEN setting is “switch”. The cost of undertaking three-point 

derivatives calculation instead of two-point derivatives calculation is that PEST must 

undertake twice as many model runs per optimisation iteration. Hence the onset of three-point 

derivatives calculation should be deferred for as long as possible. Thus NOAUIPHIRAT 

should be set the same as, or slightly lower than, (1.0-PHIREDSWH). An ideal setting for 

PHIREDSWH is 0.1. Thus NOAUIPHIRAT should be set at 0.9 or slightly lower.  

AUIRESTITN. 

Under some circumstances it may be advisable to give the AUI process a “rest” every now 
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and then. This allows parameters which are repeatedly held on the basis of their insensitivity 

to undergo some adjustment (even though the effect of this adjustment on the objective 

function may be only slight). AUIRESTITN (an integer) is the AUI variable which governs 

the implementation of this “resting” process. Once the AUI process commences (it 

commences on the first occasion on or after AUISTARTOPT optimisation iterations have 

elapsed on which the objective function without AUI does not fall to NOAUIPHIRAT of its 

previous value during any one optimisation iteration), AUI is “rested” every AUIRESTITN 

iterations. Thus, for example, if AUIRESTITN is set to 3 and AUI is introduced to the 

inversion process for the first time during optimisation iteration number 5, then AUI will not 

be undertaken on optimisation iterations 7, 10, 13 etc. 

PEST’s default setting for AUIRESTITN is zero; that is no “AUI resting” is undertaken. Note 

that an AUIRESTITN value of 1 is illegal as this makes no sense. AUIRESTITN is an 

integer. 

AUISENSRAT 

Sensitive parameters should not be held, for it is important that such parameters be adjusted 

through the parameter estimation process. PEST will not hold any parameter as part of the 

AUI process if the ratio of the highest sensitivity of any adjustable parameter to the sensitivity 

of that parameter is lower than AUISENSRAT. In the present context, an “adjustable 

parameter” is a parameter which is neither tied nor fixed, nor is at its upper/lower bound, nor 

is already being held through manual or automatic user intervention. 

The default setting for AUISENSRAT (a real variable) is 50.0. 

AUIHOLDMAXCHG 

This is an integer variable which must be set to either 1 or 0. As is explained in the preceding 

section, sometimes an insensitive parameter can hamper the progress of the parameter 

estimation process through requiring enforcement of the FACPARMAX or RELPARMAX 

parameter change limit. Enforcement of either of these limits can greatly reduce the 

movement of other, more sensitive, parameters. The result can be a disappointingly small 

improvement in the objective function. If AUIHOLDMAXCHG is set to 1, PEST can “target” 

parameters which are incurring the enforcement of these limits when it is deciding which 

parameter to hold next in the AUI process (provided they are insensitive enough as 

determined by the value of AUISENSRAT). Alternatively, if AUIHOLDMAXCHG is set to 

0, PEST will only take parameter sensitivities into account (and not the amount by which 

PEST has tried to adjust these parameters) when deciding on the order in which parameters 

should be held. 

The default setting for AUIHOLDMAXCHG is 0. 

AUINUMFREE 

During any particular optimisation iteration, PEST will carry out no further AUI iterations 

(and will thus hold no further parameters at their current values) if the number of adjustable 

parameters has been reduced to AUINUMFREE. As is mentioned above, in the present 

context an “adjustable parameter” is one which is neither tied, nor fixed, nor held at its 
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bound, nor currently held through manual or automatic user intervention. 

AUINUMFREE is an integer; its default value is 3. 

AUIPHIRATSUF 

As was mentioned above, after it has calculated the Jacobian matrix, PEST initially calculates 

a parameter upgrade vector without any parameters held through AUI (however they can be 

held through manual user intervention if desired). On the basis of the results of this initial 

parameter upgrade attempt, PEST then decides whether or not to undertake AUI.  

For every AUI iteration which it undertakes, PEST calculates the ratio of the objective 

function achieved during that AUI iteration, to the objective function achieved without any 

AUI. If this ratio falls below AUIPHIRATSUF, PEST undertakes no further AUI iterations; 

instead it commences the next optimisation iteration. 

A suitable setting for AUIPHIRATSUF (a real variable) is 0.8. This is the default value used 

by PEST. 

AUIPHIRATACCEPT 

The temporary removal of insensitive parameters from the inversion process has the 

significant advantage that it often allows the process to continue unhindered when it would 

otherwise stall. However a possible disadvantage of temporary parameter withdrawal is that 

parameters which may need to be adjusted do not get sufficient opportunities to have their 

values altered by PEST. To alleviate this possibility, PEST will not accept the upgraded 

parameter set calculated during any AUI iteration unless the objective function improvement 

forthcoming from that AUI iteration is significant enough to make this acceptance 

worthwhile.  

As discussed above, during every optimisation iteration PEST first calculates an upgraded 

parameter set with no parameters held at their current values (unless they are held manually 

by the user). The objective function so obtained is then the “current objective function”. If 

PEST decides to undertake one or a number of AUI iterations, it will not accept the parameter 

values calculated during those iterations unless the objective function falls below the fraction 

AUIPHIRATACCEPT of the current objective function. If it does fall below this value, 

however, the new objective function then becomes the “current objective function”. If further 

AUI iterations are undertaken then, once again, the objective function must fall below 

AUIPHIRATACCEPT of the current objective function before any new set of parameter 

values is accepted. 

AUIPHIRATACCEPT is a real number. PEST’s default value for it is 0.975. 

NAUINOACCEPT 

If NAUINOACCEPT AUI iterations have elapsed since the objective function has fallen 

below AUIPHIATACCEPT of the “current objective function” (defined in the previous 

paragraph), PEST concludes that the carrying out of further AUI iterations would be a 

fruitless activity; thus it moves on to the next optimisation iteration. NAUINOACCEPT is an 
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integer, the default value of which is MAXAUI/2 or 3, whichever is higher. 

5.8 PEST Postprocessing 

5.8.1 General 

After the parameter estimation process is complete, a thorough examination must be 

undertaken of the results of this process before the estimated parameters can be used in a 

calibrated model which is run for predictive purposes. This section presents a guide to some 

of this analysis procedure. The discussion necessarily pertains to general parameter estimation 

post-processing; extra, case-specific analysis will be required for each particular instance of 

PEST deployment. 

The information upon which to base post-processing analyses such as those outlined in this 

section is contained in the PEST run record file and in a number of other files that are written 

by PEST, often in a format that facilitates plotting using commercial graphing and 

spreadsheet packages. See Sections 5.2 and 5.3 for details. 

5.8.2 Parameter Values 

Parameter values should be inspected for reasonableness. It is often a good idea to undertake 

initial PEST runs with parameter bounds set very wide. In this way PEST is free to assign 

unrealistic values to certain parameters if this is required in order to achieve goodness of fit 

between model outcomes and corresponding field data. When reasonable parameter bounds 

are then imposed it will often be possible to obtain just as good a fit, this being an outcome of 

the parameter correlation that is a feature of most real-world model calibration. However if it 

is not possible to achieve just as good a fit with parameters constrained to reasonable values, 

then PEST is providing valuable information on model adequacy, for this state of affairs 

indicates that the model may not be simulating all aspects of the system that it is intended to 

portray. Whether this is a worrying matter or not depends on the particular modelling 

application. It is sometimes valid modelling practice to allow unsimulated subprocesses to be 

represented by out-of-range surrogate parameter values. In other applications this is 

completely unacceptable. The making of the appropriate decision in each case is part of the 

art of modelling. 

5.8.3 Parameter Statistics 

This manual discusses at length the role of the various statistics that are produced as an 

outcome of the PEST parameter estimation process. These include the parameter covariance 

matrix, correlation coefficient matrix, covariance matrix eigenvalues and eigenvectors and 

parameter confidence intervals. Though all of these quantities are only approximate because 

of the fact that their calculation is based on a linearity assumption that is often violated, there 

is nevertheless much to be learned about the model, its parameterisation, and its 

appropriateness for a specific application from an inspection of these quantities. 

High levels of parameter uncertainty can result from a poor fit between model outcomes and 

field observations, from a high level of parameter correlation, from insensitivity on the part of 

certain parameters, or from all of these. Provided PEST has not faltered in the nonlinear 
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parameter estimation process (see Section 5.5), the first condition indicates that either field 

data is poor or that the model is inappropriate. (Or it may indicate that certain model 

parameters that were held fixed during the optimisation process may have been held at 

inappropriate values.) Fortunately, the reason for the poorness of fit is often easy to identify, 

though not necessarily easy to rectify (especially if it requires alterations to model design). 

Parameter uncertainty resulting from high levels of parameter correlation may or may not be a 

defect, depending on the problem to which the model will be applied. Highly correlated 

parameters are recognised through an inspection of the correlation coefficient matrix, and 

through an inspection of the eigenvalues and eigenvectors of the parameter covariance matrix. 

Whether indeterminacy of these parameters affects a particular model prediction depends on 

the prediction. The ultimate test of this is to use PEST’s predictive analyser (see Chapter 6) in 

order to test the range of predictive variability that occurs as an outcome of parameter 

uncertainty. As a general rule, if predictions that are to be made by the model are of the same 

type as the measurements used in the calibration process, and if the “stress regime” imposed 

on the system represented by the model under predictive conditions is not too different from 

that prevailing under calibration conditions, then the effect of correlation-induced parameter 

uncertainty on predictive uncertainty may not be too large. However if any of these conditions 

are violated, predictive uncertainty may be very large indeed. 

Parameter uncertainty caused by parameter insensitivity is often difficult to rectify. Recall 

that composite parameter sensitivities are listed in the parameter sensitivity file produced by 

PEST. Parameter insensitivity results from the fact that the dataset used in the optimisation 

process simply does not possess the information content that is required to resolve the values 

of offending parameters. Thus these parameters can assume a range of values with minimal 

effect on model outcomes. 

Once again, parameter uncertainty arising out of parameter insensitivity may or may not result 

in high levels of predictive uncertainty. As always, the extent of predictive uncertainty can be 

estimated using PEST’s predictive analyser. 

Parameter uncertainty resulting from either excessive correlation or from insensitivity of 

parameters can often be reduced by including more measurement data in the inversion 

process, especially if these measurements are “targeted” at the offending parameters. Extra 

information in the form of prior information can also be very effective in increasing 

parameter sensitivity and in reducing parameter correlation. Use of PEST in regularisation 

mode, and/or using PEST’s singular value decomposition functionality, can also be very 

effective in reducing the deleterious effects of parameter insensitivity. 

5.8.4 Residuals 

An analysis of the differences between model outcomes and corresponding field or laboratory 

data is an extremely important part of any parameter estimation application. 

The mathematical basis of the parameter estimation algorithm used by PEST relies on the 

assumption that measurement uncertainties are uncorrelated, ie. that the uncertainty 

associated with any one measurement is unrelated to that associated with any other 

measurement. If measurements do, in fact, exhibit correlation then an observation covariance 

matrix should be used in place of observation weights so that the “rotated residuals” are 
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uncorrelated. See Section 4.3 for details. 

One of the first tasks that should be undertaken after the parameter estimation process is 

complete is to determine whether residuals (or rotated residuals) are, in fact, randomly 

distributed about a mean of zero with minimal correlation between them. PEST provides 

some degree of assistance in making this determination. As described in Section 5.2.8 and in 

Section 4.3, on its run record file PEST lists a number of pieces of information pertaining to 

the residuals taken as a whole, and to the residuals pertaining to each observation group.  

Much can be learned about residuals (and about the efficacy of the parameter estimation 

process that gave rise to these residuals), by different types of graphical inspection. Graphs 

can be readily obtained using commercial plotting software based on the information 

contained in the residuals file, and perhaps the rotated residuals file, written by PEST at the 

end of its run. These files can also be used as a basis for more sophisticated residuals analysis 

using commercial statistical software. 

Ideally, a plot of weighted (rotated) residuals against weighted or unweighted (rotated) 

observation values (or weighted or unweighted simulated values) should reveal no 

dependence of one upon the other (unless weights were purposefully chosen to accentuate 

certain observation types). Furthermore, a plot of weighted (rotated) residuals against the 

normal variate should (ideally) reveal that residuals are normally distributed. 

Perhaps the most important types of residuals analyses are those that can only be undertaken 

in a case-specific manner. For example, if the model being calibrated is a steady-state ground 

water model and the measurements are of water levels in various bores spread throughout the 

model domain, then it is important that residuals be plotted at the locations of their respective 

boreholes and superimposed on a map of the area; “proportional posting” and/or contouring 

of these residuals may also be useful. Such a two-dimensional graphical portrayal of residuals 

will immediately indicate any spatial correlation between them. If such spatial correlation is 

excessive, this may be an indication that the manner in which the model domain has been 

subdivided for parameterisation purposes could do with some improvement. 

If measurements used in the calibration process represent the variation of some quantity over 

time at one or a number of measurement sites, then superimposed plots of model-generated 

and measured quantities against time, or of the residuals themselves against time, at all 

measurement sites should be inspected. Any tendency of the model to overpredict or 

underpredict over extended periods of time, or over certain segments of the graphs, should be 

noted, for this may indicate an inadequacy in the model’s ability to represent facets of real-

world behaviour; such an inadequacy may have unwanted repercussions when the model is 

used for predictive purposes. If time-varying measurements are made at different 

geographical locations, plots of the spatial distribution of residuals at different times may also 

reveal worrying departures from independent behaviour, spatial correlation possibly 

indicating, once again, certain inadequacies on the part of the model. 

5.8.5 Over-Parameterisation 

In many cases of model deployment the fit between model outcomes and field measurements 

can be improved with relative ease by declaring more parameters as adjustable, or by simply 

adding more parameters to the model. This is particularly the case for distributed parameter 



Running PEST  

 

5-46 

 

models where it is an easy matter to undertake a finer subdivision of the model domain for 

parameterisation purposes, thus endowing the model with a greater number of parameters that 

require estimation. Ultimately, through adding more and more parameters, it may be possible 

to reduce the objective function to almost zero as every nuance of system behaviour is 

replicated by the model outputs. 

It is very important to be aware of the fact that a good fit under calibration conditions does 

not guarantee an accurate model prediction. In general, the more parameters that are 

estimated, the more highly are they correlated, and the more likely it is that some of them are 

insensitive. Both of these will contribute to a high degree of parameter uncertainty which may 

result in a high degree of uncertainty for at least some types of model predictions. 

If the system under study is such that a high level of parameterisation is nevertheless required 

because it is necessary that the model be capable of reproducing the “fine detail” of system 

response, then the user should be very aware of the uncertainty surrounding estimated 

parameters and of the uncertainty that is likely to accompany many of the predictions made by 

the model. In this case predictive uncertainty analysis is a necessity. Furthermore, some kind 

of problem “regularisation” will be required during the calibration process, this being a 

mechanism by which numerical stability of the inversion process can be achieved through the 

enforcement of known or suspected relationships between parameters (such as a “smoothing 

condition” in the case of distributed parameter models). Such techniques can be very effective 

in combating the deleterious effects of over-parameterisation; if properly designed they can be 

such as to ensure that departures from simplicity in parameterisation are limited to those that 

are just sufficient to reproduce the required level of detail in system behaviour. See Chapters 

7 and 8 for more details. 

5.8.6 Covariance Matrix for Best-Fit Parameters 

The user is reminded that once PEST has calculated an optimal set of parameter values and, 

in accordance with one of its termination criteria, finishes execution, it calculates the 

covariance matrix and the statistics derived therefrom on the basis of the Jacobian matrix 

giving rise to the best set of parameter values, unless these were achieved on the very last 

optimisation iteration. If this is the case, then PEST’s termination criteria are such as to 

ensure that the statistics calculated on the basis of the “not-quite-optimal” parameter set will 

depart only minimally from those calculated on the basis of the optimal parameter set. Use of 

the “not-quite-optimal” parameter set saves PEST from having to carry out another set of 

model runs at the end of the optimisation process in order to re-calculate the Jacobian matrix 

on the basis of best-fit parameters. Normally this is quite acceptable. However if you want to 

be absolutely sure that the covariance matrix and its derived statistics are as right as they can 

be (notwithstanding the fact that they are based on an often poorly-met linearity assumption), 

then you way wish to undertake a special PEST run simply to calculate these statistics on the 

basis of optimal parameter values. You can do this by following these steps:- 

1. Use program PARREP (see Section 11.5) to build a new PEST control file in which 

initial parameter values are actually optimised parameter values determined on a 

previous PEST run. 

2. If using PEST in regularisation mode, transfer weights calculated for regularisation 
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groups from the residuals file produced by the previous PEST run. 

3. Set the control variable NOPTMAX (see Section 4.2.2) to -1 in the new PEST control 

file. 

4. Run PEST. 

Greater accuracy in derivatives calculation (and hence greater accuracy in calculation of the 

parameter covariance matrix) can be achieved with the FORCEN variable (see Section 4.2.3) 

for all parameter groups set to “always_3” in the new PEST control file. 

5.8.7 Model Outputs based on Optimal Parameter Values 

Before it terminates execution, PEST undertakes a final model run using optimised parameter 

values. Thus, at the end of a PEST run, all model input files will contain optimised 

parameters, and all model output files will contain model outputs calculated on the basis of 

these parameters. 

Note, however, that PEST will not undertake this final model run under the following 

conditions:- 

 if its execution is terminated using the “stop-without-statistics” utility PSTOP; 

 if it terminates execution because it encountered an error condition; 

 if it is undertaking SVD-assisted parameter estimation; 

 if it is being run as Parallel PEST and it is terminated using the “stop-with-statistics” 

utility PSTOPST. 

The reason for PEST’s failure to conduct a final model run in the last of these cases is based 

on the fact that all slaves are normally busy when a user issues the directive to PEST to 

terminate execution. Hence a final model run cannot be immediately allocated to any slave. 

However if Parallel PEST terminates execution under normal conditions, the final model run 

is undertaken by the fastest available slave. See the run management record file (with 

extension “.rmr”) in order to see which slave this is. The working directly used by that slave 

will then contain the model input and output files written on the basis of optimised parameter 

values. See Chapter 10 for full details of Parallel PEST. 

A final model run using optimised parameters can also be undertaken manually if desired. 

There are a number of ways in which to do this, the easiest being as follows:- 

1. Use the PARREP utility to create a PEST control file which is identical to the existing 

PEST control file, but with optimised parameter values replacing initial parameter 

values in the “parameter data” section of this file. (Optimised parameter values are 

always contained in the parameter value file – with a “.par” extension.) 

2. Edit the new PEST control file, setting NOPTMAX (first variable on the ninth line) to 

0; thus PEST will undertake only one model run, calculate the objective function, and 

will then terminate execution. 
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Run PEST on the basis of the new control file. 
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6. Predictive Analysis 
Don’t forget to see the addendum to this manual for further details of PEST functionality, 

particularly as it pertains to highly parameterized inversion and uncertainty analysis. 

6.1 The Concept 

6.1.1 What Predictive Analysis Means 

In the discussion that follows, reference will be made to PEST’s usage in the role of model 

calibration. However PEST is often used in the role of data interpretation as well, particularly 

geophysical data interpretation in which earth properties are inferred from a number of 

discrete surficial or downhole measurements. Though not referenced specifically, the 

following discussion is just as applicable to PEST’s usage in that role as it is to PEST’s usage 

in model calibration. 

PEST “calibrates” a model by reducing the discrepancies between model outputs and field 

observations to a minimum in the weighted least squares sense. The differences between field 

measurements and model outputs are encapsulated in an “objective function” defined as the 

weighted sum of squared deviations between field observations and corresponding model 

outputs. As PEST executes, it progressively reduces this objective function until it can reduce 

it no more. 

In many cases the “landscape” of the objective function in parameter space is not comprised 

of a discrete bowl-shaped depression with the objective function minimum lying neatly at the 

bottom of that depression. Rather (especially if parameters number more than just a few), the 

objective function minimum often lies at the bottom of a long, narrow valley of almost equal 

depth along its length. Any parameters for which the objective function lies within the valley 

can be considered to calibrate (or almost calibrate) the model. Figure 6.1 illustrates this 

situation for a simple, linear, two-parameter model; for a linear model, contours of the 

objective function in parameter space are always elliptical. The situation in a more complex 

nonlinear case is schematised in Figure 6.2. In both of these figures, p1 and p2 are the values 

of the two parameters. 
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Figure 6.1. Objective function contours in parameter space; linear model. 
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Figure 6.2. Objective function contours in parameter space; nonlinear model. 

Both of Figures 6.1 and 6.2 depict situations where there is a high degree of parameter 

correlation – that is, one parameter can be varied in harmony with another with virtually no 

effect on the objective function. Thus the solution to the inverse problem (ie. the model 

calibration problem) is nonunique. If the minimum of the objective function is denoted as 

min, and if all parameters for which the objective function is less than min +  (where  is 

relatively small) can also be considered to calibrate the model, then the range of parameter 

values which can be considered to calibrate the model can be quite large indeed. In Figures 

6.1 and 6.2 the set of “allowable parameter values” (from the model calibration point of view) 

occupies the area that lies within the min +  contour in parameter space. 

In most instances of model calibration, only a single set of parameters lying within the min + 

 contour of Figures 6.1 and 6.2 is calculated. Model predictions are then made with this 

single parameter set. An obvious question is this: what would have been the model’s 
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predictions if another set of parameters lying within the min +  contour were used for 

predictive purposes instead, particularly if this alternative set is relatively distant from the 

original parameter set as measured in parameter space?  

6.1.2 What Should  be? 

Theory is available for calculating , the objective function increment for which the model 

can be considered to be “uncalibrated”. At a probability level of 1-,  is given by 

  = n 
2
 F

 
(n,m-n)        (6.1) 

where 
2
 is given by equation 2.5 (with  in that equation equal to min ), n is the number of 

parameters requiring estimation, m is the number of observations comprising the calibration 

dataset, and F(.,.) denotes the F distribution; see Seber and Wilde (1989) - referenced at the 

end of Chapter 2 - for more details. Note that derivation of equation 6.1 assumes that m is 

reasonably large. 

Care should be exercised in applying equation 6.1 too rigorously, for its veracity depends on 

the fact that observation uncertainty (normally the result of measurement error to some extent 

and a far greater amount of so-called “structural error”) is properly characterised as being 

proportional to Q
-1

, with Q being the “cofactor matrix” introduced in Chapter 2. In my 

experience this is rarely the case. Hence a more qualitative assessment of  may be warranted, 

perhaps based on visual inspection of model-to-measurement misfit. 

6.1.3 Translating Parameter Uncertainty into Predictive Uncertainty 

A number of different methods are available for exploring model predictive uncertainty. 

However traditional “sensitivity analysis” cannot be used. The term “sensitivity analysis” is 

often used to describe the technique whereby parameter values are individually varied from 

calibration values in order to determine the effects of these changes on model predictive 

outcomes. This is an unacceptable method of predictive analysis in most instances because 

unless parameters are varied in certain discrete ratios (that vary with parameter value for 

nonlinear models) the model is immediately uncalibrated as soon as any parameter is varied 

from its calibrated value. To fully explore the repercussions of parameter nonuniqueness on 

predictive nonuniqueness, parameters must be varied in such a way that the objective function 

hardly changes. As is apparent from Figures 6.1 and 6.2, parameter values can often vary 

enormously while the objective function changes very little. If parameters are simply 

incremented and/or decremented one by one, and the effect of this variation tested on both 

model predictions and on the objective function calculated under calibration conditions, it is 

likely that the latter will rise very quickly, giving the modeller the false impression that 

parameter values are estimated with a high degree of precision by the calibration process, and 

hence that predictive nonuniqueness resulting from parameter nonuniqueness will be slight 

because of the absence of the latter. 

Monte-Carlo analysis is often used to examine uncertainty in model predictions. Parameter 

sets can be generated at random; for each such parameter set the model is run under 

calibration conditions. If the resulting objective function is above min +  the parameter set 

is rejected. If it is below min +  the model is then run under predictive conditions. After 

many thousands of model runs have been undertaken a suite of predictions will have been 
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built up, all generated by parameter sets which satisfy calibration constraints. In many cases a 

probability distribution can then be attached to these predictions, based on where 

corresponding calibration objective functions lie with respect to min  and the min +  

contour.  

This method of predictive analysis has many attractions; however its main disadvantage is in 

the number of model runs required. Where there are any more than a handful of adjustable 

parameters, the dimensionality of the problem requires that millions of model runs be 

undertaken, rendering the method intractable in many practical settings. 

Markov Chain Monte Carlo methods have the ability to explore post-calibration parameter 

and predictive uncertainty with much greater efficiency than the more basic Monte Carlo 

method just described. However the cost in model runs is still extremely high, especially 

where parameters number more than just a few, and correlation between parameters is high. 

6.1.4 The “Critical Point” 

The effect of parameter nonuniqueness on predictive nonuniqueness depends on the 

prediction being considered. In many instances a model is calibrated under a very different 

stress regime from that under which it will operate to make predictions; in other cases the 

stress regimes will be similar. In some cases model predictions will be of the same type as 

those that were used for calibration; in other cases a model will be required to generate 

predictions of a very different type from those used in the calibration process. In some cases 

predictions will be required at the same locations as those for which data was available to 

assist in the calibration process; in other cases predictions will be required at very different 

places. 

In general, the more similarity that model predictions bear to the type of data used in 

calibrating the model, and the more similar is the stress regime in which predictions are made 

to those prevailing at the time of calibration, the greater is the likelihood that parameter 

uncertainty arising as an outcome of the calibration process will not result in a large degree of 

predictive uncertainty. If parameter uncertainty “doesn’t matter” in terms of the model’s 

ability to replicate historical system conditions, then it will quite possibly not matter in terms 

of its ability to predict future conditions, provided things are not too different in the future. 

However where conditions are different, and where predictions are of a different type from 

those used in the calibration process, it is possible that a large degree of predictive uncertainty 

may be associated with model parameter uncertainty. 

Hence parameter uncertainty is, in itself, not a big issue. Parameter uncertainty is important 

only in so far as it effects predictive uncertainty, and this depends on the prediction. (Unless, 

of course, the role of the inversion process is actually to infer parameters for their own sakes; 

in this case the parameters themselves are the predictions. The discussion that follows is 

directly applicable to this situation when parameters are considered in that light.) 

Figure 6.3 illustrates the dependence of a particular model prediction on parameter values for 

the two parameter system represented in Figure 6.2. As can be seen from Figure 6.3, the 

prediction of interest increases with both p1 and p2 (the values of the two parameters). If it is 

our desire to find the maximum prediction of this type that is compatible with the fact that 

model parameters must be constrained such that the model correctly simulates system 
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performance under calibration conditions, then this prediction is seen to correspond to the 

“critical point” depicted in Figure 6.4. This is the point of maximum model prediction on the 

min +  contour. The model prediction made with parameter values corresponding to this 

critical point is the maximum model prediction that is compatible with calibration-imposed 

constraints on parameter values. In many instances of model usage, this particular prediction 

is of greater importance than a model prediction made with best-fit parameter values (ie. 

using parameters corresponding to min). 
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Figure 6.3 Contours of a model prediction in parameter space. 
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Figure 6.4 The “critical point” in parameter space. 

The situation is only slightly more complicated when parameter bounds are imposed. Figure 

6.5 shows objective function contours, model prediction contours, and the critical point in 

this case. The prediction corresponding to parameter values at the critical point is now the 
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worst or best model prediction that it is possible to make after both knowledge and calibration 

constraints have been imposed. 
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Figure 6.5 The “critical point” with parameter bounds taken into account. 

The importance of predictive analysis in model deployment cannot be understated. In most 

instances of model usage only a single prediction is made. However where a range of 

predictions is possible, it is poor modelling practice not to provide at least some indication of 

the extent of this range. The model prediction corresponding to the critical point defines the 

extent of this predictive range in one direction. 

For example, if a rainfall-runoff model has been calibrated in order to make predictions of 

flood height following future high rainfall events, then the model’s prediction of the 

maximum possible flood height may be of critical importance to formulation of a flood 

management strategy. Due to the fact that the height of the flood peak may be sensitive to 

parameters which are highly correlated with each other under the more benign conditions 

under which the model was calibrated, the possibility of predictive uncertainty is very high; 

so too is the imperative for predictive uncertainty analysis. 

6.1.5 Dual Calibration 

There are two means whereby PEST can be used to establish the degree of uncertainty 

associated with a particular model prediction. The first is approximate and can be done using 

PEST under normal parameter estimation conditions. The second involves determination of 

the actual critical point. The first of these is discussed in the present section while the second 

is discussed in the next section. 

“Dual Calibration” gets its name from the fact that PEST is asked to calibrate a model that is 

actually comprised of two models. Recall that the “model” run by PEST can actually be a 

batch file comprised of many executables. A batch file can easily be written such that it first 

runs the model under calibration conditions and then runs the model under predictive 

conditions. The dataset for “calibration” of this dual model should be the normal calibration 

dataset (for which corresponding model-generated numbers are produced by the first 

component of the dual model, ie. the model run under calibration conditions), plus a single 
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extra “observation” which corresponds to a best or worst case model outcome of a certain 

type for which the corresponding model-generated number is produced by the second 

component of the dual model. PEST is thus asked to calibrate this dual model such that, on 

the one hand, the model produces numbers which match historical system behaviour, while 

on the other hand it produces a certain best or worst case prediction. If a parameter set can be 

found which allows the model to do this, then the worst or best case prediction is compatible 

with calibration constraints (and knowledge constraints if parameter bounds are imposed). If 

it cannot, then the hypothesised worst case or best case prediction is not possible. 

The trick in implementing the dual calibration technique is the selection of a weight to assign 

to the single model prediction. In general, the weight applied to this prediction should be such 

that the contribution to the final objective function by the residual associated with the single 

prediction is of the same order as the contribution to the objective function by all of the 

residuals associated with the historical component of the dual model. If this is the case, then 

obviously the model will not be producing a prediction which is exactly equal to the user-

supplied best or worst case prediction. Because of this, the prediction may have to be supplied 

as a little “worse than worst” or “better than best”. A strategy for choosing a suitable weight 

and predictive value will soon become apparent once the method is implemented on a 

particular case. 

Dual calibration can be used with any nonlinear parameter estimator. However it is 

particularly easy to implement with PEST. One reason for this is the model-independent 

nature of PEST which allows it to be used as easily with a composite model encapsulated in a 

batch file as with a model comprised of a single executable. Another reason lies in the robust 

nature of the PEST inversion algorithm. Yet another reason lies in the fact that PEST prints 

out the contribution made to the objective function by different observation groups. Thus if 

historical observations used with the calibration component of the composite model are 

assigned to one observation group, and the single model prediction made under future 

conditions is assigned to another observation group, the user can see at a glance what the 

“calibration component” of the objective function is, and what the “predictive component” of 

the objective function is. Together, these add up to the total objective function whose task it 

is for PEST to minimise during the dual calibration process.  

If one of the names of the observation groups supplied to PEST is “predict”, and if there is 

only one observation belonging to that group (this observation can have any name), then 

PEST prints out the model-calculated number corresponding to that observation every time it 

calculates a new parameter update vector. Thus whenever it displays a new objective function 

it also prints out the line:- 

prediction = x 

where x is the model-generated value corresponding to the sole observation belonging to 

observation group “predict”. Obviously, if you are not using PEST to undertake dual 

calibration, you should avoid use of “predict” as an observation group name. 

6.1.6 Predictive Analysis Mode 

PEST can run in three different modes – “parameter estimation mode”, “regularisation mode” 

and “predictive analysis mode”. The first of these modes is used to find the objective function 
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minimum min; the second is most useful when many parameters require adjustment through 

the calibration process; see the next chapter. When run in predictive analysis mode, PEST 

finds the critical point depicted in Figures 6.4 and 6.5 and determines the model prediction 

associated with that point. The theory underpinning PEST’s calculations when run in 

predictive analysis mode is presented in Section 2.1.9. 

Model setup for predictive analysis is similar to that for dual calibration operations. That is, a 

composite model is constructed comprised of the model run under calibration conditions 

followed by the model run under predictive conditions. There can be as many field 

observations corresponding to the former model component as desired, these being the 

“calibration observations”. However there should be only one output from the predictive 

model component which is used by PEST as an observation. Furthermore, so PEST can 

recognise this observation, it should be the sole member of an observation group named 

“predict”. It is important to note that PEST takes no notice of either the “observed value” of 

this observation or of the weight assigned to this observation. PEST’s job is simply to raise 

or lower the model output corresponding to this observation, while maintaining the objective 

function at or below min + . 

Before using PEST to undertake predictive analysis, you should have already calibrated the 

model. Because the model has been calibrated, you will have determined a parameter set 

corresponding to the objective function minimum; you will also have determined the 

objective function minimum itself, ie. min. When run in predictive analysis mode PEST 

must be supplied with the value of min + , henceforth referred to as 0. PEST then 

maximises or minimises the model prediction (you tell it which), while ensuring that the 

objective function (calculated on the basis of calibration observations alone) is as close as 

possible to 0. See Section 2.1.9 for further details. 

PEST’s operation in predictive analysis mode has much in common with its operation in 

parameter estimation mode. Like parameter estimation, the process required to determine the 

critical point is an iterative one, beginning at some user-supplied initial parameter set. Initial 

parameters can be either inside the 0 contour or outside of it; in fact they can be the same 

initial values that were used for the parameter estimation process. If they are outside of the 0 

contour, PEST automatically works in parameter estimation mode until it is “within reach” of 

0, at which stage it modifies its operations to search for the critical point. 

When run in predictive analysis mode PEST still needs to calculate a Jacobian matrix, so 

derivatives of model outcomes with respect to adjustable parameters are still required. 

Derivatives can be calculated using two or three points; PEST can switch from one to the 

other as the solution process progresses. Parameters must still be assigned to groups for the 

purpose of assigning variables which govern derivatives calculation. Parameters can be log-

transformed, linked to one another, or fixed in predictive analysis mode just as in parameter 

estimation mode. In fact parameter transformations and linkages must be the same for a 

predictive analysis run as they were for the preceding parameter estimation run in which min 

was determined, for the value supplied to PEST for 0 must be consistent with the previously 

determined value of min. 

Just as in parameter estimation mode, a Marquardt lambda is used to assist PEST in coping 

with model nonlinearities when it is run in predictive analysis mode; this lambda is adjusted 

by PEST as the optimisation process progresses. The same user-supplied control variables 
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affect PEST’s lambda adjustment procedure as when it is used in parameter estimation mode 

(plus a couple more – see below). However, if desired, a line search procedure along the 

direction of the parameter upgrade vector can be used to improve calculation of the maximum 

or minimum model prediction for any value of the Marquardt lambda. This, in fact, is the 

recommended procedure. 

When run in predictive analysis mode PEST can be stopped and restarted at any time; it can 

be re-started using the “/r” or “/j” switch just as in parameter estimation mode (provided that 

the PEST RSTFLE variable was set to “restart” on the previous run); furthermore, if run as 

Parallel PEST it can be restarted using the “/s” switch as well. Relative and factor change 

limits are just as important when PEST is used in predictive analysis mode as when it is used 

in parameter estimation mode. Prior information can also be used; naturally if it is used in a 

predictive analysis run following a parameter estimation run, the prior information equations 

and weights should be the same for both runs. 

Observation and observation group functionality in predictive analysis mode is identical to 

that in parameter estimation mode. However, as was mentioned above, when PEST is used in 

predictive analysis mode there must be at least two observation groups, one of which is 

named “predict”. This group must contain only one observation (of any name), this being the 

observation corresponding to the single model output for which a maximum or minimum is 

sought within the constraints of 0. All other observations for this PEST run must be 

identical in value and weight to those used in the previous parameter estimation run in which 

min was determined. The single observation belonging to the “predict” group (which, 

obviously, does not figure in the previous PEST calibration run) can be assigned any weight 

at all; this weight is ignored by PEST when run in predictive analysis mode. 

When run in predictive analysis mode more model runs are normally required to achieve 

solution convergence than are required when PEST is run in parameter estimation mode 

because it is usually a more difficult matter to find the critical point than it is to find the 

objective function minimum.  

Except for the value of one control variable, the same control file can be used by PEST when 

run in both parameter estimation and predictive analysis modes (provided the control file has 

a “predictive analysis” section – see below). Furthermore, because of the functionality 

attached to the observation group “predict”, it is a particularly simple matter to run PEST in 

predictive analysis mode on a particular problem and then switch to running PEST in 

parameter estimation mode on the same problem in order to implement a dual calibration 

exercise. 

PEST screen output is slightly different when run in predictive analysis mode from its screen 

output when run in parameter estimation mode in that the value calculated for the prediction 

is written to the screen on every parameter upgrade. The user should bear in mind when 

monitoring PEST performance through watching its screen output, that successful PEST 

execution is no longer measured in terms of how much it can reduce the objective function. It 

is now measured by how high or low (depending on the user’s request) the prediction can be 

made, while keeping the objective function as close as possible to 0. 

After completion of a predictive analysis run, the highest or lowest model prediction for 

which the objective function is equal to or less than 0 is recorded on the PEST run record 
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file. Corresponding parameter values are also recorded on this file as well as in file case.par 

where case is the filename base of the PEST control file. 

As has already been mentioned, predictive analysis should only be undertaken after PEST 

has been used to undertake parameter estimation with the model run under calibration 

conditions alone. The predictive analysis and parameter estimation runs are closely related. 

All parameters, parameter transformations, parameter linkages, observations, observation 

weights, prior information equations and prior information weights must be the same for the 

two runs in order to ensure consistency in objective function values. 

6.2 Working with PEST in Predictive Analysis Mode 

6.2.1 Structure of the PEST Control File 

The PEST control file used for running PEST in predictive analysis mode is shown in 

Example 6.1 An example of this file is provided in Example 6.2. 
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pcf 

* control data 

RSTFLE PESTMODE 

NPAR NOBS NPARGP NPRIOR NOBSGP 

NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE 

RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM 

RELPARMAX FACPARMAX FACORIG 

PHIREDSWH 

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR 

ICOV ICOR IEIG 

* parameter groups 

PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD 

(one such line for each of the NPARGP parameter groups) 

* parameter data 

PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM 

(one such line for each of the NPAR parameters) 

PARNME PARTIED 

(one such line for each tied parameter) 

* observation groups 

OBGNME 

(one such line for each observation group) 

* observation data 

OBSNME OBSVAL WEIGHT OBGNME 

(one such line for each of the NOBS observations) 

* model command line 

write the command which PEST must use to run the model 

* model input/output 

TEMPFLE INFLE 

(one such line for each model input file containing parameters) 

INSFLE OUTFLE 

(one such line for each model output file containing observations) 

* prior information 

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME 

(one such line for each of the NPRIOR articles of prior information) 

* predictive analysis 

NPREDMAXMIN 

PD0 PD1 PD2 

ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH 

ABSPREDSWH RELPREDSWH 

NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP 

Example 6.1. Construction details of the PEST control file for use in predictive analysis 

mode. 
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Differences between the PEST control file used by PEST for running in predictive analysis 

mode, and that used for work in parameter estimation mode are few. The PESTMODE 

variable on the third line of the PEST control file must be set to “prediction”. Also, the PEST 

control file must contain a “predictive analysis” section which controls PEST’s operations in 

this mode. Note the following:- 

 if PEST is run in parameter estimation mode the “predictive analysis” section of the 

PEST control file is ignored and can, in fact, be omitted; 

 if there is no prior information the “prior information” section of the PEST control file 

pcf 
* control data 
restart prediction 
5 10 2 0 3 
3 3 single point 1 0 0 
5 2 0.3 0.01 10 
2 3 0.001  
0.1 
30 0.01 5 5 0.01 5 
1 1 1 
* parameter groups 
ro relative 0.001 0.0001 switch 2 parabolic 
hhh relative 0.001 0.0001 switch 2 parabolic 
* parameter data 
ro1 log factor 4.000000 1e-10 10000 ro 1 0 1 
ro2 log factor 5.000000 1e-10 10000 ro 1 0 1 
ro3 log factor 6.000000 1e-10 10000 ro 1 0 1 
h1 log factor  5.000000 1e-10 100 hhh 1 0 1 

h2 log factor  4.000000 1e-10 100 hhh 1 0 1 
* observation groups 
obsgp1 
obsgp2 
predict 
* observation data 
ar1 1.21038 1 obsgp1 
ar2 1.51208 1 obsgp1 
ar3 2.07204 1 obsgp1 
extra 5.0  0.0 predict 
ar4 2.94056 1 obsgp1 
ar5 4.15787 1 obsgp1 
ar6 5.7762 1 obsgp1 
ar7 7.7894 1 obsgp1 
ar8 9.99743 1 obsgp1 
ar9 11.8307 1 obsgp2 
* model command line 
model.bat 
* model input/output 

ves1.tpl a_model.in1 
ves2.tpl a_model.in2 
extra.tpl extra.dat 
ves1.ins a_model.ot1 
ves2.ins a_model.ot2 
extra.ins  extra1.dat 
* prior information 
* predictive analysis 
-1 
1.0  1.05   2.0 
0.00 0.005 1.0 2.0 8 
0.00 0.05 
4    0.0    0.005   4 

Example 6.2. Example of a PEST control file for use in predictive analysis mode. 
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should either be omitted or simply left empty. 

6.2.2 PEST Variables used for Predictive Analysis 

The role of those PEST variables which govern its operation in predictive analysis mode will 

now be discussed in detail. Although PESTMODE was discussed in Section 4.2.2, 

specifications for this variable will now be repeated. All other variables discussed below 

reside in the “predictive analysis” section of the PEST control file and hence pertain only to 

PEST’s operation in predictive analysis mode. 

PESTMODE 

This is a character variable that appears on the third line of the PEST control file just after the 

RSTFLE variable. It must be supplied as either “estimation”, “prediction” or “regularisation”. 

In the first case PEST will run in parameter estimation mode (its traditional mode of 

operation); in the second case PEST will run in predictive analysis mode; in the third case 

PEST will run in regularisation mode (see Chapters 7 and 8). 

As mentioned above, if PEST is run in predictive analysis mode, then you must ensure that 

the PEST control file contains a “predictive analysis” section. You must also ensure that there 

are at least two observation groups, one of which is named “predict”, and that the “predict” 

group has just one observation. In most cases this will correspond to an output of the 

predictive component of a composite model. The observation can have any name, value and 

weight; the latter two are ignored by PEST when run in predictive analysis mode. (Naturally 

you must supply an instruction file to read this extra observation from the pertinent model 

output file.) 

NPREDMAXMIN 

When PEST is used in predictive analysis mode, its task is to maximise or minimise the 

single model prediction while maintaining the objective function at or below min +  (ie. 

0). If NPREDMAXMIN is set to 1, PEST will maximise the prediction; if 

NPREDMAXMIN is set to –1, PEST will minimise the prediction. 

PD0 

PD0 is a value for the objective function which, under calibration conditions, is considered 

sufficient to “just calibrate” the model. It is equal to min + , ie. 0 (see Section 6.1.1). A 

PEST predictive analysis run should be preceded by a parameter estimation run in which min 

is determined. The user then decides on a suitable value for  and hence 0 before supplying 

the latter as PD0 for a PEST predictive analysis run. Naturally PD0 should be greater than 

min. However in most circumstances it should only be a little greater; see equation 6.1. 

PD1 

The procedure by which PEST calculates the location of the critical point in parameter space 

is a complex one; see Section 2.1.9. If PEST is asked to maximise (minimise) a certain model 

prediction while constrained to keep the objective function (calculated on the basis of 

calibration observations only) as close as possible to PD0 it will, in the course of its iterative 
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solution process, wander in and out of “allowed parameter space” (ie. the area inside the min 

+  contour of Figures 6.1, 6.2, 6.4 and 6.5). 

Because the shape of the PD0 contour can be so complex, it is extremely hard for PEST to 

find a parameter set which lies exactly on this contour. The value supplied for PD1 (which 

must be slightly higher than PD0) is a value which PEST will consider as being “close 

enough” when approaching this contour from the outside. (When approaching it from the 

inside, any objective function value is “good enough” because values on the inside of the PD0 

contour are all less than PD0 and hence all calibrate the model.) 

Thus PD0 is the value of the objective function that PEST must “aim for” when maximising 

(minimising) the model prediction; PD1 is the value that it will accept. Depending on the 

value of 0 relative to min, this may be as little as 0.5% higher than PD0. However if you 

are not undertaking a line search for refinement of the parameter upgrade vector (see below), 

or if PEST appears to be having difficulties in finding parameter sets which can raise or lower 

the prediction (whichever is appropriate) while keeping the model calibrated, it may need to 

be as much as 5% to 10% higher than PD0 under some circumstances. 

PD2 

When used in predictive analysis mode, the solution procedure used by PEST is very similar 

to that used in parameter estimation mode. During each optimisation iteration PEST first fills 

the Jacobian matrix; then it calculates some trial parameter upgrade vectors on the basis of a 

number of different values of the Marquardt lambda. The latter is automatically altered by 

PEST during the course of the solution process using a complex adjustment procedure. If the 

current value of the objective function is above PD1, PEST adjusts the Marquardt lambda in 

such a manner as to lower the objective function; if the objective function is below PD1, 

PEST’s primary concern is to raise (lower) the model prediction. 

After PEST has tested a few different Marquardt lambdas it must make the decision as to 

whether to continue calculating parameter upgrade vectors based on new lambdas or whether 

it should move on to the next optimisation iteration. If the objective function is above PD1 

this decision is made using the same criteria as in normal PEST operation; these criteria are 

based on the efficacy of new lambdas in lowering the objective function. An important 

variable in this regard is PHIREDLAM. As is explained in Section 4.2.2 of this manual, if 

PEST fails to lower the objective function by a relative amount equal to PHIREDLAM on 

successive parameter upgrade attempts using successive Marquardt lambdas, PEST will move 

on to the next optimisation iteration. 

When PEST is run in predictive analysis mode, as the objective function approaches PD0 the 

relative change in the objective function, , between Marquardt lambdas may be small; 

however the relative reduction in ( - 0) (ie. the objective function minus PD0) may be 

sufficient to warrant testing the efficacy of another Marquardt lambda. The objective function 

value at which PEST stops testing for a relative objective function reduction, and begins 

testing for a relative reduction in ( - 0) is PD2. Generally this should be set at 1.5 to 2 

times PD0. In either case the decision as to whether to try another lambda or move on to the 

next optimisation iteration is made through comparison with PHIREDLAM. 
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ABSPREDLAM and RELPREDLAM 

During each iteration, after it has filled the Jacobian matrix PEST tests the ability of a number 

of different values of the Marquardt lambda to achieve its objective. Its exact objective 

depends on the current value of the objective function . If the objective function is above 

PD1, PEST’s highest priority is to lower it; if the objective function is less than PD1, PEST’s 

highest priority is to raise or lower (depending on the value of NPREDMAXMIN) the model 

prediction. In either case, PEST is constantly faced with the decision of whether to test more 

lambdas or to move on to the next iteration. 

If the objective function is below PD1 and successive Marquardt lambdas have not succeeded 

in raising (lowering) the model prediction by a relative value of more than RELPREDLAM or 

by an absolute value of more than ABSPREDLAM, PEST will move on to the next 

optimisation iteration. Due to the fact that the approach to the critical point is often slow, 

these values may need to be set low. A value of 0.005 for RELPREDLAM is often suitable; 

the value for ABSPREDLAM depends on the context. If you would like one of these 

variables to have no effect on the predictive analysis process (which is mostly the case for 

ABSPREDLAM), use a value of 0.0. 

INITSCHFAC, MULSCHFAC and NSEARCH 

When undertaking predictive analysis, PEST calculates a parameter upgrade vector in 

accordance with the theory presented in Section 2.1.9 of this manual. However it has been 

found from experience that the critical point of Figures 6.4 and 6.5 can be found more 

efficiently if PEST undertakes a line search along the direction of its calculated parameter 

upgrade vector each time it calculates such a vector, in order to find the exact point of 

intersection of this vector with the min +  contour. However this search will not be 

undertaken unless the objective function has fallen below min +  at least once during any 

previous optimisation iteration. 

A line search is undertaken for each trial value of the Marquardt lambda. The maximum 

number of model runs that PEST will devote to this line search for any value of lambda is 

equal to the user-supplied value of NSEARCH; set NSEARCH to 1 if you wish that no line 

search be undertaken. Otherwise, a good value is between 6 and 8. 

When undertaking the line search, the initial model run is undertaken at that point along the 

parameter upgrade vector which is a factor of INITSCHFAC along the line of the distance 

that PEST would have chosen using the theory of Section 2.1.9 alone. Unless there is a good 

reason to do otherwise, a value of 1.0 is appropriate here. Then PEST moves along the 

parameter upgrade vector, increasing or decreasing the distance along this vector by a factor 

of MULSCHFAC as appropriate. A value of 1.5 to 2.0 is suitable for this variable in most 

cases. Then, once the min +  contour has been subtended by two different model runs, 

PEST uses a bisection algorithm to find the intersection point with greater precision. 

It may seem at first sight that implementation of a line search algorithm may prove very 

costly in terms of model runs. However experience to date is such as to suggest that inclusion 

of the line search option may result in a dramatic reduction in overall model runs, as fewer 

optimisation iterations are required to find the critical point, even though each iteration may 

individually require more model runs. 
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ABSPREDSWH and RELPREDSWH 

In the “parameter groups” section of the PEST control file, the user informs PEST whether 

derivatives of model outcomes with respect to the members of each parameter group are to be 

calculated using two points, three points, or two points at first and then three points later. 

When run in parameter estimation mode, PEST makes the switch between two point and 

three point derivatives calculation if it fails to lower the objective function by a relative 

amount equal to PHIREDSWH between successive optimisation iterations. The value for 

PHIREDSWH is supplied in the “control data” section of the PEST control file. 

When used in predictive analysis mode, the role of PHIREDSWH is unchanged if the current 

objective function is above PD1. However if it is below PD1, PEST’s decision to switch from 

two point derivatives calculation to three point derivatives calculation is based on 

improvements to the model prediction. If, between two successive optimisation iterations, the 

model prediction is raised (lowered) by no more than a relative amount of RELPREDSWH or 

by an absolute amount of ABSPREPSWH, PEST makes the switch to three point derivatives 

calculation. A setting of 0.05 is often appropriate for RELPREDSWH. The setting for 

ABSPREDSWH is context-dependent. Supply a value of 0.0 for either of these variables if 

you wish that it has no effect on the optimisation process. (On most occasions 

ABSPREDSWH should be set to 0.0.) 

NPREDNORED 

The last four variables are termination criteria. 

When PEST is used in parameter estimation mode, the optimisation process is judged to be 

complete when the objective function can be reduced no further, or if it is apparent that a 

continuation of the optimisation process will reduce it very little. This is still the case if 

PEST, when used in predictive analysis mode, fails to lower the objective function below 

PD1. However if it has been successful in lowering it to this value (which it should be if PD0 

and PD1 are chosen to be above min as determined from a previous parameter estimation 

run), then termination criteria are based on improvements to the model prediction. 

If NPREDMAXMIN is set to 1 and NPREDNORED optimisation iterations have elapsed 

since PEST has managed to raise the model prediction, then it will terminate execution. 

Alternatively if NPREDMAXMIN is set to -1 and NPREDNORED optimisation iterations 

have elapsed since PEST has managed to lower the model prediction, then it will terminate 

execution. A good setting for NPREDNORED is 4. 

ABSPREDSTP, RELPREDSTP and NPREDSTP 

If NPREDMAXMIN is set to 1 and if the NPREDSTP highest predictions are within an 

absolute distance of ABSPREDSTP of each other, or are within a relative distance of 

RELPREDSTP of each other, PEST will terminate execution. If NPREDMAXMIN is set to 

-1 and the NPREDSTP lowest predictions are within an absolute distance of ABSPREDSTP 

of each other, or are within a relative distance of RELPREDSTP of each other, PEST will 

terminate execution. A good setting for RELPREDSTP is 0.005. The setting for 

ABSPREDSTP is context-dependent; set ABSPREDSTP to 0.0 if you wish it to have no 

effect (which is normally the case). A good setting for NPREDSTP is 4. 
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Note that the maximum allowed number of optimisation iterations is set by the value of the 

NOPTMAX variable provided in the “control data” section of the PEST control file. Consider 

setting this higher than you would for PEST’s usage in parameter estimation mode. 

6.3 An Example 

See Section 13.2 for an example of PEST’s use in Predictive Analysis Mode. 
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7. Regularisation 
Don’t forget to see the addendum to this manual for further details of PEST functionality, 

particularly as it pertains to highly parameterized inversion and uncertainty analysis. 

7.1 About Regularisation 

7.1.1 General 

PEST (and other nonlinear parameter estimation software) sometimes encounters difficulties 

in minimising the calibration objective function where too many parameters must be 

simultaneously estimated. Such situations often arise when calibrating models that represent 

two- and three-dimensional spatial processes, or when using such models to infer the 

properties of a two- or three-dimensional model domain as part of a data interpretation 

process. In many cases the user may not wish to observe the conventional wisdom of 

parameter parsimony for fear of losing important system details. However the use of too 

many parameters leads to numerical instability and nonuniqueness of parameter estimates. 

In an attempt to reduce the number of parameters to a manageable level, a two- or three-

dimensional model domain is often subdivided into a small number of zones of assumed 

parameter constancy; zone boundaries can be chosen on the basis of geological and/or other 

evidence (where this evidence exists), or inferred from the field data itself. While this 

methodology works well, there are many problems associated with it. For example, zonation 

of the model domain may be difficult as it may not be immediately apparent from the 

observation dataset where property contrasts exist, or whether property transitions are smooth 

rather than abrupt. In many cases, the modeller may prefer to ask PEST to infer areas of high 

or low property value itself, rather than attempting to construct a parameter zonation scheme 

based on an incomplete knowledge of the locations of property discontinuities. 

Unfortunately a calibration and/or data interpretation strategy which does not rely entirely on 

an externally-supplied zonation pattern will nearly always result in the necessity to estimate a 

large number of parameters. Some of these parameters will invariably be more sensitive to the 

field data than others; insensitive parameters are not only difficult to estimate themselves, but 

may hamper PEST’s ability to estimate other, more sensitive, parameters. Furthermore, 

parameter correlation is often very strong in highly parameterised systems, this resulting in a 

high degree of nonuniqueness in parameter estimates. Hence even if a good fit is obtained 

between model outputs and field data, the parameters giving rise to this fit will probably be 

just one set out of a virtually infinite number of sets that will also result in a good fit between 

model outputs and field data. 

A related problem in working with highly-parameterised systems is that unless some 

constraints are imposed on parameter values, or on relationships between parameter values, 

individual parameter estimates tend to show a high degree of spatial variability, and can even 

take on extreme values, as PEST tries to use every parameter at its disposal in order to 

accommodate every nuance of the observation dataset upon which the calibration or data 

interpretation process is based. In many cases these nuances are better considered as “system 

noise”. Hence an appropriate level of misfit between model outputs and field data can be 
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tolerated on this basis, for it is well known that a parameterisation which attempts to fit all of 

the “fine detail” of a measurement dataset is often a poor representation of true system 

properties. Use of an appropriate regularisation procedure in the parameter estimation process 

must overcome this problem by allowing the modeller to inject some “sanity” into the process 

by limiting the degree of spatial variability that optimised parameter values are allowed to 

show. While this may be done at the cost of obtaining a perfect fit between model outputs and 

field data, estimated parameters are often far more believable as result of this misfit.  

The power of a properly-implemented regularisation procedure is that it allows the modeller 

access to the benefits of using a large number of parameters (for example the enhanced spatial 

resolution required to define the location of important property contrasts), at the same time as 

it allows him/her access to the benefits of a more sparingly parameterised system (stability of 

the inversion process, reduced parameter correlation, and a reduced propensity for estimated 

parameter values to be wild and unbelievable). It also allows the user to inject his/her 

judgement into the parameterisation process by selecting a regularisation scheme that reflects 

his/her current state of knowledge of that system. 

7.1.2 Smoothing as a Regularisation Methodology 

The most commonly used regularisation methodology is the imposition of a “smoothing 

constraint” on parameter values. In most cases this is achieved by taking differences between 

neighbouring pairs of parameter values (or between functions of these parameter values) and 

requesting that each such difference be zero if possible. This is done by supplying each 

parameter difference to PEST as an extra “observation”, or as an article of prior information, 

the “observed value” for which is zero in each case. Thus each non-zero parameter difference 

makes a contribution to the objective function whose task it is for PEST to minimise. Hence 

in minimising the objective function, PEST seeks to minimise these parameter differences 

and, in so doing, increases parameter uniformity across the model domain (or of sub-areas 

within this domain - see below). 

Regularisation can be used in conjunction with most methods of defining a parameterisation 

scheme over a model domain. It can be used in conjunction with zones of assumed parameter 

constancy, for use of an appropriate regularisation scheme allows the modeller to use more 

zones than he/she otherwise would. Through enforcing either a single, regional smoothing 

condition, or a series of more local smoothing conditions over different model sub-areas, the 

model can be parameterised in such a way that it respects outside knowledge (for example 

geological knowledge) at the same time as it accommodates smaller scale property variations 

in order to provide a satisfactory fit between model outputs and field measurements. 

Similarly, if a “pilot points” parameterisation scheme is used (in which parameter values are 

estimated for points lying within the model domain, and these parameter values are then 

spatially interpolated to the cells or elements of the model grid or mesh using kriging or some 

other spatial interpolation method), the degree of spatial parameter variation between these 

pilot points, or of various subgroups of them, can be limited through the imposition of 

appropriate uniformity criteria.  

As stated above, regularisation can take place across the entire model domain, or across sub-

areas within the domain. In the latter case, if there are boundaries within the model domain 

where property discontinuities are known to exist, then no parameter differences should be 

taken across these boundaries for inclusion in the “regularisation observations” used to 
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enforce the smoothing condition. 

Regularisation criteria other than uniform smoothing can also be used. For example 

individual parameter differences might be weighted according to inter-parameter distance. Or 

a minimum curvature condition could be imposed; each relationship comprising this 

regularisation scheme will cite at least 3 parameters, stating that the difference between the 

“inner” parameter value and the average of at least two “outer” parameter values is zero. Or a 

regularisation scheme might be comprised of a series of differences between many (or all) of 

the model’s parameters and some preferred value for each of these parameters. Even more 

sophisticated techniques might be developed; for example a regularisation condition imposed 

on the calibration of a transient model might be that the same parameter distribution which 

calibrates the transient model also calibrates a steady state model. There is no limit to the 

range of possibilities. 

The main criteria for a regularisation methodology are that:-  

1. it includes a substantial number of relationships between most or all of the parameters 

involved in the parameterisation process, and 

2. it encapsulates some “preferred state” of the system; deviations from this “preferred 

state” are tolerated only to the extent that they allow the model to provide an 

acceptable fit to field measurements. 

Because regularisation should attempt to impose some “preferred state” on system 

parameters, and because it should involve as many of the model parameters as possible, it 

constitutes a mechanism for making insensitive parameters sensitive. Without the use of a 

suitable regularisation strategy, a parameter pertaining to a part of the model domain far 

removed from locations where field measurements were made, may have a sensitivity of 

almost zero. Thus if that parameter is estimated (together with other model parameters) on the 

basis of field data alone, its estimated value will be subject to a very large degree of variation. 

However if a regularisation condition is imposed, the value estimated for such an ill-

determined parameter will most likely be the “natural value” of the parameter as defined 

through the regularisation process. Similarly if, when estimated on the basis of field 

measurements alone, certain parameters are highly correlated with each other, each member 

of the correlated set could take on an infinite number of values, provided other members of 

the set take on complementary values. Imposition of a properly-constructed regularisation 

condition will result in the selection of just one set of values for these correlated parameters, 

ie. the set of values that is most in harmony with the “natural” state of the system as defined 

by the regularisation conditions. 

7.1.3 Theory 

The theoretical underpinnings of the regularisation methodology provided in PEST is 

presented in Section 2.1.10 of this manual. 

7.2 Implementation in PEST 

7.2.1 Regularisation Mode 
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To introduce regularisation into the parameter estimation process in the manner described in 

Section 2.1.10, PEST must be run in “regularisation mode”. This mode of operation is not too 

different from PEST’s traditional parameter estimation mode in that an objective function is 

minimised, the objective function being defined as the sum of squared weighted differences 

between observations and corresponding model outputs. However when used in regularisation 

mode, observations must be subdivided into “measurement observations” and “regularisation 

observations” so that PEST can calculate the contribution made to the total objective function 

by each of these. Furthermore, during each optimisation iteration, just after the Jacobian 

matrix has been filled, and just before parameter upgrade vectors are calculated and tested, 

PEST calculates a suitable “regularisation weight factor” (ie.  from equation 2.33) by which 

all of the weights pertaining to the regularisation observations are multiplied prior to 

calculation of the parameter upgrade vector. This regularisation weight factor is calculated in 

such a way as to try to ensure that the measurement objective function after parameter 

upgrade is equal to m
l 

defined in equation 2.31, ie. the “limiting measurement objective 

function” below which the model is deemed to be calibrated. However, as it is calculated on 

the basis of a linearity assumption (based on the Jacobian matrix) that is not always a good 

approximation to reality, measurement objective functions equal (or nearly equal) to m
l
 are 

not normally achieved until late in the parameter estimation process. 

7.2.2 The Observation Group “Regul” 

Regularisation observations are distinguished from measurement observations through being 

assigned to a special observation group named “regul”. As was discussed in Section 4.2.6, 

prior information items, as well as observations, should be assigned to observation groups. 

Thus regularisation observations can be supplied in either the “observation data” or “prior 

information” sections of the PEST control file, or both. All observations and/or prior 

information equations which do not belong to the group “regul” are assumed to be part of the 

“measurement” dataset. The weights used by these measurement observations and/or prior 

information equations are not varied during the parameter estimation process. 

The user must also supply PEST with a value for the limiting measurement objective function 

m
l
. In some (rare) cases, PEST will be run in regularisation mode only after it has been used 

on the same problem in parameter estimation mode. If this is the case, the user will know the 

lowest value for m that can be achieved without any regularisation constraints imposed, and 

will set m
l
 a little higher than this. Alternatively, if no preceding parameter estimation run 

has been carried out (which is normally the case), m
l
 can be set at a level that is judged to be 

appropriate on the basis of assumed measurement standard deviations. If PEST cannot lower 

the measurement objective function as low as m
l
 , then it will simply lower it as far as it can 

(and will normally calculate a low regularisation weight factor in order to achieve this). 

While PEST’s operation in regularisation mode is similar in many respects to its operation in 

parameter estimation mode, there are some important differences. In both modes of operation 

PEST attempts to lower an objective function; however in regularisation mode the total 

objective function cannot be compared from iteration to iteration, for the composition of the 

objective function changes with the regularisation weight factor  depicted in equation 2.33. 

However each of the separate components of the objective function, viz. r (the 

regularisation component) and m (the measurement component) can be compared from 

iteration to iteration. 
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Because, when operating in regularisation mode, PEST’s intention during each optimisation 

iteration remains the same as in parameter estimation mode, ie. to lower an objective 

function, all of the input variables which control its operation in parameter estimation mode 

are still required for its operation in regularisation mode. Furthermore, they still have the 

same roles. However, as will be discussed below, a number of new variables are required in 

the PEST control file to control PEST’s operation in regularisation mode. 

7.3 Preparing for a PEST Run in Regularisation Mode 

7.3.1 The PEST Control File - “Control Data” Section 

As was discussed in Section 4.2.2 of this manual, the variable PESTMODE on the third line 

of the PEST control file must be provided as “estimation”, “prediction” or “regularisation”; 

the last of these options must be supplied for this variable for PEST to run in regularisation 

mode. If so, there must be a “regularisation” section at the end of the PEST control file 

(following either the “model input/output” section or, if present, the “prior information” 

section of the PEST control file). 

7.3.2 The PEST Control File - Observation Groups 

As has already been discussed, when working in regularisation mode, observations and/or 

prior information must be assigned to at least two different observation groups, one of which 

must be named “regul”. All observations and/or prior information items belonging to the 

group “regul” comprise the “regularisation observations”; all observations and/or prior 

information equations belonging to all other groups comprise the “measurement 

observations”. Weights must be assigned to individual observations and prior information 

equations within each group in the normal manner (or an observation covariance matrix can 

be assigned - see Section 4.3). However, as was explained above, weights assigned to the 

regularisation observations and/or regularisation prior information equations are multiplied 

internally by a “regularisation weight factor” prior to formulation of the total objective 

function during each optimisation iteration. 

7.3.3 Control File - “Regularisation” Section 

Example 7.1 shows the format of the “regularisation” section of the PEST control file. This 

section should be placed at the end of the file. 

An example of the “regularisation” section of a PEST control file is provided in Example 7.2. 

* regularisation 

PHIMLIM  PHIMACCEPT FRACPHIM 

WFINIT  WFMIN  WFMAX 

WFFAC  WFTOL 

Example 7.1 Format of the “regularisation” section of the PEST control file. 
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The “regularisation” section of the PEST control file must begin with a single line containing 

the character string “* regularisation”. Then follow three lines, each of which contains a 

number of variables which control the way in which PEST operates when working in this 

mode. The role of each of these variables is now discussed. 

PHIMLIM 

This is m
l
 of equation 2.31. That is, it is the upper limit of the measurement objective 

function (ie. the upper level of model-to-measurement misfit) that is tolerable when trying to 

minimise the regularisation objective function r. In some cases a PEST regularisation run 

will postdate a normal parameter estimation run. If the latter run was successful, it will have 

informed the user of how low the measurement objective function can be if all parameters are 

adjusted without reference to any regularisation conditions. m
l
 should be set somewhat 

above this, for the imposition of regularisation constraints will mostly result in a slight 

diminution of PEST’s ability to fit the field data exactly. The user informs PEST of the extent 

to which he/she will tolerate a less-than-optimal fit between model outputs and field data for 

the sake of adhering to the “reality check” imposed by the regularisation constraints through 

the variable PHIMLIM. 

PHIMACCEPT 

During each optimisation iteration, just after it has linearised the problem through calculating 

the Jacobian matrix, and just before it begins calculation of the parameter upgrade vector, 

PEST calculates the optimal value of the regularisation weight factor  for that iteration. This 

is the value which, under the linearity assumption encapsulated in the Jacobian matrix, results 

in a parameter upgrade vector for which the measurement component of the objective 

function is equal to PHIMLIM. However, due to the approximate nature of the linearity 

assumption, PEST may not be able to lower the measurement component of the objective 

function to PHIMLIM on that iteration in spite of the fact that it uses a number of different 

values for the Marquardt lambda in attempting to do so. If it cannot lower the measurement 

objective function to an acceptable level, it simply accepts the upgraded parameters, proceeds 

to the next optimisation iteration and tries again. However if it does succeed in lowering the 

measurement objective function to an acceptable level, or if it has succeeded in doing this on 

previous iterations, then PEST slightly alters its philosophy of choosing new Marquardt 

lambdas, in that it now attempts to lower the regularisation component of the objective 

function r while maintaining the measurement component of the objective function m 

below this acceptable level. This acceptable level is PHIMACCEPT; it should be set slightly 

higher than PHIMLIM (ie. m
l
) in order to give PEST some “room to move” in its attempts to 

lower r while keeping m below, or close to, m
l
. It needs this “room to move” because of 

the fact that it bases its calculations on a linearity assumption that is only approximately 

satisfied. 

* regularisation 

135.0  140.0 0.0 

1.0e-2  1.0e-6 1.0e6 

1.3  1.0e-2 

Example 7.2 An example of the “regularisation” section of a PEST control file. 
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Normally PHIMACCEPT should be about 5% to 10% greater than PHIMLIM. However if 

PEST is performing well, you may wish to make it closer to PHIMLIM than this. In choosing 

the best parameter set at any stage of the optimisation process (for recording in the parameter 

value file) PEST looks at all parameter sets for which it has carried out model runs up to that 

point in the process. If any of these runs have resulted in an objective function less than 

PHIMACCEPT, it then searches from among these runs for the parameter set which gave rise 

to the lowest regularisation objective function. If PHIMACCEPT is set too close to 

PHIMLIM, PEST’s selection of the best parameter set may be restricted somewhat, for there 

may be some parameter sets for which the measurement objective function m is just above 

PHIMACCEPT but for which r is quite low. Alternatively, if PHIMACCEPT is set too 

large, then PEST might not try hard enough to reduce m to m
l
, preferring instead to work 

within the weaker constraint set by PHIMACCEPT. When working in regularisation mode, 

PEST prints out r and m for every parameter upgrade attempt. It will be apparent from this 

information whether PHIMACCEPT has been set correctly. 

FRACPHIM 

PEST ignores the value supplied for FRACPHIM unless it is greater than zero. A value of 

between zero and 1.0 (but normally less than about 0.3) can be supplied for this variable if 

you are unsure what value to use for PHIMLIM. See Section 7.3.4 below for a full discussion 

of this variable. 

WFINIT 

This is the initial regularisation weight factor. During every optimisation iteration PEST 

calculates a suitable regularisation weight factor to use during that optimisation iteration 

using an iterative, numerical solution procedure; its initial value when implementing this 

procedure for the first optimisation iteration is WFINIT. If there are many adjustable 

parameters, calculation of the regularisation weight factor for the first optimisation iteration 

can be very time-consuming if WFINIT is far from optimal. Hence if you have any idea of 

what the weight factor should be (for example from a previous PEST run), then you should 

provide WFINIT with this value. Otherwise simply set it to 1.0. 

WFMIN, WFMAX 

These are the minimum and maximum permissible values that the regularisation weight factor 

is allowed to take. If a regularisation scheme is poor, (and does not lend too much stability to 

an already unstable parameter estimation process), selection of appropriate values for 

WFMIN and WFMAX may be quite important, for these can prevent PEST from calculating 

outrageous values for the regularisation weight factor in an attempt to compensate for 

inadequacies of the regularisation scheme.  

A regularisation scheme should be such that, even if there are no field measurements, it can 

“almost” result in a unique parameter set all by itself; “almost” here implies that there may 

still be a degree of nonuniqueness, but that this might only be in relation to a factor by which 

all parameters can be multiplied and still satisfy the regularisation conditions. However if the 

regularisation scheme is such as to allow high and untrammelled variability of parameters, 

PEST can encounter serious difficulties if the inversion problem to which the regularisation 

scheme refers is already unstable. In the belief that if regularisation observations were to 
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make a more substantial contribution to the objective function than measurement 

observations, greater stability will ensue in accordance with the aims of introducing 

regularisation into the optimisation process in the first place, PEST may try to assign greater 

weights to regularisation observations than it otherwise would when the inversion process 

runs into difficulties. Where the number of adjustable parameters is high and numerical 

solution of the weight factor equation is thus very time-consuming, this may place an undue 

strain on PEST’s operation in regularisation mode. If the upper weight factor limit, WFMAX, 

is set at an appropriate value, the user will be able to detect this aberrant behaviour sooner 

than he/she otherwise would, and take appropriate action if necessary. 

WFMIN and WFMAX values of 10
-10

 and 10
10

 respectively are suitable for most occasions. 

WFFAC, WFTOL 

When PEST calculates the appropriate regularisation weight factor to use during any 

optimisation iteration, it uses an iterative procedure which begins at the value of the 

regularisation weight factor calculated for the previous optimisation iteration; for the first 

optimisation iteration it uses WFINIT to start the procedure. In the process of finding the 

weight factor which, under the linearity assumption used in its calculation, will result in a 

measurement objective function (ie. m) of PHIMLIM (ie. m
l
), PEST first travels along a 

path of progressively increasing or decreasing weight factor (it decides which one of these 

alternatives to explore on the basis of the value of the current measurement objective function 

with respect to PHIMLIM). In undertaking this exploration, it either multiplies or divides the 

weight factor by WFFAC; it continues to do this until it has found two successive weight 

factors which lie on either side of the optimal weight factor for that optimisation iteration. 

Once it has done this, it uses Newton’s method to calculate the optimal weight factor, through 

a series of successive approximations. When two subsequent weight factors calculated in this 

way differ from each other by no more than a relative amount of WFTOL, the optimal weight 

factor is deemed to have been calculated. 

Experience has shown that a suitable value for WFFAC is about 1.3; it must be greater than 1. 

WFTOL is best set at somewhere between 10
-3

 and 10
-2

. However if there are many 

adjustable parameters and PEST consumes a large amount of time in determining the optimal 

weight factor, a tolerance of somewhat higher than 10
-2

 may prove suitable. 

7.3.4 The Control Variable FRACPHIM 

As was mentioned above, a non-zero value can be supplied for FRACPHIM if you would like 

to use PEST in regularisation mode, but you are unsure of what value to use for PHIMLIM. 

If FRACPHIM is provided with a value of zero or less (or if this variable is absent from the 

PEST control file), then PEST’s action when working in regularisation mode will be exactly 

the same as that already described. However if FRACPHIM is provided with a value of 

between 0.0 and 1.0 (values of 1.0 or greater are illegal), then PEST will calculate a new 

value for PHIMLIM at the beginning of each optimisation iteration. This value will be 

calculated as the current value of the measurement objective function times FRACPHIM. 

Thus PEST will always “aim for” a measurement objective function that is lower than the 

current one. This allows it to lower the measurement objective function as the parameter 

estimation process progresses while, at the same time, making use of the numerically 
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stabilising effects of regularisation. 

The following aspects of the use of the FRACPHIM variable should be carefully noted:- 

1. If FRACPHIM is supplied as 0.0, or as less than 0.0, PEST will assume that no value 

has been supplied for FRACPHIM at all. The value of PHIMLIM used in every 

optimisation iteration will thus be that supplied in the PEST control file. 

2. If FRACPHIM is supplied with a value of 1.0 or greater, PEST will cease execution 

with an error message. 

3. For other values of FRACPHIM, PEST will adjust the value of PHIMLIM at each 

optimisation iteration by multiplying the current value of the measurement objective 

function by FRACPHIM. However it will lower PHIMLIM no further than the value 

for this variable supplied in the PEST control file. 

4. Optimal values for FRACPHIM are normally in the range 0.1 to 0.3. 

5. As well as adjusting the value of PHIMLIM during every optimisation iteration, PEST 

also adjusts the value of PHIMACCEPT. This adjustment is made such that, during 

every optimisation iteration, the ratio of PHIMACCEPT to PHIMLIM is the same as 

that supplied in the PEST control file. Normally this ratio should be no greater than 

1.1. 

7.4 Working with PEST in Regularisation Mode 

7.4.1 Run-Time Information 

As it runs, PEST records information to both the screen and to its run record file. When PEST 

is run in parameter estimation mode, the principal items of interest during each optimisation 

iteration are the value of the objective function at the beginning of the iteration, and new 

values of the objective function which are calculated as PEST tests a series of parameter 

upgrade vectors calculated on the basis of a number of different Marquardt lambdas. When 

run in predictive analysis mode, the current value of the model prediction is also important. 

The situation is slightly different when PEST runs in regularisation mode. Because the 

regularisation weight factor ( in equation 2.33) is different from iteration to iteration, the 

objective function calculated during one optimisation iteration is not directly comparable with 

that calculated by PEST during the previous optimisation iteration. However the 

measurement and regularisation objective functions are comparable from optimisation 

iteration to optimisation iteration. 

Example 7.3 shows part of a run record file produced by PEST when operating in 

regularisation mode. 
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PEST begins each optimisation iteration by recording the current value of the regularisation 

weight factor (as calculated during the previous optimisation iteration) and of the 

regularisation and measurement objective functions r and m. Note that user-supplied 

regularisation weights are not multiplied by the current weight factor when calculating the 

regularisation objective function. (That is why the value of the regularisation objective 

function is comparable from optimisation iteration to optimisation iteration.) Of course, no 

weight factor is used in calculation of the measurement objective function. 

Next PEST fills the Jacobian matrix. Then, on the basis of the linearity assumption 

encapsulated in the Jacobian matrix, PEST calculates the optimal value for the regularisation 

weight factor for the current iteration. Once it has calculated the regularisation weight factor, 

it can calculate an objective function (ie. “phi”) for the current optimisation iteration using 

equation 2.33. PEST prints this phi as “the starting objective function for this itn.”. 

PEST then calculates one or a number of parameter upgrade vectors on the basis of one or a 

 

OPTIMISATION ITERATION NO.        :    5 

   Model calls so far             :   50 

   Current regularisation weight factor                  :  0.16403 

   Current value of measurement objective function       :   2.8654 

   Current value of regularisation objective function    :   2.2663 

 

   Re-calculated regularisation weight factor            :  0.32052 

   Starting objective function for this itn. (ie. phi)   :   3.0982 

 

 

       Lambda =  3.90625E-02 -----> 

          Phi =   2.0301      (  0.655 of starting phi) 

    Meas. fn. =   1.6652 

   Regul. fn. =   3.5520 

 

       Lambda =  1.95313E-02 -----> 

          Phi =   2.5257      (  0.815 of starting phi) 

    Meas. fn. =   2.0957 

   Regul. fn. =   4.1855 

 

       Lambda =  7.81250E-02 -----> 

          Phi =   2.2408      (  0.723 of starting phi) 

    Meas. fn. =   1.9340 

   Regul. fn. =   2.9866 

 

   No more lambdas: phi rising 

  . 

  . 

   Maximum   factor change:  1.650     ["ro9"] 

   Maximum relative change: 0.4643     ["ro8"] 

 

 

OPTIMISATION ITERATION NO.        :    6 

   etc 

 

Example 7.3 Extract from a PEST run record file. 
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number of different Marquardt lambdas in an attempt to lower the objective function as much 

as possible. As is apparent from equation 2.33, by lowering the objective function PEST will 

simultaneously lower one or both of r and m. Marquardt lambdas are selected using a 

similar procedure to that used when PEST is working in parameter estimation mode. For each 

parameter upgrade vector that it tests, PEST lists the measurement and regularisation 

objective functions as well as the total objective function calculated on the basis of a model 

run undertaken with the trial parameters. Note that the sum of the measurement and 

regularisation objective functions will not equal the total objective function unless the 

regularisation weight factor is unity - see equation 2.33. 

7.4.2 Composite Parameter Sensitivities 

As described in Section 5.3.2 of this manual, in the course of its execution PEST records the 

composite sensitivities of all adjustable parameters to a “parameter sensitivity file”. The 

composite sensitivity of any parameter can be considered as the magnitude of the vector 

comprising the weighted column of the Jacobian matrix corresponding to that parameter, 

divided by the number of observations. Where some of the observations taking part in the 

parameter estimation process are regularisation observations, their weights will change from 

optimisation iteration to optimisation iteration in accordance with the current value of the 

regularisation weight factor. The changing weight factor alters the values of the composite 

parameter sensitivities. Hence these sensitivities are not directly comparable from 

optimisation iteration to optimisation iteration. 

7.4.3 Covariance and Related Matrices 

If any of ICOV, ICOR or IEIG are set to 1, respective matrices are recorded in the matrix file 

case.mtt at the end of every optimisation iteration undertaken by PEST. Eigenvalue 

information (recorded at the end of this file if IEIG is set to 1) can be very useful in assessing 

the numerical stability of the regularised inversion process. If the ratio of highest to lowest 

eigenvalue is greater than about 10
8
, this is a good indication that regularisation is not 

promoting stability of this process to the extent that it should, and that perhaps PEST’s 

performance is suffering as a consequence. Perhaps PHIMLIM needs to be set higher so that 

the regularisation weight factor can receive a higher value; perhaps regularisation constraints 

need to be better formulated; perhaps one of the more advanced regularisation methodologies 

discussed in the next chapter (for example SVD-assist) need to be implemented. 

7.4.4 Condition Number File 

Computation of the matrices recorded in file case.mtt may take a while if many parameters 

are being estimated. If your interest in these files is restricted solely to gleaning information 

on numerical stability of the inversion process, don’t forget that the condition number of the 

inverse problem is also available in the condition number file case.cnd. If this number is 

greater than about 10
4
, PEST’s performance may not be optimal. 

7.4.5 Post-Run Information 

At the end of the parameter estimation process PEST records information to its run record 

file, to its residuals file, to its parameter value file, and to its observation sensitivity file.  
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Information recorded to the run record file is similar to that recorded to this file when PEST 

operates in parameter estimation mode. Included in this information are parameter 

uncertainties and the parameter covariance and associated matrices. Regularisation weights 

are multiplied by the optimised regularisation weight factor prior to computation of these 

matrices. Caution should thus be exercised in interpreting the information contained in these 

matrices. Regularisation information serves the very useful purpose of imposing a “reality 

check” on an overparameterised calibration problem, and of adding numerical stability to the 

solution of that problem. However it does not constitute part of the measurement dataset, and 

hence should not really be used in the calculation of the uncertainty associated with each 

parameter that is estimated on the basis of that dataset. 

Like the run record file produced by PEST when run in parameter estimation mode, the run 

record file produced as an outcome of a regularisation run contains a listing of residuals and 

respective weights, together with a brief statistical summary of the residuals pertaining to 

each observation group. It should be noted that wherever weights are cited, or are used in any 

statistical calculation in this section of the PEST run record file, the weights pertaining to 

regularisation observations are multiplied by the optimised regularisation weight factor, ie. by 

the regularisation weight factor used in the calculation of optimised parameter values. (Note 

that these optimised parameter values are also listed on the run record file and, of course, in 

the parameter value file). 

A similar consideration applies to information written to the residuals file at the end of the 

optimisation process. That is, where weights are used in the calculation of any quantities 

pertaining to regularisation observations listed in this file, the regularisation weights supplied 

by the user are multiplied by the optimised regularisation weight factor. Note also that 

“measurement standard deviations” and “natural weights” are not calculated for regularisation 

residuals, as these have no meaning. 

Information recorded on the observation sensitivity file produced by PEST at the end of its 

run is also weight-dependent; see Section 5.3.3 for details. In this case, just as in the cases 

discussed already, weights used for regularisation observations are equal to user-supplied 

weights multiplied by the optimal regularisation weight factor. 

It should be noted that writing of the parameter covariance, correlation coefficient and 

eigenvector matrices to the end of the run record file is optional when PEST is run in 

regularisation mode. When PEST is used in parameter estimation or predictive analysis 

modes, the ICOV, ICOR and IEIG control variables determine whether PEST records interim 

versions of these matrices to the “matrix file” case.mtt as it executes. When PEST is run in 

regularisation mode, these variables also determine whether these matrices are recorded on 

the run record file at the end of the parameter estimation process. Omission of these matrices 

can make the run record file decidedly less bulky where large numbers of parameters are 

estimated. 

7.5 Other Considerations Related to Regularisation 

7.5.1 Using PEST in Two Different Modes 

As is explained in Section 7.3, a PEST control file suitable for use by PEST in regularisation 
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mode differs from a PEST control file suitable for use by PEST in parameter estimation 

mode, in three ways, viz: 

1. the PESTMODE variable must be set to “regularisation” rather than “estimation”, 

2. an observation group named “regul” must be present, and 

3. a “regularisation” section must be present at the end of the PEST control file. 

Once a PEST control file has been built for PEST usage in regularisation mode, it is a simple 

matter to use PEST in parameter estimation mode on the basis of the same input dataset. All 

that needs to be done is to change PESTMODE from “regularisation” to “estimation”. PEST 

will then run happily in parameter estimation mode, ignoring the redundant “regularisation” 

section at the end of the PEST control file. It will treat the observation group “regul” just like 

any other group, and members of this group just like any other observations. However, if you 

wish to dispense with this regularisation information altogether, assign all members of this 

group a weight of zero. 

As was mentioned above, parameter uncertainties and other statistics recorded at the end of 

the run record file after PEST was run in regularisation mode are calculated on the basis of 

user-supplied weights for members of the observation group “regul” multiplied by the 

optimised regularisation weight factor. However if you have just undertaken a regularisation 

run and you would like to calculate parameter uncertainties (and/or the parameter covariance 

matrix and other quantities derived from this matrix) on the basis of the measurement dataset 

alone, you should undertake the following steps. 

1. After the regularisation run, create a new PEST control file with optimised parameter 

values substituted for initial parameter values, using the PARREP utility program 

supplied with PEST. 

2. Set all regularisation weights to zero. 

3. Alter PESTMODE on the new PEST control file to “estimation”.  

4. Adjust NOPTMAX to -1. As explained in Section 4.2.2 of this manual, when PEST is 

run with NOPTMAX set to -1, it undertakes enough model runs to calculate the 

Jacobian matrix, and then terminates execution with a full statistical printout at the 

end of its run record file. 

7.6 Two Examples of Regularisation 

7.6.1 A Layered Half-Space 

Electrical soundings are often undertaken by geophysicists in order to infer the variation of 

electrical resistivity with depth in the ground. A sounding is carried out by passing electrical 

current through the ground between two current electrodes placed at varying distances apart 

from each other and measuring the voltage gradient at the surface induced by this current 

flow. Interpretation of data gathered in this way is based on the premise that the earth can be 

simulated as a layered half-space. A model can be used to simulate the electrical response of 
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this half space to the currents that flow through it for different current electrode separations. 

PEST can then be used in conjunction with this model to infer the electrical properties of the 

half-space from the sounding data. 

A traditional method of inferring half-space properties is to assume that the earth under the 

measurement site is comprised of a small number of layers, each of uniform resistivity. PEST 

can then be asked to estimate the resistivity and thickness of each of these layers from the 

surficial voltage measurements. An alternative method is to assume that there are a large 

number of geoelectric layers, and that the boundaries between these layers are situated at 

logarithmically increasing depths below the surface. PEST can then be asked to estimate the 

resistivities of these layers. However because of the large number of layers (and hence 

parameters to be estimated), the level of parameter correlation (and hence of nonuniqueness) 

will be high. Thus a regularisation constraint must be enforced to stabilise the problem. This 

can take the form of a series of differences between the resistivities of successive model 

layers, the “observed value” for each such difference being zero. 

Assume that the names provided to PEST for the resistivity of each model layer are “ro1”, 

“ro2”, etc. Assume also that these parameters are log-transformed during the parameter 

estimation process. If regularisation observations are added to the “prior information” section 

of the PEST control file, this section will look something like Example 7.4. (It is assumed 

that the subsurface has been subdivided into 15 different layers.) 

Note the following points. 

 The “observed” value of each parameter difference is 0.0. 

 Each element of prior information pertains to the logarithm of the respective 

parameters rather than to the parameters themselves because the parameters are log-

transformed in the parameter estimation process. If it is the user’s desire that 

differences be formed between the parameters themselves rather than between the 

parameter logarithms, then the differences could be calculated by the model, and an 

“observed value” of 0.0 for each such observation supplied in the “observation data” 

section of the PEST control file. 

 All of the items of prior information involved in the regularisation process have been 

assigned to the observation group “regul”. 

 In the present instance, all of the regularisation observations have been assigned the 

same weight. (These weights are multiplied internally by the regularisation weight 

factor before being used by PEST to calculate a new set of parameter values.) If it is 

* prior information 

pi1 1.0 * log(ro1) - 1.0 * log(ro2) = 0.0 1.0 regul 

pi2 1.0 * log(ro3) - 1.0 * log(ro2) = 0.0 1.0 regul 

 . 

 . 

pi15 1.0 * log(ro15) - 1.0 * log(ro1) = 0.0 1.0 regul 

Example 7.4 Regularisation observations contained in the “prior information” section 

of a PEST control file. 
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the user’s desire that PEST try harder to enforce uniformity in some areas rather than 

others, then this could be requested by adopting a different weights assignment 

strategy. 

 Each parameter difference comprising the set of regularisation observations is formed 

between a certain layer and the layer underneath it. However for the bottommost layer, 

the difference is formed between that layer and the topmost layer. 

Experience has demonstrated that a regularisation scheme such as that depicted in Example 

7.4 works very well. However if an attempt is made to estimate layer thicknesses as well as 

resistivities, then the scheme breaks down. If layer thicknesses are estimated as well as 

resistivities, then the regularisation observations on their own do not provide a sufficiently 

strong constraint on parameter values to constitute a suitable regularisation scheme. The 

reason for this is obvious when it is realised that if all regularisation conditions were exactly 

obeyed and the subsurface was uniform, layer thicknesses would be completely 

indeterminate, for layer thicknesses have no meaning in a uniform half-space. 

7.6.2 A Heterogeneous Aquifer 

Under steady-state conditions, the flow of ground water through the subsurface is 

mathematically described by Darcy’s law and constrained by the conservation of mass. These 

two laws can be combined into a single partial differential equation which can be used to 

calculate the distribution of hydraulic heads throughout a study area for different dispositions 

of sources and sinks of water, and for different system boundary conditions. Where the shape 

of the model domain is complex, and/or the hydraulic conductivity of the porous medium 

through which the water flows is nonuniform, this equation must be solved numerically using 

a technique such as the finite difference, finite element or analytical element method.  

In most ground water modelling applications, the hydraulic conductivity at different locations 

within the model domain is only poorly known. However if the strengths of the various 

sources and sinks of water and the characteristics of the pertinent boundary conditions 

affecting the system are known, then hydraulic conductivities in different parts of the domain 

can be inferred from borehole water level measurements using PEST (assuming that the 

coverage of observation bores is good enough). However before doing this, the user must 

decide on an appropriate parameterisation strategy for the model domain. 

A common strategy is to subdivide the model domain into zones of assumed parameter 

constancy based on geological or other information. Unfortunately, such information is often 

absent or unreliable. Furthermore, there can be a considerable degree of variation of hydraulic 

conductivity within each geological unit as a result of many factors including lithological 

heterogeneity, differential weathering, structural features created during tectonic events, etc. 

Thus in many instances it is necessary to consider a more complex parameterisation scheme. 

A simple but effective scheme is to divide the model domain into a large number of 

“parameter blocks” (or rectangles) arranged in rows and columns in a grid-like structure, and 

to then estimate the hydraulic conductivity within each such block. Due to the large number 

of parameters requiring estimation, a suitable regularisation scheme is essential. One such 

scheme is to request that differences between block hydraulic conductivities (or their 

logarithms) in both the row and column directions (assuming that the blocks are arranged in a 
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grid pattern) be reduced to a minimum. The regularisation information can be supplied as 

prior information, or the parameter differences comprising this information can be calculated 

by the model. In the latter case, they should be provided to PEST as a series of observations. 

Hence whenever the model is run, it provides not just the model-generated counterparts to the 

heads measured at boreholes, but also a series of hydraulic conductivity differences based on 

the current set of parameters used by the model. If the pertinent regularisation observations 

are named “d1”, “d2”, etc, part of the “observation data” section of the PEST control file may 

appear as in Example 7.5. 

The following points should be noted. 

 The “observed value” of each regularisation observation is zero. 

 All regularisation observations belong to the observation group “regul”. 

 Each regularisation observation should pertain to a single difference between a 

particular parameter and its neighbour in either the row or column direction.  

 For each parameter block, differences should be taken in both the row and column 

directions (resulting in two regularisation observations). However where a geological 

boundary occurs between two neighbouring blocks, the difference between parameter 

values on either side of that boundary should be omitted from the regularisation 

dataset. In this way the regularisation scheme informs PEST that the preferred 

locations of hydraulic property contrasts are at recognised geological boundaries. 

However heterogeneity elsewhere will be accommodated if required. 

Other parameterisation schemes, together with appropriate regularisation methodologies, can 

be used. For example, a “pilot points” methodology is very attractive. Using this technique, 

PEST is asked to assign hydraulic conductivities to discrete points within the model domain. 

The hydraulic conductivity at each cell or node of the numerical ground water model is then 

calculated from the hydraulic conductivities assigned to these pilot points using a spatial 

interpolation algorithm such as kriging. If appropriate, the interpolation algorithm can be 

tailored to the geology such that different subsets of pilot points are used as a basis for spatial 

interpolation within different mapped geological units. For each subset of pilot points a series 

of differences can be formed between the parameter values assigned to these points in order 

to create a regularisation scheme not unlike that described above. A Delauney triangulation of 

the model domain based on pilot point locations can be used to define the set of neighbours to 

each such point; a parameter difference will then be taken for each neighbouring pair of 

points. The weight used for each regularisation observation could be independent of the 

distance between the points, or could be defined as a function of this distance. Where a 

geological boundary passes between two points, then either the difference would not be taken, 

o1 0.0 1.0 regul 

o2 0.0 1.0 regul 

o3 0.0 1.0 regul 

etc 

Example 7.5 Regularisation observations contained within the “observation data” 

section of a PEST control file. 
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or the weight assigned to the pertinent regularisation observation would be zero. 

A suite of utility software that implements the use of pilot points for spatial parameter 

definition in conjunction with the United States Geological Survey ground water flow model 

MODFLOW is available through the “Ground Water Data Utilities” supplied with PEST. 
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8. Advanced Regularisation and SVD-Assist 
Don’t forget to see the addendum to this manual for further details of PEST functionality, 

particularly as it pertains to highly parameterized inversion and uncertainty analysis. 

For the sake of convenience, current recommended settings for PEST usage are now listed. 

Some of these differ slightly from those provided in this chapter. See the addendum for 

further details. A complete re-write of PEST documentation is currently underway. 

If using truncated singular value decomposition to estimate parameters (which is good 

practice) do the following. 

1. Set initial parameters equal to their preferred values (i.e. “preferred” from an expert 

knowledge point of view). 

2. Assign parameters of different types to different parameter groups. 

3. If necessary add preferred value Tikhonov regularization using the ADDREG1 utility. 

Leave the target measurement objective function low if doing a “target finder” PEST 

run; alternatively set it to a value that is commensurate with the level of 

measurement/structural noise. 

4. Add a “singular value decomposition” section to the PEST control file. Set 

SVDMODE to 1, NUMSING to the total number of estimable parameters and 

EIGHTHRESH to 5e-7. 

5. Set RLAMBDA1 to 10, and RLAMFAC to -3. This guarantees rapid movement of the 

Marquardt lambda. 

If undertaking SVD-assisted inversion, undertake the above steps. However, before running 

PEST, set NOPTMAX to -2 or -1 (i.e. minus 2 or minus 1). PEST will then calculate the 

Jacobian matrix and cease execution. Then run SVDAPREP as described in this chapter. 

How many super parameters should you choose? Choose as many as you have computing 

resources to accommodate. The more super parameters that you use, the more immune is the 

SVD-assisted inversion process from the effects of model nonlinearity. Meanwhile, by 

estimating super parameters using the truncated singular value decomposition method, only 

as many of these super parameters will be estimated as the data can support. Thus 

unconditional numerical stability is guaranteed. Furthermore, because PEST can calculate 

super parameter sensitivities from base parameter sensitivities for the first iteration of the 

SVD-assisted inverse process, you get your first iteration for free. 

Do not worry about some of the suggestions provided in this chapter regarding determination 

of how many super parameters to employ. Just tell SVDAPREP that you want to estimate as 

many (or as few) as you can, given the computing resources at your disposal. Then use 

singular value decomposition to keep things stable. Add Tikhonov regularisation as early in 

the process as you like (using ADDREG1).   
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8.1 The Advantages of Regularisation 

The previous section discussed PEST’s regularisation functionality. In that section, and in 

Section 2.1.10, regularisation was presented as a constrained optimisation process in which 

parameter uniqueness was achieved through imposition of a set of constraints imposed on 

parameter values or on relationships between these values, from which minimal deviation is 

sought in order to provide an acceptable fit between model outputs and field measurements. 

This type of regularisation is broadly referred to as “Tikhonov Regularisation”. An alternative 

regularisation methodology, through which a unique solution can also be obtained to an 

underdetermined parameter estimation problem, is that referred to as “truncated singular 

value decomposition”, a methodology that will be discussed in this chapter. 

No matter what method is used to achieve a unique solution to the parameter estimation 

problem (and with it numerical stability of the inverse problem solution process), it must 

never be forgotten that the unique solution established in this manner, is not “the answer at 

the back of the book”. The calculated solution is dependent on the regularisation 

methodology used to achieve it; nonuniqueness is a fundamental outcome of data 

insufficiency rather than the mathematics of a solution scheme. Hence if two different 

regularisation methodologies are used to solve the same ill-posed inverse problem, they will 

probably result in the estimation of different parameter sets. These sets will probably have 

something in common, but they will in general be different. It is then entirely possible that 

model predictions made with these two sets of parameters will also be different. Thus there is 

a level of “irreducible uncertainty” associated with predictions made by most environmental 

models. 

The “principal of parsimony” is often suggested as the way to achieve solution to a 

fundamentally ill-posed parameter estimation problem. By designing a model, or selecting the 

parameters that will be optimised, such that estimated parameters number only a few, it is 

said that nonuniqueness issues can be avoided. While this is a valid mechanism for pursuing 

parameter nonuniqueness in many instances, it should not be forgotten however that the 

model simplification process undertaken in order to achieve parameter parsimony is itself a 

form of regularisation; the fundamental complexity of the underlying environmental system 

does not disappear simply because it is represented in a simplistic manner. Thus this kind of 

“manual regularisation” too has its cost, this being the fact that predictions made with an 

apparently well calibrated model may still be in error as a result of the fact that parameter 

uniqueness was achieved only at the cost or introducing some kind of de facto (and to some 

extent arbitrary) regularisation device. 

The advantages of using mathematical regularisation such as that which is available in PEST, 

over manual regularisation in accordance with the dictates of the principal of parsimony, is 

that in the former case model simplification is undertaken as part of the parameter estimation 

process itself. Because of this, the simplification necessary to achieve parameter uniqueness 

takes place in the context of the information available for parameter identification; the model 

is thus not “over-simplified”, or simplified in a manner that ignores some of the data available 

for parameter estimation. Thus every ounce of information is extracted from the calibration 

dataset.  

The first part of this chapter continues the discussion of the previous chapter, showing how 

more sophistication can be added to the Tikhonov regularisation methodologies discussed 
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therein. The second part of this chapter introduces singular value decomposition as a 

parameter estimation methodology. Following this, PEST’s unique “SVD-assist” 

methodology is discussed, this being a method that combines the two main types of 

regularisation techniques into a single, extremely powerful methodology, that not only results 

in enhanced numerical stability of the inversion process, but can also result in enormous 

efficiency gains, thus allowing the use of regularised inversion in conjunction with complex 

models whose run times are large. 

This chapter finishes by describing some memory conservation functionality that has been 

introduced to PEST in order to allow it to better accommodate the estimation of hundreds, or 

even thousands, of parameters, using thousands, or even tens of thousands of regularisation 

constraints.  

8.2 Multiple Regularisation Groups 

8.2.1 Definition of Multiple Groups 

In the previous chapter it was asserted that an observation or prior information item must be 

assigned to the observation group “regul” if it is to be used in the regularisation process, and 

if the residual associated with this item is thus to contribute to the regularisation objective 

function rather than to the measurement objective function. In fact, PEST can accommodate 

the existence of multiple regularisation groups rather than the single group “regul”. Any 

observation group whose name begins with the letters “regul” is considered to be a 

“regularisation group”. Thus if PEST is run in regularisation mode, members of the 

observation groups “regul1”, “regular”, etc will be considered to be regularisation 

observations or regularisation prior information equations. 

Multiple regularisation groups can be of use where different types of information are 

employed in the regularisation process. As is explained in the previous chapter, in 

implementing the regularised inversion process, PEST calculates a regularisation weight 

factor by which the regularisation objective function is multiplied before being combined 

with the measurement objective function to form the total objective function. However unless 

PEST is instructed otherwise (see below) the relative weighting assigned to different 

components of the regularisation objective function must be decided by the user. This can be 

difficult to do if the contribution of each regularisation group to the total regularisation 

objective function is unknown. By allowing different types of regularisation observations or 

prior information to be placed into groups of different name, PEST is able to print the 

contribution made by these groups to the objective function. This, in turn, allows the user to 

ensure that one such group does not dominate the regularisation objective function, and is not 

dominated by other groups. 

8.2.2 Automatic Inter-Group Weights Adjustment 

One method of assigning relative weights to different regularisation groups is to allow PEST 

to calculate relative weights itself. PEST has two methods of calculating relative 

regularisation group weights; if “automatic weights adjustment” is activated, the user must 

choose between the two. These methods are now described. 
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In the first method, PEST calculates the total “composite sensitivity” of each observation 

group involved in the regularisation process. For a particular observation or prior information 

equation, the “composite observation sensitivity” is defined as (see section 5.3.3) 

sj ={Q(JJ
T
)}j,j

1/2 
/n  

That is, the composite sensitivity of observation j is the magnitude of the j’th row of the 

Jacobian matrix multiplied by the weight associated with that observation; this magnitude is 

then divided by the number of adjustable parameters. It is thus a measure of the sensitivity of 

that observation to all parameters involved in the parameter estimation process. Note that 

observation sensitivities are listed in file case.seo upon cessation of PEST execution, where 

case is the filename base of the PEST control file. 

The total composite observation sensitivity of a particular observation group is calculated by 

summing the composite sensitivities of all observations or prior information equations 

comprising that group.  

In implementing automatic inter-group weights adjustment, PEST multiplies the weights 

pertaining to all members of each regularisation group by a certain group-specific factor. This 

factor is chosen so that, after this operation has been performed, the total composite 

sensitivities of all regularisation groups are the same. It is important to note, however, that in 

performing these calculations, relative weighting within each observation group remains 

unchanged. 

The second method of inter-group weights adjustment is similar, but a little simpler. PEST 

simply sums the weights pertaining to all members of each regularisation group and then 

calculates a relative weight factor for each group such that the sum of these weights is the 

same for all regularisation groups. Once again, relative within-group weighting is preserved. 

8.2.3 The IREGADJ Variable 

An optional regularisation control variable, named “IREGADJ” (for “Inter-REGularisation 

group weights ADJustment”) controls the operation of this aspect of PEST’s behaviour. As is 

shown in the following excerpt from a PEST control file, if present, this variable is the third 

element on the third line of the “regularisation” section. 

 

If IREGADJ is set to zero, no inter-regularisation group weights adjustment is undertaken. If 

it is set to 1, then inter-group weights adjustment takes place according to the first of the 

protocols discussed above, ie. on the basis of total composite observation group sensitivities. 

If it is supplied as 2, the second protocol is used; that is, weight summation is used as a basis 

for inter-regularisation group weights adjustment. 

* regularisation 

PHIMLIM  PHIMACCEPT FRACPHIM 

WFINIT  WFMIN  WFMAX 

WFFAC  WFTOL IREGADJ 

Example 8.1 Format of the “regularisation” section of the PEST control file. 
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8.3 Adaptive Regularisation 

8.3.1 Introduction 

This section explains a method implemented in PEST for the calculation of optimal weights 

for different regularisation subgroups. This method cannot be guaranteed to work on all 

occasions; however there are, nevertheless, calibration contexts where its use may prove very 

effective. 

8.3.2 Concepts 

Development of an adaptive regularisation strategy is based on the need to make 

regularisation constraints tighter for those parameters for which the information content of the 

calibration dataset is low, hence allowing values to be assigned to those parameters through 

the inversion process, while endowing that process with numerical stability. Relative weights 

for different regularisation subgroups can be set by the user, or can be calculated by PEST 

using the strategies discussed in the previous section. A third, more sophisticated, method is 

now described. 

As has already been discussed, so-called “Tikhonov regularisation” is a constrained 

optimisation process. In implementing this process PEST calculates a weight factor to apply 

to all regularisation observation groups; in applying this factor, relative weighting between 

regularisation groups (whether assigned by the user or calculated by PEST using either of the 

above schemes) is preserved. While this process often results in parameter sets which are 

both aesthetically pleasing and physically sensible (if regularisation constraints are properly 

chosen), it does have some numerical drawbacks. In particular, when PEST reduces the 

regularisation weight factor to allow a better fit between model outputs and field 

measurements to be achieved for certain observations, the weights assigned to regularisation 

observations which pertain to data-insensitive parameters also get reduced. These parameters 

can then become a burden on the parameter estimation process, for neither the data, nor the 

regularisation observations/prior information equations then have much to say about them. 

Being insensitive or highly correlated, they can take on unrealistic values at best, and can 

seriously degrade the numerical performance of the parameter estimation process at worst 

through raising the condition number of the “normal matrix” which PEST must invert in 

order to calculate the parameter upgrade vector. 

This problem can be addressed if a way can be found to automatically increase the weights 

assigned to regularisation observations and prior information equations that pertain to 

insensitive parameters, while decreasing the weights assigned to those that pertain to sensitive 

parameters. This would allow easy adjustment of the latter parameters in order to achieve a 

high level of model-to-measurement fit; insensitive parameters, on the other hand, would be 

more tightly constrained by regularisation conditions, thus becoming sensitive as far as the 

“normal matrix” is concerned, and thereby allowing more stable inversion of that matrix. The 

weight adjustment methodologies described in the previous section accomplish this aim to 

some extent; however the amount of inter-group regularisation weight adjustment that is 

necessary to compensate for intergroup sensitivity differentials is mostly unknown; hence 

these schemes may not always work. 

As an alternative to these schemes, PEST includes a novel methodology for “adaptive 
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regularisation” whereby relative regularisation group weights are actually estimated by PEST 

as parameters whose values are optimised through the regularised inversion process. For 

activation of this adaptive regularisation process, a set of “inverse weight” parameters must 

be defined, each such parameter being a factor by which the inverse of the weight assigned to 

a particular regularisation group is multiplied. The names of these parameters must begin 

with “iw_”; the second part of the name of each of these parameters must be comprised of the 

name of the regularisation group to which it pertains. Use of this naming strategy allows 

PEST to link each such parameter to a particular regularisation group. 

Each “iw_” parameter must be cited in the “parameter data” section of the PEST control file, 

just like any other parameter estimated by PEST; it must be log-transformed in that citation. 

Each “iw_” parameter must also be cited in a single prior information equation of the type:- 

pi1 1.0 * log(iw_regul1) = -3 1.0 regul_iw 

All such equations must be assigned to a single regularisation group – a group that is reserved 

for prior information equations of this type (ie. for prior information equations that cite only 

“iw_” parameters); the name of this group does not matter (as long as it begins with “regul”, 

thus signifying that it is a regularisation group). In these prior information equations, the log 

of each “iw_” parameter is assigned a low number. Thus the weight to which the parameter 

pertains (ie. the weight assigned to a particular regularisation group) is assigned a high 

number. Operation of PEST’s regularisation functionality will attempt to ensure that 

regularisation weights are not made so high that the user-specified level of model-to-

measured fit (as supplied through the regularisation control variable PHIMLIM) is 

compromised, unless the model is simply incapable of achieving this level of fit. In doing 

this, however, the adaptive regularised inversion process will attempt to enforce 

regularisation constraints as tightly as possible, thus promoting numerical stability. By 

assigning different regularisation constraints to different regularisation subgroups, PEST then 

has the capacity to differentially enforce these constraints to the maximum extent possible 

(thus accommodating differential parameter sensitivity), compatible with calibration of the 

model.  

Experience in using this methodology has demonstrated that it sometimes works extremely 

well, and at other times it does not work as well. A sign that it is working well is the 

existence of low problem condition numbers where high condition numbers existed before. 

Recall that the problem condition number can be calculated as the square root of the ratio of 

highest to lowest eigenvalue (see the matrix file case.mtt or run record file case.rec), or read 

directly from the condition number file case.cnd; a value significantly lower than 10
4
 is 

desirable. Ideally the method should work best where the following conditions are met:- 

1. 20-30 parameters are being estimated. 

2. For each such parameter there is a preferred value which is assigned through a prior 

information equation, with each such prior information equation being assigned to its 

own regularisation group. Thus PEST is asked to calibrate the model while ensuring 

minimal deviation of parameter values from preferred values. 

3. One such “iw_” parameter is assigned to each of these regularisation groups; thus each 

model parameter is accompanied by a complementary “iw_” parameter. 

In more complex modeling cases where many more parameters are estimated, these “iw_” 
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parameters can be applied to regularisation subgroups which pertain to more than one model 

parameter. In this case the method may not have enough flexibility to achieve maximum 

efficiency, as there may be a high degree of sensitivity variation for parameters whose 

regularisation equations comprise a single observation group. In many cases this problem can 

be overcome by creating new regularisation subgroups in which regularisation constraints 

pertaining to more insensitive parameters are isolated in their own subgroups; an “iw_” 

parameter is then assigned to each such subgroup. This strategy gives PEST the freedom to 

assign larger weights to prior information equations pertaining to data-insensitive parameters, 

thus constraining them more tightly. The overall regularisation process then ensures that the 

weights attached to regularisation constraints pertaining to data-sensitive parameters are 

reduced low enough to ensure good model-to-measurement fit. 

8.3.3 Implementation of the Method 

It is assumed that a PEST control file already exists in which PEST is instructed to run in 

regularisation mode. It is also assumed that the prior information equations or observations 

which define regularisation constraints have been assigned to a number of different 

regularisation groups, possibly one for each such equation or observation if they do not 

number too many. If this is not possible, then some attempt should be made to group 

regularisation observations and/or prior information equations such that regularisation 

constraints which pertain to parameters of like sensitivity belong to the same group.  

The following steps should then be undertaken. 

1. For each regularisation group add a parameter “iw_regul*” to the “parameter data” 

section of the PEST control file, where “regul*” is the name of the regularisation 

group. Make sure that each such parameter is log transformed and has an initial value 

of 1. Give each such parameter widely separated upper and lower bounds. Adjust 

NPAR in accordance with the introduction of these new parameters.  

2. Assign all “iw_” parameters to a separate parameter group and add the name of this 

group to the “parameter groups” section of the PEST control file (and increase 

NPARGP by 1). The values assigned to variables pertaining to this group are 

inconsequential as PEST calculates derivatives for “iw_” parameters internally, rather 

than by finite differences. Note also that “iw_” parameters must not appear in any 

template file, for no component of the model needs to read them. 

3. For each “iw_” parameter, add an equation of the type shown above to the “prior 

information” section of the PEST control file. Increase NPRIOR accordingly. Assign 

all of these new prior information equations to a new regularisation group. Add the 

name of this group to the “observation groups” section of the PEST control file and 

increase NOBSGP accordingly. 

Experience to date has shown that setting the regularisation control variable IREGADJ to 1 is 

important to the success of adaptive regularisation. However it is not a foregone conclusion 

that future experience will not dictate otherwise. 

Example 8.1 depicts a PEST control file in which adaptive regularisation is implemented. 
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pcf 
* control data 
restart regularisation 
24 19 3 15 8  
2 3 single point 
5 2 0.3 0.03 10 
2 3 0.001 0 
0.5 
30 0.01 3 3 0.01 3 
1 1 1 
* parameter groups 
ro  relative 0.001 0.0001 switch 2 parabolic 
hhh relative 0.001 0.0001 switch 2 parabolic 
iw  relative 0.001 0.0001 switch 2 parabolic 
* parameter data 
ro1  log factor 1.000000 0.1 10000 ro 1 0 
ro2  log factor 1.000000 0.1 10000 ro 1 0 

ro3  log factor 1.000000 0.1 10000 ro 1 0 
ro4  log factor 1.000000 0.1 10000 ro 1 0 
ro5  log factor 1.000000 0.1 10000 ro 1 0 
ro6  log factor 1.000000 0.1 10000 ro 1 0 
ro7  log factor 1.000000 0.1 10000 ro 1 0 
ro8  log factor 1.000000 0.1 10000 ro 1 0 
ro9  log factor 1.000000 0.1 10000 ro 1 0 
ro10 log factor 1.000000 0.1 10000 ro 1 0 
iw_regul1 log factor 1.0 1.0e-10  1e10 iw  1 0 
iw_regul2 log factor 1.0 1.0e-10  1e10 iw  1 0 
iw_regul3 log factor 1.0 1.0e-10  1e10 iw  1 0 
iw_regul4 log factor 1.0 1.0e-10  1e10 iw  1 0 
iw_regul5 log factor 1.0 1.0e-10  1e10 iw  1 0 
h1   fixed factor  0.25 0.05 100 hhh 1 0 
h2   fixed factor  0.50 0.05 100 hhh 1 0 
h3   fixed factor  1.00 0.05 100 hhh 1 0 
h4   fixed factor  2.00 0.05 100 hhh 1 0 
h5   fixed factor  4.00 0.05 100 hhh 1 0 
h6   fixed factor  8.00 0.05 100 hhh 1 0 

h7   fixed factor  16.0 0.05 100 hhh 1 0 
h8   fixed factor  32.0 0.05 100 hhh 1 0 
h9   fixed factor  64.0 0.05 100 hhh 1 0 
* observation groups 
obsgp1 
obsgp2 
regul1 
regul2 
regul3 
regul4 
regul5 
regul_iw 
* observation data 
ar1 1.21038 1 obsgp1 
ar2 1.51208 1 obsgp1 
ar3 2.07204 1 obsgp1 
ar4 2.94056 1 obsgp1 
ar5 4.15787 1 obsgp1 
ar6 5.7762 1 obsgp1 

ar7 7.7894 1 obsgp1 
ar8 9.99743 1 obsgp1 
ar9 11.8307 1 obsgp2 
ar10 12.3194 1 obsgp2 
ar11 10.6003 1 obsgp2 
ar12 7.00419 1 obsgp2 
ar13 3.44391 1 obsgp2 
ar14 1.58279 1 obsgp2 
ar15 1.1038 1 obsgp2 
ar16 1.03086 1 obsgp2 
ar17 1.01318 1 obsgp2 
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ar18 1.00593 1 obsgp2 
ar19 1.00272 1 obsgp2 
* model command line 
model.bat 
* model input/output 
ves1r.tpl a_model.in1 
ves2r.tpl a_model.in2 
ves1.ins a_model.ot1 
ves2.ins a_model.ot2 
ves3.ins a_model.ot3 
* prior information 
pi1  1.0 * log(ro1)  - 1.0 * log(ro2)  = 0.0 1.0 regul1 
pi2  1.0 * log(ro2)  - 1.0 * log(ro3)  = 0.0 1.0 regul1 
pi3  1.0 * log(ro3)  - 1.0 * log(ro4)  = 0.0 1.0 regul2 
pi4  1.0 * log(ro4)  - 1.0 * log(ro5)  = 0.0 1.0 regul2 
pi5  1.0 * log(ro5)  - 1.0 * log(ro6)  = 0.0 1.0 regul3 
pi6  1.0 * log(ro6)  - 1.0 * log(ro7)  = 0.0 1.0 regul3 
pi7  1.0 * log(ro7)  - 1.0 * log(ro8)  = 0.0 1.0 regul4 
pi8  1.0 * log(ro8)  - 1.0 * log(ro9)  = 0.0 1.0 regul4 

pi9  1.0 * log(ro9)  - 1.0 * log(ro10) = 0.0 1.0 regul5 
pi10 1.0 * log(ro10) - 1.0 * log(ro1)  = 0.0 1.0 regul5 
pii1 1.0 * log(iw_regul1)  = -3 1.0 regul_iw 
pii2 1.0 * log(iw_regul2)  = -3 1.0 regul_iw 
pii3 1.0 * log(iw_regul3)  = -3 1.0 regul_iw 
pii4 1.0 * log(iw_regul4)  = -3 1.0 regul_iw 
pii5 1.0 * log(iw_regul5)  = -3 1.0 regul_iw 
* regularisation 
1.0 1.05 
1 1.0e-10 1.0e10 
1.3  1.0e-2  1 

 

Example 8.1 A PEST control file demonstrating the use of adaptive regularisation. 

A question arises as to what value should be assigned to the right hand side of each prior 

information equation involving an “iw_” parameter. Because these parameters are log-

transformed (it has been found that this is preferable to no transformation) a preferred value 

of zero cannot be assigned. A value of -3 is suggested. PEST has been programmed to adjust 

this value automatically upwards or downwards for each such prior information equation 

should the necessity arise. The right hand side will be adjusted downwards such that it is 

always lower than the current value of the pertinent “iw_” parameter; upward adjustment 

depends on the sensitivity of each “iw_” parameter relative to other parameters involved in 

the parameter estimation process. The final values used in these prior information equations 

can be found in the run record and residuals files written by PEST, tabulated as their 

“measured values” in pertinent data tables. 

8.4 Truncated Singular Value Decomposition 

8.4.1 General 

In Chapter 2 of this manual it was shown that the parameter upgrade vector u can be 

calculated using the equation:- 

 u = (J
t
QJ + I)

-1
J

t
Qr        (8.1) 

where  is the Marquardt lambda. Problems arise when the matrix (J
t
QJ + I)

 
 cannot be 

inverted as a result of singularity, or near-singularity, incurred through either parameter 
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insensitivity or correlation. The more parameters that are involved in the parameter estimation 

process, the more likely is this to occur. 

The problem can be overcome through reducing the dimensionality of the parameter 

estimation problem. The singular value decomposition (SVD) process allows the eigenvectors 

and eigenvalues of the matrix (J
t
QJ + I) to be calculated. When  is zero, these 

eigenvectors are the same as the eigenvectors of the parameter covariance matrix calculated 

by PEST, while the eigenvalues of this matrix are the inverses of parameter covariance matrix 

eigenvalues. 

If a matrix is singular then at least one of its eigenvalues is zero; if it is near-singular, then at 

least one of them is near-zero. The eigenvector(s) corresponding to these zero or near-zero 

eigenvalues span the null space (or a space of gross insensitivity) of the matrix (J
t
QJ + I). 

The use of a non-zero Marquardt lambda can often rescue a matrix from singularity, and thus 

reduce the dimensionality of the null space to zero; however the cost of doing this is often 

extremely slow convergence of the inversion process. In an ideal world  should be zero or 

very small, for then parameters are upgraded most efficiently; however inversion of a singular 

matrix must be avoided at all costs. 

Use of the Marquardt lambda can be dispensed with if the dimensionality of the problem is 

reduced to the dimensionality of the non-null space. This can be achieved if parameter 

combinations corresponding to null space directions are effectively assigned the value of zero 

(and hence not estimated), with only parameter combinations belonging to the solution space 

thus being estimated. This can be achieved if the parameter estimation process is “truncated” 

such that only “sensitive combinations of parameters” (these combinations corresponding to 

eigenvectors whose eigenvalues are significantly non-zero) are estimated. In cases where 

parameters have spatial connotations, these parameter combinations often correspond to 

parameter distributions of low spatial frequency. Thus truncation of the parameter estimation 

problem is equivalent to estimating the more broad scale features of the spatial distribution of 

system properties. Fine detail (which normally corresponds to eigenvectors whose 

eigenvalues are low) is thus omitted from the parameter estimation process, because the 

information content of the calibration dataset is simply insufficient to allow estimation of this 

level of detail. 

When using PEST’s SVD functionality, the user is provided with two options for limiting or 

“truncating” the number of singular values (ie. eigenvalues in the present context) employed 

in the parameter estimation process. Truncation can occur at a user-specified number of 

singular values (ie. degrees of freedom in parameter space), or it can occur at a level below 

which the ratio of all remaining eigenvalues to the maximum system eigenvalue is less than a 

certain threshold; PEST monitors both of these criteria and chooses the more restrictive one.  

The appropriate number of degrees of freedom to employ in any parameter estimation context 

is job-specific. However the eigenvalue truncation threshold ratio is a criterion of more 

general applicability; in most cases it should be set at 10
-6

 or 10
-7

. However if noise in 

derivatives calculation is a problem then it should be set higher (for example 10
-3

 or 10
-4

). For 

well behaved problems it may be possible to set it lower. If it is desired that this eigenvalue 

ratio threshold determine the truncation level (which is mostly the best strategy to adopt), 

then set the maximum number of degrees of freedom to a high number. (Recall that the 

condition number of a parameter estimation problem is approximated by the square root of 

the highest to lowest eigenvalue of the “normal matrix”; hence by setting the eigenvalue 
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truncation limit at 10
-8

, a condition number of 10
4
 is assured.) 

Ideally the Marquardt lambda (PEST variable RLAMDBA1) should be set to zero when using 

SVD. Also set the number of trial lambdas (NUMLAM) to one. 

8.4.2 Implementation of SVD with PEST 

To implement SVD in the parameter estimation process, a special “singular value 

decomposition” section must be added to the PEST control file. This should be added just 

after the “control data” section and just before the “parameter groups” section of the control 

file; see Example 8.2 which depicts the first part of a PEST control file which includes a 

“singular value decomposition” section. Note that if SVD is not implemented in the 

parameter estimation process, then it can be de-activated within the “singular value 

decomposition section”, or this section can be omitted altogether.  

 

Example 8.3 shows the structure of the singular value decomposition section of the PEST 

control file, together with the names of the variables that appear in this section. 

 

 

Variables governing the operation of the SVD process in PEST are now described. 

SVDMODE 

SVDMODE should be set to zero to deactivate the use of singular value decomposition by 

PEST; it should be set to one to turn it on. If SVD is deactivated, then PEST solves for 

parameter upgrades with its usual matrix equation solver.  

pcf 
* control data 
restart estimation 
19 19 2 0 3 
2 3 single point 
0 2 0.3 0.03 1 
2 3 0.001 0 
0.5 
30 0.01 3 3 0.01 3 
1 1 1 
* singular value decomposition 
1 
10 1.0e-3 
1 
* parameter groups 
ro relative 0.001 0.0001 switch 2 parabolic 
hhh relative 0.001 0.0001 switch 2 parabolic 

Example 8.2 Part of a PEST control file in which singular value decomposition is 

employed. 

* singular value decomposition 
SVDMODE 
MAXSING EIGTHRESH 
EIGWRITE 

Example 8.3 Structure of the “singular value decomposition” section of the PEST 

control file. 
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MAXSING 

MAXSING is the maximum number of singular values to include in the inversion process 

(equivalent to the maximum number of eigenvalues, and the maximum number of degrees of 

freedom in parameter solution space). This is problem-dependent. Experience with a 

particular problem may dictate its optimal value; set it high enough to obtain a good fit 

between model outputs and field data, but not so high that numerical instability or 

“overfitting” of model outputs to measurements occurs, resulting in unrealistic parameter 

values. Alternatively, set MAXSING very high (for example, equal to the number of 

estimable parameters) and let EIGTHRESH determine the number of singular values 

employed in the parameter estimation process. 

EIGTHRESH 

EIGTHRESH is the ratio of lowest to highest eigenvalue at which truncation is implemented; 

this then determines the number of singular values that are used in the inversion process, for 

only those singular values are used whose ratio to the maximum singular value is above this 

threshold. Limited experience to date indicates that 10
-6

 of 10
-7

 is a good setting for 

EIGTHRESH; set it higher (eg. 10
-5

) if numerical instability or over-fitting occurs. 

EIGWRITE 

When SVD is activated, PEST writes a file named case.svd in addition to its normal output 

files. This contains singular values (arranged in decreasing order) and corresponding 

eigenvectors of (J
t
QJ + I) computed on each occasion that singular value decomposition is 

carried out. It also records the number of singular values that are actually used in computation 

of the parameter upgrade vector (ie. the number of singular values remaining after 

truncation). Singular value decomposition is carried out at least once per iteration 

(corresponding to the testing of different Marquardt lambdas - including the sole Marquardt 

lambda value of zero if RLAMBDA1 is set to zero and NUMLAM is set to 1 as suggested 

above); multiple incidences of singular value decomposition are required in any optimization 

iteration in which parameters hit their bounds.  

The SVD output file can become very large; not all of the information contained in it is 

always worth reading. However an inspection of singular values can often provide assistance 

in determining best values for MAXSING and EIGTHRESH. By setting the EIGWRITE 

variable to 0, only singular values (and not their corresponding eigenvectors), are written to 

case.svd, thus reducing its size considerably. The number of singular values used during each 

parameter upgrade is also recorded. 

As stated above, it is strongly suggested that the initial Marquardt lambda (RLAMBDA1) be 

set to 0.0 and the number of Marquardt lambdas tested per iteration (NUMLAM) be set to 1 

when using SVD; these variables appear in the “control data” section of the PEST control 

file. As stated above, one of the benefits incurred through use of the Marquardt lambda is its 

ability to raise the ratio of lowest to highest eigenvalue in difficult parameter estimation 

settings, thus stabilising the parameter estimation process. However this can conflict with the 

use of SVD, which can often achieve the same outcome much more efficiently. Hence in 

most (but not all) cases, use of a single Marquardt lambda value of zero optimises the 

performance of truncated SVD in achieving fast, stable parameter estimation.  
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8.4.3 SVD and Tikhonov Regularisation 

Truncated SVD is a very powerful form of regularisation. Hence it can (and sometimes 

should) be used as an alternative to constrained optimisation regularisation (or “Tikhonov 

regularisation”) described in the previous chapter. Both regularisation methods have 

advantages and disadvantages. Truncated SVD guarantees numerical stability if enough 

singular values have been omitted from the inversion process. However there is no control 

variable equivalent to PHIMLIM when truncated SVD is employed as a regularisation device; 

hence “over-fitting” can only be prevented through lowering the number of singular values 

used in the inversion process. Unfortunately this reduces goodness of fit in discrete quanta, 

rather than continuously. Tikhonov regularisation, on the other hand, allows the user to obtain 

the goodness or looseness of fit that he/she specifically requests. Furthermore, estimated 

parameter values tend to be more physically and aesthetically pleasing if regularisation 

constraints are designed in accordance with expected parameter values and/or distributions. 

However, numerical stability cannot always be guaranteed because the imposition of 

regularisation constraints does not always result in parameter uniqueness. Hence trial and 

error in the relative weighting of different regularisation groups, and/or the use of some form 

of adaptive regularisation scheme such as that described in the previous section is often 

required.  

If you wish to replace an existing Tikhonov-based PEST input dataset, with an input dataset 

in which regularisation is accomplished using truncated SVD, this is easily achieved by 

undertaking the following steps:- 

1. Remove all members of regul* observation groups from the PEST input dataset 

(simply set NPRIOR to zero if regul* groups comprise the entirety of prior 

information). 

2. Set PESTMODE to “estimation”. 

3. Add a “singular value decomposition” section to the PEST control file, setting 

SVDMODE to 1, and selecting appropriate values for MAXSING, EIGTHRESH and 

EIGWRITE. 

4. Consider setting the parameter change variables RELPARMAX and FACPARMAX 

tighter than normal, thus allowing the SVD processes to “creep on the solution”. This 

can sometimes prevent the estimation of unrealistic parameters, a problem that often 

besets the use of SVD as it moves with untrammelled speed to lower the objective 

function at all costs. 

A hybrid scheme, known as “SVD-assist” which combines the strengths of the Tikhonov and 

SVD regularisation methods, while accomplishing enormous gains in efficiency, is described 

in the next section. Alternatively, there is no reason why truncated SVD cannot be used as the 

solution method for a PEST input dataset which includes Tikhonov regularisation; simply add 

a “singular value decomposition” section to the existing PEST control file. However this 

process is not expected to be as efficient as the SVD-assist methodology, which will now be 

described. 

8.5 SVD-Assist 
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8.5.1 Background 

A novel technique is available in PEST (which is also unique to PEST as far as the author is 

aware) which combines the strengths of so called “subspace regularisation methods” (for 

example truncated SVD) with Tikhonov methods. As is described below, use of this 

functionality can also result in huge savings in model run requirements in implementing a 

parameter estimation process. 

As has been discussed above, the success of subspace regularisation methods such as 

truncated SVD is based on the fact that even though many parameters are featured in a 

parameter estimation problem (and thus are cited in a PEST control file pertinent to that 

problem), only a limited number of linear combinations of these parameters are actually 

estimated, this number being based on the information content of the data available for 

calibration. In fact, if there are more parameters to be estimated than observations, then the 

dimensionality of estimable parameter space will be at most equal to the number of 

observations (and may be considerably less).  

The advantage of using many parameters in spite of the limited information content of a 

calibration dataset, is that regularised inversion (whether it is implemented using Tikhonov or 

subspace methods) allows the parameter estimation process itself to determine the 

dimensionality of estimable parameter space. The parameter estimation process then searches 

for solutions to the inverse problem within this subspace. The strength of the truncated SVD 

regularisation method is that the orthogonal axes of estimable parameter subspace are 

evaluated directly, these axes comprising directions in parameter space which are actually 

linear combinations of the original model parameters. The factors by which these linear 

combinations of parameters are multiplied to optimise model-to-measurement goodness of fit 

are then estimated. This results in a very stable inversion. The principal drawback of 

truncated SVD as a regularisation method however, is that sometimes it works “too well” – 

minimising the objective function without any regard for the amount of noise present within 

the observation dataset, or for the “realism” of parameters calculated through this process. 

Thus estimated parameter distributions can often look unconvincing, and many parameters 

can hit their bounds. While this effect can be reduced to some extent through placing even 

further restrictions on the dimensionality of estimable parameter space (for example by 

reducing the value of the PEST variable MAXSING), Tikhonov schemes are inherently better 

at overcoming these types of problems due to the fact that regularisation constraints on 

estimated parameter values are imposed in a manner that is most suitable to the system being 

modelled. However they will suffer from numerical instability if these constraints (usually 

enforced through prior information equations), are not such as to reduce the solution null 

space to zero. Sometimes it can be difficult to formulate a set of regularisation constraint 

equations which achieves this aim, as the information content of a given dataset with respect 

to the number of parameters requiring estimation can be difficult to determine prior to 

implementation of the calibration process. 

The PEST “SVD-assist” scheme was designed to combine the strengths of subspace and 

Tikhonov regularisation methods, while eliminating their weaknesses. However it also has 

another significant advantage in that its use can reduce the number of model runs required for 

regularised parameter estimation by a very large amount, thus allowing parameter-intensive 

schemes such as “pilot points” to be used with spatial models that take a long time to run. See 

the PEST Groundwater Data Utilities for details of this parameterisation methodology. 
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The SVD-assist scheme is now described. 

8.5.2 Description of SVD-Assist 

In implementing parameter estimation using SVD-assist functionality, the user first sets up a 

PEST run according to the normal Tikhonov scheme. Prior information equations, or special 

“regularisation observations”, will normally be included in the PEST control file for the 

purpose of enforcing regularisation constraints; hopefully these constraints will define (or 

“nearly define”) a “default system condition” which allows (or almost allows) values to be 

assigned to parameters in a unique manner, even in the absence of calibration data. 

Once such a regularised parameter estimation problem has been set up, and the PEST control 

file prepared, NOPTMAX should be set to -1 or 1 in this file, and PEST run in order to 

calculate derivatives with respect to all model parameters. Where there are many parameters, 

and where run times are long, this PEST run may take a considerable amount of time. 

Fortunately, as is described below, this parameter-intensive run may only need to be 

undertaken on this single occasion. 

When undertaking this pre-SVD-assist PEST run for the purpose of derivatives calculation, it 

is wise to switch PEST’s SVD functionality on, set RLAMBDA1 to zero and NUMLAM to 1, 

and disable any regularisation observations and/or regularisation prior information equations. 

Furthermore, set NOPTMAX to 1. When PEST has finished execution, inspect the singular 

value decomposition file case.svd. (Note that this file will not be available if NOPTMAX is 

set to -1 instead of 1 because data is written to this file only when PEST solves the set of 

“normal equations” in order to calculate a parameter upgrade vector.) If the above steps are 

taken, singular values recorded in file case.svd pertain to a “normal matrix” which is 

unaffected by the presence of a Marquardt lambda or by regularisation constraints on 

parameter values (both of which exert a stabilising effect on the parameter upgrade process 

through decreasing the range of singular values), and is thus a reflection purely of the 

information content of the data available for model calibration. A good guide to the number 

of directions in parameter space in which parameters can be estimated on the basis of this 

data is then provided by counting the number of singular values (starting at the highest) 

required for these singular value to drop to about 10
-7

 or 10
-8

 of the highest singular value. 

This forms a vital input to the SVD-assist process, as will be discussed below. 

When the pre-SVD-assist PEST run is complete, the Jacobian matrix is stored in a binary file 

named case.jco, where case is the filename base of the PEST control file. This file contains 

derivatives of all observations and all prior information equations with respect to all 

parameters. Note that prior information derivatives are ignored in subsequent processing, for 

such processing will build a new PEST control file based on “super parameters” which are 

actually linear combinations of the “base parameters” used by the model. Prior information 

expressed in terms of “base parameters” cannot be represented in a PEST control file that is 

built to estimate “super parameters”.  

Once the derivatives of all parameters with respect to all observations have been calculated, 

the null parameter subspace can be determined; parameter combinations which occupy this 

subspace cannot be estimated by PEST using the current calibration dataset. However, linear 

combinations of parameters that are orthogonal to this space can be constructed; PEST can, 

indeed, estimate factors by which these parameter combinations must be multiplied in order 
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to maximise model-to-measurement goodness of fit. The number of such parameter 

combinations is equal to the number of useable singular values determined above; the 

directions in parameter space to which they correspond are defined by the corresponding 

eigenvectors.  

In most cases (especially for spatial models where parameters define the two- or three-

dimensional distribution of some physical, chemical or hydraulic property), the number of 

useable singular values is considerably less than the number of base parameters. By defining 

“super parameters” as the factors by which linear combinations of true model parameters 

must be multiplied in order to maximise model-to-measurement fit, the dimensionality of 

many parameter estimation problems can be considerably reduced, with no negative 

repercussions being incurred in terms of the ability of that process to achieve a good fit 

between model outputs and field data. This is because these linear combinations of 

parameters correspond to the eigenvectors calculated through the SVD process which form 

the orthogonal axes of estimable parameter subspace. Furthermore, because derivatives will 

be calculated with respect to super parameters in the ensuing parameter estimation process, 

the number of model runs per iteration required for estimation of these parameters is 

considerably less than the number of base parameters, thus allowing huge efficiency gains to 

be achieved through this re-formulated parameter estimation process. In addition to this, if the 

number of base parameters is chosen wisely, the inversion process is numerically stable 

because the modeller is “living within his/her means” as far as the number of parameters 

being estimated is concerned. 

Testing to date has shown this scheme to be stunningly successful in achieving highly 

efficient and numerically stable model calibration. However it does have one drawback which 

can limit its usefulness where models are highly nonlinear. As described above, super 

parameters (ie. linear combinations of base parameters) are defined on the basis of one set of 

derivatives, these pertaining to parameter values used in the pre-SVD-assist PEST run which 

is carried out specifically for the purpose of derivatives calculation. In highly nonlinear 

modeling contexts, derivatives change with parameter values; hence an initial set of base 

parameters may not be applicable where parameter values must alter considerably in order to 

achieve model calibration. To reduce the potential for problems arising from this source, 

parameters chosen for initial derivatives calculation should represent “average parameters” to 

the extent that this is possible. Experience has demonstrated, however, that this is not a 

serious limitation of the method. Where it is, it can easily be overcome by increasing the 

number of singular values employed in the SVD-assist parameter estimation process (and 

hence asking PEST to estimate a few extra super parameters), relying on Tikhonov 

regularisation to prevent the occurrence of any ensuing numerical instability. In this manner 

the parameter estimation process has some “extra directions to turn” if these are needed as a 

result of problem nonlinearity. The use of Tikhonov regularisation in SVD-assisted parameter 

estimation (which has many other advantages as well) will be described shortly. 

It should be carefully noted that although the determination of “estimable parameter 

combinations” by which super parameters are defined depends on a linearity assumption that 

will be violated to a greater or lesser degree by most models, no linearity assumption is 

required in the estimation of values for these super parameters, for the derivatives of 

observations with respect to these super parameters is updated during every optimisation 

iteration of the nonlinear parameter estimation process, as their values change. Thus 

goodness-of-fit is not compromised, and the parameter estimation process respects the 
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nonlinear status of the model.  

Parameter bounds enforcement is an important part of any parameter estimation process. A 

difficulty arises when enforcing bounds on “base parameters” (ie. the parameters actually 

seen by the model) when PEST is estimating “super parameters” (ie. linear combinations of 

these base parameters). SVD-assist functionality overcomes this problem in a way that 

actually increases the stability of the parameter estimation process as base parameter bounds 

are enforced. Enforcement of base parameter bounds is actually a two stage process. First, 

PEST ensures that no matter what the value of any super parameter, no base parameter will 

ever transgress its user-supplied upper or lower bound. Second, once a base parameter has 

reached its upper limit, that parameter is frozen at its limit. Singular value decomposition of 

the original base parameter Jacobian matrix is then repeated in order to calculate a new set of 

directions in parameter space by which new super parameters are defined. These new 

directions are then used as a basis for super parameter estimation until another base parameter 

hits its bound, at which stage the process is repeated. The SVD-assist process thus adapts 

itself automatically to the “base-parameter space” in which it must work. While this scheme 

has many advantages, it does have the disadvantage that once a base parameter has been 

frozen in this manner it is impossible to “unfreeze it”. This will not be a problem unless the 

parameter should not have reached its bound in the first place. This unfortunate occurrence 

can usually be prevented through reducing parameter change limits (RELPARMAX and 

FACPARMAX), thus reducing the propensity for parameter overshoot.  

8.5.3 Using Tikhonov Regularisation with SVD-Assist 

A logistical problem in combining Tikhonov-style regularisation with SVD-assist 

functionality is that the regularisation constraints employed by the former scheme must be 

imposed on base parameters (ie. the parameters that the model “sees”), whereas PEST 

actually estimates “super parameters” which are linear combinations of these base parameters. 

Fortunately this problem is easily overcome. Prior information equations used to impose 

regularisation constraints on base parameters can be calculated by an external utility program 

– see documentation of the PICALC utility below. The outcomes of these calculations can 

then be read by PEST as observations, rather than being calculated internally through its prior 

information functionality. If these observations are assigned to a regul* observation group, 

enforcement of calibration constraints can then take place in the usual way, with PEST 

(running in regularisation mode) calculating an optimal weight factor for regularisation 

observations in accordance with the constrained minimisation process which it implements. 

8.5.4 Implementing SVD-Assisted Parameter Estimation 

The mechanics of implementing an SVD-assist-based parameter estimation process will now 

be described. The software with which it is implemented will be described in the order in 

which it is required. Note that while some of this software is quite complex, implementation 

of SVD-assisted parameter estimation is actually quite simple. 

As is discussed below, in implementing SVD-assisted parameter estimation, PEST must run 

the PICALC and PARCALC utilities as part of the model. It is thus important that the 

directory which holds these utilities be cited in the PATH environment variable. If this is not 

the case, file svdabatch.bat (see below) should be amended to include the full path of these 
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executable files. 

8.5.4.1 The SVD-Assist PEST Control File 

The PEST control file used for the estimation of super parameters (these being multipliers of 

linear combinations of base parameters as discussed above) is normally constructed using the 

utility program SVDAPREP. Once constructed, this PEST control file must contain the 

names of the base parameters to be estimated (these can have any names), and must inform 

PEST of the method by which derivatives of model outputs with respect to these parameters 

are to be calculated; as usual this information must reside in the “parameter groups” section 

of the PEST control file. It must also contain a number of entries which informs PEST that it 

must implement SVD-assist functionality. This information must be recorded within a special 

section of the PEST control file named the “svd assist” section, this being situated just before 

the “parameter groups” section. If parameter upgrades are calculated using singular value 

decomposition, the “svd assist” section must follow the “singular value decomposition” 

section of the PEST control file. 

An example of an “svd assist” section appears in Example 8.4. 

The “svd assist” section has two entries, each on a line of its own. The first is the name of the 

PEST control file on which the parameter estimation process is based; this is the PEST 

control file in which all base model parameters are cited. The second is the name of a 

Jacobian matrix file. This will normally have been produced simply by running PEST on the 

basis of the nominated base PEST control file, with NOPTMAX in that file set to -1 or 1 as 

discussed above. Note that this Jacobian matrix file must have been produced by version 8 or 

later of PEST, for earlier versions used a different protocol for storage of data in this file. 

Translation from old to new protocol can be implemented using the JCOTRANS utility. 

The base PEST control file is a normal PEST control file. It may instruct PEST to run in 

parameter estimation, predictive analysis or regularisation modes. It may or may not contain 

prior information. It may have been constructed “by hand”, using the PEST Groundwater or 

Surface Water utilities, or using third party software. It should not contain an “svd assist” 

section; this section, and all of the other requirements for SVD-assisted parameter estimation, 

are automatically introduced by the SVDAPREP utility, which is now described. 

8.5.4.2 SVDAPREP 

Before using SVDAPREP it is assumed that the user has prepared a PEST input dataset based 

on a comprehensive set of model parameters. In the groundwater modeling context, many of 

these parameters may be based on pilot points. It is further assumed that NOPTMAX in this 

PEST control file has been set to -1 or 1, and that PEST has been run to calculate derivatives 

of all model outputs with respect to base parameters, these being stored in the Jacobian 

matrix file case.jco where case is the filename base of the base PEST control file. Within this 

file parameters can be tied or fixed in the usual fashion; however in many cases this will not 

* svd assist 
calib.pst 
calib.jco 

Example 8.4 An “svd assist” section of a PEST control file. 
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be necessary as parameter tying and fixing can be undertaken at a later stage of the SVD-

assist preparation process as described below. The only purpose of this pre-inversion run is to 

obtain a JCO file which records the sensitivity of every observation to every adjustable model 

parameter. The fact that some model parameters may enter future SVD-assisted inversion 

processes as tied or fixed is of no consequence for this first PEST run. In fact if you think that 

any parameter will ever be estimated on its own, then it is best to untie or unfix it for this 

initial pre-inversion run. Note also that, as described above, it is often useful to use PEST’s 

singular value decomposition functionality when carrying out this pre-SVD-assist run (with 

NOPTMAX set to 1, RLAMBDA1 set to zero, NUMLAM set to 1 and with prior information 

removed) in order to obtain valuable information on the number of super parameters to use in 

the following SVD-assisted run.  

Parameters can be log-transformed or not in the base PEST control file as desired by the user. 

As will be described below, they can have a different transformation status in later PEST 

runs. It is also often wise to include Tikhonov regularisation in this file, the benefits of using 

this in conjunction with the SVD-assisted parameter estimation process having already been 

described. (Note, however, that prior information equations that are used to enforce these 

regularisation constraints should be de-activated if SVD is used in the pre-SVD-assist 

derivatives calculation run, if it is desired that the contents of the case.svd file be used as a 

guide to the selection of the number of singular values to use for base parameter definition, as 

described above. However they should be re-activated before running SVDAPREP; the fact 

that derivatives of prior information equations are missing from the JCO file is of no 

consequence, as these are ignored by PEST when it constructs super parameters during an 

SVD-assisted run.)  

The only definitive requirement of the base PEST control file is that the nominated model to 

be run by PEST is the name of a batch file. In order that it be recognised as such, the model 

command line cited in the PEST control file must end in “.bat”. 

SVDAPREP builds a new PEST control file for SVD-assisted parameter estimation from the 

existing base PEST control file in which model (ie. base) parameters are defined. It is run by 

typing its name at the command prompt. It then commences execution with the prompt:- 

Enter name of existing PEST control file: 

This is the base PEST control file, which SVDAPREP then proceeds to read. SVDAPREP 

also searches for a file named case.jco in which sensitivities have been calculated by running 

PEST on the basis of this base PEST control file as discussed above. After having read these 

files it prompts:- 

Enter number of super parameters to estimate: 

Enter an appropriate number. As has been discussed above, it is sometimes wise to enter a 

number here which is somewhat above the expected dimensionality of estimable parameter 

space to accommodate shortcomings in the linearity assumption involved in determination of 

super parameters from base parameters. Inclusion of Tikhonov regularisation in the inversion 

process (or use of singular value decomposition for solution of the “normal equations”) will 

guarantee numerical stability of the SVD-assisted process. In either case, this number should 

be less (often significantly less) than the number of estimable parameters cited in the base 

PEST control file; parameter reduction factors of up to 10 are not uncommon. Where 
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parameters are outnumbered by observations, the number of super parameters should be at 

most equal to the number of observations available for model calibration. 

It is important to note that parameters that are fixed or tied in the base PEST control file will 

remain fixed and tied when defining super parameters; hence the SVD-assisted parameter 

estimation process will respect their status. However it is also important to note that if you 

decide to fix or tie an unfixed or untied base parameter prior to undertaking another SVD-

assisted PEST run, you do not need to re-calculate base parameter sensitivities and write 

another JCO file, for these need to be calculated only once. See documentation of program 

JCO2JCO below for further details. 

SVDAPREP next prompts:- 

Enter name of new super pest control file: 

Provide a name for the new PEST control file; this file will be used for SVD-assisted 

parameter estimation. Next SVDAPREP prompts:- 

Enter offset for super parameters  (<Enter> if 10): 

In the SVD-assisted parameter estimation process, super parameters are provided with a 

starting value of zero (signifying zero perturbation of initial base parameters). However zero-

valued parameters can create problems for PEST, especially in the enforcement of parameter 

change limits. Hence it is best to supply an offset for such parameters, to keep their values 

away from zero. A value of 10 is suitable on most occasions of SVD-assisted parameter 

estimation; simply press <Enter> for SVDAPREP to accept this. 

Base parameters are designated as “relative limited” by SVDAPREP. As described in Chapter 

4 of this manual, the actual value for this relative limit must be supplied as the PEST variable 

RELPARMAX. It is important to set this variable much lower than would normally be the 

case, but not so low that parameter upgrades are painfully slow. On most occasions a value of 

0.1 will be adequate, though you should be prepared to alter this upwards if PEST 

convergence is too slow, or downwards if parameter oscillation occurs, or parameters hit their 

bounds too quickly. SVDAPREP asks the user for a suitable value for RELPARMAX to 

record in the control file that it is about to write:- 

Enter value for RELPARMAX (<Enter> if 0.1): 

Simply press <Enter> to accept the default value of 0.1 

Prior information contained within the base PEST control file (whether or not this is used for 

regularisation purposes) cannot be transferred to the new PEST control file. This is because 

the new PEST control file uses different parameters (ie. super parameters) from those used in 

the base PEST control file. Prior information used in the SVD-assisted inversion process is 

actually calculated by the utility program PICALC, which was written specifically for this 

purpose. SVDAPREP writes the template of a PICALC input file named picalc.in containing 

an abridged form of all prior information equations used in the base PEST control file, and 

includes the command to run PICALC in the model batch file which will be run by the new 

PEST control file; note that, as discussed above, picalc.exe should be cited in the “PATH” 

environment variable or be present within the current directory . 
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When writing the new PEST control file based on super parameters, SVDAPREP instructs 

PEST to run in the same mode (ie. “estimation”, “prediction” or “regularisation”) as that 

employed in the primary PEST control file; hence the PESTMODE variable is transferred by 

SVDAPREP directly from the old to the new PEST control file. 

Finally SVDAPREP prompts:- 

Make new model batch file silent or verbose?  [s/v]: 

As is discussed below, SVDAPREP writes a new model batch file. Screen output from 

executable programs added to this file for the purposes of base parameter calculation and 

possibly prior information calculation can be suppressed if desired (thus avoiding mixing of 

output from these programs with PEST’s screen output); respond to the above prompt by 

pressing the “s” or “v” key as appropriate. 

Once it has received responses to all of these prompts, SVDAPREP undertakes the following 

tasks: 

1. If prior information is present in the original PEST control file, SVDAPREP writes a 

file named picalc.tpl. This is the template for the input file picalc.in of program 

PICALC, run as part of the new model for the calculation of prior information using 

base parameters. Outcomes of these calculations are written by PICALC to a file 

named picalc.out. 

2. If prior information is present in the original PEST control file, SVDAPREP writes an 

instruction file named picalc.ins to read the outcomes of PICALC’s prior information 

calculations. “Observations” cited in this file correspond to the names of prior 

information equations cited in the original base PEST control file. 

3. SVDAPREP writes a new PEST control file for use in the SVD-assisted parameter 

estimation process. This contains the same observations (with the same weights) as 

those contained in the original base PEST control file. However it contains new 

parameters, these being named par1 to parn where n is the number of super 

parameters requested by the user. These are provided with an initial value equal to the 

user-supplied offset, and an offset equal to the negative of this value, thus endowing 

these parameters with an effective initial value of zero. Derivatives with respect to 

these parameters are calculated using an absolute increment of 0.015 (this can be 

altered by the user if desired), and they are all assigned as relative-limited, the value of 

this limit having been supplied by the user above. The new PEST control file is 

instructed to run a new model named svdabatch.bat; this is altered from the original 

model batch file cited in the base PEST control file in the manner discussed below. 

Also, in generating the new PEST control file, all prior information is re-assigned as 

observations, the model-counterpart to these observations being calculated by 

PICALC; observation group names are preserved in this re-assignment process so that 

any regularisation implemented in the original PEST control file can still be 

implemented in the new SVD-assist PEST control file. This latter file is also provided 

with an “svd assist” section. Finally, the new PEST control file cites only a single 

model template file, this being named parcalc.tpl. This is used to construct a model 

input file named parcalc.in for the PARCALC utility, run as part of the model, to 

implement translation from super parameters to base parameters. The actual template 
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file itself is written by PEST (for this file needs to be altered as new combinations of 

base parameters are used to calculate super parameters as base parameters hit their 

bounds). Also PARCALC is responsible for writing normal model input files on the 

basis of base parameter values, a role previously assumed by PEST; the SVD-assisted 

PEST control file cannot do this, as it does not know the values of base parameters – 

only the values of super parameters. 

4. SVDAPREP writes a new model batch file, the details of which will now be 

described. 

The model batch file, run through the new PEST control file, is altered from the original 

model batch file cited by the base PEST control file in the following ways:- 

1. Model input files written by PARCALC on the basis of previously-supplied template 

files are deleted prior to running PARCALC; this prevents old files from being re-read 

as new ones in the event that PARCALC does not run. 

2. The command to run PARCALC is added. 

3. If prior information is present in the original PEST control file, the command to run 

PICALC is included in the modified batch file. 

4. If the user requested that screen output be suppressed, the “> nul” string is added to all 

new commands; the “@echo off” string is also added to the top of this file. (Note that 

these measures do not suppress screen output from existing components of the 

original model batch file which are transferred directly to the new model batch file 

svdabatch.bat.) 

As was mentioned above, in the original base PEST control file the command to run the 

model must be the name of a batch file – not the name of an executable program; 

SVDAPREP needs to modify this batch file to produce svdabatch.bat. Consequently, if the 

suffix “.bat” does not comprise the last four letters of the model command, SVDAPREP will 

cease execution with an appropriate error message. 

8.5.4.3 PARCALC 

The user never needs to run the PARCALC utility program. This is part of the model run by 

PEST when implementing SVD-assisted parameter estimation. Nevertheless its functionality 

will be described. 

PARCALC reads the current values of super parameters being estimated by PEST. It also 

reads base parameter eigenvalues as calculated by PEST on the basis of the JCO file cited in 

the “svd assist” section of the super PEST control file; recall that super parameter definition 

is based on these eigenvectors. Using this information PARCALC calculates current base 

parameter values. These are then provided to the model through the template files what were 

originally used by the base PEST control file. 

In calculating current base parameter values, PARCALC does the following:- 
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1. It respects upper and lower base parameter bounds as provided in its input file 

parcalc.in, these having been extracted from the base PEST control file. 

2. The values of fixed base parameters are unaltered. (These parameters are not used in 

the calculation of super parameters.) 

3. Parameter value ratios for tied parameters are maintained. (Tied parameters are also 

not used in the calculation of super parameters.) 

PARCALC is run by typing the command “parcalc” at the screen prompt. It reads an input 

file named parcalc.in. This file is actually written by PEST on the basis of the template file 

parcalc.tpl, also written by PEST. Use of the template file mechanism for the provision of 

PARCALC input data allows parallel PEST to transfer PARCALC input data to multiple 

computers involved in a parallelisation process. 

8.5.4.4 PICALC 

PICALC requires no user input. It reads an input file named picalc.in and writes an output file 

named picalc.out. The first of these files is written by PARCALC on the basis of the 

SVDAPREP-prepared template file picalc.tpl. This contains current values of base 

parameters, as well as parameter coefficients used in prior information equations. PICALC 

evaluates these equations on the basis of current base parameter values and records the 

outcomes of these calculations to a file named picalc.out.  

8.5.4.5 PEST 

Upon commencement of an SVD-assisted parameter estimation run PEST reads the super 

PEST control file, this being the file provided to it through its command line in the normal 

manner. It then reads the base PEST control file and the Jacobian matrix file cited in the “svd 

assist” section of the super PEST control file, checking for compatibility between these two 

files. It then forms the matrix J
t
QJ where J is the base parameter Jacobian matrix and Q is 

the observation weight matrix. Note that rows of the Jacobian matrix pertaining to any prior 

information present in the base PEST control file are omitted in formulating this matrix. So 

too are base parameters that are fixed and tied in the original PEST control file; hence these 

base parameters remain fixed and tied through the SVD-assisted parameter estimation process 

implemented by PEST. 

PEST undertakes singular value decomposition of the J
t
QJ matrix, retaining only as many 

singular values as were requested by the user. On the basis of the eigenvectors corresponding 

to the retained singular values it writes a template file for the PARCALC input file 

parcalc.in; the information in this file allows PARCALC to calculate base parameter values 

when supplied with current super parameter values by PEST. This template file is re-written 

at the beginning of every optimisation iteration. This is necessary because estimable 

directions in parameter space are always calculated relative to current parameter values 

(which change from iteration to iteration). Also, if any base parameters hit their bounds, the 

SVD process is repeated, with new singular values and eigenvectors being calculated as a 

consequence. 
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Thus as PEST alters the values of super parameters, either incrementally for the purpose of 

derivatives calculation, or in response to the upgrading of these parameters, the values of 

these super parameters are written to a model input file, as in normal PEST operations. 

However on this occasion the model input file is parcalc.in. PARCALC then transforms these 

super parameter values into base parameter values, writing all necessary model input files 

using these parameters on PEST’s behalf. It also writes a PICALC input file on the basis of 

these super parameters so that PICALC can undertake calculation of prior information 

equations on PEST’s behalf. All model outputs, and all prior information equation results, are 

then read directly by PEST after each model run. 

8.5.5 Best Parameter Estimates 

The values of super parameters estimated by PEST in the SVD-assisted parameter estimation 

process have no inherent meaning. Even within a single parameter estimation run, the 

calculation of base parameter values from super parameter values changes according to 

current estimates of the latter parameters. A problem then arises as to how to use parameter 

values estimated by PEST in a model that is run for predictive purposes, this requiring, of 

course, optimised values of base parameters. 

As is documented in Section 5.3.1 of this manual, in its normal mode of operation PEST 

writes current best parameter estimates at any stage of the parameter estimation process to a 

file named case.par where case is the filename base of the PEST control file. When 

implementing SVD-assisted parameter estimation, PEST records another file named 

bcase.bpa, where bcase is the filename base of the base PEST control file (that is the file 

used by SVDAPREP in building the control file used for SVD-assisted parameter estimation). 

At any stage of the parameter estimation process this file contains best estimates of base 

parameter values.  

In normal operation, when the parameter estimation process is complete (or if PEST 

execution is halted using the PSTOPST command), PEST undertakes a single model run 

using optimised parameters before terminating execution; thus model input and output files 

contain best-fit parameter values and corresponding best-fit model outputs. This is not 

possible when undertaking SVD-assisted parameter estimation. However, based on the 

contents of the bcase.bpa file, the user can carry out such a model run him/herself. This is 

accomplished in the following manner:- 

1. Use the PEST utility PARREP to build a new PEST control file based on the original 

base PEST control file bcase.pst and the optimised base parameter values residing in 

bcase.bpa. 

2. Set NOPTMAX to zero in this file; thus PEST will carry out just one model run based 

on its initial parameter values (which are now optimised parameter values calculated 

during the SVD-assisted PEST run). 

3. Run PEST. 

8.5.6 Using Parallel PEST for SVD-Assisted Parameter Estimation 

Parallel PEST can be used for SVD-assisted parameter estimation, just as the normal PEST 
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can. However a little care should be taken in transferring files to other machines prior to 

starting Parallel PEST. The following should be noted:- 

1. parcalc.exe (and picalc.exe if prior information is used) should be executable from all 

slave machines. 

2. For normal Parallel PEST operations, template files do not need to be transferred to 

slave machines. However it is now PARCALC, and not PEST, which writes model 

input files, and PARCALC is part of the model. Hence template files of model input 

files must be transferred to all slave machines so that PARCALC can use them. 

3. The new model batch file svdabatch.bat must be transferred to all slave machines.  

4. If prior information is employed in the SVD-assisted parameter estimation process, 

then the template file for its input file, viz. picalc.tpl, must be transferred to all slave 

machines. 

5. When supplying PSLAVE with the command to run the model, use “svdabatch.bat”. 

One advantage of using SVD-assisted parameter estimation with parallel PEST is that, with 

template files residing on slave machines, network traffic will be less than if they resided on 

the master machine (for lengthy model input files do not need to be transferred between 

platforms). However this is countered somewhat by the fact that the PARCALC template file 

parcalc.tpl is rather large, the data within this file being recorded in double precision. 

8.5.7 The JCO2JCO Utility 

One of the great advantages of using SVD-assisted parameter estimation over normal 

parameter estimation is the fact that much fewer model runs are normally required per 

optimisation iteration; this can result in enormous efficiency gains. However, as has been 

described, an initial PEST run must be undertaken in which sensitivities are calculated for all 

base parameters.  

In most model calibration exercises, many PEST runs are carried out. The same applies when 

PEST’s SVD-assist functionality is being employed in carrying out these runs. For some of 

these runs a user may wish to hold some base parameters fixed, while tying others. Such 

parameter fixing and tying must be done in the base PEST control file; base parameter fixing 

and tying relationships are then carried through to the SVD-assisted parameter estimation 

process by using SVDAPREP to construct a new super PEST control file. It would be 

unfortunate if every such alteration to the base PEST control file required the calculation of a 

new base parameter JCO file so that the two of these are once again matched. Fortunately this 

can be avoided through the use of the JCO2JCO utility. 

JCO2JCO reads a PEST control file (featuring base parameters) and its corresponding JCO 

file (normally computed through running PEST with NOPTMAX set to -1 or 1). It then reads 

a second PEST control file in which some or all of the same parameters and observations are 

cited. Some of these parameters may be tied or fixed or have different log transformation 

status in the second PEST control file. JCO2JCO calculates a JCO file for the second PEST 

control file on the basis of derivatives recorded in the first JCO file. 
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JCO2JCO is run by typing its name at the screen prompt followed by its two command-line 

arguments. The first of these arguments is the name of an existing PEST control file for 

which a complimentary JCO file exists. The second of its arguments is a PEST control file for 

which it is desired that a JCO file be written. Upon commencement of execution, JCO2JCO 

reads the first PEST control file, together with its associated JCO file. It then reads the second 

PEST control file and writes a JCO file pertinent to it. 

The following should be noted: 

1. The re-written JCO file does not cite any prior information present in either the first or 

second PEST control files. This does not cause problems for SVDAPREP or PEST as 

the SVD-assist process does not use prior information in the calculation of super 

parameters. 

2. A parameter cited in the first PEST control file does not need to be cited in the second 

PEST control file; however the reverse is not true. 

3. An observation cited in the first PEST control file does not need to be cited in the 

second PEST control file; however the reverse is not true. 

4. If a parameter is tied to another parameter in the first PEST control file, it must be tied 

to the same parameter in the second PEST control file (JCO2JCO cannot “unravel” 

the derivatives of tied parameters). However a parameter can be tied in the second 

PEST control file, but not in the first. 

5. If a parameter is fixed in the first PEST control file it must be fixed in the second 

PEST control file. However a parameter can be fixed in the second PEST control file 

but not in the first. 

6. The first JCO file must have been calculated using version 8 or later of PEST. If this 

is not the case it can be translated to the later JCO file format using the JCOTRANS 

utility described below. 

Note that, as described in Chapter 11 of this manual, the PEST JACWRIT utility can be used 

to write the contents of a JCO file in ASCII format. 

8.5.8 The JCOTRANS Utility 

JCOTRANS translates a JCO file produced by version 7 or earlier of PEST to a JCO file 

compatible with version 8 or later of PEST. The latter file is recorded in more compressed 

form, and can be read by the JCO2JCO utility. 

JCOTRANS is run using the command:- 

pestgen jcofile1 jcofile2 

where jcofile1 is the name of a Jacobian matrix file written in old format and jcofile2 is the 

name of the file to which the Jacobian matrix will be recorded in new format. For both of 

these filenames, the “.jco” extension can be included or omitted; if it is omitted it will be 

appended automatically. 
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8.5.9 Some Final Points 

As has already been discussed, dramatic increases in efficiency can be gained through the use 

of SVD-assisted parameter estimation. Furthermore, the parameter estimation problem is 

often numerically more stable when estimating super parameters, than when estimating many 

base parameters, this often leading to better model-to-measurement fits than could otherwise 

be obtained. This allows the modeller to gain all of the advantages of highly-parameterised 

model calibration (thus allowing the parameter estimation process to extract as much 

information from the calibration dataset as possible), while not suffering from the penalties of 

high PEST run times, and numerical instability. 

Experience to date has demonstrated that SVD-assisted parameter estimation is indeed a 

breakthrough, allowing the use of sophisticated regularised inversion for the calibration of 

complex models with moderate to high run times where the use of such methodologies would 

have previously been unthinkable. However, caution must always be exercised. Sometimes 

small alterations to the setup of a calibration problem can make a large difference to PEST’s 

performance. 

SVD-assisted parameter estimation works best in highly parameterised contexts where 

Tikhonov regularisation is included in the parameter estimation process. It also appears to 

yield best results where all base parameters are log-transformed, for super parameter 

definition seems to result in more stable parameter combinations under these circumstances. 

So if the parameter estimation process appears to be progressing slower than you would 

expect, and if the length of the parameter upgrade vector is continually shortened by 

imposition of change limits (this being apparent if the maximum relative parameter change is 

equal to the value supplied for RELPARMAX), then it may be wise to re-think the 

transformation status of base parameters, and build a new base PEST control file accordingly. 

As has already been discussed, JCO2JCO can then be used to build a Jacobian matrix file 

pertinent to the new base PEST control file, thus obviating the need for re-calculation of base 

parameter derivatives. 

Earlier in this chapter it was asserted that if the parameter estimation process is undertaken 

using singular value decomposition, then the Marquardt lambda should be set to zero. This is 

usually not the case when undertaking SVD-assisted parameter estimation. Once the super 

PEST control file has been built, PEST should be allowed to use “every trick in the book” to 

bring stability to that process, including the benefits of adjusting the Marquardt lambda as a 

means of combating the deleterious affects of high model nonlinearity and/or high problem 

condition numbers. Of course, if singular value decomposition is used for solution of the 

parameter upgrade vector in the SVD-assisted parameter estimation process, then this does 

not necessarily apply; in this case the Marquardt lambda may be best set to zero. However 

experience to date suggests that super parameters are often best optimized using PEST’s 

usual matrix solver instead of its SVD solver, Tikhonov regularisation, and normal operation 

of its Marquardt lambda functionality.  

Selection of the best options to use in any particular calibration setting may end up being a 

matter of trial and error. 

8.6 Efficiency in Highly Parameterised Contexts 
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8.6.1 Compressed Storage 

Where many parameters are estimated through a highly regularised inversion process, 

memory requirements can be high. This is especially the case for the Jacobian matrix, the 

dimensions of which are (mo + mp) × n where mo is the number of observations, mp is the 

number of prior information equations and n is the number of parameters involved in the 

parameter estimation process. Each regularisation constraint normally occupies one row of 

the Jacobian matrix. There is normally at least one such constraint for every estimated 

parameter – but often many more than this. Furthermore, the elements of each such row are 

normally mostly zeroes, as each regularisation constraint normally involves either one 

parameter in an equality relationship, or two parameters in a differencing relationship. Hence 

the number of zeroes occurring in the Jacobian matrix can be very large indeed. Thus a data 

storage mechanism which dispenses with the need to explicitly store all of these zero 

elements can result in large savings in PEST’s memory requirements. 

PEST provides an option for compressed storage of the Jacobian matrix (and of another 

matrix that holds a copy of the Jacobian matrix, calculated on the basis of best parameters 

obtained up to any point in the parameter estimation process). This compressed storage 

mechanism is supplemented by programming within PEST that accesses elements of the 

compressed Jacobian matrix in ways that are most efficient for the types of Jacobian matrix 

calculations normally undertaken by PEST. Thus there is very little loss in execution speed 

incurred by the use of compressed Jacobian matrix storage. 

Jacobian matrix compression is activated by use of an optional variable cited in the “control 

data” section of the PEST control file. This variable is named MAXCOMPDIM; its location 

within the PEST control file is shown in Example 8.5.  

 

If MAXCOMPDIM is omitted from the PEST control file, or is set to 1 or less, no Jacobian 

compression takes place. If it is set to greater than 1, the vector which holds the compressed 

form of the Jacobian matrix is dimensioned as MAXCOMPDIM, and Jacobian compression 

takes place. If PEST discovers that MAXCOMPDIM has not been set large enough to hold 

the compressed Jacobian matrix, it will cease execution with an appropriate error message.  

8.6.2 Zero Derivatives Threshold 

A PEST variable named DERZEROLIM can optionally follow MAXCOMPDIM on the 

fourth line of the PEST control file. This should be entered as a low number or zero. A finite- 

pcf 

* control data 

RSTFLE PESTMODE 

NPAR NOBS NPARGP NPRIOR NOBSGP MAXCOMPDIM 

NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE 

RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM 

RELPARMAX FACPARMAX FACORIG 

PHIREDSWH 

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR 

ICOV ICOR IEIG 

Example 8.5 “Control data” section of the PEST control file showing the location of the 

MAXCOMPDIM variable. 
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difference-calculated derivative is assumed to be zero (and hence not stored in the 

compressed Jacobian matrix) if its absolute value is less than this number. Thus numerical 

noise incurred in the derivatives calculation process can be filtered out. Note that it is not 

applied to externally-calculated derivatives; nor is it applied unless MAXCOMPDIM is 

greater than one, and hence compressed Jacobian storage is activated. 

8.6.3 Compressed Form of the External Derivatives Files 

This is discussed in Section 9.2.10. 

8.6.4 Order of Observation Groups 

If regularisation constraints are supplied through observations rather than prior information, 

then potentially large savings in the time required to perform certain matrix operations 

required by the regularisation process can be achieved if all regularisation information 

follows all other observations in the “observation data” section of the PEST control file. That 

is, all observations belonging to observation groups whose names begin with “regul” should 

be supplied together after observations pertaining to all other observation groups. PEST 

detects this situation when it reads the PEST control file, and in subsequent manipulation of 

observation data takes numerical advantage of it. 

8.6.5 Linear Regularisation Constraints 

As is discussed in the previous chapter, regularisation constraints can be supplied through 

observations, through prior information, or through both of these mechanisms. Prior 

information relationships are always linear. Regularisation constraints supplied as 

observations (for which the current value of pertinent relationships is calculated by the 

model), can be linear or nonlinear; in either case, derivatives of these relationships with 

respect to adjustable parameters are re-evaluated by PEST during each optimisation iteration. 

If regularisation information is entirely linear, there are many matrix operations carried out as 

part of PEST’s regularisation functionality which do not need to be repeated from iteration to 

iteration. If repetition of these calculations can be avoided in parameter estimation contexts 

involving many regularisation constraints, significant gains in efficiency can be made. The 

user can inform PEST that all regularisation constraints are linear through an optional control 

variable supplied in the “regularisation” section of the PEST control file. The name of this 

variable is LINREG and it should be supplied as either “linreg” or “nonlinreg”. Example 8.6 

shows the location of this variable within this section of the PEST control file, while Example 

8.7 illustrates its use. 

 

* regularisation 

PHIMLIM  PHIMACCEPT FRACPHIM 

WFINIT  WFMIN  WFMAX LINREG 

WFFAC  WFTOL IREGADJ 

Example 8.6.  “Regularisation” section of a PEST control file showing the location of 

the LINREG variable. 

* regularisation 
  0.00001   0.00002     0.0 
  1.E-2  1.0e-6  1.0e6 linreg 
  1.5    1.0e-2 

Example 8.7 Example of the use of the LINREG variable. 
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If a value for LINREG is not supplied in a PEST control file, the default value of “nonlinreg” 

will be used, unless all regularisation constraints are supplied as prior information, in which 

case the default value of “linreg” is employed.  

It is very important to take account of the transformation status of a parameter when assigning 

a value to LINREG. As is pointed out elsewhere in this manual, whether a model supplies 

parameter derivatives to PEST itself (see the next chapter), or whether PEST calculates 

derivatives by finite differences, the result is the value of the derivative of each model output 

with respect to each parameter. For a particular parameter this derivative is modified if the 

parameter is log-transformed. It is this latter derivative that must be considered when 

classifying a relationship as linear or nonlinear. Thus, if a model calculates derivatives with 

respect to a parameter, and that parameter is log-transformed, the linear/nonlinear status of 

model-calculated derivatives does not determine the linearity status of the final derivative. It 

is the derivative with respect to the log of the parameter that matters in assigning a value to 

LINREG. 

8.6.6 Trading Memory for Functionality 

As has already been discussed, PEST’s memory requirements can be very large where many 

parameters are estimated in highly regularised inverse problems. Considerable savings in 

memory can be made if some non-essential aspects of PEST’s functionality are dispensed 

with.  

An optional variable named MEMSAVE, sited within the “regularisation” section of the 

PEST control file, can be used to turn on, and turn off, memory conservation. MEMSAVE is 

a character variable which must be supplied as either “memsave” or “nomemsave”. Example 

8.8 shows the location of this new variable in the PEST control file; it follows the optional 

FRACPHIM variable. Note that FRACPHIM is still optional; if it is omitted MEMSAVE 

must follows PHIMACCEPT. 

 

Nonessential PEST tasks which are curtailed when MEMSAVE is set to “memsave” include 

the following:- 

1. The parameter covariance matrix, and matrices derived from it, are not calculated by 

PEST at regular intervals during the parameter estimation process for recording in the 

matrix file, case.mtt; nor are these matrices calculated at the end of the inversion 

process for recording in the run record file case.rec. Because the covariance matrix is 

unavailable, parameter uncertainties cannot be calculated, and hence are also not 

recorded in the run record file. (In a regularisation context these have little meaning 

anyway.) 

* regularisation 

PHIMLIM  PHIMACCEPT FRACPHIM MEMSAVE 

WFINIT  WFMIN  WFMAX 

WFFAC  WFTOL IREGADJ 

Example 8.8. “Regularisation” section of the PEST control file with MEMSAVE 

variable included. 
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2. Some avenues for increasing the efficiency of regularisation calculations are no longer 

available under the leaner storage regime that prevails when memory conservation is 

active (including the benefits gained through the LINREG variable and through the 

placing of regularisation observations behind other observations involved in the 

parameter estimation process). This can lead to significant run-time penalties in 

problems involving many parameters; unfortunately, these are the very contexts in 

which memory conservation is most likely to be warranted. 
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9. Model-Calculated Derivatives 

9.1 General 

Accuracy in the calculation of model outputs with respect to adjustable parameters is essential 

for good PEST performance, especially when working with highly parameterised systems. As 

well as accuracy, efficiency of derivatives calculation is also important, for run-times can be 

very long when PEST is used with such systems. To enhance its use in conjunction with a 

complex modelling system, PEST offers the user increased flexibility in derivatives 

calculation over that which is available through finite differences alone. 

9.2 Externally-Supplied Derivatives 

9.2.1 General 

Some models are able to calculated derivatives of their outputs with respect to their 

parameters themselves. If so, it is often better for PEST to use these derivatives instead of the 

derivatives that it calculates itself using finite parameter differences. There are two reasons 

for this. 

1. Code included within the model itself for the purpose of derivatives calculation can 

often exploit certain aspects of the mathematics underlying the numerical simulation 

process to calculate derivatives far more quickly than they can be calculated using 

finite differences. 

2. Derivatives calculated directly by the model are often numerically more precise than 

those calculated by taking differences between model outputs calculated on the basis 

of incrementally-varied parameter values. 

Hence if a model can calculate derivatives itself, PEST should use these derivatives. 

PEST provides two options for the reading of model-calculated derivatives. The first is 

through an “external derivatives file” (either in full or compressed format). This protocol has 

been available in PEST since version 3.5. PEST can also read external derivatives supplied 

through the USGS JUPITER protocol. The “native” PEST protocol is described in this 

section; acquisition of external derivatives through the JUPITER protocol is described in 

Section 9.7. 

9.2.3 External Derivatives File 

PEST can read derivatives of model-calculated observations with respect to adjustable 

parameters from a special file written by the model whenever derivatives are requested by 

PEST. Because this file must satisfy special formatting requirements, it will normally be 

required that the user add a few lines of code to the model to endow it with the ability to write 

this file to PEST’s specifications. 

The “external derivatives file” (as it is called herein) produced by the model must contain a 
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“derivatives matrix”. (This is slightly different from the Jacobian matrix in that the latter 

matrix takes account of whether parameters are log-transformed or not during the inversion 

process.) The derivatives matrix, like any other matrix, is comprised of rows and columns. 

Each column contains the derivative of every model outcome for which there is a 

complementary observation with respect to a particular parameter. Each row contains the 

derivatives of a single observation with respect to all parameters. Example 9.1 shows an 

example of an external derivatives file expected by PEST. 

The first line of an external derivatives file contains two integers listing the number of 

parameters and number of observations represented in the derivatives file. These correspond 

to the number of columns and the number of rows respectively in the derivatives matrix. They 

must also agree exactly with the values of the PEST variables NPAR and NOBS in the PEST 

control file. The derivative matrix is listed next in the file. 

Some further aspects of this file are now discussed in detail. These should be noted carefully, 

for if the external derivatives file does not meet PEST’s specifications it will not be read by 

PEST, or (what is worse) may be read incorrectly by PEST. 

9.2.2 File Management 

As is further discussed below, it is not necessary that the model supply an external derivatives 

file if you do not want it to. However if you notify PEST that the model will supply such a 

file, then you must also inform PEST of the name of the external derivatives file and of the 

command which PEST must use to run the model in such a way that it writes this file. Just 

before issuing this command (it is issued once every optimisation iteration) PEST first checks 

to see whether a derivatives file already exists. If such a file does exist, PEST deletes it. Thus 

if the model fails to run, PEST does not read the old file, mistaking it for the new one; instead 

it writes an error message to the screen informing the user that the derivatives file cannot be 

found. Alternatively, if PEST issues an error message to the effect that it encountered a 

premature end to the external derivatives file, this indicates that either the model did not run 

to completion, or that there is an error in the code added to the model to write this file. 

9.2.3 File Format 

The external derivatives file must be an ASCII (ie. text) file in which numbers are separated 

by spaces, tabs or a comma (it is read by PEST using FORTRAN free field input). As 

mentioned above, it must be headed by a line citing the number of columns and rows 

4  9 

5.00000  1707.60  34.4932  42.1234 

5.25066  8.79458  93.2321  23.5921 

1.04819  1.16448  5.34642  19.3235 

1.52323  0.11418  0.59235  75.2354 

3.21342  0.48392  9.49293  95.3459 

2.49321  5.39230  0.49332  9.22934 

19.4492  9.93024  0.49304  5.39234 

36.3444  10.4933  0.59439  6.49345 

95.4592  86.4234  47.4232  324.434 

Example 9.1. An external derivatives file. 
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comprising the matrix. The matrix itself must have NOBS rows and NPAR columns, where 

NPAR is the number of parameters and NOBS is the number of observations cited in the 

PEST control file for the current case. The ordering of parameters and observations in the 

external derivatives file must be the same as that in the PEST control file. Note that a column 

must be included in the derivatives matrix for every parameter, even for those parameters 

which are tied or fixed (PEST ignores derivatives calculated with respect to fixed 

parameters). Similarly, there must be a row for every observation cited in the PEST control 

file, even for observations which are assigned a weight of zero. 

Where there are many parameters to be estimated, each row representing the derivatives of a 

particular observation with respect to all parameters can be wrapped onto the next line (or as 

many lines as you wish). However derivatives for the next observation must begin on a new 

line. 

9.2.4 Derivatives Type 

As is documented elsewhere in this manual, some parameters can be log transformed during 

the parameter estimation process; PEST then estimates the log (to base 10) of such 

parameters rather than the parameters themselves. For such parameters, respective elements 

of the Jacobian matrix used by PEST contain derivatives with respect to the logs of these 

parameters rather than to the parameters themselves; PEST calculates derivatives with respect 

to parameter logs internally from derivatives with respect to native parameters.  

When writing the external derivatives file, the model need not concern itself with whether a 

parameter is log-transformed by PEST or not. The model must simply supply derivatives with 

respect to untransformed parameters and let PEST take care of the calculations required to 

convert these derivatives to derivatives with respect to parameter logs. 

Similarly, if the SCALE and OFFSET values for a particular parameter differ from 1 and 0 

respectively, the model need not concern itself with this. PEST modifies the derivatives cited 

in the external derivatives file to take account of this. 

9.2.5 Use of Derivatives Information 

A complex model often consists of many different parameter types. It may be possible to 

compute derivatives with respect to some of these parameters inside the model, yet it may be 

necessary to compute derivatives with respect to others using PEST’s traditional method of 

finite differences. As is discussed below, the user is able to indicate to PEST the parameters 

for which derivatives information is supplied externally, and those for which derivatives must 

be computed by PEST using finite differences. 

Even greater complexity can arise. For example, a model may be able to calculate derivatives 

with respect to a certain parameter for some observations but not for others. In this case, 

derivatives with respect to the pertinent parameter are actually obtained twice by PEST. First 

PEST undertakes model runs in the usual manner to calculate derivatives for that parameter 

using finite differences. Then, after all necessary finite difference model runs have been 

undertaken for the purposes of finite-difference derivatives calculation for those parameters 

which need it, PEST completes the Jacobian calculation process by running the “derivatives 

model” to calculate external derivatives. As is discussed above, for those observations where 
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derivatives can be calculated by the model, such derivatives are usually more accurate than 

those calculated by PEST using finite differences and hence should be used in preference to 

those calculated by PEST. However in reading the derivatives file it must be ensured that 

previously-calculated finite-difference derivatives are not overwritten by those elements of 

the external derivatives matrix that could not be calculated by the model. To prevent this from 

happening the respective elements of the external derivatives file should be assigned a value 

of -1.11e33 by the model. Wherever PEST encounters such a value it does not use it. Rather it 

uses the derivative value that already exists in its internal derivatives matrix, this having been 

calculated by finite differences. 

In summary, model-calculated derivatives are read by PEST after derivatives are calculated 

by finite differences for those parameters for which the user has requested finite-difference 

derivatives calculation for at least one observation. Externally supplied derivatives override 

those already calculated by finite differences except where a value of -1.11e33 is supplied for 

the derivative value. 

9.2.6 Tied Parameters 

If a parameter is tied to a parent parameter, and derivatives of the former parameter for a 

particular observation are supplied externally, then derivatives of the tied parameter for that 

same observation must also be supplied externally. If this does not occur, PEST will cease 

execution with an appropriate error message. 

9.2.7 Name of the Derivatives File 

The user must inform PEST of the name of the external derivatives file through the PEST 

control file for the current case (see Section 9.5). The external derivatives file can have any 

legal name except for the following names which are already used by PEST. If the filename 

root of the current project is case, the names to be avoided are:- case.hld, case.jac, case.jco, 

case.jst, case.par, case.pst, case.res, case.rmf, case.rmr, case.rst, case.rsr, case.sen, case.mtt, 

case.rei, case.svd, case.cnd, case.cg and case.seo. Other names which must be avoided are 

pest.hlt, pest.mmf, pest.stp, parcalc.in, parcalc.out, picalc.in and picalc.out. 

9.2.8 Predictive Analysis Mode 

It is very important to note that if PEST is used in predictive analysis mode and at least some 

derivatives are supplied externally, then the sole member of the observation group “predict” 

must be the last observation cited in the PEST control file. Because the ordering of 

observations in the PEST control and external derivatives files must be the same, then 

derivatives for this observation must also comprise the last row of the derivatives matrix 

contained in the external derivatives file. 

9.2.9 Parallel PEST 

PEST cannot receive derivatives through an external file if it is being run as Parallel PEST.  

9.2.10 Compressed External Derivatives File 

PEST provides an option for supplying the external derivatives file in a more compressed 
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format than that illustrated in Example 9.1. This format is depicted in Example 9.2. 

 

The first line of a compressed external derivatives file should contain three integers, viz. 

NPAR and NOBS (same as for the uncompressed alternative), and another entry named 

NDIMCOMP. NDIMCOMP must be set to 0, or to a positive number equal to the number of 

entries to follow. If it is set to 0 (or omitted), the following Jacobian matrix is assumed to 

adopt the protocol depicted in Example 9.1. If it is set to a positive number, it informs PEST 

that NDIMCOMP lines of data follow in this file. 

Each of the following lines must contain three entries. The first two entries (IPAR and IOBS) 

are integers whereas the third ((JACOB(IOBS,IPAR)) is a real number (which can be double 

precision if desired). IPAR is the parameter number, while IOBS is the observation number; 

JACOB(IOBS, IPAR) is the element of the Jacobian matrix corresponding to observation 

IOBS and parameter IPAR. Only non-zero Jacobian elements need to be supplied; missing 

elements are assumed to be zero.  

Compressed storage of an externally-supplied Jacobian matrix can result in a dramatic 

reduction in the size of the Jacobian matrix file where a large number of nonlinear (and hence 

model-calculated) regularisation constraints are used in the inversion process, for under these 

circumstances, the Jacobian matrix normally has many zero elements.  

9.2.11 Compressed PEST Jacobian Matrix 

Section 8.6.1 describes PEST’s functionality for compressed internal storage of the Jacobian 

matrix. When stored in compressed form, this matrix is stored in column order; that is, all 

elements pertaining to the first parameter are stored, then the second, etc (with zero-valued 

elements omitted). If elements of the Jacobian matrix are supplied in the external derivatives 

file in the same order, then the time required to read this file will be far less than if the 

elements are supplied in any other order. This will especially be the case on the first occasion 

that the matrix is read, for on that occasion a constant rearrangement of compressed storage 

elements within PEST’s memory will be the inevitable result of supplying these elements in 

random order. However no such re-arrangement will be necessary if all Jacobian elements for 

IOBS=1 are supplied first (in IPAR order from 1 to NPAR), followed by all elements for 

IOBS =2, etc. 

Unfortunately, loss of efficiency through compressed element rearrangement on the first 

occasion on which the external derivatives file is read by PEST will also occur if prior 

information is used in the inversion process (for derivatives pertaining to prior information 

equations are stored at the lower rows of the Jacobian matrix). Hence, for optimum 

efficiency, it may be better to supply all regularisation constraints (even linear constraints) as 

NPAR NOBS NDIMCOMP 

IPAR1 IOBS1 JACOB(IOBS1,IPAR1) 

IPAR2 IOBS2 JACOB(IOBS2,IPAR2) 

.. 

ndimcomp times 

 

Example 9.2 Compressed format for an external derivatives file. 
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“observations” (computed by the model) rather than as prior information. When doing this, 

care must be taken when supplying derivatives. For example the derivative with respect to 

par1 of the relationship:- 

log(par1) – log(par2) = 0  

is 1.0/par1/2.303. If the parameter par1 is log-transformed by PEST, this relationship 

becomes linear internally to PEST. 

In general, if compressed storage of the Jacobian matrix is undertaken by PEST, and if 

derivatives are supplied in the correct order through a compressed external derivatives file, 

considerable efficiencies can be added to the parameter estimation process. 

9.3 Sending a Message to the Model 

PEST has the ability to send a small “message” to the model prior to running it; section 9.5 

describes how to activate this ability. This is useful if some aspect of the model’s deployment 

depends on whether it is being run to test parameter upgrades, to calculate derivatives by 

forward or central differences, or to fill an external derivatives file. The message sent by 

PEST resides in a file which is always named pest.mmf. The contents of a typical message file 

are shown in Example 9.3 

The first line of a message file contains a character string which tells the model why PEST is 

running it. The various strings used by PEST are as follows:- 

forward_model_run 

This string informs the model that it is being run either to test a parameter upgrade, as the 

first model run of the PEST optimisation process, or as the final model run undertaken by 

PEST with optimised parameters. 

derivative_increment 

The model is being run as part of the finite-difference derivatives calculation process 

undertaken by PEST. 

external_derivatives 

The model is being run in order to write an external derivatives file. 

If the character string on the first line of the PEST-to-model message file is 

derivative_increment 

     -2 

      4      20 

     hcond1      5.005787             1 

     hcond2      9.850230             0 

     stor1      -5.660591            -2 

     stor2       8.257257        -10000 

Example 9.3. A PEST-to-model message file, pest.mmf.  
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“derivative_increment”, then the integer on the second line of this file has significance. A 

value of n for this integer indicates that the model run is being undertaken with the value of 

the n
th

 parameter incremented for the purpose of derivatives calculation by forward 

differences, or as the first of two runs by which derivatives will be calculated using central 

differences. A value of -n indicates that the n
th

 parameter is decremented in the second of two 

runs undertaken for the purpose of derivatives calculation by central differences. 

The third line of the message file lists the number of parameters (PEST variable NPAR) and 

number of observations (PEST variable NOBS) involved in the parameter estimation process. 

Following this are NPAR lines of data with three entries on each line. The first entry on each 

line is a parameter name; recall that this name can contain up to12 characters. Then follows 

the value of the parameter used on the current model run. Following that is an integer code 

that informs the model of the parameter’s status in the inversion process. A value of 0 denotes 

that the parameter is adjustable and is not logarithmically transformed. A value of 1 indicates 

that the parameter is adjustable and is logarithmically transformed. A value of -n indicates 

that the parameter is tied to parameter number n, while a value of -10000 indicates that the 

parameter is fixed.  

The PEST-to-model message file is always written to the current working directory; it is 

written just before each model run is undertaken. However in the case of Parallel PEST, the 

message file is written to each slave working directory just before the pertinent model run is 

initiated by the slave. 

9.4 Multiple Command Lines 

As has already been discussed, when PEST runs a model for the purpose of external 

derivatives calculation, it can use a different command to that which it uses for ordinary 

model runs. (The same command can be used for both of these types of model run if desired. 

In this case it may be necessary for the model to acquaint itself with PEST’s expectations. It 

can do this by reading the PEST-to-model message file.) 

With PEST it is possible to use different commands to run the model when calculating finite-

difference derivatives with respect to different parameters. Recall that when PEST calculates 

the derivatives of all model outputs with respect to a particular parameter, it runs the model 

once (maybe twice) with the value of the parameter incrementally varied. Thus a different 

command can now be used to run the model for each such incrementally-varied parameter. 

Use of a variable command-line strategy may allow a reduction in overall PEST run time to 

be achieved in some circumstances. For example, if a composite model is comprised of a 

sequence of executable programs encapsulated in a batch file, it may not be necessary to run 

the earlier programs of the sequence when parameters pertaining to the later programs are 

being incrementally varied for the purpose of derivatives calculation, for outputs of the earlier 

programs will not vary between subsequent model runs. Hence the “model” run by PEST 

when incrementally varying these later parameters may replace the earlier submodel 

commands with commands by which pertinent output files for these earlier models (stored 

under separate names) are copied to the model output files expected by PEST (recall that 

these are deleted by PEST prior to each model run). Caution should be exercised in doing this 

however, for it must be ensured that the model output files that are copied in this way pertain 
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to un-incremented parameter values for the current optimisation iteration. Thus it may be 

necessary to undertake a full model run for the first of those parameters which affect only the 

later submodels and, as part of this run, copy model output files from the earlier models to the 

files which are to be used for temporary storage. This will be done using yet another “model” 

comprised of a batch or script file which includes the pertinent “copy” commands. 

9.5 External Derivatives and the PEST Control File 

9.5.1 General 

Formatting of the PEST control file must be slightly expanded from that discussed in Section 

4.2 to accommodate the use of external derivatives and to control PEST-to-model messaging. 

Pertinent variables in the PEST control file which govern this aspect of PEST’s functionality 

are now discussed. 

9.5.2 “Control Data” Section 

As is explained in Section 4.2, the fifth line of the PEST control file begins with the PEST 

control variables NTPLFLE, NINSFLE, PRECIS and DPOINT. The three variables situated at 

the end of this line (for which values of 1, 0 and 0 were suggested in Section 4.2) are named 

NUMCOM, JACFILE and MESSFILE (in that order). (For the sake of backwards 

compatibility with older versions of PEST, these variables may be omitted from this line. 

However it is important to note that either these three variables must be completely absent 

from the fifth line of the PEST control file, or all of them must be present.) 

The roles of these variables are now discussed. 

NUMCOM 

This is the number of different command lines which can be used to run the model. The 

actual commands themselves are listed in the “model command line” section of the PEST 

control file (see below). In early versions of PEST, only one command line could be used to 

run the model. However for versions of PEST from 5.0 onwards, different commands can be 

used to run the model, depending on the purpose of the model run. 

Note that when counting the number of available model command lines when assigning a 

value to NUMCOM, the command that is used to run the model in order to fill the external 

derivatives file should not be included in the count. This command is listed in a separate 

section of the PEST control file to the “model command line” section, as will be discussed 

shortly. 

If there is only one command listed in the “model command line” section of the PEST control 

file (which will most often be the case), then NUMCOM should be supplied with a value of 

1.  

JACFILE 

Provide this integer variable with a value of 1 if a special model run is to be undertaken 
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during each optimisation iteration for the purpose of external derivatives calculation. 

Otherwise provide JACFILE with a value of 0. 

Note that if JACFILE is provided with a value of 1 and an attempt is made to run Parallel 

PEST, PEST will cease execution with an appropriate error message.  

MESSFILE 

Provide this integer variable with a value of 1 if PEST is required to write a PEST-to-model 

message file prior to each model run. Otherwise provide it with a value of 0.   

9.5.3 “Parameter Data” Section 

As is described in Section 4.2.4, each line of the “parameter data” section of the PEST control 

file contains values for the variables PARNME, PARTRANS, PARCHGLIM, PARVAL1, 

PARLBND, PARUBND, PARGP, SCALE, OFFSET and DERCOM (in that order). Only the 

variable DERCOM is used in implementing PEST’s external derivatives functionality. 

As was discussed above, the various commands which can be used to run the model for 

purposes other than external derivatives calculation are listed in the “model command line” 

section of the PEST control file. The value of DERCOM pertaining to each parameter 

denotes which of these commands will be used to run the model when PEST calculates 

derivatives with respect to that parameter using finite differences; commands within the 

“model command line” section are numbered from first to last, beginning at 1. 

Alternatively, if the derivatives of all observations with respect to a particular parameter are 

to be supplied externally, then the DERCOM value for that parameter should be supplied as 

zero. If this is the case, PEST will not undertake any model runs to calculate derivatives with 

respect to this parameter using the finite difference method. 

For a particular parameter, derivatives for some observations may be calculated using finite 

differences while derivatives for others may be supplied externally by the model. In this case 

a non-zero value should be provided for DERCOM, thus ensuring that PEST calculates 

derivatives using finite differences for this parameter. If JACFILE (in the “control data” 

section of the PEST control file) is set to 1, then the model will be called specifically to 

calculate external derivatives after PEST has calculated derivatives using finite differences 

for all parameters with a non-zero DERCOM value. As is stressed above, to ensure that a 

finite-difference-calculated derivative is not overwritten when PEST reads the derivatives 

matrix from the external derivatives file, the model should fill all elements of the derivatives 

matrix for which it has not actually calculated an external derivative with a value of -

1.11E33. 

It is important to note that if JACFILE is provided with a value of 1, then the external 

derivatives command will be issued, and PEST will read derivatives from the external 

derivatives file, whether or not any parameter has been assigned a DERCOM value of 0. Thus 

if JACFILE is set to 1, PEST can only assume that for at least one parameter with a non-zero 

DERCOM value, finite-difference-calculated derivatives for some observations are to be 

supplemented by external derivatives for others. It is again emphasised that when writing 

code to fill the external derivatives matrix, the user should take particular care to provide all 
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elements of this matrix with a value of -1.11E33 unless an external derivative is actually 

calculated for that element. Thus derivatives with respect to parameters for which external 

derivatives are not required will not be overwritten by spurious values. 

9.5.4 “Derivatives Command Line” Section 

If a non-zero value is supplied for JACFILE in the “control data” section of the PEST control 

file, the PEST control file must contain a “derivatives command line” section. This must be 

situated just above the “model command line” section. Contents of the “derivatives command 

line” section of the PEST control file are illustrated in Example 9.4, while an example is 

provided in Example 9.5. 

 

Like all other sections of the PEST control file, the beginning of the “derivatives command 

line” section must be denoted using a special header line, the first character of which is an 

asterisk. Following the header line, the next line of this section consists of the command used 

to run the model when it is required to calculate external derivatives. If appropriate, this can 

be the same command as that used to run the model for the purpose of testing parameter 

upgrades or for the calculation of derivatives using finite differences. 

The final line of the “derivatives command line” section consists of the name of the file to 

which the model should write the derivatives matrix, ie. the name of the external derivatives 

file. 

If JACFILE is set to 0 in the “control data” section of the PEST control file, the “derivatives 

command line” section can be omitted. 

9.5.5 “Model Command Line” Section 

In previous versions of PEST the “model command line” section of the PEST control file 

contained only a single line, this being comprised of the command that PEST must use to run 

the model. Indeed if NUMCOM in the “control data” section of the PEST control file is set to 

1, then the contents of this section are the same. However if NUMCOM is set to n, there must 

be n model command lines listed in this section of the PEST control file, one under the other. 

The DERCOM variable in the “parameter data” section of the PEST control file refers to 

* derivatives command line 

command to run the model 

EXTDERFLE 

Example 9.4. Structure of the “derivatives command line” section of a PEST control 

file. 

 

* derivatives command line 

model_d.bat 

derivs.dat 

Example 9.5. An example of the “derivatives command line” section of a PEST 

control file. 
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these commands by number when indicating which of these commands is to be used when 

running the model to calculate derivatives using finite differences with respect to each 

parameter. 

It is important to note that when the model is run in order to test a parameter upgrade, and 

when the model is run for the first time in the optimisation process in order to obtain the 

objective function corresponding to the initial parameter set, the first of the listed model 

commands is used to run the model. 

9.6 An Example 

A simple example is presented to demonstrate the use of PEST’s external derivatives 

functionality. Files pertaining to this example can be found in the edpestex subdirectory of the 

PEST directory after installation. See Chapter 13 for a more fully discussed example of the 

use of PEST and its utilities. In that example derivatives are calculated using finite 

differences. 

File polymod.f contains the source code for a simple program which computes the ordinates 

of a third degree polynomial at a number of different abscissae. That is, it computes the 

function:- 

y = ax
3
 + bx

2
 + cx +  d        (9.1) 

for different values of x. It reads these values of x from a file named poly_x.in and writes its 

computed values of y to a file named poly_val.out. “Parameter values”, ie. the values of the 

polynomial coefficients a, b, c and d, are read from a file named poly_par.in. 

As well as computing values of y corresponding to different values of x. POLYMOD also 

computes a “prediction”, in this case a function of the parameter values given by the 

equation:- 

 p = a + 2b + 3c + 4d        (9.2) 

The “prediction” is written to the end of file poly_val.out following the computed polynomial 

values. 

POLYMOD also computes a Jacobian matrix; this is a matrix of the derivative of y with 

respect to each parameter (ie. a, b, c and d) at each value of x. This is stored internally in the 

JACOB matrix and written to a derivatives file in the format expected by PEST. The name of 

this file is poly_der.out. 

A template file named poly_par.tpl has been prepared to complement the “model input file” 

poly_par.in. This file provides spaces for the four parameters a, b, c and d. An instruction file 

named poly_val.ins reads polynomial values and the prediction value from the model output 

file poly_val.out. 

Two PEST control files have been prepared. In one of these (poly.pst), PEST is asked to run 

in parameter estimation mode, while in the other (polyp.pst) it is asked to run in predictive 

analysis mode. In the former case the model “prediction” plays no part in the parameter 
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estimation process as it is assigned a weight of zero. PEST is thus asked to estimate values 

for the parameters a, b, c and d by matching computed polynomial values at different 

abscissae to the “field data” contained in the PEST control file. Because this “field data” was, 

in fact, model-generated, PEST is able to achieve a very low objective function. 

On the fifth line of file poly.pst, the values of the PEST control variables NUMCOM, 

JACFILE and MESSFILE are set to 1, 1 and 0 respectively. Thus PEST is asked to look to a 

derivatives file to obtain its Jacobian matrix; no PEST-to-model message file is requested. As 

is evident in the “derivatives command line” section of poly.pst, the expected name of the 

derivatives file is poly_der.out. Note also from the contents of the “derivatives command 

line” and “model command line” sections of the PEST control file, that the command used by 

PEST to run the model for the purpose of derivatives calculation is the same as the command 

that it uses to run the model in order to simply obtain model outputs. 

The final entry on each line of the “parameter data” section of file poly.pst is the value of the 

variable DERCOM. In the present instance DERCOM is zero for all parameters; this 

indicates that, for each parameter cited in the control file, PEST will obtain derivatives of all 

model outputs with respect to that parameter from the derivatives file poly_der.out - ie. no 

supplementary model run is required to calculate some derivatives with respect to this 

parameter using finite differences. 

(Note that an OFFSET value of 1.0 is provided for parameter d; this circumvents problems 

that can sometimes arise in the parameter estimation process when a parameter approaches 

zero; see the discussion of RELPARMAX and FACPARMAX in Section 4.2.2.) 

Check the input dataset contained in file poly.pst, and the template and instruction file cited 

therein, by typing the command 

pestchek poly  

at the screen prompt. PESTCHEK should report no errors or inconsistencies - just a warning 

that the command used to run the model for the purpose of derivatives calculation is the same 

as that used to run the model for the purpose of obtaining normal model outputs. Then run 

PEST using the command 

pest poly 

PEST should quickly reduce the objective function to a very low value. 

Now inspect file polyp.pst. While file polyp.pst is very similar to poly.pst, there are some 

important differences. Through this file PEST is asked to carry out predictive analysis, 

minimising the value of the “prediction” while keeping the model “calibrated” to the extent 

that the objective function (based on the match between model outputs and “field data” cited 

in the PEST control file), remains at or below a value of 1.0. Starting parameter values are the 

same as those in poly.pst. As these are very different from optimal parameter values, PEST 

effectively works in parameter estimation mode for a while, concentrating on lowering the 

objective function until it “sniffs” the “critical point” - ie. the point at which the “prediction” 

is minimised while maintaining the objective function below the user-supplied threshold 

(which is 1.0 in the present case). It then calculates the parameter values corresponding to this 

point. 

Once again, PEST receives derivatives from the model by reading the “derivatives file” 
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poly_der.out. 

Check the PEST input dataset using PESTCHEK and then run PEST to obtain the minimum 

model prediction that satisfies calibration constraints. This should be about 8.60. 

You can repeat these PEST runs with derivatives calculated by PEST using finite differences 

if you wish. For each of the two PEST control files, do the following:- 

1. Alter the value of JACFILE (sixth variable on the fifth line) to 0. 

2. Alter the value of DERCOM for each parameter (last variable on each line of the 

“parameter data” section) to 1. 

Check your work with PESTCHEK and then run PEST. 

9.7 JUPITER Protocol for External Derivatives 

9.7.1 General 

PEST has the ability to acquire model-calculated derivatives using the USGS JUPITER 

format. Naturally, if this protocol is adopted for the reading of external derivatives, certain 

rules must be followed. Fortunately, these rules are not very restrictive, and in some instances 

are less restrictive than those required for PEST’s traditional external derivatives functionality 

documented above. If they are transgressed, PEST (and PESTCHEK) will soon remind you of 

this with an appropriate error message. 

9.7.2 JUPITER Protocol for Model-Calculated Derivatives 

The following extract from the JUPITER manual explains the protocol which must be 

observed for the supply of derivatives to a JUPITER application by a model. Note that a 

“dependent” is a model output corresponding to an observation, simply referred to as an 

“observation” in this manual. 

A “derivatives interface file” provides a JUPITER application with information needed to 

obtain model-calculated sensitivities (derivatives of dependents with respect to parameters) 

from a model output file.  All items are read in free format.  The format for a derivatives 

interface file is shown in Table 9.1. 

Table 9.1. Derivatives interface file format. 

Item Variable name or literal contents Explanation 

0 # Text 

Zero or more comment lines allowed only at the top of the file.  

Comments are identified by # in column 1. Comments also may 

follow values to be read on each line, other than lines 

containing names of parameters or dependents. 

1 DERFILE Name of the model-generated file containing derivatives 
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2 NSKIP 
Number of lines at the top of file DERFILE to skip before 

reading derivative values. 

3 NDEP  NPAR Number of dependents; number of parameters. 

4 ORIENTATION 
Either “ROW/DEP” or “ROW/PAR”.  Enter with or without 

quotes.  See note 1 below. 

5 DERFORMAT 
FORTRAN format for reading derivatives values, or: “(FREE)”. 

 See note 2 below. 

6 “PARAMETERS” 
Enter the word “PARAMETERS”, with or without quotation 

marks.  Interpretation is case-insensitive. 

7 Parameter names 

NPAR parameter names.  The names correspond, in order, to 

the parameters for which model-calculated derivatives are 

provided in file DERFILE.  See note 3 below. 

8 “DEPENDENTS” 
Enter the word “DEPENDENTS”, with or without quotation 

marks.  Interpretation is case-insensitive. 

9 Dependent names 

NDEP dependent names.  The names correspond, in order, to 

the dependents for which model-calculated derivatives are 

provided in file DERFILE.  See note 3 below. 

Notes on Table 1: 

1. ORIENTATION:  The choice supports reading either an untransposed or a transposed 

Jacobian matrix from the model-generated file. “ROW/DEP” would indicate that each 

row in file DERFILE contains derivatives for one dependent. “ROW/PAR” would 

indicate that each row contains derivatives for one parameter. 

2. DERFORMAT:  The format string needs to include the parentheses.  Single or double 

quotes may be used to include embedded spaces or commas.  Length limit: 200 

characters. 

3. Parameter names and dependent names:  Names are read until NPAR (or NDEP) 

names are read, the names should be in the order used in the model-generated 

derivatives file.  Multiple names may be listed on each line.  The names need to 

correspond to parameter or dependent names defined elsewhere in the program input. 

Example 9.6 illustrates a JUPITER derivative interface file. 
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9.7.3 Using JUPITER Derivatives Protocol with PEST 

Instructing PEST to use JUPITER protocol to acquire model-calculated derivatives is quite 

straightforward, involving only the following steps. 

1. The control variable JACFILE must be set to 2 rather than 1. 

2. Each parameter must be supplied with a DERCOM variable as appropriate (same as 

for traditional PEST external derivatives functionality). 

3. A “derivatives command line” section must be present within the PEST control file. 

The first line in this section must be the command to run the model for the purpose of 

derivatives calculation. 

4. The second (and only other) line in the “derivatives command line” section must be 

the name of the JUPITER derivatives interface file. (In contrast, for PEST’s traditional 

external derivatives functionality, this is the name of the model-generated file that 

actually contains the parameter derivatives. 

5. The derivatives interface file must be prepared according to the protocol described 

above. 

Thus use of JUPITER external derivatives protocol only requires that the derivatives interface 

file be prepared, that JACFILE be altered from 1 to 2, and that the EXTDERFLE variable in 

the “derivatives command line” section of the PEST control file now contain the name of the 

derivatives interface file, rather than the derivatives file itself.  

9.7.4 Special Considerations 

If DERCOM for a particular parameter is set to zero in the “parameter data” section of the 

PEST control file, this informs PEST that no finite-difference derivatives calculation with 

respect to that parameter is required; that is, the derivatives of all observations with respect to 

that parameter are supplied by the model. If this is the case, the NDEP variable in the 

derivatives interface file must be equal to NOBS – the total number of observations. On the 

other hand, if NDEP is not set to NOBS in a particular derivatives interface file, this indicates 

that there are some observations for all parameters for which derivatives must be calculated 

by finite differences, and hence DERCOM must be set to a non-zero value (normally 1) for 

# Derivatives Interface File for tc1 model 
tc1._su         (DERFILE) 
1               (NSKIP) 
35  9           (NDEP NPAR) 
row/dep         (ORIENTATION) 
'(20x,9f15.0)'  (DERFORMAT) 
PARAMETERS 
wells_tr  rch_zone_1  rch_zone_2  rivers  ss_1  hk_1  vert_k_cb  ss_2  hk_2 
DEPENDENTS 
h1.0  h1.1   h1.12  h2.0  h2.1   h2.2  h2.8  h2.12  h3.0  h3.1  h3.12  h4.0 
h4.1  h4.12  h5.0   h5.1  h5.12  h6.0  h6.1  h6.12  h7.0  h7.1  h7.12  h8.0 
h8.1  h8.12  h9.0   h9.1  h9.12  h0.0  h0.1  h0.12  SS    TR3   TR12 
 

Example 9.6. A JUPITER derivatives interface file. 



Model-Calculated Derivatives  

 

9-16 

 

each parameter.  

If NDEP is equal to NOBS, and NPAR in the derivatives interface file is not equal to NPAR 

in the PEST control file (ie. the total number of parameters), then parameters are effectively 

subdivided into two groups – those for which derivatives for all observations are supplied by 

the model, and those for which derivatives for all observations must be calculated by finite 

differences. DERCOM for all of the former parameters must be set to zero; for all of the latter 

parameters it must be set to an appropriate non-zero value. If NDEP is equal to NOBS, and 

NPAR in the derivatives interface file is equal to NPAR in the PEST control file (ie. the total 

number of cited parameters), then all parameters should have a DERCOM value of zero. 

Special considerations apply to tied parameters. Recall that PEST allows a parameter to be 

tied to a “parent parameter”. The tied parameter is not adjusted, but instead maintains the 

same ratio with the parent parameter as that supplied through initial parameter values; 

derivatives of parent parameters are adjusted to accommodate the existence of one or more 

tied parameters. 

If a decision is made to tie a parameter to a parent parameter in the PEST control file, no 

alterations are required to the derivatives interface file. However certain ties are forbidden. In 

particular, a parameter cited in a derivatives interface file can only be tied to a parameter that 

is also cited in the derivatives interface file. This rule ensures that there will be no 

observations for which derivatives with respect to a tied parameter are calculated by the 

model while derivatives with respect to the parent parameter are calculated by finite 

differences. The reverse of this rule also applies. That is, a parameter that is not cited in the 

derivatives interface file cannot be tied to a parameter that is cited within this file. It is 

envisaged that this will rarely be a harsh restriction, for normally it is only parameters that are 

similar to each other that are tied to each other; derivatives with respect to similar parameters 

are normally calculated by similar means. If you forget this rule and inadvertently tie 

parameters together for which derivatives are indeed calculated by different means, PEST or 

PESTCHEK will detect the error and remind you of this. 

9.7.5 Other Considerations in Using JUPITER External Derivatives Protocol 

When using JUPITER protocol for supplying model-calculated derivatives, there is no need 

to place the sole member of the observation group predict last in the list of observations. As 

in normal PEST operation, this can be placed anywhere within the “observation data” section 

of the PEST control file. 

Due to the fact that parameters and observations for which external derivatives are available 

are specifically identified in the derivatives interface file, a value of -1.11e33 signifying non-

availability of a model-calculated derivative for a certain parameter with respect to a certain 

observation is not required. Hence this value is treated like any other. 

External derivatives can be supplied for a parameter irrespective of whether that parameter is 

adjustable or fixed. Thus the decision to fix a parameter can be made without reference to the 

manner in which derivatives are obtained.  
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10. Parallel PEST 
Don’t forget to see the addendum to this manual for further details of PEST functionality, 

particularly as it pertains to highly parameterized inversion and uncertainty analysis. 

10.1 Introduction 

10.1.1 General 

In the course of optimising parameters for a model or of undertaking predictive analysis, 

PEST runs the model many times. Some model runs are made in order to test a new set of 

parameters. Others are made with certain parameters temporarily incremented as part of the 

process of calculating the Jacobian matrix, ie. the matrix of derivatives of observations with 

respect to parameters (unless derivatives are supplied to PEST directly by the model in 

accordance with PEST’s external derivatives functionality). In calculating the Jacobian 

matrix, PEST needs to run the model at least as many times as there are adjustable parameters 

(and up to twice this number if derivatives for some of the adjustable parameters are 

calculated using central differences). In most cases by far the bulk of PEST’s run time is 

consumed in running the model. It follows that any time savings that are made in carrying out 

these model runs will result in dramatic enhancements to overall PEST performance. 

Parallel PEST can achieve a high degree of performance enhancement by carrying out model 

runs in parallel. If installed on a machine that is part of a local area network, Parallel PEST 

can carry out model runs on the different machines which make up the network (including the 

machine which PEST itself is running on). If model run times are large and the number of 

parameters is greater than four or five, overall PEST run times can be reduced by a factor 

almost equal to the number of machines over which Parallel PEST is able to distribute model 

runs.  

As well as allowing a user to distribute model runs across a network, Parallel PEST can also 

manage simultaneous model runs on a single machine. This can realise significant increases 

in PEST efficiency when carrying out parameter optimisation or predictive analysis on a 

multi-processor computer by keeping all processors simultaneously busy carrying out model 

runs. 

The optimisation (including regularisation) and predictive analysis algorithms used by 

Parallel PEST are no different from those used by the normal PEST. Preparation of template 

files, instruction files and the PEST control file is identical in Parallel PEST to that of the 

normal PEST. However use of Parallel PEST requires that one extra file be prepared prior to 

undertaking an optimisation run, viz. a “run management file”. This file informs Parallel 

PEST of the machines to which it has access, of the names of the model input and output files 

residing on those machines, and of the name of a subdirectory it can use on each of these 

machines to communicate with a “slave” which carries out model runs on request; see below. 

10.1.2 Parallelisation of the Jacobian Matrix Calculation Process 

When PEST calculates derivatives of model outcomes with respect to adjustable parameters 
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using finite parameter differences, successive model runs are independent, ie. the parameters 

used for one particular model run do not depend on the results of a previous model run. The 

complete independence of model runs undertaken as part of the process of filling the Jacobian 

matrix makes this process easily parallelised. Under these circumstances Parallel PEST 

simply distributes model runs to different machines or processors as they become available, 

and processes the outcomes of these runs as they are finished. 

10.1.3 Parallelisation of the Marquardt Lambda Testing Process 

Unlike the Jacobian calculation process, the lambda search process (see Section 2.1.7) is 

difficult to parallelise. This is because, with the exception of the first two model runs 

undertaken as part of the lambda search procedure during each optimisation iteration, the 

Marquardt lambda used at subsequent stages of this procedure is dependent on the results of 

model runs undertaken on the basis of previous lambda values. Hence it is necessary for 

PEST to wait until the results of a previous model run have been evaluated before it can 

undertake a further model run on the basis of a new parameter set calculated using a new 

Marquardt lambda. 

However while the lambda search process is not immediately amenable to parallelisation, it is 

not impossible to accelerate this process somewhat through “partial parallelisation”, thanks to 

the fact that lambda values used by PEST in this search are all related to each other by 

multiples of LAMFAC. Thus if PEST is run as Parallel PEST, and if it has access to a 

number of processors, it can undertake simultaneous model runs across these different 

processors using parameters calculated on the basis of a series of lambda values related to 

each other by factors of LAMFAC. To some extent, PEST must “guess” which lambdas to 

use for these parallelised model runs. If it turns out that some of these lambdas are actually 

not required, then nothing will have been lost because the respective processors’ 

contributions to the lambda search procedure would have also been zero if they were 

undertaking no model runs at all. 

While Parallel PEST allows such a “partial parallelisation” of the lambda search to be 

undertaken, parallel lambda runs will not be undertaken:- 

 if at least one parameter is frozen at its upper or lower bound, 

 if PEST is running in predictive analysis mode and a line search is undertaken as part 

of the predictive analysis process, 

 if the model run time for the fastest processor involved in the parallelisation process is 

less than 1.8 times the model run time for the second fastest processor (see below),  

 if only one slave is currently available for the undertaking of model runs (this may 

happen if all but one slave is currently completing redundant model runs arising out of 

the previous parallel Jacobian calculation process), 

 the user indicates to PEST that only the Jacobian matrix calculation process is to be 

parallelised (see below). 

The user should take particular note of the first of the above exceptions to PEST’s ability to 
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undertake a partial parallelisation of the lambda search. The reason for this exception is that 

while PEST may be able to “guess” the values of future Marquardt lambdas to be used in the 

lambda search procedure with a high probability of success, it has far more difficulty in 

predicting whether a parameter is to be frozen at its upper or lower bound, and the order in 

which parameters are to be frozen if more than one of them are at their limits. (The fact that a 

parameter is at its upper or lower bound is no guarantee that it will be frozen, for it may need 

to move back into adjustable parameter space from that bound as different lambdas are 

tested). 

A continuation of the discussion on how Parallel PEST undertakes “partial parallelisation” of 

the lambda testing procedure will be presented in Section 10.2.6 below after a discussion of 

how Parallel PEST actually works. 

10.1.4 A Warning 

If model run times are short, gains in computational efficiency that are achievable using 

Parallel PEST will not be as great as when model times are large, for the time taken in writing 

and reading (possibly lengthy) model input and output files across a local area network may 

then become large in comparison with model run times. 

10.1.5 Installing Parallel PEST 

The command-line version of the Parallel PEST executable, ppest.exe is automatically 

installed when you install PEST on your machine.  

As is explained below, for Parallel PEST to run a model on another machine it must signal a 

slave, named PSLAVE, residing on the other machine to generate the command to run the 

model. Thus pslave.exe must be installed on each machine engaged in the Parallel PEST 

optimisation process. To do this, copy pslave.exe (also provided with PEST) to an appropriate 

subdirectory on each such machine. This subdirectory can be the model working directory on 

that machine if desired; if not, it should be a directory whose name is cited in the PATH 

environment variable on that machine. Alternatively, if each slave has access to the PEST 

directory on the “master” machine, PSLAVE can be loaded from that directory each time it is 

run on each slave machine. This is most easily accomplished if the PEST directory on the 

master computer, as seen by each slave computer, is cited in the latter’s PATH variable. 

10.2. How Parallel PEST Works 

10.2.1 Model Input and Output Files 

The manner in which Parallel PEST carries out model runs on different machines is just a 

simple extension of the manner in which PEST carries out model runs on a single machine. 

Before running a model on any machine Parallel PEST writes one or more input files for that 

model, these files containing parameter values appropriate to that model run. After the model 

has finished execution, Parallel PEST reads one or more files generated by the model in order 

to obtain values calculated by the model for a set of outcomes for which there are 

corresponding field or laboratory measurements. 
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Operation of Parallel PEST assumes that PEST can write model input files and read model 

output files, even though these files may reside on a different machine to that on which PEST 

itself is running. Access to files on other machines is achieved through the use of network 

software. Input and output files for a particular model may reside on the machine which 

actually runs the model, or on a network server to which both PEST and the model’s machine 

have access. The only provisos on where these files reside is that both PEST and the model 

must be able to read and write to these files, and that these files are named using normal 

filename protocol. This is easily accomplished through the use of the “shared folder” concept 

available across local area networks.  

Parallel PEST writes input file(s) for the models running on the various networked machines 

using one or more templates residing on the machine on which PEST is running. Similarly, 

Parallel PEST reads the output file(s) produced by the various models using the instructions 

contained in one or a number of instruction files residing on the machine on which PEST 

runs. The fact that model input files are written and model output files are read by PEST 

across a network underlines the point made above that the potential reduction in overall PEST 

run time that can be achieved by undertaking model runs in parallel will only be realised if 

model run times are large compared with the delays that may be incurred in writing and 

reading these files across a network. 

10.2.2 The PEST Slave Program 

While Parallel PEST is able to achieve access to model input and output files residing on 

other machines through the use of shared subdirectories, it cannot actually run the model on 

another machine; only a program running on the other machine can do that. Hence before 

PEST commences execution, a “slave” program must be started on each machine on which 

the model will run. Whenever PEST wishes to run a model on a particular machine it signals 

the slave running on that machine to start the model. Once the model has finished execution 

the slave signals PEST that the model run is complete. PEST can then read the output file(s) 

generated by the model. 

The slave program (named PSLAVE) must be started before Parallel PEST on each machine 

on which model runs are to be undertaken. It detects the commencement of PEST execution 

through reading a signal sent by PEST as the latter starts up. It then awaits an order by PEST 

to commence a model run, upon the arrival of which it sends a command to its local system to 

start the model. It is possible that the command used to start the model may be different for 

different slave machines (for example if the model executable resides in a differently-named 

subdirectory on each such machine and the full model pathname is used in issuing the system 

command); hence PSLAVE prompts the user for the local model command as it commences 

execution. 
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Figure 10.1 illustrates in diagrammatic form the relationship between Parallel PEST, 

PSLAVE and the model for the case where PEST resides on one machine and the model is 

run on each of two other machines. Note that, as is explained below, this is an unusual case in 

that it is common practice for the master machine (ie. machine #1 in Figure 10.1) to also be a 

slave machine to avoid wastage of system resources. 

10.2.3 Running the Model on Different Machines 

Greatest efficiency can be achieved if an independent model executable program resides on 

each slave machine. Thus when PSLAVE runs the model, the executable program does not 

have to be loaded across the network. Note however, that if PEST and two incidences of 

PSLAVE are being run on the same machine in order to gain access to two different 

processors belonging to that machine, there is no reason why each slave should not run the 

same model executable. 

It is essential that for each slave engaged in the Parallel PEST optimisation process, the 

model, as run by that slave, reads its input file(s) and writes its output file(s) to a different 

subdirectory (or subdirectories) from the model as run by any of the other slaves; this will 

probably occur naturally when slaves reside on different machines. If this is not done, model 

output files generated during one parallel model run will be overwritten by those generated 

during another; similarly model input files prepared by PEST for one particular model run 

will be overwritten by those that it prepares for another. 

In many cases all input files for one particular model are housed in a single subdirectory; also 

 

Machine #2

pslave.exe
model input files
model output files

Machine #3

pslave.exe
model input files
model output files

Machine #1

ppest.exe

template files
instruction files

writes model input files

reads model output files

writes model input files

reads model output files

 
 

 

 

Figure 10.1 Relationship between PEST, PSLAVE and the model. 
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all model output files are written to this same subdirectory. In this simple case, preparation 

for model runs on different machines across a network consists in simply copying the entire 

model working directory from the master machine to an appropriate directory on each of the 

other machines. As is explained below, the structure of the “run management file” which 

Parallel PEST must read in order to ascertain the whereabouts of each of its slaves is 

particularly simple under these circumstances. 

10.2.4 Communications between Parallel PEST and its Slaves 

Parallel PEST must communicate with each of its slaves many times during the course of the 

optimisation process. It must inform each slave that it has begun execution, it must command 

various slaves to run the model, and it must receive signals from its slaves informing it that 

different model runs have reached completion. It must also inform all slaves to shut down 

under some circumstances of run termination, and be informed by each slave, when it 

commences execution, that the slave itself is up and running. 

Such signalling is achieved through the use of short shared “signal” files. These files, whether 

originating from PEST or PSLAVE, are written to the directory from which PSLAVE is run 

on each slave machine; PSLAVE provides these signal files with no path prefix, thus 

ensuring that they are written to the directory from which its execution was initiated. PEST 

however must be informed of the names of these various PSLAVE working directories (most 

of which will reside on other machines) through its run management file. Note that there is no 

reason why a PSLAVE working directory should not also be a model working directory on 

any slave machine, as long as filename conflicts are avoided. In fact such an arrangement, 

being simpler, mitigates against making mistakes. Table 10.1 shows the names of the signal 

files used by PEST and PSLAVE to communicate with each other. 

If Parallel PEST carries out two simultaneous model runs on the one machine (for example to 

exploit that machine’s dual processors), then a separate PSLAVE working directory must be 

commissioned for each separate PSLAVE running on that machine. Once again, these 

directories may also be the working directories for each of the two distinct model runs. 
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Where Parallel PEST is used to run the model on different machines across a network, it is 

likely that one such slave machine will be the machine that PEST is also running on. This is 

because PEST is not, in general, a big consumer of system resources, much of its role being to 

manage input and output to and from the model runs being initiated by its various slaves. 

Hence the running of PEST leaves adequate system resources available for the running of the 

model on the same machine. For such a case running PSLAVE from the model working 

directory, thus designating it as the PSLAVE working directory is, again, entirely appropriate. 

This directory can also be that from which PEST is run and may thus hold PEST control, 

template and instruction files. See Section 10.3.10 for a further discussion of this topic. 

10.2.5 The Parallel PEST Run Management File 

The purpose of the Parallel PEST run management file is to inform PEST of the working 

directory of each slave (as seen through the network from the machine on which PEST is 

run), and of the names and paths pertaining to each model input file which it must write and 

each model output file which it must read. The run management file must possess the same 

filename base as the current PEST case; its extension must be “.rmf”. Thus if Parallel PEST 

is run using the command: 

ppest calib 

then PEST will look to file calib.pst to read its control data (ie. calib.pst is the PEST control 

file for the current case) and file calib.rmf to read data pertaining to the distribution of model 

File Written By Function 

pslave.rdy PSLAVE Informs PEST that it has begun execution; also 

informs it of the command line which it will use 

to run the model. 

pest.rdy PEST Informs PSLAVE that it has begun execution. 

param.rdy PEST Informs PSLAVE that it has just generated 

model input files(s) on the basis of a certain 

parameter set and that it must now run the 

model. 

observ.rdy PSLAVE Informs PEST that the model has finished 

execution and that it must now read the model 

output file(s). 

pslave.fin PEST Informs PSLAVE that it must now cease 

execution. 

p###.## PEST Used to test whether PEST has access to all 

PSLAVE working directories. 

Table 10.1 Files used by PEST and PSLAVE to communicate with each other. 
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runs across the network. 

Example 10.1 shows the structure of a run management file while Example 10.2 shows an 

example of such a file for the case where there are three slaves. 

 

The first line of a run management file should contain only the character string “prf” 

identifying the file as a PEST run management file. The next line must contain four items, the 

first of which is the number of slaves, NSLAVE, involved in the current Parallel PEST run. 

The second item on this line is the value of the variable IFLETYP which must be either 1 or 

0. If it is 1 then all model input and output files on the various slave machines must be 

individually named (as is demonstrated in Example 10.2). However if the names of all 

corresponding input and output files are the same across all slaves, being identical to the 

names provided (without subdirectory name) in the PEST control file, and if each set of 

model input and output files lies within the PSLAVE working directory on each slave 

machine, then a value of 0 can be supplied for IFLETYP and the model input and output 

filenames omitted from the run management file; Example 10.3 shows such a file. In this case 

prf 
NSLAVE IFLETYP WAIT PARLAM 
SLAVNAME SLAVDIR 
(once for each slave) 
(RUNTIME(I), I=1,NSLAVE) 

Any lines after this point are required only if IFLETYP is nonzero; the 

following group of lines is to be repeated once for each slave. 
INFLE(1) 
INFLE(2) 

(to NTPFLE lines, where NTPFLE is the number of template files) 
OUTFLE(1) 

OUTFLE(2) 

(to NINSFLE lines, where NINSFLE is the number of instruction files) 

 

Example 10.1 Structure of the Parallel PEST run management file. 

 

prf 
3 1 1.5 0 
'my machine' .\ 
'steve''s machine' k:.\ 
'jerome''s machine' l:\model\ 
600 600 720 
model.in1 
model.in2 
model.o1 
model.o2 

model.o3 
k:.\model.in1 
k:.\model.in2 
k:.\model.o1 
k:.\model.o2 
k:.\model.o3 
l:\model\model.in1 
l:\model\model.in2 
l:\model\model.o1 
l:\model\model.o2 
l:\model\model.o3 

Example 10.2 A typical Parallel PEST run management file. 
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PEST automatically affixes the working directory of each slave to the front of each model 

input and output file as named in the PEST control file. 

The third item on the second line of the PEST run management file is the value for the 

variable WAIT. As PEST and PSLAVE exchange information with each other and as PEST 

writes and reads model input and output files, both PEST and PSLAVE pause at certain 

strategic places in the communications process for an amount of time specified as the value of 

the variable WAIT; such pauses allow one machine to “catch up” in implementing the 

instructions supplied by another machine. WAIT is the duration of each such pause, 

expressed in seconds; its value must be greater than zero. Experience has demonstrated that if 

PEST and all of its slaves are running on the same machine a value of 0.2 seconds is normally 

adequate. However for communications across a busy network, values as high as 10.0 

seconds (or even higher) may be appropriate. By pausing at appropriate moments in the data 

exchange process, “sharing violation” errors can be avoided. In some cases such errors will 

result in nothing more than a message (generated by the operating system) to the PEST or 

PSLAVE screen; this matters little as both PEST and PSLAVE check that their instructions 

have been obeyed, re-issuing them if they have not. However if a model, rather than PEST or 

PSLAVE encounters such an error through reading from or writing to a file which has not 

been closed by another process (such as PEST or even the previous model run), then the 

operating system will issue a message such as  

Sharing violation reading drive C 
Abort, Retry, Fail? [y/n] 

The slave running that particular model will drop out of the Parallel PEST optimisation 

process until this question is answered. It would obviously be unfortunate if the question is 

asked at midnight when no-one is around to answer it with a simple “r” to send the model on 

its way again. Fortunately, if WAIT is set high enough, this should not happen. 

If PARLAM (the fourth variable appearing on the second line of the run management file) is 

set to 1, partial parallelisation of the lambda search is undertaken. However if it is set to 0, 

then the lambda search is conducted in serial fashion using just one processor. Partial 

parallelisation is further discussed in Section 10.2.6 below. 

Lines 3 to NSLAVE+2 (ie. NSLAVE lines in all) of the run management file should contain 

two entries each. The first is the name of each slave; any name of up to 30 characters in 

length can be provided. The name should be surrounded by single quotes if it contains any 

blank spaces; an apostrophe should be written twice. This name is used for identification 

purposes only; it need bear no resemblance to computer names or IP addresses as allocated by 

the network manager. 

The second item on each of these lines (ie. SLAVDIR) is the name of the PSLAVE working 

directory as seen by PEST. This directory name should terminate with a backslash character; 

if you do not terminate the name with a backslash, PEST will add it automatically. You can 

either provide the full path to the PSLAVE working directory, or supply it in abbreviated 

form if this works. Thus if, having opened a command-line window to run PEST, you transfer 

to drive K in Example 10.2 (this being a slave machine’s disk) and change the directory to the 

PSLAVE working directory, and then change back to the local directory again (eg. by typing 

“C:”), then a path designation of K:.\ affixed to the filenames listed in Table 10.1 will 
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ensure that these files are written correctly to the PSLAVE working directory no matter what 

is its full pathname. Note however that the directory K:\ (without the dot) is not the same 

directory as K:.\ (with the dot) if directories under the PSLAVE working directory are 

accessible from the machine on which PEST is run. If there are any doubts, provide the full 

PSLAVE path.  

Note also from Example 10.2 that a slave on the local machine can work from the same 

directory as PEST. This may be desirable if all model input files are in this same directory 

(which is often the case) and this is also the current PEST working directory. A designation of 

.\ is sufficient to identify this directory. 

The next line of the run management file must contain as many entries as there are slaves. 

Each entry is the expected run time of the model on the respective slave, the ordering of 

slaves on this line being the same as that in which slave data was supplied earlier in the run 

management file. Run times should be supplied in seconds; if you are unsure of the exact run 

times, simply provide the correct run time ratios. There is no need for stopwatch precision 

here as PEST continually updates model run time estimates in the course of the parameter 

estimation process. However it is better to overestimate, rather than underestimate these run 

times so that PEST will not re-instigate the initial model run (which is not part of the 

Jacobian calculation) on an alternative machine if the initial model run takes much longer 

than you have indicated, and PEST comes to the conclusion that a mishap may have occurred 

on the machine to which that run was initially assigned. 

If the value supplied for IFLETYP is 0, then the run management file is complete. However if 

it is supplied as 1, the names of all model input files and all model output files on all slave 

machines must next be supplied individually. Either full pathnames can be supplied or 

abbreviated pathnames, the abbreviations being sufficient for PEST to write and read the 

respective files from the directory in which it is run. Data for the various slaves must be 

supplied in the same order as that in which the slaves were introduced earlier in the file. For 

each slave the names of NTPFLE model input files must be followed by the names of 

NINSFLE model output files, where NTPFLE is the number of template files and NINSFLE 

is the number of instruction files pertaining to the present PEST case. (Note that the PEST 

template and instruction file corresponding to each of these model input and output files is 

identified in the PEST control file read by Parallel PEST.) 

Example 10.3 shows a Parallel PEST run management file equivalent to that of Example 10.2 

but with the value of NFLETYP set to 0. Use of an abbreviated run management file such as 

that shown in Example 10.3 is only possible where all model input and output files on each 

slave reside in the one subdirectory, and this subdirectory is also the PSLAVE working 

directory on that machine. 

prf 
3 0 1.5 
'my machine' .\ 
'steve''s machine' k:.\ 
'jerome''s machine' l:\model 
600 600 720 

Example 10.3 A Parallel PEST run management file equivalent to that of Example 

10.2, but with NFLETYP set to zero. 
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10.2.6 More on Partial Parallelisation of the Marquardt Lambda Testing Process 

The algorithm used by PEST to undertake parallel model runs as part of its lambda search 

procedure is similar to that used for parallelisation of the Jacobian matrix calculation process. 

However there are some important differences. One such difference is that if any slave carries 

out model runs with a run time which is greater than 1.8 times that of the fastest slave, then 

that slave is not used in the partial parallelisation process. This is because PEST sends model 

runs to its slaves in “packets” of 1 or more runs, and will not resume its normal execution 

until all of those runs are completed. The size of this “packet of runs” at any stage of the 

lambda search procedure is equal to the number of available slaves whose execution speed is 

roughly equivalent to that of the fastest slave. The “packet” is limited to this size because if 

one particular slave can complete two model runs in the same or less time than that required 

for another slave to complete only one model run, then it would be more efficient to 

undertake these model runs in serial, with the proper decision-making process taking place 

after each such run. 

Another difference between the procedure by which Jacobian runs are carried out in parallel 

and that by which lambda search runs are carried out in parallel is that in the former case 

PEST knows the number of runs that must be carried out before the Jacobian calculation 

process is complete. However the lambda search procedure is deemed to be complete when 

PEST judges that the overall parameter estimation process is better served by terminating the 

current lambda search procedure and moving on to the next optimisation iteration. The 

criteria by which this decision is made are supplied through the variables appearing on the 

sixth line of the PEST control file. Hence the size of the “packet” of parallel model runs 

ordered by PEST is determined solely on the basis of the number and speed of available 

slaves, and not on the basis of foreknowledge of the number of parallel runs required for 

completion of the lambda search procedure. The decision-making process involved in the 

lambda search procedure is activated only after each packet of model runs is complete, a 

process that may result in some of these runs being ignored. The fact that the lambda 

adjustment procedure then becomes a combination of parallelisation with intermittent 

decision-making is the basis for its classification as a “partial parallelisation” procedure. 

During any optimisation iteration, upon commencement of the lambda search procedure for 

that optimisation iteration, PEST’s first packet of model runs is based on Marquardt lambdas 

which are generally lower than the optimal lambda determined during the previous 

optimisation iteration. However, if there are enough slaves at its disposal, PEST also carries 

out model runs based on one or a number of higher Marquardt lambda values as well. On 

subsequent occasions during the same lambda search procedure on which PEST orders 

packets of model runs to be completed, parameters used for such runs are all based on 

decreasing Marquardt lambdas or on increasing Marquardt lambdas, depending on the results 

of the previous package of parallel runs. 

The lambda search procedure is such that parallelisation inevitably results in some model runs 

being wasted. Hence, although PEST might inform the user through its screen output that n 

parallel model runs are being carried out, it may not display the results (ie. the objective 

function and perhaps the model prediction) of all of these n model runs. It simply processes 

the results of that “packet” of runs in accordance with its lambda search algorithm. If the 

demands of that algorithm are such that more Marquardt lambdas must then be tested, another 

“packet” of runs is carried out. 
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Nevertheless, there will be some occasions when the path taken by the parameter estimation 

process is slightly different when the lambda search procedure is parallelised from that which 

is taken when the lambda search is conducted on the basis of serial model runs. If an 

unexpected and significant advance in the parameter estimation process is achieved in a run 

that would not have been undertaken on the basis of the usual Marquardt lambda testing 

procedure based on serial model runs, PEST will not ignore this; the results of that run will be 

assimilated into the parameter estimation process. 

10.3. Using Parallel PEST 

10.3.1 Preparing for a Parallel PEST Run 

Before running Parallel PEST, a PEST run should be set up in the usual manner. This will 

involve preparation of a set of template and instruction files as well as a PEST control file. 

When preparing the PEST control file it is important for template and instruction files to be 

properly identified. However the names of the corresponding model input and output files are 

not used if the value of IFLETYP in the run management file is set to 1, for these are then 

supplied to PEST in the run management file itself. Similarly, the model command line as 

provided in the PEST control file is ignored by Parallel PEST as the model command line is 

supplied directly to each slave by the user on commencement of the latter’s execution (see 

below). Once the entire PEST input dataset has been prepared, PESTCHEK should be used to 

ensure that it is all consistent and correct. 

Next the Parallel PEST run management file should be prepared in the manner discussed in 

Section 10.2.5. 

Before Parallel PEST is started, care should be taken to ensure that the model runs correctly 

on each slave machine. A set of model input files should be transferred from the master 

machine to each slave machine (or TEMPCHEK can be used to construct such files on the 

basis of a set of template files and a parameter value file). Where any model input files are 

not generated by Parallel PEST (because they contain no adjustable parameters), these files 

should be identical across all machines that run the model. In most cases all model input files 

will be placed into a single model working directory on each slave machine. In most cases the 

model itself will need to be installed on each slave machine as well. 

10.3.2 Starting the Slaves 

Go to each of the slaves in turn, open a command-line window and transfer to the PSLAVE 

working directory on that machine. Start PSLAVE execution by typing the command 

“pslave”. PSLAVE immediately prompts the user for the command which it must use to run 

the model. Type in the appropriate command. Remember that, as with the normal PEST, the 

“model” may be a batch file running a series of executables; alternatively, the model may be a 

single executable. Provide the model pathname if the model batch file or executable is not 

cited in the PATH environment variable on the local machine, or does not reside in the 

PSLAVE working directory. 

On each slave machine, PSLAVE now waits for PEST to commence execution. At this stage, 

or at any other stage of PSLAVE execution, the user can press the <Ctl-C> keys to terminate 
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its execution if this is desired. 

10.3.3 Starting PEST 

The next step is to start PEST. Move to the machine on which PEST resides, open a 

command-line window, transfer to the appropriate directory and type: 

ppest case 

where case is the filename base of both the PEST control file and the Parallel PEST run 

management file.  

PEST then commences execution. First it reads the PEST control file and then the run 

management file. Then it attempts to write to, and read from, the PSLAVE working directory 

on each slave machine in order to verify that it has access to each such directory. It also 

informs each PSLAVE that it has commenced execution and waits for a response from each 

of them. Once it has received all necessary responses it commences the parameter 

optimisation process. 

Operation of Parallel PEST is very similar to that of PEST. However whenever a model run 

must be carried out, Parallel PEST selects a slave to carry out this run. If model runs are to be 

conducted one at a time (as do, for example, the initial model run and the sequence of model 

runs in which parameter upgrades are tested if the user has decided not to parallelise the 

lambda search procedure by setting the PARLAM variable to zero), Parallel PEST selects the 

fastest available slave to carry out each run. Initially it knows which slave is fastest from the 

estimated model run times supplied in the run management file. However once it has 

completed a few model runs itself, Parallel PEST is able to re-assess relative slave machine 

execution speeds and will use these upgraded machine speed estimates in allocating model 

runs to slaves. 

The Parallel PEST run manager is “intelligent” to the extent that if a model run is 

significantly late in completion Parallel PEST, fearing the worst, allocates that same model 

run to another slave if the latter is standing idle. Similarly, if a slave has just become free and 

Parallel PEST calculates that a model run which is currently being undertaken on a certain 

slave can be completed on the newly freed slave in a significantly faster time, it reassigns the 

run to the new slave. As it allocates model runs to different slaves it writes a record of what it 

does to its “run management record file”; see below. 

Parallel PEST execution continues until either the optimisation process is complete or the 

user interrupts it by typing the PPAUSE, PSTOP or PSTOPST command while situated in the 

PPEST working directory within another command-line window; see Section 5.4.1 for further 

details. In the former case PEST execution can be resumed if the PUNPAUSE command is 

typed. Meanwhile the run record file can be examined by opening it with any text editor.  

10.3.4 Re-Starting Parallel PEST 

If the RSTFLE variable on the PEST control file is set to restart, a terminated Parallel PEST 

run may be restarted at any time from the beginning of the optimisation iteration during 

which it was interrupted. This can be achieved through entering the command 
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ppest case /r 

where case.pst is the PEST control file for the current case. Alternatively, execution can be 

re-commenced at that point at which calculation of the Jacobian matrix had most recently 

been completed by typing the command 

ppest case /j 

A further restart alternative is provided through use of the “/s” switch. If a Parallel PEST run 

is terminated while PEST is engaged in calculation of the Jacobian matrix, and if Parallel 

PEST execution is re-commenced using the command 

ppest case /s 

then execution of the next Parallel PEST run will commence at exactly the same place at 

which its previous calculation was interrupted, with no need to repeat previously conducted 

model runs in computation of the current Jacobian matrix. If interrupted during testing of 

Marquardt lambdas however, Parallel PEST execution restarted with the “/s” switch will 

commence its operations at the beginning of the Marquardt lambda testing process. 

In all of these cases, PSLAVE must be started in the usual fashion on each slave machine 

before issuing either of these commands. Note, however, that if PSLAVE is already running 

on each of these machines, it does not have to be restarted. This is because an already 

executing PSLAVE can detect the commencement of a new PEST run. 

If PEST is restarted without the “/r”, “/j” or “/s” switches, it will commence the optimisation 

process from the very beginning. Once again, if PSLAVE is already running on each of the 

slave machines (having been initially started for the sake of a previous Parallel PEST run), it 

need not be restarted on any of these machines. Such a re-commencement of PEST execution 

“from scratch” will sometimes be warranted after PEST terminates execution with an error 

message, or if the user terminates PEST execution with the “Immediate stop” option; in 

neither case does PEST signal to its slaves to cease execution, just in case the user wishes to 

restart PEST immediately after rectifying an error in the PEST control file or in a template or 

instruction file. Note, however, that if changes are made to the run management file, each of 

the slaves should be stopped and then re-started. 

If PEST is restarted with the “/r”, “/j” or “/s” switches, neither the PEST control file, nor any 

template or instruction file should have been altered from that supplied to PEST on its 

original run. It is important to note, however, that the same does not apply to the run 

management file. Thus Parallel PEST can recommence a lengthy execution using more, less, 

and/or different slaves than those that were used for the initial part of the Parallel PEST run, 

as long as the new run management file is prepared in the correct fashion and PSLAVE 

execution is recommenced on each of the slave machines identified in that file before PEST 

execution is recommenced. 

10.3.5 Parallel PEST Errors 

As in normal PEST operation, Parallel PEST run-time error messages are written to both the 

screen and the run record file. 
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10.3.6 Starting Slaves Late 

There is actually no need for all slaves involved in a Parallel PEST run to be started before 

PEST commences execution. Hence slaves can enter the parallelisation process late. In fact, 

Parallel PEST will happily commence execution even if only one slave is alive. However, all 

slaves to which Parallel PEST potentially has access must be cited in the run management 

file, read by Parallel PEST upon commencement of its execution. 

As discussed above, when Parallel PEST is started, it first spends a few moments in checking 

for the presence of slaves cited in the run management file. After this checking period is over, 

it ceases execution if no slaves have been detected. However if even one slave has been 

detected, it commences the parameter estimation process. At any time during this process 

others of the slaves cited in the run management file can be started. Once a new slave has 

been started, PEST will soon detect the presence of this slave and will provide it with model 

runs to carry out. 

The fact that some slaves can enter the parameter estimation process later than other slaves 

adds greater flexibility to that process, for it allows computers to be added as they become 

available. This can occur when the people who own those computers take a break, or go 

home. 

10.3.7 Losing Slaves 

If, during the course of a Parallel PEST run, a slave machine drops out of the network, under 

many circumstances PEST will continue execution. If communications are lost during the 

course of a model run, then PSLAVE executing on the lost machine will not be able to inform 

PEST of the completion of that model run. PEST will soon grow tired of waiting and allocate 

that run to another slave. It will thus continue execution with one less slave at its disposal. 

However if the slave machine drops out just while PEST is trying to read a model output file, 

PEST will terminate execution with an error message. 

Even complete network failure may not result in the termination of a Parallel PEST run, for if 

one slave is running on the same machine as PEST, PEST will be able to continue execution 

using just that single slave, as long as the time of network failure did not coincide with the 

time at which PEST was reading a model output file from a slave machine. 

10.3.8 Re-Starting Slaves 

If a slave is shut down, it can be re-started without having to stop and re-start PEST. A slave 

may be shut down, for example, if the owner of a computer being used for a Parallel PEST 

run wishes to re-claim his/her computer for the less important tasks in which his/her 

computer is normally engaged. In such a case, execution of the slave on that machine may be 

terminated by pressing the <Ctl-C> keys when focussed in the slave window. You may have 

to press these keys a few times to terminate execution of both the model and the slave.  

Later on, the slave may be re-started. Simply type “PSLAVE” in the appropriate command-

line window and supply the command to run the model as requested by PSLAVE. After a 

while the slave should announce that its presence has been detected by PEST, and you will 

notice that it has been given a model run to do. Note however that it may not receive this run 
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immediately; if PEST is testing the effects of different Marquardt lambdas it may not require 

a model run from this slave for a while (especially if partial parallelisation of the Marquardt 

lambda procedure is not activated). 

It is very important to note, however, that there will be occasions when PEST will simply not 

detect the presence of the resurrected slave. This will occur if the slave re-commences 

execution during the same optimisation iteration as that in which its execution was previously 

terminated. There is a good reason for this. PEST cannot look for lost slaves unless it knows 

that they are lost. And it doesn’t know that a slave is lost unless it is well overdue in returning 

model results. A slave is only decreed to be “dead” at the end of an optimisation iteration. 

PEST can then begin searching for signs of its rejuvenation during the next optimisation 

iteration.  It is true that this inconvenience could be rectified with the introduction of a little 

more sophistication into messaging between PEST and its slaves; however this must await a 

later PEST release. 

10.3.9 The Parallel PEST Run Management Record File 

Section 5.2 discusses in detail the PEST run record file which records the progress of the 

parameter estimation process. Parallel PEST produces an identical run record file to that of 

the normal PEST. It also writes a “run management record file”. Like the run record file, the 

run management record file possesses a filename base identical to that of the PEST control 

file. However PEST provides this file with an extension of “.rmr” (for “Run Management 

Record”). Example 10.4 shows part of a Parallel PEST run management record file. 

 

 

                    PEST RUN MANAGEMENT RECORD FILE: CASE VES2 
 
 SLAVE DETAILS:- 
 
 Slave Name                  PSLAVE Working Directory 
 ----------                  ------------------------ 
 "slave 1"                   k:.\model\ 
 "slave 2"                   l:.\model\ 
 "slave 3"                   m:.\model\ 
 
 
 Attempting to communicate with slaves .... 
 
 - slave "slave 2" has been detected. 
 - slave "slave 3" has been detected. 
 - slave "slave 1" has been detected. 
 
 
 SLAVE MODEL INPUT AND OUTPUT FILES:- 
 
 Slave "slave 1" -----> 
 
     Model input files on slave "slave 1":- 
         k:.\model\ves.in1 

         k:.\model\ves.in2 
 
     Model output files on slave "slave 1":- 
         k:.\model\ves.ot1 
         k:.\model\ves.ot2 
         k:.\model\ves.ot3 
 
     Model command line for slave "slave 1":- 
         ves 
 
 
 Slave "slave 2" -----> 
 



Parallel PEST  

 

10-17 

 

     Model input files on slave "slave 2":- 
         l:.\model\ves.in1 
         l:.\model\ves.in2 
 
     Model output files on slave "slave 2":- 
         l:.\model\ves.ot1 
         l:.\model\ves.ot2 
         l:.\model\ves.ot3 
 
     Model command line for slave "slave 2":- 
         ves 
 
 
 Slave "slave 3" -----> 
 
     Model input files on slave "slave 3":- 
         m:.\model\ves.in1 
         m:.\model\ves.in2 
 
     Model output files on slave "slave 3":- 
         m:.\model\ves.ot1 
         m:.\model\ves.ot2 
         m:.\model\ves.ot3 

 
     Model command line for slave "slave 3":- 
         ves 
 
 
AVERAGE WAIT INTERVAL: 50 hundredths of a second. 
 
 
                            RUN MANAGEMENT RECORD 
 
RUNNING MODEL FOR FIRST TIME  ----->  
   21:50:00.19:- slave "slave 1" commencing model run. 
   21:55:05.00:- slave "slave 1" finished execution; reading results. 
 
 
 OPTIMISATION ITERATION NO.  1 -----> 
 
 Calculating Jacobian matrix: running model  5 times ..... 
   21:55:23.65:- slave "slave 1" commencing model run. 
   21:55:33.92:- slave "slave 3" commencing model run. 
   21:55:44.20:- slave "slave 2" commencing model run. 
   22:00:05.79:- slave "slave 2" finished execution; reading results. 
   22:00:17.77:- slave "slave 3" finished execution; reading results. 
   22:00:29.47:- slave "slave 2" commencing model run. 

   22:00:39.58:- slave "slave 3" commencing model run. 
   22:00:50.07:- slave "slave 1" finished execution; reading results. 
   22:05:11.83:- slave "slave 2" finished execution; reading results. 
   22:05:43.70:- slave "slave 3" finished execution; reading results. 
 
 Testing parameter upgrades ..... 
   22:06:01.69:- slave "slave 2" commencing model run. 
   22:11:16.45:- slave "slave 2" finished execution; reading results. 
   22:11:27.49:- slave "slave 2" commencing model run. 
   22:16:19.63:- slave "slave 2" finished execution; reading results. 
   22:16:35.95:- slave "slave 2" commencing model run. 
   22:21:23.48:- slave "slave 2" finished execution; reading results. 
 
 
 OPTIMISATION ITERATION NO.  2 -----> 
 
 Calculating Jacobian matrix: running model  5 times ..... 
   22:21:45.07:- slave "slave 2" commencing model run. 
   22:21:55.40:- slave "slave 3" commencing model run. 
   22:22:25.05:- slave "slave 1" commencing model run. 
   22:27:05.83:- slave "slave 2" finished execution; reading results. 
   22:27:28.20:- slave "slave 3" finished execution; reading results. 
   22:27:39.52:- slave "slave 2" commencing model run. 

   22:27:52.63:- slave "slave 3" commencing model run. 
   22:28:05.18:- slave "slave 1" finished execution; reading results. 
   22:33:06.55:- slave "slave 2" finished execution; reading results. 
   22:33:33.03:- slave "slave 3" finished execution; reading results. 
 
 Testing parameter upgrades ..... 
   22:34:11.46:- slave "slave 2" commencing model run. 
   22:39:36.82:- slave "slave 2" finished execution; reading results. 
   22:39:48.09:- slave "slave 2" commencing model run. 
   22:45:40.28:- slave "slave 2" finished execution; reading results. 
   22:45:51.38:- slave "slave 2" commencing model run. 
   22:50:43.30:- slave "slave 2" finished execution; reading results. 
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 OPTIMISATION ITERATION NO.  3 -----> 
 
 Calculating Jacobian matrix: running model 10 times ..... 
   22:50:54.46:- slave "slave 2" commencing model run. 
   22:51:14.68:- slave "slave 3" commencing model run. 
                            . 
                            . 

Example. 10.4 Part of a Parallel PEST run management record file. 

As is explained elsewhere in this manual, if PEST (or Parallel PEST) execution is re-

commenced through use of the “/r”, “/j” or “/s” command line switches, the newly re-

activated PEST appends information to the run record file created on the previous PEST (or 

Parallel PEST) run. The same is not true for the run management record file however, for it is 

overwritten by a newly re-activated Parallel PEST. This is because, as was mentioned above, 

there is no necessity for Parallel PEST to employ the same slaves when it recommences 

execution as those which it employed in its previous life. 

10.3.10 Running PSLAVE on the Same Machine as Parallel PEST 

On many occasions of Parallel PEST execution, at least one of the slaves will be run on the 

same machine as that on which PEST is run. In most cases of PEST usage, PEST’s tasks are 

small compared with those of the model; hence there is adequate capacity on one single-

processor machine to run both a model and PEST without serious diminution of the 

performance of either. However it is wise to ensure that the command-line window running 

PSLAVE (and hence the model) is the active window (unless, of course, the user is running 

other, interactive, applications at the same time). In this way the window undertaking most of 

the work (ie. the window running the model) will receive the highest priority in the allocation 

of system resources. 

10.3.11 Running Parallel PEST on a Multi-Processor Machine 

Parallel PEST can be used to harness the full potential of a multi-processor machine. Such a 

machine can either be used on its own or as part of a network of other machines, some of 

which may possess multiple processors and some of which may not. 

On a single dual processor machine, operation of Parallel PEST is identical to that described 

above for machines across a network. Three command-line windows must be opened, two of 

which are used to run PSLAVE and one of which is for the use of PEST. A different set of 

model input files, residing in a different subdirectory, must be prepared for the use of each 

instance of PSLAVE. Each PSLAVE must also have its own separate working directory 

which, for convenience, may just as well be the subdirectory holding its set of model input 

files. Note that each PSLAVE can invoke the same model executable. 

10.3.12 The Importance of the WAIT Variable 

The role of the WAIT variable was briefly discussed in Section 10.2.5. As was outlined in 

that section, an appropriate value for this variable gives machines across the network time to 

respond to the information sent to them by other machines. If WAIT is set too small, the 

potential exists for conflicts to occur, resulting in a message on the PEST or PSLAVE screen 

sent by the operating system. In some cases, as mentioned in Section 10.2.5, this message 

demands an answer which, if not provided, can temporarily remove a particular slave from 
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the Parallel PEST optimisation process. 

If the message “access denied” appears on the PEST or PSLAVE screen, this is a sure 

indication that WAIT needs to be set larger. This occurs when PEST or PSLAVE attempts to 

delete one of the signal files of Table 10.1 after they have acted on the signal. If they do this 

before the program which wrote the signal file has closed it (as can happen if WAIT is set too 

small), then the above message appears. This is not serious, however, as no user response is 

required and both PEST and PSLAVE ensure that a particular signal file has, in fact, been 

deleted before they proceed with their execution. 

The more serious case of a model trying to read or write a file that is still opened by PEST 

results in the operating-system generated message: 

Sharing violation reading drive C 

Abort, Retry, Fail? 

to which a response is demanded. If this occurs and you are there to respond, simply press the 

“r” key. If you are not there to respond, the model cannot run; furthermore the affected slave 

can take no further part in the optimisation process until the “r” key is pressed. 

Experience will dictate an appropriate setting for WAIT. However it is important to note that 

a user should err on the side of caution rather than setting WAIT too low. A high setting for 

WAIT will certainly slow down communications between PEST and its slaves. It will also 

result in a longer time between the issuing of a PPAUSE or PSTOP command and a response 

from PEST. However it will ensure stable Parallel PEST performance across a busy network.  

In general, the busier is the network, the higher should WAIT be set. In most cases a value of 

1.0 to 2.0 seconds will be adequate, even for a relatively busy network; however do not be 

afraid to set it as high as 10.0 seconds (or even higher) on an extremely busy network. While 

this could result in elapsed times of as much as 1 minute between the end of one model run 

and the beginning of another, if this is small in comparison with the model execution time, 

then it will make little difference to overall Parallel PEST performance. Also be aware that 

while networks may seem relatively quiet during the day, they may become extremely busy at 

night when large backing up operations may take place. 

10.3.13 If PEST will not Respond 

As is mentioned above, if the PPAUSE, PSTOP or PSTOPST command is issued while the 

command-line version of Parallel PEST is running, PEST execution will be interrupted in the 

usual way. However unlike the single window version of PEST, Parallel PEST does not need 

to wait until the end of the current model run to respond to these commands; rather there is 

only a short delay, the length of this delay depending on the setting of the variable WAIT. 

Hence if WAIT is set extremely high, be prepared for a short wait between the issuing of any 

of the above commands and a response from PEST. 

There is, however, one particular situation that can result in a large elapsed time between the 

issuing of either of the above commands and the reception of a response from PEST. If, when 

PEST tries to read a model output file, it encounters a problem, it does not immediately 

terminate execution, reporting the error to the screen. Rather it waits for 30 seconds and then 

tries to read the file again. If it is still unsuccessful it waits another 30 seconds and tries to 
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read the file yet again. This time, if the error is still present, it terminates execution, reporting 

the error to the screen in the usual fashion. By trying to read the model output file three times 

in this way before declaring that the model run was a failure (for example because the 

parameter set that it was using was inappropriate in some way, or an instruction file was in 

error), it removes the possibility that network problems have been the cause of PEST’s failure 

to read the model output file. While it is engaged in this process however, it does not check 

for the presence of file pest.stp (the file written by programs PPAUSE, PSTOP and 

PSTOPST). Hence, if a user types any of these commands while PEST is thus engaged, 

he/she may have to wait some time for PEST to respond. Meanwhile PEST records on the run 

management record that there is a :- 

problem (either model or communications) in reading results from slave “xxx" 

10.3.14 The Model 

The model can be any executable or batch program which can be run from the command line.  

10.4 An Example 

Once PEST has been installed, a subdirectory of the main PEST directory called ppestex will 

contain all the files needed to undertake a Parallel PEST run on a single machine. Before 

running this example make sure that the PEST directory is cited in the PATH environment 

variable.  

Change the working directory to the ppestex subdirectory and create two subdirectories to this 

directory called test1 and test2. 

Now open three command-line windows (you probably have one open already). In one of 

these windows transfer to subdirectory test1 and type the command “pslave”. When prompted 

for the command to run the model, type “..\a_model”. Do the same in another command-line 

window for subdirectory test2. 

In the third command-line window transfer to the directory holding the example files (ie. the 

parent directory of test1 and test2) and type the command “ppest test”.  Parallel PEST should 

commence execution and, after verifying that it can communicate with each of its slaves, 

undertake parameter optimisation for the a_model model. 

If you wish, you can also carry out the parameter estimation process using the single window 

version of PEST. While situated in the ppestex subdirectory, type “pest test”. For this 

particular case the single window version of PEST will run faster than Parallel PEST. This is 

because the model run time is too small to justify Parallel PEST’s run management 

overheads. Furthermore, unless you are using a multi-processor machine, there is nothing to 

be gained by undertaking parallel model runs on a single machine anyway. Note, however, 

that Parallel PEST’s speed can be increased somewhat by reducing the value of the WAIT 

variable from that provided on the test.rmf file. 
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11. PEST Utilities 
Don’t forget to see the addendum to this manual for further details of PEST functionality, 

particularly as it pertains to highly parameterized inversion and uncertainty analysis. 

PEST is accompanied by a number of utility programs whose role is to assist in PEST input 

file preparation and checking. These are programs TEMPCHEK, INSCHEK, PESTCHEK, 

PESTGEN, PARREP, PARAMFIX and WTFACTOR. The first three of these programs are 

used to check template files, instruction files and the PEST control file respectively for a 

particular PEST case, prior to actually running PEST on that case. In this way you can be sure 

that the input dataset which you supply to PEST is correct and consistent. The PESTGEN 

utility creates a PEST control file using default values for many of the PEST input variables. 

PARREP builds a new PEST control file based on an existing PEST control file and a set of 

values cited in a parameter value file. WTFACTOR assists in observation weight adjustment, 

allowing the user to multiply weights pertaining to members of an entire observation group by 

a single factor. PARAMFIX facilitates the fixing of parameters prior to a PEST run by 

rewriting or omitting prior information pertaining to those parameters. 

Postprocessing utilities are also supplied with PEST. JACWRIT allows a user to generate an 

ASCII file in which the Jacobian matrix for a particular parameter estimation problem is 

recorded for inspection. EIGPROC gathers together information from two PEST output files, 

providing a summary of data pertaining to parameters which are likely to be the most 

troublesome and/or poorly estimated. 

The PAR2PAR utility is used to undertake mathematical operations of arbitrary complexity 

between existing parameters in order to generate new parameters. It is normally used in a 

model preprocessing capacity, being run by PEST as part of a composite model encapsulated 

in a batch file. Its many uses include complex parameter transformation (perhaps to improve 

model linearity), and the generation of a large number of “secondary parameters” (as used by 

the model) from a smaller number of “primary parameters” (as estimated by PEST). 

SVDAPREP automates the generation of input files for PEST’s SVD-assist functionality. 

Manipulation of Jacobian matrix files prior to running SVDAPREP can be undertaken using 

the JCO2JCO and JCOTRANS utilities. PICALC and PARCALC are run by PEST during the 

SVD-assisted parameter estimation process; these program are described in Chapter 8 of this 

manual. 

All of the utilities supplied with PEST, except for SVDAPREP, PARCALC and PICALC 

receive information through their command line. If you forget the protocol with which to 

supply this information, type the name of the program, followed by the <Enter> key, and you 

will be reminded. 

11.1 TEMPCHEK 

Program TEMPCHEK checks that PEST template files obey PEST protocol. If provided with 

a set of parameter values, TEMPCHEK can also be used to generate a model input file from a 

template file. It builds the model input file in the same way that PEST does; you can then run 
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your model, checking that it is able to read such a PEST-generated input file without any 

difficulties. 

TEMPCHEK is run using the command 

tempchek tempfile [modfile [parfile]] 

where 

tempfile is the name of a template file, 

modfile is the name of a model input file to be generated by TEMPCHEK (optional), and 

parfile is the name of a PEST parameter value file (also optional). 

The simplest way to run TEMPCHEK is to use the command 

tempchek tempfile 

When invoked in this way TEMPCHEK simply reads the template file tempfile, checking it 

for breaches of PEST protocol. It writes any errors it finds to the screen. These errors can be 

redirected to a file using the “>” symbol on the TEMPCHEK command line. Thus to run 

program TEMPCHEK, directing it to write any errors found in the template file model.tpl to 

the file errors.chk, use the following command 

tempchek model.tpl > errors.chk 

If no errors are encountered in the template file, TEMPCHEK informs you of this through an 

appropriate screen message. This message also informs you of the number of parameters that 

TEMPCHEK identified in the template file. TEMPCHEK lists these parameters in a file 

named file.pmt, where file is the filename base of tempfile. If tempfile has no extension 

TEMPCHEK simply adds the extension “.pmt” to tempfile. By supplying a parameter value 

as well as a scale and offset for each parameter, file.tmp can be transformed into a PEST 

parameter value file which TEMPCHEK can then use to generate a model input file (see 

below). 

Note that if a parameter is cited more than once in a template file, the parameter is 

nevertheless written only once to file.pmt; also it is counted only once as TEMPCHEK sums 

the total number of parameters cited in the template file. 

If you wish TEMPCHEK to generate a model input file you must supply it with the name of 

the template file upon which the model input file is based, the name of the model input file 

which it must generate, and the values of all parameters named in the template file. To run 

TEMPCHEK in this fashion, enter the command 

tempchek tempfile modfile [parfile] 

The name of the parameter value file is optional. If you don't supply a name, TEMPCHEK 

generates the name itself by replacing the extension used in the template filename with the 

extension “.par”; if tempfile has no extension, “.par” is simply appended. Hence the naming 

convention of the parameter value file is in accordance with that used by PEST which 

generates such a file at the end of every optimisation iteration; see Section 5.3.1. 

A PEST parameter value file is shown in Example 5.2. The first line of a parameter value file 
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must contain values for the character variables PRECIS and DPOINT; the role of these 

variables is discussed in Section 4.2.2. These variables must be supplied to TEMPCHEK so 

that it knows what protocol to use when writing parameter values to the model input file 

which it generates. 

The second and subsequent lines of a parameter value file each contain a parameter name, a 

value for the named parameter, and the scale and offset to be used when writing the parameter 

value to the model input file. Because TEMPCHEK is supplied with a scale and offset for 

each parameter, it is able to generate model input files in exactly the same way that PEST 

does; see Section 4.2.4. 

If TEMPCHEK finds a parameter in a template file which is not listed in the parameter value 

file, it terminates execution with an appropriate error message. However a parameter value 

file may contain more parameters than are cited in the template file; these extra parameters 

are ignored when generating the model input file. This may occur if your model has a number 

of input files and you wish to optimise parameters occurring on more than one of them. You 

must make a template file for each such model input file; however you need to prepare only 

one parameter value file containing all the parameters for that particular problem. 

11.2 INSCHEK 

Program INSCHEK assists in the construction of PEST instruction files. Like TEMPCHEK it 

can be used in two modes. In the first mode it simply checks that an instruction file has no 

syntax errors and obeys PEST protocol as set out in Section 3.3. In its second mode it is able 

to read a model output file using the directions contained in the instruction file; it then writes 

a file listing all observations cited in the instruction file together with the values of these 

observations as read from the model output file. In this way you can verify that not only is 

your instruction set syntactically correct, but that it reads a model output file in the way it 

should. 

INSCHEK is run using the command 

inschek insfile [modfile] 

where  

insfile is a PEST instruction file, and 

modfile is a model output file to be read by INSCHEK (optional). 

The simplest way to run INSCHEK is to use the command 

inschek insfile 

When invoked in this way, INSCHEK simply reads the instruction file insfile, checking that 

every instruction is valid and that the instruction set is consistent. If it finds any errors it 

writes appropriate error messages to the screen. You can redirect this screen output to a file if 

you wish by using the “>” symbol on the command line. Thus to run INSCHEK such that it 

records any errors found in the instruction file model.ins to the file errors.chk, use the 

command 
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inschek model.ins > errors.chk 

If no errors are found in the instruction file insfile, INSCHEK informs you of how many 

observations it identified in the instruction set and lists these observations to file.obf, where 

file is the filename base (ie. the filename without its extension) of insfile; if insfile has no 

extension, the extension “.obf” is simply appended to the filename. 

For an instruction set to be useable by PEST it must do more than simply obey PEST 

protocol; it must also read a model output file correctly. You can check this by invoking 

INSCHEK with the command 

inschek insfile modfile 

When run in this way, INSCHEK first checks insfile for syntax errors; if any are found it 

writes appropriate error messages to the screen and does not proceed to the next step. 

Alternatively, if the instruction set contained in insfile is error free, INSCHEK reads the 

model output file modfile using the instruction set. If any errors are encountered in this 

process, INSCHEK generates an appropriate error message and abandons execution; such 

errors may arise if, for example, INSCHEK finds a blank space where a number should be, 

encounters the end of the model output file before locating all observations, etc. However if 

INSCHEK reads the file without trouble, it lists all observations cited in the instruction set, 

together with their values as read from modfile, to file.obf, where file is the filename base of 

insfile. Example 11.1 shows a typical INSCHEK-generated observation value file. 

11.3 PESTCHEK 

PESTCHEK should be used when all preparations for a PEST run are complete, ie. when all 

template files, instruction files and the PEST control file which “brings it all together” have 

been prepared. PESTCHEK reads the PEST control file, making sure that all necessary items 

of information are present on this file and that every item is consistent with every other item 

(for example that logarithmically-transformed parameters do not have negative lower bounds, 

 ar1       1.21038     

 ar2       1.51208     

 ar3       2.07204     

 ar4       2.94056     

 ar5       4.15787     

 ar6       5.77620     

 ar7       7.78940     

 ar8       9.99743     

 ar9       11.8307     

 ar10      12.3194     

 ar11      10.6003     

 ar12      7.00419     

 ar13      3.44391     

 ar14      1.58278     

 ar15      1.10381     

 ar16      1.03085     

 ar17      1.01318     

 ar18      1.00593     

 ar19      1.00272     

Example 11.1 An observation value file written by INSCHEK. 
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that RELPARMAX is greater than unity if at least one parameter is free to change sign during 

the optimisation process, etc.). As PEST does not carry out consistency checks such as these, 

it is essential that PESTCHEK be used to check all input data prior to a PEST run. 

PESTCHEK also carries out some of the tasks undertaken by programs TEMPCHEK and 

INSCHEK, viz. it checks all template and instruction files cited in the PEST control file for 

correct syntax. Unlike TEMPCHEK and INSCHEK, PESTCHEK cannot generate a model 

input file nor read a model output file; nevertheless it does check that all parameters and 

observations cited in the PEST control file are also cited in the template and instruction files 

referenced in the PEST control file, and that parameters and observations cited in template 

and instruction files are also listed in the PEST control file. 

PESTCHEK is run using the command  

pestchek case 

where 

case is the filename base of a PEST control file.  

No filename extension should be provided here; an extension of “.pst” is added automatically. 

This is the same filename base which should be provided to PEST on its command line; see 

Section  5.1.2. PESTCHEK reads an identical dataset to PEST. 

PESTCHEK writes any errors it encounters to the screen. If you wish, error messages can be 

redirected to a file using the “>” symbol on the PEST command line. Thus to check the 

dataset contained in the PEST control file, calib.pst, and the template and instruction files 

cited therein, directing any error messages to the file errors.chk, invoke PESTCHEK using 

the command 

pestchek calib > errors.chk 

If PESTCHEK finds one or a number of errors in your input dataset it is important that you 

re-run PESTCHEK on the dataset after you have corrected the errors. This is because 

PESTCHEK may not have read all of your input dataset on its first pass; depending on the 

errors it finds, it may not be worthwhile (or possible) for PESTCHEK to read an input dataset 

in its entirety once an error condition has been established. Hence, once you have rectified 

any problems that PESTCHEK may have identified in your input dataset, you should submit 

it to PESTCHEK again, being content that the data is fully correct and consistent only when 

PESTCHEK explicitly informs you that this is the case. 

If you wish, you can write a batch file which runs both PESTCHEK and PEST in sequence. 

Because PESTCHEK terminates execution with a non-zero errorlevel setting should it detect 

any errors, you can program the batch process to bypass the running of PEST unless the input 

dataset is perfect. In this way, you can always be sure that PESTCHEK, rather than PEST, is 

the first to detect any input data errors. A suitable batch file is shown in Example 11.2. 
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11.4 PESTGEN 

Program PESTGEN generates a PEST control file. In most cases this file will need to be 

modified before PEST is run, as PESTGEN generates default values for many of the PEST 

input variables supplied on this file; it is probable that not all of these default values will be 

appropriate for your particular problem. 

PESTGEN is run using the command 

pestgen case parfile obsfile 

where 

case is the case name. No filename extension should be supplied; PESTGEN automatically 

adds the extension “.pst” to case in order to form the filename of the PEST control file which 

it writes. 

parfile is a parameter value file, and 

obsfile is an observation value file. 

A parameter value file is shown in Example 5.2; Example 11.1 shows an observation value 

file. The former file must include all parameters used in the current case; these parameters 

may be cited in one or a number of template files. Similarly, the observation value file must 

provide the name and value for all observations used in the current problem; the observations, 

too, may be cited on one or a number of instruction files. The observation values provided in 

this file may be field/laboratory measurements or, if PEST is being run on theoretical data, 

model-generated observation values. In the latter case program INSCHEK may be used to 

generate the file; if there are multiple model output files, observation value files generated on 

successive INSCHEK runs could be concatenated to form an appropriate observation value 

file to provide to PESTGEN. 

PESTGEN commences execution by reading the information contained in files parfile and 

obsfile (see above), checking them for correctness and consistency. If there are any errors in 

either of these files, PESTGEN lists these errors to the screen and terminates execution. 

Alternatively, if these files are error-free, PESTGEN then generates a PEST control file. 

Files parfile and obsfile provide PESTGEN with the names of all parameters and 

observations which need to be listed in the PEST control file. They also provides PEST with 

@ echo off 

rem FILE RUNPEST.BAT 

rem To run RUNPEST.BAT type the command “runpest case [/r] [/j]”, 

rem where case is the filename base of the PEST control file, and 

rem “/r” and “/j” are optional restart switches. 

pestchek %1 

if errorlevel 1 goto end 

pest %1 %2 

:end 

Example 11.2 Running PESTCHEK and PEST as a batch process. 
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initial parameter values (these must be provided in the second column of the parameter value 

file), the scale and offset for each parameter (in the third and fourth columns of the parameter 

value file), the laboratory or field measurement set (in the second column of the observation 

value file) and values for the variables PRECIS and DPOINT (on the first line of the 

parameter value file). For all other variables listed in the PEST control file, PESTGEN uses 

default values. 

For the parameter and observation value files shown in Examples 5.2 and 11.1, the 

PESTGEN-generated PEST control file is shown in Example 11.3. 

Note that when viewing a PESTGEN-generated PEST control file on your screen, the 

pcf 

* control data 

restart estimation 

    5    19     5     0    1 

    1     1 single point 1 0 0 

  5.0   2.0   0.3  0.03    10 

  3.0   3.0 0.001 

  0.1 

   30  0.01     3     3  0.01     3 

    1     1     1 

* parameter groups 

ro1  relative 0.01  0.0  switch  2.0 parabolic 

ro2  relative 0.01  0.0  switch  2.0 parabolic 

ro3  relative 0.01  0.0  switch  2.0 parabolic 

h1   relative 0.01  0.0  switch  2.0 parabolic 

h2   relative 0.01  0.0  switch  2.0 parabolic 

* parameter data 

ro1  none relative    1.00000      -1.00000E+10   1.00000E+10 ro1     1.0000     0.00000 1 

ro2  none relative    40.0009      -1.00000E+10   1.00000E+10 ro2     1.0000     0.00000 1 

ro3  none relative    1.00000      -1.00000E+10   1.00000E+10 ro3     1.0000     0.00000 1 

h1   none relative    1.00000      -1.00000E+10   1.00000E+10 h1      1.0000     0.00000 1 

h2   none relative    9.99978      -1.00000E+10   1.00000E+10 h2      1.0000     0.00000 1 

* observation groups 

obsgroup 

* observation data 

ar1    1.21038      1.0  obsgroup 

ar2    1.51208      1.0  obsgroup 

ar3    2.07204      1.0  obsgroup 

ar4    2.94056      1.0  obsgroup 

ar5    4.15787      1.0  obsgroup 

ar6    5.77620      1.0  obsgroup 

ar7    7.78940      1.0  obsgroup 

ar8    9.99743      1.0  obsgroup 

ar9    11.8307      1.0  obsgroup 

ar10   12.3194      1.0  obsgroup 

ar11   10.6003      1.0  obsgroup 

ar12   7.00419      1.0  obsgroup 

ar13   3.44391      1.0  obsgroup 

ar14   1.58278      1.0  obsgroup 

ar15   1.10381      1.0  obsgroup 

ar16   1.03085      1.0  obsgroup 

ar17   1.01318      1.0  obsgroup 

ar18   1.00593      1.0  obsgroup 

ar19   1.00272      1.0  obsgroup 

* model command line 

model 

* model input/output 

model.tpl  model.inp 

model.ins  model.out 

* prior information 

Example 11.3 A PEST control file generated by PESTGEN. 
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OFFSET values in the “parameter data” section of the file may not be visible as they are 

written beyond the 80th column of the file; to bring them into view, move your editor’s cursor 

over them. 

Example 11.3 shows the default values used by PESTGEN in generating a PEST control file. 

The following features, in particular, should be noted. 

 PESTGEN assumes that PEST will be run in parameter estimation mode. Neither a 

“predictive analysis” nor a “regularisation” section is included in the PEST control 

file.  

 PESTGEN generates a separate parameter group for each parameter; the name of the 

group is the same as that of the parameter. For each of these groups derivatives are 

calculated using a relative increment of 0.01, with no absolute lower limit provided 

for this increment. At the beginning of the optimisation process, derivatives will be 

calculated using the forward method, switching to the three-point “parabolic” method 

on the iteration following that for which the objective function fails to undergo a 

relative reduction of at least 0.1 (ie. PHIREDSWH). The derivative increment to be 

used in implementing the “parabolic” method is twice the increment used in 

implementing the forward method of derivatives calculation. 

 No prior information is supplied. 

 No parameters are tied or fixed; no parameters are log-transformed and changes to all 

parameters are relative-limited (with a RELPARMAX value of 3.0). The upper bound 

for each parameter is provided as 1.0E10, while the lower bound is -1.0E10. It is 

strongly suggested that you modify these bounds to suit each parameter. It is also 

recommended that you consider log-transforming some parameters for greater 

optimisation efficiency; see Section 2.2.1. Note, however, that the lower bound of a 

log-transformed parameter must be positive and that its changes must be factor-

limited. 

 All observations are provided with a weight of 1.0. 

 PESTGEN assumes that the model is run using the command “model”. It also assumes 

that the model requires one input file, viz. model.inp, for which a template file 

model.tpl is provided. It further assumes that all model-generated observations can be 

read from one output file, viz. model.out, using the instructions provided in the 

instruction file model.ins. You will almost certainly need to alter these names. If there 

are, in fact, multiple model input and/or output files, don't forget to alter the variables 

NTPLFLE and NINSFLE in the “control data” section of the PEST control file. 

 The default values for all other variables can be read from Example 11.3. 

Once you have made all the changes necessary to the PESTGEN-generated PEST control file, 

you should check that your input dataset is complete and consistent using program 

PESTCHEK. If PESTCHEK informs you that all is correct, then you are ready to run PEST.  
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11.5 PARREP 

Program PARREP replaces initial parameter values as provided in a PEST control file by 

another set of values, the latter being supplied in a PEST parameter value file. 

Recall from Section 5.3.1 that in the course of the parameter estimation process PEST writes 

a parameter value file every time it improves its parameter estimates. After a PEST run has 

finished (either of its own accord or if it was manually halted), optimised parameter values 

can be found in the parameter value file. The parameter value file possesses the same 

filename base as the current case but has an extension of “.par”. Because it has such a simple 

structure, a parameter value file can also be easily built by the user with the help of a text 

editor.  

PARREP is useful when commencing a new PEST run where an old run finished. An updated 

PEST control file can be produced by replacing parameter values in the old file with the best 

parameter values determined during the previous PEST run as recorded in the parameter 

value file written during that run. Recommencing a PEST run in this way, rather than through 

use of the “/r”, “/j” or “/s” switches, allows a user to alter certain PEST control variables, fix 

or tie certain parameters, or adjust PEST’s management of the parameter estimation process 

in other ways, prior to recommencement of the run. 

PARREP is also useful when undertaking a single model run on the basis of a certain set of 

parameters in order to calculate the objective function. Simply modify an existing PEST 

control file using PARREP as described above, and set NOPTMAX to zero. 

PARREP is run using the command: 

parrep parfile pestfile1 pestfile2 

where 

parfile is the name of a parameter value file, 

pestfile1 is the name of an existing PEST control file, and 

pestfile2 is the name for the new PEST control file. 

When PARREP replaces parameter values in the existing PEST control file by those read 

from the parameter value file, it does not check that each parameter value lies between its 

upper and lower bounds, that log-transformed parameters are positive, etc. Hence, especially 

if using a manually-created parameter value file, it is, as always, a good idea to run 

PESTCHEK before running PEST to ensure that all is consistent and correct. 

11.6 PARAMFIX 

11.6.1 General 

PARAMFIX can be used to modify complex PEST control files (such as may be constructed 

for the use of PEST in regularisation mode), saving the user the time (and propensity for 

error) that would result from making such file modifications by hand. Alterations facilitated 

by the use of PARAMFIX are those associated with the introduction of “outside information” 

on parameter values into the inversion process. Two methods of using such information can 
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be accommodated, the first being the fixing of certain parameters, and the second being 

introduction of preferred values for certain parameters through prior information. Where 

many parameters are being estimated, and where prior information equations pertaining to 

many or all of these parameters are already present within a PEST control file, alteration of an 

existing PEST control file to accommodate the use of this “outside information” can be a very 

tedious process if performed manually. PARAMFIX removes much of this tedium. 

Use of PARAMFIX is particularly convenient where PEST is being used to calibrate a spatial 

model (for example a groundwater model) and parameterisation of the model domain is 

undertaken through the use of pilot points (see the manual to the PEST Groundwater Data 

Utilities for more details). Thanks to the use of PEST’s regularisation functionality, many 

parameters can be estimated through this process (thus allowing the model to accommodate 

the spatial heterogeneity that is a fundamental part of most natural systems), numerical 

stability being guaranteed through the use of a set of “regularisation conditions”. The latter 

can be supplied as either observations or as prior information, and can take many forms. One 

form is as a series of “uniformity conditions” in which the parameter value assigned to each 

pilot point is linked to those of many or all of its neighbouring points through a set of prior 

information equations expressing the desire that pertinent parameter value differences are 

zero (heterogeneity is thus introduced to the model domain only where necessary to achieve 

model calibration). In some modelling contexts, prior information equations expressing this 

condition throughout the model domain can number in the thousands, with each such 

equation involving just two parameters. If the user then decides that a particular parameter 

should be fixed, all prior information equations citing that parameter must be either deleted or 

modified, for prior information cannot be supplied for parameters which are not adjusted 

through the inversion process. If the required modifications to prior information equations are 

done by hand, the chances of making a serious error are enormous. 

While PARAMFIX carries out limited checking of the PEST control file which it must 

modify, its error checking is not complete; in many cases it simply assumes that the input 

PEST control file is correct. Hence it is essential that the comprehensive PEST input dataset 

checker PESTCHEK be used to validate the input PEST control file before running 

PARAMFIX. If this is not done, and if there is a problem with the PEST control file read by 

PARAMFIX, the outcome of the control file modification process undertaken by 

PARAMFIX will be unpredictable. Similarly, after PARAMFIX has written its new PEST 

control file, the latter should also be checked with PESTCHEK for, under certain 

circumstances it is not impossible for PARAMFIX to introduce small inconsistencies into this 

file. 

11.6.2 The Parameter Fix File 

PARAMFIX requires two input files. One of these is an existing PEST control file (which it 

modifies and re-writes to a file of a different name); the other is a “parameter fix file” which 

contains the information required by PARAMFIX upon which to base its modifications of the 

existing PEST control file. The parameter fix file has a simple format, and can be prepared 

using a text editor. Construction details of the parameter fix file are illustrated by way of 

example – see the following figure. 
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Example 11.4 A parameter fix file. 

Each line of a parameter fix file contains either 4 or 6 entries. The first entry must be the 

name of a parameter involved in the current parameter estimation process. This parameter 

must feature in the “parameter data” section of the PEST control file on which that process is 

based. If it does not, PARAMFIX will cease execution with an appropriate error message. 

As mentioned above, there are two ways in which “outside information” pertaining to a 

parameter can be introduced to the inversion process. The first is through prior information, 

while the second is through fixing a parameter at a certain value. In the former case, the 

second entry on the pertinent line of the parameter fix file should be “prior_info”; in the latter 

case the entry should be “fix_param”. 

The third entry on each line of the parameter fix file must contain the preferred value for the 

parameter whose name leads the line. This is the value at which the parameter will be fixed 

(for the “fix_param” option), or the “preferred value” assigned to the parameter through a 

prior information equation (for the “prior_info” option). Note that PARAMFIX checks that 

the value assigned to the parameter in this manner is between its upper and lower bounds as 

recorded in the PEST control file. If this is not the case, PARAMFIX will cease execution 

with an appropriate error message. 

A fixed parameter cannot feature in any prior information. If an existing PEST control file 

contains one or more prior information equations which include a parameter that is to be 

fixed, those equations must be modified. Two options exist for modifying such an equation. 

The first is simply to remove it from the PEST control file. The second is to remove only the 

terms of the prior information equation that pertain to newly-fixed parameters; the values of 

those terms are then subtracted from the right hand side of the prior information equation 

after substituting parameter values read from the parameter fix file. The first of these options 

is implemented if the fourth entry on the pertinent line of the parameter fix file is 

“remove_prior”. The second option is implemented if the fourth entry on the pertinent line of 

the parameter fix file is “retain_prior”. 

If outside parameter information is introduced to the inversion process through the addition of 

new prior information equations (ie. if the second entry on the pertinent line of the parameter 

fix file is “prior_info”), then a little extra information must be supplied. As has already been 

mentioned, the preferred value for the parameter must be supplied as the third item on the 

line. The fourth item on the line must be “log” or “none”. If it is supplied as “log”, the prior 

information equation written by PARAMFIX for that parameter will actually pertain to the 

log of the parameter rather than to the parameter itself. However PARAMFIX will only allow 

this if the parameter is already logarithmically transformed in the parameter estimation 

process as designated by an appropriate PARTRANS value for that parameter in the 

“parameter data” section of the PEST control file. Similarly, if the fourth entry on the 

pertinent line of the parameter fix file is supplied as “none”, indicating that the new prior 

information equation is to pertain to the native parameter rather than to the log-transformed 

ro5     fix_param     10.0   retain_prior 
ro2     fix_param     100.0  remove_prior 
ro7     fix_param     5.0    remove_prior 
ro6     fix_param     6.0    retain_prior 
thick1  prior_info    4.0    log         5.0   group1 
thick2  prior_info    4.0    none        5.0   group2 
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parameter, this will only be allowed if the parameter is designated as untransformed in the 

parameter estimation process (PARTRANS value of “none”). Note that the parameter value 

supplied as the third entry on the pertinent line of the parameter fix file (the parameter’s 

preferred value) is log-transformed prior to being used in a prior information equation if the 

fourth entry is “log”. 

The fifth and sixth entries on any line of a parameter fix file which pertains to a new prior 

information equation must contain the weight to be assigned to the new prior information 

equation and the observation group to which the new equation should be assigned. The 

weight can be zero or positive. The observation group name may pertain to a group which 

already exists in the PEST control file to be modified by PARAMFIX, or it may pertain to a 

new observation group. In the latter case PARAMFIX will add the name of the group to the 

“observation groups” section of the PEST control file and increment the value of the 

NOBSGP variable accordingly. 

11.6.3 Running PARAMFIX 

PARAMFIX is run using the command: 

 paramfix fixfile pestfile1 pestfile2 

where 

 fixfile is the name of a parameter fix file, 

 pestfile1  is the name of an existing PEST control file, and 

 pestfile2  is the name of the PEST control file to be written by PARAMFIX. 

 

As mentioned above, it is important that the integrity of both the input and the output PEST 

control files are checked using PESTCHEK. 

11.7 WTFACTOR 

WTFACTOR reads one PEST control file and writes another. In doing this it multiplies all 

weights pertaining to a user-nominated observation group by a user-supplied factor. As is 

discussed in the PEST manual, both observations and prior information equations should be 

assigned to one or a number of observation groups. WTFACTOR carries out weights 

multiplication irrespective of whether items belonging to the identified observation group are 

observations or prior information equations. 

WTFACTOR is run using the command: 

wtfactor pestfile1 obsgroup factor pestfile2 

where 

pestfile1  is the name of the input PEST control file, 

obsgroup  is the name of an observation group cited in that file, 

factor  is the multiplier for weights of this group, and 

pestfile2  is the name of the new PEST control file to be written by WTFACTOR. 

 

For example, to write a new PEST control file named file2.pst in which weights assigned to 
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the observation group regul in the PEST control file file1.pst are multiplied by a factor of 

1.0345, WTFACTOR should be run using the command:- 

wtfactor file1.pst regul 1.0345 file2.pst 

WTFACTOR carries out only minimal error checking of the PEST control file which it reads. 

Thus it will overlook many types of errors or inconsistencies that may be present in this file, 

transferring these directly to the PEST control file which it writes. As always, the latter 

should be checked using PESTCHEK before being used by PEST. It is also a good idea to 

check the input PEST control file as well prior to running WTFACTOR, for WTFACTOR’s 

behaviour can be unpredictable if this file is internally inconsistent or incorrect. 

WTFACTOR is general in its application, being useable with PEST control files pertinent to 

all modes of PEST’s operation. However there is one situation in which it will not 

accomplish its goal of weight multiplication, and will instead cease execution after writing an 

appropriate message to the screen. This situation is where a prior information equation 

belonging to the user-specified observation group is spread over two or more lines and the 

prior information weight and observation group name are not on the same line. An example 

of such a prior information equation is shown below:- 

pi1 1.3 * log(ro1) + 3.2 * log(ro2) = 3.234 1.000 
& obsgroup1 

However WTFACTOR would have no problems if the equation were written as follows: 

pi1 1.3 * log(ro1) + 3.2 * log(ro2) = 3.234  
& 1.000 obsgroup1 
 

11.8 JACWRIT 

JACWRIT is a utility program which allows the user to inspect the Jacobian matrix computed 

by PEST. Recall from Chapter 2 that the Jacobian matrix contains the derivative of each 

model output for which there is a corresponding observation with respect to each parameter. 

At the end of each optimisation iteration PEST records a binary file containing the Jacobian 

matrix corresponding to “best” parameters so far attained during the optimisation process. 

The definition of “best” depends on the aim of the optimisation process. When working in 

parameter estimation mode the best parameters are those for which the lowest objective 

function was obtained. When working in predictive analysis mode, they are those for which 

the prediction was maximised/minimised compatible with the objective function being below 

the user-supplied calibration threshold. When working in regularisation mode, the best 

parameters are those for which the regularisation objective function is the least, provided that 

the measurement objective function is below the user-supplied measurement objective 

function limit. The name of the binary file in which the Jacobian matrix is stored is case.jco 

where case is the filename base of the current PEST control file; “jco” stands for “Jacobian 

optimised”. 

The Jacobian file is stored in binary rather than text format to save space. To translate it to 

text format, you must run JACWRIT by typing the command:- 

jacwrit jacfile1 jacfile2 



PEST Utilities  

 

11-14 

 

where 

jacfile1 is the name of the binary Jacobian file written by PEST, and 

jacfile2 is the name of the text file to which JACWRIT should write the Jacobian matrix in a 

form which is fit for human consumption. 

Note the following:- 

 Parameter and observation names are listed in the text file written by JACWRIT so 

that it becomes an easy matter to link a sensitivity (ie. a derivative) to a particular 

parameter/observation pair. 

 Only adjustable parameters are represented in the file written by JACWRIT; fixed and 

tied parameters are not represented. 

 The sensitivity of a parameter to which another parameter is tied reflects the fact that 

this parameter “carries” at least one other parameter through the optimisation process. 

 Derivatives reflect the transformation status of a parameter. Thus if a parameter is log-

transformed, the derivative with respect to the log of that parameter is presented. 

11.9 JCO2JCO and JCOTRANS 

These utilities are used in the implementation of PEST’s SVD-assist operations; they are 

described in Sections 8.5.7 and 8.5.8 of this manual. 

11.10 EIGPROC 

EIGPROC reads a PEST run record file and a PEST sensitivity file. It extracts and 

summarises information from these files. Recall that a PEST control file is always named 

case.rec while a sensitivity file is named case.sen.  

Use of EIGPROC (which stands for “eigenstuff processor”) is predicated on the assumption 

that PEST has run to completion, or has been stopped using the “stop with statistics option” 

(ie. the PSTOPST program has been run in another window). It is also assumed that the 

“normal matrix” inverted by PEST to obtain the parameter covariance matrix is not singular 

and thus that a covariance matrix (and associated correlation coefficients and eigendata) can 

be obtained. 

EIGPROC is run using the command: 

eigproc case N exlim outfile 

where 

case   pertains to a case for which a PEST run is complete, 

N          is the number of eigenvalues to be processed, 

exlim      is the eigencomponent exclusion limit, and 

outfile    is the EIGPROC output file. 
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EIGPROC’s input requirements will now be explained in more detail. 

case is the filename base of the PEST control file (and hence of the run record file and most 

other files written by PEST during, and at the completion of, a PEST run). EIGPROC reads 

case.pst and case.sen, the run record and sensitivity files. 

The largest eigenvalues of the parameter covariance matrix allow determination of the 

parameter combinations that contain most of the uncertainty of an inferred parameter set. The 

actual parameter combination ratios are expressed by the components of the corresponding 

eigenvectors. Through supplying an appropriate value for N (which should be equal to, or less 

than, the number of adjustable parameters) the user informs EIGPROC how many 

eigenvalues he/she would like listed in the EIGPROC output file. Eigenvalues are counted 

starting from the highest. 

For a given eigenvalue, only those parameters whose components of the corresponding 

eigenvector which are significantly nonzero are of special interest, for these are the 

parameters which, by virtue of insensitivity and/or correlation, are estimated with larger 

uncertainty than other parameters through the inversion process. If the user-supplied 

eigencomponent exclusion limit is, for example, 0.1 then only parameters whose absolute 

eigenvector components are greater than 0.1 are listed with the information supplied for a 

particular eigenvalue in the EIGPROC output file. The name of the latter is supplied as the 

last of EIGPROC’s command-line arguments. 

Once it has parsed its command line, EIGPROC reads the PEST run record file, followed by 

the PEST sensitivity file. For each eigenvalue (starting from the highest) it provides 

information such as that shown in Example 11.5 

Example 11.5 Part of an EIGPROC output file. 

For each eigenvalue, EIGPROC lists parameters in decreasing order of eigenvector 

component magnitude; the actual eigenvector component is also listed, together with the 

composite parameter sensitivity as read from the sensitivity file. (Note that these sensitivity 

values are extracted from the end of the sensitivity file where statistics related to optimised 

parameters are listed.) Parameters are only listed in this table if their eigencomponent 

magnitude is greater than the “eigencomponent exclusion limit” supplied by the user. 

Underneath the eigendata a correlation coefficient matrix is recorded. This is a sub-matrix of 

the parameter correlation coefficient matrix listed in the PEST run record file, featuring only 

those parameters which appear in the above eigendata listing. 

Eigenvalue number: 141    Value =  0.24990     --------> 
 
 Parameter    Eigenvector      Sensitivity 
              component 
  v3pp42         0.496          9.071E-03 
  v2pp42         0.487          1.060E-02 
 
 Correlation coefficient matrix for these parameters:- 
                v3pp42       v2pp42 
 v3pp42           1.0         0.84 
 v2pp42          0.84          1.0 
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11.11 PAR2PAR 

11.11.1 General 

On many occasions of model calibration there is a need to manipulate parameters before 

providing them to a model. There can be a number of reasons for this; two of them are now 

outlined. 

11.11.1.1 Parameter Ordering 

Suppose that a particular model has three parameters named infilt1, infilt2 and infilt3. For 

purposes of illustration, let it be assumed that these parameters govern infiltration of water 

into different parts of a catchment, in this case into subareas 1, 2 and 3 respectively. Soil 

property data may suggest that infiltration increases with subarea index, that is that infilt1 < 

infilt2 < infilt3. Thus, during the parameter estimation process, it would be desirable for the 

lower bound of infilt2 to be the current value for infilt1, and for the lower bound of infilt3 to 

be the current value of infilt2. 

Unfortunately it would be very difficult to incorporate parameter-dependent bounds into the 

PEST inversion algorithm. However an alternative path can be taken which accomplishes the 

same thing. This alternative path consists of estimating infilt1 together with two other 

parameters named infiltrat2 and infiltrat3 (“infiltrat” stands for “infiltration ratio”). These 

latter two parameters are defined by the relationships:- 

infiltrat2 = infilt2/infilt1       (11.1a) 

and 

infiltrat3 = infilt3/infilt2       (11.1b) 

Desired infiltration parameter ordering relationships will be maintained if each of infiltrat2 

and infiltrat3 is provided with a lower bound of 1.0 in the parameter estimation process 

implemented by PEST.  

In using this device to ensure that correct infiltration parameter ordering relationships are 

maintained, PEST must “see” parameters infilt1, infiltrat2 and infiltrat3, while the model 

must “see” parameters infilt1, infilt2 and infilt3. The necessary “parameter transformation” 

process can be accomplished by running the utility program PAR2PAR as a model 

preprocessor contained in a “composite model” run by PEST as a batch file. PAR2PAR 

“receives” the current PEST-calculated values of infilt1, infiltrat2 and infiltrat3; it then 

“transforms” these into values for infilt1, infilt2 and infilt3. Then it writes one or more model 

input files (based on appropriate template files) containing the current values of these native 

model parameters. Based on equations 11.1a and 11.1b, PAR2PAR must be “programmed” to 

calculate infilt2 and infilt3 using the relationships:- 

infilt2 = infilt1 * infiltrat2 

infilt3 = infilt2 * infiltrat3 
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11.11.1.2 Seasonal Parameter Variations 

Some model parameters show seasonal variation. For environmental models which simulate 

water or crop-growth processes in agricultural areas, “crop factor” may be one such 

parameter. Crop factor is also a parameter that (together with other parameters) often requires 

adjustment through the calibration process in order that the model can replicate measured 

crop water usage, observed crop growth, or some other system response for which historical 

records are available.  

Many models require that the crop factor be provided on a monthly basis. However while 

monthly crop factors may indeed require estimation through the calibration process, it would 

generally be unwise to attempt to estimate each monthly crop factor independently of every 

other monthly crop factor through the calibration process, for this would ignore an inherent 

relationship between these parameters, this being the fact that variation of crop factor with 

season may show a regular (perhaps sinusoidal) pattern. To ignore this pattern in 

parameterising the model would be to ignore an important facet of system behaviour. 

Furthermore, in many model calibration contexts, it would be unlikely that 12 different 

monthly crop factors could be independently estimated with any degree of uniqueness 

because of the high degree of correlation that is likely to exist between these individual 

parameters (especially where the data available for model calibration is limited). 

For a case such as this, a suitable parameterisation strategy may be to estimate the mean 

monthly crop factor, together with the amplitude and phase of the seasonal variation of the 

crop factor about this mean. Thus twelve parameters are replaced with three. This will lend 

stability to the parameter estimation process as it promulgates a more unique solution to it. In 

implementing this strategy, PEST will “see” three parameters while the model will still “see” 

the twelve parameters which it requires. The task of “transforming” the three parameters 

“seen” by PEST to the twelve parameters “seen” by the model can be accomplished using 

PAR2PAR as a model preprocessor, run by PEST just before the model on every occasion 

that the model is run. Once again, this can be accomplished by including both of the 

PAR2PAR and model executables in a batch file run by PEST as a “composite model”. On 

the basis of the three parameters adjusted by PEST (named, for example, mean, amplitude 

and phase), PAR2PAR will calculate the monthly crop factor parameters required by the 

model (named, for example, crop1, crop2…crop12) using a series of relationships such as:- 

crop1 = mean + amplitude * sin ((1 + phase)*2.0*3.142/12.0) 

crop2 = mean + amplitude * sin((2 + phase)*2.0*3.142/12.0) 

etc 

In these equations phase is measured in months; as is explained below, the argument of the 

sin function must be supplied in radians, where 2 radians is equal to a full cycle. 

Seasonal parameter variation can be expressed in a number of different ways; use of the sin 

function is just one of them. Another method would be to use “seasonal ratios”; in this case 

only one parameter may require estimation, this being the factor by which all such ratios are 

multiplied to achieve model calibration. 
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11.11.2 Using PAR2PAR 

11.11.2.1 Running PAR2PAR 

PAR2PAR is run using the command:- 

par2par infile 

where infile is a PAR2PAR input file which must be prepared by the user. 

11.11.2.2 The PAR2PAR Input File 

The structure of the PAR2PAR input file is shown in Example 11.6. An example of such a 

file is provided in Example 11.7. 

 

Example 11.6 Structure of the PAR2PAR input file. 

 

Example 11.7. An example of a PAR2PAR input file. 

A PAR2PAR input file must contain at least a “parameter data” section and a “template and 

model input files” section. The “control data” section is optional; if it is omitted, the default 

values of “single” and “point” are supplied for the variables PRECIS and DPOINT.  

* parameter data 

PARNME = expression 

PARNME = expression 

. 

. 

* template and model input files 

TEMPFLE INFLE 

TEMPFLE INFLE 

. 

. 

* control data 

PRECIS DPOINT 

* parameter data 

infilt1 = 0.3456 

infiltrat2 = 1.0453 

infiltrat3 = 1.5432 

infilt2= infilt1 * infiltrat2 

infilt3 = infilt2 * infiltrat3  

* template and model input files 

model1.tpl model1.in 

model2.tpl model2.in 

* control data 

single point 
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The “parameter data” section of the PAR2PAR input file provides the means whereby values 

are assigned to a set of parameters. These values can be provided either by the direct 

assignment of numbers, or through mathematical expressions. These expressions (which may 

be of considerable complexity) may cite parameters whose values were assigned in previous 

expressions. 

The “template and model input files” section of the PAR2PAR input file provides the names 

of template files together with the names of the model input files to which they correspond. 

Once it has determined values for all parameters appearing on the left sides of the expressions 

listed in the “parameter data” section of its input file, PAR2PAR writes these parameter 

values to the nominated model input files using template files based on these model input 

files (just like PEST does). Note the following:- 

 Any parameter appearing in any of the template files listed in the “template and model 

input files” section of the PAR2PAR input file must be assigned a value in the 

“parameter data” section of the PAR2PAR input file. 

 If there is more than one template/model input file pair listed in the “template and 

model input files” section of the PAR2PAR input file, any particular template file can 

be cited more than once if desired. However each model input file can be cited only 

once, for it would make no sense for a model input file generated on the basis of one 

template file to be overwritten by another model input file generated on the basis of 

the same or another template file. 

If either of these rules are violated, PAR2PAR will inform you of this through an appropriate 

error message.  

All template files cited in the “template and model input files” section of the PAR2PAR input 

file should be checked for correctness using TEMPCHEK. While PAR2PAR will detect and 

report any errors that it finds in these files, it will only report the first error that it encounters; 

then it will cease execution. TEMPCHEK, on the other hand, attempts to examine the entirety 

of a template file, reporting all errors to the screen. 

11.11.2.3 Parameter Relationships 

The relationships by which parameter values are calculated from numbers, or from values 

previously assigned to other parameters, may be mathematical expressions of complex form. 

They can include any or all of the “*”, “/”, “+”, “-” and “^” operators as well as brackets. 

(Note that the “^” operator raises the number in front of the “^” symbol to a power equal to 

the number trailing the “^” symbol; this operation can also be designated using the “**” 

symbol as in the FORTRAN programming language.) Mathematical operations of equal rank 

are evaluated in the order “^” followed by “*” and “/”, followed by “+” and “-”, as is the 

usual convention. This order can be overridden by the use of brackets. 

The following mathematical functions are supported in expressions by which parameter 

values are calculated – sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, exp, log, log10, abs 

and sqrt. Note the following rules governing use of these functions:- 

 As is the FORTRAN convention, the arguments of the trigonometric functions sin, 
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cos and tan, and the values returned by their inverse functions asin, acos and atan, are 

assumed to be in radians. There are 2 radians in a circle; thus 2 radians are equal to 

360 degrees. 

 The log function is to base e; for logarithms to base 10, use the log10 function. 

 For some of the functions listed above, arguments must lie within a specific numerical 

range (for example the argument of the log function must always be greater than 

zero). If a function argument is provided which is outside of its legal range, 

PAR2PAR will often trap the error and cease execution with an appropriate error 

message. However in some rare instances the argument may “slip through” and a 

compiler-generated error message will be supplied upon termination of PAR2PAR 

execution. 

The following rules apply when formulating mathematical expressions to calculate parameter 

values. 

 Expressions may contain both numbers and parameters. However where a parameter 

is used, its value must have been calculated (or supplied) in a previous expression. 

 As is the normal PEST convention, parameter names must be 12 characters or less in 

length. 

 Spaces can be placed next to operators, brackets and functions. However they cannot 

appear within numbers, parameter names or function names. 

Some examples of allowable mathematical expressions follow:- 

trans5 = k5 * (top5 – bottom5) 

pi = 3.14159 

par3 = 3.4 * (4.5 + trans5 ^ (3 + sin(0.6))) 

par4 = par3 / (pi + exp(5.0 + par3/trans5)) 

par5 = -(par1 + par2) * cosh(pi * trans5) 

If an expression is long, it may be continued onto the next line by placing the “&” character at 

the beginning of that line. Thus the expression:- 

par5 = -(par1 + par2) * cosh(pi * trans5) 

is equivalent to:- 

par5 = 

& -(par1+par2) 

& * cosh( 
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& pi * trans5) 

11.11.2.4 Generation of Model Input Files 

Once it has calculated values for all parameters, PAR2PAR writes these values to one or 

more model input files using templates of these files to govern parameter value placement. 

Use of template files for writing model input files is fully discussed in Chapter 3 of this 

manual. As is described in that chapter, slight variations of the way in which numbers 

representing parameter values are written to model input files can be effected through use of 

the PRECIS and DPOINT variables; values for these variables are supplied in the optional 

“control data” section of a PAR2PAR input file. If PRECIS is set to “single”, numbers are 

written to model input files using the “E” character for exponentiation. However if it is set to 

“double”, the “D” character is used. Furthermore, if there is sufficient space, up to 23 

characters can be used to record the value of the parameter instead of the usual maximum of 

13. Setting the DPOINT variable to “nopoint” instructs PEST to write a parameter’s value to 

a model input file without the decimal point if this can be accomplished through numerical 

formatting, thereby gaining one extra significant figure of precision (more will be said about 

precision shortly). As is stated above, the “control data” section of the PAR2PAR input file is 

optional; if it is omitted, default values of “single” and “point” are supplied for PRECIS and 

DPOINT respectively. 

11.11.3 Using PAR2PAR with PEST 

11.11.3.1 The Composite Model 

As was discussed above, when used with PEST, PAR2PAR will normally be run as part of a 

“composite model” encapsulated in a batch file. Thus whenever PEST runs the model, it first 

runs PAR2PAR (and any other model preprocessors cited in the batch file), followed by the 

model (followed by any model postprocessors cited in the batch file). 

As for any other model executable program which uses parameters which require estimation 

by PEST, a template file must be built, based on a PAR2PAR input file. Just before it runs the 

model, PEST will then write current parameter values to the PAR2PAR input file using the 

corresponding template file. An example of such a template file, based on the PAR2PAR 

input file shown in Example 11.7, is provided in Example 11.8. 

Example 11.8. A template for the PAR2PAR input file of Example 11.7. 

ptf $ 

* parameter data 

infilt1 = $infilt1  $ 

infiltrat2 = $infiltrat2$ 

infiltrat3 = $infiltrat3$ 

infilt2= infilt1 * infiltrat2 

infilt3 = infilt2 * infiltrat3  

* template and model input files 

model.tpl model.in 

* control data 

single point 
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Based on the template file of Example 11.8, before PEST runs the model it will replace the 

strings “$infilt1$”, “$infiltrat2$”, and “$infiltrat3$” with the current values of these 

parameters. Note that these parameters do not need to be named the same as the PAR2PAR 

parameters to which values are assigned in the pertinent expressions in the PAR2PAR input 

file. They could have been given any name at all; the same parameter names are used by both 

PEST and PAR2PAR in this example simply as a matter of convenience. Furthermore, 

parameter spaces in the template of a PAR2PAR input file do not need to be restricted in their 

location to the right side of expressions comprised of a “=” symbol followed by a single 

number. See, for example, the PAR2PAR input file and corresponding template file depicted 

in Examples 11.9 and 11.10. These accomplish the same task as the files depicted in 

Examples 11.7 and 11.8. 

 

Example 11.9. A PAR2PAR input file. 

 

Example 11.10. A template for the PAR2PAR input file of Example 11.9 

It is apparent that when using PAR2PAR as part of a composite model run by PEST there are 

two sets of template files involved in the inversion process, viz. that used by PEST to write a 

PAR2PAR input file, and those used by PAR2PAR to write model input files. These should 

not be confused. PEST should never be instructed to use a template file to write a model input 

file that is also cited in the “template and model input files” section of a PAR2PAR input file. 

If this happens, the model input file generated by PEST will be overwritten by that generated 

by PAR2PAR.  

It often happens that only a few parameters required by a model need to be calculated by an 

expression cited in a PAR2PAR input file; other model parameters can be estimated directly 

by PEST. These latter parameters can simply be “passed through” PAR2PAR by assigning 

them numerical values in the pertinent expressions in the PAR2PAR input file. Example 

11.11 shows a PAR2PAR input file in which only parameter par8 is calculated through 

manipulation of other parameters; Example 11.12 shows the corresponding template file of 

the PAR2PAR input file. Parameters par1 to par5 are passed directly to the model through 

the template file model.tpl of the model input file model.in. The template file model.tpl thus 

* parameter data 

infilt1 = 0.3456 

infilt2= infilt1 * 1.23983 

infilt3 = infilt2 * 1.53953 

* template and model input files 

model.tpl model.in 

ptf $ 

* parameter data 

infilt1 = 0.3456 

infilt2= infilt1 * $infiltrat2$ 

infilt3 = infilt2 * $infiltrat3$  

* template and model input files 

model.tpl model.in 
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cites all of parameters par1 to par5 as well as parameter par8. (It may also cite par6 and 

par7.) 

 

Example 11.11. A PAR2PAR input file. 

 

Example 11.12. A template file for the PAR2PAR input file of Example 11.11. 

11.11.3.2 Numerical Precision 

As is explained elsewhere in this manual, when PEST writes a number to a model input file 

on the basis of a template file, it alters its internal representation of that number to account for 

the fact that the number may be written to the model input file with less than the maximum 

number of significant figures with which that number can be represented internally within the 

computer. Thus when PEST calculates derivatives of model outputs with respect to 

parameters using finite differences, the differences between incrementally-varied parameter 

values will be exactly correct because both PEST and the model use exactly the same 

parameter values. 

The ability for PEST to compensate for limited parameter space widths on model input files 

is lost when parameter values are written to those files using program PAR2PAR (because 

PEST has no way of adjusting its internal representation of parameters based on PAR2PAR 

outputs). Thus unless the formatting requirements of the model input file are such that it 

* parameter data 

par1 = 1.583745e-4 

par2 = 5.395832e-1 

par3 = 4.583924e-2 

par4 = 5.389028e-5 

par5 = 4.389428e-2 

par6 = 3.559313e-1 

par7 = 5.395355e-2 

par8 = par6 * exp(-par7) 

* template and model input files 

model.tpl model.in 

ptf $ 

* parameter data 

par1 = $par1      $  

par2 = $par2      $ 

par3 = $par3      $ 

par4 = $par4      $ 

par5 = $par5      $ 

par6 = $par6      $ 

par7 = $par7      $ 

par8 = par6 * exp(-par7) 

* template and model input files 

model.tpl model.in 
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allows model input parameters to be supplied with full numerical precision (which is 

normally about 7 significant figures), slight errors will be incurred in the derivatives 

calculation process. (Note that where a number is small or large enough for exponential 

notation to be required for its representation, up to 13 characters may be required for the 

representation of that number using 7 significant figures.) Imprecision in derivatives 

calculation can have a profound effect on the outcome of an inversion process. Thus, if the 

model permits it, you should make absolutely sure that the template files used by PAR2PAR 

to write model input files use parameter space widths which are as large as the model will 

tolerate (up to a maximum of the 13 characters if using single precision arithmetic, or 23 

characters if using double precision arithmetic). If model input file formatting requirements 

are too restrictive to allow a parameter value to be written without some loss of significance, 

then you should at least be aware of the fact that use of PAR2PAR under these circumstances 

has the potential to reduce the efficacy of PEST’s performance. 

11.11.3.3 Intermediate Files 

Before it runs the model PEST deletes all model output files that it knows about (ie. the 

model output files cited in the PEST control file). Hence if the model fails to run, PEST will 

not read old model output files produced on previous model runs, mistaking them for new 

ones. Thus if PEST generates an error message saying that it cannot find a particular model 

output file, this is a sure sign that, for some reason, the model failed to run. In most cases the 

matter is then easily rectified by taking some simple measure such as altering the contents of 

the “model command line” section of the PEST control file. 

Where a model is comprised of multiple executable programs listed in a batch file, similar 

considerations apply to “intermediate model files”, ie. to files generated by one or more of the 

executable programs comprising the composite model and read by one or more succeeding 

executable programs cited in the model batch file. If, for some reason, an executable program 

which generates such an intermediate file fails to run, then later executable programs of the 

composite model may read old intermediate files, mistaking them for new ones. If this 

happens, model outputs will not reflect current parameter values; in fact, because they are 

independent of current parameter values, PEST will probably declare that at least some model 

outputs are insensitive with respect to some parameter values. This problem can be avoided if 

commands are included in the model batch file to delete all intermediate files before any of 

the executable programs comprising the model are run. If PAR2PAR is one such executable 

program, then all model input files cited in the “template and model input files” section of the 

PAR2PAR input file should be deleted prior to running PAR2PAR. Example 11.13 shows an 

example of a model batch file in which this precaution is taken. 

Example 11.13. A model batch file which includes PAR2PAR as one of the model 

rem Model input files written by PAR2PAR are deleted. 

del model1.in 

del model2.in 

rem PAR2PAR is run. 

par2par par2par.in 

rem The model is run. 

model 
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executable programs. 

In the batch file depicted in Example 11.13, file par2par.in is the PAR2PAR input file. If it is 

desired that screen output from all programs comprising the composite model (including the 

model batch file itself) be suppressed so that the model’s screen output does not interfere with 

that of PEST, the batch file shown in Example 11.13 could be altered to that shown in 

Example 11.14. 

Example 11.14. The batch file of Example 11.13 with all screen output suppressed. 

 

@echo off 

rem Model input files written by PAR2PAR are deleted. 

del model1.in > nul 

del model2.in > nul 

rem PAR2PAR is run. 

par2par par2par.in > nul 

rem The model is run. 

model > nul 
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12. SENSAN 

12.1 Introduction 

In many modelling applications, an analysis of the sensitivity of particular model outputs to 

particular model inputs must be performed. Such an analysis may be required as part of an 

effort to increase a modeller’s understanding of the processes simulated by the model. Or it 

may be the first step in a model calibration exercise whereby key system parameters are 

identified. 

SENSAN facilitates the sensitivity analysis process by allowing a modeller to automate the 

tedious task of adjusting certain model inputs, running the model, reading the outputs of 

interest, recording their values, and then commencing the whole cycle again. Using SENSAN, 

a modeller can prepare for an unlimited number of model runs and then let the computer 

undertake these runs overnight, over a weekend, or simply while he/she is doing other things. 

SENSAN reads user-prepared parameter values and writes specified model output values to 

files which can easily be imported to a spreadsheet for further processing. 

If requested, a system command can be issued after each model run. For example a user may 

wish to rename certain model output files after some model runs have been completed; hence 

these model output files are not overwritten during subsequent model runs and are thus 

available for later inspection. 

SENSAN is model-independent. This means that it can be used to conduct a sensitivity 

analysis in conjunction with any model. It achieves this by communicating with a model 

through the model’s own input and output files. It uses an identical model interface protocol 

to PEST, writing model input files on the basis of user-supplied templates, and reading output 

files with the aid of a user-prepared instruction set. In fact, SENSAN communicates only 

indirectly with a model, using the PEST utilities TEMPCHEK and INSCHEK to write and 

read model files; these programs are run by SENSAN as “system calls”. 

Like PEST, SENSAN runs a model through a command supplied by the user. There is no 

reason why a “model” cannot be a batch file housing a number of commands. Thus a “model” 

can consist of a series of executables, the outputs of one constituting the inputs to another, or 

simply a number of executables which read different input files and generate different output 

files. SENSAN can write parameter values to many input files and read model outputs from 

many output files.  

SENSAN is limited in the number of parameters and observations that it can handle, both 

through the internal dimensioning of its own arrays and those belonging to TEMPCHEK and 

INSCHEK which it runs. This will rarely pose a problem for it is in the nature of sensitivity 

analysis that adjustable parameters do not number in the hundreds nor selected model 

outcomes in the thousands. Nevertheless if either SENSAN, TEMPCHEK or INSCHEK 

reports that it cannot allocate sufficient memory to commence or continue execution, or that 

the maximum number of parameters or observations has been exceeded, contact Watermark 

Numerical Computing for versions of SENSAN, TEMPCHEK and INSCHEK in which these 

restrictions are lifted. 
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A comprehensive SENSAN input data checker named SENSCHEK is provided with 

SENSAN. Its role is similar to that of PESTCHEK and should be run after all SENSAN input 

data has been prepared, prior to running SENSAN itself. 

12.2 SENSAN File Requirements 

12.2.1 General 

SENSAN requires four types of input file. The first two are the SENSAN control file and the 

parameter variation file. The former file provides SENSAN with the structural details of a 

particular sensitivity analysis. The latter provides SENSAN with the parameter values to be 

used in the succession of model runs which it must undertake. The other two file types are 

PEST template and instruction files. These latter two kinds of file are dealt with briefly first. 

12.2.2 Template Files 

Section 3.2 of this manual provides a detailed discussion of how PEST writes parameter 

values to model input files. 

After a user has prepared a template file prior to running PEST, he/she can check its integrity 

using the PEST utility TEMPCHEK. As explained in Chapter 11, TEMPCHEK also provides 

the functionality to generate a model input file on the basis of a template file and a 

corresponding user-supplied list of parameter values. Rather than reproduce this functionality 

within SENSAN, SENSAN simply runs TEMPCHEK whenever it wishes to prepare a model 

input file on the basis of a set of parameter values. Thus it is essential that the directory in 

which the executable file tempchek.exe resides is either the current directory or is a directory 

cited in the PATH environment variable. 

You can provide SENSAN with the name of a single template file in order that it can generate 

a single model input file. Alternatively you may provide SENSAN with the names of many 

template files in order to generate multiple input files prior to running the model. In either 

case, before it runs the model SENSAN writes a parameter value file using the current set of 

parameter values as provided in the parameter variation file (see below). Then SENSAN runs 

TEMPCHEK for each model input file which must be produced. It then runs the model.  

Before running SENSAN you should always check the integrity of all template files which 

you supply to it by running TEMPCHEK yourself outside of SENSAN. 

12.2.3 Instruction Files 

Instruction files are discussed in Section 3.3 of this manual. Model-generated numbers can be 

read from one or many model output files as long as at least one instruction file is provided 

for each model output file. The integrity of an instruction file can be checked using the PEST 

utility INSCHEK described in Section 11.2. INSCHEK is also capable of actually reading 

values from a model output file on the basis of a user-supplied instruction file. In order to 

avoid duplication of this functionality, SENSAN runs INSCHEK to read model output files 

after it has run the model. Hence while a user must supply SENSAN with the instruction files 

required to read one or more model output files, it is actually INSCHEK which reads these 
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files; SENSAN then reads the “observation value files” written by INSCHEK in order to 

ascertain current model outcome values. Because SENSAN must run INSCHEK at least once 

every time it runs the model, it is essential that the executable file inschek.exe reside either in 

the current directory or within a directory cited in the PATH environment variable. 

Before running SENSAN, you should check the integrity of all instruction files which you 

supply to it by running INSCHEK yourself outside of SENSAN. 

12.2.4 The Parameter Variation File 

SENSAN’s task is to run a model as many times as a user requires, providing the model with 

a user-specified set of parameter values on each occasion. As discussed above, the parameters 

which are to be varied from model run to model run are identified on one or a number of 

template files. The values which these parameters must assume on successive model runs are 

provided to SENSAN in a “parameter variation file”, an example of which is presented 

below. 

The file shown in Example 12.1 provides 6 sets of values for 5 parameters; the parameter 

names appear in the top row. As usual, a parameter name must be twelve characters or less in 

length. The same parameter names must be cited on template files provided to SENSAN. In 

fact, if there is a naming discrepancy between the parameters cited in the parameter 

variation file and those cited in the template files supplied to SENSAN, parameters cited in 

the parameter variation file which are absent from any template file(s) will not be provided 

with updated values from model run to model run.  This will manifest itself on the SENSAN 

output files as a total lack of sensitivity for some parameters named in the parameter variation 

file. A comprehensive checking program named SENSCHEK (see below) has the ability to 

detect such inconsistencies in the SENSAN input dataset. Hence SENSCHEK should always 

be run prior to running SENSAN. 

The second and subsequent rows of a parameter variation file contain parameter values for 

SENSAN to use on successive model runs. A separate model run will be undertaken for each 

such row. A parameter variation file can possess as many rows as a user desires; hence 

SENSAN can be set up to undertake thousands of model runs if this is considered necessary 

(as it may be in Monte Carlo simulation). 

In many sensitivity analyses, a user is interested in the effect of varying parameters, either 

individually or in groups, from certain “base” values. In such cases, parameter base values 

should appear on the second line of the parameter variation file immediately under the 

parameter names. As will be discussed below, SENSAN produces two output files in which 

variations from “base value outputs” are recorded, “base value outputs” being defined as 

model outputs calculated on the basis of base parameter values. 

dep1   dep2    res1   res2   res3    
1.0    10.0    5.0    2.0    10.0 
2.0    10.0    5.0    2.0    10.0 
1.0    11.0    5.0    2.0    10.0 
1.0    10.0    6.0    2.0    10.0 
1.0    10.0    5.0    3.0    10.0 
1.0    10.0    5.0    2.0    11.0 

Example 12.1 A parameter variation file. 
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Items on each line of a parameter value file can be space, comma or tab-delimited. 

12.2.5 SENSAN Control File 

It is recommended, though it is not essential, that the SENSAN control file be provided with a 

filename extension of “.sns”. Use of this default extension avoids the need to type in the 

entire SENSAN control filename when running either SENSAN or SENSCHEK. 

Example 12.2 shows a SENSAN control file. Example 12.3 shows the structure of the 

SENSAN control file. As is apparent, the SENSAN control file resembles, to some extent, the 

PEST control file. Like the PEST control file, the SENSAN control file must begin with a 

three-character code; viz. “scf”, identifying it as a SENSAN control file. Like the PEST 

control file, the SENSAN control file is divided into sections by lines beginning with the “*” 

character. And like the PEST control file, the SENSAN control file provides information to 

SENSAN through the values taken by certain input variables, many of which are also used by 

PEST. Where such variables are, indeed, used by PEST, they are provided with identical 

names to the corresponding PEST variables. 

 

scf 
* control data 
noverbose 
5 19 
2 3 single point 
* sensan files 
parvar.dat 
out1.dat 
out2.dat 
out3.dat 
* model command line 
model > nul 
* model input/output 

ves.tp1 ves1.inp 
ves.tp2 ves2.inp 
ves1.ins ves1.out 
ves2.ins ves2.out 
ves3.ins ves3.out 

Example 12.2 A SENSAN control file. 
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The role of each SENSAN input variable is now discussed. 

12.2.6 Control Data 

SCREENDISP 

SCREENDISP is a character variable which can take either one of two possible values. These 

values are “noverbose” and “verbose”. In the former case, when SENSAN runs TEMPCHEK 

and INSCHEK it redirects all of the screen output from these programs to the “nul” file; 

hence the user is not aware that they are running. In the latter case, TEMPCHEK and 

INSCHEK output is directed to the screen in the usual fashion. 

Once you have set up a SENSAN run and ensured that everything is working correctly, a 

nicer screen display is obtained by using the “noverbose” option. In this case the user should 

ensure that the model likewise produces no screen output by redirecting its output to the “nul” 

file using, for example, the command 

model > nul 

to run the model. If SENSAN is thus left to produce the only screen output, the user can 

monitor progress and detect any SENSAN error messages if they are written to the screen.  

NPAR 

This is the number of parameters. It must agree with the number of parameters cited in the 

template file(s) used by SENSAN. It must also agree with the number of parameters named in 

the parameter variation file provided to SENSAN. 

NOBS 

NOBS is the number of “observations”, ie. the number of model outcomes used in the 

sensitivity analysis process. It must agree with the number of observations cited in the 

instruction file(s) provided to SENSAN. 

scf 
* control data 
SCREENDISP 
NPAR NOBS 
NTPLFLE NINSFLE PRECIS DPOINT 
* sensan files 
VARFLE 
ABSFLE 
RELFLE 
SENSFLE 
* model command line 

write the command which SENSAN must use to run the model 
* model input/output 
TEMPFLE INFLE 

(one such line for NTPLFLE template files) 
INSFLE OUTFLE 

(one such line for NINSFLE instruction files) 

Example 12.3 Structure of the SENSAN control file. 
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NTPFLE 

The number of template files to be used by SENSAN. For each template file there must be a 

corresponding model input file; see below. Note that a given template file can be used to 

write more than one model input file; however two templates cannot write the same model 

input file. 

NINSFLE 

The number of instruction files used by SENSAN to read model outcomes. For each 

instruction file there must be a matching model output file. Note that the same instruction file 

cannot read more than one model output file (observation values would be overwritten); 

however two different instruction files can read the same model output file. 

PRECIS 

PRECIS is a character variable which must take either the value “single” or “double”. It 

determines whether single or double precision protocol is used to represent a very large or 

very small number, or a number in a wide parameter space; see Section 3.2.6 for more details. 

The value “single” is usually appropriate. 

DPOINT 

DPOINT must be supplied as either “point” or “nopoint”. In the latter case the decimal point 

is omitted if there is a tight squeeze of a parameter value into a parameter space. Use “point” 

if at all possible, for some models make assumptions regarding the location of a missing 

decimal point. See Section 3.2.6 for more details. 

12.2.7 SENSAN Files 

VARFLE 

VARFLE is the name of the parameter variation file for the current model run. The number of 

parameters cited in this file must agree with the value of NPAR cited in the “control data” 

section of the SENSAN input file. 

ABSFLE RELFLE and SENSFLE 

The names of the three SENSAN output files. Contents of these files are discussed below. 

12.2.8 Model Command Line 

Provide the command that you would normally use to run the model. Remember that you can 

enter the name of a batch file here to run a model consisting of multiple executables. To 

prevent screen output from occurring during execution of batch file commands (if desired) 

you can disable echoing of each batch file command using the “@” character and the “echo 

off” command. Also, model screen output can be redirected to the nul file. See Example 12.4. 
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Care should be taken if SENSAN is executing in the “noverbose” mode for it then appends 

the string “> nul” to the command recorded in the “model command line” section of its 

input file. If the command already involves output redirection to a file using the “>” symbol, 

this may become confounded through use of the further “>” symbol supplied by SENSAN to 

redirect command output to the “nul” file. 

12.2.9 Model Input/Output 

TEMPFLE 

TEMPFLE is the name of a template file used to write a model input file.  

INFLE 

The name of a model input file corresponding to the template file preceding it in the 

SENSAN control file. 

INSFLE 

INSFLE is the name of a PEST instruction file. 

OUTFLE 

The name of the model output file read by the instruction file whose name precedes it in the 

SENSAN control file. 

12.2.10 Issuing a System Command from within SENSAN 

SENSAN allows a user to issue a system command after each model run. A system command 

is a direction to the operating system, and is implemented by the system just as if the 

command were typed at the screen prompt. The command can be an operating system 

command such as  “copy” or “del”; or it can be the name of a user-supplied executable 

program or batch file. 

The system command to be run after any particular model run should be written to the 

parameter variation file following the parameter values pertinent to that model run. In many 

cases the command will simply be the “copy” command, ensuring that model output files are 

stored under different names before they are overwritten during subsequent model runs. 

Example 12.5 shows such a case. 

@echo off 
model1 > nul 
model2 > nul 

Example 12.4. A batch file serving as a model; all screen output has been disabled. 
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In Example 12.5 the model run by SENSAN produces a file called model.out. After each 

model run this file is copied to a different file whose name is associated with that run. These 

files can later be inspected or processed in a fitting manner. 

SENSAN assumes that any characters following the NPAR numbers representing the NPAR 

parameter values for a particular run constitute a system command which it duly delivers to 

the operating system after the model has run. SENSAN takes no responsibility for incorrect 

commands; nor does it check whether the system has properly interpreted and executed the 

command. It simply reads the next set of parameters and undertakes the next model run after 

control has been returned back to it from the operating system after the latter has been 

provided with the command. 

Care should be taken if SENSAN is executing in the “noverbose” mode, for then the string “> 

nul” is added to any command appearing in the parameter variation file. This may cause 

problems if a command already uses the “>” symbol to redirect command output to a file. 

12.3 SENSCHEK 

12.3.1 About SENSCHEK 

Once all SENSAN input data has been prepared, and before running SENSAN, SENSCHEK 

should be run in order to verify that the entire SENSAN input dataset is correct and 

consistent. SENSCHEK reads all SENSAN input files, ie. the SENSAN control file, the 

parameter variation file, as well as all template and instruction files. It checks all of these files 

for correct syntax and for consistency between them. Thus, for example, if the number of 

observations cited in all instruction files differs from the value supplied for NOBS in the 

SENSAN control file, or if values are provided for parameters in the parameter variation file 

which are not cited in any template file, SENSCHEK will detect the error and write an 

appropriate error message to the screen. 

Though SENSAN itself carries out some error checking, it has not been programmed to carry 

out extensive consistency checks in the way that SENSCHEK does. In fact SENSAN may run 

happily if provided with certain erroneous datasets; however SENSAN’s results under such 

conditions will be misleading. Thus it is most important that SENSCHEK be run prior to 

SENSAN, once all SENSAN input files have been prepared. 

12.3.2 Running SENSCHEK 

SENSCHEK is run using the command 

dep1   dep2    res1   res2   res3    
1.0    10.0    5.0    2.0    10.0 copy model.out model1.out 
2.0    10.0    5.0    2.0    10.0 copy model.out model2.out 
1.0    11.0    5.0    2.0    10.0 copy model.out model3.out 
1.0    10.0    6.0    2.0    10.0 copy model.out model4.out 
1.0    10.0    5.0    3.0    10.0 copy model.out model5.out 
1.0    10.0    5.0    2.0    11.0 copy model.out model6.out 

Example 12.5. A parameter variation file for a SENSAN run in which system 

commands are run after the model. 
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senschek infile 

where infile is the name of the SENSAN control file. If the latter possesses an extension of 

“.sns”, then this extension can be omitted from the filename in the same manner that the 

“.pst” extension can be omitted from the name of the PEST control file when running PEST 

and PESTCHEK. 

SENSCHEK writes its error messages to the screen. It is important to note that if 

SENSCHEK detects certain errors early in the SENSAN control file it may not proceed with 

its checking of the remainder of this file, nor of the template and instruction files cited in the 

SENSAN control file, nor of the parameter variation file. Thus it is important to ensure that 

once a SENCHEK-identified error has been rectified, SENSCHEK is run again. Only when 

SENSCHEK explicitly informs the user that no errors have been detected in the entire 

SENSAN input dataset is it safe to run SENSAN. 

12.4 Running SENSAN 

12.4.1 SENSAN Command Line 

SENSAN is run using the command 

sensan infile 

where infile is the name of a SENSAN control file. If the latter possesses an extension of 

“.sns” it is not necessary to include this extension in the SENSAN command line, for 

SENSAN automatically appends “.sns” to a filename supplied without extension. 

It is important to ensure before SENSAN is run that the executable files tempchek.exe and 

inschek.exe are either in the current directory, or are in a directory cited in the PATH 

environment variable. As is mentioned above, SENSAN runs both of these programs in the 

course of its execution, the first to generate model input files and the second to read model 

output files. 

12.4.2 Interrupting SENSAN Execution 

To interrupt SENSAN type <Ctl-C>. 

12.5 Files Written by SENSAN 

12.5.1 SENSAN Output Files 

SENSAN produces three output files, each of which is easily imported into a spreadsheet for 

subsequent analysis. In each of these files the first NPAR columns contain the parameter 

values supplied to SENSAN in the parameter variation file. The subsequent NOBS columns 

pertain to the NOBS model outcomes (ie. “observations”) cited in the instruction file(s) 

supplied to SENSAN. The first row of each of these output files contains parameter and 

observation names. 

The last NOBS entries on each line of the first SENSAN output file (ABSFLE) simply list the 
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NOBS model outcomes read from the model output file(s) after the model was run using the 

parameter values supplied as the first NPAR entries of the same line. 

The second SENSAN output file (RELFLE) lists the relative differences between observation 

values on second and subsequent data lines of the ABSFLE output file and observation values 

cited on the first data line. Hence if the first data line (ie. the line following the parameter 

name line) of the parameter variation file lists parameter base values, the second SENSAN 

output file lists the variations of model outcome values relative to model outcome base 

values. If, for a particular model outcome, Ob represents the base value, and Op represents the 

value for a certain set of alternative parameter values, then the value written to the RELFLE 

output file for that model outcome and parameter set is: 

O O

O

p b

b


        (12.1) 

Note that if Ob is zero, a value of 10
35

 is written to RELFLE as an indicator of this condition. 

The third SENSAN output file (SENSFLE) provides model outcome “sensitivities” with 

respect to parameter variations from their base values. As usual, parameter base values are 

assumed to reside on the first data line of the parameter variation file. Sensitivity for a 

particular outcome is calculated as the difference between that model outcome and the 

pertinent model outcome base value, divided by the difference between the current parameter 

set and the parameter base values. The latter is calculated as the L2  norm, ie. the square root 

of the sum of squared differences between a current parameter set and the base parameter set. 

Thus if only a single parameter p differs from the base set, the sensitivity for a particular 

observation O is defined as: 

O O

p p

b

b




        (12.2) 

where Ob and pb are model outcome and parameter base values and O and p are the model 

outcome and parameter values pertaining to a particular model run. Hence if NPAR+1 

parameter sets are provided to SENSAN, where the first set contains parameter base values 

and the subsequent NPAR sets contain parameter values identical to the base values except 

that each parameter in turn is varied from the base value by an incremental amount, then the 

last NPAR rows and NOBS columns on the SENSAN sensitivity output file, SENSFLE, 

approximates the transpose of the Jacobian matrix. 

Note that if p - pb in equation 12.2 is equal to zero, then SENSAN writes the corresponding 

sensitivity as 10
35

, except for the first data line (assumed to be the base value line) where all 

sensitivities are provided as 0.0. Note also that the L2 norm can only be positive. However 

when only a single parameter is varied, the sign of that variation is taken into account, 

resulting in a negative denominator for equation 12.2 if p < pb. 

12.5.2 Other Files used by SENSAN 

As has already been discussed, SENSAN uses programs TEMPCHEK and INSCHEK to 

prepare model input files and read model output files. SENSAN writes a parameter value file 



SENSAN  

 

12-11 

 

for the use of TEMPCHEK, naming this file t###.par. This filename should be avoided when 

naming other files. 

INSCHEK writes the values of the observations which it reads from a model output file to the 

observation value file instruct.obf where instruct is the filename base of the  instruction file 

provided to INSCHEK. Hence for any instruction file provided to SENSAN, use of a file with 

the same filename base but with an extension of “.obf” will result in that file being 

overwritten. 

12.6 Sensitivity of the Objective Function 

SENSAN allows a user to undertake many model runs without user intervention. The 

sensitivity of certain model outputs to certain parameters can be tested. However SENSAN 

does not compute an objective function because it does not read an observation dataset, and 

hence cannot compare model outputs with corresponding observations to calculate residuals. 

However once all PEST input files have been prepared for a particular case, SENSAN can be 

used in conjunction with PEST to study the dependence of the objective function on certain 

parameters. Where there are only two parameters, this can be used to contour the objective 

function in parameter value space.  

A SENSAN control file implementing this is shown in Example 12.6. 

Note the following points:- 

 There can be as many parameters as you like but only one observation. This should be 

the initial value of phi as read from the PEST run record file; PEST writes this value 

after it has carried out just one model run. 

 In the PEST control file the value of NOPTMAX should be set to zero. Hence PEST 

runs the model only once before it terminates execution. 

 There is only one template file and one instruction file. 

 The template file is built from the PEST control file. Parameters adjusted by SENSAN 

scf 
* control data 
verbose 
6 1 
1 1 single point 
* sensan files 

parvar.dat 
out1.txt 
out2.txt 
out3.txt 
* model command line 
pest ves4 
* model input/output 
pst.tpl ves4.pst 
rec.ins ves4.rec 

Example 12.6 A SENSAN control file with PEST as the model. 
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are initial parameter values as listed on the PEST control file. 

 SENSAN’s observation file is the run record file for the PEST case. 

 As in normal SENSAN operation, supply parameter values to be used by SENSAN 

through a parameter variation file. 

 Use the single window version of PEST rather than Parallel PEST. 

The instruction set by which the PEST control file is read is shown below (the observation 

name is “phi”). 

pif $ 
$(ie phi)$ $=$ !phi! 

This instruction set simply instructs SENSAN to read the PEST run record file until it 

encounters the string “(ie phi)” followed by “=”, and then to read the observation named 

“phi” as a non-fixed observation following that. 

12.7 SENSAN Error Checking and Run-Time Problems 

As has already been discussed, SENSAN does not carry out extensive error checking. 

Comprehensive SENSAN input data error checking can be undertaken using SENSCHEK. 

Hence if there are any problems encountered in SENSAN execution, or if there are any 

suspicions regarding the numbers recorded on any of its output files, SENSCHEK should be 

run immediately if it has not already been run. 

If SENSCHEK has not been used to verify an input dataset and SENSAN finds an error in a 

parameter variation file (such as an unreadable parameter value) it will not terminate 

execution. Instead, SENSAN reports the error to the screen and moves on to the next 

parameter set. However it writes the offending line of the parameter variation file to its three 

output files. If a trailing system command is present on this line, this too will be written to the 

SENSAN output files; however the command is not executed. Naturally model outcome 

values are not written to the SENSAN output files because they cannot be calculated in these 

circumstances. 

It is possible that model execution will fail for some parameter value sets supplied by the 

user. SENSAN ensures that old model output files are deleted before the model is run so that, 

should this occur, out-of-date model outcome values are not read as current values. If, after 

the model has been run, a certain model output file is not found, SENSAN reports this 

condition to the screen, records the current set of parameter values to its output files, and 

moves on to the next parameter set. If a model run terminates prematurely for a particular 

parameter set and all model outcomes cannot be read, INSCHECK (run by SENSAN) will 

fail to produce an observation value file (which SENSAN reads to ascertain model outcome 

values). Under these circumstances SENSAN reports to the screen that it cannot find an 

INSCHEK-generated observation value file, records the parameter values to its output file 

and moves on to the next parameter set. 

Another reason why SENSAN may report that it cannot open a “temporary observation file” 

(ie. an INSCHEK-generated file) is that it was unable to run INSCHEK and/or TEMPCHEK 

because their directories were not cited in the PATH environment variable. Alternatively, it 



SENSAN  

 

12-13 

 

may not have been able to run the model for the same reason. 

If a parameter appears to be totally insensitive on SENSAN output files, make sure that it has 

been provided with the same name in the parameter variation file as that provided for this 

same parameter in any template file in which it appears. If parameter names are not identical 

between these two file types, some parameter values as supplied to SENSAN in the parameter 

variation file cannot be written to model input file(s). (Note, however, that such an error will 

be detected and recorded by SENSCHEK.) 

When undertaking a SENSAN run for the first time, it is a good idea to set SCREENDISP to 

“verbose” so that TEMPCHEK and INSCHEK can report what they are doing to the screen. 

After any errors have been corrected, SCREENDISP can then be set to “noverbose” for 

routine SENSAN usage. Similarly, model output should not be directed to the nul file until it 

is verified that SENSAN (through TEMPCHEK) is able to build correct input files for it. 

Failure in this regard will normally result in a model-generated error message. Conversely, if 

SENSAN or INSCHEK indicate a failure to read the model output file(s), a search should be 

made for a model-generated error message. 

If running SENSAN in “verbose” mode for cases where there are multiple template files, the 

user may notice a message similar to the following scroll past on the screen: 

Warning: parameter "ro1" from parameter value file t###.par not cited in 
template file ves.tp2. 

This is of no concern, for it is simply TEMPCHEK informing the user that it has been 

provided with a parameter value file (ie. t###.par written by SENSAN) that contains the 

values of more parameters than are cited on any one template file. 

12.8 An Example 

Included in the pestex subdirectory of the directory into which PEST was installed are the 

files required to run the soil clod shrinkage example discussed in Chapter 13 of this manual. 

Also included in this subdirectory are three files not discussed in Chapter 13. These are 

twofit.sns a SENSAN control file, out1.ins an instruction file identical to out.ins discussed in 

Chapter 13, and parvar.dat a parameter variation file. 

An inspection of file twofit.sns reveals that this SENSAN control file assumes the same 

number of parameters and observations as the PEST control file twofit.pst. As the parameter 

variation file parvar.dat reveals, parameter names are identical for the two cases. Also 

identical for the two cases are the template and instructions files; however the instruction file 

for the SENSAN example is named out1.ins instead of out.ins in order to avoid out.obf (used 

in the PEST example of Chapter 13) being overwritten when SENSAN runs INSCHEK.  

Five parameter sets are provided in parvar.dat, requiring that five model runs be undertaken. 

After the third model run has been completed the model output file out.dat is copied to file 

out.kp for safekeeping until later inspection. 

Before running SENSAN make sure that the PEST directory is cited in the PATH 

environment variable (so that SENSAN can run TEMPCHEK and INSCHEK). Run 
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SENSCHEK using the command: 

senschek twofit 

After verifying that there are no errors or inconsistencies in the SENSAN input dataset, run 

SENSAN using the command: 

sensan twofit 

After SENSAN has completed execution, inspect files out1.txt, out2.txt and out3.txt, the three 

SENSAN output files. You may also wish to verify that file out.kp exists, this being a record 

of out.dat generated on the third model run. 
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13. An Example 

13.1 Parameter Estimation 

13.1.1 Laboratory Data 

This section takes you, step by step, through an example which demonstrates the application 

of PEST to a practical problem. Once PEST has been installed on your computer, the files 

cited in this chapter can be found in the pestex subdirectory of the main PEST directory.  

Table 13.1 shows the results of an experiment in which the specific volume of a soil clod (the 

reciprocal of its bulk density) is measured at a number of water contents as the clod is 

desiccated through oven heating. The data are plotted in Figure 13.1; see also file soilvol.dat. 

We wish to fit two straight lines to this data. In soil physics parlance, the straight line segment 

of low slope fitted through the points of low water content is referred to as the “residual 

shrinkage” segment, whereas the segment covering the remainder of the data (with a slope 

near unity) is referred to as the “normal shrinkage” segment. (Actually, another segment of 

low slope is often present at high moisture contents, this being the “structural shrinkage” 

segment; this segment is not apparent in the data plotted in Figure 13.1.) 
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Figure 13.1 Soil clod shrinkage data. 
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water content (m
3
/Mg) specific volume (m

3
/Mg) 

0.052 

0.068 

0.103 

0.128 

0.172 

0.195 

0.230 

0.275 

0.315 

0.332 

0.350 

0.423 

0.488 

0.501 

0.521 

0.520 

0.531 

0.534 

0.548 

0.601 

0.626 

0.684 

0.696 

0.706 

0.783 

0.832 

 Table 13.1 Soil clod shrinkage data. 

13.1.2 The Model 

Before we can use PEST there must be a model. We will list the model program in a moment; 

first we present the model algorithm. 

Figure 13.2 shows two intersecting line segments. Let the slope of the first segment be s1 and 

that of the second segment be s2. Let the intercept of the first segment on the y-axis be y1 and 

the x-coordinate of the point of intersection of the two line segments be xc. The equation for 

the two-line system is 

 y = s1 x + y1      x  xc 

 y = s2 x + (s1 - s2) xc + y1    x > xc    (13.1) 

where x is the water content and y represents the soil clod specific volume. 

A simple FORTRAN program can be written based on this concept; a listing is provided in 

Example 13.1 (see also file twoline.for in the pestex subdirectory). Program TWOLINE 

begins by reading an input file named in.dat which supplies it with values for s1, s2, y1 and xc, 

as well as the water contents (ie. x values in equation 13.1) at which soil clod specific 

volumes are required. TWOLINE writes a single output file (named out.dat) listing both 

water contents and the specific volumes calculated for these water contents. Example 13.2 

shows a typical TWOLINE input file, while Example 13.3 shows a corresponding TWOLINE 
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output file. An executable version of TWOLINE (viz. twoline.exe) is provided in the pestex 

subdirectory of the PEST directory. 

x
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s
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y
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x
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Figure 13.2 Parameters of the two line model. 
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We would like TWOLINE to calculate specific volumes at water contents corresponding to 

our experimental dataset as set out in Table 13.1. The input file of Example 13.2 ensures that 

this will, indeed, occur. Hence TWOLINE is now our system model. We would like PEST to 

adjust the parameters of this model such that the discrepancies between laboratory and model-

generated specific volumes are as small as possible. The parameters in this case are the four 

line parameters, viz. s1, s2, y1 and xc. Now that our model is complete, our next task is to 

prepare the TWOLINE-PEST interface. 

 

 program twoline 

 

 integer*4 i,nx 

 real*4 s1,s2,y1,xc 

 real*4 x(50),y(50) 

 

 open(unit=20,file='in.dat') 

 

c read the line parameters 

 

 read(20,*) s1,s2 

 read(20,*) y1 

 read(20,*) xc 

 

c read the abscissae at which there are measurement values 

 

 read(20,*) nx 

 do 100 i=1,nx 

 read(20,*) x(i) 

100 continue 

 close(unit=20) 

 

c evaluate y for each x 

 

 do 200 i=1,nx 

 if(x(i).le.xc) then 

   y(i)=s1*x(i)+y1 

 else 

   y(i)=s2*x(i)+(s1-s2)*xc+y1 

 end if 

200 continue 

 

c write the y values to the output file 

 

 open(unit=20,file='out.dat') 

 do 300 i=1,nx 

 write(20,*) x(i),y(i) 

300 continue 

 close(unit=20) 

 

 end 

Example 13.1 A listing of program TWOLINE. 
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13.1.3 Preparing the Template File 

First a template file must be prepared. This is easily accomplished by copying the file in.dat 

listed in Example 13.2 to the file in.tpl and modifying this latter file in order to turn it into a 

PEST template file. Example 13.4 shows the resulting template file; the value of each of the 

line parameters has been replaced by an appropriately named parameter space, and the “ptf” 

header line has been added to the top of the file. Because TWOLINE reads all parameters 

using free field format, the width of each parameter space is not critical; however where two 

parameters are found on the same line, they must be separated by a space. A parameter space 

width of 13 characters is employed in file in.tpl in order to use the maximum precision 

available for representing single precision numbers. As discussed in Section 3.2.5, while 

PEST does not insist that parameters be written with maximum precision to model input files, 

it is a good idea nevertheless. 

0.3  0.8 

0.4 

0.3 

13 

0.052 

0.068 

0.103 

0.128 

0.172 

0.195 

0.230 

0.275 

0.315 

0.332 

0.350 

0.423 

0.488 

Example 13.2 A TWOLINE input file in.dat 

   0.520000E-01   0.415600     

   0.680000E-01   0.420400     

   0.103000       0.430900     

   0.128000       0.438400     

   0.172000       0.451600     

   0.195000       0.458500     

   0.230000       0.469000     

   0.275000       0.482500     

   0.315000       0.502000     

   0.332000       0.515600     

   0.350000       0.530000     

   0.423000       0.588400     

   0.488000       0.640400     

Example 13.3 A TWOLINE output file out.dat 
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Now that in.tpl has been prepared, it should be checked using program TEMPCHEK; run 

TEMPCHEK using the command 

tempchek in.tpl 

Example 13.5 shows file in.pmt, written by TEMPCHEK, in which all parameters cited in file 

in.tpl are listed. By copying file in.pmt to in.par and adding parameter values, scales and 

offsets to the listed parameter names, as well as values for the character variables PRECIS 

and DPOINT, we can create a PEST parameter value file. Example 13.6 shows such a file; 

because this file will shortly be used with program PESTGEN to generate a PEST control 

file, the values supplied for each of the parameters are the initial parameter values to be used 

in the optimisation process. 

 

At this stage TEMPCHEK should be run again using the command 

tempchek in.tpl in.dat in.par 

ptf # 

# s1        # # s2        # 

# y1        # 

# xc        # 

13 

0.052 

0.068 

0.103 

0.128 

0.172 

0.195 

0.230 

0.275 

0.315 

0.332 

0.350 

0.423 

0.488 

Example 13.4 The template file in.tpl 

 s1   

 s2   

 y1   

 xc   

Example 13.5 File in.pmt 

single point 

 s1  0.3  1.0 0.0 

 s2  0.8  1.0 0.0 

 y1  0.4  1.0 0.0 

 xc  0.3  1.0 0.0 

Example 13.6 File in.par 
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(“in.par” can be omitted if you wish, for this is the default parameter value filename 

generated automatically by TEMPCHEK from the template filename.) When invoked with 

this command, TEMPCHEK generates file in.dat, the TWOLINE input file, using the 

parameter values provided in file in.par; you should then run TWOLINE, making sure that it 

reads this file correctly. 

13.1.4 Preparing the Instruction File 

Next the instruction file should be prepared. This can be easily accomplished by writing the 

instructions shown in Example 13.7 to file out.ins using a text editor.  Using this instruction 

set all model-generated observations are read as semi-fixed observations; while they could 

have been read as fixed observations, we may have been unsure of just how wide a number 

can ever get in the second column of file out.dat (for example if a number becomes negative, 

very large or very small). 

Program INSCHEK should now be used to check that file out.ins contains a legal instruction 

set. Run INSCHEK using the command 

inschek out.ins 

If no errors are encountered you should then run INSCHEK again, this time directing it to 

read a TWOLINE output file using the instruction set; use the command 

inschek out.ins out.dat 

INSCHEK will produce a file named out.obf listing the values it reads from file out.dat for 

the observations cited in file out.ins; see Example 13.8. 

pif # 

l1 (o1)19:26 

l1 (o2)19:26 

l1 (o3)19:26 

l1 (o4)19:26 

l1 (o5)19:26 

l1 (o6)19:26 

l1 (o7)19:26 

l1 (o8)19:26 

l1 (o9)19:26 

l1 (o10)19:26 

l1 (o11)19:26 

l1 (o12)19:26 

l1 (o13)19:26 

Example 13.7 The instruction file out.ins 
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13.1.5 Preparing the PEST Control File 

The PEST-TWOLINE interface is now complete as PEST can now generate a TWOLINE 

input file and read a TWOLINE output file. The next step is to generate a PEST control file 

through which PEST is provided with an appropriate set of optimisation control variables and 

in which the laboratory measurements of specific volume are provided. First copy file out.obf 

to file measure.obf. Then replace the value of each model-generated observation with the 

corresponding value from Table 13.1, ie. with the appropriate laboratory measurement; see 

Example 13.9. Then run PESTGEN using the command:- 

pestgen twofit in.par measure.obf 

PESTGEN generates a PEST control file named twofit.pst; see Example 13.10. File twofit.pst 

should now be edited as some of the default values used by PESTGEN in writing this file are 

not appropriate to our problem. In particular, our model is run using the command “twoline”, 

not “model”; the filenames listed in the “model input/output” section of twofit.pst need to be 

altered as well. Once you have made these changes (Example 13.11 lists that part of twofit.pst 

to which the alterations have been made), preparation for the PEST run is complete. It would 

be a very good idea to make some other adjustments to twofit.pst as well, such as providing 

more appropriate upper and lower bounds for each of the parameters. However, at the risk of 

leading you into bad habits, this will not be done. 

 o1       0.415600     

 o2       0.420400     

 o3       0.430900     

 o4       0.438400     

 o5       0.451600     

 o6       0.458500     

 o7       0.469000     

 o8       0.482500     

 o9       0.502000     

 o10      0.515600     

 o11      0.530000     

 o12      0.588400     

 o13      0.640400     

Example 13.8 File out.obf 

   o1   0.501 

   o2   0.521 

   o3   0.520 

   o4   0.531 

   o5   0.534 

   o6   0.548 

   o7   0.601 

   o8   0.626 

   o9   0.684 

   o10  0.696 

   o11  0.706 

   o12  0.783 

   o13  0.832 

Example 13.9 File measure.obf 
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As a final check that the entire PEST input dataset is complete, correct and consistent, you 

should run program PESTCHEK using the command 

pestchek twofit 

If all is correct, you can now run PEST using the command:- 

pest twofit 

pcf 

* control data 

restart estimation 

    4    13     4     0     1 

    1     1 single point   1  0  0 

  5.0   2.0   0.3  0.03    10 

  3.0   3.0 0.001 

  0.1 

   30  0.01     3     3  0.01     3 

    1     1     1 

* parameter groups 

s1   relative 0.01  0.0  switch  2.0 parabolic 

s2   relative 0.01  0.0  switch  2.0 parabolic 

y1   relative 0.01  0.0  switch  2.0 parabolic 

xc   relative 0.01  0.0  switch  2.0 parabolic 

* parameter data 

s1   none relative   0.300000      -1.00000E+10   1.00000E+10 s1    1.0000    0.000  1 

s2   none relative   0.800000      -1.00000E+10   1.00000E+10 s2    1.0000    0.000  1 

y1   none relative   0.400000      -1.00000E+10   1.00000E+10 y1    1.0000    0.000  1 

xc   none relative   0.300000      -1.00000E+10   1.00000E+10 xc    1.0000    0.000  1 

* observation groups 

obsgroup 

* observation data 

o1    0.501000      1.0  obsgroup 

o2    0.521000      1.0  obsgroup 

o3    0.520000      1.0  obsgroup 

o4    0.531000      1.0  obsgroup 

o5    0.534000      1.0  obsgroup 

o6    0.548000      1.0  obsgroup 

o7    0.601000      1.0  obsgroup 

o8    0.626000      1.0  obsgroup 

o9    0.684000      1.0  obsgroup 

o10   0.696000      1.0  obsgroup 

o11   0.706000      1.0  obsgroup 

o12   0.783000      1.0  obsgroup 

o13   0.832000      1.0  obsgroup 

* model command line  

model 

* model input/output 

model.tpl  model.inp 

model.ins  model.out 

* prior information 

Example 13.10 The PESTGEN-generated control file twofit.pst 

* model command line 

twoline 

* model input/output 

in.tpl  in.dat 

out.ins  out.dat 

Example 13.11 Altered section of twofit.pst 
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A run record file twofit.rec will be written by PEST in the pestex subdirectory; so too will file 

twofit.par containing the optimised parameter set. Figure 13.3 shows the lines of best fit 

superimposed on the laboratory data. 
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Figure 13.3 Soil clod shrinkage data with lines of best fit superimposed. 

13.2 Predictive Analysis 

13.2.1 Obtaining the Model Prediction of Maximum Likelihood 

Files for this example can be found in the \papestex directory of the PEST directory after 

installation. This example builds on the soil clod shrinkage example discussed in the previous 

section. 

Based on the dataset supplied with the example, PEST lowers the objective function to a 

value of 6.71E-4 when estimating values for the model parameters. Best fit parameter values 

are listed in Table 13.2. 



SENSAN  

 

13-11 

 

After PEST is run in parameter estimation mode, best-fit model parameters can be found in 

file twofit.par. Insert these into the model input file in.dat by running TEMPCHEK as 

follows:- 

tempchek in.tpl in.dat twofit.par 

If the value for specific volume at a water content of 0.4 is of particular interest to us, this can 

now be easily calculated with our calibrated “model”. An appropriate TWOLINE input file 

in2.dat is provided; this is easily prepared from the new in.dat file created using TEMPCHEK 

by alteration with a text editor in conformity with the expectations of program TWOLINE. As 

the first two lines of this file contain parameter values to be used by TWOLINE, it was 

necessary to run TEMPCHEK first to ensure that the parameter values contained in this file 

were the optimal parameter values. 

As TWOLINE expects a file named in.dat, in2.dat must be copied to in.dat before TWOLINE 

is run. But before doing this, copy the existing in.dat to in1.dat for safekeeping.  

After running program TWOLINE (by typing “twoline” at the screen prompt) open file 

out.dat to obtain the model-predicted specific volume. It should be 0.756. This is thus our 

best estimate of the soil clod specific volume at a water content of 0.4. 

13.2.2 The Composite Model 

Before undertaking predictive analysis, we must construct a “composite model” comprised of 

the model run under calibration conditions followed by the model run under prediction 

conditions. This model must be encompassed in a batch file; an appropriate file named 

model.bat is supplied. Example 13.12 shows a printout of model.bat. 

Parameter PEST-estimated value 

s1 0.238 

s2 0.963 

y1 0.497 

Xc 0.174 

Table 13.2. Optimised parameter values for soil clod shrinkage example. 
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The batch file is divided into three parts. In the second part the model is run under calibration 

conditions. First the “calibration input file” in1.dat is copied to the expected TWOLINE input 

file in.dat. TWOLINE is then run and its output file out.dat is copied to another file 

OUT1.DAT for safekeeping. 

The process is then repeated in the third part of file model.bat for the predictive model run. In 

this case in2.dat is the model input file and out2.dat is the model output file. 

The first part of the batch file model.bat illustrates a procedure that is recommended in the 

construction of all composite models. In this section of the batch file all intermediate files 

used or produced during execution of the composite model are deleted. Recall that PEST 

deletes all model output files (that it knows about) before it runs the model. In this way it is 

ensured that if, for some reason, the model does not run, then old model output files are not 

mistaken for new ones. Thus if the model fails to run an error condition will be encountered 

and PEST will cease execution with an appropriate error message. However in a composite 

model there are likely to be intermediate files which are generated by one model to be read by 

another. If any part of a composite model fails to execute, the ensuing part of the composite 

model must be prevented from executing on the basis of intermediate files generated during 

previous model runs. This can be ensured by deleting all such intermediate files. 

The first line of the batch file model.bat prevents the operating system from echoing batch file 

commands to the screen. This relieves screen clutter when the model is run under the control 

of PEST in the same window as PEST.  To assist in this process screen output from all 

commands is directed to the nul file instead of the screen.  

To satisfy yourself that the composite model runs correctly, type:- 

model 

at the screen prompt. Inspect the model output files out1.dat and out2.dat. (You may wish to 

delete the “@echo off” line and remove “> nul” from each command line before you run the 

model in order to see the appropriate model commands scroll past on the screen as they are 

executed.) 

@echo off 
 
rem Intermediate files are deleted 
 
del in.dat 
del out.dat 
 
rem First the model is run under calibration conditions. 
 
copy in1.dat in.dat > nul 
twoline > nul 
copy out.dat out1.dat > nul 
 
rem Next the model is run under predictive conditions. 
 
copy in2.dat in.dat > nul 
twoline > nul 
copy out.dat out2.dat > nul 

Example 13.12. A batch file encompassing a composite model. 
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13.2.3 The PEST Control File 

We would now like to obtain the maximum possible value for the soil specific volume at a 

water content of 0.4 compatible with the model being calibrated against our laboratory 

dataset. Let us do this by assuming that the model can still be considered to be calibrated if 

the objective function under calibration conditions is as high as 5.0E-3; this is thus the value 

assigned to the variable PD0. 

The PEST control file used in the parameter estimation process was named twofit.pst. This 

file should be copied to file twofit1.pst and the following alterations made (actually this has 

already been done for you). 

1. Replace the word “estimation” with the word “prediction” on the third line of this file. 

2. When undertaking a predictive analysis run there is an extra observation, this being 

the model prediction. Hence the number of observations (ie. NOBS) must be 

increased from “13” to “14” on the 4
th

 line of file twofit1.pst. 

3. There will now be two observation groups, so alter the 5
th

 entry on line 4 of file 

twofit1.pst (ie. NOBSGP) to “2”. 

4. There are now two model input files and two model output files, so alter the first two 

entries on the 5
th

 line of file twofit1.pst (ie. NTPLFLE  and NINSFLE) to “2” and “2” 

respectively. 

5. In the “observation groups” section of the PEST control file add the observation group 

“predict”. 

6. In the “observation data” section of the PEST control file add an extra observation 

named “o14”. Assign this to the observation group “predict”. Provide whatever 

observation value and weight that you like, as these are ignored by PEST when run in 

predictive analysis mode. It is probably best to make both of these 0.0, just in case you 

wish to run PEST later using the same file in parameter estimation mode; by assigning 

the weight as zero, the “prediction observation” will contribute nothing to the 

objective function if that occurs. 

7. Alter the model command line to “model.bat” in the “model command line” section of 

the new PEST control file. 

8. The two model input files are named in1.dat and in2.dat; the first is used for the 

calibration component of the composite model, the second is used for the predictive 

component of the composite model. A PEST template file already exists for the first 

model input file (ie. in.tpl). We will introduce a new template file for the second 

model input file shortly; it will be called in2.tpl. So alter the model input filename to 

in1.dat on the first line of the “model command line” section of file twofit1.pst; then 

add another line underneath this comprised of the entries “in2.tpl” and “in2.dat”. 

9. The model output files are named out1.dat and out2.dat; the first is produced by the 

calibration component of the composite model while the second is produced by the 

predictive component of the composite model. A PEST instruction file already exists 
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for the first model output file (ie. out.ins). We will introduce a new instruction file for 

the second one shortly; it will be called out2.ins. So alter the model output filename to 

“out1.dat” on the third line of the “model command line” section of file twofit1.pst; 

then add another line underneath this comprised of the entries “out2.ins” and 

“out2.dat”. 

10. Add a “predictive analysis” section to file twofit1.pst. Because we wish to maximise 

the prediction, NPREDMAXMIN is assigned the value of 1. As mentioned above, 

PD0 is 5.0E-3. Set PD1 to 5.2E-3 and set PD2 to be twice as high as PD0, ie. 1.0E-2. 

Variables governing operation of the Marquardt lambda, the switching from two point 

to three point derivatives calculation, and the termination of execution will be set in 

relative rather than absolute terms, so set ABSPREDLAM, ABSPREDSWH and 

ABSPREDSTP to 0.0. RELPREDLAM, RELPREDSWH and RELPREDSTP should 

be set to their recommended values of .005, .05 and .005 respectively. 

NPREDNORED and NPREDSTP should be set at their recommended values of 4 and 

4. Contrary to the advice provided in Chapter 6, we will not conduct a line search for 

each Marquardt lambda, so set the control variables INITSCHFAC, MULSHFAC and 

NSEARCH to 1.0, 2.0 and 1 respectively. 

13.2.4 Template and Instruction Files 

Inspect files in2.tpl and out2.ins provided with the example files. These are, respectively, a 

template file for in2.dat and an instruction file to read the single prediction observation from 

file out2.dat. 

Notice how parameter spaces for each of the four parameters involved in the predictive 

analysis process appear in both of files in.tpl and in2.tpl. This is because these parameter 

values are used by the model under both calibration and prediction conditions. Prior to 

running the composite model they must be written to both sets of input files (together with 

other data specific to each component of the composite model). 

13.2.5 Running PEST 

Before running PEST, run PESTCHEK to check that the entire input dataset is consistent and 

correct. At the screen prompt type:- 

pestchek twofit1 

Then run PEST using the command:- 

pest twofit1 

There are two things to watch as PEST executes. The first is the value of the objective 

function and the second is the value of the prediction. Both of these are written to the screen 

on every occasion that PEST calculates a parameter upgrade vector (these are easily seen 

when running PEST if screen output from the composite model is disabled as discussed 

earlier). The objective function (ie. phi) hovers around 5.0E-3 as it should (though values on 

either side of this are recorded). The value of the prediction slowly rises from iteration to 

iteration. Note that information written to the screen during the course of PEST’s execution is 

also recorded in the PEST run record file (in this case twofit1.rec). 

When PEST ceases execution, open file twofit1.rec and go to the bottom of the file. Near the 
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bottom of the file it is written that PEST achieved a maximum prediction value of 0.786 for a 

corresponding objective function value of 5.16E-3. This is a little above our target value of 

5.0E-3, but is accepted due to the action of PD1. However due to the rather subjective way in 

which an objective function value is selected at which the model is said to be “calibrated” this 

matters little.  

While inspecting the run record file, notice how observation “o14” is not listed with other 

observations in the section of this file which tabulates observed values, corresponding model-

generated values and residuals. This is because observation “o14” is in fact the prediction, 

PEST recognising it as such because it is the only observation assigned to the observation 

group “predict”. 

Figure 13.4 shows a plot of the line segments calculated on the basis of the parameters 

derived by PEST during the above predictive analysis process. The fit is not too bad, though 

obviously not as good as that obtained on the basis of best fit parameters.  
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Figure 13.4. Soil clod shrinkage data with line segments superimposed. 

In the present instance, the “worst case” model prediction of 0.786 is not too different from 

the “most likely” model prediction of 0.756. This is comforting to know. It is a frightening 

fact that in many instances of environmental modelling the worst case prediction can be 

hugely different from that calculated using parameters corresponding to the objective function 

minimum. It is under these circumstances that predictive analysis becomes an absolute 

necessity. 


