

Single-Axis System Multi-Axis System Compact

MSD Servo Drive User Manual Profibus

MOOG

This document details the functionality of the following equipment variants:

MSD Servo Drive Single-axis system MSD Servo Drive Multi-axis system MSD Servo Drive Compact

Profibus for MSD Servo Drive user manual

Id. no.: CA65645-001, Rev. 2.0 Date: 08/2011 We reserve the right to make technical changes.

Technical alterations reserved.

The contents of our documentation have been compiled with greatest care and in compliance with our present status of information.

Nevertheless we would like to point out that this document cannot always be updated parallel to the technical further development of our products.

Information and specifications may be changed at any time. For information on the latest version please refer to drives-support@moog.com.

Table of contents

ŀ	low	to use	e this manual	5
1	(Senera	al	7
	1.1	Meas	ures for your Safety	7
	1.2	Introc	luction to Profibus	7
	1.3	Syster	n requirements	7
	1.4	Furthe	er documentation	8
2	C	Comm	issioning the Profibus Interface	9
	2.1	Conn	ections and user controls	9
	2.2	Plug o	configuration for the Profibus cable	9
	2.3	Bus te	ermination	10
	2.4	Settin	g the drive address	10
	2.5	Opera	ting displays	11
	2.6	GSD f	ile	11
3	C	Cyclic (data transmission – DPV0	. 13
	3.1	Param	eter process data objects (PPO)	13
		3.1.1	Standard "PROFIdrive" telegrams	13
		3.1.2	User-specific PPOs	15
		3.1.3	PKW parameter channel	19
	3.2	Maste	er control word	20
		3.2.1	Jog mode speed mode	21
		3.2.2	Jog mode positioning mode	22
		3.2.3	Jog mode reference value parameter	22
	3.3	Drive	status word	22
	3.4	Drive	status machine	24

4	A	Acyclic data transmission – DPV1	27
	4.1	Examples of request and reply telegrams	32
5	C)perating modes	35
9	5.1	Speed Control	
	5.2	Speed control circuit and associated control parameters	
	5.3	Position control	37
	5.4	Position control circuit and associated control parameters	39
6	F	loming	41
	6.1	Homing runs performed by the drive	41
	6.2	Homing run speed	41
	6.3	Homing run acceleration	41
	6.4	Zeroing offset	41
	6.5	Homing cams, limit switches	41
	6.6	Homing run methods	43
7	E	xamples of commissioning using manufacturer-specific	15
	71	Position control using PPO 5	4J
	7.1	Conversion of reference values and actual values using factor group parameter	45
	7.2	Examples for setting the user factor group	/18
	7.5	Sneed control using PPO 2	
	7.4	7.4.1 Speed input	
	7.5	Mappable parameters	
8	P	rofibus parameters	51
9	A	Appendix Glossary	53

How to use this manual

Dear user!

This manual is intended for use by project engineers, commissioning engineers and programmers of drives and automation solutions involving the Profibus fieldbus. It assumes that you have received appropriate training on Profibus and that you have access to relevant reference books. We assume that your drive has already been commissioned – if not, please first refer to the user manual.

MOOG

5

Pictograms

1 General

1.1 Measures for your Safety

Servo controllers of the MSD Servo Drive family are quick and easy to handle. For your own safety and for the safe functioning of your device, please be sure to observe the following points:

Read the Operating Manual first!				
1.	Follow the safety instructions!			
	 Electric drives are subject to certain hazards: Electric voltages > 230 V/460 V: Dangerously high voltages may still be present 10 minutes after the power is switched off. so always make sure the system is no longer live! Rotating parts Hot surfaces 			
n	 Your qualification: In order to prevent personal injury or damage to property, only personnel with electrical engineering qualifications may work on the device. Knowledge of the national accident prevention regulations (such as VBG4 in Germany) Knowledge of structure and networking using the CAN fieldbus 			
	 During installation observe the following instructions: Always comply with the connection conditions and technical specifications. Standards for electrical installation, e.g. cable cross-sections, screening etc. Do not touch electronic components and contacts (electrostatic discharge may destroy components) 			

1.2 Introduction to Profibus

The Profibus implementation in MSD Servo Drive is based on the PROFIdrive profile "Profibus PROFdrive profile version 4.0" dated August 2005.

Performance features in key words

- Data transmission using two-wire twisted pair cable (RS 485)
- Transmission rate: optionally 9.6 K, 19.2 K, 45.45 K, 93.75 K, 187.5 K, 500 K, 1.5 M, 3 M, 6 M or 12 MBaud
- Automatic Baud rate detection
- Profibus address can be set using the rotary coding switches or alternatively using the addressing parameters
- Cyclic data exchange reference and actual values using DPV0
- Acyclic data exchange using DPV1
- Synchronisation of all connected drives using freeze mode and sync mode
- Reading and writing drive parameters using the PKW channel or DPV1

1.3 System requirements

It is assumed that you have access to a standard Profibus set-up program or a Profibus interface driver.

1.4 Further documentation

- User manual for commissioning the drive device
- User manual for further parameterisation to customise the application.
- The User Manual can be downloaded as a PDF file from the Product DVD, which is enclosed the MSD Servo Drive.
- CiA 301 (Rev. 4.0): Application Layer and Communication Profile
- CiA 402 (Rev. 2.0): Device Profile Drives and Motion Control
- Profibus User Organisation "Profidrive Profil Drive Technology for Profibus and Profinet" Version 4.1, May 2006, Order no. 3.172

2 Commissioning the Profibus Interface

2.1 Connections and user controls

The connections and user controls for the Profibus interface are shown schematically in Figure 2-1. The LEDs H1, H2, H3 act as status indicators. The rotary coding switches S1 and S2 can be used to set the Profibus address for the drive. The Profibus cable is connected to the plug X14.

Front plate	No.	Comments
	H1	LED for status indication (yellow)
	H2	LED for status indication (red)
	H3	LED for status indication (green)
Contraction S1	S1	Rotary coding switch for setting the Profibus address for the drive = $0x(S2)(S1)$
\$18.9 S ²	S2	Rotary coding switch for setting the Profibus address for the drive = $0x(S2)(S1)$
X ^a	X14	Profibus cable connection

Table 2.1 Profibus options card

2.2 Plug configuration for the Profibus cable

The Profibus is connected using a nine-pin sub-D plug. The pin assignment is shown in Fig. 2-2 and described in Table 2.1.

Figure 2.1 Pin assignment of sub-D-plug connector

PIN	RS-485	Signal	Description		
1		SHIELD	Earthed shield		
2		RP	Reserved for power supply via the bus		
3	B/B' (red)	RxD / TxD-P	Send and receive data (+)		
4		CNTR-P	Control signal for repeater (+)		
5	C/C′	DGND	Data reference potential and power supply to terminating resistor (-)		
6		VP	Power supply for terminating resistor (+)		
7		RP	Reserved for power supply via the bus		
8	A/A' (green)	RxD / TxD-N	Send and receive data (-)		
9		CNTR-N	Control signal for repeater (-)		

Table 2.2Description of pin assignment

The pin assignments shown with dark backgrounds in the table are not necessary from the user's point of view. The control signals used for the repeaters are optional, and the power supply for the terminating resistors is provided by the device.

2.3 Bus termination

If the servo controller is initially at the end of the bus system, a plug with an integral terminating resistor Rt should be used. In addition to the cable terminating resistor in accordance with the EIA-485 standard, a pull-down resistor Rd against the data reference potential DGND and a pull-up resistor Ru against VP are provided. This ensures a defined no-load potential of 1.1 Volt between pins 3 and 8. In a made-up Profibus cable these resistors are all incorporated as standard in the Profibus plug and the terminating resistor can be activated using a switch on the Profibus plug. The following figure shows a Sub-D 9-pin plug bus termination.

Figure 2.2 Sub-D 9-pin plug bus termination

2.4 Setting the drive address

The drive address can be set as standard using the rotary coding switches on the options card (see Fig. 2-1). The address range runs from 0 to 125. The drive address is not loaded until a 24 Volt reset has been applied to the device.

The drive address can also be assigned using parameter **P 0918 COM_DP_Address**. For this purpose the rotary coding switches must be set to value in excess of 125. The drive address set by software address is not loaded until a 24 Volt reset has been applied to the device.

In the MSD Servo Drive Compact the address cannot be set using the switches.

On all devices the bus address can also be set using the buttons on the device, see operating instructions for MSD Servo Drive Compact.

Diagnostics can be performed on the MSD Servo Drive Compact using the internal control unit in the device. The control unit comprises the following elements that are all positioned on the front:

- 2-digit 7-segment display (1, 2)
- 2 buttons (3, 4)

Figure 2.3 Integrated control unit MSD Servo Drive Compact

The following functions and indications are available:

- Indication of the device status The device status is indicated after switching on the control supply. If an entry is not made using the buttons for 60 seconds, the display returns to the display of the device status.
- Indication of the device error status On the occurrence of an error in the device, the display is immediately switched to the indication of the error code.
- Parameter setting (indication "PA") Reset the device parameter settings to the factory setting
- Ethernet IP address setting (indication "IP") Setting for the Ethernet IP address as well as the subnet mask
- Fieldbus settings (indication "Fb") Setting e.g. for the fieldbus address

2.5 Operating displays

Options module: Three LEDs are mounted on the options card; these give indications regarding the current operating status of the module. In Tables 2-2 and 2-3 the operating statuses of the Profibus module are listed, based on the various LED illumination combinations.

LED 1, green	LED 2, red	Status		
		Reset (after switching on)		
		ASIC RAM test and initialisation		
		End of ASIC RAM test and initialisation		
Table 2.3 Selftest during diagnostic				
	3 3			
LED 1, green	LED 2, red	Status		
LED 1, green	LED 2, red	Status Seeking Baud rate after switching on without bus connection		
LED 1, green	LED 2, red	Seeking Baud rate after switching on without bus connection Seeking Baud rate after the bus connection has already been established		

Table 2.4 Operation diagnostics

LED 1, green	LED 2, red	Status
		Communication: Data exchange without acyclic master class 2 connection. Yellow LED lights up.
		Communication: Data exchange "clear state"
		Incorrect parameterisation data
		Incorrect configuration data
		Communication: Data exchange with acyclic master class 2 connection.

Table 2.4 Operation diagnostics

LED 3, yellow	Status
	Device is exchanging data

Table 2.5 Data exchange

2.6 GSD file

The device master data file contains the summary of the device features in a standardised form. The device features include for instance the device name, the bus timing, the extended services available and the modules that can be selected (telegram types). In order to use different telegram types, the GSD file must be linked in at the configuration phase of the Profibus network. This file contains, as well as the standard "Profidrive Profile" telegrams, additional manufacturer-specific telegram types.

MOOG

11

3 Cyclic data transmission – DPV0

3.1 Parameter process data objects (PPO)

The establishment of communications between a class 1 master and the MSD Servo Drive servo controller is essentially performed in three phases. Firstly the MSD Servo Drive is parameterised with the current bus parameters, monitoring times and drive-specific parameters (phase 1). In the configuration phase a configuration sent by the master is compared with the actual MSD Servo Drive configuration (phase 2). Once these two phases have been completed successfully, the cyclic user data traffic starts (phase 3).

The various telegram types (Parameter Process Data Objects - PPO) are prepared in the GSD file. These PPOs form the basis of the configuration phase. The project engineer knows from the GSD file how many bytes are required for the input and output data for Profibus communication between the master and the servo controller and can use this information to perform his settings in the configuration tool. As well as the standard telegrams in accordance with the "PROFIdrive – Profile", there are additional user-specific telegram types. In addition to the PZD process data channel, the user-specific telegram make partial use of a PKW parameter channel.

3.1.1 Standard "PROFIdrive" telegrams

The table below lists firstly the standard "Profidrive" telegrams that are supported by the servo controller. Table 3-1 explains the abbreviations used to assign standard telegrams to a specific process data channel. The process data channel (abbreviated to PZD) is grouped by words.

Abbreviation	Name	Number of words
STW1	Control word 1	1
STW2	Control word 2	1
ZSW1	Status word 1	1
ZSW2	Status word 2	1
NSOLL_A	Speed reference	1
NIST_A	Actual speed	1
SATZANW	Set selection (from the driving set table)	1
AKTSATZ	Current set selection (from the driving set table)	1
XSOLL_A	Reference position	2
XIST_A	Actual position	2
TARPOS_A	Reference destination position	2
VELOCITY_A	Reference speed	2

Figure 3.1 Abbreviations

Standard telegram 1 is a defined telegram type for speed control. It consists of two input words and two output words as shown in the following table.

PZD number	1	2
Reference values	STW1	NSOLL_A
DZD mumber		
PZD number	1	2
Actual values	ZSW1	2 NIST_A

Table 3.1Standard telegram 1

Standard telegram 7 is a defined telegram type for selecting the driving set. In total 16 driving sets saved in the drive can be selected. The telegram type comprises 2 input words and two output words as in the following table.

PZD number	1	2
Reference values	STW1	SATZANW
PZD number	1	2
Actual values	ZSW1	AKTSATZ

Table 3.2 Standard telegram 7

Standard telegram 8 is a defined telegram type for positioning with the facility for specifying a positioning speed. It consists of 5 input words and 5 output words as shown in the following table.

PZD number	1	2	3	4	5
Reference values		XSO	LL_A	STW2	NSOLL_A
PZD number	1	2	3	4	5
Actual values		XIS	T_A	ZSW2	NIST_A

Table 3.3 Standard telegram 8

Standard telegram 9 is a defined telegram type for positioning. It consists of 6 input words and five output words as shown in the following table.

PZD number	1	2	3	4	5	6	
Reference values	STW1	TARP	OS_A	STW2	VELOCITY_A		
PZD number	1	2	3	4	5		
Actual values	ZSW1	XIS	T_A	ZSW2	NIST_A		

Table 3.4 Standard telegram 9

Every standard telegram in the device is described in the GSD file by a PROFIdrive Profile configuration identifier (ID). The following table shows these identifiers for the selected standard telegrams.

Telegram type	Data area	Identifier (ID)
Standard telegram 1	2 output words and 2 input words	0xC3 0xC1 0xC1 0xFD 0x00 0x01
Standard telegram 7	2 output words and 2 input words	0xC3 0xC1 0xC1 0xFD 0x00 0x07
Standard telegram 8	5 output words and 5 input words	0xC3 0xC4 0xC4 0xFD 0x00 0x08
Standard telegram 9	6 output words and 5 input words	0xC3 0xC5 0xC4 0xFD 0x00 0x09

Table 3.5 Identifier

3.1.2 User-specific PPOs

As well as the standard telegrams that are supported there are in addition further userspecific PPOs (Parameter Process data Objects). The following PPOs are also transmitted cyclically and in addition to the PZD process data channel partially contain a PKW parameter channel, thereby allowing access to the drive parameter values.

PPO		Р	KW			PZD								
1	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	-	-	-	-	-	-	-	-
2	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	PZD 3	PZD 4	PZD 5	PZD 6	-	-	-	-
3*	-	-	-	-	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	-	-	-	-	-	-	-	-
4	-	-	-	-	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	PZD 3	PZD 4	PZD 5	PZD 6	-	-	-	-
5	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	PZD 9	PZD 10
	-	-	-	-	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	PZD 3	PZD 4	-	-	-	-	-	-
	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	PZD 3	PZD 4	-	-	-	-	-	-
	-	-	-	-	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	-	-
	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	-	-
	-	-	-	-	STW/ ZSW	REFERENCE VALUE/ ACTUAL VALUE	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	PZD 9	PZD 10
(*) PPO3 is	the standard	telegram 1						·	·		·	·	·	

 Table 3.6
 User-specific Parameter Process data Objects

MSD Servo Drive User Manual Profibus 16

MOOG

In the drive parameter list there exist two signal tables, which contain all the process data that can be cyclically read and written for the Profibus communications DPV0. All possible process data signals that can be written can be found in the signal table **P 1284 COM_DP_SignalList_Write** and all possible process data signals that can be read can be found in the signal table **P 1285 COM_DP_SignalList_Read**. The most important parameters that can be read and written are also documented in Chapter 6.

The process data signals that can be written can be configured in the signal table **P 0915 COM_DP_PZDSelectionWrite**. The number of process data available to be written are determined by the PPO type that is selected.

The process data signals that can be read can be configured in the signal table **P 0916 COM_DP_PZDSelectionRead**. The number of process data available to be read are also determined by the PPO type that is selected.

When using standard telegrams the process data signals in the signal tables are automatically configured by the firmware.

A maximum of 15 process data signals can be "mapped". Here both words and double words can be used.

The user-specific drive telegram types are described by a configuration identifier (ID) in the GSD file. This describes the structure of the cyclic report data using a special identification format shown in the figure below.

Figure 3.2 Identification format (Identifier)

After the parameterisation phase, the master sends the drive a configuration telegram containing this special identification (ID). On receipt of this, the drive compares the data in the configuration telegram with the configuration held in the drive. The identifier determined by the PPO type can be found in the GSD file under the heading "Modules". The following table shows these identifiers for the user-specific telegrams.

PPO type	ldentifier (ID) Hex	Identifier (ID) Bin	Evaluation using the special identification format (Figure 3.6)	Reference to Table AK slave-master
1	0xF3 0xF1	1111 0011 1111 0001	4 words input/output data (consistent overall length)2 words input/output data (consistent overall length)	PKW channel
2	0xF3 0xF5	1111 0011 1111 0101	4 words input/output data (consistent overall length)6 words input/output data (consistent overall length)	PZD channel
3	0xF1	1111 0001	2 words input/output data (consistent overall length)	PKW channel
4	0xF5	1111 0101	6 words input/output data (consistent overall length)	PZD channel
5	0xF3 0xF9	1111 0011 1111 1001	4 words input/output data (consistent overall length)10 words input/output data (consistent overall length)	PZD channel
	0xF3	1111 0011	4 words input/output data (consistent overall length)	PZD channel
	OxF3 OxF3	1111 0011 1111 0011	4 words input/output data (consistent overall length)4 words input/output data (consistent overall length)	PKW channel
	0xF7	1111 0111	8 words input/output data (consistent overall length)	PZD channel
	0xF3 0xF7	1111 0111 1111 0111	4 words input/output data (consistent overall length)8 words input/output data (consistent overall length)	PZD channel
	0xF9	1111 1001	10 words input/output data (consistent overall length)	PKW channel
	0xC0 0xCD 0xCD		14 words input/output data (consistent overall length)	PZD channel
	0xF3 0xC0 0xCD 0xCD		14 words input/output data (consistent overall length)	PZD channel
	0xC0 0xD1 0xD1		18 words input/output data (consistent overall length)	PKW channel
	0xF3 0xC0 0xD1 0xD1		18 words input/output data (consistent overall length)	PZD channel
	0xC0 0xD5 0xD5		22 words input/output data (consistent overall length)	PZD channel
	0xF3 0xC0 0xD5 0xD5		22 words input/output data (consistent overall length)	PKW channel

Table 3.7 Listing of identifiers

MSD Servo Drive User Manual Profibus 18

MOOG

PPO type	ldentifier (ID) Hex	ldentifier (ID) Bin	Evaluation using the special identification format (Figure 3.6)	Reference to Table AK slave-master
	0xC0 0xD9 0xD9		26 words input/output data (consistent overall length)	
	0xF3 0xC0 0xD9 0xD9		26 words input/output data (consistent overall length)	PKW channel
	0xC0 0xDD 0xDD		30 words input/output data (consistent overall length)	
	0xF3 0xC0 0xDD 0xDD		30 words input/output data (consistent overall length)	PKW channel

Table 3.7 Listing of identifiers

3.1.3 PKW parameter channel

Some PPOs offer an additional cyclic parameter channel. This channel allows drive parameters to the read and written.

			Р	кW			
1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte
PKE (1	word)	IND (1	word)	PKW1 (1 word)	PKW2	(1 word)

The parameter consists of a total of 4 words: the parameter identifier PKE (1 word), the sub-index IND (1 word) and the parameter identification word, which occupies the data area PKW1 (1 word) to PKW2 (1 word). The parameter identification is shown by bits in the following table.

AK PNU															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
А	AK Request or reply identification (value range 015)]						
PI	۱U	Para	Parameter number (value range 14095)												
Table	3.8	PKE	PKE parameter identification								-				

The following tables list the request identification (master) and the reply identification

(Slave).						
Request identification	Function					
0	No request					
1	Request parameter value					
2	Change parameter value (word)					
3	Change parameter value (double word)					
4	Read parameter description					
5	-					
6	Request parameter value (array)					
7	Change parameter value (array) (word)					
8	Change parameter value (array) (double word)					

Table 3.9 Request identification AK (master ⇒ slave)

Reply identification	Function
0	No reply
1	Parameter value sent (word)
2	Parameter value sent (double word)
3	Parameter description sent
4	Parameter value (array) sent (word)
5	Parameter value (array) sent (double word)
6	-
7	Request not executable, see error no.

Table 3.10Reply identification AK (Slave ⇒ Master)

On reply identification 7 the error number sent to the drive from the master is shown in the area PKW1 to PKW2. The following table lists these error numbers.

Error	Statement					
0	Impermissible PNU					
1	Parameter cannot be changed					
2	Lower or upper parameter value limit transgressed					
3	Defective sub-index					
4	Not an array					
5	Incorrect data type					
17	Request cannot be executed because of the operating status					
18	Other error					

Table 3.11 Reply identification AK (Slave ⇒ Master)

In addition request identification 4 can be used to read a parameter description. The parameter description receives relevant information regarding the respective parameter. The following table shows the sub-indexes that can be used to access the individual parameter structure elements. The sub-index is indicated only by byte 3.

Sub-index	Meaning	Data type
1	Identifier (ID)	V2
2	Number of field elements or string length	Unsigned 16

Table 3.12 Parameter description

MOOG

(slave)

Sub-index	Meaning	Data type
3	Standardisation factor	Floating Point
4	Variable attributes	OctetString 2
5	Reserved	OctetString 4
6	Name (only the first four bytes are sent)	VisibleString 16
7	Lower limit value	OctetString 4
8	Upper limit value	OctetString 4
9	Reserved	OctetString 2
10	ID extension	extension V2
11	PZD reference parameter	Unsigned 16
12	PZD standardisation	V2

Table 3.12 Parameter description

The identifier (sub-index 1) in the parameter description identifies additional characteristics of the respective parameter. Table 3-8 describes the meaning of the identifier.

Bit	Meaning	Explanation
15	Reserved	
14	Array	
13	Parameter value can only be reset	If this bit is set, the respective parameter value can be varied externally only so as to be set to zero
12	Parameter value was changed to a value different from the factory settings	If this bit is set, the parameter value is different from the factory settings
11	Reserved	
10	Additional text array can be called up	
9	Parameter cannot be written	
8	Standardisation factor and variable attri- butes not relevant	This bit is set if the parameter is of a data type that cannot be used to calculate any physical values (e.g. data type string)
0 - 7	Data type of the parameter value (value = "Profi-Drive table 9")	

Table 3.13 Structure of the identifier

3.2 Master control word

Bit	Operating mode: Speed Control	Operating mode: Positioning control
Bit 15 (MSB)		
0	Apply relative positioning immedia- tely after start enable	
1	Speed mode	
Bit 14		
0	Normal positioning	
1	Speed mode	
Bit 13		
0	Not used	New reference values activated by toggling the master control word bit 6
1	Not used	New reference values are loaded directly
Bit 12		
0	Not used	Positioning reference value = absolute
1	Not used	Positioning reference value = relative
Bit 11		
0	Not used	Stop homing run
1	Not used	Start homing run
Bit 10		
0	No access rights over the PLC	
1	Acces	s rights over the PLC
Bit 9		
0	Jog mode 2 off	Jog mode 2 off
1	Jog mode 2 on	Jog mode 2 on
Bit 8		
0	Jog mode 1 off	Jog mode 1 off
1	Jog mode 1 on	Jog mode 1 on
Bit 7		
0	Error acknowle	dgement at rising flank 0 ⇔ 1
1		

Table 3.14 Master control word

Bit	Operating mode: Speed Control	Operating mode: Positioning control
Bit 6		
0	Deactivate reference value	Activate positioning set at rising and falling flank
1	Activate reference value	$(0 \Rightarrow 1 \text{ and } 1 \Rightarrow 0)$
Bit 5		
0	Freeze ramp generator	No feed hold
1	Unfreeze ramp generator	Feed hold
Bit 4		
0	Reset ramp generator	Interrupt positioning set
1	Activate ramp generator	Do not interrupt positioning set
Bit 3		
0	Controller not enabled	
1	Controller enabled (operation enabled)	
Bit 2		
0	Quick stop active	
1	Quick stop inactive	
Bit 1		
0	Spin out of true active	
1	Spin out of true inactive	
Bit O		
0	Switch off power stage (OFF)	
1	Switch on power stage (ON)	
11	Start Homing Procedure / Stop Homing Procedure	
12		Relative positioning
13		Immediate start on changing the position, speed or the acceleration
14		Speed mode
15		Apply relative positioning immediately after start enable

Table 3.14Master control word

Using parameter COM_DP_CtrlConfig bits 6 and 8 can be configured:

Bit number	Value = 0 (Default-value)	Value = 1
	The positioning task can be started with the negative and positive flank (profile 4.0).	The positioning task can only be started with the positive flank (profile 4.1).
	The jog mode is manufacturer- specific	The jog mode behaves as described in profile 4.1.
T. I. I. 2. 15	Martin and and	

Table 3.15 Master control word

3.2.1 Jog mode speed mode

Bit 8 and 9 of the control word provide a jog mode in the speed mode:

If bit 8 of the parameter **P 1267 COM_DP_CtrlConfig** is set to 0, the drive behaves as follows (jog mode manufacturer-specific):

- If bit 8 is set to 1, the drive applies the speed that is given in parameter P 1268 COM_DP_RefJogSpeed1.
- If bit 9 is also set to 1, the value in the parameter **P 1269 COM_DP_RefJogSpeed2** is used as the reference value.
- If bit 9 is set to 0 again, P 1268 COM_DP_RefJogSpeed1 is used as the reference again.
- If bit 8 is set to 0, while bit 9 is still set to 1, there is no change
- If bit 9 is set to 1, the drive applies the negated speed that is given in parameter **P 1268 COM_DP_RefJogSpeed1**. The direction of rotation is therefore inverted.
- If bit 8 is also set to 1, the negated value in the parameter **P 1269 COM_DP_Ref-JogSpeed2** is used as the reference value.
- If bit 8 is set to 0 again, P 1268 COM_DP_RefJogSpeed1 is used as the reference again.
- If bit 9 is set to 0, while bit 8 is still set to 1, there is no change
- In case of negative reference values, a negated speed is positive again.
- The jog mode can only be activated if the motor is at standstill.

MOOG

21

- If bit 8 of the parameter **P 1267 COM_DP_CtrlConfig** is set to 1, the drive behaves in accordance with the profile (profile 4.1), page 84 [13]:
- The jog mode can only be activated if the motor is at standstill.
- Bits 4 to 6 of the control word are 0.
- If bit 8 is set to 1, the drive applies the speed that is given in parameter P 1268 COM_DP_RefJogSpeed1.
- If bit 9 is set to 1, the drive applies the speed that is given in parameter P 1269 COM_DP_RefJogSpeed2.
- If bit 8 and 9 are set, there is no change, the old reference value is retained.

3.2.2 Jog mode positioning mode

The jog mode for the positioning mode behaves as for the speed mode. Bit 4 and 5 of the control word must be set.

3.2.3 Jog mode reference value parameter

• The parameters P 1268 COM_DP_RefJogSpeed1 and P 1269 COM_DP_Ref-JogSpeed2 are of type Int32 and can be mapped as process data.

	Meaning
Bit 0 - 11	Not used
Bit 12 - 15	Master sign of life

Table 3.16Master control word 2

If no synchronous application is implemented, the master sign of life need not be transmitted, allowing the entire second status word to be freely assigned.

3.3 Drive status word

	Operating mode: Speed Control	Operating mode: Positioning control
Bit 15 (MSB)	Not used	
Bit 14		
0	"ENPO" o	r "Safe Standstill" not set
1	"ENPO"	or "Safe Standstill" set
Bit 13		
0		Drive rotating
1]	Drive stationary
Bit 12		
0	Not used	Motion request confirmation by togoling this bit
1	Not used	Motion request commation by togging this bit
Bit 11		
0	Not used	Homing point not yet set
1	Not used	Homing point set
Bit 10		
0	Frequency or speed not reached	Target position not reached
1	Frequency or speed reached or exceeded	Target position reached
Bit 9		
0	No acce	ess rights over the PLC
1	Access rights over the PLC granted	
Bit 8		
0	Speed error outside the tolerance band	Positioning slippage error outside the tolerance band
1	Speed error within the tolerance band	Positioning slippage error within the tolerance band
Bit 7		
0	No warning	
1	Warning registered	
Bit 6		
0	Switch on not prevented	
1	Switch on prevented	

Table 3.17 Drive status word

	Operating mode: Speed Control	Operating mode: Positioning control
Bit 5		
0	Qu	ick stop activated
1	Quic	k stop deactivated
Bit 4		
0	Spin c	out of true activated
1	Spin ou	ut of true deactivated
Bit 3		
0	No error	
1	Error reported	
Bit 2		
0	Control blocked	
1	Control active (in operation / drive responding to reference values)	
Bit 1		
0	Power stage inactive (not ready)	
1	Power stage active (ready)	
Bit O		
0	Not ready to start	
1	Ready to start	

Table 3.17 Drive status word

Bit	Meaning
0-1	Profile generator status O: Stop 1: Acceleration 2: Positioning with allowable speed 3: Delay
2	Torque limitation with positive direction of travel
3	Torque limitation with negative direction of travel
4	ISD00
5	ISD01
6	ISD02
7	ISD03

Table 3.18Drive status word 2

Bit	Meaning
8	Reserved
9	Reserved
10	Reserved
11	Reserved
12-15	Reserved for Profidrive
9 10 11 12-15	Reserved Reserved Reserved for Profidrive

Table 3.18Drive status word 2

If no synchronous application is implemented, the slave sign of life need not be transmitted, allowing the entire second status word to be freely assigned.

3.4 Drive status machine

Figure 3.3 GeneralSystem status machine (control via Profibus)

System status	Designation	Description
0	System initialisation running (start)	Initialisation after device reset (e.g. hard- ware, parameter list, controller,)
1	Not ready to switch on	Initialisation completed, but no power supply, or intermediate circuit voltage less than switch-on threshold
2	Switch-on inhibit(switch on disabled)	Intermediate circuit voltage greater than switch-on threshold
3	Ready to switch on	Optional conditions satisfied (e.g. homing run, quick stop inactive)
4	Switched on	Power stage enabled
5	Operation enabled	Power supplied to motor, operation active
6	Quick stop active	Quick stop active*
7	Fault reaction active	Fault reaction is active, reference values from the Profibus master are ignored.
8	Fault	Drive in fault condition, reference values from the Profibus master are ignored.
* Quick stop can be triggered by various circumstances. The parameter P 2218 (MP_QuickStopOC) allows the type of quick		
stop to be selected.		

Table 3.19 System statuses

Quickstop option code	Meaning	
0	Disable drive function	
1	Slow down on slow down ramp	
2	Slow down on quick stop ramp	
3	Slow down on the current limit	
4	Slow down on the voltage limit	
5	Slow down on slow down ramp and stay in "quick stop"	
6 Slow down on quick stop ramp and stay in "quick stop"		
7	Slow down on the current limit and stay in "quick stop"	
8	Slow down on the voltage limit and stay in "quick stop"	
Table 3.20 Quick stop	o option code	

System status changeover	Designation	Description
0	Start	Initialisation after boot-up completed
1	UZK OK	Intermediate circuit voltage greater than switch- on threshold
2	Quick stop and spin out of true deactivated	Spin out of true deactivated \Rightarrow STW bit 1 = 1 Quick stop deactivated \Rightarrow STW bit 2 = 1
3	Power stage switched on	Power stage switched on \Rightarrow STW bit 0 = 1
4	Controller enabled	Controller enabled \Rightarrow STW bit 3 = 1
5	Control blocked	Control blocked \Rightarrow STW bit 3 = 0 *
6	Power stage blocked	Power stage blocked \Rightarrow STW bit 0 = 0
7	Quick stop or spin out of true activated	Spin out of true activated \Rightarrow STW bit 1 = 0 Quick stop activated \Rightarrow STW bit 2 = 0
8	UZK too low	Intermediate circuit voltage less than switch-on threshold
9	Quick stop activated	Activate quick stop \Rightarrow STW bit 2 = 0
10	Quick stop deactivated	Deactivate quick stop \Rightarrow STW bit 2 =1
11	Spin out of true activated	Activate spin out of true \Rightarrow STW bit 1 = 0
12	Standstill detected	Standstill was detected
13	Fault	Fault event occurred (can occur in any system status)
14	Fault reaction ended	Fault reaction has ended (e.g. fault stop ramp)
15	Fault acknowledgement	Acknowledgement of the reported fault ⇔ STW bit 7 = 1 or by a rising flank of the power stage enable
16	Power stage blocked	Power stage blocked (can occur in any system status)
* Parameter P 0144 (Autostart) determines whether the control of the operation enable is flank-triggered (0) or status- dependent (1) [Parameter List ⇔Motion Profile ⇔Basic Settings].		

 Table 3.21
 System status changeovers

4 Acyclic data transmission – DPV1

In addition to DPV0 cyclic data communications, which are intended as standard for quick updates of I/O process data, DPV1 acyclic services are available as one-off events. They offer the facility for instance to read or write parameters acyclically and thus without interfering with cyclic data traffic. Telegram type SD2 in accordance with the following table is used for the DPV1 Profibus-DP extension.

SD	LE	LEr	SD	DA	SA	DSAP	SSAP	DU	FCS	ED
Start Delimi- ter	Length	Length repeat	Start Delimi- ter	Destina- tion Adress	Source Adress	Destina- tion Service Access Point	Source Service Access Point	Data Unit	Frame Check Se- quence	End De- limiter
68H	Х	Х	68H	xx	XX	XX	XX	X		

 Table 4.1
 Profibus SD2 telegram for DPV1 services

The acyclic services can be used equally well by a class 1 master (PLC etc.) and by a class 2 master (PC tool). The following table gives and overview of the acyclic services available in relation to the respective master class.

Acyclic services	Master class	Meaning	DSAP	SSAP
Initiate request	2	Establish an acyclic connection	32H	31H
Abort request	2	Break off an acyclic connection	32H	030H
Read request	2	Read request via DPV1	32H	030H
Write request	2	Write request via DPV1	32H	030H
Data request	2	Data transfer	32H	030H
Read request	1	Read request via DPV1	33	33H
Write request	1	Write request via DPV1	33	33H
Alarm	1	Alarm handling	33	33H

Table 4.2An overview of the acyclic services offered

The access mechanism on DPV1 is always performed according to a fixed layout

1. Write request (5F):

SD		DSAP	SSAP	DU Req. id	DU Slot	DU Index	DU Length	DU User	FCS	ED
68H	xx	32	30	5F	0	2F	n+1	0n	xx	16H

2. Write reply (5F):

SD		DSAP	SSAP	DU Req. id	DU Slot	DU Index	DU Length	FCS	ED
68H	XX	32	30	5F	0	2F	n+1	ХХ	16H

3. Read request (5E):

SD		DSAP	SSAP	DU Req. id	DU Slot	DU Index	DU Length	FCS	ED
68H	XX	32	30	5E	0	2F	MAX	ХХ	16H

4. Read reply (5E):

SD		DSAP	SSAP	DU Req. id	DU Slot	DU Index	DU Length	DU User	FCS	ED
68H	XX	32	30	5E	0	2F	n+1	0n	Хх	16H

Each read or write access must first be initiated by a write service on Data Unit Index 47 (2Fhex) (1). This write request gives the slave the information about the request it should execute. After this the slave acknowledges with a reply telegram (2), which initially contains no reply data.

This is simply an acknowledgement of the request and contains only the mirrored DPV1 header of the request telegram. In the event of an error, a negative reply is sent. To then read the data from the slave, the master must present a read request (3). If the reply (4) to this is positive, the user data can be used by the master. In the event of an error, a negative reply is sent. Figure "DPV1 Read Request" shows the telegram sequence for a read access. This shows the slave sending a negative read reply to the first read request. This negative read reply means that the required data cannot yet be provided.

MOOG

27

Master DPV1 <u>Slave</u> Parameter Request Write.reg DB47 with data (parameter request) Write.res without data Read.req DB47 without data Paramete Processing Read.res(-) without data Read.reg DB47 without data Read.res with data (parameter response)

send a positive read reply with the requested data.

Figure 4.1 DPV1 Read request

This transmission format is in "Big Endian" (Motorola, the highest byte is transmitted first).

Not until the following cycle has the slave executed the request to the extent that it can

Word format:

0. byte	1. byte
High byte	Low byte

Double word format

0. byte	1. byte	2. byte	3. byte
High byte	Low byte	High byte	Low byte
High word	High word	Low word	Low word

The data unit in the table "Profibus SD2 telegram for DPV1 services" of telegram type SD2 can be split into five areas:

• Req.id (1 byte)

This is the function number of the DPV1 service. This describes for instance whether a parameter should be read or should be written. More detailed information can be found in the table "Assignment of the Data Unit".

• Slot (1 byte)

DPV1 slaves consist of a number of physical or virtual slots. The drive is triggered by addressing a slot, following which the slot address is not evaluated.

• Index (1 byte)

The index contains the address of the data area in which the slave makes available the data for a parameter access. In accordance with ProfiDrive this is specified with the fixed data area number 47.

• Length (1 byte)

Gives the length of the user data that follow. In the case of a read access, the length must be sufficiently large for the data to be read (max. 240 byte) User (1 byte...n byte) Contains the user data to be processed.

Data Unit (DU) byte	Data Unit Param	Value	Meaning		
0	Req.id	48H	Idle REQ, RES	Idle REQ, RESP	
		51H	Data Transport REQ, RES	Data transport REQ, RESP	
RESP					
		56H	Resource Manager, REQ	Resource manager REQ	
		57H	Initiate REQ, RES	Initiate REQ, RESP	
		58H	Abort REQ	Abort REQ	
		5CH	Alarm REQ, RES	Alarm REQ, RESP	
		5EH	Read REQ, RES	Read REQ, RESP	
		5FH	Write REQ, RES	Write REQ, RESP	
		D1H	Data Transport NEG RES	Data transport RESP	
		D7H	Initiate NEG RES	Initiate negative RESP	
		DCH	Alarm NEG RES	Interrupt negative RESP	
		DEH	Read NEG RES	Read negative RESP	
		DFH	Write NEG RES	Write negative RESP	
1	Slot	00HFEH	Slot number		
2	Index	2FH	Index		
3	Length	XX	Length of the user data (max 240 bytes)		
4n	UserData	XX	User data		
[Alarms are not cur	rently supported]				

In the following table the telegram format for the user data (Data Unit User Data) for a DPV1 parameter request and a DPV1 parameter reply are shown.

[OPV1 Parameter Reque	PV1 Parameter Request					
Request Header	Request reference	Request identification	0				
	Axis No	No. of Parameters (n)	2				
	Attribute	No. of elements	3				
1. Parameter adress	Paramter Number (PNU)						
	Subindex						
n Paramotor adross			4+6*(n-1)				
	Format	No. of values	4+6*n				
	Values						
			4+6*n ++ (format_n *amount_n)				

Table 4.4Assignment of the data unit

	DPV1 Parameter Reply					
Reply header	Request reference (mirror)	Response identification	0			
	Axis No (mirror)	No. of Parameters (n)	2			
	Format No. of values		4			
1. Parameter address	Value / error code					
No. of parameter address						
			4++ (format_n *amount_n)			
Table 4.5 DPV1 Parameter reply						

Table 4.3Assignment of the data unit

The user data are structured as follows:

• Request reference:

The Request Reference is specified by the master and mirrored back by the slave in the reply telegram. Based on this reference the master can uniquely assign each reply telegram to a request telegram. A master changes the request reference with each new request.

• Request ID

This identifier has essentially the task of describing the type of parameter treatment. Currently two different identifiers are defined:

- Requesting for a parameter
- Changing a parameter

Further details on identifiers can be found in the table "User data".

Response ID

This identifier contains information on the origin of a request. If a request is executed correctly, the response ID matches the request ID. If a request cannot be executed, an identifier in accordance with table "User data" is generated.

• Axis No.

This value allows an individual axis in a multi-axis system to be addressed selectively. (Axis No. \Rightarrow 0 single axis).

• No. of Parameters

Number of parameters that are processed in a request.

• Attributes

Describes the individual access to a parameter structure. For instance whether one may access the actual numerical value or use the parameter description text. Further information can be found in the table "User data".

• Number of Elements

When accessing an array or a string, this area contains the filed size or the string length.

- Parameter Number Contains the parameter number (PNU).
- Subindex

Addresses the first array element of a parameter or the beginning of a character string. This also allows access to descriptive texts and text arrays.

• Format

Specifies the respective parameter and ensures a unique assignment of the parameter value in the telegram.

- Number of values Number of following values.
- Values
 Parameter values

Field name	Data type	Value	Meaning	Comments
Field name	Data type	Value	Meaning	Comments
Request reference	Unsigned8	0x00 0x010xFF	Reserved	
Request ID	Unsigned8	0x00 0x01 0x02 0x030x03F 0x400x7F 0x800xFF	Reserved Request parameter Change Parameter Reserved Manufacturer-specific Reserved	
Response ID	Unsigned8	0x00 0x01 0x02 0x030x3F 0x400x7F 0x80 0x81 0x82 0x830xBF 0xC00xFF	Reserved Request parameter (+) Change Parameter (+) Reserved Manufacturer-specific Reserved Request parameter (-) Change Parameter (-) Reserved Manufacturer-specific	
Axis No	Unsigned8	0x00 0x010xFE 0xFF	Device Representative Axis-Number 1254 Reserved	Zero = single axis
No. of Parameters	Unsigned8	0x00 0x010x27 0x280xFF	Reserved Quantity 139 Reserved	Limited by DPV1 telegram length
Attribute	Unsigned8	0x00 0x10 0x20 0x30 0x400x70 0x800xF0	Reserved Value Description Text Reserved Manufacturer-specific	

Table 4.6 User data

Field name	Data type	Value	Meaning	Comments
No. of Elements	Unsigned8	0x00 0x010xEA 0xEB0xFF	Special Function Quantity 1234 Reserved	Limited by DPV1 telegram length
Parameter Number	Unsig- ned16	0x0000 0x0001 0xFFFF	Reserved Number 165535	
Subindex	Unsig- ned16	0x0000 0xFFFF	Number 165535	
Format	Unsigned8	0x00 0x010x36 0x370x3F 0x40 0x41 0x42 0x43 0x44 0x450xFF	Reserved Data Types Reserved Zero byte Word Double Word Error Reserved	
No. of Values	Unsigned8	0x000xEA 0xEB0xFF	Quantity 0234 Reserved	Limited by DPV1 telegram length
Error Number	Unsig- ned16	0x0000 0x00FF	Error Numbers (see table below)	

Error number	Meaning
0x15	Reply telegram is too long
0x16	Impermissible parameter address
0x17	Illegal format
0x18	Number of parameter values is inconsistent
0x19	Request is for an non-existent axis
T () (T)	

Table 4.7 Error number

Table 4.6 User data

Error number	Meaning
Error number	Impermissible parameter number
0x00	Parameter value cannot be changed
0x01	Value area of the parameter transgressed
0x02	Defective parameter sub-index
0x03	Parameter is not an array
0x04	Incorrect parameter data type
0x05	Change access with value not equal to zero which is not permitted
0x06	Änderungszugriff mit Wert ungleich Null, der nicht erlaubt ist
0x07	Change access on a descriptive element, which cannot be changed
0x09	No descriptive text available
0x11	Request cannot be performed in the present system status
0x14	Impermissible value

Table 4.7 Error number

4.1 Examples of request and reply telegrams

Write word

Re- fer.	Req. ID	Axis	No. Pa- ram.	Attr.	No. Ele.	Pnu high	Pnu Low	Sub high	Sub Iow	For- mat	No. Valu- es	Value high	Value Low
0	2	0	1	0x10	01	3	0x96	0	0	0x42	1	0	7

Table 4.8ID:2 Change Parameter, Attr. 0x10: Value; Pnu = 918 = 0x396, Format word=0x42

Positive reply

Refer.	Req. ID	Axis	No. Pa- ram.
0	2	0	1

Table 4.9 ID:2 Change Parameter

• Parameter **P 0918** now has the value 7

Write double word

Refer.	Req. ID	Axis	No. Pa- ram.	Attr.	No. Ele.	Pnu high	Pnu Low
0	2	0	1	0x10	01	4	0xFA
Sub high	Sub low	Format	No. Values	Value high	Value Low	Value l high	Value l low
0	0	0x43	1	1	2	3	4

Table 4.10ID:2 Change Parameter, Attr. 0x10: Value; Pnu = 918 = 0x396, Format word=0x42

Refer.	Req. ID	Axis	No. Pa- ram.
0	2	0	1

Table 4.11 ID:2 Change Parameter

• Parameter P 0884 now has the value 16909060

Read simple parameter value

Read word

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Pnu high	Pnu Low	Sub high	Sub Iow
0	1	0	1	0x10	01	3	0x9A	0	0

Table 4.12 ID:1 Request Parameter, Attr. 0x10: Value; Pnu = 922 = 0x39A

Positive reply

Refer.	Req. ID	Axis	No. Param.	Format	No values	Value high	Value Iow
0	1	0	1	0x42	1	0	9

Table 4.13 Format word=0x42; Parameter value = 9

Read double word

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Pnu high	Pnu Low	Sub high	Sub Iow
0	1	0	1	0x10	01	4	0xFA	0	0

Table 4.14 ID:1 Request Parameter, Attr. 0x10: Value; Pnu = 922 = 0x39A

Positive reply

Refer.	Req. ID	Axis	No. Param.	Format	No values	Value H high	Value H Low	Value I high	Value I low
0	1	0	1	0x43					

Table 4.15 Format word=0x43; Parameter value = 0x01020304 = 16909060

Defective accesses

Defective parameter numbers

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Pnu high	Pnu Low	Sub high	Sub Iow
0	1	0	1	0x10	01	0	9	0	0

Table 4.16 ID:1 Request Parameter, Attr. 0x10: Value; Pnu = 9

Negative reply

Refer.	ID	Axis	NO. Param.	Format	NO values	vaiue high	low
0	0x81	0	1	0x44	1	0	0

Table 4.17Format error=0x44; Parameter value = 0 = incorrect parameternumber

Write parameter values array

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Pnu high	Pnu Low	Sub high	Sub low	Format	No. Values	Value 0 high	Value 0 Low	-	Value 4 high	Value 4 Iow
0	2	0	1	0x10	5	3	0x93	0	0	0x42	5	3	C7		0	0

Table 4.18ID:2 Change Parameter, Attr. 0x10: Value; Pnu = 918 = 0x396, Format word=0x42

• Parameterwerte = 0x03C7, 0x04F6, 0x04F6, 0x04F6, 0

OK reply

Refer.	Req. ID	Axis	No. Param.	
0	2	0	1	

- Parameter **P 0915** now contains the entries for the parameter values.
- No standard telegram smaller than 10 is set up in the device, since then it could not be overwritten. Use remedy PPO5.

Read parameter values array

Read assigned process data reference values

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Value 0 high	Value 0 Low	Value 4 high	Value 4 Iow
0	2	0	1	0x10	5	3	C7	0	0

Table 4.19 ID:1 Attr. : 0x10 Pnu = 915=0x393

OK reply

Refer.	Req. ID	Axis	No. Param.	Format	No Values	Value 0 high	Value 0 low	Value 1 high	Value 1 Low	Value 2 high	Value 2 Low	Value 3 high	Value 3 Low	Value 4 high	Value 4 Iow
0	1	0	1	0x42	5	3	0xC7	4	0xF6	4	0xF6	5	0	0	0

Table 4.20 ID: 1 Format: 0x42

5 Operating modes

5.1 Speed Control

In speed control mode the speed control reference value can be influenced using 3 bits in the master control word (3.2).

Figure 5.1 Speed control

Setting the control word bit 4 allows the speed reference value to be taken over by the ramp generator. The control word bit 5 releases the ramp generator; resetting it freezes the ramp generator again.

The input of the ramp generator is influenced by the control word bit 6. If bit 6 is set, the reference value is forwarded. If bit 6 is not set, the reference value zero is forwarded.

5.2 Speed control circuit and associated control parameters

Figure 5.2 Speed control circuit

P. no.:	Parameter name	Meaning
P 1270	COM_DP_RefSpeed	Speed reference value
P 1278	COM_DP_Acc	Acceleration ramp
P 1279	COM_DP_Dec	Deceleration ramp
P 0167	MPRO_REF_OVR	Speed override
P 0371	CON_IP_RefTF	Filter time constant speed refe- rence value
P 0402	CON_SCON_AddSRef	Additive speed reference value
P 0458	MOT_Snom	Nominal speed of motor
P 0328	CON_SCON_SMax	Speed limitation (reference value: nominal speed of motor)
P 0334	CON_SCON_SMaxPos	Positive speed limitation (refe- rence value: nominal speed of motor)

P. no.:	Parameter name	Meaning
P 0333	CON_SCON_SMaxNeg	Negative speed limitation (reference value: nominal speed of motor)
P 0417	CON_SCON_SDiff	Speed controller differential
P 1271	COM_DP_ActSpeed	Actual speed
P 0320	CON_SCON_Kp	PI speed controller amplification
P 0321	CON_SCON_Tn	PI_speed controller lag time
P 0325	CON_SCONFilterFreq	Limit frequencies for torque reference value filter
P 0326	CON_SCONFilterAssi	Torque reference value filter draft parameter
P 0327	CON_SCONFilterPara	Torque reference value filter parameter
P 0351	CON_SCALC_TF	Actual speed filter time constant

Table 5.1 Control parameter

P. no.:	Parameter name	Meaning
P 0401	CON_SCON_AddTRef	Additive torque reference value
P 0330	CON_SCON_TMaxNeg	Negative torque limitation (refe- rence value: nominal torque)
P 0331	CON_SCON_TMaxPos	Positive torque limitation (refe- rence value: nominal torque)
P 0332	CON_SCON_TMaxScale	Torque scaling factor
P 0339	CON_SCON_Tmax	Torque limitation (reference value: nominal torque)
P 0460	MOT_TNom	Motor nominal torque

Table 5.1 Control parameter

5.3 Position control

In position control operating mode, based on operating status 5 (see section 3.4) the drive can change over into various statuses in response to defined bits in the master control word (3.2). These statuses are explained in Figure 5-2.

Figure 5.3 Position control

A positioning command is activated if the control word bit 4, the feed hold is set via bit 5 and a flank is set on control word bit 6. Further positioning commands can then be activated via the control word bit 13.

If bit 13 is set, changes to the reference position, positioning speed or positioning acceleration lead directly to a new movement request.

If bit 13 is not set, a new movement request is activated only by means of a positive or negative flank of control word bit 6.

If bit 6 is set in parameter **P 1267 COM_DP_CtrlConfig**, the positioning task is only activated on the positive flank. This corresponds to the last PROFIDrive profile 4.1.

If the feed hold is reset whilst a movement command is active, the drive will be braked via a ramp to a standstill and is set to the status intermediate stop. The current movement request will not be executed until the feed hold is set again.

A movement request can be interrupted by resetting control word bit 4.

In this case the drive will also be braked to a standstill and set to the status "Control active". In the initial status 5, additionally a homing run can be triggered by the control word bit 11.

5.4 Position control circuit and associated control parameters

Figure 5.4 Position control circuit

P. no:	Parameter name	Meaning
P 1270	COM_DP_RefSpeed	Speed reference value
P 1278	COM_DP_Acc	Acceleration ramp
P 1279	COM_DP_Dec	Deceleration ramp
P 0167	MPRO_REF_OVR	Speed override
P 1276	COM_DP_ActPos1	Current actual position
P 0402	CON_SCON_AddSRef	Additive speed reference value
P 0458	MOT_Snom	Nominal speed of motor
P 0328	CON_SCON_Smax	Speed limitation
P 0334	CON_SCON_SMaxPos	Positive speed limitation (refe- rence value: nominal speed of motor)

P. no:	Parameter name	Meaning
P 0333	CON_SCON_SMaxNeg	Negative speed limitation (reference value: nominal speed of motor)
P 0417	CON_SCON_SDiff	Speed controller differential
P 1271	COM_DP_ActSpeed	Actual speed
P 1516	SCD_Jsum	Overall moment of inertia
P 0376	CON_IP_TFFScale	Scaling for pre-control of acce- leration
P 1275	COM_DP_TargetPos	Target position
P 1277	COM_DP_PosVelocity	Positioning speed
Table E.D. Control as a second	-	

Table 5.2 Control parameters

P. no:	Parameter name	Meaning
P 0374	CON_IP_EpsDly	Position reference delay
P 0320	CON_SCON_Kp	PI speed controller amplification
P 0321	CON_SCON_Tn	PI_speed controller lag time
P 0325	CON_SCONFilterFreq	Limit frequencies for torque reference value filter
P 0326	CON_SCONFilterAssi	Torque reference value filter parameter
P 0327	CON_SCONFilterPara	Torque reference value filter parameter
P 0351	CON_SCALC_TF	Actual speed filter time constant
P 0401	CON_SCON_AddTRef	Additive torque reference value
P 0330	CON_SCON_TMaxNeg	Negative torque limitation (refe- rence value: nominal torque)
P 0331	CON_SCON_TMaxPos	Positive torque limitation (refe- rence value: nominal torque)
P 0332	CON_SCON_TMaxScale	Torque scaling factor
P 0339	CON_SCON_Tmax	Torque limitation (reference value: nominal torque)
P 0460	MOT_TNom	Motor nominal torque
P 0372	CON_IP_SFFTF	Filter time constant speed pre- control
P 0375	CON_IP_SFFScale	Scaling for pre-control of speed

Position controller differential

Position controller amplification

(tracking error)

CON_PCON_PosDiff

CON_PCON_Kp

MSD Servo Drive User Manual Profibus 40

Table 5.2 Control parameters

P 0414

P 0360

6 Homing

6.1 Homing runs performed by the drive

Since relative sensor systems are used, the drive must be homed, triggered by bit 11 in control word 1. As soon as this bit is set by the master, the drive performs a position-controlled homing run using an internal profile generator and determined by homing run speed, homing run acceleration and employing the strategy saved in the homing run method.

6.2 Homing run speed

The homing run speed is specified by parameter **P 2262 MPRO_402_HomingSpeeds** in the parameter editor [Parameter list⇔Motion Profile⇔Homing]. The user has the facility here to specify two different homing run speeds.

- 1. SpeedSwitch = Speed when moving to the limit switch
- 2. SpeedZero = Speed when moving to the zero point

6.3 Homing run acceleration

The homing run acceleration is specified by parameter **P 2263 MPRO_402_HomingAcc** in the parameter editor [Parameter list⇔Motion Profile⇔Homing].

6.4 Zeroing offset

Absolute encoders (such as SSI multiturn encoders) present a special case for the homing run, since they directly generate the absolute position reference. For homing using these encoders it follows that no movement is required and in some circumstances even no power to the drive. Furthermore, the zeroing offset must be determined. The type 5

is particularly suitable for this. A zeroing offset can be set using the parameter **P0525 ENC_HomingOff** [Parameter list⇔Motion Profile⇔Homing].

6.5 Homing cams, limit switches

The signal for the homing cams can optionally be linked to one of the digital inputs, for which the inputs ISD00 to ISD06 are available.

When homing to the limit switches, the digital input must be selected as a positive limit switch using selection parameter LCW(5) or a negative limit switch using selection parameter LCW(6). When homing to cams, the parameter HOMSW(10) must be selected.

(see parameter **P 0101–P 0107**).

P. no.	Parameter identifier/ Setting	Identifier at MDA 5	Function
P 2261		MPRO_402_Homing- Method	Digital inputs
(-7)	-	move pos. direction, for distance coded encoder	Homing run type for distance-coded encoder for positive direction
(-6)	-	move pos. direction, for distance coded encoder	Homing run type for distance-coded encoder for negative direction
(-5)	-	Act. position + homing offset (multiturn-encoder)	Homing (absolute encoder)
(-4)	HOMSW	Homing mode type 22 with continuous reference	Homing in progress, negative flank of the homing cam
(-3)	HOMSW	Homing mode type 20 with continuous reference	Homing in progress, positive flank of the homing cam
(-2)	-	No homing mode (act. position + homing offset)	No homing run; positioning is only by offset
(-1)	-	Reference position = homing offset (parameter HOOFF)	Current position=Zero
(0)	-	Not defined	No homing run

P. no.	Parameter identifier/ Setting	Identifier at MDA 5	Function
P 2261		MPRO_402_Homing- Method	Digital inputs
(1)	LCCW	Neg. end switch, zero pulse	Homing run negative limit switch and zero impuls
(2)	LCW	Pos. end switch, zero pulse	Homing run positive limit switch and zero impuls
(3)	HOMSW	Pos. reference cams, zero pulse at RefNock=Low	Homing run to cams, negative flank,positive direction of trave + zero impuls
(4)	HOMSW	Pos. reference cams, zero pulse at RefNock=High	Homing run to cams, positive flank,positive direction of trave + zero impuls
(5)	HOMSW	Neg. reference cams, zero pulse at RefNock=Low	Homing run to cams, negative flank,negative direction of trave + zero impuls
(6)	HOMSW	Neg. reference cams, zero pulse at RefNock=High	Homing run to cams, positive flank,negative direction of trave + zero impuls
(7) to (14)	HOMSW	Left reference cam polarity, zero pulse at RefNock=Low	Various homing runs to cams
(15), (16)	-	not defined	Reserved
(17)	LCCW	Neg. end switch	Homing run negative limit switch
(18)	LCW	Pos. end switch	Homing run positive limit switch
(19)	HOMSW	Pos. reference cams, Stop at RefNock=Low	Homing run to cams, negative flank,positive direction of travel
(20)	HOMSW	Pos. reference cams, Stop at RefNock=High	Homing run to cams, positive flank,positive direction of travel
(21)	HOMSW	Neg. reference cams, Stop at RefNock=Low	Homing run to cams, negative flank,negative direction of travel
(22)	HOMSW	Neg. reference cams, Stop at RefNock=High	Homing run to cams, positive flank,negative direction of travel

P. no.	Parameter identifier/ Setting	Identifier at MDA 5	Function	
P 2261		MPRO_402_Homing- Method	Digital inputs	
(23) to (30)	HOMSW	Left reference cam polarity, Stop at RefNock=Low	Various homing runs to cams	
(31), (32)	-	Not defined	Reserved	
(33)	-	Next left zero pulse	Zero impulse in negative direction of travel	
(34)	-	Left reference cam polarity, Stop at RefNock=High	Zero impulse in positive direction of travel	
(35)	-	Actual position = Refe- rence position	The instantaneous position is the zero position	

The signal for the homing cams can optionally be linked to one of the digital inputs, for which the inputs ISD00 to ISD06 are available. Furthermore the limit switches can also be used for homing. The assignment of the digital inputs can be found under the parameter 101 to 107 [Parameter list⇔I/O configuration⇔Digital inputs]. When homing to the limit switches, the digital input must be selected as a positive limit switch using selection parameter LCW(5) or a negative limit switch using selection parameter LCW(6). When homing to cams, the parameter HOMSW(10) must be selected.

The following table shows the necessary assignment of the digital inputs for the respective homing run methods.

6.6 Homing run methods

The type of homing run is selected by the parameter **P 2261 MPRO_402_HomingMethod** [Parameter list⇔Motion Profile⇔Homing].

Further information can be found in the MSD Servo Drive user manual, on our product DVD.

7 Examples of commissioning using manufacturer-specific telegrams

7.1 Position control using PPO 5

The following section describes how the drive can be simply and quickly commissioning in the position control mode.

Firstly the GSD file "LUSTOA33.gsd" must be linked in during the Profibus configuration phase and then the PPO type 5 selected. PPO type 5 consists of a PKW channel (8 byte) and 10 process data channels (20 byte). The process data area can be freely configured using this manufacturer-specific telegram. That means that the desired reference values and actual values can be mapped to a defined process data area. All mappable signals are listed in two signal tables, which can be accessed using the parameter editor under the folder Parameter list ⇔ Fieldbus ⇔ Profibus-DP in the left tree structure of the operating tool. Within this folder directory, the signal list **P 1284 (COM_DP_SignalList_Write)** contains all possible process data signals that can be written, and the signal list **P 1285** (**DP_SignalList_Read**) contains all possible process data signals that can be read.

The user can assign the process data channels freely as required. The actual assignment can be found in the signal tables **P 0915** and **P 0916** [Parameter list ⇒ Fieldbus ⇒ Profibus-DP]. Signal table **P 0915 (COM_DP_PZDSelectionWrite**) contains all signals that can be sent by the control master to the drive. Signal table **P 0916 (COM_DP_PZDSelectionRead)** contains all signals that can be sent by the drive to the control master.

The following table shows an example of the process data area from the control master to the drive. For this purpose the sub-indexes in list **P 0915** are assigned the stated parameter numbers.

Signal table P 0915 Sub-index	PZD area	Parameter number	Parameter name	Data type (value range)	
0	1	P 0967	Control word (COM_DP_Controlword)	U16 (065535)	
1	2	P 1275	Target position (COM_DP_TargetPos)	132	
2	3	P 1275	Target position (COM_DP_TargetPos)	(-2147483648 2147483647)	
3	4	P 1280	Control word 2 (COM_DP_Controlword2)	U16 (065535)	
4	5	P 1277	Positioning velocity (COM_DP_PosVelocity)	132	
5	6	P 1277	Positioning velocity (COM_DP_PosVelocity)	2147483647)	
6	7	P 1278	Acceleration (COM_DP_Acc)	U16 (065535)	
7	8	P 1279	Braking deceleration (COM_DP_Dec)	U16 (065535)	
8	9	0	-	-	
9	10	0	-	-	

 Table 7.1
 Example of assignment of the master-slave process data channel

Each sub-index represents a 16-bit wide process data channel. For this reason for instance the target position that is sent as Int32 is mapped to sub-indices 1 and 2 in order to transmit a real 32 bits. The parameters available for selection and their data types are listed in chapter 6.

The configuration of the process data channels can be freely selected by the user in the sequence of the signal assignments. However the data type format must be complied with.

The following table shows an example of the process data area from the drive to the master. For this purpose the sub-indexes in list **P 0916** are assigned the desired parameter numbers.

Signal table P 0915 Sub-index	PZD area	Parameter number	Parameter name	Data type (value range)
0	1	P 0968	Status word (COM_DP_Sta- tuswort)	U16 (065535)
1	2	P 1276	P 1276 Actual position (COM_DP_Act- Pos1) I3	
2	3	P 1276	P 1276 Actual position (COM_DP_Act- Pos1) 2	
3	4	P 1281	P 1281 Status word 2(COM_DP_Sta- tusword2)	
4	5	P 1271	P 1271 Actual speed(COM_DP_ ActSpeed)	
5	6	-	-	-
6	7	-	-	-
7	8	-	-	-
8	9	-	-	-
9	10	-		

Table 7.2 Example of assignment of the slave-master process data channels

The following parameters must then be set for position control mode.

1. P 0300 CON_CfgCon: PCON(3) [Parameter list ⇒Motor control] This parameter allows the control mode to be changed. The setting PCON (Position Control Mode) means that the drive is in position control mode.

2. P 0301 CON_REF_Mode: RFG(0)

[Parameter list⇒Motion Profile ⇒Basic settings]

This parameter allows the mode of the position reference value to be input. The position reference value can be input directly or via a ramp generator. The setting RFG (Ramp Function Generator) means that the position reference value is input via a ramp generator.

3. P 0159 MPRO_CTRL_SEL: Profibus(7)

[Parameter List ⇔Motion Profile ⇔Basic settings]

This parameter allows the control location to be set. In this instance the control location is selected as Profibus.

4. P 0165 MPRO_REF_SEL: PROFI(9)

[Parameter list⇒Motion Profile⇒Basic settings]

This parameter allows configuration of the reference value selector. In this instance the reference values are taken from the Profibus.

Once these settings have been performed, communication can be established between the master and drive.

7.2 Conversion of reference values and actual values using factor group parameters

Conversion of reference values and actual values using factor group parameters

n positioning applications the inputting of reference values and the return of actual values are generally performed using application-specific user units (mm, degrees, …). The reference values and actual values of the drive are converted using what are called factor group parameters [Parameter list⇒Motion profile⇒Standardisation/units]. For these the user has the facility to differentiate between 3 different groups of parameters. All 3 groups have the same task, which is to convert the user units to the fixed internal variables used by the servocontroller. The first factor group is based on the CiA 402 standard. The parameters of this group are described in detail in the CANopen specification CiA 402. The second factor group goes under the heading "Sercos". The parameters of this group are also described in detail in the respective specification. The third factor group is called "user spec" and is user-specific group. Since this factor group is not described in detail elsewhere, the use of parameters of this group is illustrated by means of an example.

The user can select the factor group using the parameter "MPRO_FG_Type".

Parameter number	Parameter name	Meaning
P 0283	MPRO_FG_Type	Selection of the factor group (0) = STD/402 (1) = SERCOS (2) = USER

Table 7.3 Parameters

The parameters of the USER factor group are listed in the table below

Parameter number	Parameter name	Meaning	Unit
P 0270	MPRO_FG_PosNorm	Sensor resolution	[incr/rev]
P 0271	MPRO_FG_Num	Numerator (position)	[rev]
P 0272	MPRO_FG_Den	Denominator (position)	[POS]
P 0274	MPRO_FG_SpeedFac	Speed factor	[rev/(min*SPEED)]
P 0275	MPRO_FG_AccFac	Acceleration factor	[rev/(sec*sec*ACC)]
P 0284	MPRO_FG_PosUnit	Position unit	String
P 0285	P 0285 MPRO_FG_PosExp		-
P 0286 MPRO_FG_PosScaleFac		Position factor	-
P 0287	MPRO_FG_SpeedUnit	Speed unit	String
P 0288 MPRO_FG_SpeedExp		Speed exponent	-
P 0289	P 0289 MPRO_FG_SpeedScaleFac Sp		-
P 0290	MPRO_FG_AccUnit	Acceleration unit	String
P 0291	MPRO_FG_AccExp	Acceleration exponent	-
P 0292	MPRO_FG_AccScaleFac	Acceleration factor	-
P 0293	MPRO_FG_TorqueUnit	Torque unit	String
P 0294	MPRO_FG_TorqueExp	Torque exponent	-
P 0295	MPRO_FG_TorqueScaleFac	Torque factor	-

Table 7.4 USER factor group

These define the internal resolution of t	the unit for
Position:	rev
Speed:	rev/min
Acceleration:	rev/(sec*sec)

The units are automatically defined by the profiles themselves according to CiA 402 or Sercos. The units can be input manually in User setting.

The parameters for unit and exponent refer to the display and have no effect on the standardisation of the variables themselves.

The following three formulae describe the conversion of user units into the units used internally in positioning mode. They refer to reference position, speed and acceleration.

Reference perition [roy] = COM DR REEPer [User unit]	 MPRO_FG_Num [rev]
Intern [IeV] = COM_DF_REFFOS		MPRO_FG_Den [User unit]

The quotient of parameters **MPRO_FG_Num and MPRO_FG_Den** describes the ratio of user unit to motor revolutions. Furthermore is allows any gearing ratios or advance constants to be incorporated.

Positioning speed

The parameter **MPRO_FG_SpeedFac** offers the facility to change the number of decimal points for the positioning speed or the unit of the positioning speed.

Positioning acceleration

The parameter **MPRO_FG_AccFac** offers the facility to change the number of decimal points for the positioning acceleration or the unit of the positioning acceleration.

7.3 Examples for setting the user factor group

The positioning instructions should be input in degrees, so that 360° corresponds to one revolution of the motor (65536 increments per revolution of the motor). The speed should be input in rpm and the acceleration in rpm/sec. This gives the following values:

P 0270 Sensor resolution	= 655 36 [incr/rev]
P 0271 Position numerator	= 1 [rev]
P 0272 Position denominator	= 360 [POS] **
P 0274 Speed factor	= 1 [rev/(min*SPEED)] ***
P 0275 Acceleration factor	= 1/60 [rev /(sec*sec*ACC)] ****
P 0284 Position unit (string)	= "Degree"
P 0287 Speed unit (string)	= "1/min"
P 0290 Acceleration unit (string)	= "1/(min*sec)"

** POS = User unit for position ***SPEED = User unit for speed ****ACC = User unit for acceleration

7.4 Speed control using PPO 2

The following section describes how the drive can be simply and quickly commissioning in the speed control mode. Firstly the GSD file "LUSTOA33.gsd" must be linked in during the Profibus configuration phase and then the PPO type 2 selected.

PPO type 2 consists of a PKW channel (8 byte) and six process data channels (12 byte). The process data area can be freely configured using this manufacturer-specific telegram. That means that the desired reference values and actual values can be mapped to a defined process data area. All mappable signals are listed in two signal tables, which can be accessed using the parameter editor under the folder Parameter list ⇒ Fieldbus ⇒ Profibus-DP in the left tree structure of the operating tool. Within this folder directory, the signal list **P 1284 COM_DP_SignalList_Write** contains all possible process data signals that can be written, and the signal list **P 1285 DP_SignalList_Read** contains all possible process data signals that can be read.

The user can freely assign the process data area. The actual assignment can be found in the signal tables **P 0915** and **P 0916** (Parameter list ⇔ Fieldbus ⇔ ProfibusDP). Signal table **P 0915 COM_DP_PZDSelectionWrite** contains all signals that can be sent by the control master to the drive. Signal table **P 0916 COM_DP_PZDSelectionRead** contains all signals that can be sent by the drive to the control master.

The following table shows an example of the process data area from the control master to the drive. For this purpose the sub-indexes in list **P 0915** are assigned the desired parameter numbers.

Signal table P 0915 Sub-index	PZD area	Parameter number	Parameter name	Data type (value range)	
0	1	P 0967	P 0967 Control word (COM_DP_Control- word)		
1	2	P 1270 Reference speed (COM_DP_Ref- Speed) I1		116 (-3276832767)	
2	3	P 1278	P 1278 Acceleration (COM_DP_Acc)		
3	4	P 1279	Braking deceleration (COM_DP_Dec)	U16 (065535)	
4	5	-	-	-	
5	6	-	-	-	
6	7	-	-	-	
7	8	-	-	-	
8	9	-	-	-	
9	10	-	-	-	

Table 7.5Assignment of the master-slave process data channels

Each sub-index represents a 16-bit wide process data channel. For this reason for instance an Int32 must be mapped to two sub-indices. The parameters available for selection and their data types are listed in table "Assignment of the master-slave process data channels".

The configuration of the process data areas can be freely selected by the user in the sequence of the signal assignments. The only requirement is that the data type format must be complied with. That means that a 32-bit variable also requires 2 process data channels.

The following table shows an example of the process data area from the drive to the master. For this purpose the sub-indexes in list **P 0916** are assigned the desired parameter numbers.

Signal table P 0915 Sub-index	PZD area	Parameter number	er Parameter name Data type (value range	
0	1	P 0968	Status word (COM_DP_Statuswort)	U16 (0655 35)
1	2	P 1271	Actual speed (COM_DP_ActSpeed)	116 (-3276832767)
2	3	-	-	-
3	4	-	-	-
4	5	-	-	-
5	6	-	-	-
6	7	-	-	-
7	8	-	-	-
8	9	-	-	-
9	10	-	-	-

 Table 7.6
 Assignment of the slave-master process data channels

The following parameters must then be set for speed control mode.

- **1.** P 0300 CON_CfgCon : SCON(2) [Parameter list ⇒ control] This parameter allows the operating mode to be changed. The setting SCON (Speed Control Mode) means that the drive is in speed control mode.
- 2. P 0301 CON_REF_Mode

: RFG(0) [Parameter list ⇔ Motion Profile ⇔ Basic settings]

This parameter determines the mode of reference value input. The position reference value can be input directly or via a ramp generator. The setting RFG (Ramp Function Generator) means that the speed reference value is input via a ramp generator.

3. P 0159 MPRO_CTRL_SEL

: Profibus(7) [Parameter list ⇒ Motion Profile ⇒ Basic settings]

This parameter allows the control location to be set. In this instance the control location is Profibus.

4. P 0165 MPRO_REF_SEL

: PROFI(9) [Parameter list ⇔ Motion Profile ⇔ Basic settings]

This parameter allows configuration of the reference value selector. In this instance the reference values are taken from the Profibus.

Once these settings have been performed, communication can be established between the master and drive.

7.4.1 Speed input

All factor group parameters are set to default values. The speed reference value can then be input scaled to the motor nominal speed. So a value of 16384 corresponds to a speed reference value of 100% of the motor nominal speed.

By using the control word (section 3.2) the drive can then be operated in speed control mode.

7.5 Mappable parameters

Parameter number	Parameter name	Write (1284)	Read (1285)	PZD length
P 0967	COM_DP_Controlword	Х	Х	1
P 0968	COM_DP_Statusword	-	Х	1
P 1280	COM_DP_Controlword2	Х	Х	1
P 1281	COM_DP_Statusword2	-	Х	1
P 1270	COM_DP_RefSpeed	Х	Х	1
P 1271	COM_DP_ActSpeed	-	Х	1
P 0121	MPRO_Input_State	-	Х	1
P 0143	MPRO_Output_State	-	Х	1
P 1274	COM_DP_RefPos	Х	Х	2
P 1276	COM_DP_ActPos1	-	Х	2
P 0207	MPRO_TAB_ActIdx	Х	Х	1
P 1275	COM_DP_TargetPos	Х	Х	2
P 1277	COM_DP_PosVelocity	Х	Х	2
P 1278	COM_DP_Acc	Х	Х	1
P 1279	COM_DP_Dec	Х	Х	1
P 1287	COM_DP_TMaxPos	Х	Х	1
P 1288	COM_DP_TMaxNeg	Х	Х	1

Table 7.7Mappable parameters

Further mappable parameters can be found in the signal tables **P 1284 (COM_DP_Signal-List_Write)** and **P 1285 (DP_SignalList_Read)** [Parameter List ⇔ Fieldbus ⇔ Profibus-DP].

8 Profibus parameters

The following table describes the Profibus parameters that are available.

Parameter name	Number	Value range	Default value	Can be changed	Data type	Meaning
COM_DP_CtrlConfig	P 1267	0 – 65535	0	Ja	U16	This parameter describes the function of each bit in the control word, parameter 967.
COM_DP_RefJogSpeed1	P 1268	- 4294967296 bis 4294967295	0	Ja	132	This parameter contains homing speed 1 in the jog mode
COM_DP_RefJogSpeed2	P 1269	- 4294967296 bis 4294967295	0	Ja	132	This parameter contains homing speed 2 in the jog mode
COM_DP_RefSpeed	P 1270	-32768 – 32767	0	Yes	116	Speed reference value, written by the Profibus
COM_DP_ActSpeed	P 1271	-32768 – 32767	0	No	116	Actual speed
COM_DP_RefTorque	P 1272	-32768 – 32767	0	Yes	116	Torque reference value, written by the Profibus
COM_DP_ActTorque	P 1273	-32768 – 32767	0	No	116	Actual torque
COM_DP_RefPos	P 1274	-2147483648 - 2147483647	0	Yes	132	Position reference value (ramp mode), written by the Profibus
COM_DP_TargetPos	P 1275	-2147483648 - 2147483647	0	Yes	132	Position reference value (direct mode), written by the Profibus
COM_DP_ActPos1	P 1276	-2147483648 - 2147483647	0	No	132	Actual position from 1st position sensor
COM_DP_PosVelocity	P 1277	-2147483648 - 2147483647	0	Yes	132	Speed reference value (ramp mode), written by the Profibus
COM_DP_Acc	P 1278	0 – 0xFFFF	100	Yes	U16	Acceleration reference value (ramp mode), written by the Profibus
COM_DP_Dec	P 1279	0 – 0xFFFF	100	Yes	U16	Deceleration reference value (ramp mode), written by the Profibus
COM_DP_Controlword2	P 1280	0 – 0xFFFF	0	Yes	U16	2nd Control value, not used at first
COM_DP_Statusword2	P 1281	0 – 0xFFFF	0	No	U16	2nd status value, not used at first
COM_DP_Bus_Timeout	P 1283	0 – 4294967295	5000	Yes	U32	Bus timeout
COM_DP_SignalList_write	P 1284	0 – 65535	0	No	U16	List of parameters that can be used as process data reference values
COM_DP_SignalList_Read	P 1285	0 – 65535	0	No	U16	List of parameters that can be used as process data actual values
COM_DP_TMaxScale	P 1286	0 – 2000	1000	Yes	U16	Online torque scaling
COM_DP_TMaxPos	P 1287	0 – 2000	1000	Yes	U16	Positive online torque scaling
COM_DP_TMaxNeg	P 1288	0 - 2000	1000	Yes	U16	Negative online torque scaling
COM_DP_PZDSelectionWrite	P 0915	0 – 65535	967	Yes	U16	This parameter allows incoming process data to be linked to specific device parameters. The parameters that can be entered are listed in parameter P 1284 . The sub-index 0 contains the first process data value PZD1 and so on.
COM_DP_PZDSelectionRead	P 0916	0 – 65535	968	Yes	U16	This parameter allows outgoing process data to be linked to specific device parameters. The parameters that can be entered are listed in parameter P 1285 . The sub-index 0 contains the first process data value PZD1 and so on.

Table 8.1Profibus parameters

Parameter name	Number	Value range	Default value	Can be changed	Data type	Meaning
COM_DP_Address	P 0918	0 – 126	126	Yes	U16	Station address of the inverter
COM_DP_TelegramSelection	P 0922	0 – 65535	0	Yes	U16	
COM_DP_SignalList	P 0923	0 – 65535	0	No	U16	This parameter lists all "mappable" parameters and signals for parameters P 0915 and P 0916.
COM_DP_Warning	P 0953	0 – 0xFFFF	0	No	U16	This parameter forwards warning messages from the Profibus. These include bus timeout and PLC stop mode.
COM_DP_Baudrate	P 0963	9.6 – 45.45 kbits/s	9.6 kbit/s	No	U16	Current Baud rate for bus communication
COM_DP_DeviceId	P 0964	0 – 65535	0	No	U16	This parameter is for device identification
COM_DP_ProfileNo	P 0965	0 – 65535	0	No	U16	Profile number, not supported in the first step
COM_DP_Controlword	P 0967	0 – 0xFFFF	0	Yes	U16	Control word for the internal status machine
COM_DP_Statusword	P 0968	0 – 0xFFFF	0	No	U16	Status word for the internal status machine
COM_DP_DataStore	P 0971	0 – 255	0	Yes	U16	This parameter permits storage of data in the non-volatile memory.
COM_DP_DefinedParameter	P 0980	0 – 65535	0	No	U16	This parameter describes the defined parameters in the servo controller.
COM_DP_ModifiedParameter	P 0990	0 – 65535	0	No	U16	This parameter describes all the parameters in the servo controller that are not set to the "default" values.

Table 8.1Profibus parameters

9 Appendix Glossary

AK	Request identification
Application dat set	Factory pre-defined data set for solution of typical applications
Diagnostic data	The master reads the diagnostic data from the slave and thus permits a central response to slave malfunctions.
DP	Distributed I/O
Master	The supervisory controller which provides communications.
MW	Flag word
Parameter data	The PKW parameter channel is used to transmit parameters cyclically to and from the drive device.
PKW	Parameter identification value
PNU	Parameter number
ProfiDrive Mode	Configuration of the process data channel, compatible with the ProfiDrive profile. In contrast to EasyDrive mode the system statuses are changed by defined series of control sequences. The system status machine defined in the Profibus standard specifies the individual system status transitions.
PZD	Process data: The process data channel contains the functions "Load control and status", "Input reference values" and "Display actual values".
Slave	A slave is a bus participant on the Profibus-DP, which in contrast to the master responds exclusively to the requests directed to it.
SPM	Spontaneous message
Status machine	This describes the transitions between the various systems statuses. A status transi- tions is triggered by a defined event such as a control sequence or the setting of an input.

MSD Servo Drive User Manual Profibus

53

Index

А

Acceleration unit 48 Acceleration factor 48 Acyclic data transmission DPV1 27 Appendix 53 Assignement of the Data Unit 29 Attributs 30 Axis No. 30

В

Bus termination 10 Bus adress 10

С

Class 1 Master 13 Commissioning 9 Configuration phase 11 Connections 9 Control parameter 36, 39 Control unit 10 Conversion of reference values and actual values 46 Cyclic data transmission DPV0 13

D

Data exchange 11 DPV1 Read request 28 Drive status word 22 Drive status machine 24

Ε

Error number 31

Establishment of communications 13 Examples 32 Examples for commissioning 45 Examples for setting the User Factor Group 48

F

Factor Group-Parameter 46 Factor Group USER 47 Format 30

G

GSD file 11

Η

Homing 41 Homing run acceleration 41 Homing cams 41 Homing run method 43 Homing run speed 41 Homing runs performed by the drive 41

l

Identification format (Identifier) 16 Identifier 17 Internal resolution 47

J

Jog mode speed mode 21

L

LEDs 11 Limit switches 41

Μ

Mappable parameters 50 Master control word 20

Ν

Number of parameters 30 Number of elements 30 Number of values 30

0

Operating displays 11 Operating modes 35 Operation diagnostics 11

Ρ

Parameter channel PKW 19 Parameter number 30 Parameter process data objects (PPO) 13 Position control circuit 39 Position control 37 Perfomance feartures 7 Phase1 13 Phase2 13 Phase3 13 Plug configuration for the Profibus cable 9 Positioning acceleration 47 Positioning mode 22 Positioning speed 47 Position control using PPO 5 45 Position unit 48 Process data 16 Process data signals 16 Profibus parameter 51

PROFIdrive 13

R

Request ID 30 Request reference 30 Response ID 30

S

Sensor resolution 48 Setting the drive adress 10 Speed control circuit and associated control parameters 36 Speed control using PPO 2 48 Speed factor 48 Speed input 49 Speed unit 48 Subindex 30 System requirements 7

Т

Terminating resistor 10

U

User controls 9 User data 30 User-specific PPO's 15

V

Values 30

Ζ

Zeroing offset 41

TAKE A CLOSE LOOK.

Moog solutions are only a click away. Visit our worldwide Web site for more information and the Moog facility nearest you.

MOOG

Moog GmbH Hanns-Klemm-Straße 28 D-71034 Böblingen Phone +49 7031 622 0 Telefax +49 7031 622 100

www.moog.com/industrial drives-support@moog.com

Moog is a registered trademark of Moog, Inc. and its subsidiaries. All quoted trademarks are property of Moog, Inc. and its subsidiaries. All rights reserved. © 2011 Moog GmbH

Technical alterations reserved.

The contents of our documentation have been compiled with greatest care and in compliance with our present status of information.

Nevertheless we would like to point that this document cannot always be updated parallel to the technical further development of our products.

Information and specifications may be changed at any time. For information on the latest version please refer to drives-support@moog.com.

ID no.: CA65645-001, Rev. 2.0, 08/2011