

720-565-5995

sales@solusys.com

solusys.com

- System Integration
- Consulting
- Value Added Resale
- Repair Services

We are a systems integrator and value added reseller of computer hardware and software primarily focusing on the embedded marketplace. We provide custom turnkey solutions to get your project started quickly. We pride ourselves in our agility and ability to engineer complex solutions quickly.

Contact us today to find out how our experts can help in your embedded computing needs.

MVIP302 Eight-Channel EIA-232 IndustryPack® and **MVIP303** Eight-Channel EIA-422 IndustryPack® **User's Manual**

(MVIP302/D1)

Notice

While reasonable efforts have been made to assure the accuracy of this document, Motorola, Inc. assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic, mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about Motorola products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Motorola intends to announce such Motorola products, programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Motorola, Inc. Computer Group 2900 South Diablo Way Tempe, Arizona 85282

Preface

Much of the information in the MVIP302 Eight Channel EIA-232 IndustryPack and MVIP303 Eight Channel EIA-422 IndustryPack User's Manual is adapted from the IP-Octal Serial User Manual and the IP-Octal 422 User Manual, published by GreenSpring Computers, Inc. Permission to reproduce this material has been granted by GreenSpring Computers, Inc.

The following Motorola publication is referenced in this manual. If not shipped with this product, it may be purchased by contacting your local Motorola sales office.

Document Title	Motorola Publication Number
MVME162 Embedded Controller User's Manual	MVME162/D

This manual also references the *IndustryPack Interface Specification*. The *Specification* may be purchased from: VITA-USA, 10229 N. Scottsdale Rd., Ste. B, Scottsdale, Az. 85253-1437; (602) 951-8866.

Motorola[®] and the Motorola symbol are registered trademarks of Motorola, Inc. IndustryPack[®] is a registered trademark of GreenSpring Computers, Inc.

All other products mentioned in this document are trademarks or registered trademarks of their respective holders.

© Copyright Motorola 1993

All Rights Reserved

Printed in the United States of America

June 1993

Safety Summary Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and repair of this equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the equipment. Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of the equipment in your operating environment.

Do Not Operate in an Explosive Atmosphere.

Do not operate the equipment in the presence of flammable gases or fumes. Operation of any electrical equipment in such an environment constitutes a definite safety hazard.

Keep Away From Live Circuits.

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other qualified maintenance personnel may remove equipment covers for internal subassembly or component replacement or any internal adjustment. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

Do Not Substitute Parts or Modify Equipment.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local Motorola representative for service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed. You should also employ all other safety precautions which you deem necessary for the operation of the equipment in your operating environment.

Dangerous voltages, capable of causing death, are present in this equipment. Use extreme caution when handling, testing, and adjusting.

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the documentation for this product, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A Computing Device pursuant to Subpart J of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference in which case the user, at the user's own expense, will be required to take whatever measures necessary to correct the interference.

Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its product or products for the use intended.

Contents

Chapter 1	PRODUCT DESCRIPTION	
Genera MV	luction	1-1 1-1
Chapter 2	ADDRESSING	
	uction ous Addressing	
Chapter 3	I/O PIN ASSIGNMENTS	
MVIP3	luction 302 EIA-232 I/O Pin Assignments 303 EIA-422 I/O Pin Assignments	3-1
Chapter 4	LOGIC INTERFACE PIN ASSIGNMENTS	
	luctionssignments	
Chapter 5	PROGRAMMING	
	amming the MVIP302/MVIP303	
Chapter 6	ID PROM	
	OM	
Chapter 7	USER OPTIONS	
Introd	uction	7-1

Strobe Connection Options Direct Memory Access (DMA) Options	7-4 7-4
Appendix A SPECIFICATIONS	
Construction and Reliability	

Figures

Figure 1-1.	Simplified Block Diagram of the MVIP302	1-2
0	MVIP302 I/O Buffer Circuit	
0	Simplified Block Diagram of the MVIP303	
0	Logic Interface Pin Assignments for the MVIP302	
	Logic Interface Pin Assignments for the MVIP303	
•	MVIP302 Header Location Diagram	
0	MVIP303 Header Location Diagram	

Tables

Table 2-1. Register Map of SCC2698, Blocks A and B	2-2
Table 2-2. Register Map of SCC2698, Blocks C and D	
Table 3-1. MVIP302 EIA-232 I/O PIn Assignments	
Table 3-2. MVIP303 EIA-422 I/O Pin Assignments	
Table 6-1. ID PROM Data (hex)	
Table 7-1. Strobe Connection Options	
Table 7-2. DMA Jumper Configurations	

PRODUCT DESCRIPTION

1

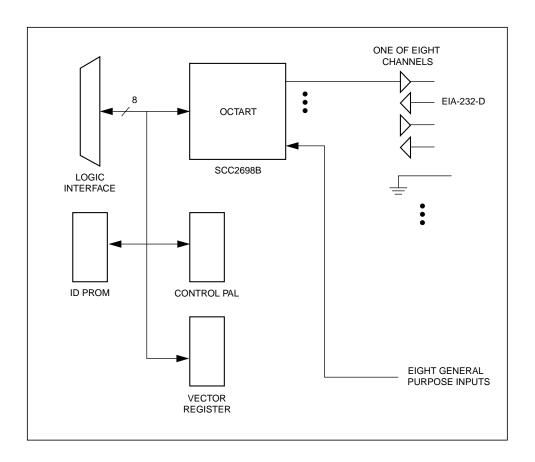
Introduction

The MVIP302 and MVIP303 are part of the IndustryPack family of modular I/O components. They are based around the Signetics CMOS SCC2698 Octal Universal Asynchronous Receiver/Transmitter. This component provides eight channels of full-duplex asynchronous serial communications, baud rate generators, state change detect logic, and four 16-bit counter/timers.

A block diagram of the MVIP302 is shown in Figure 1-1; Figure 1-2 illustrates the MVIP302 I/O Buffer Circuit. A block diagram of the MVIP303 is shown in Figure 1-3.

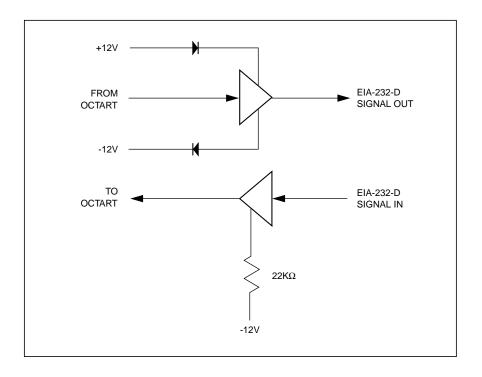
General Description

MVIP302


EIA-232-D communication levels are provided by CMOS MC14C88 and MC14C89 transmitters and receivers. Five signals for each channel on the EIA-232-D interface are supported: Transmit Data (TxD), Receive Data (RxD), Ready-To-Send (RTS), Clear-To-Send (CTS) and ground. The MC14C89 Receivers are biased at 1.5 volts nominally to permit a variety of input signal levels to be received without additional interface circuitry (see Figure 1-2). Protection diodes are provided in the ± 12 volt supply lines to permit connection to powered equipment, even if the IndustryPack is unpowered.

Vectored interrupts are fully supported. A common 8-bit vector register is provided. Channels a,b,c,d interrupt on IRQ0; channels e,f,g,h interrupt on IRQ1.

DMA is supported on channels c and d. If DMA is used, then the Request-To-Send lines on these two channels are not available .


The IndustryPack is controlled by a single CMOS 22V10 type PAL.

Connection to the MVIP302 is via a standard 50-conductor ribbon cable.

10430.00 9306

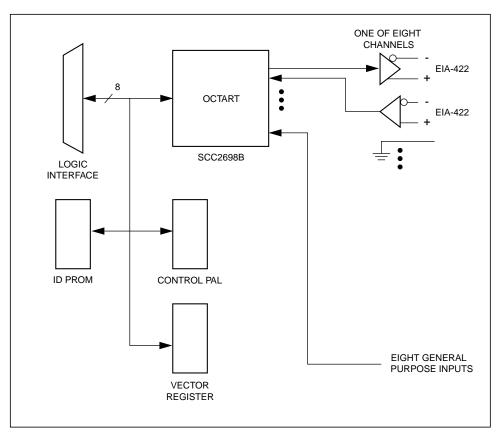
Figure 1-1. Simplified Block Diagram of the MVIP302

10431.00 93066

Figure 1-2. MVIP302 I/O Buffer Circuit

720-565-5995 | info@solusys.com | www.solusys.com

MVIP303


EIA-422 communication levels are provided by 26LS31 and 26LS32 transmitters and receivers. Differential transmit data (TxD) and receive data (RxD) lines are provided, plus ground. EIA-422 communication is preferred over EIA-232 because it provides significantly higher noise immunity. A second advantage is that no ± 12 volt power is required at either the send or receive end.

Vectored interrupts are fully supported. A common 8-bit vector register is provided. Channels a,b,c,d interrupt on IRQ0. Channels e,f,g,h interrupt on IRQ1.

DMA is supported on channels c and d.

The IndustryPack is controlled by a single CMOS 22V10 type PAL.

Connection to the MVIP303 is via a standard 50-conductor ribbon cable.

10432.00 9306

Figure 1-3. Simplified Block Diagram of the MVIP303

720-565-5995 | info@solusys.com | www.solusys.com

ADDRESSING

2

Introduction

The MVIP302 and MVIP303 are accessed using 8-bit bytes at odd locations only. They are usually accessed in the I/O space. Table 2-1 and Table 2-2 show the register maps of the MVIP302 and MVIP303. All addresses are offsets from the I/O base address of the IP, as set on the IP carrier board.

VMEbus Addressing

The SCC2698B Octal UART has four major internal sections, called functional blocks A through D. Each functional block has two serial channels, one timer, and one I/O port.

Table 2-1. Register Map of SCC2698, Blocks A and B

Hex	Dec	Binary	Read	Write
		Functional Block A		
1	1	0000001	MR1a, MR2a	MR1a, MR2a
3	3	0000011	SRa	CSRa
5	5	0000101	RESERVED	CRa
7	7	0000111	RHRa	THRa
9	9	0001001	IPCRA	ACRA
В	11	0001011	ISRA	IMRA
D	13	0001101	CTUA	CTURA
F	15	0001111	CRLB	CTLRB
11	17	0010001	MR1b, MR2b	MR1b, MR2b
13	19	0010011	SRb	CSRb
15	21	0010101	RESERVED	CRb
17	23	0010111	RHRb	RHRb
19	25	0011001	RESERVED	RESERVED
1B	27	0011011	INPUT PORT A	OPCRA
1D	29	0011101	START C/T A	RESERVED
1F	31	0011111	STOP C/T A	RESERVED
		Functional Block B		
21	33	0100001	MR1c, MR2c	MR1c, MR2c
23	35	0100011	SRc	CSRc
25	37	0100101	RESERVED	CRc
27	39	0100111	RHRc	THRc
29	41	0101001	IPCRB	ACRB
2B	43	0101011	ISRB	IMRB
2D	45	0101101	CTUB	CTURB
2F	47	0101111	CRLB	CTLRB
31	49	0110001	MR1d, MR2d	MR1d, MR2d
33	51	0110011	SRd	CSRd
35	53	0110101	RESERVED	CRd
37	55	0110111	RHRd	THRd
39	57	0111001	RESERVED	RESERVED
3B	59	0111011	INPUT PORT B	OPCRB
3D	61	0111101	START C/T B	RESERVED
3F	63	0111111	STOP C/T B	RESERVED

Table 2-2. Register Map of SCC2698, Blocks C and D

Hex	Dec	Binary	Read	Write
		Functional Block C		
41	65	1000001	MR1e, MR2e	MR1e, MR2e
43	67	1000011	SRe	CSRe
45	69	1000101	RESERVED	CRe
47	71	1000111	RHRe	THRe
49	73	1001001	IPCRC	ACRC
4B	75	1001011	ISRC	IMRC
4D	77	1001101	CTUC	CTURC
4F	79	1001111	CRLC	CTLRC
51	81	1010001	MR1f, MR2f	MR1f, MR2f
53	83	1010011	SRf	CSRf
55	85	1010101	RESERVED	CRf
57	87	1010111	RHRf	THRf
59	89	1011001	RESERVED	RESERVED
5B	91	1011011	INPUT PORT C	OPCRC
5D	93	1011101	START C/T C	RESERVED
5F	95	1011111	STOP C/T C	RESERVED
		Functional Block D	7	
61	97	1100001	MR1g, MR2g	MR1g, MR2g
63	99	1100011	SRg	CSRg
65	101	1100101	RESERVED	CRg
67	103	1100111	RHRg	THRg
69	105	1101001	IPCRD	ACRD
6B	107	1101011	ISRD	IMRD
6D	109	1101101	CTUD	CTURD
6F	111	1101111	CRLD	CTLRD
71	113	1110001	MR1h, MR2h	MR1h, MR2h
73	115	1110011	SRh	CSRh
75	117	1110101	RESERVED	CRh
77	119	1110111	RHRh	RHRh
79	121	1111001	RESERVED	RESERVED
7B	123	1111011	INPUT PORT D	OPCRD
7D	125	1111101	START C/T D	RESERVED
7F	127	1111111	STOP C/T D	RESERVED

MVIP302/D1 2-3

I/O PIN ASSIGNMENTS

3

Introduction

This chapter discusses EIA-232 and EIA-422 I/O Pin Assignments. The MVIP302 EIA-232 I/O wiring pin assignments are shown in Table 3-1; the MVIP303 EIA-422 I/O pin assignments are shown in Table 3-2.

MVIP302 EIA-232 I/O Pin Assignments

Each channel has five EIA-232-D lines, and each is wired identically at the 50-pin connector. The five lines are Ground, Transmit Data output, Receive Data input, Ready to Send output, and Clear to Send input. The common ground line for all channels connects to the local logic ground. There are many programming options. The two modem control lines, RTS and CTS, may also be used for other modem or terminal control functions or for general purpose functions.

There is a pullup resistor (1K Ω) to +12 volts available on pin 42. This may be connected externally to assert a "Mark" (true) signal into an EIA-232-D line.

Eight general purpose input lines at non-EIA-232 levels are provided on pins 43 through 50. These are unbuffered CMOS logic inputs connected directly to the SCC2698B. They may be programmed as general purpose inputs or as the counter/timer external input. The switching threshold for inputs is at TTL levels (1.5 volts nominal).

Because these lines are unbuffered, you are cautioned to observe anti-static rules in handling cabling, the IndustryPack and all connecting hardware. External equipment connected to these lines should be powered up and down at the same time as the IndustryPack.

Table 3-1. MVIP302 EIA-232 I/O PIn Assignments

	101011 302 EIA-23		,
Pin Number	Channel	Function	Level
1	Channel a	GND	EIA-232-D
2	Channel a	TxD	EIA-232-D
3	Channel a	RxD	EIA-232-D
4	Channel a	RTS	EIA-232-D
5	Channel a	CTS	EIA-232-D
6	Channel b	GND	EIA-232-D
7	Channel b	TxD	EIA-232-D
8	Channel b	RxD	EIA-232-D
9	Channel b	RTS	EIA-232-D
10	Channel b	CTS	EIA-232-D
11	Channel c	GND	EIA-232-D
12	Channel c	TxD	EIA-232-D EIA-232-D
13	Channel c	RxD	EIA-232-D EIA-232-D
	Channel c	RTS	EIA-232-D EIA-232-D
14			
15	Channel c	CTS	EIA-232-D
16	Channel d	GND	EIA-232-D
17	Channel d	TxD	EIA-232-D
18	Channel d	RxD	EIA-232-D
19	Channel d	RTS	EIA-232-D
20	Channel d	CTS	EIA-232-D
21	Channel e	GND	EIA-232-D
22	Channel e	TxD	EIA-232-D
23	Channel e	RxD	EIA-232-D
24	Channel e	RTS	EIA-232-D
25	Channel e	CTS	EIA-232-D
26	Channel f	GND	EIA-232-D
27	Channel f	TxD	EIA-232-D
	Chamieri	1110	E1A-232-D

Table 3-1. MVIP302 EIA-232 I/O PIn Assignments

Pin Number	Channel	Function	Level
28	Channel f	RxD	EIA-232-D
29	Channel f	RTS	EIA-232-D
30	Channel f	CTS	EIA-232-D
31	Channel g	GND	EIA-232-D
32	Channel g	TxD	EIA-232-D
33	Channel g	RxD	EIA-232-D
34	Channel g	RTS	EIA-232-D
35	Channel g	CTS	EIA-232-D
36	Channel h	GND	EIA-232-D
37	Channel h	TxD	EIA-232-D
38	Channel h	RxD	EIA-232-D
39	Channel h	RTS	EIA-232-D
40	Channel h	CTS	EIA-232-D
41		GND	
42		+12 pullup	EIA-232-D
43	Channel a	MPI - a	CMOS*
44	Channel b	MPI - b	CMOS*
45	Channel c	MPI - c	CMOS*
46	Channel d	MPI - d	CMOS*
47	Channel e	MPI - e	CMOS*
48	Channel f	MPI - f	CMOS*
49	Channel g	MPI - g	CMOS*
50	Channel h	MPI - h	CMOS*

^{*}Note: I/O lines on pins 43-50 are +/-50 μA input current, TTL thresholds.

720-565-5995 | info@solusys.com | www.solusys.com

MVIP303 EIA-422 I/O Pin Assignments

Each channel has five lines, and each is wired identically at the 50-pin connector. The five lines are: Ground, Transmit Data output Minus, Transmit Data output Plus, Receive Data input Minus, and Receive Data input Plus. The common ground line for all channels connects to the local logic ground.

Eight general purpose input lines at non-EIA-422 levels are provided on pins 43 through 50. These are unbuffered CMOS logic inputs connected directly to the SCC2698B. They may be programmed as general purpose inputs or as the counter/timer external input. The switching threshold for inputs is at TTL levels (1.5 volts nominal).

Caution

Because these lines are unbuffered, you are cautioned to observe anti-static rules in handling cabling, the IndustryPack and all connecting hardware. External equipment connected to these lines should be powered up and down at the same time as the IndustryPack.

Table 3-2. MVIP303 EIA-422 I/O Pin Assignments

Pin Number	Channel	Function	Level
1	Channel a	GND	EIA-422
2	Channel a	TxD-	EIA-422
3	Channel a	TxD+	EIA-422
4	Channel a	RxD-	EIA-422
5	Channel a	RxD+	EIA-422
6	Channel b	GND	EIA-422
7	Channel b	TxD-	EIA-422
8	Channel b	TxD+	EIA-422
9	Channel b	RxD-	EIA-422
10	Channel b	RxD+	EIA-422
11	Channel c	GND	EIA-422
12	Channel c	TxD-	EIA-422
13	Channel c	TxD+	EIA-422
14	Channel c	RxD-	EIA-422

Table 3-2. MVIP303 EIA-422 I/O Pin Assignments

Pin Number	Channel	Function	Level
15	Channel c	RxD+	EIA-422
16	Channel d	GND	EIA-422
17	Channel d	TxD-	EIA-422
18	Channel d	TxD+	EIA-422
19	Channel d	RxD-	EIA-422
20	Channel d	RxD+	EIA-422
21	Channel e	GND	EIA-422
22	Channel e	TxD-	EIA-422
23	Channel e	TxD+	EIA-422
24	Channel e	RxD-	EIA-422
25	Channel e	RxD+	EIA-422
26	Channel f	GND	EIA-422
27	Channel f	TxD-	EIA-422
28	Channel f	TxD+	EIA-422
29	Channel f	RxD-	EIA-422
30	Channel f	RxD+	EIA-422
31	Channel g	GND	EIA-422
32	Channel g	TxD-	EIA-422
33	Channel g	TxD+	EIA-422
34	Channel g	RxD-	EIA-422
35	Channel g	RxD+	EIA-422
36	Channel h	GND	EIA-422
37	Channel h	TxD-	EIA-422
38	Channel h	TxD+	EIA-422
39	Channel h	RxD-	EIA-422
40	Channel h	RxD+	EIA-422
41		GND	

Table 3-2. MVIP303 EIA-422 I/O Pin Assignments

Pin Number	Channel	Function	Level
42		no connection	
43	Channel a	MPI - a	CMOS*
44	Channel b	MPI - b	CMOS*
45	Channel c	MPI - c	CMOS*
46	Channel d	MPI - d	CMOS*
47	Channel e	MPI - e	CMOS*
48	Channel f	MPI - f	CMOS*
49	Channel g	MPI - g	CMOS*
50	Channel h	MPI - h	CMOS*

^{*}Note: I/O lines on pins 43-50 are $+/-50\,\mu A$ input current, TTL thresholds.

LOGIC INTERFACE PIN ASSIGNMENTS

4

Introduction

This chapter provides information on the pin assignments for the MVIP302 (see Figure 4-1) and the MVIP303 (see Figure 4-2).

Pin Assignments

Pins marked n/c are defined by the *IndustryPack Interface Specification*, but not used on the MVIP302 or the MVIP303.

GND	1	26	GND
CLK	2	27	+5V
Reset*	3	28	R/W*
D0	4	29	IDSel*
D1	5	30	DMAReq0
D2	6	31	MEMSel*
D3	7	32	DMAReq1
D4	8	33	INTSel*
D5	9	34	DMAck0*
D6	10	35	IOSel*
D7	11	36	DMAck1*
n/c	12	37	A1
n/c	13	38	n/c
n/c	14	39	A2
n/c	15	40	n/c
n/c	16	41	A3
n/c	17	42	nc
n/c	18	43	A4
n/c	19	44	n/c
n/c	20	45	A5
n/c	21	46	Strobe*
-12V	22	47	A6
+12V	23	48	Ack*
+5V	24	49	n/c
GND	25	50	GND

Note 1 : The no-connect (n/c) signals above are defined by the IndustryPack Logic Interface Specification, but not used by this IP. See the Specification for more information.

Note 2: The layout of the pin numbers in this table corresponds to the physical placement of pins on the IP connector. Thus this table may be used to easily locate the physical pin corresponding to a desired signal. Pin 1 is marked with a square pad on the IndustryPack.

10433.00 9305

Figure 4-1. Logic Interface Pin Assignments for the MVIP302

GND	1	26	GND
CLK	2	27	+5V
Reset*	3	28	R/W*
D0	4	29	IDSel*
D1	5	30	DMAReq0
D2	6	31	MEMSel*
D3	7	32	DMAReq1
D4	8	33	INTSel*
D5	9	34	DMAck0*
D6	10	35	IOSel*
D7	11	36	DMAck1*
n/c	12	37	A1
n/c	13	38	n/c
n/c	14	39	A2
n/c	15	40	n/c
n/c	16	41	А3
n/c	17	42	n/c
n/c	18	43	A4
n/c	19	44	n/c
n/c	20	45	A5
n/c	21	46	Strobe*
-12V	22	47	A6
+12V	23	48	Ack*
+5V	24	49	n/c
GND	25	50	GND

Note 1 : The no-connect (n/c) signals above are defined by the IndustryPack Logic Interface Specification, but not used by this IP. See the Specification for more information.

Note 2: The layout of the pin numbers in this table corresponds to the physical placement of pins on the IP connector. Thus this table may be used to easily locate the physical pin corresponding to a desired signal. Pin 1 is marked with a square pad on the IndustryPack.

10434.00 9305

Figure 4-2. Logic Interface Pin Assignments for the MVIP303

MVIP302/D1 4-3

PROGRAMMING

5

Introduction

The MVIP302 and MVIP303 are designed around the SCC2698B; all of the SCC2698B functions are available. Refer to Chapter 2, tables 2-1 and 2-2, for information on the register maps of the SCC2698B.

Programming the MVIP302/MVIP303

The SCC2698B is divided into four functional blocks lettered A through D. Each functional block contains two serial channels. The channels are identified by lower case letters a through h. The SCC2698B contains 64 internal registers, 16 for each functional block. Each of these registers are accessible using a read or write to the MVIP302 or the MVIP303 I/O space.

The IndustryPack provides an external Interrupt Vector Register. This register is readable and writable in the memory space of the corresponding IP slot at any odd byte address using an offset of \$01 from the IP memory base address (as programmed on the carrier board). The 8-bit vector register is normally programmed by the operating system I/O driver software prior to enabling interrupts.

The Interrupt Vector Register may also be read on odd bytes in the upper half of the Industry Pack ID PROM space.

The address offset is IP base + \$C1.

However, this register cannot be written in the ID PROM space from the MVME162 board.

The interrupt service routine polls the SCC2698B to determine the detailed cause of the interrupt. Function blocks A and B interrupt on IRQ0. Function blocks C and D interrupt on IRQ1. Refer to the MVME162 Embedded Controller User's Manual for interrupt mapping to your bus. Note that although two distinct interrupt levels are provided, there is a single vector for the IndustryPack.

ID PROM

6

Introduction

This chapter contains information on the ID PROM for the MVIP302 and the MVIP303. Standard data in the ID PROM is shown in Table 6-1.

ID PROM

Every IndustryPack contains an ID PROM, whose size is at least 32 x 8 bits. The ID PROM aids in software auto configuration and configuration management. The user's software, or a supplied driver, may verify that the device it expects is actually installed at the location it expects, and is nominally functional. The ID PROM contains the manufacturing revision level of the IndustryPack. If a driver requires that a particular revision be present, it may check for it directly.

For more information on ID PROMs, refer to the *IndustryPack Logic Interface Specification*.

The location of the ID PROM in the host's address space is dependent upon which carrier is used. Normally for VMEbus carriers, the ID PROM space is directly above the IndustryPack's I/O space, or at IP-base + \$80. The ID PROM used is an AMD 27LS19A or equivalent.

Table 6-1. ID PROM Data (hex)

3F		
	(available for user)	
19		
17	CRC	(26)
15	No. of bytes used	(0C)
13	Driver ID, high byte	
11	Driver ID, low byte	
0F	reserved	(00)
0D	Revision	(B1)
0B	Model No.	(10)
09	Manufacturer ID	(F0)
07	ASCII "C"	(43)
05	ASCII "A"	(41)
03	ASCII "P"	(50)
01	ASCII "I"	(49)

USER OPTIONS

7

Introduction

User options consist of connecting to the Strobe pin on the Logic Interface and making connections to support DMA. Header locations on the MVIP302 are shown in Figure 7-1; header locations on the MVIP303 are shown in Figure 7-2.

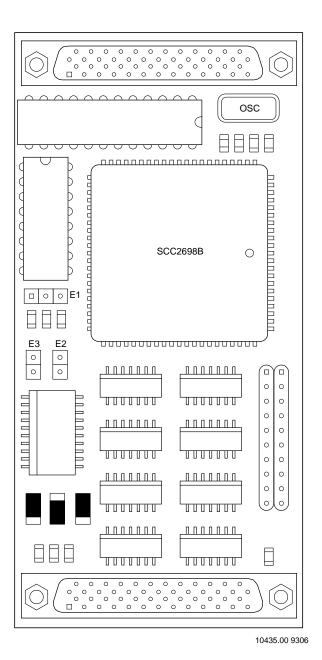


Figure 7-1. MVIP302 Header Location Diagram

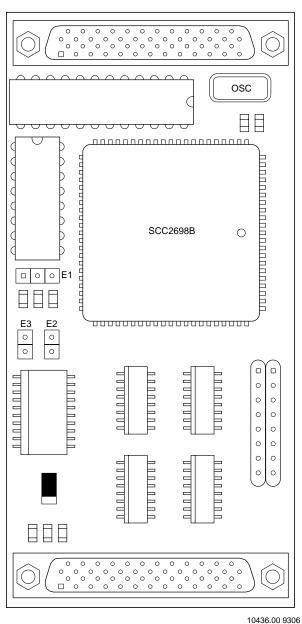


Figure 7-2. MVIP303 Header Location Diagram

MVIP302/D1 7-3

Strobe Connection Options

The Strobe pin on the Logic Interface (pin 46) is provided for secondary clock input or output. This pin may be driven by the Channel *a* Multi-Purpose Output from the SCC, or it may be connected to provide for the external input to the Counter/Timer. These options are shown in Table 7-1. Note that in most cases some corresponding programming of SCC modes is required. The SCC may be programmed to drive the connected pin for other functions than those listed in the Table 7-1. The *IndustryPack Logic Interface Specification* restricts the Strobe pin to clock functions, however. Only those functions listed below should be programmed.

Function Header E1 I/O SCC Pin 1-2 Output **MPOa** Counter/Timer output MPOa 1-2 Output Transmit Clock (1X or 16X) 1-2 MPOa Output Receive Clock (1X or 16X) 2–3 Input MPI1a General Purpose Input 2-3 MPI1a Input Counter/Timer External Input OUT Strobe Pin floating (**default**) none none

Table 7-1. Strobe Connection Options

Direct Memory Access (DMA) Options

The MVIP302 and MVIP303 are configured to support minimum Direct Memory Access (DMA) on channels c and d. To use DMA, program the SCC for TxRDY or RxRDY on MPOc and/or MPOd (refer to Table 7-2).

Table 7-2. DMA Jumper Configurations

Header	SCC Pin	Logic Pin	Function
E2 IN	MPOc	DMAReq0	TxRDY or RxRDY
E3 IN	MPOd	DMAReq1	TxRDY or RxRDY
E2,E3 OUT			No DMA (default)

SPECIFICATIONS

Construction and Reliability

IndustryPacks were conceived and engineered for rugged industrial environments. The MVIP302 and MVIP303 are constructed out of .062 inch thick FR4 material. The six copper layers consist of a ground plane, a power plane and four signal planes.

Surface mounting of components is used extensively. IC sockets for the control PAL and ID PROM use gold plated screw-machined pins. High insertion and removal forces are required, which assists in keeping components in place. If the application requires unusually high reliability or is in an environment subject to high vibration, the user may solder the four corner pins of each socketed IC into the socket, using a grounded soldering iron.

The IndustryPack connectors are keyed, shrouded and gold plated on both contacts and receptacles. They are rated at 1 Amp per pin, 200 insertion cycles minimum. These connectors make consistent, correct insertion easy and reliable.

The IP is optionally secured to the carrier with four metric M2 stainless steel screws. The heads of the screws are countersunk into the IP. The four screws provide significant protection against shock, vibration, and incomplete insertion. For most applications they are not required.

The IndustryPack provides a low temperature coefficient of .89 W/ $^{\circ}$ C for uniform heat. This is based on the temperature coefficient of the base FR4 material of .31 W/m- $^{\circ}$ C, and taking into account the thickness and area of the IP. This coefficient means that if .89 Watts is applied uniformly on the component side, that the temperature difference between the component and the solder side is one degree Celsius.

Specifications

Logic Interface IndustryPack Logic Interface

Wait States 0 on ID and Interrupts,

1 on SCC accesses

Number of Channels

Type of Channels

MVIP302 Full-duplex asynchronous EIA-232-D

MVIP303 Full-duplex asynchronous EIA-422

Baud Rates 18 fixed rates from 50 to 38.4K

4 user-defined rates using timers

Implemented Signals:

MVIP302 TxD, RxD, RTS, CTS, GND

MVIP303 TxD+, TxD-, RxD+, RxD-, GND

1, 1.5, 2 in $^{1}/_{16}$ bit increments Stop Bits

Clock Source Local crystal oscillator, or external

Error Detection Parity, framing, overrun, false start bit, break

Channel Modes Full duplex, automatic echo, local loopback, remote

loopback

Number of Timers

16-bit, multi-function, programmable Type of Timers

Interrupt Sources 32, maskable, vectored

Interrupt Vector 8 bits, may be independently read/writable

Auxiliary Input Lines 8 TTL/CMOS level inputs, programmable bit input

or state change detect causes interrupt or

counter/external clock input

IP Strobe Options Timer output, or baud rate clock input, or none Power Requirements:

MVIP302 +5 VDC, 170 mA

> +12 VDC, 22 mA -12 VDC, 9 mA

MVIP303 +5 VDC, 285 mA, typical

> +12 VDC, 0 mA -12 VDC, 0 mA

Dimensions 1.8 by 3.9 by .34 inches maximum

Environmental Operation temperature: 10 to 55 C

Humidity: 5 to 95% non-condensing

Storage: -10 to +85 C

720-565-5995

sales@solusys.com

solusys.com

- System Integration
- Consulting
- Value Added Resale
- Repair Services

We are a systems integrator and value added reseller of computer hardware and software primarily focusing on the embedded marketplace. We provide custom turnkey solutions to get your project started quickly. We pride ourselves in our agility and ability to engineer complex solutions quickly.

Contact us today to find out how our experts can help in your embedded computing needs.