

USING ANALYTICS IN THE GAME PROTOTYPING PROCESS

TIMEA TABORI

UNIVERSITY OF ABERTAY DUNDEE

INSTITUTE OF ARTS, MEDIA AND COMPUTER GAMES

MAY 2013

ii

University of Abertay Dundee

Permission to copy

Author: Timea Tabori

Title: Using Analytics in the Game Prototyping Process

Degree: BSc. (Hons) Computer Games Technology

Year: 2013

I certify that the above mentioned project is my original work.

I agree that this dissertation may be reproduced, stored or transmitted, in any form

and by any means without the written consent of the undersigned.

Signature ..

Date ..

iii

iv

ACKNOWLEDGEMENTS

I would like to take this opportunity to acknowledge the following people for their

support and guidance throughout the undertaking of this project.

I would like to thank my supervisor Iain Donald for his indispensible help and advice

during the course of this project.

I would also like to thank my friends and family for their ongoing support and

constructive input throughout the year.

Finally, I would like to thank everyone who took part in the evaluation process and

user test sessions for their invaluable insight and suggestions regarding the

development of the project.

v

ABSTRACT

With the continuously expanding demographic attracted by games, developers

experience growing pressure to create content that is widely accessible and well-

balanced for a range of different users with varying skills, whilst maintaining

development budgets. In order to meet this challenge, development is expected to be

fast and flawless. To help developers satisfy this demand, this project carries out an

investigation into the relationship of game prototyping and telemetry, and their effects

on one-another.

The project examines the current trends in game telemetry and aims to implement a

design tool combining simple level creation and editing functionality with data

collection and visualisation features concentrating on improving the design of the

level created. The level editor is directed primarily at designing 2D platformer games,

because of their universality, popularity and simple core mechanics. During its

implementation, user experience design concepts were explored and applied to create

a user interface and flow suitable for a target audience of mainly game designers. A

number of metrics were selected through user test sessions, focusing on key

information for discovering design flaws or imbalances in the game. A simple API,

serving as a proof of concept alongside the level editor collects and visualises these

metrics collected during play sessions so that the user gains a deeper understanding of

how players experience their creations.

User testing throughout the project investigated the utility of game analytics at an

early stage of development with a specific focus on its role in level design and

balancing. The test sessions conducted with the help of game developers from

different disciplines and backgrounds revealed a great perceived utility associated

with the project. A number of user interface improvements and additional features

were suggested, which highlighted interest in the design tool proposed and suggested

vi

that the combination of game analytics and early stage game prototyping is indeed a

viable solution to achieve better level design.

Keywords: data visualisation, game balancing, game prototyping, game telemetry,

level design, level editor, visual analytics

vii

TABLE OF CONTENTS

INTRODUCTION ..1

BACKGROUND AND LITERATURE REVIEW ..3

METHODOLOGY ... 12

Objectives ... 12

RESULTS .. 18

DISCUSSION .. 21

CONCLUSION AND FUTURE WORK .. 24

APPENDICES .. 29

APPENDIX A User Manual ... 30

APPENDIX B Accompanying CD .. 33

APPENDIX C User Test 1 Protocol .. 34

APPENDIX D User Test 1 Results ... 37

APPENDIX E User Test 2 Protocol .. 40

APPENDIX F User Test 2 Results .. 41

APPENDIX G API Plans .. 42

REFERENCES ... 47

BIBLIOGRAPHY .. 51

viii

LIST OF FIGURES

Figure 1: Analysing a game system step-by-step

Figure 2: Phases of the Knowledge Discovery System adapted to game analytics

Figure 3: Various data visualisation suggestions representing player death

Figure 4: Project development methodology flow chart

Figure 5: Application User interface in Editing (left) and Analytics mode (right)

Figure 6: Data overlay exported from editor for collaboration purposes.

ix

1

INTRODUCTION

With their universal appeal, games are gaining increasingly diverse audiences, and the

market is continually expanding. Demographic groups previously alien to them, now

provide the biggest market for some games, together with new mechanics, platforms

and business models. This poses a set of challenges to developers, who now need to

cater for vastly different play styles, skill levels and budgets often simultaneously. In

doing so, evaluating user experience and balancing the game becomes increasingly

important.

Level design is a fundamental part of most games’ design. Creating levels is often an

iterative process of continuous testing and tweaking to make sure it’s enjoyable and

challenging enough for players with widely differing proficiency and expectations.

This iterative process usually relies on verbal feedback only, if any at all, regarding

the flow of the level, there is rarely any objective data involved. Recording key events

and information during test sessions can reveal problems and opportunities that would

otherwise go unnoticed.

While the concept of game telemetry and analytics exists and many companies rely on

it to help improve their titles, it is often not utilised until after the game has been

released to the public. This approach is therefore more reactive, trying to determine

influential trends or balance issues after production is complete. This has some

advantages such as the vast amount of data generated from the play sessions of every

player, which is excellent for finding patterns and information hidden beneath the

surface. However if a major flaw or underlining design problem arises, it can be very

costly to fix, if at all possible. Instead, a more proactive solution is proposed where the

gameplay analytics are packaged with the prototyping and design tools, allowing for

data collection to be carried out during the conceptualisation phase, before finalising

the design during production. This has the potential to reduce costs and increase the

quality of the final product.

2

Research carried out in the area is summarised in the Background and Literature

Review section of the Dissertation.

Based on the above, the project’s primary research question is:

What are the effects of integrating the collection and visualisation of game analytics

into a game prototyping tool to facilitate early game balancing and quick iteration

of level design ideas?

In order to answer the above question the following objectives were identified:

 Develop a simple game level editor including basic platformer elements. Focus

on the user experience and usability of the tool by directed user testing to

ensure crucial features are implemented.

 Identify the metrics to be logged, most useful for level designers, together with

the most appropriate visualisation techniques for each.

 Create a simple API responsible for recording the list of metrics determined as

well as calculating and rendering the visualisation overlays using the data

collected.

 Through a set of user tests, evaluate whether the analytics tool succeeds in

highlighting design flaws early on in development while assessing its usability.

 Finally, analyse the effect of combining prototyping, design tools and visual

gameplay metrics in a single editor. Examine the availability and need for such

a solution.

For the purposes of this project, a simple two-dimensional level editor, aimed mostly

at the creation of platformer games, was created. The platformer genre was chosen for

its popular yet simple core mechanics and universal appeal that satisfy the main

objectives of the research carried out. On top of the editor, a small, basic API is

responsible for the collection of player data, the creation of various game metrics and

the visualisation of this information.

The development process is detailed in the Methodology section with findings based

on test sessions and conclusions drawn can be found in the Results and Discussion

sections respectively.

3

BACKGROUND AND LITERATURE REVIEW

Computer games have developed considerably since their creation some 40 years ago.

They have grown from a predominantly niche pastime for children, to an experience

embraced by a much wider audience and an industry larger than Hollywood. Today’s

games offer photo-realistic 3D graphics, vast open worlds and new, revolutionary

ways of interacting with virtual environments. With these vast technological

advancements, the focus has shifted from improving realism to adding deeper levels

of immersion and making games available and accessible to a wider audience. This

means that games now have to satisfy many different types of gamers. From hard-core

players, who grew up playing games, are very comfortable with the way games work

and who are looking for challenging fun, to the new wave of gamers who are new to

this medium and prefer a more casual experience. According to Richard Bartle’s

character theory on gamer psychology, people enjoy playing in a number of different

ways (Bartle, 1996), but whether interacting with players or acting on the world, one

thing all players across the spectrum want is deeper, more immersive experiences.

Immersion in games is best described by what psychologists call “spatial presence”

which exists when “media contents are perceived as real”, such as gamers feel

spatially located in the game environment (Madigan, 2010). According to Wirth’s

theory (Wirth et al., 2007) this happens in three steps:

 First, the player forms a representation of the game world in their mind, based

on visual and audio cues in the game, combined with any assumptions they

might have about the game and its world.

 The player begins to favour this game world as their primary ego reference

frame (point of reference for “themselves” and where they “are”)

 Spatial presence (immersion) is created.

4

Some important factors are needed in order to create and maintain immersion. The

game itself should contribute to creating a rich mental model of its environments by

using multiple channels of sensory information (e.g. audio cues supporting visual

events), involving a strong, interesting plot, and making sure there are no large gaps in

the mental model. Consistency is just as important for maintaining immersion, as

providing a rich background is for creating it.

It quickly becomes evident that complex, immersive experiences have to be designed

from the ground up; it’s not something that can be easily added onto the project at the

end of development. Therefore it’s key to focus on the natural flow and balance of a

design from the start. Design is “the process by which a designer creates a context to

be encountered by a participant, from which meaning emerges” (Salen and

Zimmerman, 2004) and level design in particular plays a great role in establishing

spatial presence as discussed above. A well designed level or game map is a powerful

tool in the developer’s repertoire that allows them to manipulate what the player

thinks or does by influencing where they look while maintaining the player’s sense of

control and thus, immersion. (Schell, 2008). However achieving this requires

balancing and just like the fun factor of the core mechanics, level design has to be

prototyped, assessed and iterated upon as well. This process can be greatly enhanced

by design tools, such as level editors that enable developers to create and edit levels

faster and with easier.

Prototyping is the “approximation of a system and its components in some form for a

definite purpose in its implementation” (Chua et al., 2003). It is a process of taking a

complex and often incomplete idea, and simplifying it until only the core, most

important aspects remain. This way all attention can be focused on perfecting the base

that the rest will be built on. When prototyping games this can mean anything from

using simple primitives to block out the level (e.g. BSP Brushes in the UDK),

dropping a dimension for simplicity (e.g. 2D prototypes) or going straight back to pen

and paper to create a greatly simplified but potentially powerful proof of concept

paper prototype.

Another type of design tools that prove to be very useful in game development is

game telemetry tools. Game telemetry is the collection of game development or

research data that is operationalised - turned into game metrics, interpretable,

5

quantitative measures of attributes of objects, extracted from raw telemetry data

(Drachen, 2012). Games are often considered to be a “collection of interlocked

systems” (Salen and Zimmerman 2003). A game variable tracks any change in the

game systems as a result of a player interacting with the system or game (Canossa,

2013).

Quoting the trailer for the game Watch Dogs: ”You are no longer an individual, you

are a data cluster bound to a vast global network” (Ubisoft, 2012). This quote

describes well how users are seen during data analysis – clusters of data containing

attributes of a certain object, which is in turn connected to the larger network formed

by the game and its community. The main goal of games is to deliver specific user

experiences, and the ability to analyse user interaction proves to be the best source of

information for determining the success of a game’s design delivering an engaging

experience (Medlock et al. 2002; Nacke and Drachen, 2011).

Data collected can be categorised into three types: user or player metrics, performance

metrics and process metrics (Mellon, 2009). While the latter two focus on the

performance of the software infrastructure behind games, or the actual process of

Figure 1: Analysing a game system step-by-step (Drachen et al. 2013 p. 265)

6

game development respectively, player metrics generally focus on the way people

interact with the game system, its components and other players, i.e. focusing on in-

game behaviour. Player metrics will be the focus in the following discussion.

Concentrating on gameplay metrics – measuring player behaviour and providing the

most important information when evaluating game design and user experience – user

metrics can be further classified into generic metrics that apply across all digital

games, genre specific metrics and game specific metrics (Drachen et al. 2013). It is

accepted that game metrics can be recorded during all phases of game development as

well as following launch (Isbister and Schaffer, 2008; Lameman et al. 2010).

User gameplay metrics can mostly fall into two broad categories: temporal (i.e. time

based, such as time spent on each level segment) or spatial (i.e. location based, such as

where most players died) metrics. Spatial analytics can be especially useful, as they do

not reduce the dimensions of the game metric data, but rather deal with the actual

dimensions of play, providing insights otherwise unobtainable (Drachen and Schubert,

2013). Spatial analytics also allow for the visualisation and analytics of multiple

variables at once by overlaying them, highlighting how these features interact with

one another. There are a number of strategies for tracking user data. Frequency-based

telemetry records data following a specific frequency. Event-based telemetry

(implemented in the project presented) logs information every time a pre-specified

event occurs. This ensures data is only being sent when something important happens

(Drachen et al. 2013). What metrics are recorded at each event can also be tailored for

each event allowing bandwidth and storage space to be saved with a well designed

system. In either case, the total amount of data recorded and therefore the cost of

analytics can be reduced by sampling data – selecting a small subset representative of

the entire dataset, or its behaviour in the case of game telemetry (Gagné et al. 2013;

Han et al 2005).

When looking to answer a specific question, it is important to track the right

information. Metrics can be a powerful aid in decision making: strategic analytics

focus on how the game should evolve in the long run based on player behaviour, while

tactical analysis is used for shorter term decisions, such as testing a new game feature.

When deciding on the set of metrics to be monitored, there are a number of issues to

consider. These include usage – deciding on the questions before beginning

7

implementation; integration time – early integration is essential or data storage

requirements (Santhosh and Vaden, 2013), but one of the most important issues is

balancing cost and benefit. The economic concept of Diminishing Marginal Returns

applies to game analytics as well (Kim et al. 2008). Selecting the right features to

track will yield great results however after a certain point, adding extra variables to

track only increases the size of the dataset, thus increasing noise and the cost of

analysis without providing any new relevant insights.

The Knowledge Discovery System is a method widely used in data-driven analytics in

order to discover useful knowledge from that data. The system starts off with attribute

definition, determining the aims and objectives of the analysis, before performing data

acquisition. Following software instrumentation – preparing it for data collection

(Fields, 2013) - the data is then loaded into a database or similar, more accessible

structure during the pre-processing stage. Metrics can now be developed, transforming

raw data into variables or more complex features to track. Analysis and evaluation can

now be carried out, visualising the knowledge gathered to enable easier

comprehension. The knowledge is then presented and deployed to the appropriate

stakeholders through reporting and knowledge deployment (Larosse, 2004). The game

analytics process can be observed to follow the same cyclic iterative approach

(Larosse, 2004; Witten et al. 2011). Stakeholders of game analytics can include a

number of disciplines from producers, marketing managers or even the players

themselves, however the focus in this dissertation is placed on game designers and in

particular, level designers, who are responsible for creating the game world and its

mechanics. Designers will often formulate specific hypotheses that require

confirmation to fine tune and balance the game elements (Drachen et al. 2013).

Analytics provide a great way to fine-tune player experience. Below is an image

displaying all steps involved and highlighting the system’s cyclical nature.

8

Data collected can then be processed, analysed and represented in a number of

different ways, the most widely accepted method being visual representation, which is

the most natural, easy to understand and therefore most useful for communicating

information (McCandless, 2010). According to Norretrander, the human brain is

capable and used to processing an immense amount of visual information, much more

than any other sensory information. If the bandwidth of human senses were converted

to computer terms, visual data would be sent to the brain at a rate of 1250Mb/s,

compared to touch at 125Mb/s or smell at a mere 12.5Mb/s, not to mention taste at

around the throughput of a pocket calculator (Norretrander, 1999). Information

visualisation is therefore accepted to be the most comprehensible way to represent

information and the popularity of data charts and info-graphics supports this

statement. This approach is known as “visual analytics” and can be defined as the

“science of analytical reasoning facilitated by interactive visual interfaces” (Thomas

and Cook, 2005).

There are currently a number of telemetry tools used by games companies, mostly at

the end of the development cycle or post production during the lifecycle of the

Figure 2: Phases of the Knowledge Discovery Process adapted to game analytics

(Drachen et al. 2013 p.36)

9

finished product. Visceral Games’ Data Cracker (Medler, 2011) monitors player

behaviour in their game Dead Space 2 (Visceral Games, 2011). Microsoft’s TRUE

(Kim, 2008) combines telemetry measurements with monitored test sessions,

interviews and user surveys in order to achieve a greater understanding of player

behaviour and expectations. Both of the tools mentioned collect this data post-release,

after work on the game has been completed and it has been shipped to customers.

However access to this information early on in development can reveal pattern and

trends that can prove extremely useful during the design and balancing phase.

Bioware’s SkyNet (Zoeller, 2010) focuses on developers’ behaviour rather than

players with built-in bug tracking, software metrics and a social portal for developers

to engage with the project and each other. This is a good example of using data

analysis as part of the development and production process. Similarly the in-game

visualisation and analytics tools described by David “Rez” Graham at GDC 2012 in

his talk on the tools used during the development of The Sims Medieval (EA, 2011)

highlight the importance and applicability of similar implementations at an early stage

(Graham, 2012). Perhaps one of the best examples for visual data analysis during the

concept phase is shown by Bret Victor during his talk “Inventing on Principle”, where

he demonstrates a game design tool capable of recording gameplay data in a way that

- combined with interactive, runtime tweaking of gameplay variables - the application

continuously visualises the effects of modifying gameplay variables – e.g. change in

the player’s jump projectile path as a result of modifying jump height or gravity

(Victor, 2010).

The project discussed in this dissertation was developed with the aim to bring these

two powerful tools together and assess their utility in game prototyping and their

influence on a project.

Data is often complex and multi-dimensional, which creates a design challenge in

itself when creating tools dealing with it (Shneiderman, 2005). In order to provide

useful and comprehensible tools, it is therefore key to allow the data to be explored

and examined from different perspectives. Shneiderman talks about an information

visualisation mantra which should be at the core of every system designed to convey

and communicate information: “Overview first, zoom and filter, then details on

demand”(Shneiderman, 2005). This clearly highlights the significance of user control

10

and the recursive nature of the process, filtering and relating information while

digging deeper down to the smallest details. Without this freedom, the user loses her

power to understand data through exploration or gain valuable insights from nuances

that the “big picture” might not reveal. The architect Christopher Alexander described

an unusual method for designing space– plant grass and examine where people have

worn paths by themselves after a year, only then start building (Alexander, 1977).

This is what level designers can achieve through the power of early stage player data

visualisations – natural player patterns can be highlighted and the level or game can be

designed around the instinctive behaviours of the players, rather than forcing them to

adapt to the artificial game world, creating more believable and immersive

experiences.

Developing a tool that combines the idea of early prototyping and visual game metrics

has a number of challenges including the design of a clear, intuitive user interface that

is useful for and usable by developers from different backgrounds, and also the

understanding of game and level design so the metrics collected and the way they are

visualised provide useful information for the development team.

The first challenge can be addressed by relying on Nielsen’s user heuristics (Nielsen

and Molich, 1990), of the following:

1. Visibility of system status – keep users informed on what’s going on.

Appropriate feedback within reasonable time.

2. Match between system and real world – use natural words and concepts

familiar to user. Follow real world conventions.

3. User control and freedom – provide a clear „emergency exit” for users to

resolve mistakes. Support undo-redo.

4. Consistency and standards – follow platform conventions, make sure user

understand what each action means.

5. Error prevention – eliminate error-prone conditions or ask user for

confirmation before committing.

6. Recognition rather than recall – make actions and options visible, don’t rely on

user remembering information from another part of the program. Make user

instructions easily accessible at any time.

7. Flexibility and efficiency – optional accelerators can help experienced users be

more efficient while novice users can still utilise the application.

8. Aesthetic and minimalist design – Display the minimum amount of

information needed to avoid cluttering the screen.

11

9. Recognize, diagnose and recover from errors – error messages should describe

the problem and suggest a solution.

10. Help and documentation – if documentation is necessary, it should be easy to

access, search and should be informative.

Then, according to Rouse (Rouse, 2005), a game design tool must:

 Allow the designer to view the level from the player’s perspective

 Allow the designer to test out changes without delay

 And display additional information otherwise invisible

Schaffer discussed a different set of heuristics, focusing on balancing gameplay rather

than software usability (Isbister and Shaffer, 2008). A number of them are highly

applicable to design and gameplay analytics and are concerned about the following:

 Whether the game provides clear goals,

 Whether challenges, strategy and pace are balanced, and

 Whether the game stagnates or includes boring, repetitive tasks.

In order to help determine the answer to the above questions, visual game analytics

can be extended with a number of additional techniques to provide more information

for the developers. While analytics are an excellent source of objective data and

metrics are fast to analyse, leaving more time for results to be processed, a single

source of information is often not enough to make a fully informed design decision

(Guardini and Maninetti, 2013). Two powerful additions to game feature analysis

include collecting subjective feedback during or after play sessions, using surveys,

questionnaires, simple comment boxes or interviews. This enables the developer to

gain insight into how players react in reality and how that compares to assumptions

based on the metrics alone. Similarly, collecting video data – recordings of the screen

or the player throughout the session – can highlight player reactions analytics would

not detect or players are not consciously aware of. It can therefore be seen that it most

cases it can be very beneficial to rely on more than one source of user information to

obtain a more detailed, refined view.

12

METHODOLOGY

In order to evaluate the utility and the role of analytics and information visualisation

in game prototyping and balancing, a number of steps were required, detailed in the

case study below. The steps were determined by the aims and objectives of the

project. In the following, the project’s objectives are recited and the ways in which the

completion of each of these objectives was ensured, is reflected upon.

Objectives

1. Implement a game prototype editor that enables developers to easily create custom

2D levels, add basic platforming game elements (e.g. collectibles or enemies) and

test them rapidly;

2. Identify a system of gameplay metrics most useful when designing and balancing

a level for a 2D platformer game;

3. Compare different visual representations (e.g. heat map versus graphs) and isolate

the most appropriate for each metric;

4. Develop a simple API for collecting metrics within the game code by placing

“hooks” for recording information;

5. Add a visualisation layer to the editor that will communicate various data

collected;

6. Evaluate the utility and user experience of the analytics tool and whether it

effectively highlights design flaws early on;

7. Analyse the effect of combining prototyping and design tools and visual feedback

on gameplay metrics in a single editor.

8. Construct conclusions and justify the need for such a tool.

Although a number of prototyping tools and game engines are readily available and

could have been extended instead of spending time on developing a new solution from

scratch, these already existing tools would have involved a unique learning curve with

13

limitations in the ease of use and extensibility that are hard to predict. Pre-existing

tools that are often released for commercial use are very large and robust pieces of

software and there is a chance that the simplicity of, and control when evaluating the

project cannot be ensured amongst the myriad different factors and features on offer.

Besides the above, a basic version of the level editor built during the development of a

prototype game prior to this project, served as an optimal starting point to build upon

and extend. These two arguments provide a good reason why a custom editor was

created for Objective 1. The project was built in C# using the XNA framework. The

project developed, an extended version of a simple 2D drag and drop level editor,

primarily focused on the prototyping of platformers, mainly includes improvements

relating to design and usability when compared to the aforementioned tool it’s built

upon, as well as the entire presence and implementation of the visualisation API

detailed below. The main goal and most important point to keep in mind when

working with and extending an already existing program was to transform it from an

internal development tool, where bugs and poor user interface will unfortunately often

be disregarded, to a tool that’s more suitable to deal with the demands of a wider

public user base. However the main focus of this project was on exploring and

understanding the power and correct use of analytics in prototyping, so it was

important to keep the development of the editor relatively short and simple.

The next significant part of the project was to determine a set of metrics that would

prove to be the most informative and essential to the developers (Objective 2-3). The

initial list was developed through research into existing data analytics solutions for

games discussed in the Literature Review and it was extended upon through user

evaluation and testing sessions. These sessions took place half way through

development and included the assessment of the user-interface and the quality of user

experience. Five participants, from various development disciplines including

designers, programmers and artists, were shown the editor’s interface for the first time

with 5 minutes to explore and familiarise themselves with the basics. They were then

asked to complete an array of simple tasks, ranging from placing a single level

element, through editing collision data and game elements to interacting with data

visualisations. The participants were asked to think out loud as they were performing

the tasks in order to gain valuable insight related to the flow of the application and any

14

potential design flaws. A set of usability heuristics were used to ensure focus on key

design areas and provide structure to the assessment. This proved to be an invaluable

exercise and ensured a number of improvements and tweaks were made in order to

enhance the tool, such as redesigning the physics ledge palette and adding hint

bubbles over UI elements explaining their function to the user. A number of additional

tweaks were suggested that unfortunately did not fit into the scope and focus of this

project; however they will be considered for future work and discussed in a later

section.

In addition to the hands-on user tests, a questionnaire was also developed, focusing on

the information and metrics to be collected and the ways to visualise them. This was

handed out to the candidates during the test session as well as sent to additional

participants online. The survey consisted of a list of possible metrics, asking for the

ones deemed the most important to be marked, as well as a section of images with

each type of metric being visualised in at least two distinct ways and asking for the

most natural and clear representation to be marked for each. The simple, multiple-

choice nature of the questionnaire allowed for the easy involvement of participants

online and so access to a larger amount of data, Combined with the in-person, more

detailed interviews, this contributed greatly to finalising the list of metrics.

Below are the example images shown of various data visualisation propositions for the

“player death” metric. The detailed protocol and questionnaire used in these

evaluation sessions can be found in Appendices C and D.

 Figure 3: Various data visualisation suggestions representing player death.

From left to right: heat map, pie chart, data point visualisation

15

The final set of metrics to be collected and visualisations to be created, determined by

the above procedure is the following:

 Data point overlay for player deaths (including location and cause)

 Data point overlay for players waiting longer than 10 seconds without

interaction, suggesting they might be stuck and highlighting potential

problematic locations. Add data point overlay for locations where players quit.

 Bar chart displaying how long players spent on each level segment.

 Bar chart displaying the number of players reaching each level segment.

 Data point overlay of all collectible items showing their type and how often

they were collected/found by players

 Additional comments included requests to:

o Allow multiple filters and overlays to be combined in order to

understand data and any connections better

o Allow for the information visualisation to be rendered to and external

file for easy sharing.

These additional suggestions were also taken into account when developing the

application.

Once the above list was determined, an application programming interface (API) was

required to serve as a communication layer between the developer wanting to extract

information from the game prototype, and the underlying program. The API forms the

core of the project and can be regarded as the most important part which is being put

to a test through using all other building blocks. Key considerations included the need

to make the API in a way that allows for flexibility and for it to be used within

different environments with minimal tweaking in the future.

The API was designed with simplicity in mind that would allow for the focus to be

placed on implementing the various visualisation techniques and not making

information handling too complex. The API consists of a number of functions that act

as hooks in the main code base and can be triggered every time an important event

occurs, such as the player dying, quitting or completing the level. At each event the

values of a set of important variables are recorded, including player coordinates in the

game world, play time elapsed as well as the type of event that triggered the

16

recording. This information is simply stored in a log file which makes the handling of

the stored data much more straightforward at the cost of being less flexible and easy to

expand. For the scale of the project, implementing a database system was considered

unjustified and out of the scope planned. The data collected throughout the play

sessions could then be analysed to acquire different metrics and render appropriate

visuals for the user. The API design document used to get an initial understanding of

the requirements of implementing an API, can be found in Appendix G.

At this point, after implementing the API and the functionality for visualising data, the

implementation phase of the development cycle was essentially completed and focus

could be moved to testing and evaluation, Objectives 6 and 7. After the tool was

completed to a satisfying level, another set of user test sessions were run. The same

group of volunteers who participated in the first test were invited back, as they were

able to provide a user perspective on how the tool evolved during its development and

were already familiar with the basic user interface, which sped up the process. The

structure was similar to that of the first session, however this time the participants’

task was to edit a game level based on visual data provided by the application,

prepared prior to the tests. This was a useful exercise as not only did it prove whether

the tool is usable or not, but it also showcased the comprehensibility and clarity of the

visuals and their effect on the design process. After the evaluations, a set of interviews

were performed where participants were asked for feedback on the usability and user

experience of the program as well as their opinion on the advantages or disadvantages

of combining visual analytics and development tools.

These test sessions showed a very positive attitude towards the project and suggested

a similar solution would be a welcome addition to designers’ repertoire. Users reacted

positively to the user experience changes implemented in response to their feedback

before and considered the project to be more “user friendly” and “commercial

looking” as a result. Unaware of commercially available packages providing a similar

service, the majority of designers said they rely on personally playtesting their

creations when iterating on the design. This posed the problem of subjectivity and lack

of factual data or range of experiences when trying to balance gameplay. The solution

proposed, including built-in analytics, was considered to be a very useful addition to

17

traditional level design practices and a clear improvement over balancing through

playtesting alone.

The protocol for and results of the final test session can be found in Appendices E and

F. Below is a summary of the development process of the project from concept

Objective 8 serves as the main aim for this dissertation and will therefore not be

discussed in greater detail in this section. The findings and final conclusions of the

evaluation process can be found in the sections below.

Figure 4: Project development methodology flow chart

18

RESULTS

Evaluating the project has produced a number of intriguing results, starting from the

first set of user testing evaluating the user experience, carried out during the end of

February. Setting up an early test session was beneficial for a number of reasons. The

early timing fit in better with the workload and schedule of test candidates, game

development student at University, who were therefore much more focused and tried

hard to provide useful feedback during sessions. The timing also allowed for feedback

early on in the development, ensuring the project was on track and development was

directed on the correct features.

The first round of testing focused primarily on the usability of the application and

improving the user experience, ensuring it has an intuitive user interface that assists in

enhancing productivity. Individual sessions of around 30 minutes in length were

carried out with a total of six candidates from a range of game development

disciplines including design, art and programming. A combination of task based hands

on sessions, interviews and questionnaire based discussions resulted in valuable

conclusions. Test candidates rated the intuitiveness and clarity of the initial user

interface an average of 4 out of 5, which shows that the planning and research while

establishing these standards was successful, providing a good basis to build upon.

Suggested alterations and feature requests were then compiled into an ordered list of

“needs” and “wants” based on the importance of implementing the change, creating a

route map for further evolving the project. Items such as enhancement of level

element and physics ledge highlighting or tool description boxes appearing when

hovering over most UI elements were considered a crucial addition.

The first round of testing was therefore considered to be very successful and yielded a

great amount of excellent feedback. However some suggestions were outside of the

scope of the project or were considered to have too small a margin of return. Features

suggested that were not implemented include the ability to add custom assets with

19

ease or the scaling and rotation of individual elements. These will be discussed in the

Future Work section of the dissertation.

At the end of development, a second round of user testing was carried out using three

of the original six candidates, this time focusing on the opinion of the designers, the

primary target market for the tool. The second stage of testing aimed to measure the

perceived utility of the finished project, evaluation whether the right feature choices

and design decisions were made and to determine its limitations in its current form.

The general feedback received included an overall satisfaction with the user

experience improvements implemented in response to the first round of testing and

highlighted the lack of a similar solution readily available for developers. All

candidates admitted to lacking the tools to objectively playtest and balance a level and

agreed that the proposed concept could provide a better solution and would be a

welcome addition to traditional level design practices.

The prototype developed has evolved significantly over the course of the project.

While implementation started with a set list of features to be included, specifications

were kept flexible to allow for a more iterative approach to development resulting in a

more user friendly application. Based on feedback gathered from users, the final level

editor allows the user to build a 2D platformer game level using a set of level elements

provided, which can be placed on one of four layers corresponding to background

elements, foreground elements and the active layer in between that the player interacts

with. A separate scale value and scroll speed was assigned to each of these layers to

create a parallax scrolling effect adding depth to the scene. As well as level elements,

the user can also draw physical collision ledges for the player to walk along on,

allowing for a more natural, organic path through the level, completely in the

designer’s hands. Additionally a few core platformer game elements, such as

collectible gems, enemies and checkpoints were also included for the designer to place

in order to create very basic gameplay in the levels. The editor also features common

functionality one would expect from such a tool including the ability to undo and redo

actions, save and load different levels and keyboard shortcuts for most actions to

improve productivity.

20

Besides the level editor, the application includes a Play Mode, allowing the user to test

the level while editing it without leaving the editor and the Analytics Mode which

displays all the various visual data overlays created using the metrics collected by the

data API during the play sessions. The Analytics Mode provides an interface allowing

the user to toggle the display of individual metrics in order to focus on getting exactly

the information needed as well as the ability to take screenshots of the screen for

future reference, documentation or discussing it with the team.

The final set of metrics collected includes:

 Locations and reasons players died,

 Locations players were idle for longer than 10 seconds or quit the game, which

could signify frustration,

 Metrics regarding how often gems were collected or enemies were killed,

 Metrics regarding how many players completed each level segment

(determined by checkpoints) and how long they took to do so, on average.

Figure 5: Application User interface in Editing (left) and

Analytics mode (right)

21

DISCUSSION

Results compiled from the findings of the user evaluation tests confirm that gameplay

metrics and analytics can indeed be introduced at the prototyping and design stage of

game development and doing so has the potential to increase user productivity.

Traditionally designers rely on playtesting their own creations when trying to find the

best solution, which highlights the problem of unavoidable bias and subjectivity,

interfering with a project reaching its full potential. Developers who have been

working on a project from the beginning behave in a way they expect future players to

behave, which is however often far from reality. This difference in turn makes it really

easy for developers to overlook problems obvious to players. By collecting and

displaying quantitative data in an easy to understand, visual manner, design flaws and

imbalances are easier to identify and correct earlier on. Test candidates agreed that the

proposed solution would be a welcome addition to existing developer tools as even in

the case of personal, iterative playtesting only, the statistics and information gathered

can highlight patterns otherwise unobserved by the developer. This would result in a

higher quality product being produced in less time, reducing cost and allowing

developers to focus more of their resources on creating more content or fixing more

important problems.

Potential dangers of using the proposed tool include fixating too much on the data

collected and trying to make it perfect. The player base for games is not homogeneous

and there will always be data logged that doesn’t seem to fit the pattern or appears to

be out of place. It is important to keep in mind that the goal is not to eliminate the

possibility of the player failing and not all hotspots of players dying or spending a bit

too long need resolving. After all games are supposed to be challenging and the above

would achieve the opposite. There might be a learning curve involved in getting

developers accustomed to having the additional information on hand, but also in

making sure not to enter endless iteration or allow feature creep to happen.

Moreover, while analytics can provide invaluable information even when simply

continuing with the tradition of internal playtesting only, the real value is revealed

22

when a large amount of data is collected from a wide spectrum of realistically

behaving players. While user testing sessions and beta tests are part of most games’

development cycles, they are usually carried out much later in the process, towards

project completion. The reason for this is the organic nature of game design which is

almost guaranteed to evolve and often change significantly throughout its

development. It can be considered expensive to organise test sessions when the results

might not reflect the game’s final state at all. It is therefore a matter of balancing the

cost and effort of arranging user tests against the value the analytics gathered would

bring to the project and its longer term implications on the game’s direction.

There are also a number of ethical considerations to account for when working with

game data and player telemetry. With the current technology and solutions available,

highly detailed patterns can be discovered using the data collected and combining this

knowledge with information gathered from personal data forms means accurate

personal profiles can be constructed. These databases are confidential in nature, but

their high value means there is a risk of the information being accessed or used

illegally. This risk can be reduced with the establishment of standard regulations

regarding data collection in games and allowing players to opt out of sharing their

information if they wish to do so.

Answering the original research questions:

What are the effects of integrating the collection and visualisation of game analytics

into a game prototyping tool to facilitate early game balancing and quick iteration

of level design ideas?

The solution proposed and investigated includes the implementation of a simple 2D

level editor with an integrated playtesting mode allowing the user to carry out testing

without leaving the editing environment. The tool also collects data automatically

during these test sessions and uses it to render visualisations of the various metrics for

the designer to explore. Hands-on testing carried out at multiple stages of the project

focused on maximising the utility of such a tool while creating a highly accessible

user experience. While the scope of the project was restrained by limitations in both

time and resources, user opinions suggest

23

The project was developed using C# and Microsoft’s XNA Framework (Microsoft,

2010). XNA is a powerful tool for creating cross-platform games, hiding much of the

lower level feature implementations such as the game asset pipeline and taking care of

platform differences automatically when porting games to various platforms. It

provides a great amount of assistance in setting up the basic environment quickly and

cheaply, yet exposes enough of the framework to allow for much finer control than

commercially available game engines such as Unity. XNA also has a thriving user

community providing great support, which, together with the advantages mentioned

above, made it a really helpful and pleasant tool to work with throughout

development. Unfortunately, in January 2013, Microsoft has announced that they are

abandoning XNA and have “no plans for future versions” of the framework.

While the technology is no longer being developed by Microsoft, applications built in

XNA continue to operate without problem on all platforms it supported, meaning the

standalone application developed remains a working proof of concept and in theory

can still be used to prototype and test simple 2D levels.

Moreover, there exists an open source implementation of the XNA 4.0 framework,

supporting an even wider range of platforms than the original Microsoft tool,

including Mac OS X, Windows 8, Android, iOS and PlayStation Mobile. The

implementation called MonoGame (MonoGame, 2013) is modelled on the same

structure as XNA and therefore provides a viable alternative with minimal effort

required to migrate. This option will be discussed in the Future Work section of this

dissertation below.

24

CONCLUSION AND FUTURE WORK

This document presents research into game prototyping and level design of a 2D game

with platforming elements. User experience and interface design was studied along

with game design concepts and techniques in order to create a simple level editor tool

with basic game elements and editor functionalities. Two sets of user tests were

carried out, the first focusing on the UX design of the editor, ensuring intuitiveness

and clarity of the interface as well as the presence of key features needed by designers

when using such a tool. Perceptions about game analytics were also studied and the

best set of metrics to be monitored was constructed. Based on the feedback received,

the editor was tweaked to be more user-friendly and an event-based analytics API was

implemented to collect and visualise the data. The second set of user tests were then

carried out, concentrating on the overall value of the tool proposed in real-life

development scenarios and its advantages over traditional techniques.

The project yielded positive results investigating the effects of gameplay analytics on

the design and prototyping process. Based on the knowledge gathered and user tests

carried out, a number of future steps, features and improvements are suggested. These

would improve the usability of the editor, provide better design insight or allow for

more flexible data exploration, adding to the value of the tool. The following features

were considered a necessary or otherwise important addition that would increase the

perceived value or usability of the tool to game developers:

1. Port application to MonoGame

As mentioned in the Discussion section of this dissertation, the program was built

using Microsoft’s XNA framework, which was unfortunately abandoned by

Microsoft during the development of this project. While applications creating in

XNA continue to function as usual on all platforms supported by the framework,

the consequences of Microsoft discontinuing support cannot be ignored.

25

As new platforms without XNA support continue to appear and spread, the

currently active user community and will likely decrease in activity and the

excellent library of examples will become obsolete. However there exists an open

source port of the framework, called MonoGame, which offer straightforward

migration of the code as well as more supported platforms. While the standalone

editor is still a functioning proof of concept, porting it to MonoGame would

extend the lifetime and potential user base of the application by being able to

release on and support a wider range of platforms.

2. Implement additional editor features

There are a number of features suggested during user tests that unfortunately did

not fit the scope of the project, however would be an excellent addition to the

editor. They include the ability to scale and rotate individual level elements,

greater control when painting physics ledges including snapping nodes to a grid

system or altering individual nodes after placement.

3. Adding further game features

The current version of the editor includes very basic platformer game elements

such as collectibles, enemies and checkpoints. The quality and relevance of the

application can be improved by adding more functionality to existing elements –

such as enemy AI including attacking – and adding extra elements as well – such

as power-ups or hidden areas.

4. Allow for custom game content to be loaded easily

Implementing an easy to use content package system, where users can easily

create level and game elements to extend the library offered by the current version

would increase the value of the editor significantly. This would enable users to

create any level they envisage while working with art intended specifically for

their game prototype.

5. Change API structure to record appropriate data based on event type

Currently, the analytics API records a predefined set of data every time a tracked

event happens – including player position, ID, time stamp and event flag. In the

current version, most metrics are general enough that data isn’t being wasted, but

there are a few cases where a data-field being recorded isn’t actually necessary for

26

analysing the particular event. Especially with the implementation of a more

sophisticated analytics system where a wider range of metrics are being

monitored, it becomes unfeasible to only record the same, general set of data.

Implementing a system where the type of event triggered would determined what

variables’ values get logged would increase the complexity of the API while

helping reduce the bandwidth and storage requirements of data collection by

recording only the information needed and would therefore reduce the overall cost

of analytics.

6. Allow user to search for information recorded with each metric

The current version of the data visualisation provides limited additional

information apart from the map overlays and extracting specific information from

the visuals can be difficult. The ability to search for and filter data based on user

specifications would enable patterns and connections to be highlighted and

identified more easily.

7. Extend analytics with surveys and video recording

As mentioned in the Background and Literature Review section, the value of

analytics can be extended by relying on more than one source of information.

Including player surveys during test sessions, where subjective information can be

gathered, or video recordings of the screen and the player’s face, which might

reveal subconscious reactions or data otherwise hidden, can significantly increase

a designer’s understanding of how a game or level is being played and

experienced by the player.

In conclusion and to answer the research question initially presented, introducing

gameplay analytics as early in the development cycle as the prototyping stage can

have very positive effects by highlighting implications of design choices and balance

issues previously not visible to developers. While there are a number of analytics

solutions used in the games industry, they are mostly introduced towards the end of

development or post-release. Many developers are not currently aware of a solution

readily available to be integrated with prototyping, but feel there is definitely an

opportunity to be explored in this space. Throughout the project insight was gained

into user experience design and game data analysis techniques that were utilised

27

during the implementation of the test application. A number of data visualisation

methods were tested after the core set of metrics was finalised, to find those most

informative for developers. The application received positive comments throughout

testing which highlighted the favourable relationship between game analytics and

prototype testing at an early stage.

Figure 6: Data overlay exported from editor for collaboration purposes.

28

APPENDICES

30

APPENDIX A

User Manual

Editor

Click to change name

of current level file.
New level file

Load exisiting

level Save current level

Test game in

play mode

Enter analytics

mode
Undo

Redo
Test game in

play mode

Choose editing

mode (level,

physics, game

elements)

Drag and drop

level elements

onto canvas

Current physics

ledge and number

of nodes inside it

Add extra

ledge

Delete ledge

31

Ctrl + N New document

Ctrl + O/L Open/Load Document

Ctrl + S Save Document

Ctrl + Z Undo last action

Ctrl + Y Redo action

Ctrl + Up (▲) or Down (▼) Move between layers

Left (◄) and Right (►) or A and D Scroll level sideways

Game

Left (◄) and Right (►) Move sideways

Up (▲) Jump

Stop game,

back to editor Click to change Player ID

32

Analytics Mode

Save screenshot

of screen as .png

Filter what metrics are

getting visualised by

toggling each option

Exit analytics mode, go

back to editor

33

APPENDIX B

Accompanying CD

CD Contents:

\Application Contains the application .exe

 Any screenshots taken in the editor will also be placed

 here

 \Content\data Contains level saves (.map) and accompanying

 analytics data (.data). These files can be deleted to reset

 analytics.

\Source Contains the project source code and assets

\Dissertation Contains an electronic copy of the dissertation

\Screenshots Contains a number of screenshots of the application

\Video Contains the showcase reel of the application

34

APPENDIX C

User Test 1 Protocol

Goal:

 Usability and user experience feedback – can the user find his way around the application

without requiring assistance? Can he accomplish different tasks in the application?

 Ways to improve UI – are UI elements easy to understand?

 Does navigation work without problems? Does the program flow naturally?

 Are there any limitations that are frustrating or counter productive?
Location: University of Abertay

Time: During the week beginning 25th of February

Duration: Approximately 30 minutes per candidate broken down as follows:

 5 minutes briefing candidate prior to testing, filling out consent form

 15 minutes conducting test based on protocol below

 10 minutes post test interview and debriefing

Tools:

 Laptop – my own laptop will be used during these session, which will allow for everything to

be set up in advance inclusing the application to be tested and any recording software used.

 Consent forms

 Task list and interview questions

Participants: A mix of users that have worked with the editor before – colleagues from 3rd year group

project – and other games students that have never seen the application before.

 Graham Hill (design – has worked with the editor before)

 George Johnstone (art – has worked with the editor before)

 Gregor Fergusson (programming – has worked with the editor before)

 Fraser Clark (design – has NOT worked with the editor before)

 Kayleigh Macleod (art – has NOT worked with the editor before)

 Stuart Milne (programming – has NOT worked with the editor before)

Protocol:
Before test:

Candidate Briefing

 Go through consent form, ensure candidate is fully informed

Pre-test survey

 previous game development experience

 knowledge of prototyping tools

 opinion on visual metrics

 their knowledge of any tools assisting level design

During test:

Tasks
First I would like to focus on the clarity of the user interface and layout. Then move onto

feature completeness and functionaility testing.

”We will begin the test by first looking at the clarity of the user interface – basically

meaning, how easy is it to find your way around it. Please remember that this test isn’t

trying to assess you or your skills, but rather focuses on evaluating and improving the

application. If you get stuck, don’t worry, just talk through the problem, as it only means

that the application isn’t good enough yet.

So let’s start. Please think aloud as you’re performing the tasks as this will help me to see

how you think about the flow of the application.”

 Add a level element to the scene

 Undo your last action, then redo

 Change the depth layer you’re currently editing

35

 Add elements on different depth layers

 Scroll along the level to see more

 Zoom in or out the scene

 Add physics ledges to your level

 Add collectibles and/or enemies to the level

 Rename and save your level

 Load a level called „map1”

 Test your level in „Live mode”

 Exit „Live mode”

Usability heuristics:
1. Visibility of system status – keep users informed on what’s going on. Appropriate

feedback within reasonable time.

2. Match between system and real world – use natural words and concepts familiar to

user. Follow real world conventions.

3. User control and freedom – provide a clear „emergency exit” for users to resolve

mistakes. Support undo-redo.

4. Consistency and standards – follow platform conventions, make sure user

understand what each action means.

5. Error prevention – eliminate error-prone conditions or ask user for confirmation

before commiting.

6. Recognition rather than recall – make actios and options visible, don’t rely on user
remembering information form another part of the program. Make user instructions

easily accessible at any time.

7. Flexibility and efficiency – optional accelerators can help experienced users be more

efficient while novice users can still utilise the application.

8. Aesthetic and minimalist design – Display the minimum amount of information

needed to avoid cluttering the screen.

9. Recognize, diagnose and recover from errors – error messages should describe the

problem and suggest a solution.

10. Help and documentation – if documentation is necessary, it should be easy to

access, search and should be informative.

After test:

Interview

 How intuitive did you find using the application ona scale of 0-5? Can you compare

it to any other application you might have used in the past?

 Rate the clarity of the user interface on a scale of 0 to 5 (0 being very confusing and

unclear and 5 being easy to understand and natural)

 Did you encounter any problems with any of the tasks? What were they? Why do

you think they happened? How would you solve it?

 Do you think a detailed documentation for using this software is required to

understand it? How crucial would it be, on a scale of 0-5?

 What did you feel the best feature of the application was? Why?

 Is there anything you’d like to see added to the application to make it more useful,

easier to use or generally better?

 Would you use an application like this in practice? How do you think it’d help you?

If it wouldn’t be or you wouldn’t use it, why?

Candidate Debriefing

 Remind candidates of the purpose of the study and provide contact details to follow

up and find out more in the future.

User questionnaire – February

Goal: Determine the most easy to understand and intuitive ways to viualise every piece of player/level

metric. Assess the need for different kinds of data.

Participants: Extended, in person session with participants of the UI test session. Game students across

University and friends to fill out the online survey. Aiming to get 10 online participants in addition to
the in-person participants.

Questions:

36

Below are a number of metrics that can be collected during a play session in game, along with images

of visualising the data. Please number the images in order of clarity, starting from 1 for the image that

communicates the meaning of the data in the most comprehensible and natural way that’s easy to

understand.

Player death

 Heatmap of level showing player deaths with continuous colour transition based on

number of players at each location

 Heat map of level showing colour-coded dots at the location of deaths, each coloured

based on the cause of death

 Pie chart of causes of death (eg enemies, falling, traps etc)
Players getting stuck

 Heatmap of level highlighting where players waited longer than 20 seconds, or quit,

with continuous colour transitions based on number of players at each area.

 Heat map of level with colour coded dots, one for each player, colour based on action

that triggered metric (eg. Player quit, waited for 20s+ etc)

Time spent on each level/segment

 Heatmap colour coded based on amount of time spent at each segment

 Bar chart showing the time spent on each level

 Pie chart

Collectibles found

 Pie chart of collectibles found/used/not found in each area/category

 Heatmap

 List of collectibles

Players reaching certain part of level/game

 Pie chart of players reaching end

 Heat map of the level based on how many people got to each section

 Bar chart or number of players reaching each segment of the level

37

APPENDIX D

User Test 1 Results

Candidates: Graham Hill, George Johnstone, Gregor Fergusson, Fraser Clark, Kayleigh Macleod

Hands-on tasks:

 Add ability to reorder elements on a layer (bring them forwards or back)

 Allow element to be selected (remain selected even if mouse isn’t over it) which would then

allow for

o pixel perfect movement with arrow keys
o delete button on UI to delete element

o display an interaction widget/gizmo with rotate/scale/transform

 Scrolling sideways with RMB is not obvious alternatives suggested include middle mouse

button or UI button. First guess was LMB.

 Rename ledges and grid – there’s a confusion with the terms

 Show ledges in every mode (translucent when not in ledge mode) – maybe add toggle

 Add ledges to the list as they are being created to avoid confusion

 Highlight palette item with a border/box and highlight the ledge along with it

 Highlight player layer for adding layers to make it obvious what elements they should

follow/player icon next to layer name

 Cosider allowing right click to finish a ledge and start the next rather than having to click on
the palette

 Allow for editing individual vertices in ledges

 When editing game elements, layers shouldn’t lock, or only middle layer should render?

 Consider rename button/pop up box and/or changing cursor when hovering over editable area

or putting a box around it when editing/pop up dialog

 Saving and loading confusing, all dialog popup after buttons are clicked

 Ability to import own assets

 Consider STOP button instead of PAUSE, or both with different effects

UI intuitiveness –4, 5, 5, 4, 4

 Intro tutorial/walk though would be useful, pop up bubbles

 Seach bar for finding asets would be very useful

 Include a physics attribute editor for changing gravity, speed etc values

 Element manipulation gizmo for scale/rotate/translate

 Lock vertical scroll in editor as it’s confusing and barely used – maybe allow control with

keyboard but not with mouse. Or switch scrolling to keyboard entirely?

 Collision editing is not the best, needs SHIFT+click to draw straight lines at 0/45/90 degree

angles.

 Level elements could snap to each other so no gaps occur

 Show a frame around starting game camera view

 Show a preview window with live scales

 Show character size for reference

 Add a grid for measuring

UI clarity – 4, 4, 4, 4, 4

 Change UI button colours to stand out more

 Label the layer the player is going to be interacting with clearly

 Change names of game elements and physics objects

 Make editing mode dropdown menu bigger/more obvious

 Indent Palette elements so that they line up with dropdown box (elements start under

dropdown box arrow)

38

 Add an additional indentation to the dropdown menu – e.g. gameplay elements –enemies and

gems or physics – grid and ledges

 Documentation needed for importing assets

Data visualisation techniques –

 Player death

o Heatmap+pie chart

o Heatmap+datapoints

o Heatmap+Datapoints, Pie chart with further drill down

 Players getting stuck

o Heatmap + datapoints or heatmaps but only at non-zero areas

o Heatmap – but colours can be confusing – is green the most common path?
o Heatmap for time waited + datapoints where they quit + display actual wait times

o Heatmap+points where player quit

o Heatmap(without zero data)+points

 Time spent on each segment

o Bar chart

o Heatmap + bar chart (make sure that any anomalies on bar chart are representative of

difficulty, not the length of the area)

o Heatmap+Bar chart

 Players reaching each segment

o Heatmap

o Heatmap+barchart
o Pie chart, heatmap

 Collectibles found

o Datapoint overlay

o Datapoint overlay – colour based on regularity of gem found + shape based on

additional metric?

o Datapoint overlay – also show what type the gem is to give information on why it

was/n’t reached – difficulty v. value

 Additional comments

o Allow combining multiple filters for multiple overlays

o Allow players to write comments

o Export visualisation images to external files for easy sharing
o Render only player layer for data vis to avoid confusion

Quotes –

“Data visualisation makes it much easier to understand information and would greatly enhance

productivity”

“A tool like this would eliminate bottlenecks and streamline development by enabling designers to

create the level on their own while programmers can focus on other tasks”

“The tool makes it really easy for people with no coding knowledge to mock up a level on their own

and test an idea without any problems”

“The ability to see the level as a whole and receive player data is an excellent way to improve design”

Ordered feature list:
Needs:

 Indent Palette elements so that they line up with dropdown box (elements start under

dropdown box arrow)

 Rename ledges and grid – there’s a confusion with the terms

 Show ledges in every mode (translucent when not in ledge mode) – maybe add toggle

 Highlight palette item with a border/box and highlight the ledge along with it

 Highlight player layer for adding layers to make it obvious what elements they should

follow/player icon next to layer name

 Consider rename button/pop up box and/or changing cursor when hovering over editable area

or putting a box around it when editing/pop up dialog

 Consider STOP button instead of PAUSE, or both with different effects

 Lock vertical scroll in editor as it’s confusing and barely used – maybe allow control with

keyboard but not with mouse. Or switch scrolling to keyboard entirely?

 Add a grid for measuring

39

 Change UI button colours to stand out more

 Make editing mode dropdown menu bigger/more obvious

 Tutorial bubbles

Likes:

 Add ability to reorder elements on a layer (bring them forwards or back)

 Allow element to be selected (remain selected even if mouse isn’t over it) which would then

allow for

o pixel perfect movement with arrow keys

o delete button on UI to delete element

o display an interaction widget/gizmo with rotate/scale/transform

 Scrolling sideways with RMB is not obvious alternatives suggested include middle mouse

button or UI button. First guess was LMB.

 Add ledges to the list as they are being created to avoid confusion

 Cosider allowing right click to finish a ledge and start the next rather than having to click on

the palette

 Allow for editing individual vertices in ledges

 When editing game elements, layers shouldn’t lock, or only middle layer should render?

 Saving and loading confusing, all dialog popup after buttons are clicked

 Ability to import own assets

 Intro tutorial/walk through would be useful, pop up bubbles

 Seach bar for finding assets would be very useful

 Include a physics attribute editor for changing gravity, speed etc values

 Element manipulation gizmo for scale/rotate/translate

 Collision editing is not the best, needs SHIFT+click to draw straight lines at 0/45/90 degree

angles.

 Level elements could snap to each other so no gaps occur

 Show a frame around starting game camera view

 Show a preview window with live scales

 Show character size for reference

 Change names of game elements and physics objects

 Add an additional indentation to the dropdown menu – e.g. gameplay elements –enemies and
gems or physics – grid and ledges

 Documentation needed for importing assets

Data visualisation final choices:

 Player death

o Heatmap+datapoints

 Players getting stuck

o Heatmap(no zero data)+datapoints where players quit

 Time spent on each segment

o Bar chart (+Heatmap)

 Players reaching each segment
o Heatmap+Bar chart

 Collectibles found

o Datapoint overlay + name/type of gem

 Additional comments

o Allow combining multiple filters for multiple overlays

o Allow players to write comments

o Export visualisation images to external files for easy sharing

o Render only player layer for data vis to avoid confusion

40

APPENDIX E

User Test 2 Protocol

Goal:

 Measure usability and utility of the finished tool

o Is it easy to use?

o Does the data visualisation aspect add value to the editor and influence the

productivity of the user?

 Discover limitations and future improvements
Location: University, White Space

Time: Week of April 22nd

Duration: approx. 30 minutes

Tools:

 Laptop with final version of project

 Finished test level and dataset

 Consent forms

 Task list and interview Qs

Participants:

 Graham Hill

 Fraser Clark

 Gregor Fergusson

Protocol:

Before:

 Candidate briefing – consent form

During:

Task based Interview:

 Play through the pre-built level

o Did you find it difficult? Why?

o Did the level flow smoothly?

o What would you change if you were the designer of this level targetting a wide

audience with varying skillsets?
o How would you usually go about balancing a level design?

 Look at the analytics and play around with it

o Is it clear what is being represented by the visuals?

 Find a hotspot where many players died.

 Find out whether level segments are balanced in length and difficulty.

 Are collectibles found/collected by everyone?

o What can you tell from these visuals? Anything more than what you saw

without them?

 After: Candidate Debriefing

41

 APPENDIX F

User Test 2 Results

Candidates: Graham Hill, Fraser Clark, Gregor Fergusson

Feedback:

 Testers were very pleased with the UX changes and extra features added after the previous test

session.

 Application was found to be more user friendly and commercial looking

 Testers were not aware of any packages available that would provide similar analytics to aid
the design process. While they were familiar with the concept and were aware of AAA

companies using similar techniques (in-house), they don’t know of any solutions readily

available to purchase/use.

 Testers resorted to personal playtesting alone (not unbiased) in the majority of cases in order

to balance levels created. When asked about catering for players with varying skillsets they

relied entirely on theories of what is conceived more/less difficult.

 The solution proposed, including built in analytics, was considered to be a very useful addition

to traditional level design practices and a clear improvement over balancing through

playtesting alone.

Features to implement:

 Move segment anbalytic graphs into menu to make it more obvious what they represent and
where users can find them

 Ability to scroll the map with WASD keys in the editor

 Add an additional screen-frame to the editor that scrolls along to remind the user of the screen

constraints at all times.

 Render foreground objects with reduced alpha when editing physics ledges in order to reduce

obstruction and improve visibility.

 Allow the display of all layers in analytics mode to reveal problems caused by any object.

Future work:

 Ability to easily load custom content packages to extend the palette of assets available.

 Improvements to physics painting system:

o Ability to draw straight lines while holding the SHIFT key (0, 45, 90 degrees)
o Ability to move ledges and/or internal nodes after placment

o Adding box and/or wall collision to complement painted/line collision

 Implement physics attribute editor to include easycontrol over player jump height/speed, run

speed etc.

 Implement scaling and rotation of elements

42

 APPENDIX G

API Plans

API – data collection/visualisation

• Information to collect

 Player ID

 Player coordinates
 Level info

 Difficulty

 Version number

 Where players died - coordinates

 How did player die - falling/enemies
 Time stamp

 Time elapsed since start of level segment

 Time elapsed since session start (differs from above if there are more than one levels)

 Did the player reach the end of the level?

 If not, where did they quit?

 Have they been standing idle (no input without pausing) for more than 20 seconds?

 Have they died at the same position and/or in the same way more than 3 times in a row?

 Has each of the power-ups/collectibles been collected

• Visualisations:

 Map overlays (e.g. heatmap)
o Player deaths

o Players getting stuck

o Character paths?

o Areas un/explored

o collectibles never found

 Bar chart
o Time spent on each level/segment by single/all player(s)

o Sessions length (total played before quitting)

 Pie chart
o % of players reaching end

o % of collectibles found

• Options:

 Toggle display of each individual type of data

 Filter data based on (1.) above

 Clicking on individual data points in visuals will display additional data (1.)

 Each field in additional info can be clicked to change filter to selection
__

Initialize()

{

 if log file exists

 open

 else create
}

LogData(event) -(called when event flags happen)

{

 Write to file:

 Player ID

 Player coordinates

 Time stamp

 Level info and difficulty

43

 Prototype version number

 Event flag: enum{died/quit/level complete/powerup collected or used, enemy

killed/...}

}

Update&Render Visuals()

{

 Iterate through every entry in log file

 Filter data based on properties given (e.g. Date range, select player ID, version number etc)

 Render appropriate visual:

 renderHeatMaps(filter)
 renderBarChart(filter)

 renderPieChart(filter)

}

renderHeatMaps(filter)

{

 Render full level to image

 Convert filtered data (world) coordinates to image coordinates (x/xMax, y/yMax; as image

coordinates are between 0 and 1)

 Render coloured dots on the map at appropriate locations

 If(data point is clicked)
 Bring up additional information

}

renderBarChart(filter)

{

 Draw grid

 If dataCount is less than 10

 Then for each data:

 Draw rectangle(height: data value)

 Else Average data into 10 clusters

 And for each draw rectangle(height: average data value)

}

renderPieChart(filter)

{

 Set percentages based on data values

 Set a colour for each discrete data value

 Convert percentages to sum up to 360 (full circle)

 Draw pie chart accordingly

}

Challenges:

 Deal with large amount of data – efficient search, sort, compare

 UI optimisation and preventing user from getting lost in the data.

44

Priorities:

 Need Want Like

Information -Player Coords
- Where player died

-How player died

- Time spent on

segment

- Where player

quit?

- player ID
-Collectibles found

- has player been

standing idle?

-Level info

-Difficulty
-Version number

Visualisations - Player death

- Time spent on

segment

- Players stuck

-Character path

-Collectibles not

found

- Areas unexplored

- Session length bar

chart

Pie chart of

-% players reaching

end

- % collectibles

found/used

Options -Toggle display of

each type of data

-Filter data

-Clicking on a data

point will bring up

additional

information

-Interactive filter

tags to browse data

intuitively

45

REFERENCES

47

REFERENCES

Alexander, C.1977. A pattern language: Towns, buildings, construction. Oxford

University P.

Bartle R., 1996. Hearts, Clubs, Diamonds, Spades: Players Who suit MUDs.

http://www.mud.co.uk/richard/hcds.htm

Canossa, A. 2013. Meaning in Gameplay: Filtering Variables, Defining Metrics,

Extracting Feature and Creating Models for Gameplay Analysis. In: Drachen A., Seif

El-Nasr M., Canossa A. Game Analytics - Maximizing the Value of Player Data.

Springer-Verlag, London

Chua, C. K., Leong, K. F. and Lim, C. S. 2003. Rapid prototyping: Principles and

applications. London: World Scientific Publishing.

Drachen, A. Game Data Mining: Fundamentals. Game Analytics Blog. (2012)

Available at: http://blog.gameanalytics.com

Drachen, A., Schubert, M. 2013. Spatial Game Analytics. In: Drachen A., Seif El-

Nasr M., Canossa A. Game Analytics - Maximizing the Value of Player Data.

Springer-Verlag, London

Drachen A., Seif El-Nasr M., Canossa A. 2013. Game Analytics - Maximizing the

Value of Player Data. Springer-Verlag, London

Fields T. V. 2013. Game Industry Metrics Terminology and Analytics Case Study. In:

Drachen A., Seif El-Nasr M., Canossa A. Game Analytics - Maximizing the Value of

Player Data. Springer-Verlag, London

Gagné, A., Drachen A., Seif El-Nasr, M. 2013. Sampling for Game User Research. In:

Drachen A., Seif El-Nasr M., Canossa A. Game Analytics - Maximizing the Value of

Player Data. Springer-Verlag, London

Graham, D. 2012. In-Game Debugging and Visualization Tools. GDC 2012.

Guardini, P., Maninetti, P. 201. Better Game Experience Through Game Metrics: A

Rally Videogame Case Study. In: Drachen A., Seif El-Nasr M., Canossa A.

Game Analytics - Maximizing the Value of Player Data. Springer-Verlag, London

48

Han, J., Kamber, M., & Pei, J. 2005. Data mining: Concepts and techniques (2
nd

 ed.).

San Francisco: Morgan Kaufmann.

Isbister, K. and Schaffer, N. 2008. Game usability: Advice from the experts for

advancing the player experience. London: Morgan Kaufmann/Elsevier.

Johnstone, G. Environment art and level elements used in editor [Art] Produced as

part of Group Project module. 2012.

Kim, J. H., Gunn, D. V., Schuh E., Phillips, B. C., Pagulayan, R. J., & Wixon, D.

(2008). Tracking Real-Time User Experience (TRUE): A comprehensive

instrumentation solution for complex systems. In Proceedings of the Computer-Human

Interaction (CHI) (pp. 443–451), Florence, Italy.

Lameman, B. A., Seif El-Nasr, M., Drachen, A., Foster, W., Moura, D., & Aghabeigi,

B. 2010. User studies – A strategy towards a successful industry-academic

relationship. In Proceedings of future play 2010 (pp. 1–9) . Vancouver: ACM

Publishers. doi:10.1145/1920778.1920798

Larose, D. T. 2004. Discovering knowledge in data: An introduction to data mining.

Hoboken: Wiley-Interscience.

Madigan J., 2010. Analysis: The Psychology of Immersion in Video Games.

Gamasutra.com

Maxis, 2011. The Sims Medieval. [PC] USA: Electronic Arts

McCandless, D. The beauty of data visualization. 2010. TED Talks

Medler, B., John, M. and Lane, J., 2011. Data cracker: developing a visual game

analytic tool for analyzing online gameplay. Proceedings of the 2011 annual

conference on Human factors in computing systems 2011. New York, NY, USA:

ACM, pp. 2365-2374.

Medlock, M. C., Wixon, D., Terrano, M., Romero, R. L., & Fulton, B. (2002). Using

the RITE method to improve products: A definition and a case study. In Proceedings

of the Usability Professionals Association, Orlando, Florida.

Mellon, L. 2009. Applying metrics driven development to MMO costs and risks.

Versant Corporation, Tech. Rep

Microsoft. 2010. XNA Framework [software] Version 4.0. Available online.Redmond,

Washington: Microsoft Corporation.

MonoGame Framework [Open source software] Version 3.0.1, 2013

Nacke, L., & Drachen, A. 2011. Towards a framework of player experience research.

In Proceedings of the 2011 foundations of digital games conference , EPEX

11 . Bordeaux, France.

49

Nielsen J., Molich, R. 1990. Heuristic Evaluation of User Interfaces. Proc. ACM

CHI’90 Conf. (Seattle, WA, 1-5 April), 249-256

Norretrander, T. 1999. The User Illusion: Cutting Consciousness Down to

Size.Penguin Books.

Rouse, R. 2005. Game design: Theory and practice. Wordware.

Salen, K. and Zimmerman, E. 2004. Rules of play: Game design fundamentals.

Cambridge, Mass: MIT.

Santhosh, S, Vaden, M. 2013. Telemetry and Analytics Best Practices and Lessons

Learned. In: Drachen A., Seif El-Nasr M., Canossa A. Game Analytics - Maximizing

the Value of Player Data. Springer-Verlag, London

Schell, J. 2008. The Art of Game Design: A Book of Lenses. Elsevier/Morgan

Kaufmann, London

Semenov, A. Character art used in editor and game [Art] Produced as part of Group

Project module. 2012.

Shneiderman B., Plaisant C. 2005. Designing the user interface: Strategies for

Effective Human-Computer Interaction. Pearson/Addison Wesley. London

Thomas, J., & Cook, K. 2005. Illuminating the path: The research and development

agenda for visual analytics. Los Alamitos: IEEE Computer Society.

Ubisoft Entertainment. 2012. E3 trailer for Watch Dogs. [video game trailer]. E3.

Screened 04/06/2012.

Victor, B. 2012. Inventing on Principle. CUSEC 2012.

Visceral Games. 2011. Dead Space 2 [Xbox360] USA: Electronic Arts.

Wirth et al. 2007. A Process Model of the Formation of Spatial Presence Experiences.

Media Psychology, 9, 493-525

Witten, I. H., Frank, E., & Hall, M. A. 2011. Data mining: Practical machine learning

tools and techniques. The Morgan Kaufmann Series in Data Management Systems

(3rd ed.). Morgan Kaufmann.

Zoeller, G. 2010. Development Telemetry in Video Games Projects. GDC 2010.

BIBLIOGRAPHY

51

BIBLIOGRAPHY

Alexander, C.1979. The timeless way of building. New York, NY: Oxford University

Press.

Bernhaupt, R. 2010. Evaluating user experience in games: Concepts and methods.

Larman, C.2004. Agile and iterative development: A manager's guide. London:

Addison-Wesley.

McConnell, S.1996. Rapid development: Taming wild software schedules. Redmond,

Wash: Microsoft Press.

Pruett, C. Hot Failure: Tuning Gameplay With Simple Player Metrics. (2010)

Available at http://www.gamasutra.com

Weibel D., Wissmath B. 2011. Immersion in Computer Games: The Role of Spatial

Presence and Flow. International Journal or Computer Games Technology Volume

2011

