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1. Overview of Smoldyn 
 

Smoldyn is a computer program for simulating chemical processes on a 
microscopic size scale.  The size scale is sufficiently detailed that all molecules of 
interest are simulated individually, while solvent molecules and any molecules that are 
not of immediate interest are only treated implicitly.  In the simulation, molecules diffuse, 
react, are confined by surfaces, and bind to membranes, much as they would in a real 
chemical system. 

In Smoldyn, each molecule is represented by a single point in 1-, 2-, or 3-
dimensional continuous space.  Simulated molecules do not have volume (typically), 
spatial orientations, or momenta.  Because of these approximations, simulations are often 
accurate on spatial scales that are as small as about a nanometer and timescales down to 
about a microsecond.  This accuracy comes at the cost of high computational intensity.  
For systems that are larger than tens of microns, or dynamics that unfold over tens of 
minutes, simulation methods that are more computationally efficient but less accurate are 
likely to be preferable. 

Several new algorithms needed to be developed for Smoldyn to achieve the 
accuracy that it does, without making it so computationally demanding that it would run 
too slowly to be useful.  In particular, the algorithm for bimolecular reactions was an 
early and essential component of Smoldyn (Andrews and Bray, Physical Biology 1:137, 
2004).  It is based on a theory of diffusion-limited chemical reaction rates that was 
derived by von Smoluchowski in 1917.  The name “Smoldyn” is short for Smoluchowski 
dynamics, which comes from this theory. 

The input to Smoldyn is a plain text configuration file.  This file specifies all of the 
details of the system, such as the shapes and positions of membranes, the initial types and 
locations of molecules, diffusion coefficients, instructions for the graphical output, and so 
on.  Smoldyn reads this file, prints out some information about the system so the user can 
verify that the file was written correctly, and then runs the simulation.  As the simulation 
runs, the state of the system can be displayed to a graphics window to allow the user to 
watch what is happening, or to capture the simulation result in a movie.  Also, it is 
possible to enter commands in the configuration file that are executed at runtime, and 
which output quantitative results from the simulation to text files.  Smoldyn quits when 
the simulation is complete. 

 
History of Smoldyn 

 
When I started a post-doc in Dennis Bray’s lab at the University of Cambridge in 

2001, my project was to model E. coli bacterial chemotaxis using the MCell program.  
However, I wasn’t eager to use MCell because of its closed source code, inability to 
model reactions in solution (at the time), and mathematical foundation that I didn’t agree 
with.  At least as importantly, and not MCell’s fault at all, MCell only ran on Linux 
systems and I knew very little Linux at the time.  I decided that it would be easier to write 
my own small simple simulator than it would be to get MCell working as I needed.  I was 
very naive. 

Before long, I discovered that I couldn’t simulate bimolecular reactions in solution 
until I derived the mathematics for it, which ended up being several months of work and 
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a research paper (Andrews and Bray, 2004).  Also, I found that I couldn’t use or debug 
my small simple simulator without a text input parser and some graphical output.  Thus, 
the nascent Smoldyn program rapidly became neither small nor simple.  A year and a half 
later, I released a rudimentary version of Smoldyn, and I had done some other research as 
well, but I still hadn’t gotten around to looking at E. coli chemotaxis.  That ended up 
being done by my successor in Dennis’s lab, Karen Lipkow. 

During my second post-doc, in Adam Arkin’s lab at Lawrence Berkeley National 
Laboratory, I continued developing Smoldyn as I found time for it, and as the few users 
(mostly Karen) requested additions.  During this period, I designed and implemented 
surfaces, although I never quite managed to get them to not leak molecules.  It was not 
until the fall of 2007, when I left Adam’s lab and spent 4 months in Upi Bhalla’s lab at 
the National Centre for Biological Sciences in Bangalore, that I finally found time to fix 
all the surface problems and add several other major components.  Also, Upi merged 
Smoldyn into his MOOSE program and I started a collaboration with the Computer 
Research Laboratories in Pune (India) to parallelize Smoldyn, making this an extremely 
productive period.  Unfortunately, these parallelization efforts did not end up being 
useful.  I cleaned up the new Smoldyn additions, overhauled other portions of the code, 
and wrote much of the manual during my first couple of months at my next job, at the 
Molecular Sciences Institute, in Berkeley, California. 

The next major Smoldyn additions occurred during the following year, from mid-
2008 to mid-2009.  I developed and implemented accurate algorithms for simulating 
adsorption, desorption, and partial transmission (Physical Biology, 2009).  Meanwhile, 
Nathan Addy linked his libmoleculizer library to Smoldyn so that Smoldyn could 
automatically generate species lists and reaction networks for multimeric molecular 
complexes.  Nathan also improved the Smoldyn build system and parallelized Smoldyn 
with POSIX threads.  Starting in the fall of 2009, I have been a research associate in 
Roger Brent’s lab at the Fred Hutchinson Cancer Research Center, where I’ve spent 
much of my time wrapping up the loose ends with the recent additions to Smoldyn, 
writing papers about it, and applying for funding for continuing work. 
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2.  Installing Smoldyn 
 

Smoldyn is relatively easy to download and install.  Despite that, systems differ and 
things can go wrong, so the directions given here are quite thorough.  They aren’t meant 
to be intimidating, just helpful in case things aren’t as easy as they ought to be. 
 
2.1 System requirements 
 

Smoldyn runs on Mac OS X, Linux, or Windows systems.  Smoldyn should be able 
to run on any computer or version of these operating systems that is less than about 5 
years old.  However, Smoldyn is a computationally intensive program, so faster hardware 
is definitely preferable. 
 
2.15 Pre-compiled versions 

 
The Smoldyn distribution system changed in version 2.24.  Now, there are three 

downloads.  One has pre-compiled code for Macs, the second has pre-compiled code for 
Windows, and  the third is the full distribution with source code and no pre-compiled 
code.  The first two should be very easy to install.  For Macs, follow the instructions in 
the README.txt file, which basically say to type “sudo ./install.sh” and that everything 
will be installed for you.  For Windows, the Smoldyn program is in the bin directory, and 
the dll directory includes several dlls that you might need.  These dlls should go in your 
System32 folder if you have a 32 bit version of Windows and in your SysWOW64 folder 
if you have a 64 bit version of Windows. 

Both downloads include Smoldyn, the Smoldyn utility programs (SmolCrowd and 
wrl2smol), and the Libsmoldyn library, along with example files, and documentation.  
Libsmoldyn is a powerful new feature, but is still very much in development. 
 
2.2 The download package 
 

Smoldyn is available for download from the web site www.smoldyn.org.  At this 
web site, follow the download link, and then choose the package that is most appropriate 
for your system.  Decompressing the package is usually straightforward (double click for 
Mac or Windows, or use the “tar” command for Linux).  The result will be a directory 
with a lot of files and a few subdirectories.  Most of the files are used by the software 
build system, and are thus not important to most users.  However, the following ones are 
worth knowing about: 

 
cmake (directory)  empty directory for building Smoldyn 
CMakeLists.txt   CMake instructions for configuring build 
documentation (directory) complete Smoldyn documentation 
doc.../Smoldyn_doc1.pdf   this Smoldyn users manual 
doc.../SmolCrowd_doc.pdf   manual for SmolCrowd utility 
doc.../wrl2smol_doc.pdf   manual for wrl2smol utility 
examples (directory)  example Smoldyn configuration files 
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source (directory)  all of the Smoldyn source code 
 
 

2.3  Compiling on Macintosh 
 
Smoldyn requires the Unix-style interface that underlies the OS X Macintosh 

operating system.  To access it, open the Terminal application, which should be in the 
Utilities subdirectory of your Applications folder. 

 
(1) You will need a C compiler and the Make utility.  To check if you have them, 

simply type “gcc” at a shell prompt.  If it says “command not found”, then you need to 
get it.  To get it, go to http://developer.apple.com/xcode and click on the “view in Mac 
App store button” to be taken to the Xcode site in the Mac App store. Then, click on the 
“Free” button, register for a free Apple Developer Connection account if you don’t have 
one already, and click on the same button, which is now called “Install App”.  This will 
install XCode.  However, it still won’t work properly.  Next, start XCode and go to the 
“Preferences...” menu item, click on “downloads” and install the “Command line tools”. 

 
(2) OpenGL should already be installed on your computer.  To check, type “ls 

/System/Library/Frameworks” and you should see folders called GLUT.framework and 
OpenGL.framework.  If they aren’t there, then you’ll need to get them. 

 
(3) You will need the CMake configuration software.  To see if you already have it, 

type “cmake”; this will produce the help information if you have it, or an error message if 
not.  If you don’t have it, you need to download and install it. 

 
(4) Libtiff is a library that Smoldyn uses for saving tiff format images, which you 

probably do not have.  It is not required for Smoldyn to run, but it necessary to save 
images.  One way to install Libtiff is to download it from http://www.libtiff.org, 
uncompress it, and install it.  To install it, start a terminal window, change to the libtiff 
directory, and follow the README instructions: type “./configure”, then “make”, then 
“sudo make install” and your password.  This will install libtiff header files to 
/usr/local/include and libtiff library archives in /usr/local/lib. 

Another method (but one which I think is harder) is to use MacPorts or Fink.  For 
MacPorts, type “port search libtiff”.  If you get the error message “port: command 
not found”, then you don’t have MacPorts.  If this is the case, then you can get MacPorts 
from www.macports.org and try again.  When the command works, it should list a few 
packages, one of which is called “tiff @3.8.2 (graphics)”, or something very similar.  
Install it by typing “sudo port install tiff”, followed by your password.  This will 
install libtiff to /opt/local/var/macports/software/.  This is great, except that the Smoldyn 
build system prefers for libtiff to be in /usr/local/lib.  The solution is to set 
LIBTIFF_CFLAGS and LIBTIFF_LDFLAGS manually when you type ./configure for Smoldyn.  
This will override Smoldyn’s search for the libraries and will link them in properly.  For 
Fink, exactly the same advice applies, except that Fink installs libraries to /sw.  For 
example, if libtiff is installed to /sw/local, then configure with: “LIBTIFF_CFLAGS="-
I/sw/local/include" LIBTIFF_LDFLAGS="-L/sw/local/lib -ltiff" ./configure”. 
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(4) Install Smoldyn by changing to the “cmake” directory.  Then type “cmake ..”, 

then “make”, and then “sudo make install”, and finally your password.  Some custom 
installation options can be selected with the ./configure line if you want them; they are 
listed below in the sections on installing to a custom location and on installation 
problems, and also in the Smoldyn programmers manual.  To clean up temporary files, 
which is essential if you want to try building a second time, first enter “pwd” and confirm 
that you are still in the “cmake/” directory (don’t continue if not!).  Then, type “rm -r *” 
to clear out all prior build stuff. 

 
(5) Test Smoldyn 
(a) Type “smoldyn -V” to just print out the Smoldyn version number.  If it doesn’t 

work, then the most likely problem is that your system is not set up to run programs that 
are in your /usr/local/bin directory, which is where Smoldyn is installed by default.  To 
fix this temporarily, type “export PATH=$PATH:/usr/local/bin”; to fix it permanently, 
although it will only take effect after you open a new terminal window, use emacs or 
some other editor to edit the file ~/.profile and add the line “export 
PATH=$PATH:/usr/local/bin”. 

 
(b) Type “smoldyn examples/S8_reactions/lotvolt/lotvolt.txt” to run a Lotka-

Volterra simulation.  If a graphics window doesn’t appear, then the OpenGL linking 
somehow failed.  Otherwise, press ‘T’ (upper-case) at some point during the simulation 
to save a tiff-format image of the graphical display.  If it works, it will be saved to the 
current directory as OpenGL001.tif; if not, then the libtiff linking somehow failed. 

 
 

2.4 Compiling options 
 
Various building options are possible with the CMake build system, of which the 

most important are as follows.  In all cases, append these to the “cmake ..” command. 
 

-DOPTION_STATIC=ON Build using static libraries 
-DCMAKE_BUILD_TYPE=... Choose CMake build type 

options are: None, Debug, Release (default), RelWithDebInfo, and MinSizeRel 
-DOPTION_USE_OPENGL=OFF Build without graphics support 
-DOPTION_USE_LIBTIFF=OFF Build without LibTiff support 
-DOPTION_USE_ZLIB=OFF Build without ZLib support 
-OPTION_TARGET_SMOLDYN=OFF Don’t build stand-alone Smoldyn program 
-DOPTION_TARGET_LIBSMOLDYN=ON Build LibSmoldyn library 
-DOPTION_NSV=ON Build with next subvolume support 
-DOPTION_VTK=ON Build with VTK output support 
 

By default, the Smoldyn build system installs Smoldyn to either the /usr or the 
/usr/local directories, depending on your system.  These are the standard places for 
programs like Smoldyn, but you will need root access for the installation (typically only 
system administrators have the neccessary su or sudo access to install to these locations).  



 7 

If you use a computer on a shared computer, you may not have this access.  If this is the 
case, then you will have to pick a different install directory, such as ~/usr.  There are 
standard options to configure Smoldyn to install here, for the CMake build system 

The drawback to installing in a non-standard location is that your system may not 
find Smoldyn when you try to run it.  To solve this, you need to add the directory “~/usr”, 
or wherever you installed Smoldyn, to your PATH variable.  This is explained above in 
instruction 5a for the regular Macintosh installation, except that here you would add 
“export PATH=$PATH:~/usr/bin”. 

 
 

2.5 Compiling on a UNIX/Linux system 
 
For the most part, installing on a UNIX or Linux system is the same as for 

Macintosh, described above.  Following are a few Linux-specific notes. 
To download Smoldyn from a command line, type “wget 

http://www.smoldyn.org/smoldyn-2.xx.tar.gz”, where the “xx” is the current version 
number.  Then unpack it with “tar xzvf smoldyn-2.xx.tar.gz”. 

 
For a full installation, you will need OpenGL and Libtiff.  I don’t know how to 

install them for all systems, but it turned out to be easy for my Fedora release 7.  I already 
had OpenGL, but not the OpenGL glut library nor Libtiff.  To install them, I entered 
“sudo yum install freeglut-devel” and “sudo yum install libtiff”, respectively, 
along with my password. 

Ubuntu systems are slightly more finicky than others.  First, you may need to install 
several things as follows.  Install a C++ compiler with “sudo apt-get install g++”, 
install a Python header file with “sudo apt-get install python-dev”, install the 
OpenGL glut library with “sudo apt-get install freeglut3-dev”, and install the libtiff 
library with “sudo apt-get install libtiff4-dev”. 

 
 

2.6 Installing on Windows 
 
There are several pre-compiled versions of Smoldyn for Windows in the Windows 

directory of the download package, called smoldyn#.##.exe, where the # signs give the 
version number.  Several versions are included because I have had a hard time getting 
Smoldyn to run on Windows, so one might work while others don’t. 

Also in the Windows directory are several dll files (Windows dynamic linked 
libraries), which you will probably need to install on your system to make Smoldyn work.  
They are: glut32.dll, libtiff3.dll, jpeg62.dll, and zlib1.dll.  At one point, I also needed 
opengl32.dll, opengl.dll, hfxclasses45.dll, and ipl.dll, although I haven’t needed them 
lately.  Free dll files can be found easily with a little web browsing.  These dlls should go 
in your C:\windows\System32 folder if you have a 32 bit version of Windows and in your 
SysWOW64 folder if you have a 64 bit version of Windows. 

 
 

2.7 Line termination characters 
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Macintosh, Windows, and Linux all use different line termination characters.  

Macintosh uses a carriage return, Linux uses a line feed, and Windows uses both.  These 
can cause problems both with the C language source files, if you’re compiling yourself, 
and also with the configuration files that Smoldyn reads.  Some compilers convert text 
automatically, but not all do (for example, Linux almost never does).  To convert a file 
from Macintosh to Linux, enter the following line at a command prompt: 

 
 perl -pi -e 's/\r/\n/g' filename 
 
To convert from Windows to Linux, enter: 

 
 perl -pi -e 's/\r//g' filename 
 
While it shouldn’t be necessary, the following line converts all Smoldyn example files 
from Macintosh to Linux termination characters: 
 
for filename in $(find examples/* -name *.txt); do perl -pi -e 's/\r/\n/g' 
$filename; done 
 
 
2.8 Installation problems 
 

While Smoldyn is supposed to install reasonably easily on a wide variety of 
systems, this has proven more difficult than we expected.  Thus, if you have problems 
installing Smoldyn, I suggest  re-reading the appropriate sections above.  If these don’t 
solve the problem, then please let me know (steven.s.andrews@gmail.com) so I can try to 
help you solve it, and so I can help others with similar problems. 

If you manage to solve your problem, or have suggestions that might help other 
users, please tell me about them so I can improve the installation. 

 
 

2.9 Running Smoldyn remotely 
 
It can be helpful to have Smoldyn installed on computer A and run from computer 

B.  Running Smoldyn without graphics is trivial.  Just ssh into computer A as normal, and 
run Smoldyn with “smoldyn filename.txt -t”, where the -t flag implies text-only 
operation.  If you want graphics though, then log in with “ssh -Y me@compA/directory” 
and run Smoldyn as normal.  Graphics will be slow but should be functional. 

Alternatively, I’ve found the free software TeamViewer to be a convenient method 
for working on computers remotely.  An advantage of this method is that it works even if 
there are institutional firewalls that prohibit remote computer access. 
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3.  Using Smoldyn 
 

3.1 Running Smoldyn 
 
The bounce3.txt configuration file is a good one to start with because it is quite 

simple.  It is in the examples folder, which is supplied with the Smoldyn distribution, in a 
sub-folder called S1_intro. 

If you are working on a Linux or Linux-like system, you can run Smoldyn from a 
command line interface.  In this case, you can run the program by just entering smoldyn.  
The program should start, display a greeting, and ask for the name of the configuration 
file.  Enter the configuration file name, including path information.  For example, if 
bounce3.txt is in the working directory, just enter bounce3.txt; if the working directory is 
the one with the examples folder, enter examples/S1_intro/bounce3.txt; an absolute path 
name can be used as well.  Next, Smoldyn asks for the runtime flags, which are listed in 
table 3.1.  Any combination of flags may be used, and in any order.  It is also possible to 
enter the configuration file name and any runtime flags on the command line.  For 
example, Smoldyn could be run and would display the parameters for bounce3.txt with 

 
smoldyn examples/S1_intro/bounce3.txt -p 

 
 
Table 3.1.1: Runtime flags 
 
command Smoldyn 
line query result 
 - normal: parameters displayed and simulation run 
-o o suppress output: text output files are not opened 
-p p parameters only: simulation is not run 
-q q quiet: parameters are not displayed 
-t t text only: no graphics are displayed 
-V V display version number and quit 
-v v verbose: extra parameter information is displayed 
-w w suppress warnings: no warnings are shown 
 
 

Without a command line interface, you probably cannot specify the configuration 
file name or runtime flags during program startup.  Instead, these need to be entered in 
response to the queries from Smoldyn.  Macintosh applications (not run from the terminal 
command line) use path information that is denoted with colons: 

 
Enter name of configuration file: :examples:S1_intro:bounce3.txt 
 

Windows path information is entered with backslashes: 
 
Enter name of configuration file: examples\S1_intro\bounce3.txt 
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Assuming Smoldyn runs at all, the most common problem that can occur at this 
point is that the configuration file cannot be read because it has the wrong format.  If this 
happens, there is no choice but to fix the line termination characters, as described above. 

The bounce3.txt file results in simple red and green molecules that bounce around 
the simulation volume for a little while (see figure).  On completion, the program 
displays some statistics about the simulation and then terminates.  While the simulation is 
running, and after it finishes, it is possible to press the arrow keys to rotate the graphics 
and get a better view of what is happening.  When finished, press command-q, or select 
“Quit” from the file menu, to quit the program. 
 

    
Figure 3.1.1: Graphical output from bounce3.txt. 
 

 
Smoldyn can also run with 1- or 2-dimensional systems.  Simple example files for 

these low dimension systems are bounce1.txt and bounce2.txt, which produce the outputs 
shown below. 
 

   
Figure 3.1.2: Graphical output from bounce1.txt and bounce2.txt, respectively. 
 
 

For simulations that are run from the command line, it is possible to declare macro 
text substitutions using --define, followed by a key and replacement text.  This topic is 
discussed in the following section, on the configuration file. 
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3.2 The configuration file 
 

Configuration file basics 
 
Configuration files, such as bounce3.txt, are simple text files.  The format is a series 

of text lines, each of which needs to be less than 256 characters long.  On each line of 
input, the first word describes which parameters are being set, while the rest of the line 
lists those parameters, separated by spaces.  If Smoldyn encounters a problem with a line, 
it displays an error message and terminates.  Possible problems include missing 
parameters, illegal parameter values, too many parameters, unrecognized molecule, 
surface, or reaction names, unrecognized statements, or others.  Following is the 
complete bounce3.txt configuration file: 
 

# Simple bouncing molecules in a 3-D system 
 
graphics opengl 
 
dim 3 
 
boundaries x 0 100 r 
boundaries y 0 100 r 
boundaries z 0 100 r 
 
species red green 
 
difc red 3 
difc green 1 
 
color red red 
color green green 
 
time_start 0 
time_stop 100 
time_step 0.01 
 
mol 100 red 20 30 20 
mol 30 green u u u 
 
end_file 
 
In most cases, statements may be entered in any order, although some are required 

to be listed after others.  The required sequence is not always obvious, so it is usually 
easiest to just try what seems most reasonable and then fix any errors that Smoldyn 
reports.  Also, a few instructions can only be entered once, whereas others can be entered 
multiple times.  If a parameter is entered more than once, the latter value overwrites the 
prior one.  Parameters that are not defined in the configuration file are assigned default 
values. 

Before discussing the configuration file statements in detail, it is helpful to skim 
through the bounce3.txt file quickly to get a sense of the types of things that are defined 
in configuration files.  After an initial comment, the configuration file states that OpenGL 
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should used for graphics and that system is 3-dimensional.  The molecule species names 
are called “red” and “green”.  The diffusion coefficients of the red and green molecules 
are set and their colors are defined.  The simulation starting, stopping, and stepping times 
are set, as are the boundaries of space.  Finally, 100 red molecules and 30 green 
molecules are created, from the 200 total molecules that were allocated, and are placed in 
the simulation volume.  The file ends with end_file. 

 
Units 

 
What is not in the bounce3.txt configuration file are any statements about units.  In 

fact, no portions of Smoldyn ever use any units.  Instead, it is up to the user to decide 
what set of units to use and to stay consistent with them.  For example, two classic 
systems of units are cgs, which stands for centimeter-gram-second, and mks, which 
stands for meter-kilogram-second.  Both of these are too large-scale to be convenient for 
most Smoldyn simulations.  Instead, two systems that tend to be most useful are micron-
millisecond and nanometer-microsecond.  Another system that has been used 
successfully is to define a “pixel” as 10 nm, and to then convert all length units into 
pixels. 
 
 
Table 3.2.1: Unit conversion 
 
  Diffusion Unimolec. Bimolecular Adsorption 
 Concentration coefficient reactions reactions rates            
Typical value 10 µM 10 µm2s–1 1 s–1 105 M–1s–1 1 µm s–1 
mks 6x1021 m–3 10–11 m2s–1 1 s–1 102 m3mol–1s–1 10–6 m s–1 
    1.7x10–22 m3s–1 
cgs 6x1015 cm–3 10–7 cm2s–1 1 s–1 1.7x10–16 cm3s–1 10–4 cm s–1 
µm-ms 6000 µm–3 10–2 µm2ms–1 10–3 ms–1 1.7x10–7 µm3ms–1 10–3 µm ms–1 
µm-s 6000 µm–3 10 µm2s–1 1 s–1 1.7x10–4 µm3s–1 1 µm s–1 
nm-ms 6x10–6 nm–3 104 nm2ms–1 10–3 ms–1 170 nm3ms–1 1 nm ms–1 
nm-µs 6x10–6 nm–3 10 nm2µs–1 10–6 µs–1 0.17 nm3µs–1 10–3 nm µs–1 
px-ms 6x10–3 px–3 100 px2ms–1 10–3 ms–1 0.17 px3ms–1 0.1 px ms–1 

 
Notes: A pixel, abbreviated px, is defined as a length of 10 nm.  In the concentration 
column, ‘6’ is short for 6.022045.  In the bimolecular reactions column, 1.7 is short for 
1.660565. 

 
 

Statements about the configuration file 
 
A few statements control the reading of the configuration file, which are now 

described in more detail.  The first, shown in the first line of bounce3.txt, is a comment.  
A # symbol indicates that the remainder of the line should be ignored, whether it is the 
whole line as it is in bounce3.txt or just the end of the line.  It is also possible to comment 
out entire blocks of the configuration file using /* to start a block-comment and */ to end 
it.  For these, the /* or */ symbol combinations are each required to be at the beginning 
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of configuration file lines.  The remainder of those lines is ignored, along with any lines 
between them. 

It is possible to separate configuration files into multiple text files.  This is done 
with the statement read_file, which simply instructs Smoldyn to continue reading from 
some other file until that one ends with end_file, which is followed by more reading of 
the original file.  The read_file statement may be used anywhere in the configuration 
file, including within reaction definition and surface definition blocks (described below) 
and within files that were themselves called with a read_file statement.  The 
configuration file examples/S2_config/config.txt illustrates these statements. 

Smoldyn supports a rudimentary version of variables in configuration files through 
the define statements.  These perform simple text substitution, much like the pre-
processor define statement in the C programming language.  As a typical example, 
suppose you want to run a configuration file with many different system sizes.  Rather 
than changing each and every relevant boundary and surface definition number in the file 
for each run, they can all be set to the same macro key, and thus changed at once with a 
single define statement.  One definition is set automatically: FILEROOT is replaced by the 
current file name, without path information and without any text that follows a ‘.’.  Prior 
definitions are overwritten with new ones without causing errors or warnings.  These 
definitions have local scope, meaning that they only lead to text replacement within the 
current configuration file, and not to those that it reads with read_file.  To create a 
definition with broader scope, use define_global; the scope of these definitions is 
throughout the current configuration file, as well as any file or sub-file that is called by 
the current file.  A configuration file that calls the current one is not affected by a 
define_global.  To remove a definition, or all definitions, use undefine. 

define statements can also be used for conditional configuration file reading.  In 
this case, a definition is made as usual, although there is no need to specify any 
substitution text.  Later on in the file, the ifdefine, else, and endif statements lead to 
reading of different portions of file, depending on whether the definition was made or 
not.  A variant of the ifdefine statement is the ifundefine statement.  These conditional 
statements should work as expected if they are used in a normal sort of manner (see any 
programming book for basic conditional syntax), which includes support for nested “if” 
statements.  They can also be used successfully with highly abnormal syntaxes (for 
example, an else toggles reading on or off, regardless of the presence of any preceding 
ifdefine or ifundefine), although this use is discouraged since it will lead to confusing 
configuration files, as well as files that may not be compatible with future Smoldyn 
releases. 

Text substitution can also be directed from the command line.  If you include the 
command line option --define, followed by text of the form key=replacement (do not 
include spaces, although if you want spaces within the replacement text, then enclose it in 
double quotes), this is equivalent to declaring text substitution using the define_global 
statement within a configuration file.  For example, to the file cmdlinedefine.txt includes 
the macro key “RDIFC” but does not define it.  To run this file, define the macro key on 
the command line like 

 
 smoldyn examples/S2_config/cmdlinedefine.txt --define RDIFC=5 
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This feature simplifies running multiple simulations through a shell script.  Essentially 
any number of definitions can be made this way.  If the same key text is defined both on 
the command line and in the configuration file, the former takes priority. 
 

 
Table 3.2.2: statements about the configuration file 
 
#  single-line comment 
/* … */ multi-line comment 
read_file filename read filename, and then return 
end_file end of this file 
define key substitution local macro replacement text 
define_global key substitution global macro replacement text 
undefine key undefine a macro substitution 
ifdefine key start of conditional reading 
ifundefine key start of conditional reading 
else else condition for conditional reading 
endif ends conditional reading 

 
 

Running multiple simulations using scripts 
 
It is often useful to simulations over and over again, whether to collect statistics, to 

look for rare events, or to scan over parameter ranges.  This is easily accomplished by 
writing a short Python script, or a script in some other high level language such as R, 
MatLab, Mathematica, etc.  The following Python script is at S2_config/pyscript.py.  It 
runs the file paramscan.txt several times using different parameter values, with results 
sent to the standard output and also saved to different files. 

 
# A python script for scanning a parameter 
import os 
 
simnum=0 
for rxnrate in [0.01,0.02,0.05,0.1,0.2,0.5,1]: 
 simnum+=1 
 string='smoldyn paramscan.txt --define RXNRATE=%f --define SIMNUM=%i -tqw' 

%(rxnrate,simnum) 
 print(string) 
 os.system(string) 

 
Run this script by entering “python pyscript.txt”. 

Although not described here in depth, another method for running batches of 
simulations is for your script to generate a Smoldyn-readable text file with the 
appropriate parameters, say with the file name myparams.txt.  Then, in your master 
Smoldyn file, which might also be called from the same script, it includes the line 
“read_file myparams.txt”, which reads in the necessary parameters. 
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3.3 Space and time 
 

Space 
 
Smoldyn simulations can be run in a system that is 1, 2, or 3-dimensional.  These 

can be useful for accurate simulations of systems that naturally have these dimensions.  
For example, a 2-dimensional system can be useful for investigating diffusional dynamics 
and interactions of transmembrane proteins.  Smoldyn does not permit 4 or more 
dimensional systems because it is not clear that they would be useful and because they 
have not been tested.  The system dimensionality is defined with the dim statement, which 
needs to be one of the first statements in a configuration file. 

Along with the system dimensionality, it is necessary to specify the outermost 
boundaries of the system.  In most cases, it is best to design the simulation so that all 
molecules stay within the system boundaries, although this is not required.  All 
simulation processes are performed outside of the system boundaries exactly as they are 
within the boundaries.  Boundaries are used by Smoldyn to allow efficient simulation and 
for scaling the graphical display.  They are typically defined with the boundaries 
statement, as seen in the example S1_intro/bounce3.txt.  Boundaries may be reflective, 
transparent, absorbing, or periodic.  Reflective means that all molecules that diffuse into a 
boundary will be reflected back into the system.  Transparent, which is the default type, 
means that molecules just diffuse through the boundary as though it weren’t there.  With 
absorbing boundaries, any molecule that touches a boundary is immediately removed 
from the system.  Finally, with periodic boundaries, which are also called wrap-around or 
toroidal boundaries, any molecule that diffuses off of one side of space is instantly moved 
to the opposite edge of space; these are useful for simulating a small portion of a large 
system while avoiding edge effects. 

On rare occasion, it might be desirable to have asymmetric system boundary types.  
For example, one side of a system might be reflective while the other is absorbing.  To 
accomplish this, use the low_wall and high_wall statements instead of a boundary 
statement.  This is illustrated in the example file S3_space/bounds1.txt. 

These boundaries of the entire system are different from surfaces, which are 
described below.  However, they have enough in common that Smoldyn does not work 
well with both at once.  Thus, if any surfaces are used, the system boundaries will always 
behave as though the types are transparent, whether they are defined that way or not.  
Thus, if there are surfaces, it is usually best to use the boundaries statement without a 
type parameter, which will lead to the default transparent type.  To account for the 
transparent boundaries, an outside surface may be needed that keeps molecules within the 
system.  The one exception to these suggestions arises for systems with both surfaces and 
periodic boundary conditions.  To accomplish this with the maximum accuracy, set the 
boundary types to periodic (although they will behave as though they are transparent) and 
create jump type surfaces, described below, at each outside edge that send molecules to 
the far sides.  The reason for specifying that the boundaries are periodic is that they will 
then allow bimolecular reactions that occur with one molecule on each side of the system.  
This will probably yield a negligible improvement in results, but nevertheless removes a 
potential artifact.  This is illustrated in the example S3_space/bounds2.txt. 
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Time 
 
A simulation runs for a fixed amount of simulated time, using constant length time 

steps.  The simulation starting time is set with time_start and the stopping time is set 
with time_stop.  For simulations that are interrupted and then continued, the time_now 
statement allows the initial time to be set to a value that is intermediate between the 
starting and stopping times. 

The size of the time step is set easily enough with time_step, although knowing 
what value to use is an art.  Smoldyn always becomes more accurate, and runs more 
slowly, as shorter time steps are used.  Thus, an important rule for picking a time step 
size is to compare the results that are produced for one value with those produced with a 
time step that is half as long; if the results are identical, within stochastic noise, then the 
longer time step value is adequate.  If not, then a smaller time step needs to be used. 

As an initial guess for what time step to use, time steps can be chosen from the 
spatial resolution that is required.  The average displacement of a molecule, which has 
diffusion coefficient D, during one time step is s = (2D∆t)1/2, where ∆t is the time step.  
Turning this around, to achieve spatial resolution of s, the time step needs to obey 
 

 Δt < s2

2Dmax

 

 
where Dmax is the diffusion coefficient of the fastest diffusing species.  The overall spatial 
resolution for a simulation, which is the largest rms step length, is displayed in the 
“molecule parameters” section of the configuration file diagnostics output.  For good 
accuracy, the spatial resolution should be significantly smaller than geometric features or 
than radii of curvature, for curved objects. 

Other considerations for choosing the time step are the characteristic time scales of 
the unimolecular and bimolecular reactions.  For good accuracy, the time step should 
generally be significantly shorter than the characteristic time scale of any reaction.  Using 
k as the reaction rate constants, unimolecular and bimolecular reactions lead to the 
respective time step constraints 
 

 Δt < 1
k

 

 Δt <
A[ ] + B[ ]
k A[ ] B[ ]  

 
The latter equation is for the reaction A + B → products.  These values are displayed in 
the “reaction parameters” section of the configuration file diagnostics output.  While the 
time scale for unimolecular reactions is independent of concentrations, the time scale for 
bimolecular reactions clearly depends on concentrations.  Thus, the time scale that is 
displayed for bimolecular reactions is only a rough guide at best; it does not account for 
the changing concentrations of the reactants nor for local variations in concentrations. 

As an initial guess, the time step that is chosen should be the smallest of those that 
are suggested here for all of these processes.  Afterwards, it is usually worth running 
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several trial simulations with longer or shorter time steps to see what the longest time 
step is that still yields sufficiently accurate results. 

 
 

Table 3.3.1: statements that define space and time 
 
dim dim system dimensionality: 1, 2, or 3 
boundaries dim pos1 pos2 system boundaries on dimension dim 
 boundaries dim pos1 pos2 type same, for systems without surfaces 
low_wall dim pos type specify single low-side boundary 
high_wall dim pos type specify single high-side boundary 
time_start time starting time of simulation 
time_stop time stopping time of simulation 
time_step time time step for the simulation 
time_now time current time of the simulation 

 
 

Technical discussion of time steps 
 
A major focus of the design of Smoldyn has been to make it so that results are 

indistinguishable from those that would be obtained if the simulated time increased 
continuously.  This goal cannot be achieved perfectly.  Instead, the algorithms are written 
so that the simulation approaches the Smoluchowski description of reaction-diffusion 
systems as the time step is reduced towards zero.  Also, it maintains as much accuracy as 
possible for longer time steps.  This topic is discussed in detail in the research paper 
“Stochastic simulation of chemical reactions with spatial resolution and single molecule 
detail” by Steven Andrews and Dennis Bray (Physical Biology 1:137-151, 2004). 

In concept, the system is observed at a fixed time, then it evolves to some new state, 
then it is observed again, and so forth.  This leads to the following sequence of program 
operations: 

 
---------------  time = t  --------------- 
 observe and manipulate system 
 graphics are drawn 
 molecules diffuse 
 desorption and surface-state transitions 
 surface or boundary interactions 
 reactions 
  0th order reactions 
  1st order reactions 
  2nd order reactions 
  reaction products are added to system 
 surface interactions of reaction products 
-------------  time = t + ∆t  ------------- 
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After commands are run, graphics are displayed to OpenGL if that is enabled.  The 
evolution over a finite time step starts by diffusing all mobile molecules.  In the process, 
some end up across internal surfaces or the external boundary.  These are reflected, 
transmitted, absorbed, or transported as needed.  Next, reactions are treated in a semi-
synchronous fashion.  They are asynchronous in that all zeroth order reactions are 
simulated first, then unimolecular reactions, and finally bimolecular reactions.  With 
bimolecular reactions, if a molecule is within the binding radii of two different other 
molecules, then it ends up reacting with only the first one that is checked, which is 
arbitrary (but not necessarily random).  Reactions are synchronous in that reactants are 
removed from the system as soon as they react and products are not added into the system 
until all reactions have been completed.  This prevents reactants from reacting twice 
during a time step and it prevents products from one reaction from reacting again during 
the same time step.  As it is possible for reactions to produce molecules that are across 
internal surfaces or outside the system walls, those products are then reflected back into 
the system.  At this point, the system has fully evolved by one time step.  All molecules 
are inside the system walls and essentially no pairs of molecules are within their binding 
radii (the exception is that products of a bimolecular reaction with an unbinding radius 
might be initially placed within the binding radius of another reactant). 

Each of the individual routines that is executed during a time step exactly produces 
the results of the Smoluchowski description, or yields kinetics that exactly match those 
that were requested by the user.  However, the simulation is not exact for all length time 
steps because it cannot exactly account for interactions between the various phenomena.  
For example, if a system was simulated that only had unimolecular reactions and the 
products of those reactions did not react, then the simulation would yield exactly correct 
results using any length time step.  However, if the products could react, then there would 
be interactions between reactions and there would be small errors.  In this case, the error 
arises because Smoldyn does not allow a molecule to be in existence for less than the 
length of one time step. 
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3.4 Molecules 
 

About molecules 
 
In Smoldyn, each individual molecule is represented as a separate point-like 

particle.  These particles have no volume, so they do not collide with each other when 
they are simply diffusing (however, see “excluded volume reactions” in the reactions 
section, below, which can give molecules excluded volume).  Because of the rapid 
collisions that occur for solvated molecules, both rotational correlations and momentum 
correlations damp out rapidly in most biochemical systems, so orientations and momenta 
are ignored in Smoldyn as well. 

Each molecule has a molecular species.  Enter the names for these species with the 
species statement. 

Each molecule is allowed to exist in any of five states: (1) not bound to any surface 
(called solution state), (2) bound to the front of a surface, (3) bound to the back of a 
surface, (4) bound across a surface in the “up” direction, or (5) bound across a surface in 
the “down” direction.  While the surface-bound states are intended to represent specific 
molecule attachments to membranes, they can also be used for other purposes; for 
example, you can specify that a trans-membrane protein is normally in its “up” state, but 
that it’s in its “down” state when it is in a lipid raft. 

Molecules that are not bound to surfaces are added with the mol statement. This is a 
reasonably versatile statement in that, on each axis, it allows molecules to be placed 
randomly within the simulation volume, randomly within some smaller region, or at a 
specific location.  The surface_mol statement is used to add molecules that are bound to 
surfaces, although it cannot be entered in the configuration file until the appropriate 
surface has been set up.  Similarly, compart_mol is used to add molecules to 
compartments, which are regions between surfaces, but it also cannot be entered until 
more things have been set up.  The statements about molecules mentioned thus far, with 
the exception of the last two, are shown in either S1_intro/bounce3.txt or 
S4_molecules/molecule.txt. 

 
Diffusion 

 
Molecules in Smoldyn diffuse according to the diffusion coefficient that is entered 

for the appropriate species and state.  These coefficients are entered with the difc 
statement.  Although it has not proven to be particularly useful, it is also possible for 
Smoldyn to simulate anisotropic diffusion, meaning that molecules diffuse more rapidly 
in some directions than in others.  Anisotropic diffusion is specified with a diffusion 
coefficient matrix using the difm statement. 

Isotropic diffusion rates were tested quantitatively with the diffi.txt configuration 
file.  In this file, all molecules start in the center of space, the boundaries are made 
transparent so molecules diffuse completely freely, and red, green, and blue molecules 
diffuse with different diffusion coefficients.  Using a runtime command in the 
configuration file, described below, Smoldyn outputs the moments of the molecular 
distributions to text files.  They were analyzed with the Excel file diffi.xls, which is also 
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in the S4_molecules folder.  From this Excel file, the graphical and numerical results are 
shown in figure 3.4.1, along with theoretical predictions. 
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Figure 3.4.1: Graphical and numerical output from diffi.txt. 
 
 
The middle panel of the figure shows that the mean position of the red molecules, on 
each of the three coordinates, stays near zero although with fluctuations.  This is as 
expected for free diffusion.  The expected fluctuation size, shown in the panel with light 
black lines, is given with 
 

 

� 

mean - starting point ≈ 2Dt
n

 

 
where D is the diffusion coefficient, t is the simulation time, and n is the number of 
molecules.  This equation agrees well with simulation data.  The second moment of the 
molecule displacements is a matrix quantity which gives the variance on each pair of axes 
of the distribution of positions, shown in the third panel.  For example, the variance 
matrix element for axes x and y is 
 

 

� 

vxy = 1
n

xi − x ( ) yi − y ( )
i=1

n

∑  

 
The overbars indicate mean values for the distribution.  Because diffusion on different 
axes is independent, the off-diagonal variances (vxy, vxz, and vyz) are expected to be about 
0, but with some fluctuations, as is seen in the figure.  The diagonal variances (vxx, vyy, 
and vzz) are each expected to increase as approximately 
 
 

� 

vxx ≈ vyy ≈ vzz ≈ 2Dt  
 
Again, this is seen in the figure.  Similar figures for the green and blue molecules, which 
are not presented, showed similarly good agreement between the simulation data and 
theory. 
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Anisotropic diffusion was investigated with the example file diffa.txt.  In this case, 
the diffusion equation is 

 
  u = ∇ ⋅D∇u  
 

Here, u can be interpreted as either the probability density for a single molecule or as the 
concentration of a macroscopic collection of molecules, and D is the diffusion matrix.  D 
is symmetric.  The matrix that is entered in the configuration file for anisotropic 
diffusion, using the difm statement, is the square root of the diffusion matrix because the 
square root is much more convenient for calculating expectation molecule displacements.  
Matrix square roots can be calculated with MatLab, Mathematica, or other methods.  
Note that the symmetric property of D implies some symmetry properties for its square 
root as well (for example, a symmetric square root leads to a symmetric D).  If D is 
diagonal, the square root of the matrix is found by simply replacing each element with its 
square root.  If D is equal to the identity matrix times a constant, D, the equation reduces 
to the standard isotropic diffusion equation.  The example file diffa.txt illustrates the use 
of the difm statement; the relevant lines are 
 
difm red 1 0 0 0 0 0 0 0 2 
difm green 1 2 3 2 0 4 3 4 1 
 
The former line leads to anisotropic diffusion of red molecules with a diffusion 
coefficient of 1 on the x-axis, 0 on the y-axis, and 4 on the z-axis.  The latter leads to 
anisotropic diffusion with off-diagonal components.  This matrix is interpreted to be 
 

D =
1 2 3
2 0 4
3 4 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
Results are shown in figure 3.4.2. 
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Figure 3.4.2: Graphical and numerical results from diffa.txt. 
 
 



 22 

In the figure, it can be seen that the red molecules diffuse only on the x-z-plane, whereas 
the green molecules diffuse into an elliptical pattern that is not aligned with the axes.  
The red molecule data are graphed, where it is shown that x-values diffuse slowly, y-
values don’t diffuse at all, and z-values diffuse rapidly.  The means and variances agree 
well with theory. 
 
Drift 
 

In addition to diffusion, molecules can drift, meaning that they move with a fixed 
speed and in a fixed direction.  Up to version 2.26, drift could only be defined relative to 
the global system coordinates.  For this method, which is supported in subsequent 
versions as well, enter the drift rate using the drift statement, followed by the velocity 
vector.  Surface-bound molecules drift as well, although they are constrained to surfaces, 
so their actual velocity depends on the overlap of the drift vector and the surface 
orientation (e.g. a molecule’s velocity is zero if the local surface is perpendicular to the 
drift vector and it equals the drift vector if that vector can lie within the the local surface 
orientation). 

New in version 2.27, surface-bound molecules can also drift relative to the 
coordinates of their surface panel.  Specify this with the surface_drift statement.  For a 
2-D system, surfaces are 1-D objects, so the surface-bound drift vector is a single 
number.  It is the drift rate along “rectangles,” “triangles,” “spheres,” etc., all of which 
are really just different shape lines.  For a 3-D system, surfaces are 2-D objects, so the 
surface-bound drift vector includes two values, which generally use the most obvious 
orthogonal coordinates for each panel shape.  For a cylinder, for example, the former 
number is the drift rate parallel to the cylinder axis and the latter is the drift rate around 
the cylinder.  A possible use of surface-bound drift would be to simulate molecular motor 
motion along a cylinder that represents a microtubule. 
 
Molecule lists 
 

From a user’s point of view, Smoldyn molecules follow a Western life trajectory: 
some chemical reaction causes a new molecule to be born from nothing, it diffuses 
around in space for a while, and then it undergoes a reaction and vanishes again into 
nothingness (or maybe goes to molecule heaven).  Internally though, the situation is 
closer to a Wheel of Life: there are a fixed number of molecules that cycle indefinitely 
between “live” and “dead” states and which are assigned a new species type at each 
reincarnation.  The dead molecule list is of no importance to the functioning of the 
simulation, but merely stores molecules when they are not currently active in the 
simulated system.  The size and current population of the dead list are displayed in the 
molecule section of the configuration file diagnostics if you choose verbose output. 

Active molecules in a simulation are stored in one or more live lists.  As a default, 
all live molecules that diffuse, meaning that the diffusion coefficient is non-zero, are 
stored in a list called “diffuselist” while all fixed molecules are stored in a separate live 
list called “fixedlist.”  The separation of the molecules into these two lists speeds up the 
simulation because all molecules in fixedlist can be safely ignored during diffusion 
calculations or surface checking. 
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Additional live lists can be beneficial as well.  For example, consider the 
equilibrium chemical reaction 

 
 A + B ↔ C 
 

The only bimolecular reaction possible is between A and B molecules, so there is no need 
to check each and every A-A, B-B, A-C, B-C, and C-C molecule pair as well to look for 
more possible reactions.  In this case, storing A, B, and C molecules in three separate lists 
means that potential A-B reactions can be checked without having to scan over all of the 
other combinations too.  This is done in the example file S4_molecules/mollist.txt, where 
it is found that using three molecule lists for A, B, and C leads to a simulation that runs 
30% faster than using just one molecule list.  With a Michaelis-Menten reaction, the 
difference was found to be closer to a 4-fold improvement. 

While it might seem best to have one molecule list per molecular species, it is not 
quite so simple.  It is often the case in biology modeling that many chemical species will 
exist at very low copy number.  In particular, a protein that can bind any of several 
ligands needs to be defined as separate molecular species for each possible combination 
of bound and unbound ligands.  This number grows exponentially with the number of 
binding sites, leading to a problem called combinatorial explosion.  Because there are so 
many molecular species, there are relatively few molecules of each one.  Returning to the 
Smoldyn molecule lists, each list slows the simulation speed by a small amount.  Thus, 
adding lists is worthwhile if each list has many molecules in it, but not if most lists are 
nearly empty. 

At least for the present, Smoldyn does not automatically determine what set of 
molecule lists will lead to the most efficient simulation, so it is up to the user make his or 
her best guess.  Molecule lists are defined with the statement molecule_lists and 
molecule species are assigned to the lists with mol_list.  Any molecules that are 
unassigned with the mol_list statement are automatically assigned to new a list called 
“unassignedlist”. 
 
Enhanced wildcard support 
 

In many statements that work with molecular species, you can specify multiple 
species using the wildcard characters ‘?’ and ‘*’, along with the logical operators ‘|’ and 
‘&’.  A question mark can represent exactly one character and an asterisk can represent 
zero or more characters.  For example, if you want protein Fus3 to have a different 
diffusion coefficient in the cytoplasm as in the nucleus, you might define it as two 
species, Fus3_cyto and Fu3_nucl.  Then, you could specify that they are both colored red 
using “color Fus3_* red”. 

Wildcard logical operators are ‘|’ for OR and ‘&’ for AND, along with braces to 
enforce an order of operation.  Use the former operator to enumerate a set of options.  
Continuing with the above example, you could specify that both species should be red 
with “Fus3_{cyto|nucl}”, where this is now more specific than using the asterisk 
wildcard character.  Use the ampersand to specify that multiple terms are in a species 
name but that the order of the terms is unimportant.  For example, “a&b&c” represents 
any of the 6 species: abc, acb, bac, bca, cab, and cba.  The ‘&’ operator takes precedence 
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over the ‘|’ operator so, for example, “a|b&c” represents any of: a, bc, and cb.  On the 
other hand, {a|b}&c represents any of: ac, bc, ca, and cb. 

Wildcard characters were new in version 2.26 and are still being developed.  At 
present, they can be used for most statements where a species property is defined (e.g. 
diffusion coefficient, color, surface interaction rate).  They can also be used for the 
text_display statement and in a few commands (mostly those that are some variant of 
molcount).  In the future, it will also be possible to define reactions using wildcard 
characters, leading to a simple version of rule-based reaction network generation. 
 
 
Table 3.4.1: statements about molecules 
 
species name1 name2 … namen names of species 
difc species(state) value diffusion coefficient 
difm species (state) m0 m1 … mdim*dim–1 diffusion matrix 
drift species (state) v0 v1 … vdim–1 global drift vector 
surface_drift species (state) surface pshape v0 v1  
  surface-relative drift vector 
mol nmol species pos0 pos1 … posdim–1 solution molecules placed in system 
surface_mol nmol species(state) surface pshape panel  [pos0 pos1 … posdim–1] 
  surface-bound molecules placed in system 
compartment_mol nmol species compartment molecules placed in compartment 
molecule_lists listname1 listname2 … names of molecule lists 
mol_list species(state) listname assignment of molecule to a list 
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3.5 Graphics 
 

Graphics window display 
 
A strong feature of Smoldyn is the real-time graphical output.  Graphics are useful 

for designing and debugging configuration files, for understanding the results of a 
simulation, and for communicating simulation results to others.  They have also proven 
invaluable for debugging Smoldyn. 

Graphical output, and the overall type of graphics, is enabled with the graphics 
statement which is included at the beginning of most of the example files.  Smoldyn 
supports the graphics options: “none”, “opengl”, “opengl_good”, and “opengl_better”.  
The “none” option means that no graphics are displayed, which is convenient for running 
batches of quantitative simulations.  The “opengl” option shows molecules as small 
squares that don’t account for which is in front of others.  This is poor rendering quality 
but is fast to simulate.  The “opengl_good” option replaces these squares with circles that 
are a little better looking, that account for depth-testing, and are much slower to render.  
Finally, the “opengl_better” option allows for the placement of light sources, for 
molecules to be shiny spheres, and for surfaces to be shiny.  This yields fairly good 
quality results. 

Graphical rendering can be as computationally intensive as the simulation itself, so 
it can be prudent to not display the system at every simulation time step, but only every 
n’th time step.  This is done with the graphic_iter statement.  Alternatively, exactly the 
opposite may be wanted.  It may be that the simulation runs too quickly for one to 
understand what’s being shown in the graphics window as it happens.  To slow the 
simulation down, use the graphic_delay statement. 

If you use the graphical output, then Smoldyn does not stop when the simulation is 
complete, but it instead lets you continue manipulating the graphics.  When you are done, 
press ‘Q’ (shift and ‘q’ key).  You can also stop using command-q, but that is less good 
because it forces Smoldyn to quit immediately rather than simply telling Smoldyn to 
finish its tasks (such as closing files and freeing memory) and then quit.  If you want 
Smoldyn to stop as soon as the simulation is complete, use the quit_at_end statement. 

The graphical display can be manipulated during the simulation using the keyboard.  
These keys and their actions are listed in the table shown below.  Note that it is possible 
to rotate the system about either the viewing axes with the arrow keys, or about the object 
axes with the x, y, and z keys. 

 
 

Table 3.5.1: Graphics manipulations during runtime 
 

Key press dimensions function 
space 1,2,3 toggle pause mode between on and off 
Q 1,2,3 quit 
T 1,2,3 save image as TIFF file 
0 1,2,3 reset view to default 
arrows 3 rotate object 
shift + arrows 1,2,3 pan object 
= 1,2,3 zoom in 
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- 1,2,3 zoom out 
x,y,z 3 rotate counterclockwise about object axis 
X,Y,Z 3 rotate clockwise about object axis 

 
 

Drawing the system 
 
Several statements control the drawing of the system.  The background color is set 

with background_color, the system boundaries are drawn with the line thickness that is 
set with frame_thickness and the color that is set with frame_color.  Although the feature 
is usually turned off, the grid_thickness and grid_color statements can be used to 
display the virtual boxes into which the system is divided (see the optimization section).  
Molecules are drawn with a size that is set with display_size and a color set with color.  
All of the statements that set colors require either color words chosen from the table 
below, or numbers for the red, green, and blue color channels.  Regarding the molecule 
display size, dimensions are in pixels if the output style is just “opengl” and are in the 
same length units are used in the rest of the configuration file if the output style is 
“opengl_good”. 

 
 

Table 3.5.2: Available colors 
 
maroon olive royal darkred 
red green sky darkorange 
scarlet chartrouse aquamarine darkyellow 
rose khaki violet darkgreen 
brick purple mauve darkblue 
pink magenta orchid darkviolet 
brown fuchsia plum lightred 
tan lime azure lightorange 
sienna teal black lightyellow 
orange aqua gray lightgreen 
salmon cyan grey lightblue 
coral blue silver lightviolet 
yellow navy slate 
gold turquoise white 

 
 

Some color statements also allow an alpha value, which is used for partially transparent 
objects; 1 is opaque and 0 is completely transparent.  The OpenGL graphics library does 
not do a good job of supporting partially transparent objects, so alpha values between 0 
and 1 often lead to mediocre rendering. 
 
Text display 
 

A few text items can be written to the graphics window during the simulation, all of 
which are displayed in the upper left corner of the graphics window.  These are the 
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simulation time and the numbers of different molecular species in the simulation.  Use 
the text_color and text_display statements to control this output. 

 
TIFF files 

 
Graphical images may be saved as TIFF images that are copied from the graphical 

display.  Thus, the saved image size and resolution are the same as they are on the screen.  
A single snapshot can be saved during a simulation by pressing ‘T’ (uppercase).  As a 
default it is saved as “OpenGL001.tiff”, which will be in the same file folder as the 
configuration file.  Alternatively, the configuration file statements tiff_name can be used 
to set the basic name of the file (a name of “picture” will end up being saved as 
“picture001.tiff”).  The numerical suffix of the name can be set with tiff_min and 
tiff_max.  The tiff_max value can be set to arbitrarily large numbers, although 
reasonable values are recommended so that vast numbers of useless tiff files can’t be 
saved by accident. 

A sequence of TIFF files can be saved automatically with the tiff_iter statement, 
allowing one to save an image sequence for later compilation into a movie.  TIFF files 
can also be saved automatically with the keypress T command, which allows more 
versatile timing than the tiff_iter statement.  Compiling an image sequence into a 
movie is easy with Apple’s QuickTime Pro or with various other programs. 

 
 

   
 
Figure 3.5.1: Graphics with 1-D, 2-D, and 3-D simulations made with the files 
graphics1.txt, graphics2.txt, and graphics3.txt, all from the S5_graphics directory.  All of 
these use the graphics quality “opengl_good”. 

 
 

Table 3.5.1: statements about graphics (not including surfaces) 
 
graphics str graphical output method 
graphic_iter int time steps run between renderings 
graphic_delay float additional delay between renderings 
quit_at_end yes/no Smoldyn should quit when it’s done 
frame_thickness int thickness of system frame 
frame_color red green blue color of system frame 
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grid_thickness int thickness of virtual box grid 
grid_color red green blue color of virtual box grid 
background_color red green blue background color 
display_size name float size of display for a molecule species 
color name red green blue color for a molecule species 
text_color color color for text display 
text_display item item that should be displayed with text 
tiff_iter int time steps between TIFF savings 
tiff_name name root name of TIFF files 
tiff_min int initial suffix for TIFF files 
tiff_max int largest possible TIFF suffix 
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3.6 Runtime commands 
 

Command basics 
 
The design of a simulation can be broken down into two portions.  One portion 

represents the physical system, including its boundaries, surfaces, molecules, and 
chemical reactions.  These are the core components of Smoldyn and are simulated by the 
main program.  The other portion represents the action of the experimenter, which 
include observations and manipulations of the system.  As with the parameters of the 
physical system, these actions are also listed in the configuration file.  They are listed as a 
series of commands and execution times. 

There are no rules regarding what commands can and cannot do.  Thus, in principle, 
commands could be used to measure any aspect of the simulated system at any time.  Or, 
other commands could be used to manipulate any aspect of the system, regardless of 
whether the manipulations have any physical basis.  In practice, there is a limited set of 
commands that have been written (listed below in the reference section) so the range of 
what can actually be done with commands is limited to what those in this list can do.  
Alternatively, a somewhat adventurous user can write his or her own source code to 
create a new command, as explained below.  Because commands do not have to follow 
the rules that the rest of the code does, they are easy to add and are powerful, but they 
also tend to be less stable and less well optimized than the core program. 

Commands are entered in a configuration file with the statement cmd, followed by 
some information about the execution timing, the specific command name, and finally 
any parameters for the command.  Here are some examples: 

 
cmd b pause 
cmd e ifno ATP stop 
cmd n 100 molcount outfile.txt 
 

The first one instructs the simulation to pause before it starts running, the second says 
that the simulation should stop if there are no molecules named ATP, and the third tells 
Smoldyn to print a count of all molecules to the file called outfile.txt every 100 iterations.  
In contrast to the statements that define the physical system, runtime commands are not 
parsed or interpreted until the simulation time when they are supposed to be executed.  
When a command is executed, Smoldyn processes it with a runtime command interpreter.  
If there are errors in command parameters, such as a missing or nonsensical parameter, 
these are not caught until the command is executed during the simulation. 

Command execution timing works in either of two ways.  A command can be 
performed at real-valued simulation times, such as before the simulation starts, at some 
particular time, or repeatedly at fixed time intervals.  Alternatively, a command can be 
performed after some specified number of time steps.  This avoids minor timing problems 
that can arise from round-off error.  Commands for these two methods are stored in the 
continuous-time and integer command queues, respectively.  If two commands are 
entered with the exact same timing instructions, then, at each invocation, they are 
performed in the same order as they are listed in the configuration file.  On the other 
hand, the order may differ if their timing instructions differ; to be precise, they are 
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executed in the order from the one that was least recently performed to the one that was 
most recently performed.  If both integer and continuous time queue commands are 
supposed to execute at the same time step, then all of integer queue commands are 
performed first.  Command timing is demonstrated with the configuration files 
S6_commands/cmdtime1.txt and S6_commands/cmdtime2.txt. 

 
 

Table 3.6.1: Runtime command timing 
 
code parameters execution timing 
continuous time queue 
b  runs once, before simulation starts 
a  runs once, after simulation ends 
@ time runs once, at ≥ time 
i on off dt runs every dt, from ≥ on until ≤ off 
x on off dt xt geometric progression 
 
integer queue 
B  runs once, before simulation starts 
A  runs once, after simulation ends 
& i runs once, at iteration i 
I oni offi dti runs every dti iteration, from ≥ oni to ≤ offi 
E  run every time step 
N n runs every n time steps 

 
A few deprecated codes, which are in addition to the codes listed above, are that j is 

equivalent to I, e is equivalent to E, and n is equivalent to N. 
Each command is one of three main types: control, observe, or manipulate.  Control 

commands control the simulation operation.  For example, a command called keypress, 
followed by a letter, causes the simulation to act as though that key had been pressed by 
the user.  This can be useful for modifying the display automatically.  Observation 
commands read information from the simulation data structures, analyze the data some, 
and output results to text files.  The precison of numerical output values can be set using 
the output_precision statement.  Neither control nor observation commands modify any 
aspect of the simulation.  Manipulation commands modify the simulation parameters, 
such as the addition, removal, or replacement of molecules, or the modification of 
reaction rate constants.  These commands do not produce any output.  Yet a fourth type 
of command is the conditional command.  These test for certain simulation conditions, 
such as there being more than some number of some molecule species, and then run a 
second command if the conditions are met.  Each conditional command is characterized 
as being one of the three main types based on the type of its second command. 

 
Output files 

 
For observation commands to work, one typically needs to declare the output file 

names with the statements output_files or append_files.  The exception to this is if 
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output should go to the standard output or standard error location, which are typically the 
terminal window.  These are called “stdout” and “stderr”, respectively, exactly as in C or 
C++.  These can be declared with the output_files statement but don’t need to be. 

To save output files in a subdirectory, the subdirectory path is declared with the 
output_root statement.  Note that the path needs to end with a ‘/’, if you’re working on a 
Linux system, or a comparable separator on other systems.  This subdirectory path is 
concatenated on the end of the path that was used for the configuration file.  It is possible 
to save a stack of files in which there is a separate file for each of many sequential 
observations.  These are created with the output_file_number statement, which defines 
the starting suffix number for the file stack.  Zero, which is the default, indicates no 
suffix number, whereas other numbers lead to a 3 digit suffix.  The suffix number is 
incremented with the command incrementfile.  The complete output filename is a 
concatenation of: the path for the configuration file, the string declared with output_root, 
the file name declared with output_files minus any suffix that starts with a ‘.’, an 
underscore and the suffix number declared with output_file_number, and finally any 
suffix that starts with a ‘.’.  Here is an example, using Linux path notation: 

 
working directory: theory 
configuration file: theory/expt1/myconfig.txt 
desired output files: theory/expt1/results/outfile_001.txt 
 theory/expt1/results/outfile_002.txt 
 ... 
 
configuration file excerpt: 
 output_root results/ 
 output_files outfile.txt 
 output_file_number outfile.txt 1 
 cmd n 100 incrementfile outfile.txt 
 cmd e molcount outfile.txt 
 
starting Smoldyn: smoldyn expt1/myconfig.txt 
 

There are some differences with Macintosh file formats.  Instead of using a forward-slash 
to indicate subdirectories, a colon is used.  Also,  a preceding colon is required to indicate 
a directory rather than a file.  Thus, to convert the above example to Macintosh notation, 
each slash is replaced by a colon and the configuration file for Smoldyn would be entered 
as “:expt1:myconfig.txt” (note the initial colon).  Because of the potential for confusion 
with output file names, complete pathnames (relative to the working directory) are 
displayed at start-up with the simulation parameters. 

An example that is essentially identical to the one shown above is in given in the 
example file S6_commands/cmdfile.txt.  Upon running it and looking at the results, you 
will discover that the first output file, cmdfileout_001.txt, is empty, whereas all of the 
others are full, as expected.  The empty file arises because the file number is incremented 
at the very beginning, before the molcount command is invoked for the first time.  This 
could be remedied by using slightly more sophisticated command timing with the ‘i’ or 
‘j’ timing codes. 
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Specific commands 
 
All of the commands are listed below in the reference section, which is the 

definitive source of information about them.  Most of the commands are also 
demonstrated in the example files S6_commands/cmdobserve.txt and 
S6_commands/cmdmanipulate.txt.  Of the full list of commands, some are quite useful, 
some are rarely used, and some have been superceded by newer code.  The last category 
includes several that implement rudimentary reflecting surfaces, which were written 
before a good treatment of surfaces was added to the core program.  Of the more useful 
commands, a few deserve special mention. 

The molcount command, and several variations of it, are used to save the numbers 
of each kind of molecule as a function of time.  These are often the most useful text 
output commands from Smoldyn. 

The savesim command causes the entire simulation state to be saved to a file as a 
configuration file that can be read by Smoldyn.  With it, one can save a simulation mid-
run and then continue running it later.  This can be useful as a backup for intermediate 
results or for building starting states for complex simulations in several stages. 

The keypress command creates an event that the program responds to, as though 
the user had pressed this key.  For example, at the end of a simulation that uses graphics, 
the graphics window is left on the screen until the user selects quit from the menu or 
presses ‘Q’.  This quitting can also be programmed into the configuration file with “cmd a 
keypress Q”.  Arrows and other keypress options can be entered as well. 

The set command enables you to enter essentially any configuration file statement 
mid-simulation.  For example, the command “set species green” creates the species 
named “green” when the command is invoked, rather than at the beginning of the 
simulation.  It’s also possible to create surfaces, add reactions, etc. mid-simulation. 

 
Writing your own commands 

 
Commands are written in C, like the rest of the Smoldyn code, and are compiled 

with the rest of the code.  Compared to the core program, commands are relatively easy 
to write, although they still aren’t easy.  In most cases, one needs to know the intricacies 
of the data structures in order to properly navigate or modify them.  This information is 
all documented in part II of the manual. 

Commands are allowed to look at or modify any part of the simulation data 
structures, making them quite powerful, but also problematic if they are written 
incorrectly.  There is no safety system that protects the core program from commands, so 
writing the wrong thing to a data structure can easily cause Smoldyn to crash.  For this 
reason, it may be easier to write observation commands than manipulation commands. 

To write a command, do the following steps, which can be done in any order: 
 

1.  Write a description of the new command that will go into the reference section of the 
user’s manual, modeling it on those that are given below. 

2.  In smolcmd.c, add a new declaration to the top of the file for the command, which 
looks like: 
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 enum CMDcode cmdname(simptr sim,cmdptr cmd,char *line2); 
 
3.  The first function of smolcmd.c is docommand.  In it, add an “else if(…)” line for the 

new command.  It looks like: 
 
 else if(!strcmp(word,"name")) return cmdname(sim,cmd,line2); 
 
4.  Write the function for the new command, modeling it on the command functions 

currently in smolcmd.c.  The documentation file SimCommand.doc may be 
helpful. 

5.  Proofread the function and test the command. 
6.  Write documentation about the command for part II of the Smoldyn manual. 
7.  Mention the command in the Smoldyn modifications portion of part II of the manual. 

 
For a command to be included in updated Smoldyn releases, send the code to me at 
steven.s.andrews@gmail.com.  Assuming I like it, I’ll add it to the master copy of the 
code and will include it with the next Smoldyn version. 

 
 

Table 3.6.2: statements about the command interpreter 
 
output_root str root of path for text output 
output_files str1 str2 … strn file names for text output 
output_precision int precision for numerical output 
append_files str1 str2 … strn file names for text output 
output_file_number int starting suffix number for file name 
cmd b,a,e string command run times and strings 
 cmd @ time string 
 cmd n int string 
 cmd i on off dt string 
 cmd x on off dt xt string 
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3.7 Surfaces 
 

Surface basics 
 
A large fraction of biochemistry does not happen in free solution, but at or across 

cellular membranes.  To model these interactions, Smoldyn supports surfaces within the 
simulation volume.  Typically, one Smoldyn surface is used to model each type of 
membrane.  For example, a bacterium might be modeled with one surface for the inner 
membrane and another for the outer membrane, while a eukaryotic cell would use 
separate surfaces for the plasma membrane, the nuclear membrane, and for each type of 
organelle.  Smoldyn supports disjoint surfaces as well, such as for a collection of 
vesicles. 

Each Smoldyn surface comprises many panels.  These panels have simple 
geometries: for three-dimensional systems, a panel may be a rectangle, triangle, sphere, 
cylinder, hemisphere, or a disk.  For one- and two-dimensional systems, lower 
dimensional analogs of these panel shapes can be used.  There are two main reasons that 
Smoldyn supports this variety of primitive shapes rather than just the triangle meshes that 
are more common.  First, these are much easier to use for simple models.  For example, it 
is much easier to specify a simple spherical nucleus for a cell than it is to build an 
approximate sphere out of 20 or more triangles.  Second, it is faster to simulate molecular 
collisions with one sphere or other simple curved objects than with a lot of triangles.  In 
general, more geometric primitives are better.  (Although, from the Smoldyn 
programmer’s point of view, each one also requires a significant amount of math before it 
can be supported by Smoldyn). 

Each surface includes a set of rules that dictate how molecules interact with it.  This 
includes molecules that diffuse into it from solution, as well as molecules that are bound 
to the surface.  All panels on a single surface interact with molecules in the same ways.  
Molecules that are bound to a surface are designed to represent membrane-bound proteins 
and trans-membrane proteins.  For example, they can model signaling receptors or ion 
channels. 

 
Defining surfaces 

 
Surfaces are typically entered with one or more blocks of statements that start with 

start_surface and end with end_surface.  Between these, only surface statements are 
recognized.  A single surface may be broken up into multiple blocks of statements, and 
each block may describe multiple surfaces.  The surface name may be given after the 
start_surface statement, or it can be given afterwards with the name statement; this 
specifies which surface is being defined, and starts a new one if required. 

As was mentioned before, Smoldyn surfaces do not work well in conjunction with 
the system boundaries that were defined with the boundaries, low_wall, or high_wall 
statements.  If a configuration file includes any surface statement, even if no surfaces are 
actually defined, then all wall-type boundaries automatically behave as though they are 
transparent.  To keep molecules within the system, an outermost surface needs to be 
defined.  It may be a set of rectangular panels that are coincident with the system walls, a 
sphere that encloses the system, or something else.  Molecules could also be allowed to 
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escape the system although that is usually undesirable and can slow the simulation down 
(see below for the unbounded_emitter statement, which provides an efficient alternative 
to escaping molecules). 

The action or rate statements set the rules that molecules follow when they interact 
with a surface.  For molecules in solution that collide with one of the surface faces, which 
are called front and back, there are three basic actions: reflection off of the surface, 
transmission through the surface, or absorption by the surface.  It is also possible for a 
surface to be a “jumping” surface, such that if a molecule collides with it in one place, the 
molecule will be magically transported to a pre-defined destination.  This is described 
below, as is another type of special surface called a “porting” surface.  Yet another action 
option is “multiple”, meaning that there any of several outcomes are possible and that 
there are specific rates for each.  These rates are set with the rate statement (if rate is 
entered, the only possible action is “multiple”, so the action statement may be omitted).  
For example, a membrane might be somewhat permeable to a molecular species, in 
which case one would set some rate for transmission; molecules that are not transmitted 
are reflected.  Using the rate statement, it is also possible to cause a molecule to change 
species when it interacts with a surface.  This is designed for molecules that behave 
sufficiently differently in different regions of space that it is most convenient to treat 
them with two different species; a typical use is for spatially-dependent diffusion 
coefficients. 

The action and rate statements also apply to collisions of surface-bound molecules 
with other surfaces.  This can arise when molecules diffuse along surfaces and two 
surfaces cross each other.  For example, one way to create a lipid raft is to create a single 
surface for a cell membrane and then a short cylinder that intersects the membrane, 
creating an inner circular region and an other region (a Gaussian pillbox).  Then, surface-
bound molecules change species names when they cross the cylinder.  An exception to 
the normal behavior arises when a surface-bound molecule collides with a panel that has 
been declared to be a neighbor of the molecule’s panel.  In this case, there are two 
options, which are selected with the neighbor_action statement.  The default behavior is 
that the molecule simply ignores the panel and diffuses through it.  Alternatively, the 
molecule can be allowed to hop onto the new panel, with a 50% probability of doing so.  
This latter possibility is helpful for allowing diffusion on a surface where the panels don’t 
necessarily meet at their edges. 

Sometimes, one wants a modeled system to be unbounded, such as for the 
simulation of pheromones that diffuse freely between cells, but that can also diffuse away 
towards infinity.  While Smoldyn can simulate such unbounded systems with unbounded 
space, this can be very computationally intensive because it tracks every molecule, no 
matter how far it is from the region of interest.  A better solution is to define a surface 
that surrounds the portion of the system that is of interest, where these surface panels 
absorb molecules at a rate that causes the system to behave as though it were unbounded.  
Smoldyn calculates this absorption rate automatically, from information that the user 
specifies with the unbounded_emitter statement.  This statement declares the positions 
and the production rates for each emission source within the simulation volume.  The 
new absorption coefficients completely replace any other actions that might be defined 
for interactions between this surface and molecular species. 
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Defining surface panels 
 
Individual surface panels are defined with one panel statement for each individual 

panel.  These statements are used to specify panel locations, dimensions, orientations, 
and, sometimes, drawing information.  Each panel also has a name, for which the default 
is simply the panel shape followed a number, although it is also possible for the name to 
be defined by the user at the end of the panel statement.  These names are used for 
jumping surfaces and diffusion of surface-bound molecules.  For a surface to work in a 
consistent manner, it is worth making sure that all panel front sides face the same way.  
The drawing information, such as the numbers of slices and stacks for a sphere, is only 
used for graphical rendering.  As far as the simulation is concerned, a sphere, regardless 
of how it is drawn, is always a mathematically perfect sphere. 

In general, panels should not be defined that are coincident with each other because 
this can lead to unreliable behavior.  The rule is that if multiple panels are exactly 
coincident, whether they are members of the same surface or different ones, then only the 
one that is defined last in the configuration file is in effect. For example, one could define 
a washer-shaped surface using a large disk that reflects all molecules and a small disk, 
which has the same center and is parallel to the large disk, that transmits all molecules.  
However, computer round-off error often makes exact coincidence impossible; at best, it 
is most likely to work if the panels are parallel to the system axes or if they share the 
same center point.  If two panels are very nearly but not exactly coincident (separations 
between 0 and 10-12 distance units), Smoldyn treats them as though they are reflective, 
which it has to do in order to prevent unintentional leaks where panels cross each other.  
Graphical rendering of coincident panels is unpredictable but rarely good. 

Several configuration files were written to test the surface actions with all 
dimensions and all panel shapes.  They are in the examples/S7_surfaces directory and are 
called reflect#.txt, transmit#.txt, and absorb#.txt, where the ‘#’ is 1, 2, or 3 for the system 
dimensionality.  Additionally, the three surf#.txt files show the basic actions in single 
files.  Following is an excerpt from reflect3.txt, which shows how a surface and its panels 
can be defined: 

 
start_surface surf 
action all both reflect 
color both purple 0.5 
thickness 2 
polygon front face 
polygon back edge 
panel rect +0 40 40 40 20 20 
panel rect -0 60 40 40 20 20 
panel rect +1 40 40 40 20 20 
panel rect -1 40 60 40 20 20 
panel rect +2 40 40 40 20 20 
panel rect -2 40 40 60 20 20 
panel tri 60 15 70 80 15 70 70 15 86     # 1 2 3 
panel tri 60 15 70 70 15 86 70 31 77     # 1 3 4 
panel tri 70 15 86 80 15 70 70 31 77     # 3 2 4 
panel tri 80 15 70 60 15 70 70 31 77     # 2 1 4 
panel sph 20 20 20 8 20 20 
panel cyl 20 75 20 80 75 80 5 20 20 
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panel cyl 20 30 70 20 50 70 4 20 20 
panel hemi 20 75 20 5 1 0 1 20 20 
panel hemi 80 75 80 5 -1 0 -1 20 20 
panel disk 20 30 70 4 0 -1 0 20 
panel disk 20 50 70 4 0 1 0 20 
end_surface 
 
Several statements pertain to the drawing of surfaces to the graphics window.  The 

color statement specifies the color of the front and/or back of the surface with either 
color words or red, green, blue, and alpha (opacity) values.  As mentioned above in the 
graphics section, OpenGL does not render well with alpha values between 0 and 1.  
Thickness defines the line width that should be used for drawing surface edges, or for 
surfaces in 2-dimensional systems.  The polygon statement is used to set the drawing 
mode for showing just the panel edges, only panel vertices, or complete panel faces.  It 
also allows filling of regions for surfaces in 2-dimensions. 

 
Jumping surfaces 

 
There are a few situations in which one might reasonably want to have molecules 

move discontinuously, leaping from one place to another.  One is for periodic boundaries 
in which molecules that diffuse off of one side of the system immediately diffuse onto the 
other side, thus keeping the composition of the system constant while avoiding effects 
that can arise from edges.  Another situation is for building complex surface structures 
from the Smoldyn panel primitives without resorting to triangulated meshes.  For 
example, one might want to have two spherical cells whose cytoplasms are linked by a 
narrow cylindrical channel, making a dumbbell shape.  This would be easy to design in 
Smoldyn, except that there is no way to cut holes in the spheres where the cylinder 
should be attached.  The solution is to put small disk-shaped “jumping” panels on each 
side of the spot where the hole is wanted so that molecules can be transported across the 
barrier (see examples/S7_surfaces/dumbbell.txt). 

To define a jumping surface, the action for each molecule that is to be jumped 
(usually set to all molecules, although fewer is permissible too), for the active face of the 
surface, is set to “jump.”  Next, the active face of each panel needs to be assigned a 
destination panel and face using the jump statement.  The source and destination panels 
are required to be the same shape and to be parallel to each other although, for certain 
shapes, they may differ in size. 

Jumping surfaces are demonstrated with the files jump1.txt, jump2.txt, and 
jump3.txt, all in the S7_surfaces directory. 

Surface-bound molecules used to jump when they diffused onto panels that had 
surface-bound jump actions.  However, this feature was removed in version 2.37 because 
it was complicated and there were better ways of accomplishing the same result. 

 
Membrane-bound molecules 

 
In Smoldyn, molecules can be in free solution or bound to surfaces.  The bound 

ones can be attached on the front of the surface or on the back, called the “front” and 
“back” states, or they can be transmembrane molecules in either an “up” orientation or a 
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“down” orientation.  The precise meanings of these states are decided by the user.  As an 
example, if a receptor is oriented such that the ligand binding site is on the outside of the 
cell, as usual, it could be called “up,” whereas if it were in the membrane in a reversed 
orientation, it could be called “down.”  In all, there are five states that molecules can be 
in: “solution,” “front,” “back,” “up,” or “down,” of which the last four are the surface-
bound states.  In practice, all four surface-bound states are essentially equivalent.  A 
molecule in any of these states is allowed to interact with solution-phase molecules that 
are on either side of the surface, and it can desorb to either side of the surface.  The only 
real difference between these states is that Smoldyn ensures that molecules in the “front” 
state have coordinates that are slightly on the front side of the surface and those in the 
“back” state have coordinates that are slightly on the back side of the surface.  Smoldyn 
does not fix the coordinates to be on any particular side for molecules in the “up” or 
“down” states, which makes these states simulate very slightly faster. 

Additionally, it is sometimes necessary to specify the position of a solution-state 
molecule relative to a surface.  For this, the pseudo-states “fsoln” (which is identical to 
“solution”) and “bsoln” specify that it is solution state and on the front or back of the 
relevant surface. 

The surface_mol statement, which was mentioned in the section on molecules, is 
used to specify that there are molecules bound to a surface at the start of a simulation.  
The statement is quite versatile, allowing one to specify that molecules are scattered 
randomly over an entire surface, over specific panel shapes, over specific panels, or even 
over all surfaces.  Also, of course, it is possible to specify exact molecule locations. 

The rate statement, mentioned before in the context of partially permeable 
surfaces, is also used for transition rates for surface-bound molecules.  It can be used for 
specifying the rate at which a solution-state molecular species is adsorbed onto a surface.  
It can also be used for the release rate, from surface to solution.  In this situation, the 
release side of the surface is identified by giving the destination state as either “fsoln” or 
“bsoln”, for the front and back, respectively.  Rate is also used for transition rates 
between the different surface-bound states, such as from “front” to “back.” 

Surface-bound molecules diffuse within the plane of the surface according to the 
diffusion coefficient that was entered with the difc statement for the respective molecule 
state.  To allow molecules to diffuse between neighboring surface panels, whether they 
are part of the same surface or different surfaces, these neighbors have to be declared 
with the neighbors statement.  Diffusion on surfaces is reasonably quantitatively 
accurate, which is best understood with an explanation of the algorithm (most of which 
was new in version 2.37).  Considering a three-dimensional system, a surface-bound 
molecule is initially diffused in all three dimensions.  It is then moved back to the local 
plane of the panel that it is bound to.  If this puts the molecule within the area of its panel, 
then the diffusion step is done and no further actions are taken.  This approach is exact 
for flat panels and reasonably good for curved panels (and becomes exact in the limit of 
short time steps).  If the new position is not within the area of the molecule’s panel, 
Smoldyn determines where the line of the molecule’s trajectory exits the current panel.  
Smoldyn then determines if there are other panels at this point (it actually checks for 
panels within an extremely small distance called neighdist from this position, which is 
just large enough to prevent problems from computer round-off error).  If so, it chooses 
one of these panels at random and rotates the molecule’s trajectory that extends beyond 
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the original panel into the plane of the new panel, thus preserving the length of the 
trajectory.  If the end point of the new trajectory is within the new panel, then the 
diffusion step is done.  If not, Smoldyn repeats the procedure until the trajectory is used 
up.  Returning to a prior condition, if the molecule’s trajectory leaves the molecule’s 
current panel but there is no neighbor near the exiting point, then the molecule does not 
continue onto a neighbor.  Instead, it reflects off of the panel edge, so that the trajectory 
continues on the original panel.  This procedure should be exact for flat panels and 
extremely good for curved panels. 

Note that molecules only transition from one panel to another when they diffuse off 
the edge of the initial panel.  Thus, for example, a molecule can never diffuse off an edge 
of a sphere, with the result that molecules cannot diffuse from one sphere to another, 
even if these spheres intersect.  If diffusion between panels is desired in these cases, then 
use the neighbor_action statement, as described above.  However, be forewarned that 
diffusion between neighboring panels can interact badly with the neighbor_action 
hopping, which is why this hopping is turned off as a default.  For example, suppose 
several 2D panels (which are lines) meet at a single point.  A molecule diffusing along 
one of the panels correctly transitions to a new randomly chosen panel when it gets to 
that point.  However, if neighbor_action is set to hopping, then the trajectory during this 
transition might be discovered to cross yet another one of the panels in the process, so the 
molecule would then get moved onto this new panel.  The probability of this outcome is 
biased by the precise panel positions and by round-off errors, with the result that the 
molecule position statistics would be incorrect. 

Files that demonstrate surface-bound molecules are: S7_surfaces/stick2.txt and 
cellmesh.txt (which reads cellmeshfile.txt).  Surface diffusion is demonstrated with the 
files in S7_surfaces/surfacediffuse/. 

 
Smoldyn bugs 

 
As far as I know, there are no bugs currently in Smoldyn that cause surfaces to 

behave other than requested.  However, leaking surfaces have been a recurring problem 
with Smoldyn.  In this problem, which can be caused by any of a vast number of small 
mistakes in the source code, molecules that shouldn’t go through a surface are found to 
have done so.  Some commands that were written to test for it are: warnescapee and 
killmoloutsidesystem.  If you suspect that Smoldyn isn’t working right, or if you just 
want to verify that it is working right (a good idea if you don’t use graphical output), then 
it might be worth running these or other commands.  The former one has to be run at 
every time step to be useful.  The latter one has no output directly, but will identify 
problems if it is bracketed by molcount commands.  The command killmolinsphere can 
be used in a similar manner. 

If you have a configuration file that shows molecules leaking through surfaces 
incorrectly, please send it to me (steven.s.andrews@gmail.com), so I can track down the 
bugs.  Note that simulations will produce repeatable results, which is essential for 
debugging, if the statement random_seed is used to fix the random number seed. 

 
 

Table 3.7.1: statements about surfaces 



 40 

 
max_surface int (optional) maximum number of surfaces 
start_surface name start of a surface block 
name name optional statement for the surface name 
action species(state) face action action for when a molecule contacts surface 
rate molec state1 state2 value [new_spec] transition rate 
neighbor_action action 
rate_internal molec state1 state2 value [new_spec] 
color face color [alpha] 
 color face red green blue [alpha] 
thickness float 
polygon face drawmode 
shininess face value 
max_panels char int (optional) 
panel char float … float 
 panel char float … float name 
jump name face -> name2 face2 
 jump name face <-> name2 face2 
neighbors panel neigh1 neigh2 … 
unbounded_diffusion face species amount pos0 pos1 … posdim-1 
end_surface 

 
 

Rates of surface interactions 
 
For an interaction to occur between a solution-state molecule and a surface, the 

molecule has to (1) contact the surface and (2) interact based on some probability.  There 
are subtleties both in the determination of contacts and in the calculation of these 
probabilities. 

Starting with the contacts, a molecule clearly contacted a surface during the 
preceding time step if it ended up across the surface from where it began, which I’ll call a 
direct collision.  It is also possible for a molecule to start and end on the same side of a 
surface, but to have contacted the surface at some point during the time step, labeled here 
as an indirect collision.  The probability of an indirect collision occurring is (Andrews 
and Bray, Phys. Biol. 2004) 

 

exp −
l1l2
DΔt

⎡
⎣⎢

⎤
⎦⎥

 

 
Here, l1 and l2 are the perpendicular distances to the surface before and after the time step, 
D is the diffusion coefficient, and ∆t is the time step.  These indirect collisions are 
implemented in Smoldyn for simulating absorption of molecules to the bounding walls of 
the system (the boundaries). 

However, for interactions between diffusing molecules and all surfaces, Smoldyn 
only accounts for direct collisions, thus ignoring the indirect collisions.  This decreases 
the accuracy of Smoldyn slightly but is done because indirect collisions were found to be 
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difficult to code, computationally demanding, and made essentially no difference to 
results. 

The probability of interaction given that a collision has occurred is difficult to 
calculate.  While it is presented in a recent paper by Erban and Chapman (Phys. Biol. 
4:16-28, 2007) for adsorption interactions, their equation turns out to only be accurate in 
the limit of short time steps.  Thus, I found the necessary relationships between the 
adsorption, desorption, or transmission coefficients and the corresponding adsorption, 
desorption, and transmission probabilities.  They are implemented in the SurfaceParam.c 
source code file of Smoldyn and have been thoroughly tested.  I plan to write these 
algorithms up and submit them for publication during the next few months. 

The adsorption coefficient, κ, has units of length/time.  The product κc, where c is a 
concentration (units of length–3), is the adsorption rate in molecules adsorbed per unit of 
time, per unit of surface area.  If the surface is in equilibrium with the solution, where 
there is a sticking coefficient of κ, and an unsticking rate of k, then the equilibrium 
surface density of molecules is 

 

Csurface =
κ
k
Csolution  

 
Surface sticking rates were tested with the example file stickrate.txt.  Here, a 

collection of molecules diffuses freely in solution, but sticks with rate 0.5 on one side.  
This situation can be solved analytically as well from equations in Crank, allowing for a 
good comparison.  Comparison between simulation and theory are shown in the figure 
below. 
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Figure 3.7.1: Sticking rate.  Results from example stickrate.txt, shown in red, are 
compared with the analytic solution for the sticking rate.  The left panel shows the total 
number of molecules stuck to the surface.  The right panel shows the average sticking 
rate with a 5 time unit averaging window, with comparisons to the expectation sticking 
rate shown with a solid line and the 1 standard deviation range shown with dashed lines. 

 
Simulating effective unbounded diffusion 

 
The example files in S7_surfaces/unbounded_diffusion illustrate and verify the use 

of a partially absorbing bounding surface to simulate effective unbounded diffusion.  
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These files use the Smoldyn file sphere.txt, which describes a sphere; I created it by 
using Mathematica to define a sphere, triangulate it, and save it as a “wrl” (Virtual 
Reality Modeling Language) file.  Then, I used the wrl2smol utility program to convert it 
to the Smoldyn-readable file sphere.txt.  Other Smoldyn configuration files specify 
either one or multiple emitters within this sphere and then save concentration line profiles 
as functions of time.  The theoretical concentration distributions for these situations is 
expressed with a slight extension of eq. 3.5b from Crank, which leads to 
 

 C r( ) = qi
4πD r − ri

erfc
r − ri
2 Dti

∑  

 
Here, C(r) is the concentration at position r, qi is the emission rate of source i, D is the 
diffusion coefficient, ri is the location of source i, and t is the time since the sources 
started emitting.  At steady-state, this concentration equation simplifies to 
 

 C r( ) = qi
4πD r − rii

∑  

 
The figure below shows results from the emitter1.txt Smoldyn simulation, in which an 
emitter at location r1 = (-4.5,0,0) microns emits q1 = 500 molecules per second, these 
molecules have a diffusion coefficient of D = 3 µm2/s, and the system is surrounded by a 
triangulated sphere that is centered at the origin and has radius 10 microns.  Absorption to 
this sphere was set to make the molecules diffuse as though the system were unbounded.  
Close agreement between simulation and theory show that the algorithm works well. 
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Figure 3.7.2: Effective unbounded diffusion.  The left panel shows a snapshot from 
example emitter1.txt where it is seen that the emitter center is somewhat left of the sphere 
center and the sphere is triangulated.  The right panel shows line profiles across the 
middle of the sphere, from (-10,0,0) to (10,0,0) at times t = 0.3 s (blue) and t = 100 s 
(red), with simulation data shown with points and theoretical results, from the equations 
above, in solid lines. 
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3.8 Reactions 
 

Reaction basics 
 
There are three types of chemical reactions in Smoldyn: zeroth order, first order, 

and second order, where the order is simply the number of reactants.  Synonyms for the 
latter two are unimolecular and bimolecular reactions.  In addition, Smoldyn simulates a 
couple of additional interaction types using reactions; these are conformational spread 
reactions and excluded volume reactions, both of which are described below. 

With zeroth order reactions, there are no reactants at all.  Instead, products appear 
spontaneously at random locations in the system volume (or within a compartment) at a 
roughly constant rate.  This is completely unphysical because particles are being created 
from nothing.  However, since Smoldyn explicitly ignores many chemical species, the 
assumption here is that some unmodeled chemicals are being converted into the zeroth 
order product.  Thus, it is assumed that there is a legitimate underlying chemical reaction 
that produces the products that are seen, but it just isn’t part of the model.  (At least, this 
is the typical use of zeroth order reactions; using them to model the magical production 
of matter is fine too.) 

First order reactions involve the conversion of one molecular species into another.  
This includes spontaneous conformational changes of proteins and chemical 
rearrangements of small molecules.  Also, many reactions are pseudo-first order, meaning 
that one of two reactants has a sufficiently constant concentration and distribution that it 
can be left out of the model and its effect is lumped into the rate constant of a first order 
reaction.  Protein phosphorylation by ATP is a good example of this.  In Smoldyn, 
reactants of first order reactions have a certain probability of converting to products at 
each time step. 

Second order reactions occur when two reactants collide and react (conformational 
spread reactions are an exception, as described below).  In Smoldyn, a reaction radius is 
defined for each pair of molecular species.  For those that do not react with each other, 
the reaction radius is 0.  For those that can react, the reaction radius is some small 
distance on the order of the molecular radii, with values that increase monotonically with 
the standard mass action reaction rate.  To simulate each time step, molecules are first 
diffused and then all reactant pairs that are closer than their reaction radii are reacted.  
Thus, the stochasticity in simulated bimolecular reactions arises solely from diffusion and 
not from the reaction step of the algorithm.  This is slightly less accurate than alternative 
methods in which there is a non-one probability of reaction upon collision but is chosen 
because it is nearly as accurate and is faster to simulate. 

If a reaction has multiple products, they are usually all added to the system at the 
same point.  They can also be separated from each other by a small amount, called the 
unbinding radius if there are two products, which reduces the likelihood of their 
immediate recombination in a new reaction.  This recombination is called a geminate 
recombination. 

It is possible to specify that a reaction should only occur within a spatial 
compartment (defined below), or if one of the reactants is bound to a specified surface.  
For example, it is possible to declare that a zeroth order reaction should only produce 
product within a specific compartment, or that a first order reaction is only active when 
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the reactant is within the specified compartment.  In many cases, these rules are 
unphysical, although they can be very useful for treating interactions with spatially 
localized unmodeled chemical species. 

Conformational spread reactions are only intended to be used with stationary 
reactants and are only permitted in reactions with two reactants and two products.  A 
conformational spread reaction is possible if the reactants are closer together than the 
conformational spread radius, which is analogous to the binding radius of normal second 
order reactions (although its value is constant, regardless of the time step).  For a 
conformational spread reaction, the reaction rate has units of inverse time, as it is for a 
first order reaction.  If a reaction occurs, the first entered reactant is replaced by the first 
product, and the second reactant with the second product. 

Excluded volume reactions use the reaction concept to simulate excluded volume 
interactions.  Here, the typical reaction is of the form A + B → A + B, but with the 
constraints that the “binding radius” is roughly the sum of the physical molecular radii 
and the “unbinding radius” is a slightly larger value.  In these reactions with the “bounce” 
product placement type, the reaction products are placed on the same axis as the 
reactants, with the result that the molecules appear to bounce off of each other. 

Each molecule has a serial number that can be used to uniquely identify it.  In most 
reactions, the reactants are simply removed from the system and the reaction products are 
new molecules with new serial numbers. However, this is not the case for conformational 
spread and excluded volume reactions because the reactants and products are 
conceptually the same molecules, so these products have the same serial numbers as the 
reactants.  It can also be helpful to maintain serial numbers in other situations, such as for 
single molecule tracking.  In these situations, use the reaction_serialnum statement to 
define rules for the product serial number assignments. 

 
Defining reactions 

 
To define a reaction, simply enter the statement reaction, followed by the reaction 

name, the reaction, and the rate constant.  Here are some examples: 
 
 reaction r1 A + B -> C 10 
 reaction bind receptor(up) + ligand(fsoln) -> complex(up) 1 
 reaction ingest complex(up) -> receptor(up) + ligand(bsoln) 5 
 reaction tca 0 -> ATP 100 
 reaction decay fluorophore(all) -> 0 0.01 
 

For molecule states that are not specified, as in the first example above, it is assumed that 
the reaction only applies to molecules that are in solution.  Reactions that only occur in 
specified compartments are entered in the same way, but with the reaction_cmpt 
statement.  Versions of Smoldyn prior to 1.82 allowed reactions to be entered in 
definition blocks; this is still permitted for backward compatibility, but is discouraged 
because this format is not being maintained and may be eliminated in future versions. 

For most applications, the reaction statement is sufficient for entering the reaction 
rate.  However, other methods are possible as well.  It is possible to leave the rate 
constant off of the reaction line and enter it separately with the statement reaction_rate.  
The reaction rate is the macroscopic reaction rate, which is converted into parameters that 
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Smoldyn can use for the simulation.  For zeroth order reactions, the reaction rate is 
converted to the average number of molecules that should be added to the entire 
simulation volume at each time step.  To enter this internal value directly, use the 
statement reaction_production.  For first order reactions, the reaction rate is converted to 
the probability that a reactant molecule will react during one time step.  This can be 
entered directly with the statement reaction_probability.  For second order reactions, 
the reaction rate is converted into a reaction binding radius, which can be entered directly 
with binding_radius. 

In most cases, the states that are listed with the reaction statement are all that are 
desired.  For a reaction to work with additional states, it is possible to simply list another 
reaction that has those states.  Alternatively, it is also possible to enable or disable the 
reaction for specific molecule states, or state combinations for bimolecular reactions, 
with the reaction_permit and reaction_forbid statements. 

If a reaction has multiple products, they are usually placed at the location where the 
reaction was determined to have occurred.  However, offsets from the reaction location 
are possible as well, which are necessary for reversible reactions so as to avoid certain 
geminate recombinations.  Offsets can be entered directly or can be calculated by 
Smoldyn in many different ways.  All of them are entered with the product_placement 
statement. 

Conformational spread reactions are a special type of bimolecular reactions.  For 
these, there is a domain of interaction, which is entered with the statement 
confspread_radius; this also specifies that the reaction uses conformational spread.  
Reaction rate constants for conformational spread reactions have units of inverse time, 
like a first order reaction rate constant.  They indicate the rate at which a reaction occurs, 
for reactants that are continuously closer to each other than the conformational spread 
radius.  As with first order reactions, this rate value is converted to a reaction probability 
at each time step, and can be entered directly with the reaction_probability statement. 
The two products of conformational spread reactions are placed at the exact same 
locations as the two reactants, using the same ordering of reactants and products as they 
are listed with the reaction statement. 

 
 

Table 3.8.1: statements about reactions 
 
reaction rname reactant1 + reactant2 -> product1 + product2 rate 
reaction_cmpt cname rname reactant1 + reactant2 -> product1 + product2 rate 
reaction_surface sname rname reactant1 + reactant2 -> product1 + product2 rate 
reaction_rate rname rate 
confspread_radius rname rad 
binding_radius rname rad 
reaction_probability rname prob 
reaction_production rname value 
reaction_permit rname state 
 reaction_permit rname state1 state2 
reaction_forbid rname state 
 reaction_forbid rname state1 state2 
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reaction_serialnum rname rules_list 
product_placement rname type parameters 
 

 
Although now discouraged, the block format for entering reactions is similar.  The 

block starts with the statement “start_reaction” and ends with “end_reaction”, between 
which only instructions that are relevant to reactions are allowed.  The first statement 
within a reaction block is order to define the reaction order of this block.  The max_rxn 
statement used to be required next, but is no longer functional as of version 1.82.  Basic 
reactions are entered with a reactant statement, a rate statement, and a product 
statement.  It is also possible to enter the internal value that Smoldyn uses with 
rate_internal.  It is possible to turn states on or off with the permit statement.  If there 
are multiple products, and if these products can react with each other (most often a 
reversible reaction), then Smoldyn may need some information about the product 
unbinding radii, which is entered with the product_param statement.  It is discussed at 
length below. 

Conformational spread reactions are slightly different.  Enter the conformational 
spread radius with the confspread_radius statement and the reaction rate (which is 
analogous to a first order rate) with rate.  This rate value is converted to a reaction 
probability at each time step.  To enter the latter value directly, do so with the 
probability statement.  The rate_internal statement is ignored. 

 
Zeroth order reactions 
 

Zeroth order reactions have no reactants and yet produce products at a rate that is 
constant except for stochastic fluctuations.  They can be used to simulate the production 
of molecules that are of interest from sub-systems that are not of interest and thus are not 
explicitly part of the model.  As mentioned above, zeroth order reactions have not proven 
to be particularly useful. 

The zeroth order reaction 0 → A proceeds according to the mass action rate 
equation 
 

 d A[ ]
dt

= k  

 
k is the reaction rate constant.  Solving for the number of A molecules in volume V as a 
function of time yields the deterministic solution 
 
 

� 

n t( ) = n 0( ) + kt  
 
n(0) and n(t) are the initial and time dependent numbers of A molecules.  There are also 
fluctuations due to the stochastic nature of chemical processes.  Smoldyn assumes that 
each molecule created in a zeroth order reaction is created independently of each other, 
which allows Poisson statistics to be used.  As an example of a limitation, this is not a 
perfect description of biochemical protein production because that involves sequential 
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stochastic DNA transcription followed by many relatively rapid mRNA translations, thus 
leading to stochastic bursts of protein production. 

Zeroth order reactions were tested with the file zeroreact.txt.  The reaction portion 
of the configuration file is 
 

reaction slow 0 -> red 0.001 
reaction med  0 -> green 0.01 
reaction fast 0 -> blue 0.1 

 
As seen in the figure below, simulation results conform closely to corresponding 
theoretical results, using a wide range of reaction rates.  As expected, stochastic 
deviations from the deterministic theoretical predictions are seen. 
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Figure 3.8.1:  Zeroth order reaction molecule production with data simulated from the 
example file S8_reactions/zeroreact.txt.  Shown are the numbers of molecules produced 
as a function of time with three different production rates along with the deterministic 
theory for how many molecules would be expected. 
 
 
Unimolecular reactions 
 

Order 1 reactions follow the general reaction equation A → B.  The mass action 
kinetics for the loss of reactant are described with the differential equation 
 

 d A[ ]
dt

= −k A[ ]  

 
k is the first order reaction rate.  This is solved to yield the deterministic solution for the 
number of A molecules as a function of time, 
 
 

� 

n t( ) = n 0( )e−kt  
 
n(0) is the number of A molecules at time 0 and n(t) is the number at time t. 

The example file S8_reactions/unireact1.txt was used to check unimolecular 
reaction rates using a wide range of reaction rates.  The reaction portion of the 
configuration file is 
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reaction slow red -> 0 0.1 
reaction med green -> 0 1 
reaction fast blue -> 0 10 

 
As seen in the figure below there is good agreement between simulation and theory.  As 
always, stochastic fluctuations are apparent, which is particularly true when there are few 
molecules. 

First order reactions in which a reactant can react through multiple possible 
pathways requires slightly more complicated calculations for the reaction probabilities.  
However, the mass action differential equation, shown above, is unchanged.  This 
situation was tested with the configuration file unireactn.txt.  The reaction portion of the 
configuration file is 

 
reaction r1 A -> A + B 0.1 
reaction r2 A -> A + C 0.05 
reaction r3 A -> A + D 0.01 

 
The system is started with only A molecules, so the theoretical number of A molecules as 
a function of time is 
 
 nA t( ) = nA 0( )e− kB + kC + kD( )t  
 
The number of B molecules as a function of time is 
 

 nB t( ) = nA 0( ) kB
kB + kC + kD

1− e− kB + kC + kD( )t⎡⎣ ⎤⎦  

 
Analogous equations hold for C and D.  Simulation results closely matched these 
theoretical equations, as shown in the figure below. 
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Figure 3.8.2: Unimolecular reactions.  The panel on the left shows results from the 
configuration file unireact1.txt.  First order reactions occur at rates that are in good 
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agreement with theory over a wide range of rate values.  The panel on the right shows 
results from the file unireactn.txt.  Again, there is good agreement with theory. 
 
 
Bimolecular reactions 
 

Bimolecular reactions have the generic reaction equation A + B → C, for which the 
mass action kinetics are described by the deterministic differential equations 
 

 d A[ ]
dt

=
d B[ ]
dt

= −
d C[ ]
dt

= −k A[ ] B[ ]  

 
The reaction rate constant, k, is only actually constant if: (i) the reaction kinetics are 
purely activation-limited, or (ii) the reaction has proceeded long enough that a steady-
state reactant distribution has formed. 

This equation is not quite as trivial to solve as prior ones were.  With the condition 
that there are the same numbers of A and B molecules initially, the solution for the 
number of A molecules (or B molecules) as a function of time is 
 

 

� 

n t( ) = 1
n 0( )

+ kt
V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1

 

 
As before, n(0) is the initial number of A or B molecules, n(t) is the number of A or B 
molecules as a function of time, k is the reaction rate constant and V is the volume of the 
system.  This was tested with three different reaction rates with the configuration file 
reactAB.txt, for which the reaction portion of the file is 
 

reaction slow As + Bs -> Cs 1 
reaction med  Am + Bm -> Cm 10 
reaction fast Af + Bf -> Cf 100 

 
The Smoldyn diagnostics output shows how these different reaction rates are converted 
into simulation parameters.  They are converted into binding radii, which is small for the 
slow reaction and large for the fast reaction.  Because the reaction kinetics depend on the 
ratio of the reactant rms steps lengths to the binding radii, the slow one has relatively 
long steps compared to the binding radius and thus behaves as though it is activation-
limited.  In contrast, the fast reaction has short rms step lengths compared to the binding 
radius and so behaves as though it is diffusion-limited.  Shortening the simulation time 
step would make all of these more diffusion-limited. 

Activation-limited reactions follow the mass action kinetics shown in the equations 
for all times.  Thus, the slow and medium reaction rate simulations agree well with the 
mass-action theory, as shown in the figure, below.  In contrast, the diffusion-limited 
simulation does not agree with the mass-action theory.  This is because the simulation 
starts with molecules randomly distributed whereas the analytical result assumes a 
steady-state distribution.  However, after enough time has passed for a steady state 
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reactant distribution to be formed, it is shown that the simulated results agree well with 
the analytical results (orange line in the figure). 
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Figure 3.8.3: Bimolecular reactions.  The panel on the left shows reactant numbers for 
the reaction A + B → C for three different reaction rates and with equal initial numbers 
of A and B molecules.  The panel on the right is similar but for the reaction 2A → C.  
Light black lines are solutions to the deterministic steady-state mass action rate 
equations.  Deviations arise for the faster reactions (blue lines) because those start far 
from steady-state.  Light orange lines are the steady-state theory, starting with time 10 
rather than 0, so as to start at times when reactants are closer to steady-state distributions. 
 
 

Although there are no conceptual or simulation algorithm differences for 
bimolecular reactions in which two reactants are the same, there are a few quantitative 
differences.  Consider a situation with 1000 A molecules and 1000 B molecules.  Despite 
the fact that each A molecule has about 1000 potential collision partners, whether the 
reactants are A + A or A + B, there are twice as many A-B collisions as A-A collisions.  
This is because each A-A pair can be counted in either of two ways, but is still only a 
single possible collision.  To achieve the same reaction rate for A + A reactants as for A 
+ B, despite the fact that there are fewer collisions, Smoldyn uses a larger binding radius 
for the former. 

The analytical solution for the number of A molecules as a function of time is also 
slightly different from before, 
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The reaction description portion of the configuration file 

S8_reactions/bireactAA.txt is 
 

reaction slow As + As -> C 1 
reaction med  Am + Am -> C 10 
reaction fast Af + Af -> C 50 
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Results are similar to those seen before.  Simulation results agreed well with the 
analytical equations if the reaction is activation-limited or once the reactant distributions 
have reached steady-state, but agreement is not good for diffusion-limited reactions away 
from steady-state.  It should be emphasized that these discrepancies are not errors by 
Smoldyn, but are quite the opposite: they are approximations made in the steady-state 
equations which people are used to making but which are nevertheless incorrect, which 
are being compared to accurate simulations by Smoldyn. 

Diffusion-limited reactions can be simulated well by Smoldyn.  The example file 
bireactABB.txt again simulates the reaction A + B → C, but now with a lot more B 
molecules than A ones, and with a time step that is sufficiently short that the reaction 
simulates as though it is diffusion-limited.  As is shown in the figure below, results 
conform closely to the Smoluchowski prediction for this reaction. 
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Figure 3.8.4: Diffusion-limited bimolecular reaction.  This example uses the 
configuration file bireactABB.txt, which simulates the reaction that is described in Figure 
7 of Andrews and Bray, 2004.  The left panel shows the number of surviving A 
molecules as a function of time with comparison to the time-dependent Smoluchowski 
equation.  The right panel shows the reaction rate per A molecule per time unit as a 
function of time along with the Smoluchowski prediction with the solid black line and 
predicted fluctuations with the dashed lines. 
 
 
Reversible reactions 

 
Reversible reactions, where at least one has multiple products, involve geminate 

recombination issues, as discussed below.  The accuracy of reversible reaction rates using 
the default reverse parameter type and parameter was investigated with the configuration 
file S8_reactions/equil/equil.txt.  Here, an equilibrium is set up for the reaction A + B ↔ 
C. 

From standard chemistry, the equilibrium constant is related to the ratio of product 
to reactant concentrations and to the ratio of the forward to reverse rate constants, 
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V is the total system volume.  The configuration file equil.txt starts with equal numbers of 
A and B molecules and no C molecules.  Using the above equation and this starting point, 
the solution for the equilibrium number of A molecules is 
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nA =
−V + V 2 + 4KnA 0( )V

2K
 

 
nA(0) is the initial number of A molecules.  It was verified that the simulation result 
approached this value. 
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Figure 3.8.5: Equilibrium result from example file S8_reactions/equil/equil.txt. 
 
 
Multi-step reactions 
 

Many biochemical models include reactions that do not fall neatly into the 0th, 1st, or 
2nd order reaction categories, but are instead complex reactions that include multiple 
elementary steps.  Whereas these complex reactions can be well-defined for models that 
are either deterministic or non-spatial, they simply don’t make sense when individual 
molecules are modeled.  Thus, to include them in a Smoldyn model, one has to explicitly 
define each of the steps. 

Taking the Michaelis-Menten reaction as an example, consider substrate S, enzyme 
E, and product P.  The full reaction system is 
 
 

 
E + S k1

k−1
   ES k2⎯ →⎯ P  

 
All three of these reactions, along with the enzyme-substrate complex ES, need to be 
defined in a Smoldyn file.  Of course, this means that you also need to give the three 
reaction rate constants k1, k-1, and k2.  Assume you know the Michaelis constant KM and 
the maximum reaction velocity Vmax.  As can be found in any biochemistry textbook, 
these are connected to the underlying rate constants as 
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 KM =
k−1 + k2
k1

  Vmax = k2 E[ ]0  

 
where [E]0 is the total enzyme concentration.  These two equations are not sufficient to 
solve for the three rate constants, so let us define the unitless reaction efficiency ratio, r, 
as the fraction of ES that goes to P, 
 

 r = k2
k−1 + k2

 

 
This value can range between 0 and 1, where small values represent rapid equilibration 
between E, S, and ES, and high values represent rapid reaction of ES to P.  Typical 
Michaelis-Menten analyses assume the former situation, so we might guess that r is 0.1.  
Solving these equations for the reaction rate constant yield: 
 

 k1 =
Vmax
E[ ]0 KMr

  k−1 =
Vmax 1− r( )
E[ ]0 r

 k2 =
Vmax
E[ ]0

 

 
Other multi-step reactions can be broken down to elementary reactions in a similar 
manner.  The need to include additional assumptions, as we did here with r, is typical 
when converting from a low-detail reaction rate equation to a high-detail reaction 
mechanism. 
 
 
Reaction networks 

 
The reaction types presented above can be combined to create essentially unlimited 

varieties of reaction networks.  A particularly simple one is shown here as an example.  It 
is the classic Lotka-Volterra reaction network, which was originally designed to explain 
observed oscillations in ecological predator-prey systems but is also analogous to many 
natural biochemical oscillators.  The terminology used here borrows from the ecology 
application, although all numbers were chosen solely to make for an interesting 
simulation result.  The complete file S8_reactions/lotvolt/lotvolt.txt is: 

 
# Simulation file for Lotka-Voltera reaction 
 
graphics opengl 
graphic_iter 5 
 
dim 3 
names rabbit fox 
max_mol 20000 
molperbox 1 
 
difc all 100 
color rabbit 1 0 0 
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color fox 0 1 0 
display_size rabbit 2 
display_size fox 3 
 
molecule_lists rlist flist 
mol_list rabbit rlist 
mol_list fox flist 
 
time_start 0 
time_stop 100 
time_step 0.001 
 
boundaries x -100 100 p 
boundaries y -100 100 p 
boundaries z -10 10 p 
 
mol 1000 rabbit u u u 
mol 1000 fox u u u 
 
cmd b pause 
#output_files lotvoltout.txt 
#cmd i 0 5 0.01 molcount lotvoltout.txt 
 
reaction r1 rabbit -> rabbit + rabbit 10 
reaction r2 rabbit + fox -> fox + fox 8000 
reaction r3 fox -> 0 10 
 
end_file 
 

This involves several statements that make the simulation run efficiently.  Graphics are 
only displayed every 5 iterations, the simulation is set up with only 1 molecule per virtual 
box, and the rabbit and fox molecules are stored in separate molecule lists.  Results from 
this file are shown in the figure below. 
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Figure 3.8.6: Results from Lotka-Volterra simulation.  The first panel shows of snapshot 
of the simulation after it has run for long enough for the regular boom-and-bust pattern to 
develop.  Red dots are “rabbits” and green dots are “foxes”.  The next panel shows the 
numbers of “rabbit” and “fox” molecules as a function of time, with the same colors, 
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again illustrating the boom-and-bust pattern.  The panel on the right is a phase portrait of 
the data shown in the center; oscillations lead to cycles in the phase portrait and the initial 
large spike is seen as the large diameter cycle. 
 
 
Conformational spread reactions 
 

Currently, Smoldyn only allows second order reactions that have exactly two 
products to be declared a conformational spread reaction.  Defining them as a 
conformational spread reaction, which is done with the confspread_radius statement, 
implies a few things.  Typically, the diffusion coefficients of both reactants are zero, 
although this is not required.  The reaction rate constant that is entered is a first order rate 
constant, meaning that it has units of inverse time.  It is interpreted as the rate at which a 
reaction will occur, given that both reactants are continuously closer to each other than 
the conformational spread radius.  Finally, the products of a conformational spread 
reaction are placed in the exact same locations as the reactants, and in the spots that 
correspond to the order in which the reactants and products were listed in the 
configuration file.  For example, consider the conformational spread reaction defined 
with the statements 

 
 reaction rxn1 A + B -> C + D 10 
 confspread_radius rxn1 5 
 

This states that a conformational spread reaction can occur between any A and B 
molecules that are closer than 5 distance units apart.  At each time step, the probability of 
its occurring is found from the reaction rate of 10 inverse time units according to the 
same formulae that were described above for unimolecular reactions.  If it occurs, the A 
molecule will be replaced by a C molecule and the B molecule will be replaced with a D 
molecule. 

Conformational spread processes are frequently symmetric such that activity can be 
spread from an active molecule to its neighbor, and also inactivity can spread from an 
inactive molecule to its neighbor.  This can be entered in Smoldyn with a pair of 
conformational spread reactions: 
 
 reaction rxna inactive + active -> active + active 10 
 reaction rxni active + inactive -> inactive + inactive 10 
 confspread_radius rxna 5 
 confspread_radius rxni 5 
 
This will yield a warning in Smoldyn about there being multiple bimolecular reactions 
listed with the same reactants, but it is the right way to list these symmetric effects.  In 
this example, the convention was followed that the latter reactant (and latter product) is 
the neighbor molecule, while the former reactant is the one that changes state. 

If a molecule has simultaneous conformational spread interactions with more than 
one other molecule, the simulated reaction rates may be too low; this effect is reduced to 
zero for short time steps and increases with longer time steps.  Consider a potential 
reaction with two reaction channels and the probability it happening by either channel 
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individually is p.  When the two channels are considered sequentially, the probability for 
the first happening should be p, while the probability for the second should p/(1–p), 
because it is the conditional probability of the second reaction happening, given that the 
first one did not happen.  However, Smoldyn uses probability p for all conformational 
spread reaction channels, which leads to a reaction rate that is too low.  While this 
identical effect is addressed correctly for first order reactions and for state conversions of 
surface-bound molecules, it is not addressed for conformational spread reactions because 
it is nearly impossible for Smoldyn to figure out how many reaction channels are 
available for any particular conformational spread reaction. 

Conformational spread reactions were tested with the configuration file 
confspread.txt.  It simulates two reactions: 
 

reaction back green -> red 10 
reaction fwd red + blue -> green + blue 10 
confspread_radius fwd 5 

 
While it is simplistic for most conformational spread situations, it leads to a simple 
equilibrium between red and green molecules which allows for easy analytical 
calculations of the correct outcome.  If each red/green molecule is within a 
conformational spread radius of one blue molecule (accomplished by setting the 
conformational spread radius to 3), the forward and reverse rates are each 10 and an equal 
number of red and green molecules should be observed.  On the other hand, an increased 
conformational spread radius (5, as shown above) implies that each red/green molecule is 
within reach of two blue molecules, so the forward rate doubles, as does the equilibrium 
constant.  Both of these behaviors were confirmed.  As described above, conformational 
spread reaction probabilities that were greater than about 0.05 for each reaction led to 
conformational spread reaction rates that were observed to be slightly too low for the case 
in which each red molecule was within the conformational spread radius of two blue 
molecules. 
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Figure 3.8.7: Output from confspread.txt configuration file.  There are conformational 
spread reactions between blue molecules and red molecules, which convert red to green; 
reversion is a simple reaction.  The panel on the right shows the average probability of 
molecules being in their red states, for a situation in which rate constants are equal for the 
forward and reverse reactions, but each red/green molecule is within a conformational 
spread radius of two blue molecules, thus doubling the red → green reaction rate. 
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Excluded volume reactions 
 

Smoldyn does not treat molecules as though they truly have excluded volume 
because this would be a very computationally intensive procedure and it would require 
substantial rederivations of the reaction rate and surface interaction rate algorithms.  
However, using the same reaction concept that was developed for bimolecular reactions, 
Smoldyn does allow some excluded volume behaviors to be simulated, which are likely 
to be adequate for a wide range of simulations. 

Essentially, the user specifies reaction binding and unbinding radii for a pair of 
species that are supposed to respect each others’ excluded volume.  If molecules of those 
two species end up within a binding radius of each other at the end of a time step, they 
“react”, meaning that they are then moved apart to the unbinding radius.  The reactants 
and products may be the same molecular species, in which case the molecules are simply 
pushed apart.  Or, they may be different species, in which case an actual reaction occurs.  
The only substantial difference between normal bimolecular reactions and excluded 
volume reactions is that Smoldyn places the products of the former ones with random 
orientations about the reaction location, whereas those of the latter are placed along the 
same vector, and in the same sequence, as the reactants.  The other difference is that the 
reaction rate value is essentially meaningless (and has not been calibrated) for excluded 
volume reactions. 

If molecules are not supposed to pass by each other, which can be simulated using 
excluded volume reactions and a one-dimensional system, then it is important to make 
the excluded volume binding radius significantly larger than the rms step lengths of the 
molecules.  Because molecules move during diffusion with Gaussian-distributed 
displacements, and Gaussians have long tails, it is likely to be very difficult to ensure that 
absolutely no molecules cross that should not. 

We illustrate excluded volume reactions with two examples.  In the former, called 
S8_reactions/bounce/bounce.txt, molecules are confined to a line and maintain their 
ordering.  The configuration file statements that declare the excluded volume reactions 
are: 

 
reaction rxn1 red(up) + green(up) -> red(up) + green(up) 
binding_radius rxn1 1 
product_placement rxn1 bounce 1.1 
 

The second example involves a crowded system and is in the same directory and the file 
crowding.txt. 
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Figure 3.8.8: Output from bounce.txt and crowding.txt.  In the former, red and green 
molecules, both of which are confined to the diagonal line, bounce off of each other.  
This has the result that the ordering of red and green molecules does not change during 
the simulation.  The latter file shows that this crowding method works even with 
relatively high molecule densities.  These molecules clearly do not overlap each other.  
During the simulation, molecules diffuse within the confines set by their neighbors. 
 
 
Binding and unbinding radii 

 
For every bimolecular reaction, Smoldyn has to calculate the correct binding radius 

from the reaction rate that is given in the configuration file.  Also, for every reaction that 
leads to multiple products, Smoldyn has to determine the correct unbinding radius, using 
whatever product parameter is supplied, if any.  Product parameters are listed in the table, 
below.  While these binding and unbinding radii are well defined microscopic parameters 
(at least within the context of the Smoluchowski model system that is simulated), the 
meanings of the experimental rate constants, including those given in the configuration 
file, are not nearly as well defined.  Instead, those rate constants depend on the conditions 
under which they were measured.  Smoldyn accounts for this by attempting to guess the 
experimental conditions, using a process described here.  If Smoldyn’s guess is correct, 
the simulated reaction rates should exactly match the experimental rates (not including 
edge effects, which are typically negligible unless one reactant is fixed at or near an 
edge). 

 
 

Table 3.8.2: Product parameters for reactions with multiple products 
 

Special product types 
 i irrev reaction is declared irreversible (σu=0). 
 a confspread conformational spread reaction (entered automatically for you). 
 
Use these if reversible reactions were measured at equilibrium 
 p pgem probability of geminate reaction (φ). 
 x pgemmax maximum probability of geminate reaction (φmax). 
 r ratio unbinding radius relative to binding radius (σu/σb). 
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 b unbindrad fixed length unbinding radius (σu). 
 
Use these if reversible reactions were measured with all product removed as it was 
formed 
 q pgem2 probability of geminate reaction (φ). 
 y pgemmax2 maximum probability of geminate reaction (φmax). 
 s ratio2 unbinding radius relative to binding radius (σu/σb). 
 o offset fixed offset of products, rotationally randomized (σu). 
 f fixed fixed offset of products, not rotationally randomized (σu). 
 
Either the single-letter code or the full word may be used to define the product parameter 
type, although the latter is suggested for readability.  The default type is pgemmax with a 
value of 0.2. 
 

 
In all cases, Smoldyn assumes that rate constants were measured using an 

effectively infinite number of reactant molecules, in an infinite volume, that were started 
well mixed and that then were allowed to react until either an equilibrium was reached 
for reversible reactions, or a steady-state reaction rate was reached for irreversible 
reactions.  Only in these cases is mass action kinetics correct and is the reaction rate 
constant actually constant.  The precise experimental assumptions are clarified with the 
following examples. 

 
1.  A + B → C 
 

The rate constant is assumed to have been measured at steady state, starting with a 
well-mixed system of A and B.  No product parameter is required.  At steady-state, 
the simulation matches mass action kinetics. 

 
2.  X → A + B 
 

There is no bimolecular reaction, so no binding radius is calculated.  The default 
unbinding radius is 0, although it is possible to define a different one.  If the product 
parameter type is pgem, pgem2, ratio, or ratio2, an error is returned due to the lack 
of a binding radius.  If the parameter type is not given or is irrev, pgemmax, or 
pgemmax2, the unbinding radius is set to 0.  If it is unbindrad, fixed, or offset, the 
requested separation is used.  At steady-state, the simulation matches mass action 
kinetics. 

 
3.  A + B ↔ C 
 

If the reversible parameter is pgem, pgemmax, unbindrad, or ratio, the forward rate 
constant is assumed to have been measured using just this system of reactions after 
the system had reached equilibrium.  The product parameter is used to yield the 
correct probability of geminate recombination if possible, or the desired unbinding 
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radius.  In this case, the simulation matches mass action kinetics at equilibrium.  If 
the product parameter is pgem2, pgemmax2, ratio2, offset, fixed, or irrev, then it is 
assumed that the forward rate constant was measured at steady-state and with all C 
removed as it was formed, thus preventing any geminate reactions.  The unbinding 
radius is set as requested, using the binding radius if needed.  In this case, the 
simulated forward reaction rate is higher than requested due to geminate rebindings. 

 
4.  A + B ↔ C → Y 
 

The second reaction is ignored for determining parameters for A + B.  Instead, the 
first reaction is considered as though the rates were determined experimentally 
using just the system given in example 3.  If the product parameter is pgem, pgemmax, 
ratio, or unbindrad, the simulated reaction rate for the forward reaction A + B → C 
will be lower than the requested rate because there are fewer geminate reactions 
than there would be with the equilibrium system.  Alternatively, it will be higher 
than the requested rate if the product parameter is pgem2, pgemmax2, ratio2, offset, 
fixed, or irrev, because there are some geminate reactions. 

 
5.  X → A + B → C 
 

The binding radius for the second reaction is treated as in example 1, without 
consideration of the first reaction.  The unbinding radius for the first reaction is 
found using the binding radius of the second reaction.  Here, product parameters 
pgem and pgem2 are equivalent, pgemmax and pgemmax2 are equivalent, and ratio and 
ratio2 are equivalent.  The actual reaction rate for the second reaction, found with a 
simulation, will be higher than the requested value due to geminate rebindings that 
occur after the dissociation of X molecules. 

 
6.  X → A + B ↔ C 
 

The A + B ↔ C binding and unbinding radii are treated as in example 3.  Another 
unbinding radius is required for the first reaction, which is found as in example 5, 
using the binding radius from the second reaction.  Mass action kinetics are not 
followed. 

 
7.  X ↔ A + B ↔ C 
 

The binding radii and unbinding radii for each bimolecular reaction are found as in 
example 3, independent of the other bimolecular reaction.  The simulated rates may 
be different from those requested because of differing unbinding radii. 

 
8.  X → A + B → C,      A + B → D 
 

The binding radii for the two bimolecular reactions are each found as in example 1.  
The unbinding radius for the first reaction cannot be determined uniquely, because 
the two forward reactions from A + B are equivalent and are likely to have different 
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binding radii.  Smoldyn picks the binding radius for the first forward reaction that is 
listed.  Thus, if the product parameter for dissociation of X is pgem, the requested 
geminate rebinding probability will be found for the reaction A + B → C, but a 
different value will be found for the reaction A + B → D. 

 
9.  C ↔ A + B ↔ C 
 

This reaction scheme might represent two different pathways by which A and B can 
bind to form an identical complex.  However, Smoldyn cannot tell which reverse 
reaction corresponds to which forwards reaction.  Instead, for both determining the 
binding and unbinding radii, it uses the first reverse reaction that is listed. 

 
The general principle for calculating binding radii is that Smoldyn first looks to see 

if a reaction is directly reversible (i.e. as in example 3, without any consideration of 
reaction network loops or other possible causes of geminate reactions).  If it is and if the 
reversible parameter is pgem, pgemmax, ratio, or unbindrad, then the binding radius is 
found under the assumption that the rate constant was measured using just this reaction, 
at equilibrium.  If not, or if the reversible parameter is pgem2, pgemmax2, ratio2, offset, 
fixed, or irrev, then Smoldyn calculates the binding radius with the assumption that the 
rate constant was measured using just that reaction at steady-state and with all product 
removed as it is formed. 

Unbinding radii typically require a reversible parameter (except as in example 2).  
If the parameter is unbindrad, offset, or fixed, the requested unbinding radius is used.  If 
it is irrev, the unbinding radius is set to 0.  Otherwise, it can only be calculated with the 
knowledge of the binding radius.  If the reaction is directly reversible, the binding radius 
for the reverse reaction is used.  If it is not directly reversible but the products can react, 
as in examples 5, 6, and 8, then the binding radius for the first reaction that is listed is 
used. 

 
Bimolecular reactions and surfaces 

 
Does a bimolecular reaction occur if there is a surface between the reactants?  This 

turns out to be a somewhat complex question.  The simple answer is that it does occur if 
the surface is transparent to both molecular species and it does not occur if the surface is 
reflective or absorptive to both molecular species.  In principle, reactions should be 
possible across pairs of jump surfaces, although they are not performed by the current 
Smoldyn version which treats jump surfaces as though they are opaque with respect to 
reactions. 

Smoldyn determines where the reaction location is using a weighed average of the 
reactant diffusion coefficients.  The reaction takes place only if both reactants can get to 
the reaction position, considering any intervening surfaces.  Absorption on the opposite 
side of a surface is not worried about, the logic being that molecules are already in 
contact when a reactant traverses the surface, and so opposite-side absorption is no more 
important than the reaction.  For partially transparent surfaces, reactions occur depending 
on the probability of transparency. 
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When molecules have excluded volume, which they do not in Smoldyn, even inert 
impermeable surfaces can affect the local concentrations of chemicals.  An obvious effect 
is that a molecule cannot be closer to a surface than its radius, leading to a concentration 
of zero closer than that.  In a mixture of large and small molecules, Brownian motion 
tends to push the large molecules up against surfaces while the small molecules occupy 
the center of the accessible volume, thus creating more complex concentration effects.  
These effects do not occur when excluded volume is ignored, as it is in Smoldyn, in 
which case surfaces do not affect local concentrations. 

While surfaces do not affect concentrations of non-reacting molecules, they do 
affect reaction rates.  Consider the reaction A + B → C, where A is fixed and B diffuses.  
If essentially all A molecules are far from a surface, the diffusion limited reaction rate is 
found by solving the diffusion equation for the radial diffusion function (RDF) with the 
boundary conditions that the RDF approaches 1 for large distances and is 0 at the binding 
radius (see the paper by myself and Dennis Bray titled “Stochastic simulation of chemical 
reactions with spatial resolution and single molecule detail”).  This leads to the 
Smoluchowski rate equation 
 
 

� 

k = 4πDσ b  
 
However, for an A molecule that is near a surface, an additional boundary condition is 
that the gradient of the 3 dimensional RDF in a direction perpendicular to the surface is 
zero at the surface.  This makes the solution of the reaction rate sufficiently difficult that I 
have not attempted to solve it, but the result is different from the simple result given 
above. This surface effect is an issue whenever the A molecule is within several binding 
radii of a surface and is especially pronounced when it is closer to the surface than its 
binding radius.  For cases in which the A molecule is more than one binding radius from 
the surface, B molecules are going to take longer than usual to reach the region between 
the A and the surface, leading to a decreased reaction rate.  It is suspected that the 
reaction rate decreases monotonically as the A molecule approaches and then crosses a 
surface. 

A special case that can be solved exactly occurs when the A molecule is exactly at 
the surface, such that half of the binding volume is accessible to B molecules and half is 
inaccessible.  Now, the RDF inside the system volume is identical to the RDF for the case 
when the A molecule is far from a surface.  The logic is to assume that this is true and to 
then observe that it already satisfies the additional boundary condition.  Using this RDF, 
the diffusive flux is half of the diffusive flux for an A molecule far from a surface, 
because only half of the binding surface is exposed to the system.  Thus, the diffusion 
limited reaction rate for the situation in which a reactant is fixed exactly at a surface is 
 
 

� 

k = 2πDσ b  
 

The situation changes some when simulation time steps are sufficiently long that 
rms step lengths are much longer than binding radii.  Now, the probability of a reaction 
occurring during a time step is a function of only the binding volume.  Thus, there are no 
surface effects at all when an A molecule is fixed anywhere in the simulation volume that 
is greater than or equal to one binding radius away from a surface.  As the A molecule is 
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moved closer to the surface, the reaction rate decreases in direct proportion to the binding 
volume that is made inaccessible to B molecules.  An especially easy situation is that 
when the A molecule is exactly at the surface, the reaction rate is half of its value when 
the A molecule is far from a surface, which is the same as the diffusion limited result. 

These results can be turned around to solve for the binding radius.  If the reaction is 
diffusion limited, the binding radius should double when a reactant is placed exactly at 
the surface to maintain the same reaction rate.  If it is activation limited, the binding 
radius should increase by 21/3 to maintain the same reaction rate.  As usual though, the 
binding radius is more closely related to the fundamental physical properties of the 
molecule than is the rate constant, so it is essential to consider the experimental 
conditions that were used for measuring the rate constant. 

In conclusion, reaction rates are reduced near surfaces and the effect is different for 
diffusion limited and activation limited reactions.  However, for both cases, and almost 
certainly for all cases in between, the reaction rate is exactly half when an A molecule is 
fixed at a surface, compared to when it is far from a surface.  A few tests with Smoldyn 
using the files wallreact.txt, suggested that these surface effects are likely to be minimal 
for most situations, although it is good to be aware of their potential.  The exception is 
that there are large surface effects when molecules are fixed with a significant portion of 
the binding volume outside the simulation volume. 
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3.9 Compartments 
 
Compartment basics 
 

Compartments are regions of volume that are bounded by surfaces.  They do not 
include their bounding surfaces.  Compartments are useful for input or output and, as 
mentioned above, zeroth and first order reactions can be made to be only active within 
specified compartments.  Also, they are used for communication with the MOOSE 
simulator. 

The inside of a compartment is defined to be all points from which one can draw a 
straight line to one of the “inside-defining points” without crossing any bounding surface.  
For example, to create a spherical compartment, one would define a spherical surface as 
the boundary and some point inside the sphere (the center, or any other internal point) to 
be the inside-defining point.  This definition allows a wide variety of options.  For 
example, it allows disjoint compartments and compartments that are not inside closed 
surfaces.  To set a sharp edge to a compartment, but one which does not affect molecule 
diffusion, just add a surface that is transparent to all molecules but which serves as one of 
the compartment’s bounding surfaces. 

In addition, compartments can be composed from previously defined compartments 
using logic arguments.  This way, for example, a cell cytoplasm compartment can be 
defined as the region that is within a cell compartment but that is not also within a 
nucleus compartment.  Or, the region that is outside of a cell can be simply defined as the 
region that is not inside the cell. 
 
Defining compartments 
 

The definition style for compartments is much like it is for other portions of the 
code.  Compartment statements for specific compartments are entered in blocks that start 
with start_compartment and end with end_compartment.  The compartment name, which 
is given after start_compartment, is used to start a new compartment definition, or to 
continue defining a previously started one.  Bounding surfaces and interior-defining 
points are added with the surface and point statements, respectively.  The compartment 
command, used within a compartment block, is used to define one compartment in terms 
of others.  Using this command one can, for example, define a compartment as the union 
or the intersection of two previously defined compartments. 

To state that molecules start in a compartment, use the compartment_mol statement 
that was listed in the molecules section.  To read the numbers of molecules in a 
compartment, use the command molcountincmpt or molcountincmpt2. 

Following are excerpts from configuration files that use compartments: 
 
Compartment defined with surfaces and points 
start_compartment middle 
surface surf 
point 50 75 
point 50 25 
point 75 50 
point 25 50 
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end_compartment 
 
compartment_mol 500 red middle 
 
Compartments defined with other compartments 
start_compartment intersection 
compartment equal left 
compartment and right 
end_compartment 
 
start_compartment either 
compartment equal left 
compartment xor right 
end_compartment 
 
start_compartment outside 
compartment equalnot left 
compartment andnot right 
end_compartment 
 
compartment_mol 500 red intersection 
compartment_mol 500 green either 
compartment_mol 500 blue outside 
 

These files are in the examples folder in S9_compartments.  The first is called 
compart.txt and the second is compartlogic.txt.  They yield the following results: 
 

   
 
Figure 3.9.1: Examples of compartments.  In the left panel, green dots are the interior-
defining points and red molecules were added randomly to the compartment.  In the right 
panel, each circle was defined as a compartment and then the red, green, and blue 
molecule regions were defined with logical combinations of the left and right 
compartments. 
 

For logically combining compartments, the logical options are: “equal”, “equalnot”, 
“and”, “andnot”, “or”, “ornot”, or “xor”.  These obey the standard logical rules.  Note 
that the sequence of statements matters.  For example, the region defined by A-andnot-B 
is the portion of A is that is not within B, whereas B-andnot-A is the portion of B that is 
not within A. 
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Table 3.9.1: statements about compartments 
 
max_compartment int (optional statement) 
start_compartment name 
surface surface 
point pos0 ... posdim–1 
compartment logic compart 
end_compartment 
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3.10 Simulation settings 
 

Simulation settings basics 
 
Several statements define how the simulation should be run.  There are defaults for 

each of these settings, so the user does not need to set them directly.  However, they can 
be useful for optimizing simulation performance.  These settings include the random 
number generator seed, virtual boxes that partition the simulation volume, and some 
settings for diffusion on surfaces. 

The simulation volume is partitioned into an array of virtual boxes, each of which is 
the same size and shape.  In addition, each box that is on the edge of the simulation 
volume actually extends out to infinity in that direction, such that every location in space, 
whether in the simulation volume or not, is in some virtual box.  These boxes do not 
affect the performance of the simulation, except for allowing computational efficiencies 
that speed it up. 

 
Random number seed 

 
As a default, the random number generator seed is set to the time at which the 

simulation is started.  This is virtually certain to yield a unique random number sequence 
each time the simulation is run, so no two simulations will be identical.  However, it can 
also be useful (primarily for code debugging) to set the random number generator seed, 
which can be done with the random_seed statement. 

 
Virtual boxes 

 
The box sizes can be left undefined, in which case a default is used, or they can be 

defined with either the molperbox or boxsize statements.  The former statement sets the 
box sizes so that the average number of molecules per box, at simulation initiation, is 
close to the requested number.  Good numbers tend to be between 3 and 6, although more 
or fewer may be appropriate, depending on how the number of molecules in the 
simulation is likely to change over time (the default box size is computed for an average 
of 4 molecules per box).  The boxsize statement requests the length of one side of a box, 
which should be in the same units that are used for the boundary statements.  Either way, 
the boxes that are actually created are unlikely to exactly match the requested values, but 
are sized to be as close to cubical as possible (or square for a 2-D simulation) and to 
exactly fill the simulation volume. 

Box sizes that are too large will cause slow simulations, but no errors.  Warnings 
that say that there are a lot of molecules or surface panels in a box are suggestions that 
smaller boxes may make the simulation run faster, but do not need to be heeded.  Box 
sizes that are too small may cause errors.  Several warnings can be generated for this, 
including that the diffusive step lengths are larger than the box size, etc.  However, the 
only warning that really matters is if box sizes are smaller than the largest bimolecular 
reaction binding radius.  If this happens, some bimolecular reactions are likely to be 
ignored, which will lead to a too slow reaction rate.  If simulation speed is important, it is 
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a good idea to run a few trial simulations with different box sizes to see which one leads 
to the fastest simulations. 

The accuracy statement sets which neighboring boxes are checked for potential 
bimolecular reactions.  Consider the reaction A + B → C and suppose that A and B are 
within a binding radius of each other.  This reaction will always be performed if A and B 
are in the same virtual box.  If accuracy is set to at least 3, then it will also occur if A and 
B are in nearest-neighbor virtual boxes.  If it is at least 7, then the reaction will happen if 
they are in nearest-neighbor boxes that are separated by periodic boundary conditions.  
And if it is 9 or 10, then all edge and corner boxes are checked for reactions, which 
means that no potential reactions are overlooked.  Overall, increasing accuracy numbers 
lead to improved quantitative bimolecular reaction rates, along with substantially slower 
simulations.  If qualitative simulations are wanted, then lower accuracy values are likely 
to be preferable. 

 
Surface-bound molecule settings 

 
Several settings affect simulation of surface-bound molecules, described here.  The 

default settings are nearly always good, although they can be modified if desired. 
Molecules that are bound to a surface are given locations that are extremely close to 

that surface.  However, this position does not need to be exactly at the surface, and in fact 
it usually cannot be exactly at the surface due to round-off error.  The tolerance for how 
far a surface-bound molecule is allowed to be away from the surface can be set with the 
epsilon statement. 

When a surface-bound molecule diffuses off of one surface panel, it can sometimes 
diffuse onto the neighboring surface panel.  It does so only if the neighboring panel is 
declared to be a neighbor, as described above in the surfaces section, and also the 
neighbor is within a distance that is set with the neighbor_dist statement.  This value is 
set to an extremely small value by default, just large enough to prevent round-off error, 
and generally should not need changing.  In some cases, moving a molecule to a point 
that is exactly on a panel edge can cause problems with round-off errors, so it is actually 
moved just inside the edge by a distance that can be set by the margin statement.  Again, 
this should not need changing. 

 
 

Table 3.10.1: statements for simulation settings 
 
random_seed int random number seed 
accuracy float accuracy code, from 0 to 10 
molperbox float target molecules per virtual box 
boxsize float target size of virtual boxes 
epsilon float for surface-bound molecules 
margin float for diffusing surface-bound molecules 
neighbor_dist float for diffusing surface-bound molecules 
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3.11 Ports 
 

Port basics 
 
Ports are data structures that are used for importing and exporting molecules 

between a Smoldyn simulation and another simulation.  In particular, they are designed 
for the incorporation of Smoldyn into MOOSE, but they could also be used to connect 
multiple Smoldyn simulations or for other connections. 

A port is essentially a surface and a buffer.  Smoldyn molecules that hit the porting 
surface are removed from the Smoldyn simulation and are put into the buffer for export.  
Once exported, they are removed from the buffer.  Also, molecules may be added to the 
Smoldyn simulation at the porting surface by other programs. 

 
Defining ports 

 
Using the standard format, port statements are given in blocks that start with 

start_port and end with end_port.  A port name is declared after start_port.  The 
porting surface is specified with surface and the active face of that surface is specified 
with face. 

Also, in the definition of the surface that is to be used for porting (the surface has to 
be defined first), one has to specify that the active face of the surface has action “port”. 

 
 

Table 3.11.1: statements about ports 
 

start_port name 
surface surface 
face face 
end_port 
 
Porting rate 

 
Some care is required to make ports work accurately.  In particular, a port behaves 

for a Smoldyn simulation as an absorbing surface.  The absorption rate depends on the 
simulation time step and molecular rms step length, as I described in Andrews, Physical 
Biology, 2009. 
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3.12 Rule-based network generation 
 
Smoldyn included the Libmoleculizer module for rule-based network generation up 

to version 2.31.  The software was almost very useful, but not quite.  Nothing ever 
worked quite as desired, and the module was very difficult to compile.  Thus, it was 
completely removed, starting at version 2.32.  Version 2.34 has a nearly complete 
translation module that translates BioNetGen output into Smoldyn input.  However, it 
still needs validation and documentation.  If you need these features, let us know and 
we’ll try to speed up the finalization. 

 
Here is the current situation, as of version 2.37: 
The BioNetGen integration with Smoldyn is only half complete.  However, it 

should still be workable with full functionality, just a little harder to use than it should be. 
The current functionality is shown with the example file blbr.bng, which is in the 

Smoldyn distribution in examples/S12_bionetgen/blbr/ (and also in the BioNetGen 
distribution).  The first step is to use BioNetGen to generate a .net file.  At a command 
line, I entered the following statement: 

 
../../../source/BioNetGen/BNG2.pl blbr.bngl 
 

This ran the perl program BNG2.pl, which is in my source directory, which read the file 
blbr.bngl and produced blbr.net.  BNG2.pl is not standard in the source directory, so you 
will probably need to navigate to a different place to run it (you also may need to 
download it from the BioNetGen site). 

Next, run Smoldyn using the file blbrsim.txt, which should be in the 
examples/S12_bionetgen/blbr/ directory.  If this fails with a syntax error it’s probably 
because I changed the syntax so that the line which says "start_bngnet blbr" should be 
rewritten as "start_bng blbr".  After making that change in the blbrsim.txt file, it should 
run.  This file seems to run exceedingly slowly, although it’s not clear why. 

Following this scheme, it should be fairly easy to do the same thing with other 
files.  It’s generally advisable to start with small simple networks at first, and read all of 
the intermediate files and the Smoldyn text output, just to make sure that things are 
working as intended.  Once files get big, you will just have to trust that they are working 
right, so it’s nice to verify that things are working correctly first. 
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3.13 Filaments 
 
I am working on adding simulation support for filaments to Smoldyn, but have only 

just begun.  At present, it is possible to define filaments and specify their geometries by 
adding monomers to them.  These filaments can move by treadmilling, and they interact 
with surfaces.  They do not exhibit Brownian motion.  See the examples in the 
S13_filaments directory. 
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3.14 Hybrid simulation with adjacent lattices 
 
Most of the Smoldyn software is developed around the Smoluchowski level of 

detail.  Here, each individual molecule of interest in the simulation is represented as a 
small sphere that has a precisely defined position in continuous space.  This offers spatial 
accuracy down to nanometer size scales for typical systems, which is more detailed than 
that offered by most other comparable simulation software, but is necessary when 
studying biophysical processes that take place on these spatial scales.  The cost of this 
high level of detail is that simulations become computationally demanding, both in terms 
of the number of processes that have to be run at each simulation time step and in terms 
of the memory required to store all of the molecular information.  Hybrid simulations can 
offer solutions for simulating models with both high levels of detail and high speed, 
which they accomplish by representing high levels of detail only as needed. 
The hybrid methods that are particularly important here combine particle-based 
simulation with lattice-based simulation.  The particle-based simulation methods are 
Smoldyn’s standard methods, which work at the Smoluchowski level of detail.  The 
lattice-based methods represent spatially compartmentalized versions of the chemical 
master equation, typically simulated using one of the spatial Gillespie methods (partial 
differential equations or spatial Langevin methods are also appropriate).  Hybrid methods 
can use either overlapping space or adjacent space methods.  In the former case, the 
physical space represented by the lattice-based methods is the same as that by the 
particle-based methods; molecules in one representation can interact with spatially 
proximate molecules that are in the other representation.  Smoldyn has been added to 
Virtual Cell in this manner, where VCell provides the lattice representation and Smoldyn 
provides the particle representation.  Here, the lattice representation is best for abundant 
or rapidly diffusing species where exact molecule positions don’t matter, and the particle 
representation for rare species where the extra computational effort is necessary.  In the 
latter case, the particle-based and lattice-based methods represent adjacent regions of 
physical space.  Molecules can diffuse back and forth between the two regions, changing 
representations as they do so.  This approach is best in cases where one region of space 
needs to be simulated in detail, while surrounding regions can be simulated more 
coarsely.  The remainder of this section focuses on this latter adjacent space approach. 

Lattices were a new feature in Smoldyn 2.32. 
 
 

Hybrid simulation basics 
 
The lattice module incorporated into Smoldyn is fairly simple.  It represents lattices 

using an axis-aligned rectangular array of subvolumes.  It simulates chemical reactions 
using the next subvolume (NSV) method, which treats molecules as discrete objects (i.e. 
not continuously variable concentrations) and captures reaction stochasticity accurately.  
Whereas simulation time advances with fixed length time steps in the particle-based 
methods, it advances with unequal steps, from event to event, in the NSV method.  The 
lattice region of space can be bounded by a few different boundary types, but the lattice 
code does not currently address interactions between molecules and any surfaces that are 
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within the lattice region of space.  The junction between the particle-based region of 
space and the lattice region of space is created using a Smoldyn “port”, explained above. 

 
 

Defining lattices 
 
To include a lattice in a model, you need to add a lattice, obviously.  This is entered 

using a block of statements that starts with start_lattice and ends with end_lattice, 
much like similar blocks for surfaces, compartments, and other things.  The definitions 
that can be entered within this block are discussed below.  In addition to adding a lattice, 
you also need to define a port, which will form the junction between the particle space 
and the lattice space.  And to create a port, you will need to define at least one surface.  
The examples/S14_lattices/diffusion.txt file shows a very simple example of model 
that uses a lattice. 

First, it’s a good idea to define the lattice type using the type statement.  In 
principle, this will enable you to choose whether the lattice region is simulated with 
discrete numbers of molecules using NSV algorithm, with continuous concentrations 
using PDE algorithms, or with other methods.  In practice though, only NSV is currently 
implemented, and NSV is the default, so you don’t actually need to define the type.  On 
the other hand, you do need to define the port that separates particle space from lattice 
space, using the port statement. 

Define the boundaries of the lattice space using the boundaries statement.  It is 
essentially identical to the boundaries statement for the main portion of the configuration 
file, but that one only applies to the particle region of space and this one only applies to 
the lattice region of space.  The two sets of boundaries are typically strictly adjacent to 
each other, with no gap and no overlap, but it is also just fine if they overlap.  The port 
should obviously be at the intersection of the two sets of boundaries, or somewhere 
within the overlap region.  By default the lattice boundaries are reflective, but they can 
also be periodic.  These are entered with optional characters after the rest of the 
statement, exactly as for the particle side boundaries statement. 

Lattice partitioning is defined using the lengthscale statement.  Typically, the 
values entered here are an even divisor of the boundaries dimensions.  I’m not sure what 
happens if this is not true. 

Use the species and reactions statements to tell a lattice which species and 
reactions it should work with.  Often, “all” is used, meaning that the lattice should know 
about all of the same species and/or reactions as the particle side of the simulation uses.  
However, it’s also possible to specify a subset of the total species and reactions lists.  
This is useful because the lattice code runtime increases with more species and with more 
reactions, unlike the particle side, which increases with numbers of individual molecules.  
Lattices cannot work with any species or reactions that are not also defined in the particle 
side.  However, it is possible to have a reaction only perform on the lattice side.  In this 
case, define the reaction on the particle side, with a rate constant as usual.  Then, when 
listing the reactions that the lattice side should work with, use the keyword “move” to 
indicate that all subsequent reactions in the list should be “moved” to the lattice side and 
disabled on the particle side. 
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Finally, use the mol statement to add molecules to the lattice side.  This is 
essentially identical to the statement of the same name in the main portion of the 
configuration file, but only applies to the lattice side of space. 

 
 

Lattice output 
 
Several commands output information from lattices.  printLattice outputs some 

basic information about the lattice, including the low and high corners of the lattice 
space, the subvolume partition spacing, and the total number of each species in the 
lattice.  This is the same output that is displayed with the simulation diagnostics. 

molcount and molcountspace are functions that are often used with non-lattice 
simulations.  In addition to counting molecules in the particle region of space, they also 
count molecules in the lattice region; there is no way to select just particle region or just 
lattice region.  molcountspace does not count molecules that are in transit between 
representations (if you select a single species and state; it does if you select all species 
and/or all states), so it will miss a few molecules.  savesim saves the full simulation state; 
it saves the lattice state as well as the rest.  Other molecule counting commands do not 
include lattice molecules. 

Finally, writeVTK produces VTK output for both the particle and lattice regions of 
space.  It does not include surface information.  The output is saved as a stack of files that 
have names that follow the format filenameLattice00_00001.vtu and 
filenameMolecules00001.vtu, and that have incremented numbers for subsequent 
snapshots.  This output can be viewed using Paraview, Visit, or other VTK viewers.  It 
doesn’t appear that any of them are trivial to use. 

 
 

Table 3.13.1 statements about lattices 
 

start_lattice name start defining a lattice 
type type type of the lattice (“nsv”) 
port port port for exchanging molecules 
boundaries dim pos1 pos2 type boundaries of the lattice region of space 
lengthscale x1 x2 x3 partition spacing for lattice subvolumes 
species species1 species2 ... species that the lattice should recognize 
reaction [move] reaction1 reaction2 ... reactions that the lattice should recognize 
mol nmol name pos0 pos1 … posdim–1 starting molecules in the lattice space 
end_lattice end the lattice block 
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4.  Reference: statements and commands 
 
4.1  Configuration file statements 

 
Statements about the configuration file 
 
# text 
 Single-line comment.  A ‘#’ symbol indicates that the rest of the line is a 

comment. 
 
/* 
text 
*/ 
 Multi-line comment.  All lines between “/*” and the following “*/” are 

ignored.  These must be the first “words” on a line.  Additional text on 
these lines is ignored as well.  In future versions, the syntax of these may 
be changed so as to be identical to C-style block comments. 

 
read_file filename 
 Read some other configuration file, returning to the present one when that 

one has been read. 
 
end_file 
 End of configuration file.  This line is optional (but good programming 

practice), as Smoldyn can also just read until the file ends. 
 
quit_at_end value 
 Use a value of “yes” to tell the simulator to quit the program at the end of 

the simulation, during simulations that use graphics.  This has no effect if 
simulations do not use graphics.  Use “no” to turn this off, which is the 
default behavior. 

 
define key substitution 
 Definition of macro replacement text.  Throughout the remainder of this 

configuration file, but not files that are called by it, all incidents of the 
string key are replaced with the string substitution before further parsing is 
performed.  It is permissible to not include any substitution text. 

 
define_global key substitution 
 Definition of macro replacement text, which is identical to define, except 

that this definition applies throughout both this file and all files that are 
called by it.  Global definitions can also be entered on the command line 
using the --define option. 

 
undefine key 
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 Removes a macro substitution definition that was made previously, 
whether global or local.  Global undefines apply to this file and all files 
that are called by it, but not to a file that called this one.  Entering key as 
“all” undefines all definitions. 

 
ifdefine key 
 The following lines of the configuration file are read only if key is a term 

that was defined with define or define_global (or was defined 
automatically, which includes FILEROOT).  Reading, or not reading, 
continues to any else statement.  The end of the condition is given with 
the endif statement. 

 
ifundefine key 
 This is identical to ifdefine, except that reading continues only if key has 

not been defined. 
 
else 
 This is the else condition which is supposed to follow an ifdefine or 

ifundefine statement. 
 
endif 
 This ends a condition that is started by an ifdefine or ifundefine 

statement. 
 
display_define 
 Causes all current definitions to be displayed to the standard output.  This 

is only useful for debugging define issues in configuration files. 
 
 
Statements about space and time 
 
dim dim 
 Dimensionality of the system.  Must be at least one, and is typically 

between 1 and 3.  Larger numbers are permitted as well. 
 
boundaries dim pos1 pos2 
boundaries dim pos1 pos2 type 
 Creates lower and upper boundaries to define the simulation volume on 

dimension dim.  The dim value should be ‘x’, ‘y’, or ‘z’ (however, 0, 1, 
and 2 work as well).  These boundaries are located at pos1 and pos2.  
Using the first format, which is advised for systems that include surfaces, 
boundaries are created that are transparent to molecules, meaning that they 
do not contain or otherwise interact with molecules.  Surfaces need to be 
defined to keep molecules in the system.  The second format is preferable 
for systems that do not include any surfaces.  In this case, the boundary 
type can be ‘r’ for reflective, ‘t’ for transparent, ‘a’ for absorbing, or ‘p’ 
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for periodic.  For most purposes, this statement replaces the low_wall and 
high_wall statements. 

 
low_wall dim pos type 
 This statement has been largely superseded by boundaries.  This creates a 

lower boundary for the simulation volume.  This wall is perpendicular to 
the dimension dim (‘x’, ‘y’, or ‘z’) such that all locations between pos and 
the position of the corresponding upper boundary are considered to be 
within the simulation volume.  The type of wall is given in type, which 
should be one of four single letter codes: ‘r’ means a reflecting wall, ‘p’ 
means a periodic wall (also called wrap-around or toroidal), ‘a’ means an 
absorbing wall, and ‘t’ means a transparent wall.  Transparent walls imply 
an unbounded system and may lead to slow simulations.  If any surfaces 
are defined for the simulation, then walls still must be entered to define the 
system volume, but these walls are essentially non-functional (the sole 
exception is that reactions can occur across periodic walls).  Additional 
surfaces need to be defined to serve as the system boundaries. 

 
high_wall dim pos type 
 This statement has been largely superseded by boundaries.  This is 

identical to the definition for low_wall, although this creates the upper 
boundary for the simulation volume.  See note about surfaces in low_wall. 

 
time_start time 
 Starting point for simulated time. 
 
time_stop time 
 Stopping time of simulation, using simulated time.  The simulation 

continues past the time_stop value by less than one time step. 
 
time_step time 
 Time step for the simulation.  Longer values lead to a faster runtime, while 

shorter values lead to higher accuracy.  Also, longer values lead to 
bimolecular reactions that behave more as though they are activation 
limited, rather then diffusion limited. 

 
time_now time 
 Another starting time of simulation.  Default value is equal to time_start.  

If this time is before time_start, the simulation starts at time_start; 
otherwise, it starts at time_now. 

 
 
Statements about molecules 
 
species name1 name2 … namen 
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 Names of one of more molecular species present in the system.  Standard 
naming conventions are followed, in that the name should start with a 
letter and spaces are not permitted. 

 
difc name value 
difc name(state) value 
 Isotropic diffusion coefficient of molecule type name.  Default value is 0.  

The state, which is optional, refers to the surface-bound state of the 
molecule: solution, front, back, up, or down; if omitted, only the solution 
state is set with this statement.  name may be “all” and/or state may be 
“all” to set diffusion coefficients for multiple species at once. 

 
difm name float0 float1 … floatdim*dim–1 
difm name(state) float0 float1 … floatdim*dim–1 
 Square root of diffusion matrix of name and maybe state state (the dot 

product of this matrix and itself is the anisotropic diffusion matrix).  The 
matrix has dim2 terms (dim is the system dimensionality), listed row by 
row of the matrix; the matrix is supposed to be symmetric.  If this line is 
not entered, isotropic diffusion is assumed, which leads to a faster runtime.  
While a matrix is used for diffusion if one is given, the value stored with 
difc is used for reaction rate calculations.  If difc is not entered, the trace 
of the square of this matrix, divided by the system dimensionality, is used 
as a proxy for the isotropic diffusion coefficient to allow reaction rates to 
be estimated.  This line is most useful for restricting diffusion to a plane or 
a line, in which case the square root of the diffusion coefficient is given 
for each diagonal element of the matrix where there is diffusion and 0s are 
place on diagonal elements for axes where diffusion is not possible, as 
well as on off-diagonal elements.  name and or state may be “all” to set 
diffusion matrices for multiple species at once. 

 
drift species float0 float1 … floatdim–1 
drift species(state) float0 float1 … floatdim–1 
 Drift velocity vector for molecules of type species and maybe state state.  

The vector has dim terms (dim is the system dimensionality).  If this line is 
not entered, there is no net drift.  species and or state may be “all” to set 
drift vectors for multiple species at once. 

 
surface_drift species(state) surface panel-shape float0 … floatdim–2 
 Drift velocity vector for molecules of type species and state state, relative 

to the local coordinates of the panel to which these molecules are bound.  
The vector has dim-1 terms (dim is the system dimensionality), which are 
for the natural coordinate system of the local panel.  species and or state 
may be “all” to set drift vectors for multiple species and surface-bound 
states at once. 

 
mol nmol name pos0 pos1 … posdim–1 
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 Simulation starts with nmol type name molecules at location pos.  Each of 
the dim elements of the position may be a number to give the actual 
position of the molecule or molecules; or the letter ‘u’ to indicate that the 
position for each molecule should be a random value between the 
bounding walls, chosen from a uniform density; or a position range which 
is given as two numbers separated with a hyphen. 

 
surface_mol nmol species(state) surface pshape panel  pos0 pos1 … posdim–1 
surface_mol nmol species(state) surface pshape panel 
 Creates surface-bound molecules.  nmol molecules of type species are 

created on the surface named surface, on the panel with shape pshape and 
name panel.  They are all put in state state, which can be “front”, “back”, 
“up”, or “down”.  If additional text is entered, it needs to be the Cartesian 
coordinates of the molecules, all of which are put at the same spot and on 
the same panel.  If the coordinates are not given, the molecules are placed 
randomly on the surface with a constant density, on average.  For 
randomly placed molecules, it is permissible to enter “all” for the panel, 
the pshape, and/or the surface. 

 
compartment_mol nmol species compartment 
 Creates nmol solution-phase molecules of type species in the compartment 

named compartment. 
 
molecule_lists listname1 listname2 … 
 Creates and names a set of molecule lists, for molecules that are in the 

system.  This statement may be called multiple times. 
 
mol_list species listname 
mol_list species(state) listname 
 Assigns all molecules that are in the system and of type species and state 

state (if state is not specified, then only the solution state is assigned) to 
the list called listname. 

 
max_mol int 
 Optional statement (it was required up to version 2.22).  This tells 

Smoldyn to terminate if more than this many molecules end up being used 
for the simulation. 

 
Statements about graphics 
 
graphics str 
 Type of graphics to use during the simulation.  The options are ‘none’ for 

no graphics, ‘opengl’ for basic and fast OpenGL graphics, ‘opengl_good’ 
for fair quality OpenGL graphics, and ‘opengl_better’ for pretty good 
graphics.  Runtime gets slower with better quality.  If this line is not 
entered, no graphics are shown. 
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graphic_iter int 
 Number of time steps that should be run between each update of the 

graphics.  Default value is 1. 
 
graphic_delay float 
 Minimum amount of time in milliseconds that Smoldyn should pause 

between successive graphics updates.  Default is 0. 
 
quit_at_end yes/no 
 Whether Smoldyn should quit running as soon as the simulation is 

complete or not.  Enter yes (or 1) if it should and no (or 0) if not. 
 
frame_thickness int 
 Thickness of the frame that is drawn around the simulation volume, in 

points.  Default value is 2. 
 
frame_color color [alpha] 
frame_color red green blue [alpha] 
 Color of the frame.  All values should be between 0 and 1; use all 0s for 

black and all 1s for white (default).  The alpha value is optional and also 
useless. 

 
grid_thickness int 
 Thickness of the grid lines that can be drawn to show the virtual boxes.  

Default value is 0, so that the grid is not drawn. 
 
grid_color color [alpha] 
grid_color red green blue [alpha] 
 Color of the grid.  All values should be between 0 and 1; use all 0s for 

black and all 1s for white (default).  The alpha value is optional and also 
useless. 

 
background_color color [alpha] 
background_color red green blue [alpha] 
 Color of the background.  All values should be between 0 and 1; use all 0s 

for black and all 1s for white (default).  The alpha value is optional and 
may not work anyhow. 

 
display_size name float 
display_size name(state) float 
 Size of molecule of type name for display to the graphical output.  If the 

surface state is omitted, as in the first form shown, this display size applies 
to all molecule states; otherwise it applies to only the state listed.  These 
states may be “solution”, “front”, “back”, “up”, “down”, or “all”.  The 
default value is 3, indicating that each molecule is displayed with a small 
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square; 0 indicates that a molecule should not be displayed and larger 
numbers yield larger squares. 

 
color name(state) color [alpha] 
color name(state) red green blue [alpha] 
 Color for displaying molecules of type name.  If the surface state is 

omitted, this color applies to just the solution state.  States may be 
“solution”, “front”, “back”, “up”, “down”, or “all”.  Colors can be words, 
or can be given with red, green, and blue values, each of which should be 
between 0 and 1.  Default values are 0 for each parameter, which is black.  
Entering alpha is optional and useless. 

 
tiff_iter int 
 Number of time steps that should be run between each automatic saving of 

a TIFF file.  Default value is 0, meaning that TIFFs should not be saved 
automatically. 

 
tiff_name name 
 Root filename for TIFF files, which may include path information if 

desired.  Default is “OpenGL”, which leads to the first TIFF being saved as 
“OpenGL001.tif”. 

 
tiff_min int 
 Initial suffix number of TIFF files that are saved.  Default value is 1. 
 
tiff_max int 
 Largest possible suffix number of TIFF files that are saved.  Once this 

value has been reached, additional TIFFs cannot be saved.  Default value 
is 999. 

 
light number parameter color [value4] 
light number parameter value1 value2 value3 [value4] 
 Set the parameters for a light source, for use with opengl_better quality 

graphics.  The light number should be between 0 and 7.  The parameter 
may be one of four strings: “ambient”, “diffuse”, “specular”, or “position”.  
The first three parameters are for the light’s colors, which are then 
specified with either a word or in the values as red, green, blue, and 
optionally alpha.  The last parameter type is for the light’s 3-dimensional 
position, which is specified as x, y, and z in the values.  Lights specified 
this way are automatically enabled (turned on). 

 
text_color color 
text_color red green blue 
 Color for text displayed on the graphics window. 
 
text_display item1 item2 ... 
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 Turns on text display of the listed items, which are listed as strings.  
Possible items are “time”, which is the simulation time, and species names 
and states (entered as species(state)), for which the number of molecules 
of that species and state are displayed.  Wildcards are permitted. 

 
Statements about run-time commands 
 
output_root str 
 Root of path where text output should be saved.  Spaces are permitted.  

Output files are saved in the same folder as the configuration file, 
modified by this string.  See the description for output_files.  Make sure 
that the destination folder has been created and that the string is terminated 
with a colon (and started with a colon if needed). 

 
output_files str1 str2 … strn 
 Declaration of filenames that can be used for output of simulation results.  

Spaces are not permitted in these names.  Any previous files with these 
names will be overwritten.  The path for these filenames starts from the 
configuration file and may be modified by a root given with output_root.  
For example, if the configuration file was called with folder/config.txt 
and output_root was not used, then the output file out.txt will appear in 
the folder folder too.  If the configuration file was called with 
folder/config.txt and the output root was given as results/, then the 
output file goes to the results sub-folder of the folder folder.  The 
filename “stdout” results in output being sent to the standard output (this 
does not need to be declared with the output_files statement). 

 
output_precision int 
 The precision that will be used for numerical output from commands, 

meaning the number of digits displayed after a decimal point.  Enter a 
negative number for the default and a positive number for fixed precision.  
For example, if you enter 5, then the output format string will be ‘%.5g’. 

 
append_files str1 str2 ... strn 
 Identical to output_file, except that the prior contents of these files are 

not overwritten, but are appended to. 
 
output_file_number int 
 Starting number of output file name.  The default is 0, meaning that no 

number is appended to a name (e.g. the file name out.txt is saved as 
out.txt).  A value larger than 0 leads to an appended file name (if 1 is 
used, then out.txt is actually saved as out_001.txt).  Note that the 
command incrementfile increments the file number before it runs the rest 
of the command. 

 
cmd b,a,e string 
cmd @ time string 
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cmd n int string 
cmd i on off dt string 
cmd j onit offit dtit string 
cmd x on off dt xt string 
 Declaration of a command to be run by the run-time interpreter, where the 

final portion labeled string is the actual command.  The character 
following cmd is the command type, which may be ‘b’ for before the 
simulation, ‘a’ for after the simulation, ‘e’ for every time step during the 
simulation, ‘@’ for a single command execution at time time, ‘n’ for every 
n’th iteration of the simulation, ‘i’ for a fixed time interval, ‘x’ for a fixed 
time multiplier, or ‘j’ for every dtit step with a set starting iteration and 
stopping iteration.  For type ‘i’, the command is executed over the period 
from on to off with intervals of at least dt (the actual intervals will only 
end at the times of simulation time steps).  For type ‘x’, the command is 
executed at on, then on+dt, then on+dt*xt, then on+dt*xt2, and so forth.  
See section 2.4 for the commands that are available. 

 
max_cmd int  (obsolete statement) 
 Maximum length of command queue.  Default value is 10.  As of version 

1.55, this statement is no longer needed in configuration files, because the 
command queue is now expanded as needed. 

 
Statements about surfaces 
The statements shown below that are preceded by an asterisk need to be entered within 
surface blocks, which start with start_surface and end with end_surface.  These 
statements can also be entered directly, meaning not in a surface block, by preceding the 
statement with surface and then the surface name. 
 
max_surface int (obsolete statement) 
 As of version 2.19, this statement is optional.  If used, it specifies the 

maximum number of surfaces that will be defined.  Each surface may have 
many panels, including disjoint panels. 

 
start_surface [name] 
 Start of surface definition block.  The surface name may be given with 

name, or it may be given afterwards with the name statement.  If the name 
has not been used yet for a surface, then a new surface is started.  Between 
this instruction and “end_surface”, all lines need to pertain to surfaces.  
Parameters of one surface can be listed in multiple blocks, or parameters 
for many surfaces can be listed in one block. 

 
new_surface name 
 Defines a new surface called name, but does not start a surface block.  

This statement is largely redundant with start_surface. 
 
* name name 
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 Name of the surface for editing.  This statement is not required because 
the surface name can also be given with start_surface.  This statement 
gives the name of the current surface for editing, and creates a new surface 
if needed. 

 
* action species(state) face action 
old format (version 2.18 and before): * action face species action 
 The behavior of molecules named species (and in state state, which is 

assumed to be solution if it’s not entered) when they collide with the face 
face of this surface.  face can be “front”, “back”, or “both”.  If species is 
“all”, then this action applies to all molecules.  The action can be  
“reflect”, “absorb”, “transmit”, “jump”, “port”, or “periodic.”  In addition, 
it’s permissible to enter “multiple,” in which case the rates need to be set 
with rate; alternatively, just setting the rates will automatically set the 
action to “multiple.”  The default is transmission for all molecules. 

 
* rate species(state) state1 state2 value [new_spec] 
 (Obsolete form: rate face molec action value) 
 The rate constant for transitions from state1 to state2 of molecules named 

species at this surface.  For the species name, in species, “all” is permitted; 
however, “all” is not permitted anywhere else.  Usually, state is omitted, 
but see below for where it is needed.  state1 and state2 can be any of: 
fsoln, bsoln (in solution, hitting the front or back of the panel, 
respectively), front, back, up, or down.  value is the rate constant or rate 
coefficient.  If new_spec, which is an optional parameter, is entered, then 
molecules change to the listed species at the same time as changing states. 

 
 To specify interaction rates for molecules that collide with surface B, 

while diffusing along surface A, use the first state parameter.  In this case: 
state is the starting surface-bound state on surface A; state1 is fsoln to 
indicate collision with the front side of surface B or bsoln to indicate 
collision with the back side of surface B; and state2 is fsoln or bsoln to 
indicate transmission through surface B and still bound to surface A (but 
cannot equal state1) or state2 can be a surface-bound state to indicate that 
the molecule hops from surface A to surface-bound on surface B. 

 
* rate_internal species(state) state1 state2 value [new_spec] 
 (Obsolete form: rate_internal face molec action value) 
 This is identical to rate, except that a slightly different value is entered.  

Instead of entering the surface action rate, enter the probability of the 
action at each collision.  Probabilities for reflection are ignored since they 
are calculated as the probability that the molecule does not transmit, 
absorb, or jump. 

 
*neighbor_action action 
 Behavior of surface-bound molecules when they collide with a panel that 

is a neighbor of the panel that they are bound to.  There are only two 
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options: “hop” indicates that the molecule should hop onto the new panel 
with a 50% probability and stay with a 50% probability, and “stay” 
indicates that the molecule should stay on its own surface.  The default is 
“stay”. 

 
* color face color [alpha] 
* color face red green blue [alpha] 
 Color of the face face of the surface.  face can be “front”, “back”, or 

“both”.  In the first format, color is a single word color, such as “red”, 
“green”, “magenta”, “cyan”, etc.  In the second format, color values are 
numbers between 0 and 1, where 1 is maximum intensity a 0 is minimum 
(1 1 1 is white).  The alpha value is optional and describes the opacity of 
the surface.  If entered, it also needs to be between 0 and 1, where 1 is an 
opaque object (the default) and 0 is transparent.  OpenGL graphics do not 
work well with non-integer alpha values, so don’t expect good results. 

 
* thickness float 
 Boldness of the surface in pixels for drawing purposes.  This is only 

relevant for 1-D and 2-D simulations, and for 3-D simulations in which 
surfaces are drawn with just vertices or edges and not faces. 

 
* stipple factor pattern 
 Stippling of the surface edges, for drawing purposes.  This is only relevant 

for 3-D simulations in which surfaces are drawn with just edges and not 
faces, and with opengl_good or better display method.  In factor, which is 
an integer, enter the repeat distance for the entire stippling pattern (1 is a 
good choice).  In pattern, which is a hexidecimal integer, enter the 
stippling pattern between 0x0000 and 0xFFFF.  0x00FF has long dashes, 
0x0F0F has medium dashes, 0x5555 has dots, etc.  Turn stippling off with 
0xFFFF. 

 
* polygon face drawmode 
 Drawing method for the face face of the surface.  face can be “front”, 

“back”, or “both”.  drawmode may be “none”, “vertex”, “edge”, “face”, or 
combinations of ‘v’, ‘e’, or ‘f’ for multiple renderings of vertices, edges, 
and/or faces.  2-D spheres and hemispheres are either filled or are outlined 
depending on the polygon front character. 

 
* shininess face value 
 Shininess of the surface for drawing purposes.  This value can range from 

0 for visually flat surfaces to 128 for very shiny surfaces.  This is only 
relevant for some simulations. 

 
* max_panels shape int (obsolete statement) 
 Optional statement.  This can be used to allocate memory for int panels of 

shape shape for this surface, although it is usually best to let Smoldyn 
allocate memory as needed.  The shape may be “rect” for a rectangle, “tri” 
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for a triangle, “sph” for a sphere, “cyl” for a cylinder, “hemi” for a 
hemisphere, or “disk” for a disk.  The surface can include panels with 
different shapes. 

 
* panel shape float … float [name] 
 Defines a new panel for the surface, where the panel has shape shape.   

The shape may be “rect” for a rectangle, “tri” for a triangle, “sph” for a 
sphere, “cyl” for a cylinder, “hemi” for a hemisphere, or “disk” for a disk.  
Following the shape are numbers for the panel position, where these 
depend on the shape.  At the end, it is possible to enter a string to name the 
panel, although this is optional (default names are the numbers 0, 1, 2, …; 
names are used for jump surfaces).  If the name was used before, then this 
does not create a new panel, but modifies the existing panel. 

 
 For “rect”, enter the axis number that the rectangle is perpendicular to, 

preceded by a ‘+’ if the panel front faces the positive axis and a ‘-’ if it 
faces the negative axis (these signs must be entered); then enter the 
coordinates of a corner point; then enter the dimensions of the rectangle in 
sequential order of the axes, omitting the one that it is perpendicular to.  
These dimensions are better called displacements because they are added 
to the corner that is entered, so they may be positive or negative.  For 
example, for a square in a 3-D system that is perpendicular to the y-axis, 
has sides of length 10 and is centered about the origin, enter: “panel rect 
+1 -5 0 -5 10 10”.  This same square could be entered as “panel rect +1 
5 0 5 -10 -10” , or with other descriptions.  A rectangle is always 
perpendicular to an axis. 

 
 For “tri”, enter the coordinates of the corners of the triangle.  This is one 

number for 1-D; 4 for 2-D, and 9 for 3-D.  For 1-D, the front of the 
triangle always faces the positive axis; rectangles are completely 
equivalent and more versatile.  For 2-D, triangles are really lines and the 
front side of the line is the side on the right when traveling in sequential 
order of the points that are entered.  For 3-D, the triangle front is 
determined by the winding direction of the corners: if one is facing the 
front, the points wind counterclockwise.  Unlike rectangles, triangles do 
not have to be perpendicular to axes. 

 
 For “sph”, enter the coordinates of the sphere center followed by the 

sphere radius and some drawing information.  For 1-D, the center 
coordinate is a single number and the radius is entered next.  For 2-D, the 
center coordinates are 2 numbers and then enter the radius followed by the 
number of sides on the polygon that should be drawn to represent the 
circle.  For 3-D, the center coordinates are 3 numbers and then enter the 
radius, followed by the number of slices (longitude lines) and stacks 
(latitude lines) that are used for drawing the sphere.  In the 2-D and 3-D 
cases, the drawing entries are used only for drawing; the circle or sphere 
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functions as an accurate smooth shape.  For all dimensions, enter a 
positive radius to have the front of the surface on the outside and a 
negative radius for it to be on the inside. 

 
 For “cyl”, enter the coordinates of the cylinder-axis start point and the 

cylinder-axis end point, then the radius, and then drawing information if 
appropriate.  Cylinders are not permitted in 1-D.  In 2-D, two numbers 
give the start point and two give the end point, followed by the radius.  No 
drawing information is needed.  In 3-D, enter three numbers for the start 
point, three for the end point, the radius, and then the number of slices and 
the number of stacks.  For all dimensions, enter a positive radius to have 
the front of the surface on the outside and a negative radius for it to be on 
the inside. 

 
 For “hemi”, enter the coordinates of the hemisphere center, the radius, and 

then the vector that points straight out of the hemisphere.  Hemispheres 
are not permitted in 1-D.  In 2-D, the center coordinates are 2 numbers, the 
radius is 1 number, the outward vector is 2 numbers, and finally enter the 
number of slices.  For 3-D, the center is 3 numbers, the radius is 1 number, 
the outward vector is 3 numbers, and then enter 2 numbers for the 
numbers of slices and stacks.  The outward pointing vector does not need 
to be normalized to unit length.  For all dimensions, enter a positive radius 
to have the front of the surface on the outside and a negative radius for it 
to be on the inside. 

 
 For “disk”, enter the coordinates of the disk center, the radius, a vector 

that points away from the front of the disk, and drawing information if 
appropriate.  Disks are not permitted in 1-D.  In 2-D, the center 
coordinates are 2 numbers, the radius is 1 number, and the normal vector 
is 2 numbers.  For 3-D, the center coordinates are 3 numbers, the radius is 
1 number, the normal vector is 3 numbers, and the number of drawing 
slices is entered last.  Normal vectors do not need to have unit length. 

 
* jump name face -> name2 face2 
* jump name face <-> name2 face2 
 Defines a molecule jumping condition for a face of a single panel.  This 

panel has name given with name, and face face.  The name of a panel can 
be defined with the panel statement, or the default is just the shape and 
panel number (rect0, sph5, etc.).  A molecule that hits this face of the 
panel, and that has “jump” action for this face, gets translated to the face 
face2 of the panel named name2 (which needs to be the same shape as the 
originating panel).  A unidirectional arrow implies just jumping from the 
first panel to the second, whereas a double-headed arrow implies jumping 
in both directions. 

 
* neighbors panel neigh1 neigh2 … 
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 Defines a list of panels that neighbor the panel named panel.  Surface-
bound molecules can only diffuse from a panel to its neighbor if the 
neighbors are defined in this way.  This statement is unidirectional in that 
it only sets, for example, neigh1 as a neighbor of panel panel but not vice 
versa.  If the neighboring panel is not part of the same surface as the origin 
panel, then specify the neighboring panel using surface:panel. 

 
* unbounded_emitter face species amount pos0 pos1 … posdim-1 
 Declares a molecular source for which this surface should absorb 

molecules so as to yield a concentration distribution that is the same as 
that which would arise with unbounded diffusion.  This statement does not 
create the molecular source, but only sets the panel absorption coefficients 
to yield the correct concentrations, assuming the emitter is created 
elsewhere (such as with a command or a zeroth order reaction).  face is the 
side of the surface that faces the emitter, species is the emitted molecular 
species, amount is the emission rate (it only matters if there is more than 
one emitter for this surface and species, and then it is only the relative 
rates of the different emitters that matters), and pos is the system-
dimensional position of the emitter.  This statement is designed to be used 
with all emitters strictly inside a closed surface and all of them with 
positive amount values; however, neither of these criteria are checked, so 
other options can be used although no promises are made regarding their 
behaviors. 

 
* end_surface 
 End of a block of surface definitions.  Surface statements are no longer 

recognized but other simulation statements are. 
 
epsilon float 
 See “simulation settings” section.  This is not entered in a surface block. 
 
margin float 
 See “simulation settings” section.  This is not entered in a surface block. 
 
neighbor_dist float 
 See “simulation settings” section.  This is not entered in a surface block. 
 
 
Statements about compartments 
 
The statements shown below that are preceded by an asterisk need to be entered within 
compartment blocks, which start with start_compartment and end with end_compartment.  
Most of these statements can also be entered directly, preceded by the statement 
compartment and then the compartment name.  Both forms are shown below. 
 
start_compartment name 
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 Start of compartment definition block.  The compartment name may be 
given with name, or it may be given afterwards with the name statement.  If 
the name has not been used yet for a compartment, then a new 
compartment is started.  Between this instruction and “end_compartment”, 
all lines need to pertain to compartments.  Parameters of one compartment 
can be listed in multiple blocks, or parameters for many compartments can 
be listed in one block. 

 
new_compartment name 
 Defines a new compartment called name, but does not start a compartment 

block.  This statement is largely redundant with start_compartment. 
 
* name name 
 Name of the compartment for editing.  This statement is not required 

because the compartment name can also be given with start_compartment.  
This statement gives the name of the current compartment for editing, and 
creates a new compartment if needed. 

 
* surface surface 
compartment name surface surface 
 Name of a bounding surface for this compartment. 
 
* point pos0 ... posdim–1 
compartment name point pos0 ... posdim–1 
 An interior-defining point for this compartment. 
 
* compartment logic compartment 
compartment name compartment logic compartment 
 Logically combines the compartment being defined as it has been defined 

so far with the compartment that is listed in this statement.  The logic 
options are: equal, equalnot, and, andnot, or, ornot, and xor. 

 
* end_compartment 
 End of a block of compartment definitions.  Compartment statements are 

no longer recognized but other simulation statements are. 
 
Statements about reactions 
 
reaction rname reactant1 + reactant2 -> product1 + product2 
reaction rname reactant1 + reactant2 -> product1 + product2 rate 
 This defines a new reaction which is named rname, has a list of reactants, 

a list of products, and rate equal to rate.  If there are no reactants, meaning 
that it is zeroth order, enter ‘0’ as the reactant.  Similarly, if there are no 
products, enter ‘0’ as the sole product.  The rate value is optional.  As 
usual, enter species states in parentheses after the species names; “all” is 
permitted for reactant states, but not for product states. 
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reaction_cmpt cname rname reactant1 + reactant2 -> product1 + product2 
reaction_cmpt cname rname reactant1 + reactant2 -> product1 + product2 rate 
 This is identical to the reaction statement except that this reaction only 

occurs within the compartment cname.  All reaction orders work.  For 
bimolecular reactions, both reactants need to be in the compartment for the 
reaction to occur. 

 
reaction_surface sname rname reactant1 + reactant2 -> product1 + product2 
reaction_surface sname rname reactant1 + reactant2 -> product1 + product2 rate 
 This is identical to the reaction statement except that this reaction only 

occurs on the surface sname.  All reaction orders work.  For bimolecular 
reactions, at least one reactant needs to be bound to the named surface for 
the reaction to occur. 

 
reaction_rate rname rate 
 Sets the rate constant to rate for reaction named rname. 
 
confspread_radius rname rad 
 Defines reaction rname as a conformational spread reaction.  This reaction 

must have two reactants and up to two products.  If it has two products, 
which is the most common case, then the first reactant gets replaced by the 
first product, and the second with the second.  They keep their serial 
numbers and locations.  The reaction domain extends over the radius that 
is listed here (this is effectively a binding radius).  If this is entered, the 
reaction rate constant is interpreted as a first order rate constant. 

 
binding_radius rname rad 
 Sets the binding radius of reaction rname to rad. 
 
reaction_probability rname prob 
 A fixed probability value for unimolecular or bimolecular reactions.  For 

unimolecular reactions, this is the probability of a reaction during one time 
step.  For bimolecular reactions, this is the probability of a reaction 
occurring, given that the reactants are already closer than their binding 
radius.  Here, the default value is 1, which is assumed in all rate 
calculations.  For conformational spread reactions, this value can be used 
to directly enter the reaction probability at each time step, rather than 
letting it be calculated from the rate value.  For regular bimolecular 
reactions, this can be used to adjust the effective reaction activation 
energy, although the theory has not been derived for that yet. 

 
reaction_production rname value 
 Molecule production rate for zeroth order reactions.  Instead of entering 

the reaction rate with reaction_rate, this allows on to enter the 
expectation number of molecules per time step in the entire simulation 
volume. 
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product_placement rname type parameters 
 Placement method and parameters for the products of reaction rname.  

This also affects the binding radius of the reverse reaction, as explained in 
the text.  The type irrev requires no parameters.  Types pgem, pgemmax, 
pgemmaxw, ratio, unbindrad, pgem2, pgemmax2, and ratio2 each require one 
parameter.  Types offset and fixed each require first a product molecule 
name and then a dim-dimensional vector as the parameter list.  If multiple 
products are identical, then this placement instruction will only be applied 
to the first of the identical products.  For this reason, you can also specify 
that this statement applies to the n’th product by entering the product name 
as product_n (e.g. product_2 for the second product).  The default 
placement method for reversible reactions is pgemmaxw (the terminal ‘w’ 
implies that a warning will be issued) with a parameter of 0.2.  While it is 
suggested that placement types be entered with full words, single letter 
codes work as well.  To create a “bounce” type reaction, for simulating 
excluded volume, enter the type as bounce.  In this case, enter one 
parameter.  For most purposes the best parameter is -1, which indicates 
that the reactant edges get separated by the same amount as they used to 
overlap (e.g. consider two reactants each of radius 1, so the binding radius 
is set to 2; then, if the center-to-center distance is found to be 1.6, the 
molecules get separated to make the center-to-center distance equal to 
2.4).  Alternatively, you can use the parameter value to define the new 
separation, which should be larger than the binding radius. 

 
reaction_serialnum rname rule_list 
 Define rules for product molecule serial number assignments during 

reaction rname.  There should be as many rule values as there are products 
for this reaction.  For each product, choose from the following options: 
“new” for a new serial number (the default), “r1” for the serial number of 
the first reactant, “r2” for serial number of the second reactant (for second 
order reactions), “p1” for the serial number of the first product, “p2” for 
the serial number of the second product, etc., and an integer greater than 
zero for that value as the serial number.  The codes can be separated by ‘+’ 
symbols, as in the reaction definition, but this isn’t required.  Some of 
these options can lead to multiple molecules having the same serial 
numbers.  This is allowed, but may lead to unexpected behavior in some 
runtime commands. 

 
reaction_intersurface rname rule_list 
 Define rules to allow bimolecular reaction named rname to operate when 

its reactants are on different surfaces.  In general, there should be as many 
rule values as there are products for this reaction.  For each product choose 
“r1” if it should be placed on the first reactant’s surface or relative to that 
surface, and “r2” if it should be placed on the second reactant’s surface or 
relative to that surface (the relative conditions are for “soln” or “bsoln” 
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state products).  The codes can be separated by ‘+’ symbols, as in the 
reaction definition, but this isn’t required.  To turn off intersurface 
reactions, which is the default behavior, give rule_list as “off”.  To turn 
on intersurface reactions for reactions that have no products, give rule_list 
as “on”. 

 
reaction_log filename rxnname serial_numbers 
 Turns on reaction logging for all occurrences of the reaction rxnname and 

for molecules with serial numbers that are in the serial number list.  The 
logging is sent to the file called filename.  If the file is not stdout, then it 
should be declared with the output_files statement.  Enter rxnname as 
“all” if all reactions should be logged.  Likewise, enter the serial number 
list as “all” if reactions with all molecules should be logged.  In the 
logging file, the output will be a single line of text for each occurrence of 
the reaction with the following items: the current simulation time, the 
name of the reaction, the location of the reaction (2 numbers for 2D, 3 for 
3D), the serial numbers of each reactant, and the serial numbers of each 
product.  If you request logging for a specific serial number, then an entry 
will be created if a molecule with this serial number is either a reactant or 
a product of the reaction (however, if it is the second or higher product, 
then the log entry will be missing the prior product serial numbers because 
these are not recorded as they are generated). 

 
reaction_log_off rxnname serial_numbers 
 Turns off reaction logging for the reaction rxnname and for molecules 

with serial numbers that are listed in the serial number list.  Either or both 
of rxnname and the serial number list can be “all”. 

 
Statements about ports 
 
The statements shown below that are preceded by an asterisk need to be entered within 
port blocks, which start with start_port and end with end_port.  Most of these 
statements can also be entered directly, preceded by the statement port and then the port 
name.  Both forms are shown below. 
 
start_port name 
 Start of port definition block.  The port name may be given with name, or 

it may be given afterwards with the name statement.  If the name has not 
been used yet for a port, then a new port is started.  Between this 
instruction and “end_port”, all lines need to pertain to ports.  Parameters 
of one port can be listed in multiple blocks, or parameters for many ports 
can be listed in one block. 

 
new_port name 
 Defines a new port called name, but does not start a port block.  This 

statement is largely redundant with start_port. 
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* name name 
 Name of the port for editing.  This statement is not required because the 

port name can also be given with start_port.  This statement gives the 
name of the current port for editing, and creates a new port if needed. 

 
* surface surface 
port name surface surface 
 Name of the porting surface for this port. 
 
* face face 
port name face face 
 Face of the surface that is active for porting.  Enter “front” or “back” for 

face. 
 
* end_port 
 End of a block of port definitions.  Port statements are no longer 

recognized but other simulation statements are. 
 
max_port int (optional) 
 Maximum number of ports that may be defined. 
 
 
Statements for lattices 
 
The statements shown below that are preceded by an asterisk need to be entered within 
lattice blocks, which start with start_lattice and end with end_lattice.  Most of these 
statements can also be entered directly, preceded by the statement lattice and then the 
lattice name.  Both forms are shown below. 
 
start_lattice name 
 Start of the lattice block.  The lattice name may be given with name, or it 

may be given afterwards with the name statement.  If the name has not 
been used yet for a lattice, then a new lattice is started.  Between this 
statement and end_lattice, all lines need to pertain to lattices.  Parameters 
of one lattice can be listed in multiple blocks, or parameters for many 
lattices can be listed in one block. 

 
* name name 
 Name of the lattice for editing.  This statement is not required because the 

lattice name can also be given with start_lattice.  This statement gives 
the name of the current lattice for editing, and creates a new lattice if 
needed. 

 
* type type 
 Type of the lattice.  At present, this accepts two type strings, “nsv” and 

“pde”, which stand for next-subvolume method and partial differential 
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equation method, respectively.  However, only the NSV method has been 
implemented, so that’s the only type that should be entered.  This 
statement is optional, with NSV assumed if it is not entered. 

 
* port port 
 Name of the port that the lattice uses to exchange molecules with the 

particle-based simulation. 
 
* boundaries dim pos1 pos2 
* boundaries dim pos1 pos2 type 
 Creates lower and upper boundaries for the lattice region, where dim is the 

dimension that is bounded in this statement, pos1 is the lower bound, and 
pos2 is the upper bound.  In the second form, type is a character that 
represents the boundary type, which may be ‘r’ for reflective or ‘p’ for 
periodic.  This syntax is essentially identical to the boundaries statement 
that is used to define the particle-based simulation volume. 

 
* lengthscale x1 
* lengthscale x1 x2 
* lengthscale x1 x2 x3 
 Specifies the partition spacing within the lattice region of space.  Use the 

first form for 1D systems, the second for 2D systems, and the third for 3D 
systems.  The partition spacing values should be even divisors of the 
lattice dimensions that are given with the boundaries statement. 

 
* species species1 species2 ... 
 List of species that should be used in the lattice region of space.  These 

species need to have been declared previously in the particle region of 
space.  This line may be entered multiple times.  Rather than listing all 
species, the “all” keyword can be used to state that all of the current 
particle-side species should also be used on the lattice side. 

 
* reaction reaction1 reaction2 ... 
* reaction move reaction1 reaction2 ... 
 List of reactions that should be used in the lattice region of space.  These 

reactions need to have been fully defined previously in the particle region 
of space.  Rather than listing all reactions, the keyword “all” can be used 
to state that all of the current particle-side reactions should also be 
functional on the lattice side.  If the keyword “move” is given in the list, 
as in the latter form above, then all subsequent listed reactions are 
“moved” to the lattice side, meaning that they are functional on the lattice 
side but become non-functional on the particle side.  In this case, they are 
still defined on the particle side, but are simply disabled. 

 
* mol nmol name pos0 pos1 … posdim–1 
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 This adds molecules to the starting state of the simulation in the lattice 
region of space.  This statement is essentially identical to the statement 
with the same name that is in the particle portion of the configuration file.  
The lattice regions starts with nmol type name molecules at location pos.  
Each of the dim elements of the position may be a number to give the 
actual position of the molecule or molecules; or the letter ‘u’ to indicate 
that the position for each molecule should be a random value between the 
bounding walls, chosen from a uniform density; or a position range which 
is given as two numbers separated with a hyphen. 

 
* end_lattice 
 End of a block of lattice definitions.  Lattice statements are no longer 

recognized but other simulation statements are. 
 
 
Statements for simulation settings 
 
random_seed int 
 Seed for random number generator.  If this line is not entered, the current 

time is used as a seed, producing different sequences for each run.  (This 
statement was called rand_seed through version 2.28.) 

 
accuracy float 
 A parameter that determines the quantitative accuracy of the simulation, 

on a scale from 0 to 10.  Low values are less accurate but run faster.  
Default value is 10, for maximum accuracy.  Bimolecular reactions are 
only checked for pairs of reactants that are both within the same virtual 
box when accuracy is 0 to 2.99, reactants in nearest neighboring boxes are 
considered as well when accuracy is 3 to 6.99, and reactants in all types of 
neighboring boxes are checked when accuracy is 7 to 10. 

 
molperbox float 
 Virtual boxes are set up initially so the average number of molecules per 

box is no more than this value.  The default value is 5.  boxsize is an 
alternate way of entering comparable information. 

 
boxsize float 
 Rather than using molperbox to specify the sizes of the virtual boxes, 

boxsize can be used to request the width of the boxes.  The actual box 
volumes will be no larger than the volume calculated from the width given 
here. 

 
gauss_table_size int 
 This sets the size of a lookup table that is used to generate Gaussian-

distributed random numbers.  It needs to be an integer power of 2.  The 
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default value is 4096, which should be appropriate for nearly all 
applications. 

 
epsilon float 
 Maximum allowed distance separation between a surface-bound molecule 

and the surface.  The default value, which is extremely small, is good for 
most applications. 

 
margin float 
 The distance inside of a panel edge to which Smoldyn moves surface-

bound molecules that diffuse off of a panel.  The default value, which is 
extremely small, is good for most applications. 

 
neighbor_dist float 
 Maximum distance that surface-bound molecules will jump across space 

to diffuse from one panel to a neighboring panel.  In Smoldyn 2.37 and 
higher versions, the default for this value is extremely small, just large 
enough to prevent round-off error.  It should not need to be changed.  In 
prior versions, the default value was 3 times the maximum rms step length 
of surface-bound molecules, which was necessary due to a different 
surface-bound molecule diffusion algorithm. 
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4.2 Deprecated statements 
 
The following statements are supported for backward compatibility and might be 
removed in future Smoldyn releases. 
 
max_species int 
 This tells Smoldyn to allocate this many molecule species.  As of version 

2.23, new species are allocated as needed. 
 
max_names int 
 Maximum number of molecular species that will be used.  Statement has 

been superseded by max_species, which is now also obsolete. 
 
name name 
 Name of a molecule.  Statement has been superseded by species. 
 
names name1 name2 … namen 
 Names of all of the types of molecules present in the system.  Statement 

has been superseded by species. 
 
max_compartment int 
 Maximum number of compartments that will be defined.  New 

compartments are now allocated as needed. 
 
reaction_permit rname state 
reaction_permit rname state1 state2 
 Allow reaction rname to happen for the specified reactant states, which 

need to be listed in the same order in which the reactants were entered.  
This function has not proven to be useful; instead, it’s best to enter each 
reaction individually, rather than to have some reactions that operate on 
multiple states. 

 
reaction_forbid rname state 
reaction_forbid rname state1 state2 
 Forbid reaction rname to happen for the specified reactant states, which 

need to be listed in the same order in which the reactants were entered.  
Again, this function has not proven to be useful. 

 
pthreads int 
 Sets the number of threads that Smoldyn should run with.  Enter 0 for 

unthreaded operation (the default) or a larger number (including 1) for 
multi-threaded operation.  None of the multi-threaded functions have been 
tested thoroughly, so they may create incorrect results or program 
crashes.  They are also not substantially faster than the unthreaded 
versions of the same functions.  Thus, use of multi-threaded operation is 
not generally recommended. 
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The following reaction statements are for block-style input and are only supported for 
backward compatibility. 
 
start_reaction 
start_reaction order 
 Start of reaction definition.  Between this instruction and “end_reaction”, 

all lines need to pertain to this order of reaction.  It is permissible to list 
reactions of the same order in multiple blocks, provided that only the first 
block includes a max_rxn statement and that sufficient reactions are 
declared with that statement. 

 
order int 
 Order of the reactions being declared (0, 1, or 2). 
 
max_rxn max_rxn 
 Maximum number of reactions that will be declared of the given order. 
 
reactant r0 r1 … rnrxn–1 
reactant name(state) r0 r1 … rnrxn–1 
reactant name1(state1) + name2(state2) r0 r1 … rnrxn–1 
 Declaration of reactants and reaction names for zeroth order, 

unimolecular, and bimolecular reactions, respectively.  The listed 
molecule names are the reactants and the following strings are the 
respective reaction names.  Note that there are spaces before and after the 
‘+’ symbol.  States are optional.  If they are omitted, only the solution 
states are allowed to react, whereas if they are included then only the 
states listed can react.  States may be set to “all”. 

 
permit name(state) r value 
permit name(state) + name(state) r value 
 Set permission of reaction r, for the specified reactants, to value, which 

should be 0 or 1; 0 means the reaction does not happen, 1 means it does.  
The default depends on the states that were entered with the reactant 
statement, if any. 

 
rate r rate 
 Reaction rate constant for reaction called r.  Units for the reaction rate 

constant are (volume)order–1 times inverse time.  These rates are converted 
by the program into probabilities or binding radii.  To enter the 
simulation parameters directly, use rate_internal.  Conformational 
spread reactions are entered with order 2, but this rate constant has units 
of inverse time. 

 
confspread_radius r float 
 Defines reaction r a a conformational spread reaction.  This reaction must 

have two reactants and two products; upon reaction, the first reactant is 



 99 

replaced by the first product, and the second with the second.  The 
reaction domain extends over the radius that is listed here (this is 
effectively a binding radius). 

 
rate_internal r float 
 Internal value for reaction rate information, which can be used to override 

the internal rates that are calculated from the rate entry.  For zeroth 
order reactions, this is the expectation total number of reactions per time 
step; for unimolecular reactions, this is the reaction probability per time 
step for each reactant molecule; and for bimolecular reactions, this is the 
binding radius.  This has no effect for conformational spread reactions. 

 
probability r float 
 A fixed probability value for bimolecular reactions.  The default value is 1, 

which is assumed in all rate calculations.  However, this statement allows 
the user to set a different probability, which is ignored in all rate 
calculations, but can be useful in some situations.  For conformational 
spread reactions, this value can be used to directly enter the reaction 
probability at each time step, rather than letting it be calculated from the 
rate value.  For simple reactions, this can be used to adjust the effective 
reaction activation energy, although the theory has not been derived for 
that yet. 

 
product r name + name +  …  + name 
product r name(state) + name(state) +  …  + name(state) 
 List of products for reaction r.  States for products may be entered, which 

can be “solution”, “fsoln”, “bsoln”, “front”, “back”, “up”, or “down”; 
if no state is given, solution is assumed. 

 
product_param r i 
product_param r p,x,X,r,b,q,y,s float 
product_param r o,f prod_name pos0 pos1… posdim–1 
 Parameters for the initial placement of products of reaction r.  A product 

parameter also affects the binding radius of the reverse reaction.  These 
are explained in section 3.  In the first format, a type of ‘i’ indicates that 
the reverse reaction is ignored for calculations.  The second format uses 
one of the type letters shown: ‘p’ and ‘q’ are geminate rebinding 
probabilities, ‘x’ and ‘y’ are maximum geminate rebinding probabilities, 
‘r’ and ‘s’ are ratios of unbinding to binding radii, and ‘b’ is a fixed 
unbinding radius.  The third format yields products that have a fixed 
relative orientation, which is either randomly rotated with ‘o’, or not 
rotated with ‘f’.  In the absence of better information, a useful default 
parameter type is either ‘x’ or ‘y’, with a value of about 0.2.  ‘X’ is 
identical to ‘x’, and is intended only as an internal code to indicate that 
the user didn’t enter a product_param line, which will yield a default 
value of 0.2 and a warning. 
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end_reaction 
 End of reaction definition.  Reaction instructions are no longer recognized 

but other simulation instructions are. 
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4.2  Runtime commands 
 

Simulation control commands 
 
stop 
 Stop the simulation. 
 
pause 
 This puts the simulation in pause mode.  If opengl graphics are used, 

continuation occurs when the user presses the spacebar.  When graphics 
are not used, the user is told to press enter. 

 
beep 
 The computer beeps when this is reached.  Nothing else is done. 
 
keypress char 
 Send a signal to the graphics manipulation component of the program to 

execute the behavior that would occur when a key is pressed.  For the 
arrows, and shift-arrows, the character should be r for right, l for left, u for 
up, d for down, and the respective upper case characters for the shift-
arrows. 

 
setflag number 
 Sets the global command flag value to number, which can be a floating 

point value.  This is generally used after a conditional command, and is 
then queried by one or more ifflag commands. 

 
setrandseed seed 
 Sets the random number seed to the specified integer value.  If the seed 

listed is less than 0, the current time is used for the seed. 
 
setgraphics type 
 Sets the display graphics to type type.  If graphics were not set up initially, 

using the graphics statement, this command does nothing.  Otherwise, 
options for type are “opengl” or “opengl_good”. 

 
setgraphic_iter timesteps 
 Sets the graphics update interval to timesteps time steps.  This is only 

functional if graphics were set up initially, using the graphics statement. 
 
updategraphics 
 Update the graphics window. 
 
File manipulation commands 
 
overwrite filename 
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 Erases the output file called filename but leaves it open for more writing.  
(In versions 1.77 and earlier, this called another command.) 

 
incrementfile filename 
 A new output file is created based upon the filename.  The first time this is 

called the filename is appended with a “_001”, which is then incremented 
with subsequent calls to “_002”, and so on.  These numbers precede any 
suffix on the filename.  (In versions 1.77 and earlier, this called another 
command.) 

 
Conditional commands 
 
ifflag symbol number command 
 Run command command, depending on the value of the global command 

flag.  Enter symbol as ‘<’ if command should be run if the flag value is 
less than number, as ‘>’ for the flag value greater than number, and as ‘=’ 
for the flag value equal to number. 

 
ifprob value command 
 Run command command with probability value, which should be between 

0 and 1.  If you want to run multiple commands with this probability use 
the setflag and ifflag commands. 

 
ifno species(state) command 
 Run command command if no molecule of type species remains.  The 

molecule state state is optional, with “solution” as a default.  The name 
and/or the state may be “all”. 

 
ifless species(state) num command 
 Run command command if there are fewer than num molecules of type 

species remaining.  The molecule state state is optional, with “solution” as 
a default.  The name and/or the state may be “all”. 

 
ifmore species(state) num command 
 Run command command if there are more than num molecules of type 

species.  The molecule state state is optional, with “solution” as a default.  
The name and/or the state may be “all”. 

 
ifincmpt species(state) char number compartment command 
 Run command command depending on how the number of molecules of 

type species within compartment compartment compares with number.  
Enter char as ‘<’ if command should be run with less than number 
molecules, as ‘>’ for more than number, or as ‘=’ for equal to number.  A 
space is required between this symbol and number.  The molecules’ state 
state is optional, with “solution” as a default.  The species and/or state 
may be “all”. 
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ifchange species(state) char num command 
 Run command command if the number of molecules of type species 

changes (or doesn’t change) relative to the previous time this command 
was called.  The molecule state state is optional, with “solution” as a 
default.  The name and/or the state may be “all”.  Enter char as ‘>’ to 
respond to a difference that is greater than num, ‘<’ to respond to a 
difference that is less than num, ‘=’ to respond to a difference that is 
exactly equal to num, or ‘!’ to respond to a difference that does not equal 
num.  For example, enter char and num as “! 0” to respond to any change 
in molecule numbers, or as “< -10” to respond to any decrease that 
exceeds 10 molecules. 

 
System observation commands 
 
For all of the observation commands, if filename is the last parameter, then it may be 
omitted and results will be output to stdout. 
 
warnescapee species(state) filename 
 Looks for molecules of type species that are outside the system 

boundaries, printing results to filename.  If there are none, nothing is 
printed.  For each molecule that escaped during the last time step, this 
prints a line of text that says where the molecule was, where it is, and 
where it crossed the last surface.  Setting species to “all” allows all 
molecule types to be checked.  This needs to be run at every time step to 
catch all escaping molecules. 

 
echo filename "string" 
 Just prints the text within double quotes to the file, without any terminal 

newline.  If you want a newline, include \n at the end of the string.  The 
quotes need to be plain quotes, not curly quotes. 

 
molcountheader filename 
 This prints one line of display with the word “time” and then the name of 

each molecule species.  This is intended to be used as a header line for the 
molcount, molcountinbox, etc. commands. 

 
molcount filename 
 Each time this command is executed, one line of display is printed to the 

listed file, giving the time and the number of molecules for each molecular 
species.  Molecule states are ignored.  The ordering used is the same as 
was given in the species command.  This command accounts for 
molecules in lattices and their associated ports. 

 
molcountinbox xlow xhigh filename 
molcountinbox xlow xhigh ylow yhigh filename 
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molcountinbox xlow xhigh ylow yhigh zlow zhigh filename 
 Each time this command is executed, one line of display is printed to the 

listed file, giving the time and the number of molecules that are within the 
box that is defined by the low and high parameter, for each molecular 
species.  Molecule states are ignored.  The ordering used is the same as 
was given in the species statement. 

 
molcountincmpt compartment filename 
 Each time this command is executed, one line of display is printed to the 

listed file, giving the time and the number of molecules that are within the 
compartment compartment for each molecular species.  Only solution-
phase molecules are listed.  The ordering used is the same as was given in 
the species statement. 

 
molcountincmpts compartment1 compartment1 … compartmentn  filename 
 Each time this command is executed, one line of display is printed to the 

listed file, giving the time and the number of molecules that are within 
each of the compartments listed, for each molecular species.  Up to 16 
compartments may be listed.  Only solution-phase molecules are reported 
to the output.  The molecule ordering used is the same as was given in the 
species statement. 

 
molcountincmpt2 compartment state filename 
 Identical to molcountincmpt except that this counts molecules that are in 

state state.  Entering state as “all” means that molecules of all states are 
counted.  Note that the surfaces that bound a compartment are included in 
that compartment. 

 
molcountonsurf surface filename 
 Each time this command is executed, one line of display is printed to the 

listed file, giving the time and the number of molecules that are bound to 
the surface surface for each molecular species.  The molecule state is not 
printed.  The ordering used is the same as was given in the species 
statement. 

 
molcountspace species(state) axis low high bins average filename 
molcountspace species(state) axis low high bins low high average filename 
molcountspace species(state) axis low high bins low high low high average filename 
 This command measures a line profile of molecules.  It only counts 

molecules of type species, with an optional state specification, although 
species and/or state can be “all”.  The line profile is along axis number 
axis, which is ‘x’, ‘y’, or ‘z’ (or a number between 0 and the system 
dimensionality minus 1), extends from low to high, and is comprised of 
bins equally spaced bins (i.e. it’s a histogram).  These bins extend exactly 
from low to high, and thus do not count any molecules that are outside this 
range.  For two dimensions, the line width and lateral position are 
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specified with another pair of low and high values; for three dimensions, 
two more pairs of low and high values are required which now specify the 
sides of a rectangular cross-section tube.  The volume investigated 
includes all edges.  To illustrate the sequence of parameters, suppose the 
command is used in a 3-D system to show concentration variation along 
the y-axis.  In this case, axis is 1, the first low and high indicate the ends of 
the measurement range along the y-axis, the next low and high indicate the 
domain on the x-direction, and the third low and high indicate the domain 
on the z-direction.  Set the average input to 0 to not use averaging, in 
which case there is output at every command execution.  Otherwise, this 
only produces an output every average iterations, at which point it outputs 
means that were collected over the preceding iterations.  At each output 
time, the command outputs a single line of text to filename with the time 
followed by the numbers (or average numbers) of the specified molecules 
in each histogram bin.  This command accounts for molecules in lattices, 
but not for molecules in ports. 

 
molcountspecies species(state) filename 
 Prints out a single line of text to filename with time and the number of 

molecules of the listed species that are in state state.  Either or both of 
species and state may be “all”.  If state is not included, solution is 
assumed. 

 
mollistsize listname filename 
 Prints out a single line of text to filename with the total number of 

molecules in the molecule list named listname.  This is allowed to be “all”. 
 
listmols filename 
 This prints out the identity, state, and location of every molecule in the 

system to the listed file name, using a separate line of text for each 
molecule. 

 
listmols2 filename 
 This is very similar to listmols but has a slightly different output format.  

Each line of text is preceded by the “time counter”, which is an integer 
that starts at 1 and is incremented each time the routine is called.  Also, the 
species and state names of molecules are not printed, but instead the 
species and state numbers are printed. 

 
listmols3 species(state) filename 
 This is identical to listmols2 except that it only prints information about 

molecules of type species.  state is optional; species and/or state can be 
“all”. 

 
listmols4 species(state) filename 
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 This is identical to listmols3 except that it accounts for wrap-arounds 
when displaying molecule positions.  In other words, if the x-axis ranges 
from 0 to 10, a molecule starts in the middle at x = 5 and diffuses to the 
right for a full lap, returning to the middle of the system, then its x value is 
printed here as 15, rather than as 5 as it is for listmols3.  state is optional; 
species and/or state can be “all”. 

 
listmolscmpt species(state) cmpt filename 
 This prints out the time counter (see listmols2), species, state, and 

location of every molecule that is within compartment cmpt.  It only prints 
information about molecules of type species.  state is optional; species 
and/or state can be “all”. 

 
molpos species(state) filename 
 This prints out the time and then the positions of all molecules of type 

species on a single line of text, to the listed filename.  state is optional; 
species and/or state can be “all”. 

 
trackmol serno filename 
 Outputs the time and the species, state, location, and inside vs. outside 

compartment status for each compartment of the single molecule with 
serial number serno.  This stops after it finds the first molecule with the 
requested serial number. 

 
molmoments species(state) filename 
 This prints out the positional moments of the molecule type given to the 

listed file name.  All the moments are printed on a single line of text; they 
are the number of molecules, the mean position vector (dim values), and 
the variances on each axis and combination of axes (dim2 values).  state is 
optional; neither species nor state can be “all”. 

 
savesim filename 
 This writes the complete state of the current system to the listed file name, 

in a format that can be loaded in later as a configuration file.  Note that 
minor file editing is often desirable before simulating a file saved in this 
manner.  In particular, the saved file will declare its own name as an 
output file name, which will erase the configuration file. 

 
meansqrdisp species(state) dim filename 
 This function is used to measure mean square displacements (diffusion 

rates) of molecules of type species, along dimension dim (‘x’, ‘y’, or ‘z’, 
or 0, 1, or 2) printing the results to filename.  When it is first invoked, it 
records the positions of all molecules of type species.  Then, and every 
subsequent time it is called, it compares the current positions of all 
molecules that still exist to the old ones, calculates the average squared 
displacement (〈r2〉), and prints the time and that number to a single line in 
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the output file.  If dim is “all”, this sums the mean square displacement for 
all dimensions, otherwise dim should be a dimension number.  As of 
version 1.73, this accounts for periodic boundaries.  state is optional; 
neither species nor state can be “all”.  As of version 1.84, this prints out 
three numbers in each line: time, 〈r2〉, and 〈r4〉.  This command does not 
work if multiple molecules have the same serial number (which can only 
happen if you use the reaction_serialnum statement). 

 
meansqrdisp2 species(state) dim start report max_mol max_moment filename 
 This function is an expanded version of meansqrdisp.  As above, it 

measures mean square displacements of molecules of type species, along 
dimension dim (‘x’, ‘y’, or ‘z’, or 0, 1, or 2), and prints the results to 
filename.  The start and report arguments control when this command 
starts tracking molecules and when it reports their mean square 
displacements, respectively.  For start, enter ‘i’ to track molecules that 
exist when the command is initially invoked, enter ‘c’ to track those that 
are created after the first call, and enter ‘a’ (all) to track both sets of 
molecules.  For report, enter ‘e’ to report on every molecule that is being 
tracked, or ‘r’ to report on only those that reacted since the command was 
last called.  In this latter case, the position that is used for a reacted 
molecule is its most recently tracked position, since it no longer exists.  
For example, if you want to see how far molecules diffuse between their 
creation in one reaction and their destruction in another reaction, set start 
to ‘c’ and report to ‘r’.  Or, set start to ‘i’ and report to ‘e’ for this 
function to be identical to meansqrdisp.  It can track up to max_mol 
molecules.  This function prints out the time and then results for all 
moments, even and odd, from 〈r0〉 (the number of molecules being 
reported on) to 〈rmax_moment〉.  This command accounts for periodic 
boundaries.  state is optional; neither species nor state can be “all”.  This 
command does not work if multiple molecules have the same serial 
number (which can only happen if you use the reaction_serialnum 
statement). 

 
meansqrdisp3 species(state) dim start report max_mol change filename command 
 This function is quite similar to meansqrdisp and meansqrdisp2.  It 

measures mean square displacements of molecules of type species, along 
dimension dim (‘x’, ‘y’, or ‘z’, or 0, 1, or 2).  Then, this function divides 
these values by the molecules’ ages to compute effective diffusion 
coefficients and prints the results to filename.  The effective diffusion 
coefficient average is weighted using the molecule ages, so that old 
molecules have proportionately greater weight in the average than young 
molecules.  The start and report arguments control when this command 
starts tracking molecules and when it reports their mean square 
displacements, respectively.  For start, enter ‘i’ to track molecules that 
exist when the command is initially invoked, enter ‘c’ to track those that 
are created after the first call, and enter ‘a’ (all) to track both sets of 
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molecules.  For report, enter ‘e’ to report on every molecule that is being 
tracked, or ‘r’ to report on only those that reacted since the command was 
last called.  In this latter case, the position that is used for a reacted 
molecule is its most recently tracked position, since it no longer exists.  It 
can track up to max_mol molecules.  This function prints out the time, the 
number of molecules reported on, and the effective diffusion coefficient.  
Note that the first command run will always output an effective diffusion 
coefficient of NaN (or #1.IND on Windows systems) due to a 0/0 division 
error arising from 0 displacement divided by 0 time difference.  If the 
effective diffusion coefficient changed less than change since the last time 
this function was executed, then the command command is run (e.g. if 
change is 0.01 then a fractional diffusion coefficient change of 1% or less 
will cause command to be run).  See the example file called 
meansqrdisp3.txt.  This command accounts for periodic boundaries.  The 
species cannot be “all”.  The state is optional.  If the state is “all”, then 
molecules for all states of this species must be stored in the same molecule 
list.  No warning is issued if this is not the case, but some molecules 
simply won’t be counted.  This command does not work if multiple 
molecules have the same serial number (which can only happen if you use 
the reaction_serialnum statement). 

 
residencetime species(state) start report summary_out list_out max_mol filename 
 This function computes residence times of individual molecules of type 

species, thus showing how long they have existed in the system.  As with 
meansqrdisp2 and meansqrdisp3, the start and report arguments control 
when this command starts tracking molecules and when it reports their 
residence times, respectively.  For start, enter ‘i’ to track molecules that 
exist when the command is initially invoked, enter ‘c’ to track those that 
are created after the first call, and enter ‘a’ (all) to track both sets of 
molecules.  For report, enter ‘e’ to report on every molecule that is being 
tracked, or ‘r’ to report on only those that reacted since the command was 
last called.  It can track up to max_mol molecules.  This function needs to 
be invoked at every time step so that molecules can be tracked accurately.  
However, output may not be wanted at every time step, so set 
summary_out to the number of invocations between when this should print 
a summary output, with the time number of molecules, and mean 
residence time, and set list_out to the number of invocations between 
when this should print a list output, with a list of all molecules with their 
IDs and their current ages.  In both cases, set values to 0 or less to not 
have this type of output.  state is optional; neither species nor state can be 
“all”.  See the residencetime.txt example file.  This command does not 
work if multiple molecules have the same serial number (which can only 
happen if you use the reaction_serialnum statement). 

 
diagnostics type 
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 Displays diagnostics about various parts of the data structures to the 
screen.  These are identical to those that are displayed at program 
initialization, but for later times.  The options for the type word are: 
“simulation”, “wall”, “molecule”, “surface”, “command”, “box”, 
“reaction”, “compartment”, “port”, “check”, and “all”. 

 
executiontime filename 
 Prints a single line of text with the current simulation time and the number 

of seconds of real time that the simulation has taken to execute since the 
simulation was started. 

 
printLattice filename 
 Displays diagnostics about all lattices. 
 
writeVTK filepath/filename 
 Outputs VTK format data for viewing with applications such as Visit or 

Paraview.  This creates a stack of files in the working directory, or 
somewhere else depending on the filepath, for which the names start with 
filenameLattice00_00001.vtu and filenameMolecules00001.vtu, where 
filename is the entered file name.  The filepath directory needs to have 
been created beforehand.  In contrast to most filenames, this path and 
name should not be declared with the “output_files” statement.  The 
filename numbers are incremented for each snapshot. 

 
System manipulation commands 
 
set statement 
 This command lets you use essentially any statement that can be entered in 

a configuration file.  The statement can, for example, create new reactions, 
add surfaces, change rate constants, etc.  It has not been fully debugged. 

 
pointsource species num pos0 pos1 … posdim 
 Creates num new molecules of type species and at location pos.  Molecule 

states are set to solution. 
 
volumesource species num pos0,low pos0,high pos1,low pos1,high … posdim,high 
 Creates num new molecules of type species and within the location 

bounded by poslow and poshigh.  Molecule states are set to solution. 
 
movesurfacemol species(state) prob surface1:panel1 surface2:panel2 [state2] 
 Moves molecules of type species and state state, and which are bound to 

panel1 of surface1, to panel2 of surface2 with probability prob.  If entered, 
the new molecular state becomes state2, which may be any state including 
fsoln or bsoln; otherwise the molecule state is unchanged.  The new 
molecule location is at a random location on panel2 (which contrasts the 
behavior of the jump statement).  Either or both of panel1 and panel2 can 
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be “all” for all panels of the respective surface.  Also, the species and/or 
the state may be “all”. 

 
killmol species(state) 
 Kills all molecules of type species.  state is optional; species and/or state 

may be “all”. 
 
killmolprob species(state) probability 
 Kills some molecules of type species; the probability of a molecule being 

killed is probability (between 0 and 1).  state is optional; species and/or 
state may be “all”. 

 
killmolinsphere species(state) surface 
 Kill all molecules of type species that are in any sphere that is a panel of 

surface surface.  If surface is “all” then every surface is scanned.  state is 
optional; species and/or state may be “all”. 

 
killmolincmpt species(state) compartment 
 Kill all molecules of type species that are in compartment compartment.  

state is optional; species and/or state may be “all”. 
 
killmoloutsidesystem species(state) 
 Kill all molecules of type species that are outside of the system 

boundaries.  state is optional; species and/or state may be “all”. 
 
fixmolcount species num 
 Counts the number of solution-phase molecules of type species.  If this 

count is more than num, then molecules of this type, chosen at random, are 
removed until num is reached.  Otherwise, molecules are added to random 
positions in the system to achieve a total count of num.  This function 
considers the entire system volume. 

 
fixmolcountrange species low_num high_num 
 Exactly like fixmolcount, except that the molecule count is unchanged if it 

is between low_num and high_num, and is otherwise modified to bring it 
to within the range. 

 
fixmolcountonsurf species(state) num surface 
 Counts the number of surface-bound molecules of type species and state 

state.  If this count is more than num, then molecules of this type, chosen 
at random, are removed until num is reached.  Otherwise, molecules with 
the proper state are added to random positions on the surface to achieve a 
total count of num. 

 
fixmolcountrangeonsurf species(state) low_num high_num surface 
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 Exactly like fixmolcountonsurf, except that the molecule count is 
unchanged if it is between low_num and high_num, and is otherwise 
modified to bring it to within the range. 

 
fixmolcountincmpt species num compartment 
 Counts the number of solution-phase molecules of type species and in 

compartment compartment.  If this count is more than num, then 
molecules of this type, chosen at random, are removed until num is 
reached.  Otherwise, molecules are added to random positions in the 
compartment to achieve a total count of num. 

 
fixmolcountrangeincmpt species low_num high_num compartment 
 Exactly like fixmolcountincmpt, except that the molecule count is 

unchanged if it is between low_num and high_num, and is otherwise 
modified to bring it to within the range. 

 
equilmol species1(state1) species2(state2) prob 
 Equilibrate these molecules.  All molecules of type species1 and species2 

will be randomly replaced with one of the two types, where type species2 
has probability prob.  state1 and state2 are optional; defaults are “solution”.  
Neither species nor states may be “all”. 

 
replacexyzmol species(state) pos0 pos1 … posdim–1 
 If there is a non-diffusing molecule at exactly position pos, it is replaced 

with one of type species.  This command stops after one molecule is 
found.  state is optional and may not be “all”; default is solution. 

 
replacevolmol species1(state1) species2(state2) frac pos0,low pos0,high pos1,low pos1,high … 

posdim–1,high 
 Fraction frac molecules of type species1 in the volume bounded by poslow, 

poshigh are replaced with ones of type species2.  States are optional and are 
solution by default; neither species nor states may be “all”. 

 
replacecmptmol species1(state1) species2(state2) frac compartment 
 Fraction frac molecules of type species1 in the compartment named 

compartment are replaced with ones of type species2.  States are optional 
and are solution by default; neither species nor states may be “all”. 

 
modulatemol species1(state1) species2(state2) freq shift 
 Modulates molecules of types species1 and species2, just like equilmol, but 

with a variable probability.  Every time this command executes, any of the 
two types of molecules in the system are replaced with a molecule of type 
species1 with probability cos(freq*t+shift), where t is the simulation time, 
and otherwise with a molecule of type species2.  States are optional and 
are solution by default; neither species nor states may be “all”. 
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react1 species(state) rxn 
 All molecules of type species are instantly reacted, resulting in the 

products and product placements given by the unimolecular reaction 
named rxn.  Note that species does not have to be the normal reactant for 
reaction rxn.  The state is optional; species and/or state may be “all”. 

 
setrateint rxn rate 
 Sets the internal reaction rate of the reaction named rxn to rate.  See the 

description above for rate_internal for the meanings of rate for the 
different reaction orders. 

 
shufflemollist listname 
 Randomly shuffles the sequence of molecules in the molecule list called 

listname.  Enter “all” for all lists.  This is useful for systems that are 
especially ordered or for simulations with unusually long time steps, 
because these situations may make simulation results depend on the 
molecule list sequences. 

 
shufflereactions reactant1 reactant2 
 Randomly shuffles the sequence of bimolecular reactions that reactant 

species reactant1 and reactant2 can undergo (all states are indexed 
together).  Either or both or reactant1 and reactant2 can be “all”.  

 
Deleted, starting with Smoldyn 2.19: 
setsurfcoeff surface_name species state1 state2 rate 
 Sets the rate coefficient for the conversion of species from state1 to state2 

at surface surface_name. 
 
settimestep dt 
 Changes the simulation time step to dt.  This changes the diffusion step 

lengths, reaction binding and unbinding radii, and surface action 
probabilities.  Caution should be used if the time step is increased to 
longer than the original value because no checks are made to ensure that 
the simulation will still yield accurate results. 

 
porttransport port1 port2 
 Transports molecules from the output buffer of port1 to the input of port2.  

These may be the same ports. 
 
excludebox xlo xhi 
excludebox xlo xhi ylo yhi 
excludebox xlo xhi ylo yhi zlo zhi 
 This keeps all molecules from entering a rectanguloid box within the 

system volume.  Use the first form for one dimension, the second for two 
dimensions, and the third for three dimensions.  Molecules that start 
within the box can stay there, but any molecule that tries to diffuse into the 
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box is returned to its location at the previous time step.  This command 
needs to be run at every time step to work properly. 

 
excludesphere x rad 
excludesphere x y rad 
excludesphere x y z rad 
 This keeps all molecules from entering a sphere within the system volume.  

Use the first form for one dimension, the second for two dimensions, and 
the third for three dimensions; the coordinates given are the sphere center 
and rad is the sphere radius.  Molecules that start within the sphere can 
stay there, but any molecule that tries to diffuse into the sphere is returned 
to its location at the previous time step.  This command needs to be run at 
every time step to work properly. 

 
includeecoli 
 An E. coli shape is defined as a cylinder with hemispherical endcaps, 

where the long axis of the bacterium extends the length of the x-axis 
within the system walls and the radius of both the cylinder and the 
endcaps is half the spacing between the walls that bound the y-axis.  This 
command moves any molecule that diffuses out of the E. coli shape back 
to its location at the previous time step, or to the nearest surface of the E. 
coli if it was outside at the previous time step as well.  This command does 
not need to be run at every time step to work properly.  This only works 
with a 3 dimensional system. 

 
setreactionratemolcount rxn c0 c1 species1(state1) c2 species2(state2) ... 
 This sets the rate of the reaction named rxn to: c0, plus c1 times the 

number of molecules of species1 and state1, plus c2 times the number of 
molecules of species2 and state2, plus any additional coefficients and 
species that are listed here.  Species and/or states may be “all” and 
wildcards are permitted.  If the reaction rate is computed to be a negative 
value, it is set to zero instead (and no warning is issued). 

 
expandsystem expandx expandy expandz 
 Expand, or contract, everything in system, which includes molecule 

locations and surfaces, about the center of the system.  Expands by 
expandx along the x-coordinate, by expandy along the y-coordinate, and 
by expandz along the z-coordinate.  Enter as many numbers as there are 
dimensions.  Each number should be 1 for no change, a number larger 
than 1 for expansion and a number smaller than 1 for contraction.  
Negative numbers perform system inversion.  This command can be used, 
for example, to mimic lengthwise or diameter growth of a cell.  Warning: 
isotropic expansion or contraction, in which all three expansion values are 
equal, generally works well, with no unintentional transfer of molecules 
across surfaces.  However, anisotropic expansion or contraction would 
normally cause some of Smoldyn’s panel shapes to become distorted, 



 114 

including spheres, hemispheres, cylinders, and disks.  Smoldyn does not 
support this, so these panels are expanded but not distorted.  In the 
process, molecules often cross the surfaces unintentionally and need to be 
dealt with separately (e.g. killed off).  See the expandsystem.txt example 
file. 
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5.  Copyright and Citation 
 
If you use Smoldyn to a significant extent, then I would appreciate citations to the 

research papers that describe the program, as appropriate.  These papers are: 
 

Description of the Smoldyn program 
• Andrews, Steven S., Nathan J. Addy, Roger Brent, and Adam P. Arkin “Detailed 
simulations of cell biology with Smoldyn 2.1” PLoS Comp. Biol. 6:e1000705, 2010. 
 
How to use Smoldyn 
• Andrews, Steven S. “Smoldyn User’s Manual” http://www.smoldyn.org, 2011. 
• Andrews, Steven S. “Spatial and stochastic cellular modeling with the Smoldyn 
simulator” Methods for Molecular Biology, 804:519-542, 2012. 
 
Description of Smoldyn algorithms 
• Andrews, Steven S. and Dennis Bray “Stochastic simulation of chemical reactions with 
spatial resolution and single molecule detail” Phys. Biol. 1:137-151, 2004. 
• Andrews, Steven S. “Accurate particle-based simulation of adsorption, desorption, and 
partial transmission” Phys. Biol. 6:046015, 2009. 

 
Nearly all of the core Smoldyn program was written by myself (Steve Andrews), 

with the exceptions being a few short routines that were copied from Numerical Recipes 
in C (Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1988), 
which are acknowledged where appropriate.  The compiled version of Smoldyn, the 
components of the source code that are not copyrighted by others, and this documentation 
are copyrighted by myself.  It is distributed under the terms of the Lesser Gnu General 
Public License (LGPL).  No warranty is made for the performance or suitability of any 
portion of Smoldyn. 

I expect to maintain a working copy of the program indefinitely.  The download site 
for Smoldyn is http://www.smoldyn.org, where the program may be obtained for free.  If 
improvements are made to the code or bugs are fixed, then I would appreciate a copy of 
the modified source code.  If you find any bugs in the code, please let me know!  My e-
mail address is steven.s.andrews@gmail.com. 

Following are the text of the LGPL and the GPL. 
 

GNU LESSER GENERAL PUBLIC LICENSE 
Version 3, 29 June 2007 

 
Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not 

allowed. 
This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional 

permissions listed below. 
0. Additional Definitions. As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU 

General Public License. "The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below. An "Application" 
is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is 
deemed a mode of using an interface provided by the Library. A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular 
version of the Library with which the Combined Work was made is also called the "Linked Version". The "Minimal Corresponding Source" for a Combined Work means the 
Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and 
not on the Linked Version. The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and 
utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work. 

1. Exception to Section 3 of the GNU GPL. You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL. 
2. Conveying Modified Versions. If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses 

the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version: a) under this License, provided that you make 
a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains 
meaningful, or b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy. 
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 3. Object Code Incorporating Material from Library Header Files. The object code form of an Application may incorporate material from a header file that is part of the 
Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts 
and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following: a) Give prominent notice with each copy of the 
object code that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the object code with a copy of the GNU GPL and this 
license document. 

4. Combined Works. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library 
contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following: a) Give prominent notice with each copy of 
the Combined Work that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the Combined Work with a copy of the GNU GPL 
and this license document. c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well 
as a reference directing the user to the copies of the GNU GPL and this license document. d) Do one of the following: 0) Convey the Minimal Corresponding Source under the 
terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a 
modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source. 1) 
Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's 
computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. e) Provide Installation Information, 
but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install 
and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 
4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the 
Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.) 

5. Combined Libraries. You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not 
Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following: a) Accompany the combined 
library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License. b) Give prominent notice 
with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 

6. Revised Versions of the GNU Lesser General Public License. The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public 
License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given 
a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" 
applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the 
Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public 
License ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General 
Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library. 

 
 

GNU GENERAL PUBLIC LICENSE 
Version 3, 29 June 2007 

 
Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not 

allowed. 
Preamble. The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are 

designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change 
all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our 
software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to 
freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), 
that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. 
To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you 
distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or 
for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show 
them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this 
License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this 
free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to 
authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do 
so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for 
individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such 
problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. 
Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, 
but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that 
patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. 

TERMS AND CONDITIONS 
0. Definitions. “This License” refers to version 3 of the GNU General Public License. “Copyright” also means copyright-like laws that apply to other kinds of works, such as 

semiconductor masks. “The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be 
individuals or organizations. To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an 
exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work. A “covered work” means either the unmodified 
Program or a work based on the Program. To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for 
infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without 
modification), making available to the public, and in some countries other activities as well. To “convey” a work means any kind of propagation that enables other parties to 
make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays 
“Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user 
that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this 
License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 

1. Source Code. The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work. A 
“Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular 
programming language, one that is widely used among developers working in that language. The “System Libraries” of an executable work include anything, other than the 
work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of 
the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, 
in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a 
compiler used to produce the work, or an object code interpreter used to run it. The “Corresponding Source” for a work in object code form means all the source code needed to 
generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's 
System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. 
For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked 
subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. 
The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a 
work in source code form is that same work. 

2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This 
License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, 
given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and 
propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole 
purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License 
in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your 
direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other 
circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 

3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law 
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. 
When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising 
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rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the 
work's users, your or third parties' legal rights to forbid circumvention of technological measures. 

4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and 
appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 
apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no 
price for each copy that you convey, and you may offer support or warranty protection for a fee. 

5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under 
the terms of section 4, provided that you also meet all of these conditions: (a) The work must carry prominent notices stating that you modified it, and giving a relevant date. 
(b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in 
section 4 to “keep intact all notices”. (c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will 
therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no 
permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. (d) If the work has interactive user interfaces, 
each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them 
do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined 
with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not 
used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this 
License to apply to the other parts of the aggregate. 

6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable 
Corresponding Source under the terms of this License, in one of these ways: (a) Convey the object code in, or embodied in, a physical product (including a physical distribution 
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. (b) Convey the object code in, or 
embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer 
spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the 
product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically 
performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. (c) Convey individual copies of the object code with a 
copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code 
with such an offer, in accord with subsection 6b. (d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to 
the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object 
code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent 
copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the 
Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. (e) Convey the object code using peer-to-peer 
transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under 
subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying 
the object code work. A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or 
household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be 
resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of 
the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless 
of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. “Installation 
Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work 
in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is 
in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a 
User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a 
fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But 
this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been 
installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work 
that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the 
modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding 
Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to 
the public in source code form), and must require no special password or key for unpacking, reading or copying. 

7. Additional Terms. “Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional 
permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If 
additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License 
without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from 
any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on 
material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material 
you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: (a) Disclaiming warranty or 
limiting liability differently from the terms of sections 15 and 16 of this License; or (b) Requiring preservation of specified reasonable legal notices or author attributions in that 
material or in the Appropriate Legal Notices displayed by works containing it; or (c) Prohibiting misrepresentation of the origin of that material, or requiring that modified 
versions of such material be marked in reasonable ways as different from the original version; or (d) Limiting the use for publicity purposes of names of licensors or authors of 
the material; or (e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or (f) Requiring indemnification of licensors and 
authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these 
contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered “further restrictions” within the meaning of 
section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may 
remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material 
governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in 
accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the 
applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements 
apply either way. 

8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and 
will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation 
of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your 
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license 
from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have 
received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of 
your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and 
not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 

9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered 
work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License 
grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a 
covered work, you indicate your acceptance of this License to do so. 

10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, 
modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An “entity transaction” is a 
transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work 
results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest 
had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or 
can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not 
impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a 
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 

11. Patents. A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called 
the contributor's “contributor version”. A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or 
hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would 
be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a 
manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential 
patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a 
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“patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to 
sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you 
convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the 
terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so 
available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this 
License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the 
covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to 
believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a 
patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent 
license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is “discriminatory” if it does not include within the 
scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not 
convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party 
based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a 
discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection 
with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. 
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under 
applicable patent law. 

12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do 
not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other 
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from 
those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 

13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a 
work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will 
continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a 
network will apply to the combination as such. 

14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new 
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If 
the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and 
conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU 
General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of 
the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later 
license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your 
choosing to follow a later version. 

15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE 
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM 
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 

16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY 
OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT 
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF 
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGES. 

17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, 
reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption 
of liability accompanies a copy of the Program in return for a fee. 
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