
1Developing Exploratory Testing Skills Copyright Kaner © 2006

Developing Skills as an Exploratory Tester
Quality Assurance Institute
November 2006

Cem Kaner, J.D., Ph.D.
Professor of Software Engineering
Florida Institute of Technology
Copyright (c) Cem Kaner 2006
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

These notes are partially based on research that was supported by NSF Grant EIA-0113539 ITR/SY+PE:
"Improving the Education of Software Testers." Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

Much of the material in these slides was provided or inspired by James Bach, Michael Bolton, Jonathan Bach,
and Mike Kelly. Andy Tinkham contributed significantly to the planning and design of this tutorial.

2Developing Exploratory Testing Skills Copyright Kaner © 2006

Session Blurb

Software testing is an empirical, technical investigation that we
conduct to provide stakeholders with information about the
quality of the product or service under test.
Exploratory testing is a style of software testing that emphasizes
the personal freedom and responsibility of the individual tester
to continually optimize the value of her work by treating test-
related learning, test design and test execution as mutually
supportive activities that run in parallel throughout the project.
My goal in this tutorial is to help you identify and develop some
of the skills involved in effective exploratory testing.

3Developing Exploratory Testing Skills Copyright Kaner © 2006

Today’s Agenda

• What do you think exploratory testing is?
• What do you see as the advantages of exploratory testing?
• What do you see as disadvantages of exploratory testing?
• What do you see as the risks of exploratory testing?
• What skills do you think are important for exploratory testing?

My intent is to focus today’s tutorial on the issues you raise,
rather than following a preset patter.
• I have a context-setting introduction, and then we’ll revisit the

questions above.
• I really want to do some work on concept mapping as a support

for modeling
• Beyond that, the slides that follow are a support structure for

the agenda we choose, not the agenda we will follow.

4Developing Exploratory Testing Skills Copyright Kaner © 2006

Overview

“REQUIRED” MATERIAL
• A crisis in software testing
• Updating the practice of

software testing
• Overview of Exploratory

testing
• Analyzing a sample

requirements specification
• Using the Satisfice Heuristic

Test Strategy Model to guide
analysis

• Using and developing models
in software testing

THE PREPARED SEQUENCE
• From information to test: Using

quicktests
• The challenge of relevance
• An overview of test techniques
• Scenario testing: Using stories as

a vehicle for achieving relevance

THERE’S PLENTY OF
ADDITIONAL MATERIAL ON
THE DISK

5Developing Exploratory Testing Skills Copyright Kaner © 2006

The current crisis in
software testing

6Developing Exploratory Testing Skills Copyright Kaner © 2006

A crisis in software testing?
• NIST

The Economic Impacts of Inadequate Infrastructure for Software
Testing www.nist.gov/director/prog-ofc/report02-3.pdf

• Hmmm …
– Software defects cost the economy a lot of money
– Let’s blame that on bad testing

> To use these numbers for testing, we ignore the other (non-
testing) factors (e.g. organizational) that lead to product
release with known defects or non-surprising defects

– I suppose we could use that as a basis for declaring a testing
“crisis” and selling lots of test consulting services

That’s not the “crisis” I’m talking about today.

7Developing Exploratory Testing Skills Copyright Kaner © 2006

Here’s the crisis on my radar
• We have gotten much better at

– testing
– documenting the testing
– reporting status of the testing

of small programs.

• But as the size of programs grows geometrically
– and the efficiency of testers grows maybe linearly

> we impact less of the program every year.

System-level testing will become irrelevant, because
we will impact so little of the product.

8Developing Exploratory Testing Skills Copyright Kaner © 2006

The traditional approach

Define system level software testing as
• functional,
• focusing on verification of the

program’s features,
• preferably against an authoritative

specification.

9Developing Exploratory Testing Skills Copyright Kaner © 2006

The traditional approach is

• Easy to understand.
• Easy to translate into low-skill work and routine automation.
• NOT what you want as your career path.

AND

• Maybe not so effective
• Maybe outdated

10Developing Exploratory Testing Skills Copyright Kaner © 2006

An underlying crisis

Most of today’s software testing techniques were developed in
the 1970’s.
• Back then, long programs were 10,000 statements
• Code was often readable COBOL
• An enterprising tester could read the entire program, identify

all the variables and most of the relevant combinations.

11Developing Exploratory Testing Skills Copyright Kaner © 2006

An underlying crisis
We have not experienced revolutions in testing practice. We are
not much more productive today than we were three decades
ago:
• Regression test automation offers small, incremental

improvements in productivity
• High-volume test automation is still rarely done and is poorly

understood by the general (e.g. academic) testing community
• Test case documentation is as overblown as ever, with a new

generation of semi-automated “test-case management”
bureaucracy to slow us down further.

• Look at the National Defense Industrial Association's Systems
Engineering Workshop on the Top 5 Software Issues, Washington,
D.C., August 2006.
https://acc.dau.mil/GetAttachment.aspx?id=119000&pname=file&aid=24945

12Developing Exploratory Testing Skills Copyright Kaner © 2006

Another Traditional Focus of Testing:

Find Software Errors
But an error:
• May or may not be a coding error
• May or may not be a functional error

(This was accepted by most good testing practitioners that I
knew as far back as 1983.)

The tester who looks only for coding errors
misses all of the other ways in which the

program is of lower quality than it should be.

13Developing Exploratory Testing Skills Copyright Kaner © 2006

A slightly less
traditional view

14Developing Exploratory Testing Skills Copyright Kaner © 2006

So what does the future look like?

• Five trends seem obvious to me:

– Context-awareness in test planning (“no best practices”)

– Test-driven programming or other extensive unit testing

– Test design readily derived from state models (or other
automatable models)

– High-volume test automation

–Exploratory testing

• I think these are important but insufficient

– These are reactions / extensions to 1980’s style testing

– The next generation (reactions / extensions to modern practice
instead of 1980’s practice) will develop new paradigms. Our task is
to update their foundations education, to help them get past where
we are stuck.

15Developing Exploratory Testing Skills Copyright Kaner © 2006

Basic Background -- Quality and errors

Under this view:
• Quality is inherently subjective

– The value differs from person to person and therefore so
does the quality

Quality is value to some person
-- Jerry Weinberg

16Developing Exploratory Testing Skills Copyright Kaner © 2006

Software error

An attribute of a software product
• that reduces its value to a favored stakeholder
• or increases its value to a disfavored stakeholder
• without a sufficiently large countervailing benefit.

• In other words:
“A bug is something that bugs somebody.”

James Bach

17Developing Exploratory Testing Skills Copyright Kaner © 2006

Reject the “Not My Job” definition of testing
• Testing is not only about finding errors in code.
• Testing is not only about doing tasks that some programmer can

imagine for you or meeting the objectives that some programmer
wishes on you

– unless that programmer is your primary stakeholder
• Anything that threatens value of a product to a stakeholder with

influence threatens quality in a way important to the project.

– You might be called on to investigate any of those possible
threats, including security, performance, usability, suitability
for intended purpose, etc.

Tasks beyond your personal skill set can still be within your scope.

18Developing Exploratory Testing Skills Copyright Kaner © 2006

Software testing

• is an empirical
• technical
• investigation
• conducted to provide stakeholders
• with information
• about the quality
• of the product or service under test

19Developing Exploratory Testing Skills Copyright Kaner © 2006

It’s kind of like CSI
MANY tools, procedures, MANY tools, procedures,
sources of evidence.sources of evidence.

• Tools and procedures
don't define an
investigation or its
goals.

• There is too much
evidence to test, tools
are often expensive, so
investigators must
exercise judgment.

• The investigator must
pick what to study, and
how, in order to reveal
the most needed
information.

20Developing Exploratory Testing Skills Copyright Kaner © 2006

Defining Testing

Empirical
• “derived from experiment and observation rather than

theory.”

technical
• We use technical means, including experimentation, logic,

mathematics, models, tools (testing-support programs),
and tools (measuring instruments, event generators, etc.)

investigation
• An organized and thorough search for information.
• This is an active process of inquiry. We ask hard questions

(aka run hard test cases) and look carefully at the results.

21Developing Exploratory Testing Skills Copyright Kaner © 2006

Defining Testing
Empirical technical investigation …

that we conduct to provide stakeholders
• Someone who has a vested interest in the success of the product
• Someone who has a vested interest in the success of the testing

effort
• A “stakeholder with influence” is someone who has authority to

influence the design or marketing of the product.

with information
• The information of interest is often about the presence (or

absence) of bugs.
• Quality-revealing information apart from specific bugs may be

more vital to a particular stakeholder at a particular time

22Developing Exploratory Testing Skills Copyright Kaner © 2006

Examples of Information Objectives
• Find important bugs, to get them fixed
• Assess the quality of the product
• Help managers make release decisions
• Block premature product releases
• Help predict and control product support costs
• Check interoperability with other products
• Find safe scenarios for use of the product
• Assess conformance to specifications
• Certify the product meets a particular standard
• Ensure the testing process meets accountability

standards
• Minimize the risk of safety-related lawsuits
• Help clients improve product quality & testability
• Help clients improve their processes
• Evaluate the product for a third party

Different
objectives

require different
testing

strategies and
will yield

different tests,
different test
documentation
and different
test results.

23Developing Exploratory Testing Skills Copyright Kaner © 2006

Defining Testing
Empirical technical investigation that we conduct to
provide stakeholders with information…

about the quality
• Quality is value to some person. (Weinberg’s definition)

– Note that this is inherently subjective. The quality of an item
differs from person to person.

– Anything that reduces the value of the product to a
stakeholder is a quality-related issue.

– Testers look for different things, for different stakeholders

24Developing Exploratory Testing Skills Copyright Kaner © 2006

Defining Testing

Empirical technical investigation of the product under
test that we conduct to provide stakeholders with
information about the quality …

of the product or service under test
• The product includes the data, the documentation, the

hardware, whatever the customer gets. If it doesn’t all work
together, it doesn’t work.

• The product is a solution space to a set of problems. If it
doesn’t solve the problem(s), it doesn’t work.

25Developing Exploratory Testing Skills Copyright Kaner © 2006

Testing is always done within a context
• Testing is done in the face of harsh constraints

– Complete testing is impossible
– The project schedule and budget are finite
– The skills of the testing group are limited

• Testing is done on behalf of stakeholders
– Project manager, marketing manager, customer,

programmer, competitor, attorney
– Which stakeholder(s) this time?

> What information are they interested in?
> What risks are they trying to mitigate?

• Testing might be done before, during or after a release.
• Improvement of product or process might or might not be an

objective of testing.

26Developing Exploratory Testing Skills Copyright Kaner © 2006

Example of context: A thought experiment
Suppose you were testing a program that does calculations,

like a spreadsheet. Consider 4 development contexts:
1. Computer game that uses the spreadsheet for

occasional tasks like bargaining with another player
2. Early development of a commercial product, at the

request of the project manager, to help her identify
product risks and help her programmers understand
the reliability implications of their work

3. Late development of a commercial product, to help
the project manager decide whether the product is
finished

4. Control the operation of medical equipment or
collect and store the results of research on the
operational safety of the equipment.

27Developing Exploratory Testing Skills Copyright Kaner © 2006

A thought experiment (slide 2)
For each context:
• What is your mission?
• How could you organize testing to help you achieve the

mission?
– How aggressively should you hunt for bugs? Why?
– Which bugs are less important than others? Why?
– How important are issues of performance (speed of

operation)? Polish of the user interface? Precision of the
calculations? Prevention and detection of tampering with
the data?

– How extensively will you document your work? Why?
– What other information would you expect to provide to

the project (if any)? Why?

28Developing Exploratory Testing Skills Copyright Kaner © 2006

Examples of important context factors
• Who are the stakeholders with

influence
• What are the goals and quality

criteria for the project
• What skills and resources are

available to the project
• What is in the product
• How it could fail
• Potential consequences of

potential failures
• Who might care about which

consequence of what failure
• How to trigger a fault that

generates the failure we're
seeking

• How to recognize failure

• How to decide what result
variables to pay attention to

• How to decide what other result
variables to pay attention to in
the event of intermittent failure

• How to troubleshoot and
simplify a failure, so as to better
• motivate a stakeholder who

might advocate for a fix
• enable a fixer to identify and

stomp the bug more quickly
• How to expose, and who to

expose to, undelivered benefits,
unsatisfied implications, traps,
and missed opportunities.

29Developing Exploratory Testing Skills Copyright Kaner © 2006

The Analogy to Manufacturing QC

• Fixed design
• Well understood risks
• The same set of errors appear on a statistically understood

basis
• Test for the same things on each instance of the product
• Scripting makes a lot of sense

30Developing Exploratory Testing Skills Copyright Kaner © 2006

The Analogy to Design QC

• The design is rich and not yet trusted
• A fault affects every copy of the product
• The challenge is to find new design errors, not to look over

and over and over again for the same design error

• Scripting is probably an industry worst practice for design QC

Software testing is assessment of a design, not of the
quality of manufacture of the copy

31Developing Exploratory Testing Skills Copyright Kaner © 2006

Imagine …

Imagine crime scene investigators
• (real investigators of real crime scenes)
• following a script.

How effective do you think they would be?

32Developing Exploratory Testing Skills Copyright Kaner © 2006

What we need for design…

Is a constantly evolving set of tests

• That exercise the software in new ways (new combinations of features
and data)

• So that we get our choice of

– broader coverage of the infinite space of possibilities

> adapting as we recognize new classes of possibilities

– and sharper focus

> on risks or issues that we decide are of critical interest today.

For that

we do

exploratory testing

33Developing Exploratory Testing Skills Copyright Kaner © 2006

Exploratory testing

34Developing Exploratory Testing Skills Copyright Kaner © 2006

Exploratory software testing

• is a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of her work
• by treating

– test-related learning,
– test design,
– test execution, and
– test result interpretation

• as mutually supportive activities
• that run in parallel throughout the project.

35Developing Exploratory Testing Skills Copyright Kaner © 2006

Exploratory testing
• Learning: Anything that can guide us in what to test, how to

test, or how to recognize a problem.
• Design: “to create, fashion, execute, or construct according

to plan; to conceive and plan out in the mind” (Websters)
– Designing is not scripting. The representation of a plan is

not the plan.
– Explorers’ designs can be reusable.

• Execution: Execution can be automated or manual.
• Interpretation: What do we learn from program as it

performs under our test
– about the product and
– about how we are testing the product?

36Developing Exploratory Testing Skills Copyright Kaner © 2006

Exploratory testing
• Learning: Anything that can guide us in what to test, how to

test, or how to recognize a problem, such as:
– the project context (e.g., development objectives,

resources and constraints, stakeholders with influence),
market forces that drive the product (competitors,
desired and customary benefits, users), hardware and
software platforms, and development history of prior
versions and related products.

– risks, failure history, support record of this and
related products and how this product currently behaves
and fails.

37Developing Exploratory Testing Skills Copyright Kaner © 2006

Examples of learning activities
• Study competitive products (how they work, what they do,

what expectations they create)
• Research the history of this / related products (design /

failures / support)
• Inspect the product under test (and its data) (create function

lists, variable lists, data relationship charts, file structures, user
tasks, product benefits, FMEA)

• Question: Identify missing info, imagine potential sources and
potentially revealing questions (interview developers, users, and
other stakeholders, fill in or supplement answers from reference
materials)

• Review written sources: specifications and other authoritative
documents, culturally authoritative sources, persuasive sources

• Try out potentially useful tools

38Developing Exploratory Testing Skills Copyright Kaner © 2006

Examples of learning activities (continued)

• Create and apply models: state, usage, data, data flow,
other relationships/dependencies among data, task workflows,
user expectations, physical systems or business systems being
automated or simulated

• Hardware / software platform: Design and run
experiments to establish lab procedures or polish lab
techniques. Research the compatibility space of the
hardware/software (see, e.g. Kaner, Falk, Nguyen’s (Testing
Computer Software) chapter on Printer Testing).

• Team research: brainstorming or other group activities to
combine and extend knowledge

• Paired testing: mutual mentoring, foster diversity in models
and approaches.

39Developing Exploratory Testing Skills Copyright Kaner © 2006

Examples of design activities
Design: “to create, fashion, execute, or construct according to plan;
to conceive and plan out in the mind” (Websters)
• Map test ideas to FMEA or other lists of variables, functions, risks,

benefits, tasks, etc.
• Map test techniques to test ideas
• Map tools to test techniques.
• Map staff skills to tools / techniques, develop training as necessary
• Develop supporting test data
• Develop supporting oracles
• Data capture: notes? Screen/input capture tool? Log files? Ongoing

automated assessment of test results?
• Charter: Decide what you will work on and how you will work

40Developing Exploratory Testing Skills Copyright Kaner © 2006

Examples of execution activities

• Configure the product under test
• Branch / backtrack: Let yourself be productively distracted

from one course of action in order to produce an
unanticipated new idea.

• Alternate among different activities or perspectives to create
or relieve productive tension

• Pair testing: work and think with another person on the same
problem

• Vary activities and foci of attention
• Create and debug an automated series of tests
• Run and monitor the execution of an automated series of

tests

41Developing Exploratory Testing Skills Copyright Kaner © 2006

Interpretation activities

• Part of interpreting the behavior exposed by a test is
determining whether the program passed or failed the test.

• A mechanism for determining whether a program passed or
failed a test is called an oracle. We discuss oracles in detail,
on video and in slides, at
http://www.testingeducation.org/BBST/BBSTIntro1.html

• Oracles are heuristic: they are incomplete and they are
fallible. One of the key interpretation activities is determining
which oracle is useful for a given test or test result:

42Developing Exploratory Testing Skills Copyright Kaner © 2006

Interpretation activities: Examples of oracles
• Consistent within Product: Behavior consistent with behavior of

comparable functions or functional patterns within the product.
• Consistent with Comparable Products: Behavior consistent with

behavior of similar functions in comparable products.
• Consistent with a Model’s Predictions: Behavior consistent with

expectations derived from a model.

• Consistent with History: Present behavior consistent with past behavior.
• Consistent with our Image: Behavior consistent with an image that the

organization wants to project.
• Consistent with Claims: Behavior consistent with documentation or ads.
• Consistent with Specifications or Regulations: Behavior consistent

with claims that must be met.
• Consistent with User’s Expectations: Behavior consistent with what

we think users want.
• Consistent with Purpose: Behavior consistent with apparent purpose.

43Developing Exploratory Testing Skills Copyright Kaner © 2006

A different structuring of key activities
Jonathan Bach, Mike Kelly, and James Bach are working on a broad
listing / tutorial of ET activities which I hope to see in book form.
See Bachs’ presentation on Exploratory Testing Dynamics at
http://www.quardev.com/whitepapers.html
We reviewed preliminary drafts of Exploratory Testing Dynamics at
the Exploratory Testing Research Summit (spring 2006) and
Consultants Camp 2006 (August), looking specifically at teaching
issues.
The four-page handout that I provide here provides an outline for
what should be a 3-4 day course. It’s a stunningly rich set of skills. I
hope to get a chance to take a Bach / Kelly course on ET Dynamics in
the near future.
In this abbreviated form, the lists are particularly useful for audit and
mentoring purposes, to help you spot gaps in your test activities or
those of someone whose work you are evaluating.

44Developing Exploratory Testing Skills Copyright Kaner © 2006

Analyzing a sample
requirements
specification

45Developing Exploratory Testing Skills Copyright Kaner © 2006

The specification

“The Disaster Missing Person Tracker Website”
– Anonymized (and slightly revised) student project
– Developed in a requirements course by a team of grad

students with significant development experience

46Developing Exploratory Testing Skills Copyright Kaner © 2006

The opening exercise with this specification
• Please review the specification, working in groups of 2 to 4.
• Please imagine that this is a genuine document, that it has gone

through its approval process, and that you are now analyzing
the document from the point of view of how you will test the
product, rather than how you want someone else to revise the
specification.

• As you sample the document, please consider:
– What tests (clusters of tests) should be run for a given

requirement?
– How much more (or what instead) is needed compared to

the tests provided
– If you had the code in front of you, would tests of the code

NOW help clarify the specification?
– What key information is missing and how would you get it?

47Developing Exploratory Testing Skills Copyright Kaner © 2006

Notes on spec-based testing from Kaner & Bach’s BBST course

We’ve seen at least three different meanings of specification-
based testing
• A style of testing (collection of test-related activities

and techniques) focused on discovering what claims
are being made in the specifications and on testing
them against the product.
This is what we mean by spec-based testing.

• A style of testing focused on proving that the statements in a
specification (and the code that matches the statements) are
logically correct.

• A set of test techniques focused on logical relationships among
variables that are often detailed in specifications.

48Developing Exploratory Testing Skills Copyright Kaner © 2006

Context factors
Why did they write the specification?
• Enforceable contract for custom software?
• Facilitate and record agreement among

stakeholders? About specific issues or
about the whole thing?

• Vision document?
• Support material for testing / tech support

/ technical writers?
• Marketing support?
• Sales or marketing communication?
• Regulatory compliance?

• Is this intended
as an
authoritative
document? Who
is its champion?

• Who cares if it’s
kept up to date
and correct?
Who doesn’t?

• Who is
accountable for
its accuracy and
maintenance?

• What are the
corporate
consequences if it
is inaccurate?

49Developing Exploratory Testing Skills Copyright Kaner © 2006

Context factors Why are you reviewing the spec or
testing the product against the
specification?

• Contract-related risk management?
• Regulatory-related risk management?
• Development group wants to use the

spec as an internal authoritative
standard?

• Learn about the product?
• Prevent problems before they are coded

in?
• Identify testing issues before you get

code?
• Help company assess product drift?
• It’s a source of information—test tool to

help you find potential bugs? (in product
or spec?)

• To what extent is
a test against the
spec necessary,
sufficient, or
useful?

• To what extent
can you change
the product or
process via spec
review / critique?

• Will people invest
in your developing
an ability to
understand the
spec?

50Developing Exploratory Testing Skills Copyright Kaner © 2006

Spec testing issues

What is the specification?
What does the specification say?
Critiquing the specification (what it says):
• How it says what it says
• What it says about the product
• What it says about the testing of the product

Critiquing the specification (doing the critique)
Driving tests from the specification
Legal issues

51Developing Exploratory Testing Skills Copyright Kaner © 2006

What is the specification?
What is a specification?
• For our purposes, we include any document that describes the

product and drives development, sale, support, or the
purchasing of the product.

What is the scope of this specification?
• Some specs cover the entire product, others describe only

part of it (such as error handling).
• Some specs address the product from multiple points of view,

others only from one point of view.
Do we have the right specification?
• Right version?
• Source control?
• Do we verify version?

– File compares?

52Developing Exploratory Testing Skills Copyright Kaner © 2006

What is the specification?
Is this a stable specification?
• Is it under change control?

– Should it be?
Supplementary information assumed by the specification writer
• Some aspects of the product are unspecified because they are

defined among the staff, perhaps in some other (uncirculated?)
document

Implicit specifications
• Some aspects of the product are unspecified because there are

controlling cultural or technical norms.
• These are particularly important

– Rather than making an unsupported statement that “It’s bad”
(e.g. “users won’t like it”), you can justify your assertions

53Developing Exploratory Testing Skills Copyright Kaner © 2006

Implicit specifications
• Whatever specs exist
• Software change memos that

come with each new internal
version of the program

• User manual draft (and previous
version’s manual)

• Product literature
• Published style guide and UI

standards
• Published standards (such as C-

language)
• 3rd party product compatibility

test suites
• Published regulations
• Internal memos (e.g. project mgr.

to engineers, describing the
feature definitions)

•Marketing presentations, selling
the concept of the product to
management

•Bug reports (responses to them)
•Reverse engineer the program.
•Interview people, such as

•development lead
•tech writer
•customer service
•subject matter experts
•project manager

•Look at header files, source
code, database table definitions

•Specs and bug lists for all 3rd
party tools that you use

•Prototypes, and lab notes on the
prototypes

54Developing Exploratory Testing Skills Copyright Kaner © 2006

Implicit specifications

• Interview development staff
from the last version.

•Look at customer call records
from the previous version. What
bugs were found in the field?

•Usability test results
•Beta test results
•3rd party tech support
databases, magazines and web
sites with reports of bugs in
your product, common bugs in
your niche or on your platform
and for discussions of how
some features are supposed
(by some) to work.

•Get lists of compatible equipment
and environments from Marketing
(in theory, at least.)

•Localization guide (probably
published for localizing products on
your platform.)

•Look at compatible products, to
find their failures (then look for
these in your product), how they
designed features that you don’t
understand, and how they explain
their design. See listservs,
websites, etc.

•Exact comparisons with products
you emulate

•Content reference materials (e.g.
an atlas to check your on-line
geography program)

55Developing Exploratory Testing Skills Copyright Kaner © 2006

Spec testing issues

What is the specification?

What does the specification say?
Critiquing the specification (what it says):
• How it says what it says
• What it says about the product
• What it says about the testing of the product

Critiquing the specification (doing the critique)
Driving tests from the specification
Legal issues

56Developing Exploratory Testing Skills Copyright Kaner © 2006

What does the spec say?
Much of what is written about specification analysis has to do
with the specification-in-the-small—interpreting the fine details
in one or two pages of text
• These are useful skills
• But specifications are often one or two thousand pages (or

more)
– spread across multiple documents
– which incorporate several other documents by reference
– using undefined, inconsistently defined or idiosynchratically

defined vocabulary
Specification readers often suffer severe information overload.
Active reading skills and strategies are essential for effective
specification analysis

57Developing Exploratory Testing Skills Copyright Kaner © 2006

Basics of active reading
Adler, M.J. and van Doren, C. (1972) How to Read a Book.

http://radicalacademy.com/adlermarkabook.htm
http://www.justreadnow.com/strategies/active.htm

http://www.somers.k12.ny.us/intranet/reading/PLAN.html

http://www.mindtools.com/pages/article/newISS_04.htm
http://www.clt.astate.edu/bdoyle/TextbookRdng.ppt

http://titan.iwu.edu/~writcent/Active_Reading.htm

http://istudy.psu.edu/FirstYearModules/Reading/Materials.html
http://www.itrc.ucf.edu/forpd/strategies/stratCubing.html

http://www.ncrel.org/sdrs/areas/issues/students/learning/lr2befor.htm

58Developing Exploratory Testing Skills Copyright Kaner © 2006

Active reading
Prioritize what you read, by
• Surveying (read table of contents, headings, abstracts)
• Skimming (read quickly, for overall sense of the material)
• Scanning (seek specific words or phrases)

Search for information in the material you read, by
• Asking information-gathering questions and search for their answers
• Creating categories for information and read to fill in the categories
• Questioning / challenging / probing what you’re reading

Organize it
• Read with a pen in your hand
• If you underline or highlight, don’t do so until AFTER you’ve read the section
• Make notes as you go

– Key points, Action items, Questions, Themes, Organizing principles
• Use concise codes in your notes (especially on the book or article). Make up 4

or 5 of your own codes. These 2 are common, general-purpose:
– ? means I have a question about this
– ! means new or interesting idea

• Spot patterns and make connections
– Create information maps

• Relate new knowledge to old knowledge
Plan for your retention of the material
• SQ3R (survey / question / read / recite / review)
• Archival notes

59Developing Exploratory Testing Skills Copyright Kaner © 2006

Active Reading: Cubing
Cubing involves attacking a problem from 6 perspectives. Originally
developed as a writing strategy, it’s often suggested for active reading as
well.
For the feature or concept that you are trying to understand:

1. Describe it: describe its physical attributes (size, shape, etc.) and
its functional attributes;

2. Compare it: What’s it similar to? Why do you think so?
3. Associate it: What other ideas, products, etc. does it bring to

mind?
4. Analyze it: Break it down into its components. How are they

related? How do they work together?
5. Apply it: What can you (or the user) do with it?
6. Evaluate it: Take a stand. List reasons that it is good (good feature,

good implementation, good design, good idea, etc.) or bad. If you
want to be neutral, make two lists—one of all the ways that it’s
good, the other of all the ways that it’s bad.

As you develop your cube, work through the specification (and any other
documents you have) to collect the information you need to do these tasks.

h // i f d /f d/ i / C bi h l

60Developing Exploratory Testing Skills Copyright Kaner © 2006

Asking questions
Here are some key contrasts:
Hypothetical (what would happen if …) vs.
behavioral (what have you done / what has
happened in the past in response to …)
Factual (factual answers can be proved true or
false) vs. opinion (what is the author’s—or
your– interpretation of these facts.)
Historical (what happened already) vs.
predictive (what the author—or you—expect to
happen in the future under these conditions)
Open (calls for an explanatory or descriptive
answer; doesn’t reveal the answer in the question)
vs. closed (calls for a specific true answer, often
answerable yes or no)
Context-dependent (the question is based on
the specific details of the current situation) vs.
context-free (the question is usable in a wide
range of situations—it asks about the situation but
was written independently of it).

Gause / Weinberg is a
superb source for
context-free questions

61Developing Exploratory Testing Skills Copyright Kaner © 2006

More questions
Causal (Why did this happen? Why is the author saying that?)
Ask for evidence (What proof is provided? Why should you believe this?)
Evidentiary sufficiency (Is this conclusion adequately justified by these
data?)
Trustworthiness of the data (Were the data collection and analysis
methods valid and reliable?)
Critical awareness (What are the author’s assumptions? What are your
assumptions in interpreting this?)
Clarification (What does this mean? Is it restated elsewhere in a clearer
way?)
Comparison (How is this similar to that?) and Contrast (How is this
different from that?)
Implications (If X is true, does that mean that Y must also be true?)
Affective (How does the author (or you) feel about that?)
Relational (How does this concept, theme or idea relate to that one?)
Problem-solving (How does this solve that problem, or help you solve it?

62Developing Exploratory Testing Skills Copyright Kaner © 2006

More questions
Relevance (Why is this here? What place does it have in the
message or package of information the author is trying to
convey? If it is not obviously relevant, is it a distractor?)
Author’s comprehension (Does the author understand this?
Is the author writing in a way that suggests s/he is inventing a
concept without having researched it?)
Author credibility (What basis do you have for believing the
author knows what s/he is talking about?)
Author perspective / bias (What point of view is the author
writing from? What benefit could the author gain from
persuading you that X is true or desirable (or false, etc.)?)

The Michigan Educational Assessment Association has some
useful material at
http://www.meap.org/html/TT_QuestionTypes.htm

63Developing Exploratory Testing Skills Copyright Kaner © 2006

More questions

Application (How can you apply what the author is saying?
How does the author apply it?)
Analysis (Can you (does the author) break down an argument or
concept into smaller pieces?)
Synthesis (Does the author (or can you) bring together several
facts, ideas, concepts into a coherent larger concept or a
pattern?)

(More along these lines come from Bloom’s taxonomy…)

64Developing Exploratory Testing Skills Copyright Kaner © 2006

The classic context-free questions
Traditional news reporters’ questions:

• Who?
• What?
• When?
• Where?
• How?
• Why?

For example, Who will use this feature? What does this user want to
do with it? Who else will use it? Why? Who will choose not to use
it? What do they lose? What else does this user want to do in
conjunction with this feature? Who is not allowed to use this
product or feature, why, and what security is in place to prevent
them?
We use these in conjunction with questions that come out of the
testing model (see below). The model gives us a starting place. We
expand it by asking each of these questions as a follow-up to the
initial question.

65Developing Exploratory Testing Skills Copyright Kaner © 2006

Using context-free questions to define a problem
• Why is it necessary to solve the problem?
• What benefits will you receive by solving the problem?
• What is the unknown?
• What is it that you don’t yet understand?
• What is the information that you have?

• What is the source of this problem? (Specs? Field
experience? An individual stakeholder’s
preference?)

• Who are the stakeholders?
• How does it relate to which stakeholders?
• What isn’t the problem?
• Is the information sufficient? Or is it insufficient?

Or redundant? Or contradictory?
• Should you draw a diagram of the problem? A

figure?
Based on: The CIA’s Phoenix Checklists (Thinkertoys, p. 140)

and Bach’s Evaluation Strategies (Rapid Testing Course notes)

66Developing Exploratory Testing Skills Copyright Kaner © 2006

Using context-free questions to define a problem
• Where are the boundaries of the problem?
• What product elements does it apply to?
• How does this problem relate to the quality criteria?
• Can you separate the various parts of the problem? Can you write

them down? What are the relationships of the parts of the problem?
• What are the constants (things that can’t be changed) of the problem?
• What are your critical assumptions about this problem?
• Have you seen this problem before?
• Have you seen this problem in a slightly different form?
• Do you know a related problem?
• Think of a familiar problem having the same or a similar unknown.
• Suppose you find a problem related to yours that has already been

solved. Can you use it? Can you use its method?
• Can you restate your problem? How many different ways can you

restate it? More general? More specific? Can the rules be changed?
• What are the best, worst, and most probable cases you can imagine?

67Developing Exploratory Testing Skills Copyright Kaner © 2006

Using context-free questions to evaluate a plan
• Will this solve the whole problem? Part of the problem?
• What would you like the resolution to be? Can you picture it?
• How much of the unknown can you determine?
• What reference data are you using (if any)?
• What product output will you evaluate?
• How will you do the evaluation?
• Can you derive something useful from the information you have?
• Have you used all the information?
• Have you taken into account all essential notions in the problem?
• Can you separate the steps in the problem-solving process? Can

you determine the correctness of each step?
• What creative thinking techniques can you use to generate ideas?

How many different techniques?
• Can you see the result? How many different kinds of results can

you see?
• How many different ways have you tried to solve the problem?

Based on: The CIA’s Phoenix Checklists (Thinkertoys, p. 140) and Bach’s
Evaluation Strategies (Rapid Testing Course notes)

68Developing Exploratory Testing Skills Copyright Kaner © 2006

Using context-free questions to evaluate a plan
• What have others done?
• Can you intuit the solution? Can you check the results?
• What should be done?
• How should it be done?
• Where should it be done?
• When should it be done?
• Who should do it?
• What do you need to do at this time?
• Who will be responsible for what?
• Can you use this problem to solve some other problem?
• What is the unique set of qualities that makes this problem what it

is and none other?
• What milestones can best mark your progress?
• How will you know when you are successful?
• How conclusive and specific is your answer?

69Developing Exploratory Testing Skills Copyright Kaner © 2006

Context-Free Questions
Context-free process questions
• Who is the client?
• What is a successful solution worth to this client?
• What is the real (underlying) reason for wanting to solve

this problem?
• Who can help solve the problem?
• How much time is available to solve the problem?

Context-free product questions
• What problems could this product create?
• What kind of precision is required / desired for this

product?
Metaquestions (when interviewing someone for info)
• Am I asking too many questions?
• Do my questions seem relevant?
• Are you the right person to answer these questions?
• Is there anyone else who can provide additional

information?
• Is there anything else I should be asking?
• Is there anything you want to ask me?
• May I return to you with more questions later?

A sample of
additional
questions
based on
Gause &

Weinberg’s
Exploring

Requirements
p. 59-64

70Developing Exploratory Testing Skills Copyright Kaner © 2006

An active reading example
To find and organize the claims, I use an
active reading approach based on the
Heuristic Test Strategy Model

Project
Factors

Product
Elements

Quality
Criteria

Test
Technique

We’ll do this in our next section of the tutorial

71Developing Exploratory Testing Skills Copyright Kaner © 2006

Spec testing issues

What is the specification?
What does the specification say?

Critiquing the specification (what it says):
• How it says what it says
• What it says about the product
• What it says about the testing of the product

Critiquing the specification (doing the critique)
Driving tests from the specification
Legal issues

72Developing Exploratory Testing Skills Copyright Kaner © 2006

How it says what it says

Ambiguity
• Are multiple interpretations possible? Likely?

Adequacy
• Does it provide enough information for programming,

documentation and testing?
Completeness

• To what extent does it cover the
– Feature set
– Use cases
– Usage scenarios
– Test-relevant information (such as boundaries, error

handling, etc.)

73Developing Exploratory Testing Skills Copyright Kaner © 2006

Ambiguity analysis
Many sources of ambiguity in software design & development.

• In wording or interpretation of specifications or standards
• In expected response of the program to invalid or unusual input
• In behavior of undocumented features
• In conduct and standards of regulators / auditors
• In customers’ interpretation of their needs and the needs of the

users they represent
• In definitions of compatibility among 3rd party products

Whenever there is ambiguity, there is a strong opportunity for a defect

• Richard Bender teaches this well in his courses on Requirements Based Testing.
His course has some great labs, and he coaches well. I recommend it. If you can’t
take his course, you can find notes based on his work in Rodney Wilson’s Software
RX: Secrets of Engineering Quality Software.

• An interesting workbook: Cecile Spector, Saying One Thing, Meaning Another. She
discusses and provides examples and exercises with many additional ambiguities in
common English than I can cover here.

74Developing Exploratory Testing Skills Copyright Kaner © 2006

Common ambiguities in use of the language
Undefined words
• “The user may authenticate incoming documents by processing their security attributes.”

Incorrectly used words
• Typeface refers to a set of characters having the same design, or to the design. Font refers

to a specific size and style of a typeface. (See google: define typeface and define font.) A
version of OpenOffice labeled a list of typefaces as fonts and a list of styles (italics, bold,
etc.) as typefaces. How would you interpret help documentation that referred to
“typefaces” ?

Contradictorily defined words
• Use “valid” to mean (sometimes) a value considered valid by a user and (other times) a

value that meets input criteria constraints in a program.
Vague words
• Etc., will display a message, process, upgrade, performance, user friendly

Commonly misunderstood words
• i.e. (means id est = that is and calls for a restatement or redefinition of a previous word or

statement) whereas e.g. means exampli gratia (for example)
Ambiguous quantities
• Within, between, up to, almost, on the order of

Impossible promises
• “The program will be fully tested.” “Performance will be instantaneous.”

75Developing Exploratory Testing Skills Copyright Kaner © 2006

Common ambiguities: Logical conditions
Incomplete set of logical conditions
• If A and B then C. If A and not B then D

– What about B and not A?
Logical operators ambiguously grouped
• If A and B or C then D

– Is this (A and B) or C? Is it A and (B or C)?
– Just because precedence orders are defined by convention

doesn’t mean that the spec author, the spec reviewers, and
the programmers know them

Negation without explicit specification of scope
• If not A and B then D

– Is this (Not A) and B? Is it Not (A and B)? Is it Not-A and
Not-B?

There are plenty more of these. Look at any logic text.

76Developing Exploratory Testing Skills Copyright Kaner © 2006

Common ambiguities: Missing facts (1)
Unspecified decision maker
• If X is unacceptable, then

– Unacceptable according to who?
Assumes facts not specified
• Spec assumes the reader is familiar with the specifics of regulations,

environmental constraints, etc. These might change or differ across
countries, platforms, etc.

Ambiguity in time
• Does X have to precede Y? In the statement, “Do A if X happens

and Y happens and Z happens” does it matter if they happen in that
order?

Causes without effects
• The case X is greater than Y will trigger special processing

Effects without causes
• If X occurs during processing, then …

Effects with underspecified causes
• General protection fault

77Developing Exploratory Testing Skills Copyright Kaner © 2006

Common ambiguities: Missing facts (2)
Unspecified error handling
• “The program will accept up to 3 names.”

Unspecified variables
• The program will set a flag if this happens.

– What flag?

Boundaries unspecified or underspecified
• Is 0 a positive number? If 0<x<100 is valid, how big is the maximum

value that you will allow to be copied into X for evaluation?
– (Whittaker’s testing approach rests on programmers being blind to a

wide range of unspecified system or program constraints)

Unspecified quantities
• The program will compare the value input for X to the maximum

allowed
Mentioned but undefined cases
• “The page format dialog will display 3 column width fields at a time.

The user may not specify more than 10 columns.”

78Developing Exploratory Testing Skills Copyright Kaner © 2006

Ambiguity analysis: Break statements into elements
Gause & Weinberg
• “Mary had a little lamb” (read the statement several times,

emphasizing a different word each time and asking what the
statement means, read that way)

• “Mary conned the trader” (for each word in the statement,
substitute a wide range of synonyms and review the statement’s
resulting meaning.)

“Slice & dice” (Thinkertoys)
• Make / read a statement about the program. Work through the

statement one word at a time, asking what each word means or
implies.

These approaches can help you ferret out ambiguity in the product
definition. By seeing how different people can interpret a key statement
in the spec, you can imagine new tests to check which meaning is
operative in the program.

79Developing Exploratory Testing Skills Copyright Kaner © 2006

Break statements into elements:
Quality is value to some person

• Quality
–
–
–

• Value
–
–
–

• Some
–
–
–

• Person

• Who is this person?
• How are you the agent for this person?
• How are you going to find out what this person wants?
• How will you report results back to this person?
• How will you take action if this person is mentally absent?

80Developing Exploratory Testing Skills Copyright Kaner © 2006

What it says about the product
Correctness
• Does it accurately describe the program?

Controversy
• Which parts are controversial? Who are the stakeholders who

disagree and why do they disagree?
Adequacy
• Does it provide enough information for programming,

documentation and testing?
Completeness
• Does it cover the feature set?

Design
• Can you tell whether it specifies design errors?
• Is it understandable, usable, trainable, consistent, appropriate for the

market?
• Does it set up the program / programmer for common errors?

81Developing Exploratory Testing Skills Copyright Kaner © 2006

What it says about testing
Early in the project, you can review the spec’s implications for testing,
and change them or prepare for them.
• Implications for test design

– What test techniques will be most appropriate for this project?
– Will you need additional training or tools for them?
– Are there ways to simplify (or otherwise change) to product in ways

that would call for simpler or cheaper or more easily structured
techniques?

– How much exploring will this project require?
> Does your staff have the knowledge, skills and connections?

• Test schedule and resource commitments / implications
– When will you receive deliverables from others?
– When are you to deliver your work?
– What do you need to get this done?
– Are any of your commitments unreasonable?

• Testability support

82Developing Exploratory Testing Skills Copyright Kaner © 2006

Design reviews: Testability

Controllability
Observability
Availability
Simplicity
Stability
Information
Separation of functional components
Availability of oracles

Log files!

Scriptable
Interface!

83Developing Exploratory Testing Skills Copyright Kaner © 2006

Testing the program against the spec

What is the specification?
What does the specification say?
Critiquing the specification (what it says):
• How it says what it says
• What it says about the product
• What it says about the testing of the product

Critiquing the specification (doing the critique)
Driving tests from the specification
Legal issues

84Developing Exploratory Testing Skills Copyright Kaner © 2006

Critiquing specs: Process notes
Review meetings

• Test groups often train to facilitate technical reviews
Detailed comments on the specification

• Same guidelines as for critiquing other tech pubs. See Testing
Computer Software

85Developing Exploratory Testing Skills Copyright Kaner © 2006

Spec testing issues

What is the specification?
What does the specification say?
Critiquing the specification (what it says):
• How it says what it says
• What it says about the product
• What it says about the testing of the product

Critiquing the specification (doing the critique)

Driving tests from the specification
Legal issues

86Developing Exploratory Testing Skills Copyright Kaner © 2006

Driving tests from the specification
Who are the stakeholders?
• There are stakeholders for all services. Who are yours?

– Regulators? Marketing? End customer?

– Journalists? Attorney? Court? (Expert witness?)

– Client company (you’re the outsource test lab)?

• These stakeholders would have different test-result / test-
documentation expectations from the typical project team.

What is a good specification driven test?
• Same as “what is a good test?”
• But tests come from specs
• Might be that a test that covers several spec items is preferred to a

single-item test
• Might be that tests that resolve or expose and show implications of

specification ambiguities are particularly important

87Developing Exploratory Testing Skills Copyright Kaner © 2006

Driving tests from the specification
Coverage
• Key issue is coverage of the specification

– Cover items (individual statements)
> But how many tests per statement do you need?
> Many groups require only one per spec assertion

– Cover specified relationships
> To test A && B
> You probably want to test at leastA true and B true
> A true and B false
> A false and B true

Brian Marick’s multi tool is useful for this
Students at Florida Tech are now publishing a Release 2.0 of multi (see
www.testingeducation.org in December

88Developing Exploratory Testing Skills Copyright Kaner © 2006

Driving tests from the spec: Coverage

Important to understand the level of generality called for when
testing a spec item. For example, imagine a field X:
• We could test a single use of X
• Or we could partition possible values of X and test boundary

values
• Or we could test X in various scenarios
• Which is the right one?
• This partially depends on whether specification-driven testing is

your exclusive style of testing
How do we track coverage?
• Trace tests BACK TO the specification with traceability

matrices

89Developing Exploratory Testing Skills Copyright Kaner © 2006

Traceability matrix

14322Totals

XXTest 5

XXTest 4

XXXTest 3

XXTest 2

XXXTest 1

Var 5Var 4Var 3Var 2Var 1

90Developing Exploratory Testing Skills Copyright Kaner © 2006

Traceability matrix
The columns involve different test items. A test item might be a
function, a variable, an assertion in a specification or requirements
document, a device that must be tested, any item that must be
shown to have been tested.
The rows are test cases.
The cells show which test case tests which items.
If a feature changes, you can quickly see which tests must be
reanalyzed, probably rewritten.
In general, you can trace back from a given item of interest to the
tests that cover it.
This doesn’t specify the tests, it merely maps their coverage.
Traceability tool risk—test case management tools can drive you
into wasteful over-documentation and unmaintainable repetition

91Developing Exploratory Testing Skills Copyright Kaner © 2006

Spec testing issues

What is the specification?
What does the specification say?
Critiquing the specification (what it says):
• How it says what it says
• What it says about the product
• What it says about the testing of the product

Critiquing the specification (doing the critique)
Driving tests from the specification

Legal issues

92Developing Exploratory Testing Skills Copyright Kaner © 2006

Legal issues

Warranties based on claims to the public
• Article: Liability for defective documentation

http://www.kaner.com/pdfs/liability_sigdoc.pdf
Warranties based on claims to custom-product customer
Claims of compatibility with other products
• Article: Liability for product incompatibility

http://www.kaner.com/pdfs/liability_sigdoc.pdf
Errors in your product documents, that are not about your
products
• Article: Liability for defective content

http://www.kaner.com/pdfs/sigdocContent.pdf

93Developing Exploratory Testing Skills Copyright Kaner © 2006

Testing claims against the product
Uniform Commercial Code Article 2 (2003 revision)
SECTION 2-313A. (2) If a seller in a record packaged with or
accompanying the goods makes an affirmation of fact or promise that
relates to the goods, provides a description that relates to the goods, or
makes a remedial promise, and the seller reasonably expects the record to
be, and the record is, furnished to the remote purchaser, the seller has an
obligation to the remote purchaser that:

(a) the goods will conform to the affirmation of fact, promise or
description unless a reasonable person in the position of the remote
purchaser would not believe that the affirmation of fact, promise or
description created an obligation; and

(b) the seller will perform the remedial promise.
(3) It is not necessary to the creation of an obligation under this section
that the seller use formal words such as “warrant” or “guarantee” or that
the seller have a specific intention to undertake an obligation, but an
affirmation merely of the value of the goods or a statement purporting to
be merely the seller's opinion or commendation of the goods does not
create an obligation.

94Developing Exploratory Testing Skills Copyright Kaner © 2006

Using the Satisfice
Heuristic Test

Strategy Model to
guide analysis

95Developing Exploratory Testing Skills Copyright Kaner © 2006

Reviewing a document with the Heuristic Test Strategy Model

• The last section has many slides on active reading.
• In the last exercise, we reviewed the requirements document

on its own terms.
– We see what is there and come to understand it better.

• Active readers often operate from a different organizational
structure, fitting the information from the document under
review into the structure they are trying to fill rather than
being bound by the structure of the document.

• We demonstrate what active reading is about in this exercise,
by using an independently created structure (the Heuristic
Test Strategy Model) as the base document and reviewing the
specification in terms of how well we can map its information
onto the information structure of HSTM.

96Developing Exploratory Testing Skills Copyright Kaner © 2006

Heuristic Test Strategy Model

Authored by James Bach
• 10 years of critical peer review by colleagues.
• Several of us have found this a very useful tool for

– Guiding exploration (see Bach’s and Bolton’s courses)
– Structuring a failure mode and effects analysis

> See Giri Vijayaraghavan & Cem Kaner Bug taxonomies:
Use them to generate better tests at
http://www.kaner.com/pdfs/BugTaxonomies.pdf and
Giri’s thesis, “A Taxonomy of E-Commerce Risks and
Failures.” at http://www.testingeducation.org/a/tecrf.pdf

> Another thesis on mobile wireless apps coming soon by
Ajay Jha

– Specification analysis (my primary use of the model)

97Developing Exploratory Testing Skills Copyright Kaner © 2006

An active reading example
To find and organize the claims, I use an
active reading approach based on the
Heuristic Test Strategy Model
As you read the spec,
• Start from the assumption that every

sentence in the spec is meant to
convey information.

• Take four writing pads, mark them
Project, Product, Quality and To-Do.

Project
Factors

Product
Elements

Quality
Criteria

Test
Technique

• On the appropriate pad, note briefly what the spec tells you about:
– the project and how it is structured, funded or timed, or
– the product (what it is and how it works) or
– the quality criteria you should evaluate the product against or
– things you need to do, that you learned from the spec.

98Developing Exploratory Testing Skills Copyright Kaner © 2006

An active reading example
As you note what you have discovered, make additional notes in a
different pen color, such as:

• Items that haven't yet been specified, that you think are relevant.

• References to later parts of the specification or to other
documents that you'll need to understand the spec.

• Questions that come to mind about how the product works, how
the project will be run or what quality criteria are in play.

• Your disagreements or concerns with the product / project as
specified.

Beware of getting too detailed in this. If the spec provides a piece of
information, you don't need to rewrite it. Just write down a pointer
(and a spec page number). Your list is a quick summary that you build
as you read, to help you read, not a rewriting of the document.

As you read further, some of your earlier questions will be answered.
Others won't. Ask the programmers or spec writers about them.

99Developing Exploratory Testing Skills Copyright Kaner © 2006

Heuristic test strategy model

The HSTM is another example of a tool that is especially useful
for auditing / mentoring purposes.
It provides you a support structure for discovering what is
missing or buried in someone else’s work.
We have seen this already in the ET Dynamics handout.
My bug appendix in Testing Computer Software was widely used
for that, and HSTM has been the root of comparable, but more
recent documents (e.g. Vijayaraghavan’s thesis).
The Phoenix questions in the previous section provide another
strong example of a question set that is at least as useful for
post-creation review as for initial planning.

100Developing Exploratory Testing Skills Copyright Kaner © 2006

Using and
developing models
in software testing

101Developing Exploratory Testing Skills Copyright Kaner © 2006

Models

A model is a simplified formal representation of a relationship,
process or system. The simplification makes some aspects of the
thing modeled clearer, more visible, and easier to work with.
• All tests are based on models
• Many of our models are implicit
• When the behavior of a program “feels wrong,” it is clashing

with your internal model of the program (and how it should
behave)

102Developing Exploratory Testing Skills Copyright Kaner © 2006

103Developing Exploratory Testing Skills Copyright Kaner © 2006

A taxonomy model (instructional design / assessment)

Metacognition

Attitudes

Skills

Models

Cognitive strategies

Procedures

Concepts

Facts

CreateEvaluateAnalyzeApplyUnderstandRememberKNOWLEDGE DIMENSIONS

COGNITIVE PROCESSES

104Developing Exploratory Testing Skills Copyright Kaner © 2006

105Developing Exploratory Testing Skills Copyright Kaner © 2006

From information
to test:

Using quicktests

106Developing Exploratory Testing Skills Copyright Kaner © 2006

QuickTests?

A quicktest is a cheap test that has some value but requires little
preparation, knowledge, or time to perform.
• Participants at the 7th Los Altos Workshop on Software

Testing (Exploratory Testing, 1999) pulled together a collection
of these.

• James Whittaker published another collection in How to Break
Software.

• Elisabeth Hendrickson teaches courses on bug hunting
techniques and tools, many of which are quicktests or tools that
support them.

107Developing Exploratory Testing Skills Copyright Kaner © 2006

A Classic QuickTest: The Shoe Test

Find an input field, move the cursor to it, put your shoe on the
keyboard, and go to lunch.
Basically, you’re using the auto-repeat on the keyboard for a
cheap stress test.

•Tests like this often overflow input buffers.
In Bach’s favorite variant, he finds a dialog box so constructed
that pressing a key leads to, say, another dialog box (perhaps an
error message) that also has a button connected to the same
key that returns to the first dialog box.

•This will expose some types of long-sequence errors
(stack overflows, memory leaks, etc.)

108Developing Exploratory Testing Skills Copyright Kaner © 2006

Another Classic Example of a QuickTest

Traditional boundary testing
• All you need is the variable, and its possible values.
• You need very little information about the meaning of the

variable (why people assign values to it, what it interacts
with).

• You test at boundaries because miscoding of boundaries is a
common error.

Note the foundation of this test.

There is a programming error so common that it’s
worth building a test technique optimized to find errors
of that type.

109Developing Exploratory Testing Skills Copyright Kaner © 2006

“Attacks” to expose common coding errors
Jorgensen & Whittaker pulled
together a collection of common
coding errors, many of them involving
insufficiently or incorrectly
constrained variables.
They created (or identified common)
attacks to test for these.
An attack is a stereotyped class of
tests, optimized around a specific
type of error.

Think back to boundary testing:
• Boundary testing for numeric input fields is an

example of an attack. The error is mis-
specification (or mis-typing) of the upper or lower
bound of the numeric input field.

110Developing Exploratory Testing Skills Copyright Kaner © 2006

“Attacks” to expose common coding errors

In his book, How to Break Software, Professor Whittaker
expanded the list and, for each attack, discussed
• When to apply it
• What software errors make the attack successful
• How to determine if the attack exposed a failure
• How to conduct the attack, and
• An example of the attack.

We'll list How to Break Software's attacks here, but recommend
the book's full discussion.

111Developing Exploratory Testing Skills Copyright Kaner © 2006

“Attacks” to expose common coding errors
User interface attacks: Exploring the input domain
• Attack 1: Apply inputs that force all the error messages to

occur
• Attack 2: Apply inputs that force the software to establish

default values
• Attack 3: Explore allowable character sets and data types
• Attack 4: Overflow input buffers
• Attack 5: Find inputs that may interact and test combinations of

their values
• Attack 6: Repeat the same input or series of inputs numerous

times
~From Whittaker, How to Break Software

112Developing Exploratory Testing Skills Copyright Kaner © 2006

User interface attacks: Exploring outputs
• Attack 7: Force different outputs to be generated for each

input
• Attack 8: Force invalid outputs to be generated
• Attack 9: Force properties of an output to change
• Attack 10: Force the screen to refresh.

~From Whittaker, How to Break Software

“Attacks” to expose common coding errors

113Developing Exploratory Testing Skills Copyright Kaner © 2006

Testing from the user interface: Data and computation
Exploring stored data
• Attack 11: Apply inputs using a variety of initial conditions
• Attack 12: Force a data structure to store too many or too

few values
• Attack 13: Investigate alternate ways to modify internal data

constraints

~From Whittaker, How to Break Software

“Attacks” to expose common coding errors

114Developing Exploratory Testing Skills Copyright Kaner © 2006

Testing from the user interface: Data and computation
Exploring computation and feature interaction
• Attack 14: Experiment with invalid operand and operator

combinations
• Attack 15: Force a function to call itself recursively
• Attack 16: Force computation results to be too large or too

small
• Attack 17: Find features that share data or interact poorly

~From Whittaker, How to Break Software

“Attacks” to expose common coding errors

115Developing Exploratory Testing Skills Copyright Kaner © 2006

System interface attacks
Testing from the file system interface: Media-based attacks
• Attack 1: Fill the file system to its capacity
• Attack 2: Force the media to be busy or unavailable
• Attack 3: Damage the media

Testing from the file system interface: File-based attacks
• Attack 4: Assign an invalid file name
• Attack 5: Vary file access permissions
• Attack 6: Vary or corrupt file contents

~From Whittaker, How to Break Software

“Attacks” to expose common coding errors

116Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests from LAWST

Several of the tests we listed at LAWST (7th Los Altos Workshop on
Software Testing, 1999) are equivalent to the attacks later published
by Whittaker.

He develops the attacks well, and we recommend his descriptions.

LAWST generated several other quicktests, including some that
aren’t directly tied to a simple fault model.

Many of the ideas in these notes were reviewed and extended by the other
LAWST 7 attendees: Brian Lawrence, III, Jack Falk, Drew Pritsker, Jim Bampos,
Bob Johnson, Doug Hoffman, Chris Agruss, Dave Gelperin, Melora Svoboda, Jeff
Payne, James Tierney, Hung Nguyen, Harry Robinson, Elisabeth Hendrickson, Noel
Nyman, Bret Pettichord, & Rodney Wilson. We appreciate their contributions.

117Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests
Interference testing
We look at asynchronous events here. One task is underway, and we
do something to interfere with it.
In many cases, the critical event is extremely time sensitive. For
example:
• An event reaches a process just as, just before, or just after it is

timing out or just as (before / during / after) another process that
communicates with it will time out listening to this process for a
response. (“Just as?”—if special code is executed in order to
accomplish the handling of the timeout, “just as” means during
execution of that code)

• An event reaches a process just as, just before, or just after it is
servicing some other event.

• An event reaches a process just as, just before, or just after a
resource needed to accomplish servicing the event becomes
available or unavailable.

118Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests

Interference testing: Generate interrupts
• from a device related to the task

– e.g. pull out a paper tray, perhaps one that isn’t in use
while the printer is printing

• from a device unrelated to the task

– e.g. move the mouse and click while the printer is printing

• from a software event

– e.g. set another program's (or this program's) time-
reminder to go off during the task under test

119Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests

Interference: Change something this task depends on
• swap out a floppy

• change the contents of a file that this program is reading

• change the printer that the program will print to (without
signaling a new driver)

• change the video resolution

120Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests

Interference testing: Cancel
• Cancel the task

– at different points during its completion

• Cancel some other task while this task is running

– a task that is in communication with this task (the core
task being studied)

– a task that will eventually have to complete as a
prerequisite to completion of this task

– a task that is totally unrelated to this task

121Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests

Interference testing: Pause
Find some way to create a temporary interruption in the task.

• Pause the task

– for a short time

– for a long time (long enough for a timeout, if one will arise)

• For example,

– Put the printer on local

– Put a database under use by a competing program, lock a
record so that it can’t be accessed — yet.

122Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests
Interference testing: Swap (out of memory)
Swap the process out of memory while it's running
• (e.g. change focus to another application; keep loading or adding

applications until the application under test is paged to disk.)
• Leave it swapped out for 10 minutes or whatever the timeout

period is. Does it come back? What is its state? What is the state
of processes that are supposed to interact with it?

• Leave it swapped out much longer than the timeout period. Can you
get it to the point where it is supposed to time out, then send a
message that is supposed to be received by the swapped-out
process, then time out on the time allocated for the message?
What are the resulting state of this process and the one(s) that
tried to communicate with it?

Swap a related process out of memory while the process
under test is running.

123Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests
Interference testing: Compete
Examples:
Compete for a device (such as a printer)

• put device in use, then try to use it from software under test
• start using device, then use it from other software
• If there is a priority system for device access, use software

that has higher, same and lower priority access to the device
before and during attempted use by software under test

Compete for processor attention
• some other process generates an interrupt (e.g. ring into the

modem, or a time-alarm in your contact manager)
• try to do something during heavy disk access by another

process
Send this process another job while one is underway

124Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests

Follow up recent changes

Code changes cause side effects
• Test the modified feature / change itself.
• Test features that interact with this one.
• Test data that are related to this feature or data set.
• Test scenarios that use this feature in complex ways.

125Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests

Explore data relationships

Pick a data item
• Trace its flow through the system
• What other data items does it interact with?
• What functions use it?
• Look for inconvenient values for other data items or for the

functions, look for ways to interfere with the function using this
data item

126Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests

Field Entry
Source

Display Print Related
Variable

 Relationship

Variable 1 Any way you
can change
values in V1

After V1 & V2
are brought to
incompatible
values, what
are all the
ways to
display them?

After V1 & V2
are brought to
incompatible
values, what
are all the
ways to display
or use them?

Variable 2 Constraint to a
range

Variable 2 Any way you
can change
values in V2

Variable 1 Constraint to a
range

Explore data relationships

We discuss this table more in our lectures on
combination testing.

127Developing Exploratory Testing Skills Copyright Kaner © 2006

Additional QuickTests
Explore data relationships (continued)
Many possible relationships. For example,
• V1 < V2+K (V1 is constrained by V2+K)
• V1 = f(V2), where f is any function
• V1 is an enumerated variable but the set of choices for V1 is determined by

the value of V2
Relations are often reciprocal, so if V2 constrains V1, then V1 might constrain V2
(try to change V2 after setting V1)
Given the relationship,
• Try to enter relationship-breaking values everywhere that you can enter V1

and V2.
• Pay attention to unusual entry options, such as editing in a display field, import,

revision using a different component or program
Once you achieve a mismatch between V1 and V2, the program's data no longer
obey rules the programmer expected would be obeyed, so anything that assumes
the rules hold is vulnerable. Do follow-up testing to discover serious side effects
of the mismatch

128Developing Exploratory Testing Skills Copyright Kaner © 2006

Even More QuickTests (from Bach’s Rapid Testing Course)

Quick tours of the program

Variability Tour: Tour a product looking for anything that is
variable and vary it. Vary it as far as possible, in every dimension
possible.

• Exploring variations is part of the basic structure of Bach’s
testing when he first encounters a product.

Complexity Tour: Tour a product looking for the most complex
features and data. Create complex files.

Sample Data Tour: Employ any sample data you can, and all
that you can. The more complex the better

129Developing Exploratory Testing Skills Copyright Kaner © 2006

Even More QuickTests (from Bach’s Rapid Testing Course)

Continuous Use: While testing, do not reset the system. Leave
windows and files open. Let disk and memory usage mount. You're
hoping the system ties itself in knots over time.

Adjustments: Set some parameter to a certain value, then, at any later
time, reset that value to something else without resetting or recreating the
containing document or data structure.

Dog Piling: Get more processes going at once; more states existing
concurrently. Nested dialog boxes and non-modal dialogs provide
opportunities to do this.

Undermining: Start using a function when the system is in an
appropriate state, then change the state part way through (for instance,
delete a file while it is being edited, eject a disk, pull net cables or power
cords) to an inappropriate state. This is similar to interruption, except you
are expecting the function to interrupt itself by detecting that it no longer
can proceed safely.

130Developing Exploratory Testing Skills Copyright Kaner © 2006

Even More QuickTests (from Bach’s Rapid Testing Course)
Error Message Hangover: Make error messages happen. Test hard
after they are dismissed. Developers often handle errors poorly. Bach once
broke into a public kiosk by right clicking rapidly after an error occurred.
It turned out the security code left a 1/5 second window of opportunity for
me to access a special menu and take over the system.
Click Frenzy: Testing is more than "banging on the keyboard", but that
phrase wasn't coined for nothing. Try banging on the keyboard. Try
clicking everywhere. Bach broke into a touchscreen system once by
poking every square centimeter of every screen until he found a secret
button.
Multiple Instances: Run a lot of instances of the application at the same
time. Open the same files.
Feature Interactions: Discover where individual functions interact or
share data. Look for any interdependencies. Tour them. Stress them. Bach
once crashed an app by loading up all the fields in a form to their
maximums and then traversing to the report generator.

131Developing Exploratory Testing Skills Copyright Kaner © 2006

Even More QuickTests (from Bach’s Rapid Testing Course)
Cheap Tools! Learn how to use InCtrl5, Filemon, Regmon,

AppVerifier, Perfmon, Task Manager (all of which are free). Have
these tools on a thumb drive and carry it around. Also, carry a
digital camera. Bach carries a tiny 3 megapixel camera and a tiny
video camera in his coat pockets. He uses them to record screen
shots and product behaviors.

• Elisabeth Hendrickson suggests several additional tools at
http://www.bughunting.com/bugtools.html

Resource Starvation: Progressively lower memory and other
resources until the product gracefully degrades or ungracefully
collapses.

Play "Writer Sez": Look in the online help or user manual and
find instructions about how to perform some interesting activity.
Do those actions. Then improvise from them. Often writers are
hurried as they write down steps, or the software changes after
they write the manual.

132Developing Exploratory Testing Skills Copyright Kaner © 2006

Even More QuickTests (from Bach’s Rapid Testing Course)

Crazy Configs: Modify O/S configuration in non-standard or
non-default ways either before or after installing the product. Turn
on “high contrast” accessibility mode, or change the localization
defaults. Change the letter of the system hard drive.

Grokking: Find some aspect of the product that produces huge
amounts of data or does some operation very quickly. For instance,
look a long log file or browse database records very quickly. Let
the data go by too quickly to see in detail, but notice trends in
length or look or shape of the patterns as you see them.

133Developing Exploratory Testing Skills Copyright Kaner © 2006

Parlour Tricks are not Risk-Free
These tricks can generate lots of flash in a hurry
• The DOS disk I/O example
• The Amiga clicky-click-click-click example

As political weapons, they are double-edged
• If people realize what you’re doing, you lose credibility
• Anyone you humiliate becomes a potential enemy

Some people (incorrectly) characterize exploratory testing as if it
were a collection of quicktests.
As test design tools, they are like good candy
• Yummy
• Everyone likes them
• Not necessarily nutritious. (You may never get to the deeper

issues of the program.)

134Developing Exploratory Testing Skills Copyright Kaner © 2006

The challenge of
relevance

135Developing Exploratory Testing Skills Copyright Kaner © 2006

The relevance problem as a test design problem

• We often go from technique to test
– Find all variables, domain test each
– Find all spec paragraphs, make a relevant test for each
– Find all lines of code, make a set of tests that collectively

includes each
• It is much harder to go from a risk to a test

– The program will crash?
– The program will have a wild pointer?
– The program will have a memory leak?
– The program will be hard to use?
– The program will corrupt its database?

136Developing Exploratory Testing Skills Copyright Kaner © 2006

The relevance problem as a test design problem

• The challenge of exploratory testing is often to take a test
idea (especially potential problem)
– maybe learned from study of competitor’s product, or

support history, or failure of other products on this
operating system or written in this programming language

• And turn the test idea into one or more tests

How do we map from a test idea to a test?

137Developing Exploratory Testing Skills Copyright Kaner © 2006

How do we map from a test idea to a test?

• I don’t have a general answer.
• Cross-mapping of knowledge is one of (perhaps the) most

difficult cognitive tasks.
– Ability to do this is often discussed in terms of “G”

(“general intelligence”, the hypothetical dominant factor
that underlies IQ scores)

138Developing Exploratory Testing Skills Copyright Kaner © 2006

How do we map from a test idea to a test?

• When it is not clear how to work backwards to the relevant
test, four tactics sometimes help:
– Ask someone for help
– Ask google for help. (Look for discussions of the type of

failure; look for discussions of different faults and see what
types of failures they yield)

– Review your toolkit of techniques, searching for a test type
with relevant characteristics

– Turn the failure into a story and gradually evolve the story
into something you can test from

• There are no guarantees in this, but you get better at it as
you practice, and as you build a broader inventory of
techniques.

139Developing Exploratory Testing Skills Copyright Kaner © 2006

An overview
of test techniques

140Developing Exploratory Testing Skills Copyright Kaner © 2006

How do we use test techniques to create tests?

A test technique
is a recipe

for performing
these tasks in

order to
reveal

something
worth reporting

Analyze the situation.

Model the test space.

Select what to cover.

Determine test oracles.

Configure the test system.

Operate the test system.

Observe the test system.

Evaluate the test results.

141Developing Exploratory Testing Skills Copyright Kaner © 2006

Designing test cases

Focus on procedure?
• “A set of test inputs, execution conditions, and expected

results developed for a particular objective, such as to
exercise a particular program path or to verify compliance
with a specific requirement.” (IEEE)

Focus on the test idea?
• “A test idea is a brief statement of something that should be

tested. For example, if you're testing a square root function,
one idea for a test would be ‘test a number less than zero’.
The idea is to check if the code handles an error case.”
(Marick)

142Developing Exploratory Testing Skills Copyright Kaner © 2006

Test cases
In my view,

The point of running the test is to gain information, for example
whether the program will pass or fail the test.
• The test must be CAPABLE of revealing valuable information
• The SCOPE of a test changes over time, because the

information value of tests changes as the program matures
• The METRICS that count test cases are essentially meaningless

because test cases merge or are abandoned as their
information value diminishes.

A test case is a question
you ask the program.

143Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing
• Domain testing
• Risk-based testing
• Scenario testing
• Regression testing
• Stress testing
• User testing
• State-model based testing
• High volume automated testing

These are
10 common
Examples.

There are many
Others.

144Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• FUNCTION TESTING
• Specification-based testing
• Domain testing
• Risk-based testing
• Scenario testing
• Regression testing
• Stress testing
• User testing
• State-model based testing
• High volume automated testing

Test each feature or
function on its own.

Scan through the
product, covering
every feature or
function with at least
enough testing to
determine what it
does and whether it
is working.

145Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing

• SPECIFICATION-BASED TESTING
• Domain testing
• Risk-based testing
• Scenario testing
• Regression testing
• Stress testing
• User testing
• State-model based testing
• High volume automated testing

Check every claim
made in the
reference document
(such as, a contract
specification).

Test to the extent
that you have proved
the claim true or
false.

146Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing

• DOMAIN TESTING
• Risk-based testing
• Scenario testing
• Regression testing
• Stress testing
• User testing
• State-model based testing
• High volume automated testing

Focus on variables,
such as inputs,
outputs, configuration,
or internal (e.g. file-
handling) variables.
For every variable or
combination of
variables, consider the
space of possible
values. Simplify it by
partitioning into
subsets. Pick a few
representatives of
each subset.

147Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing
• Domain testing

• RISK-BASED TESTING
• Scenario testing
• Regression testing
• Stress testing
• User testing
• State-model based testing
• High volume automated testing

A program is a
collection of
opportunities for
things to go wrong.

For each way that
you can imagine the
program failing,
design tests to
determine whether
the program actually
will fail in that way.

148Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing
• Domain testing
• Risk-based testing

• SCENARIO TESTING
• Regression testing
• Stress testing
• User testing
• State-model based testing
• High volume automated testing

Tests are complex
stories that capture
how the program will
be used in real-life
situations.

These are
combination tests,
whose combinations
are credible
reflections of real
use.

149Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing
• Domain testing
• Risk-based testing
• Scenario testing

• REGRESSION TESTING
• Stress testing
• User testing
• State-model based testing
• High volume automated testing

Repeat the same test
after some change to
the program.

You can use any test
as a regression test,
but if you do a lot of
regression testing,
you will (or should)
learn to design cases
for efficient reuse.

150Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing
• Domain testing
• Risk-based testing
• Scenario testing
• Regression testing

• STRESS TESTING
• User testing
• State-model based testing
• High volume automated testing

Many definitions of stress
testing.

When I say stress testing,
I mean tests intended to
overwhelm the product, to
subject it to so much
input, so little memory,
such odd combinations
that I expect it to fail and
am exploring its behavior
as (and after) it fails.

151Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing
• Domain testing
• Risk-based testing
• Scenario testing
• Regression testing
• Stress testing

• USER TESTING
• State-model based testing
• High volume automated testing

Give the program to
“a user,” see what he
does with it and how
it responds.

User tests can be
tightly structured or
very loosely defined.
The essence is room
for action and
response by “users”.

152Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing
• Domain testing
• Risk-based testing
• Scenario testing
• Regression testing
• Stress testing
• User testing

• STATE-MODEL BASED TESTING
• High volume automated testing

Model the program
as a state machine
that runs from state
to state in response
to events (such as
new inputs).

In each state, does it
respond correctly to
each event?

153Developing Exploratory Testing Skills Copyright Kaner © 2006

Ten dominating techniques

• Function testing
• Specification-based testing
• Domain testing
• Risk-based testing
• Scenario testing
• Regression testing
• Stress testing
• User testing
• State-model based testing

• HIGH VOLUME AUTOMATED TESTING

Program the
computer to design,
implement, execute
and interpret a large
series of tests.

You set the wheel in
motion, supply the
oracle(s) and
evaluate the pattern
of results.

154Developing Exploratory Testing Skills Copyright Kaner © 2006

To different degrees, good tests have these attributes
Power. When a problem exists, the test will reveal it.
Valid. When the test reveals a problem, it is a genuine problem.
Value. It reveals things your clients want to know about the product or project.
Credible. Your client will believe that people will do the things that are done in this test.
Representative of events most likely to be encountered by the user. (xref. Musa's Software Reliability

Engineering).
Non-redundant. This test represents a larger group that address the same risk.
Motivating. Your client will want to fix the problem exposed by this test.
Performable. It can be performed as designed.
Maintainable. Easy to revise in the face of product changes.
Repeatable. It is easy and inexpensive to reuse the test.
Pop. (short for Karl Popper) It reveal things about our basic or critical assumptions.
Coverage. It exercises the product in a way that isn't already taken care of by other tests.
Easy to evaluate.
Supports troubleshooting. Provides useful information for the debugging programmer.
Appropriately complex. As the program gets more stable, you can hit it with more complex tests

and more closely simulate use by experienced users.
Accountable. You can explain, justify, and prove you ran it.
Cost. This includes time and effort, as well as direct costs.
Opportunity Cost. Developing and performing this test prevents you from doing other work

155Developing Exploratory Testing Skills Copyright Kaner © 2006

Differences in the emphasis on the goodness-of-test attributes
are the key differences between test techniques
Domain testing
• Focused on non-redundancy, validity, power, and variables-

coverage. Tests are typically highly repeatable, simple, and
should be easy to maintain.

• Not focused on representativeness, credibility, or motivational
effect.

Scenario testing
• Focused on validity, complexity, credibility, and motivational

effect.
• Not focused on power, maintainability, or coverage.

“Not focused” doesn’t mean, “never is.” It means that this is a
factor that we don’t treat as critical in developing or evaluating
this type of test.

156Developing Exploratory Testing Skills Copyright Kaner © 2006

How to choose a test technique?

This is a multi-dimensional challenge:
• Your information objectives
• Attributes of the potential tests

•• The development context:The development context:

––Product elementsProduct elements
––Quality criteriaQuality criteria
––RisksRisks
––Project factors (constraints and Project factors (constraints and

opportunities)opportunities)

157Developing Exploratory Testing Skills Copyright Kaner © 2006

Test design

A simplifying model for
classifying and generating

test techniques

158Developing Exploratory Testing Skills Copyright Kaner © 2006

Testing combines techniques that focus on:
• Testers: who does the testing.

• Coverage: what gets tested.

• Potential problems: why you're testing (what risk you're
testing for).

• Activities: how you test.

• Evaluation: how to tell whether the test passed or
failed.

• Artefact: What you will report

All testing involves all five dimensions.
Individual techniques focus on 1 or 2

dimensions, leaving the others float free

159Developing Exploratory Testing Skills Copyright Kaner © 2006

Example of technique emphasis

What is the difference between
• User testing?
• Usability testing?
• User interface testing?

160Developing Exploratory Testing Skills Copyright Kaner © 2006

Getting back to relevance

If you don’t have a technique at hand, you will often have to
invent your own.
Or at least, polish a test idea into a good test.
This is especially true with stories that give an initial approach to
a risk but need work.
Example:

Joe bought a smart refrigerator that tracks items stored in the
fridge and prints out grocery shopping lists. One day, Joe
asked for a shopping list for his usual meals in their usual
quantities and the fridge crashed with an unintelligible error
message.

How would you test for this bug?

161Developing Exploratory Testing Skills Copyright Kaner © 2006

Enhancing the test case from the story

• We start with Joe and his failure.
• We generate hypotheses for situations that might lead to a

failure like that:
– Wild pointer
– Stack overflow
– Unusual timing condition
– Unusual collection of things in the fridge

• Now the trick is to refine the hypotheses into harsher and
harsher tests

• Until we are satisfied that if the program passes this series of
tests, the hypothesis under test is probably the wrong one.

162Developing Exploratory Testing Skills Copyright Kaner © 2006

Enhancing the test case from the story

To achieve this, we might:
• Look for a potentially promising technique
• Work up a starting example of this type of test that appears

relevant to the failure under consideration
• Try out the test

– If you get the failure this simply, you can stop
– Otherwise, polish the test

> Consider the strengths of this class of test
> Stretch the test on the attributes not normally

emphasized by this technique.

163Developing Exploratory Testing Skills Copyright Kaner © 2006

Test Design: Some Readings

Kaner, Bach & Pettichord, “Testing
Techniques” in Lessons Learned in
Software Testing.

Kaner, C. (2003) “What is a good test
case?” http://www.testingeducation.org/a/testcase.pdf

Whittaker, “What is testing? And why is
it so hard?”
http://www.computer.org/software/so2000/pdf/s1070.pdf

Whittaker & Atkin, Software Engineering
is not Enough,
http://www.sisecure.com/pdf/jwsasofteng.pdf

164Developing Exploratory Testing Skills Copyright Kaner © 2006

Scenario testing:
Developing stories

as a vehicle for
achieving relevance

165Developing Exploratory Testing Skills Copyright Kaner © 2006

Scenario Testing: Some Readings
Berger, Bernie (2001) "The dangers of use cases employed as test cases," STAR West
conference, San Jose, CA. www.testassured.com/docs/Dangers.htm. accessed March 30,
2003
Buwalda, Hans (2000a) "The three holy grails of test development," presented at
EuroSTAR conference.
Buwalda, Hans (2000b) "Soap Opera Testing," presented at International Software
Quality Week Europe conference, Brussels.
Collard, R. (1999, July) “Developing test cases from use cases”, Software Testing &
Quality Engineering, available at www.stickyminds.com.
Kaner, C. (2003) An introduction to scenario testing,
http://www.testingeducation.org/articles/scenario_intro_ver4.pdf

166Developing Exploratory Testing Skills Copyright Kaner © 2006

Scenario testing
The ideal scenario has several characteristics:
• The test is based on a story about how the program is used,

including information about the motivations of the people
involved.

• The story is motivating. A stakeholder with influence would
push to fix a program that failed this test.

• The story is credible. It not only could happen in the real
world; stakeholders would believe that something like it
probably will happen.

• The story involves a complex use of the program or a
complex environment or a complex set of data.

• The test results are easy to evaluate. This is valuable for all
tests, but is especially important for scenarios because they are
complex.

167Developing Exploratory Testing Skills Copyright Kaner © 2006

Why use scenario tests?

• Learn the product
• Connect testing to documented requirements
• Expose failures to deliver desired benefits
• Explore expert use of the program
• Make a bug report more motivating
• Bring requirements-related issues to the surface, which might

involve reopening old requirements discussions (with new
data) or surfacing not-yet-identified requirements.

168Developing Exploratory Testing Skills Copyright Kaner © 2006

Scenarios
Designing scenario tests is much like doing a requirements
analysis, but is not requirements analysis. They rely on similar
information but use it differently.
• The requirements analyst tries to foster agreement about the

system to be built. The tester exploits disagreements to
predict problems with the system.

• The tester doesn’t have to reach conclusions or make
recommendations about how the product should work. Her
task is to expose credible concerns to the stakeholders.

• The tester doesn’t have to make the product design tradeoffs.
She exposes the consequences of those tradeoffs, especially
unanticipated or more serious consequences than expected.

• The tester doesn’t have to respect prior agreements. (Caution:
testers who belabor the wrong issues lose credibility.)

• The scenario tester’s work need not be exhaustive, just useful.

169Developing Exploratory Testing Skills Copyright Kaner © 2006

Risks of scenario testing
Other approaches are better for testing early, unstable code.
• A scenario is complex, involving many features. If the first feature is broken,

the rest of the test can’t be run. Once that feature is fixed, the next broken
feature blocks the test.

• Test each feature in isolation before testing scenarios, to efficiently expose
problems as soon as they appear.

Scenario tests are not designed for coverage of the program.
• It takes exceptional care to cover all features or requirements in a set of

scenario tests. Statement coverage simply isn’t achieved this way.
Reusing scenarios may lack power and be inefficient
• Documenting and reusing scenarios seems efficient because it takes work to

create a good scenario.
• Scenarios often expose design errors but we soon learn what a test teaches

about the design.
• Scenarios expose coding errors because they combine many features and

much data. To cover more combinations, we need new tests.
• Do regression testing with single-feature tests or unit tests, not scenarios.

170Developing Exploratory Testing Skills Copyright Kaner © 2006

Sixteen ways to create good scenarios
• Write life histories for objects in the system. How was the object created, what happens to

it, how is it used or modified, what does it interact with, when is it destroyed or discarded?
• List possible users, analyze their interests and objectives.
• Consider disfavored users: how do they want to abuse your system?
• List system events. How does the system handle them?
• List special events. What accommodations does the system make for these?
• List benefits and create end-to-end tasks to check them.
• Look at the specific transactions that people try to complete, such as opening a bank

account or sending a message. What are all the steps, data items, outputs, displays, etc.?
• What forms do the users work with? Work with them (read, write, modify, etc.)
• Interview users about famous challenges and failures of the old system.
• Work alongside users to see how they work and what they do.
• Read about what systems like this are supposed to do. Play with competing systems.
• Study complaints about the predecessor to this system or its competitors.
• Create a mock business. Treat it as real and process its data.
• Try converting real-life data from a competing or predecessor application.
• Look at the output that competing applications can create. How would you create these

reports / objects / whatever in your application?
• Look for sequences: People (or the system) typically do task X in an order. What are the

most common orders (sequences) of subtasks in achieving X?

