
Application Note 100

—————————————————

Product and company names are trademarks or trade names of their respective companies.

341255B-01 © Copyright 1998 National Instruments Corporation. All rights reserved. December 1998

How to Use Asynchronous Callback
Functions with GPIB Events

for Windows NT/98/95
Patrick Williams, Dan Froelich

Introduction
In many GPIB applications, GPIB events are used to monitor system status or respond to instruments requesting ser-
vice. Traditional methods for responding to GPIB events involve synchronous waits on the events of interest or polling
loops that periodically check the GPIB status variable, ibsta , for the events of interest. Asynchronous callback func-
tions offer a new approach for automatically executing blocks of code when one or more GPIB events are detected.
Using the ibnotify function and the asynchronous event notification technique, you can write applications that elim-
inate wasted processing time associated with using synchronous waits or the polling technique.

This application note introduces the ibnotify function and describes how to use asynchronous callback functions
when interfacing with GPIB instruments. It also discusses which GPIB events can be used to trigger asynchronous call-
back functions and which environments support the asynchronous callbacks. The appendixes contain example
applications demonstrating the ibnotify function in LabWindows/CVI and Visual C, and the GpibNotify ActiveX
control in Visual Basic.

Benefits of Asynchronous Callback Functions
In basic GPIB communication, a command is written to the device, and then the response is read back. Both of these
operations are generally done synchronously with the read following the write. However, many times, devices may
require a period of time to take measurements and prepare a response to a given query. If the application simply calls
a synchronous GPIB write and then waits until the response is available to do a read operation, your application will
sit idle until the device provides a response.

For example, consider the following sequence of function calls:

ibwrt(ud, command, count) Write a Command
ibwait(ud, RQS) Wait For the Device To Request Service
ibrd(ud, data, count) Read The Data

A command is written to the device specified by the unit descriptor ud and then the application waits until the device
requests service to read back the desired data. The time spent waiting on the RQS GPIB event is lost.

2

A less wasteful approach for waiting on a GPIB event to occur is to write a command to the device and then periodically
poll the device until the desired event has occurred. Between polls to the device, other operations can be carried out by
the application. For example,

ibwrt(ud, command, count); Write a Command
while (!(ibsta & RQS)) { End Loop If Device Requested Service

Other Processing Do Other Program Tasks
ibwait(ud,0); Check For Device Requesting Service

 }

ibrd(ud, count); Read The Data

However, this still requires periodic polling calls to be made from the application. These polls take processor time away
from other tasks. Depending on the polling frequency, there will be some delay in how quickly the device is serviced
once it is ready to respond to the command.

A more efficient solution to this problem would be to use an asynchronous callback function that is called immediately
upon the occurrence of a GPIB event. Win32 GPIB applications can asynchronously receive event notifications using
the ibnotify function or the GpibNotify ActiveX control. These features are useful if you want your application to
be notified asynchronously about the occurrence of one or more GPIB events. Using ibnotify , your application does
not need to check the status of your GPIB device. When your GPIB device requests service, the GPIB software auto-
matically notifies your application that the event has occurred by invoking a callback function. The callback function
executes when any of the GPIB events specified in the event mask parameter have occurred.

Software for Asynchronous Callbacks
The ibnotify function is available under Windows NT and Windows 95 using the native 32-bit NI-488.2M software.
Here is a list of the software versions that include ibnotify :

• NI-488.2M, version 1.21 and higher for Windows NT

• NI-488.2M for GPIB-ENET, version 1.0 and higher for Windows NT

• NI-488.2M, version 1.1 and higher for Windows 95

The GpibNotify ActiveX control has the same support as the ibnotify . Here is the list of the software versions that
support GpibNotify :

• NI-488.2M, version 1.21 and higher for Windows NT

• NI-488.2M for GPIB-ENET, version 1.0 and higher for Windows NT

• NI-488.2M, version 1.2 and higher for Windows 95

Description of the ibnotify Function
The ibnotify function notifies the user of one or more GPIB events by invoking the user callback. The following
section describes the parameters for both the ibnotify function and the callback routine.

C Syntax
ibnotify (

int ud, // unit descriptor

int mask, // bit mask of GPIB events

GpibNotifyCallback_t Callback, // callback function

void * RefData // user-defined reference data

)

3

Visual Basic Syntax
Visual Basic is supported using the GpibNotify ActiveX control described later.

Parameter Descriptions
Board/Device Descriptor – ud
This parameter specifies a board or device descriptor that was returned by ibfind or ibdev (or in the case of
LabWindows/CVI, OpenDev). This descriptor identifies which board or device to use for this operation. You can also
pass a board index into the function. For example, use 0 for GPIB0 or 1 for GPIB1.

Event Mask – mask
This parameter specifies the GPIB events upon which the callback function is invoked. Table 1 defines the valid event
masks for board-level and device-level ibnotify calls. Note that the ibnotify event mask bits are identical to the
ibwait mask bits.

Table 1. Valid Events for Asynchronous Callback Functions

Mnemonic Hex Value Board/Device Description

TIMO 4000 Board/Device Time limit exceeded

END 2000 Board/Device GPIB board detected END or EOS

SRQI 1000 Board SRQ asserted

RQS 800 Device Device requesting service

CMPL 100 Board/Device I/O completed

LOK 80 Board GPIB board is in Lockout State

REM 40 Board GPIB board is in Remote State

CIC 20 Board GPIB board is CIC

ATN 10 Board Attention is asserted

TACS 8 Board GPIB board is Talker

LACS 4 Board GPIB board is Listener

DTAS 2 Board GPIB board is in Device Trigger State

DCAS 1 Board GPIB board is in Device Clear State

4

The events specified with a bit mask correspond to the bits of the status word ibsta . This value reflects a sum of one
or more events. If any of the events occur, the callback is invoked. If you want to disable callbacks, use an event mask

of 0.

Note: If one or more of the bits in the event mask is already TRUE, the callback is invoked immedi-
ately. For example, if you pass CMPL as the event mask, and the CMPL bit is currently TRUE
in ibsta , the callback is invoked immediately.

Note: For SRQI event mask, if you want to install a callback for the SRQI event, Automatic Serial
Polling must be disabled. You can disable Automatic Serial Polling with the following function
call:
ibconfig (boardIndex, IbcAUTOPOLL, 0);

For RQS event mask, if you want to install a callback for the RQS event, Automatic Serial Poll-
ing must be enabled for the board. By default, Automatic Serial Polling is enabled. You can
enable Automatic Serial Polling with the following function call:
ibconfig (boardIndex, IbcAUTOPOLL, 1);

Callback Function – Callback
The callback function, which you register with the ibnotify call, is invoked when one or more of the mask bits passed
to ibnotify is TRUE. This function (type GpibNotifyCallback_t) takes the form:

int __stdcall CallbackFunction (int boardOrDevice,

int LocalIbsta, int LocalIberr,

long LocalIbcntl, void *callbackData);

More will be explained on this subject in the detailed description of the ibnotify Callback function section of this
application note.

Callback Data – RefData
User-defined reference data for the callback. It is a four-byte value that will be passed to the callback function. It may
be either a pointer to data or just an integer value.

Return Value of ibnotify
The return value of the ibnotify function is the GPIB status, ibsta , after the call. The GPIB status describes the
state of the GPIB and the result of the function call. Any value with the ERR bit set indicates an error.

Function Description
If the mask passed to the ibnotify function is nonzero, ibnotify monitors the events specified by the mask. When
one or more of the events is true, the Callback is invoked.

A given unit descriptor ud can have only one outstanding ibnotify call at any one time. If a current ibnotify is in
effect for a ud, it is replaced by a subsequent ibnotify call. To cancel an outstanding ibnotify call for ud, issue
ibnotify for the ud in the main thread with a mask of 0 and ensure that your Callback function stops rearming ibno-

tify by returning 0.

If an ibnotify call is outstanding and one or more of the GPIB events it is waiting on becomes true, the Callback is
invoked. Each callback function is set up to become active when any of the GPIB Events included in the callback func-
tions mask occurs. Therefore, although only a single callback may be used for each board or device that callback can
become active on one of several events and carry out different actions for each.

5

Like ibwait , ibstop , and ibonl , the invocation of the ibnotify Callback can cause resynchronization of the driver
after an asynchronous I/O operation has been completed. In this case, the global variables passed into the Callback
after I/O has been completed contain the status of the I/O operation.

The ibnotify Callback is invoked in a separate thread from the rest of your application. If your application is per-
forming other GPIB operations while it is using ibnotify , you should use the per-thread GPIB globals, that are
provided by the Thread functions, ThreadIbsta() , ThreadIberr() , ThreadIbcnt() , and ThreadIbcntl() , in
these operations. In addition, if your application needs to share global variables with the Callback, you should use a
synchronization primitive (for example, semaphore) to protect access to any globals. Alternatively, the issue of data
protection can be avoided entirely if the Callback simply posts a message to your application using the Windows
PostMessage() function. For more information on the use of synchronization primitives, refer to the documentation
on using Win32 synchronization objects that came with your development tools.

Possible Errors for ibnotify
When you call ibnotify , you should always check ibsta to see if the error bit, ERR, has been set. If so, then check
iberr for the error code. The following errors that can be generated by a call to ibnotify are listed below along with
the possible reasons for the error.

EARG A bit set in mask is invalid.

ECAP ibnotify has been invoked from within an ibnotify Callback function, or the handler cannot perform
notification on one or more of the specified mask bits.

EDVR Either ud is invalid or the NI-488.2M driver is not installed. ibcntl contains a system-dependent error code.

ENEB The interface board is not installed or is not properly configured.

Detailed Description of the ibnotify Callback Function
The Callback Function
As explained earlier, the Callback function has the following prototype.

int __stdcall CallbackFunction (int boardOrDevice,

int LocalIbsta, int LocalIberr,

long LocalIbcntl, void *callbackData);

The parameters are described as follows:

Board/Device – boardOrDevice

The Callback function is passed the unit descriptor for the device or board causing the callback function to be invoked.

Status Variables – LocalIbsta , LocalIberr , LocalIbcntl

The current values of the GPIB global variables that are passed into the Callback routine. The normal GPIB global
variables, ibsta , iberr , ibcnt , and ibcntl , are undefined from within the callback routine. The local status
variables, LocalIbsta , LocalIberr , and LocalIbcntl , should be examined, instead of the GPIB global variables,
to determine why the callback was invoked. Notice that it is possible that the Callback was invoked because of an error
condition rather than because of the setting of one or more of the requested mask bits. Within the Callback, you could
continue to use LocalIbsta when checking the status condition as shown in the example code in Appendix A. Or for
checking any or all of the status variables, you should use the Thread status functions, ThreadIbsta() ,
ThreadIberr() , ThreadIbcnt() , and ThreadIbcntl() . For more information about the Thread functions, please
refer to the on-line help or the Writing Multithreaded Win32 GPIB Applications section of the GPIB Programming
Techniques chapter in NI-488.2M User Manual for Windows 95/Windows NT.

6

Callback Data – callbackData

The user-defined reference data that was passed to the original ibnotify call.

Return Value
The value that you return from the callback function is very important. It is the event mask that is used either to rearm
the callback or not. If you return 0, the callback is disarmed. That is, it will not be called again until you make another
call to ibnotify . If you return an event mask different than the one you originally passed to ibnotify , the new event
mask is used.

If you return an invalid event mask or if there is an operating system error in rearming the callback, the callback is
called with the LocalIbsta set to ERR, LocalIberr set to EDVR, and LocalIbcntl set to
IBNOTIFY_REARM_FAILED. The callback is called again immediately with these values set. Therefore you should
always check the value of the LocalIbsta parameter to make sure that one of the requested events has actually
occurred.

Callback Details for SRQI
If the callback function is called because of an SRQ (board-level only), the callback function should call the ibrsp

function. The ibrsp function will obtain the status byte, which turns off the SRQ and will prevent the callback from
being repeatedly called.

Possible Errors for the Callback
EDVR The Callback return failed to rearm the Callback.

C Example Using ibnotify
Appendix A contains an example of how you might use ibnotify in your application. The example shows how a
GPIB application could acquire measurements from a digital multimeter.

LabWindows/CVI and Asynchronous Callbacks
In LabWindows/CVI, you can install asynchronous callback functions for a particular board or device using
ibnotify . You can also install synchronous callbacks using ibInstallCallback . Synchronous callbacks are
invoked only when LabWindows/CVI is processing events. LabWindows/CVI processes events when you call
ProcessSystemEvents or GetUserEvent , or when RunUserInterface is active and you are not in a callback
function. Consequently, the latency between the occurrence of the GPIB event and the invocation of the callback can
be large. However, there are no restrictions on what you can do within the callback function.

Using ibnotify , you can install asynchronous callbacks that can be called at any time with respect to the rest of your
program. This means that LabWindows/CVI does not have to be processing events. Consequently, the latency between
the occurrence of the GPIB event and the invocation of the callback is smaller than with synchronous callbacks. How-
ever, there are some restrictions on operations when using asynchronous callbacks. You can do the following:

• Call the User Interface Library function PostDeferredCall , which schedules a different callback function to be
called synchronously.

• Call any GPIB function, except for ibnotify or ibInstallCallback .

• Call ANSI C functions such as strcpy and sprintf , which affect only the arguments passed in (that is, have no
side effects). You cannot call printf or file I/O functions.

• Call malloc , calloc , realloc , or free .

• Manipulate global variables, but only if you know that the callback has not been called at a point when the main
part of your program is modifying or interrogating the same global variables.

7

If you need to perform operations that fall outside these restrictions, you can do the following:

1. In your asynchronous callback,

• Perform the time-critical operations

• Call PostDeferredCall to schedule a synchronous callback.

2. In the synchronous callback, perform the rest of the operations.

Appendix A contains an example written in C of how you might use ibnotify in your application, Appendix B con-
tains an example of how you might use ibInstallCallback in your application, and Appendix C contains an
example of how you might use PostDeferredCall and ibnotify together in your application. The examples show
how a GPIB application could acquire measurements from a digital multimeter. For more extensive examples of using
PostDeferredCall and ibnotify from LabWindows/CVI, please refer to the GPIB Web site in the Download sec-
tion in the following location:

http://www.natinst.com/gpib/

Description of the GpibNotify ActiveX Control for Visual Basic
In Visual Basic, asynchronous callback functions cannot be used. However, it is still possible to set up the equivalent
of an asynchronous callback function for GPIB events by using an ActiveX control. An ActiveX control that encom-
passes the same functionality as the C ibnotify function has been designed for use with Visual Basic. This ActiveX
control can also be used with Visual C versions 4.0 and later. The control is distributed with NI-488.2M, version 1.2
and higher for Windows 95. The GpibNotify ActiveX control is available on our GPIB Web site. Please refer to the
Download section in the following location:

http://www.natinst.com/gpib/

Installing the GpibNotify ActiveX Control
If you are using version 1.2 or later of the Windows 95 version of NI-488.2M software, the GpibNotify ActiveX con-
trol is automatically installed and registered with the operating system when you install the GPIB software. Otherwise,
if you obtained the GpibNotify ActiveX control from the Web site, you will need to register the GpibNotify

ActiveX control yourself. The utility used to register the control is called regsvr32.exe , which comes with the Visual
Basic 4.0 CD-ROM.

Follow the steps below in order to register the GpibNotify ActiveX control.

1. Copy the files, gpibnotify.ocx and gpibnotify.tlb , to the appropriate windows system directory (for
Windows 95, usually c:\windows\system or for Windows NT, usually c:\windows\system32).

2. Open up a DOS shell.

3. Insert the Visual Basic CD-ROM into the CD-ROM drive.

4. Go to the directory called \tools\pss on the Visual Basic CD-ROM.

5. On the command line, type in the following:

regsvr32 <path>\gpibnotify.ocx

where <path> is the appropriate windows system directory where the gpibnotify.ocx file resides.

8

Adding the GpibNotify ActiveX Control to the Visual Basic Toolbox
To add the GpibNotify ActiveX control to the toolbox, perform the following steps.

1. Select Tools from the menu bar.

2. Select Custom Controls... from the drop-down list.

3. In the Custom Controls dialog box that appears, put an X in the box to the left of the gpibNotify ActiveX Control
module by clicking on the box itself as shown in Figure 1. Click OK .

4. An icon is added to your Toolbox. The new icon contains a picture of a bell with the label NOTIFY. An example
of the updated Toolbox is shown in Figure 2. The new NOTIFY item is located in the lower right hand corner.

Figure 1. Figure 2.

9

Adding a GpibNotify Control to Your Visual Basic Program
Once the GpibNotify ActiveX control has been added to the toolbox it can be placed on a Visual Basic form in the
same manner as any other control. For each GpibNotify ActiveX control that you want to add, follow the instructions
below:

1. Double-click on the NOTIFY icon in the ToolBox. This places the GPIB notify icon onto your form as shown
in Figure 3.

Figure 3.

2. To add code to the callback routine, double-click on the GPIB notify icon. The callback routine is named
GpibNotifyX_Notify , where X is the particular numbered GpibNotify control. Each GpibNotify ActiveX
control is numbered. The first control is numbered 1, the next control is numbered 2, and so on.

Setting Up the Event Mask and Installing the Callback Routine
For each GpibNotify control, a mask must be set up to determine which events will trigger the callback. There are
three different ways that the mask can be set in Visual Basic.

Method 1
The easiest way to set the event mask is to modify the GpibNotify Control Properties page. To access that page,
follow the steps below:

1. Right-click on the GPIB notify icon as it appears on your form.

2. Select Properties... from the drop-down list.

3. In the GpibNotify Control Properties dialog box, click on the box to the left of the GPIB event for each and
every GPIB event that you wish to monitor.

4. When you have finished selecting all the desired GPIB events, click OK .

To use the call, enter the following line of code in your application:

GpibNotifyX.SetupNotify ud

where X is the numbered control that you want to invoke and ud is the unit descriptor that was obtained by using either
ibdev or ibfind .

10

Method 2
Another method is to assign a SetupMask value to the SetupNotify function by declaring an integer value and set-
ting it to the desired GPIB event(s) as shown below:

Dim mask As Integer

mask = XXX

where XXX is the desired GPIB event(s) (for example, CMPL, RQS, TIMO) that you wish to invoke the callback with.
The call to SetupNotify would look like this:

GpibNotifyX.SetupNotify ud, mask

where X is for the particular numbered control that you wish to invoke and where ud is the unit descriptor that was
obtained using either ibdev or ibfind . If you have set up the GpibNotify control properties page as in method 1,
calling GpibNotifyX.SetupNotify with a mask parameter will override the choices made on the properties page.

Method 3
The third method is to initialize the SetupMask for the desired GPIB events by directly modifying the SetupMask

property as shown below. This method will also override the control properties page.

GpibNotifyX.SetupMask = RQS

Then you can call the SetupNotify function with only a unit descriptor:

GpibNotifyX.SetupNotify ud

GpibNotify ActiveX Control Example
The example in Appendix D is intended only to show the basic program flow for using the GpibNotify ActiveX con-
trol. The example shows how a GPIB application could acquire data.

11

Appendix A
ibnotify Example in C

The following code is an example of how you might use ibnotify in your application. Assume that your GPIB device
is a multimeter, which you program to acquire a reading by sending it “SEND DATA.” The multimeter requests service
when it has a reading ready. Each reading is a floating-point value.

In this example, globals are shared by the Callback thread and the main thread, and the access of the globals is not
protected by synchronization. In this case, synchronization of access to these globals is not necessary because of the
way they are used in the application, only a single thread is writing the global values and that thread always just adds
information (increases the count or adds another reading to the array of floats).

C Source Code Example
#include <windows.h>

#include <stdio.h>

#include "decl-32.h"

int __stdcall MyCallback (int ud, int LocalIbsta, int LocalIberr, long LocalIbcntl,

 void *RefData);

int ReadingsTaken = 0;

float Readings[1000];

BOOL DeviceError = FALSE;

BOOL DisableCallback = FALSE;

int main()

{

int ud;

// Assign a unique identifier to the device and store it in the

// variable ud. ibdev opens an available device and assigns it to

// access GPIB0 with a primary address of 1, a secondary address of 0,

// a timeout of 10 seconds, the END message enabled, and the EOS mode

// disabled. If ud is less than zero, then print an error message

// that the call failed and exit the program.

ud = ibdev (0, // connect board

1, // primary address of GPIB device

0, // secondary address of GPIB device

T10s, // 10 second I/O timeout

1, // EOT mode turned on

0); // EOS mode disabled

if (ud < 0) {

printf ("ibdev failed.\n");

return 0;

}

// Issue a request to the device to send the data. If the ERR bit

// is set in ibsta, then print an error message that the call failed

// and exit the program.

ibwrt (ud, "SEND DATA", 9L);

if (ibsta & ERR) {

printf ("unable to write to device.\n");

// Call the ibonl function to disable the hardware and software.

ibonl(ud, 0);

return 0;

}

12

// set up the asynchronous event notification on RQS

ibnotify (ud, RQS, MyCallback, NULL);

if (ibsta & ERR) {

printf ("ibnotify call failed.\n");

// Call the ibonl function to disable the hardware and software.

ibonl(ud, 0);

return 0;

}

while ((ReadingsTaken < 1000) && !(DeviceError)) {

// Your application does useful work here. For example, it

// might process the device readings or do any other useful work.

}

// Disable notification

DisableCallback = TRUE;

ibnotify (ud, 0, NULL, NULL);

// Call the ibonl function to disable the hardware and software.

ibonl (ud, 0);

return 1;

}

int __stdcall MyCallback (int LocalUd, int LocalIbsta, int LocalIberr, long LocalIbcntl,

 void *RefData)

{

char SpollByte;

int expectedResponse = 0x40;

char ReadBuffer[40];

// If the ERR bit is set in LocalIbsta, then print an error message

// and return.

if (LocalIbsta & ERR) {

printf ("GPIB error %d has occurred. No more callbacks.\n", LocalIberr);

DeviceError = TRUE;

return 0;

}

// Read the serial poll byte from the device. If the ERR bit is set

// in ibsta, then print an error message and return.

LocalIbsta = ibrsp (LocalUd, &SpollByte);

if (LocalIbsta & ERR) {

printf ("ibrsp failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

// If the returned status byte equals the expected response, then

// the device has valid data to send; otherwise it has a fault

// condition to report.

if (SpollByte != expectedResponse) {

printf("Device returned invalid response. Status byte = 0x%x\n",

 SpollByte);

DeviceError = TRUE;

return 0;

}

13

// Read the data from the device. If the ERR bit is set in ibsta,

// then print an error message and return.

LocalIbsta = ibrd (LocalUd, ReadBuffer, 40L);

ReadBuffer[ThreadIbcntl()] = '\0';

if (LocalIbsta & ERR) {

printf ("ibrd failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

// Convert the data into a numeric value.

sscanf (ReadBuffer, "%f", &Readings[ReadingsTaken]);

ReadingsTaken += 1;

if ((ReadingsTaken >= 1000) || DisableCallback) {

return 0;

}

else {

// Issue a request to the device to send the data and rearm

// callback on RQS.

LocalIbsta = ibwrt (LocalUd, "SEND DATA", 9L);

if (LocalIbsta & ERR) {

printf ("ibwrt failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

else {

return RQS;

}

}

}

14

Appendix B
ibInstall Callback Example in LabWindows/CVI)

The following code is an example of how you might use ibInstallCallback in your LabWindows/CVI application.
Assume that your GPIB device is a multimeter, which you program to acquire a reading by sending it ‘SEND DATA.”
The multimeter requests service when it has a reading ready. Assume that the User Interface consists of one panel. On
the panel there are two buttons, one labeled Run, and the other labeled Quit . The panel also has a TextBox where the
multimeter measurements are displayed. The GPIB global status variable, ibsta , is displayed in its own window. The
GPIB global error variable, iberr , is displayed in its own window if there is an error.

Assume that clicking the Run button causes the program to read five measurements from the multimeter.

To download the complete project, please refer to the GPIB Web site in the Download section in the following location:

http://www.natinst.com/gpib/

#include <formatio.h>

#include <utility.h>

#include <gpib.h>

#include <ansi_c.h>

// Need the cvirte.h file if linking in external compiler; harmless otherwise

#include <cvirte.h>

#include <userint.h>

#include "IbInstallCallback.h"

static int panelHandle;

static int ReadingsTaken;

static int LineIndex;

void CVICALLBACK Device_Callback (int, int, void *);

int main (int argc, char *argv[])

{

int device;

// Needed if linking in external compiler; harmless otherwise.

if (InitCVIRTE (0, argv, 0) == 0) {

return -1; // out of memory.

}

// If debugging is enabled, this function directs LabWindows/CVI not

// to display a run-time error dialog box when a National Instruments

// library function reports an error.

DisableBreakOnLibraryErrors();

// Assign a unique identifier to the device and store it in the

// variable device. ibdev opens an available device and assigns it to

// access GPIB0 with a primary address of 1, a secondary address of 0,

// a timeout of 10 seconds, the END message enabled, and the EOS mode

// disabled. If device is less than zero, then print an error message

// that the call failed and exit the program.

device = ibdev (0, 1, NO_SAD, T10s, 1, 0);

if (device < 0) {

MessagePopup ("ibdev Error", "ibdev failed! Exiting the program.");

return 0;

}

// Turn on AutoPolling for access GPIB0 board.

ibconfig (0, IbcAUTOPOLL, 1);

15

// Install a synchronous callback function for specified device for

// the RQS event.

ibInstallCallback (device, RQS, Device_Callback, NULL);

if (ibsta & ERR) {

SetCtrlVal (panel, DEVICE_STATUS_LED, 1);

SetCtrlVal (panel, DEVICE_ERR, iberr);

ProcessDrawEvents();

}

// Loads a panel into memory from a User Interface Resource (.uir) file.

if ((panelHandle = LoadPanel (0, "IbInstallCallback.uir", DEVICE)) < 0) {

return -1;

}

// Displays a panel on the screen.

DisplayPanel (panelHandle);

// Setup the Callback Data so that the device is passed into the local function

SetCtrlAttribute (panelHandle, DEVICE_RUN_BUTTON, ATTR_CALLBACK_DATA, &device);

SetCtrlAttribute (panelHandle, DEVICE_QUIT_BUTTON, ATTR_CALLBACK_DATA, &device);

RunUserInterface ();

return 0;

}

// This function is called when the user clicks on the QUIT button.

int CVICALLBACK Quit (int panel, int control, int event, void *callbackData,

int eventData1, int eventData2)

{

switch (event)

{

case EVENT_COMMIT:

{

int device;

memcpy(&device, callbackData, sizeof(int));

// Disable the callback.

ibInstallCallback (device, 0, NULL, NULL);

// Call the ibonl function to disable the hardware

// and software.

ibonl(device, 0);

QuitUserInterface (0);

break;

}

}

return 0;

}

// This function is called when user clicks on the RUN button.

int CVICALLBACK Run (int panel, int control, int event, void *callbackData,

int eventData1, int eventData2)

{

int device;

ReadingsTaken = 0;

LineIndex = 1;

switch (event)

16

{

case EVENT_COMMIT:

{

int device;

char string[200];

memcpy(&device, callbackData, sizeof(int));

memcpy(string, "SEND DATA", 9);

string[9] = '\0'; // Terminate the string.

// Issue a request to the device to send the data. If the

// ERR bit is set in ibsta, then display the error.

ibwrt(device, string, strlen(string));

if (ibsta & ERR)

{

 SetCtrlVal (panel, DEVICE_STATUS_LED, 1);

 SetCtrlVal (panel, DEVICE_ERR, iberr);

 ProcessDrawEvents();

}

// Display the status variable.

SetCtrlVal (panel, DEVICE_IBSTA, ibsta);

}

}

return 0;

}

void CVICALLBACK Device_Callback (int LocalUd, int mask, void *callbackData)

{

char SpollByte;

int LocalIbsta;

int bytes;

char ReadBuffer[100];

char string[100];

// Read the serial poll byte from the device. If the ERR bit is set

// in LocalIbsta, then display the error.

LocalIbsta = ibrsp (LocalUd, &SpollByte);

if (LocalIbsta & ERR) {

SetCtrlVal (panelHandle, DEVICE_STATUS_LED, 1);

SetCtrlVal (panelHandle, DEVICE_ERR, iberr);

ProcessDrawEvents();

}

// If the returned status byte equals the expected response, then the

// device has valid data to send; otherwise it has a fault condition to

// report.

if (SpollByte != 0x50)

{

MessagePopup ("ibrsp Error", "Incorrect response from the multimeter!");

return;

}

// Display the status variable.

SetCtrlVal (panelHandle, DEVICE_IBSTA, ibsta);

// Read the data from the device. If the ERR bit is set in ibsta, display

// the error and return.

17

ibrd(LocalUd, ReadBuffer, 10);

if (ibsta & ERR) {

SetCtrlVal (panelHandle, DEVICE_STATUS_LED, 1);

SetCtrlVal (panelHandle, DEVICE_ERR, iberr);

ProcessDrawEvents();

return;

}

ReadBuffer[ibcntl] = '\0';

ReadingsTaken++;

// Display the measurement in the Text Box.

Fmt(string, "Multimeter Measurement #%i[w2] = %s", ReadingsTaken, ReadBuffer);

if (ReadingsTaken == 1) {

ResetTextBox (panelHandle, DEVICE_READ_BOX, string);

}

else {

InsertTextBoxLine (panelHandle, DEVICE_READ_BOX, LineIndex, string);

LineIndex++;

}

// Display the status variable.

SetCtrlVal (panelHandle, DEVICE_IBSTA, ibsta);

ProcessDrawEvents();

if (ReadingsTaken < 5) {

memcpy(string, "SEND DATA", 9);

string[9] = '\0';

// Issue a request to the device to send the data.

ibwrt(LocalUd, string, strlen(string));

if (ibsta & ERR) {

SetCtrlVal (panelHandle, DEVICE_STATUS_LED, 1);

SetCtrlVal (panelHandle, DEVICE_ERR, iberr);

ProcessDrawEvents();

}

// Display the status variable.

SetCtrlVal (panelHandle, DEVICE_IBSTA, ibsta);

}

}

18

Appendix C
PostDeferredCall Example in LabWindows/CVI

The following code is an example of how you might use PostDeferredCall and ibnotify in your LabWin-
dows/CVI application. Assume that your GPIB device is a multimeter, which you program to acquire a reading by
sending it “SEND DATA.” The multimeter requests service when it has a reading ready. Assume that the User Interface
consists of one panel. On the panel there are two buttons, one labeled Run, and the other labeled Quit . The panel also
has a TextBox where the multimeter measurements are displayed. The GPIB global error variable, iberr , is displayed
in its own window if there is an error.

Assume that clicking the Run button causes the program to read five measurements from the multimeter.

To download the complete project, please refer to the GPIB Web site in the Download section in the following location:

http://www.natinst.com/gpib/

#include <formatio.h>

#include <utility.h>

#include <gpib.h>

#include <ansi_c.h>

// Need the cvirte.h file if linking in external compiler; harmless otherwise

#include <cvirte.h>

#include <userint.h>

#include "Ibnotify.h"

// Bits in the Status Byte

#define RQS_BIT 0x50

static int panelHandle;

static int ReadingsTaken;

static int LineIndex;

int __stdcall My_Callback (int, int, int, long, void *);

void CVICALLBACK Display_ERR_Message (void *);

void CVICALLBACK Display_RD_Message (void *);

int main (int argc, char *argv[])

{

int device;

// Needed if linking in external compiler; harmless otherwise.

if (InitCVIRTE (0, argv, 0) == 0) {

return -1;// out of memory

}

// If debugging is enabled, this function directs LabWindows/CVI not

// to display a run-time error dialog box when a National Instruments

// library function reports an error.

DisableBreakOnLibraryErrors();

// Assign a unique identifier to the device and store it in the

// variable device. ibdev opens an available device and assigns it to

// access GPIB0 with a primary address of 1, a secondary address of 0,

// a timeout of 10 seconds, the END message enabled, and the EOS mode

// disabled. If device is less than zero, then print an error message

// that the call failed and exit the program.

device = ibdev (0, 1, 0, T10s, 1, 0);

if (device < 0) {

MessagePopup ("ibdev Error", "ibdev failed! Exiting the program.");

19

return 0;

}

// Turn on AutoPolling for access GPIB0 board.

ibconfig (0, IbcAUTOPOLL, 1);

// Set up the asynchronous event notification on RQS. Notice that the device

// parameter is passed to the function twice. This is necessary because the

// Callback Function calls PostDefferedCall which needs to have the device passed

// in as a parameter that will not be destroyed as soon as the callback function

// exits.

ibnotify (device, RQS, My_Callback, &device);

if (ibsta & ERR) {

MessagePopup ("ibnotify Error", "ibnotify failed! Exiting the program.");

// Call the ibonl function to disable the hardware and software.

ibonl(device, 0);

return 0;

}

// Loads a panel into memory from a User Interface Resource (.uir) file.

if ((panelHandle = LoadPanel (0, "Ibnotify.uir", PANEL)) < 0) {

return -1;

}

// Displays a panel on the screen.

DisplayPanel (panelHandle);

// Setup the Callback Data so that the device is passed into the local function.

SetCtrlAttribute (panelHandle, PANEL_RUN_BUTTON, ATTR_CALLBACK_DATA, &device);

SetCtrlAttribute (panelHandle, PANEL_QUIT_BUTTON, ATTR_CALLBACK_DATA, &device);

RunUserInterface ();

return 0;

}

// This function is called when the user clicks on the QUIT button.

int CVICALLBACK Quit (int panel, int control, int event,

void *callbackData, int eventData1, int eventData2)

{

switch (event) {

case EVENT_COMMIT:

{

int device;

memcpy(&device, callbackData, sizeof(int));

// Disable the callback.
ibnotify (device, 0, NULL, NULL);

// Call the ibonl function to disable the hardware and
// software.
ibonl(device, 0);

QuitUserInterface (0);
break;

}

}
return 0;

}
// This function is called when the user clicks on the RUN button.
int CVICALLBACK Run (int panel, int control, int event, void *callbackData,

int eventData1, int eventData2)

{

20

int device;

ReadingsTaken = 0;

LineIndex = 1;

switch (event)

{

case EVENT_COMMIT:

{

int device;

char string[200];

memcpy(&device, callbackData, sizeof(int));

memcpy(string, "SEND DATA", 9);

string[9] = '\0';

// Issue a request to the device to send data. If the

// ERR bit is set in ibsta, then display the error.

ibwrt(device, string, strlen(string));

if (ibsta & ERR) {

 SetCtrlVal (panel, PANEL_STATUS_LED, 1);

 SetCtrlVal (panel, PANEL_ERR, iberr);

 ProcessDrawEvents();

}

break;

}

}

return 0;

}

int __stdcall My_Callback (int LocalUd, int LocalIbsta, int LocalIberr,

 long LocalIbntl, void *callbackData)

{

static char SpollByte;

char ReadBuffer[100];

char string[100];

// If the ERR bit is set in LocalIbsta, then print an error message

// and return.

if (LocalIbsta & ERR) {

PostDeferredCall (Display_ERR_Message, NULL);

// Disarm the callback.

return 0;

}

// Read the serial poll byte from the device. If the ERR bit is set

// in LocalIbsta, then print an error message and return.

LocalIbsta = ibrsp (LocalUd, &SpollByte);

if (LocalIbsta & ERR) {

PostDeferredCall(Display_ERR_Message, NULL);

// Disarm the callback.

return 0;

}

// If the returned status byte equals the expected response, then the

// device has valid data to send; otherwise it has a fault condition

// to report.

if (SpollByte & RQS_BIT) {

// Pass the device LocalUd into the Display_RD_Message through

21

// the use of the callback data

PostDeferredCall(Display_RD_Message, callbackData);

}

// The return value is the mask that is used to rearm the Callback

return RQS;

}

void CVICALLBACK Display_RD_Message (void *callbackdata)

{

char ReadBuffer[200];

int bytes, LocalUd, LocalIbsta;

char string[100];

memcpy(&LocalUd, callbackdata, sizeof(int));

// Read the data from the device. If the ERR bit is set in LocalIbsta,

// then display the error and return.

LocalIbsta = ibrd (LocalUd, ReadBuffer, 10);

ReadBuffer[ibcntl] = '\0';

if (LocalIbsta & ERR) {

SetCtrlVal (panelHandle, PANEL_STATUS_LED, 1);

SetCtrlVal (panelHandle, PANEL_ERR, iberr);

ProcessDrawEvents();

return;

}

ReadingsTaken++;

// Display the measurement in the Text Box.

Fmt(string, "Multimeter Measurement #%i[w2] = %s", ReadingsTaken, ReadBuffer);

if (ReadingsTaken == 1) {

ResetTextBox (panelHandle, PANEL_READ_BOX, string);

}

else {

InsertTextBoxLine(panelHandle, PANEL_READ_BOX, LineIndex, string);

LineIndex++;

}

if (ReadingsTaken < 5) {

memcpy(string, "*TRG; VAL1?", 11);

string[11] = '\0';

// Issue a request to the device to send the data.

LocalIbsta = ibwrt(LocalUd, string, strlen(string));

if (LocalIbsta & ERR) {

SetCtrlVal (panelHandle, PANEL_STATUS_LED, 1);

SetCtrlVal (panelHandle, PANEL_ERR, iberr);

ProcessDrawEvents();

}

return;

}

}

void CVICALLBACK Display_ERR_Message (void *callbackdata)
{

SetCtrlVal (panelHandle, PANEL_STATUS_LED, 1);
SetCtrlVal (panelHandle, PANEL_ERR, iberr);
ProcessDrawEvents();

}

22

Appendix D
GpibNotify Example in Visual Basic

This example shows the basic program flow for using the GpibNotify ActiveX control. It is written to work with a
fictitious device with GPIB address two. The device responds to the string “SEND DATA” by asserting SRQ when the
data is available. The data is a floating-point value. The program uses a blank form containing only a GpibNotify

ActiveX control. The GpibNotify procedure and the form load procedure are the only defined procedures for the
example. They are shown below. This example is designed to be run only once. It could be easily modified to run
several times by placing the form load procedure inside a command button click procedure and rearming the
GpibNotify mask with RQS instead of zero. For a more complete example program that takes 10 readings from a
Fluke 45 and uses a user interface to display the data, refer to the ocxsamp.mak project that comes with the
GpibNotify ActiveX control. In addition to registering the ActiveX control a Visual Basic project using GPIB
commands must include the niglobal.bas and vbib-32.bas modules. These modules are available with the GPIB
Software.

Visual Basic Example
Visual Basic Private Sub Form_Load()

' Assign a unique identifier to the device and store

' it in the variable ud. ibdev opens an available

' device and assigns it to access GPIB0 with a primary

' address of 2, a secondary address of 0, a timeout of

' 10 seconds, the END message enabled, and the EOS

' mode disabled. If ud is less than zero, then print

' an error message that the call failed and exit

' the program.

Call ibdev(0, 2, 0, T10s, 1, 0, ud)

If (ud < 0) Then

MsgBox "ibdev error. I'm quitting!", 16

End

End If

' Install the GpibNotify callback mechanism for the OLE

' Control by calling its SetupNotify Procedure with an

' event mask for the RQS Event.

GpibNotify1.SetupMask = RQS

GpibNotify1.SetupNotify ud

' Check to see if there was an error invoking the GpibNotify Callback mechanism.

If (ThreadIbsta() And EERR) Then

msg$ = "Error invoking Notification for RQS! ibsta = &H" +

Hex$(ThreadIbsta())

MsgBox msg$, vbCritical, "GPIB Notification Error!"

msg$ = "iberr = " + Str$(ThreadIberr())

MsgBox msg$, vbCritical, "GPIB Notification Error!"

' Call the ibonl function to disable the hardware and software.

Call ibonl(ud, 0)

End

End If

If (ThreadIbsta() And &H4000) Then

MsgBox ("Notification for RQS timed out.")

End

End If

23

' Write a command to the instrument to generate data and

' assert the SRQ line when the data is available.

wrtbuf$ = "SEND DATA"

Call ibwrt(ud, wrtbuf$)

If (ibsta And EERR) Then

MsgBox ("ibwrt Error!")

' Call the ibonl function to disable the hardware and software.

Call ibonl(ud, 0)

End

End If

End Sub

Private Sub GpibNotify1_Notify(ByVal LocalUd As Long, ByVal LocalIbsta As Long,

ByVal LocalIberr As Long, ByVal LocalIbcntl As Long, RearmMask As Long)

' This is the user-defined callback routine that

' gets invoked when one or more GPIB events in the

' mask that is passed to the SetupNotify method occurs.

'

' For this sample program, a data point will be read and

' displayed from the device.

Dim SPollByte As Integer

' If ERR bit is set in LocalIbsta that is passed into

' this subroutine, then print an error message and

' exit the function.

If LocalIbsta And EERR Then

MsgBox "Error with GPIB Notify #1- No more callbacks.", 16

Exit Sub

End If

' NOTE: for the rest of this subroutine, the global

' version of ibsta is used when checking to see

' if the error bit is set or not.

' Read the serial poll status byte. If the

' error bit EERR is set in ibsta, display an error

' message and exit.

Call ibrsp(LocalUd, SPollByte)

If (ibsta And EERR) Then

MsgBox ("ibrsp Error!")

RearmMask = 0

Exit Sub

End If

' If the returned status byte is &H50 then the instrument

' has valid data to send

If (SPollByte <> &H50) Then

MsgBox("Serial poll byte is NOT &H50.")

RearmMask = 0

Exit Sub

End If

' Read the data. If the error bit EERR is

' set in ibsta, display an error message

' and exit.

rdbuf$ = Space$(20)

Call ibrd(LocalUd, rdbuf$)

If (ibsta And EERR) Then

MsgBox ("ibrd Error!")

RearmMask = 0

Exit Sub

End If

' Display the Reading.

MsgBox (rdbuf$)

' Rearm Mask is set to zero to disable the

' Callback mechanism. This example is only

' designed to run once to show flow for using

' GpibNotify Control.

RearmMask = 0

End Sub

