

October 2006

User Manual and Reference

 for EDOSK-2674

2 Table of contents

cetoni GmbH

Internet: www.cetoni.de

http://www.cetoni.de/

 3 Table of contents

1 Table of contents
1 Table of contents ... 3

2 Installation and Testing... 6
2.2 Overview.. 6
2.3 Initial Installation Method ... 6
2.4 RedBoot commands .. 8
2.5 Memory Map.. 9
2.6 EDOSK-2674 Tests ... 10
2.6.1 Running the eCos tests ... 11

3 EDOSK-2674 Configuration Options.. 14
3.2 Introduction .. 14
3.3 H8S Architecture Configuration Options ... 15
3.3.1 H8S services.. 16
3.3.2 H8S build options... 17
3.4 H8S/2674 Variant Configuration Options .. 17
3.4.1 H8S/2674 on-chip generic clock controls .. 17
3.4.2 H8S/2674 build options ... 18
3.5 EDOSK-2674 Platform Configuration Options .. 19
3.5.1 EDOSK-2674 I/O related options .. 20
3.5.2 EDOSK-2674 Real-time clock constants... 20
3.5.3 EDOSK-2674 build options.. 21
3.6 Serial Device Driver Configuration Options... 21
3.6.1 Generic H8S SCI driver ... 21
3.6.2 EDOSK-2674 serial device drivers .. 21
3.7 Ethernet Device Driver Configuration Options .. 23
3.7.1 SMSC LAN91CXX compatible Ethernet driver.. 23
3.7.2 EDOSK-2674 SMC91C96 Ethernet driver .. 24
3.8 H8S/2674 Watchdog driver Configuration Options ... 24
3.9 Wallclock Device Driver Configuration Options... 25
3.9.1 Wallclock device driver for Dallas 1672... 25
3.9.2 EDOSK-2674 board RTC driver .. 25
3.10 FLASH Memory Device Driver Configuration Options 25
3.10.1 Intel StrateFLASH memory support... 25
3.10.2 EDOSK-2674 FLASH memory support ... 25

4 Realtime Characterization... 26

5 Porting Guide..28
5.2 H8S eCos Exception-/Interrupt Handling explained...28
5.2.1 Hardware Vector Table ..29
5.2.2 Shadow Vector Table...29
5.2.3 The Interrupt Entry Routine..29
5.2.4 VSR Table ..29
5.2.5 Default Interrupt VSR ...30
5.2.6 Interrupt Handler Table ..30
5.2.7 User ISR...30
5.2.8 Default Exception VSR...30
5.2.9 Exception Handler..30
5.3 Understanding HAL Startup ...30
5.4 Variant HAL Porting to H8S/2357 ..34
5.4.1 HAL Variant Porting Process ...34
5.4.2 HAL Variant CDL..34
5.4.3 Module Register Description ..36
5.4.4 Interrupt Vectors...37
5.4.5 Variant Startup Macros ..37
5.4.6 The File var_misc.c ..38
5.5 Platform HAL Porting to Cetoni MCU2357...42
5.5.1 HAL Platform Porting Process ...42
5.5.2 HAL Platform CDL..42
5.5.3 Platform include files ..50
5.5.4 Platform source files...51
5.5.5 Memory Layout ..53

6 Application Development ..57
6.2 Symbolic Interrupt Vector Names ..57
6.2.1 External Interrupts..57
6.2.2 Miscellaneous Interrupts ..58
6.2.3 TPU - 16 Bit Timer Pulse Unit Interrupts..58
6.2.4 TMR - 8 Bit Timers ...59
6.2.5 DMA & EXDMA Controller Interrupts ...59
6.2.6 SCI – Serial Communication Interface Interrupts...60
6.3 Interrupt Priority Levels ..60
6.4 Interrupt Configuration ...61

7 Configuring the Windows Host...62
7.2 Installing the Cygwin Native Tools ...62
7.3 Installing H8S Cross-Development Tools ..64
7.4 Installing the eCos Development Kit ..65

4 Table of contents

 5 Table of contents

8 Debugging with Insight ... 67
8.2 Starting Insight... 67
8.3 Debugging ... 68
8.3.1 Debugging using serial line ... 68
8.3.2 Debugging via Ethernet ... 69
8.3.3 Special GDB commands ... 69

 Installation and Testing

2 Installation and Testing

2.2 Overview
RedBoot uses the serial port. The default serial port settings are 115200, 8, N, 1.

Ethernet is supported using the 10-base T connector. Management of onboard flash and

onboard real-time clock is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from the

board’s main FLASH.

redboot_ROM.ecm

ROMRAM [ROMRAM] RedBoot running from

SDRAM but contained in

the board’s main flash

redboot_ROMRAM.ecm

RAM [RAM] RedBoot running from

SDRAM with RedBoot in

the main FLASH.

redboot_RAM.ecm

2.3 Initial Installation Method
The EDOSK-2674 board ships with the Embedded Test Suite software (ETS) in Boot

Flash (AMD) device which allows for initial programming of RedBoot.

STEP 1

Ensure that 2 jumpers are fitted to BOOT and MF_WEN headers, located behind the

Serial Connector, before applying power to the board.

STEP 2

Switch power on and press the RESET button if necessary - The Power and Boot LEDs

should be lit

STEP 4

Select “1. Flash Programming” from the Top menu. Then select “2. Main Flash (Intel)”

from the sub-menu. Answer “yes” to destroy existing Main Flash data

6

 7 Installation and Testing

STEP 5

At this point copy the RedBoot ROM or ROMRAM SREC file to the serial port
$ cat redboot_ROM.srec > /dev/ttyS0

STEP 5

Once programming is complete, remove the BOOT and MF_WEN jumpers and press

RESET. You should now see the following RedBoot banner (can differ slightly):

Ethernet eth0: MAC address 00:00:87:d6:34:b9
IP: 192.168.0.32, Default server: 192.168.0.30

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version 1.02 - built 18:45:13, Jan 2 2004

Platform: Renesas EDOSK-2674 (H8S/2674)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00400000-0x00c00000, [0x0040af50-0x00bdd000] available
 0x00ff4000-0x00ffbe00, [0x00ff4000-0x00ffbe00] available
FLASH: 0x00000000 - 0x00400000, 32 blocks of 0x00020000 bytes each.
RedBoot>

NOTE All RedBoot images were built with Ethernet support. At

startup RedBoot tries to verify the Ethernet connection. If the

board is not connected to a network, then RedBoot reports “No

network interfaces found”. If you connect to a network later the

reset the board by entering “reset” in order to allow RedBoot

network detection.

STEP 6

Enter the command fconfig –i. This initializes the flash configuration database. Now

you can enter all flash configuration values. If you finished entering the values the screen

should look this way (configuration options may differ):

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Local IP address: 192.168.0.32
Default server IP address: 192.168.0.30
Console baud rate: 115200
Set eth0 network hardware address [MAC]: false
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y

Some words about the configuration options :

Use BOOTP for network configuration

By default RedBoot tries to use BOOTP to get an IP address. If there's no

BOOTP server on your network set this option false to avoid waiting until the

timeout

Local IP address:

This IP address is the default used by RedBoot if a BOOTP/DHCP server does

not respond.

Set eth0 network hardware address [MAC]

 You can force the MAC address to a desired value. If this option is false, the

MAC address will be read from the Ethernet device EEPROM.

STEP 7

Reset the board manually or by typing the reset command in order to make the

configuration options active. Now you can use your EDOSK board.

2.4 RedBoot commands
Please read the eCos reference manual for a detailed explanation of all RedBoot

commands. This paragraph covers only some commands which may be interesting for

EDOSK-2674 users.

Syntax: date [YYYY/MM/DD HH:MM:SS]

Options: none

Description: Query or set the EDOSK-2674 onboard real-time clock. Provides date

and time

information

Syntax: exec [-b <command line addr>]

 [-c "kernel command line"] [<entry point>]

Options: -b command line addr – Address in memory of Linux kernel

image

 -c kernel command line – Command line to pass to Linux kernel

 entry point – Starting address for Linux kernel execution

Description: The exec command is used to execute a non-eCos application, typically

a Linux kernel. Additional information may be passed to the kernel at

startup time. This command is quite special (and unique from the go

8 Installation and Testing

 9 Installation and Testing

command) in that the program being executed may expect certain

environmental setups. The Linux kernel expects to have been loaded to a

particular memory location which is architecture dependent. Since this

memory is used by RedBoot internally, it is not possible to load the kernel

to that location directly. Thus the requirement for the "-b" option which

tells the command where the kernel has been loaded. When the exec

command runs, the image will be relocated to the appropriate location

before being started. The "-c" option can be used to pass textual

"command line" information to the kernel. If the command line data

contains any punctuation (spaces, etc), then it must be quoted using the

double-quote character ’"’. If the quote character is required, it should be

written

as ’\"’.

2.5 Memory Map
RedBoot sets up the following memory map on the EDOSK-2674 board. (ROM startup

with shadow vector table in RAM)

Memory Description Physical Address Range

Hardware vector table 0x000000 – 0x0001ff

RedBoot ROM image 0x000200 – 0x0003ff

M
ai

n

FL
A

SH

unused FLASH memory
0x000400 - 0x3fffff

RedBoot RAM data 0x400000 - 0x40af4f

SD
R

A
M

heap
0x40af50 – 0xBfffff

Expansion board 0xc00000 – 0xdfffff

Boot Flash 0xe00000 – 0xefffff

 Ethernet adapter 0xf80000 – 0xfbffff

unused On-chip RAM 0xff4000 – 0xffbaff

VSR table 0xffbb00 – 0xffbcff

Virtual Vector table 0xffbd00 – 0xffbdff

O
n-

ch
ip

R
A

M

Shadow vector table 0xffbe00 – 0xffbfff

External address space 0xffc000 – 0xfffbff

Internal I/O registers 0xfffc00 – 0xfffeff

External address space 0xffff00 – 0xffff1f

Internal I/O registers 0xffff20 – 0xffffff

2.6 EDOSK-2674 Tests
The eCos repository provides test suites for various packages. The H8S architecture,

H8S/2674 variant and EDOSK-2674 platform provides a number of tests as part of the

eCos test suite. The following tests are available:

Test: h8s_except1.cxx

Description: This test checks basic H8S exception functionality. The test triggers trap

#0, trap #1, trap #2, trap #3 and trace exceptions and then checks if the

exception handler is called. This test is a replacement for the

except1.cxx test of eCos repository.

Provided by: H8S/2674 variant

Test: h8s_intr0.cxx

Description: This is a very basic test of interrupt objects. It tests interrupt creation,

configuration, masking and unmasking. It further tests disabling and

enabling of interrupts and modification of VSR table. This test is a

replacement for the intr0.cxx test of eCos repository

Provided by: H8S/2674 variant

Test: h8s_kexcept1.c

Description: This test does the same like h8s_except1.cxx but uses the Kernel API C.

It is a replacement for kexcept1.c

Provided by: H8S/2674 variant

Test: h8s_kintr0.cxx

Description: This test does the same like h8s_intr0.cxx but uses the Kernel API C. It is

a replacement for kintr0.c

Provided by: H8S/2674 variant

Test: intnest.c

Description: The test checks if interrupt nesting works for H8S/2674. It triggers 7

different interrupts with 7 different interrupt priorities from 1 – 7. The test

starts with lowest priority interrupt and finishes with highest priority

interrupt and checks if interrupts with a higher priority intercept lower

10 Installation and Testing

 11

priority ISR’s. In order to execute the test, kernel should be compiled with

interrupt nesting enabled.

Provided by: H8S/2674 variant

Test: knmi.c

Description: This test checks interrupt creation, configuration of NMI interrupt (rising

and falling edge) and execution of NMI ISR and DSR. This is an

interactive test and its building has to be enabled in configtool.

Provided by: H8S/2674 variant

2.6.1 Running the eCos tests

2.6.1.1 Setting u ctiop conne n
After building the tests, the

Configuration Tool also facilitates

automatically downloading and running

the tests on the target hardware. To run

the tests using the Configuration Tool,

select Tools -> Run Tests. This brings

up the Run Tests dialog box. Prior to

running the tests, the method for

connecting to the target hardware is

selected. Clicking the Properties button

at the bottom of the Run Tests dialog

box brings up the Settings dialog box. If

you would like to use serial connection

then select Serial and setup Port and

Baudrate:

Installation and Testing

If you prefer a TCP connection then

select TCP/IP and setup IP address

and Port

2.6.1.2 Setting up platform settings
Selecting Tools -> Platforms will bring

up the Platforms window. Here you

can select the edosk2674_h8s

platform by double clicking on it. The

Modify Platform window will pop up

and you can setup or change the

arguments for GDB when executing

the tests. The following arguments

should be set up in order to execute

the tests without pressing the reset

switch after each test:

set height 0
set debug remote 0
set remoteaddresssize 32
set remotebaud %b
target remote %p
load
break cyg_test_exit
break cyg_assert_fail
break cyg_test_init
cont
set cyg_test_is_simulator=0
cont
bt
maintenance packet r
detach

12 Installation and Testing

 13 Installation and Testing

2.6.1.3 Building the tests
Make sure that the option Asserts & Tracing in Infrastructure package is enabled when

building the eCos test cases. When building performnce tests like tm_basic.c or

dhrystons.c then Assert & Tracing schould be disabled in order to get the real

performance.

2.6.1.4 Executing the tests
After executing a test and before executing the next one the message Press OK when

target is reset – cancel to abort run will be displayed. You do not need to reset the board

manually (only required the first time GDB connects to the board) because after each test

GDB sends a reset package which will reset the board – so you simply have to click OK if

the message occurs.

 EDOSK-2674 Configuration Options

3 EDOSK-2674 Configuration Options

3.2 Introduction
In order to build RedBoot or the eCos library for EDOSK-2674 you have to select a

template and the hardware in graphical configuration tool. Select Build -> Templates and

then select the target “Renesas EDOSK2674” from Hardware list and a template from

Packet list. Now you should configure the template to your needs. For the EDOSK-2674

platform the following configuration options are available.

14

 15 EDOSK-2674 Configuration Options

3.3 H8S Architecture Configuration Options
The H8S architecture HAL package provides generic support for the H8S CPU

architecture. It is also necessary to select a specific target platform HAL package. You

find the H8S architecture configuration options in configtool in eCos HAL -> H8S

architecture.

Option Name Extended Interrupt Mode

CDL Name CYGHWR_HAL_H8S_INT_CTRL_MODE_2

Description The H8S architecture supports 2 interrupt modes: interrupt control mode

0 (normal) and interrupt control mode 2 (extended). Interrupt operations

differ depending on the interrupt control mode. In interrupt control mode

0, interrupt requests except for NMI are masked by the I-bit of CCR. In

interrupt control mode 2, mask control is done in eight levels for interrupt

requests except for NMI by comparing the EXR interrupt mask level (I2 to

I0 bits) and the IPR settings. At the moment only ICM2 is supported

Option Name Save Multiply-Accumulate Register (MAC) on context switch

CDL Name CYGHWR_HAL_H8S_USE_MAC

Description On the H8S/2600 CPU this 64-bit register stores the results of multiply-

and-accumulate operations. It consists of two 32-bit registers denoted

MACH and MACL. The lower 10 bits of MACH are valid; the upper bits

are a sign extension. If this option is disabled then the MAC registers

won’t be safe when switching tasks or on interrupt occurrence. This will

save some time but the content will not be available for GDB.

IMPORTANT!!! - If you would like to debug applications where you use

MAC than RedBoot also have to be build with MAC support because it

contains the whole debugging code.

Option Name Position of shadow vector table.

CDL Name CYGBLD_HAL_H8S_SHADOW_VECTOR_TABLE_POS

Description For interrupt handling the H8S architecture needs an additional shadow

vector table of 512 bytes. This option chooses if this table should be

placed into RAM or ROM. If a ROM monitor is built then the RAM location

is the preferred place in order to allow RAM applications to use or change

this table. For a final ROM application a ROM location of this table would

be better because this saves RAM memory.

3.3.1 H8S services
The H8S package provides some services like generich diagnostic code, generic SCI

driver and generic debugging stub for GDB. If a platform does not need to provide special

diagnostic code or a special debugging stub (i.e. with hardware breakpoint support, then

it can use the generic code by just implementing some interfaces defined in hal_h8s.cdl)

Option Name Use generic debugging stub

CDL Name CYGBLD_HAL_H8S_COMMON_GDB_STUB
Description The H8S architecture HAL provides a generic debugging stub that should

work for all H8S variants - So there should be no need for a platform to

provide its own debugging stub implementation. If a platform provides an

own debug stub (i.e. with hardware breakpoint support) then building this

generic stub is not necessary.

Option Name Use generic diagnostic SCI driver

CDL Name CYGBLD_HAL_H8S_COMMON_SCI_CODE
Description The H8S architecture HAL provides a common SCI device driver in

h8s_sci.c. If the platform uses the internal SCI module for console and

diagnostic output, and the SCI module can be driven by the common SCI

driver, then this option should be enabled. It enables the compilation of

h8s_sci.c. So there is no need for platform HAL to provide a diagnostic

SCI driver.

Option Name Use generic diagnostic code

CDL Name CYGBLD_HAL_H8S_COMMON_DIAG_CODE

Description The H8S architecture HAL provides common diagnostic code in

hal_diag.c. If there are no special requirements for a platform to provide

special diagnostic code then this common code can be used. This option

enables the compilation of hal_diag.c

Option Name Build additional serial diagnostic functions

CDL Name CYGBLD_HAL_ADDITIONAL_DIAG_CODE

Description This option enables additional diagnostic functions to be build for

debugging. These functions rely not on virtual vector interface but are

hardwired to SCI 2 channel.

16 EDOSK-2674 Configuration Options

 17 EDOSK-2674 Configuration Options

3.3.2 H8S build options

Option Name Linker script

CDL Name CYGBLD_LINKER_SCRIPT

Description Linker script required for build process.

3.4 H8S/2674 Variant Configuration Options
The H8S/2674 variant HAL package provides generic support for the H8S/2674

processor. It is also necessary to select a specific target platform HAL package. You find

the H8S/2674 variant configuration options in configtool in eCos HAL -> H8S architecture

-> H8S/2674 variant.

Option Name Watchdog module mask, unmask, ackn. support

CDL Name CYGBLD_HAL_H8S_WATCHDOG_INTERRUPT_CODE

Description Watchdog module interrupt mask, unmask and acknowledge differs from

other H8S/2674 modules. In order to support the function

cyg_interrupt_mask, cyg_interrupt_unmask and

cyg_interrupt_acknowledge for the watchdog module (also if you use it as

a simple overflow timer), additional code is necessary that is executed

every time one of the functions above is called. If you don't need the

module or if you use the eCos H8S/2674 watchdog driver then you do not

need this extra code. This will save some time in ISR's and decrease

code size a little bit.

3.4.1 H8S/2674 on-chip generic clock controls
Option Name PLL Multiplier Rate (Nx)

CDL Name CYGHWR_HAL_H8S_MULT_RATE

Description The PLL circuit has the function of multiplying the frequency of the clock

from the oscillator by a factor of 1, 2, or 4.

Option Name Clock Divider Rate (1/n)

CDL Name CYGHWR_HAL_H8S_DIVIDER_RATE

Description The frequency divider divides the PLL output clock to generate a 1/2, 1/4,

1/8, 1/16, or 1/32 clock. The following points should be noted since the

frequency of clock changes according to the setting of Clock Divider Rate

and PLL Multiplier Rate. Select the clock division ratio that is within the

operation guaranteed range of clock cycle time tcyc shown in the AC

timing of Electrical Characteristics. In other words, the range of clock

must be specified from 8 MHz (min) to 33 MHz (max). Outside of this

range must be prevented. All the on-chip peripheral modules operate on

the clock. Therefore, note that the time processing of modules such as a

timer and SCI differ before and after changing the clock division ratio. In

addition, wait time for clearing software standby mode differs by changing

the clock division ratio. See the description, Setting Oscillation

Stabilization Time after Clearing Software Standby Mode in section

22.2.3, Software Standby Mode, of the H8S2674 hardware manual for

details.

Option Name Internal clock to peripheral modules (Hz)

CDL Name CYGHWR_HAL_H8S_INTERNAL_MODULE_CLOCK

Description The on chip peripheral modules operate on the system clock. The system

clock (core CPU speed) is computed from the input clock speed,

(OSC/Clock Frequency in platform hal) the PLL Multiplier Rate and the

Divider Rate. (Core CPU speed = OSC/Clock Frequency * PLL Multiplier

Rate / Divider Rate). Select the clock division ratio that is within the

operation guaranteed range of clock cycle time tcyc shown in the AC

timing of Electrical Characteristics. In other words, the range of clock

must be specified from 8 MHz (min) to 33 MHz (max). Outside of this

range must be prevented.

3.4.2 H8S/2674 build options
Option Name H8S/2674 tests

CDL Name CYGPKG_HAL_H8S_H8S2674_TESTS

Description This option specifies the set of tests for the H8S/2674 variant.

18 EDOSK-2674 Configuration Options

 19 EDOSK-2674 Configuration Options

3.5 EDOSK-2674 Platform Configuration
Options

The EDOSK-2674 HAL package provides the support needed to run eCos on an

Evaluation Design O/S Kit for H8S/2674. You find the EDOSK-2674 platform

configuration options in configtool in eCos HAL -> H8S architecture -> EDOSK-2674

platform.

Option Name Startup type

CDL Name CYG_HAL_STARTUP

Description When targeting the EDOSK-2674 board, it is possible to build the system

for RAM, ROM or ROMRAM bootstrap. RAM bootstrap generally requires

that the boards main FLASH contains a suitable ROM monitor software

(preferably RedBoot) that allows GDB to download the eCos application

into RAM. The ROM and ROMRAM bootstrap typically requires that the

eCos application be blown into the board’s main FLASH. ROMRAM

startup requires extra RAM memory because the complete image will be

copied from ROM into RAM before startup. RAMAPP is a special RAM

startup. This startup is required if a RedBoot RAM image is running on

the board and an application should be debugged with this image.

Because RedBoot already resides in RAM, the application has to be

loaded behind the RedBoot image in RAM. This is required if i.e.

debugging of the GDB stub inside the RedBoot RAM image is necessary.

Option Name Memory Layout

CDL Name CYGHWR_MEMORY_LAYOUT

Description This is the memory layout used for building. It is selected according to the

startup (RAM, ROM, ROMRAM; RAMAPP) settings.

Option Name OSC/Clock Frequency

CDL Name CYGHWR_HAL_H8S_CPG_INPUT

Description The MCU crystal frequency has been chosen to support the fastest

operation. The value of the crystal is 33 MHz.

Option Name Build interactive tests

CDL Name CYGPKG_HAL_H8S_H8S2674_EDOSK2674_INTERACTIVE_TEST

Description This option enables the building of EDOSK-2674 tests which require user

interactivity in order to pass. (For example the NMI switch test) These

tests are built separately since they only make sense to use interactively.

3.5.1 EDOSK-2674 I/O related options
Option Name Number of communication channels on the board

CDL Name CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS

Description The H8S/2674 has three independent serial communication channels

(SCI0, SCI1 and SCI2). On the EDOSK board only one serial channel,

SCI2 is connected to an RS-232 interface.

Option Name Debug serial channel

CDL Name CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL

Description This option chooses which channel will be used to connect to a host

running GDB. On the EDOSK board only one channel is connected to an

RS-232 interface and can be used for debugging (SCI2).

Option Name Diagnostic Channel

CDL Name CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL

Description This option chooses which channel will be used for diagnostic output. On

the EDOSK board only one channel is connected to an RS-232 interface

and can be used for diagnostic output (SCI2).

Option Name GDB/Diagnostic serial port baud rate

CDL Name CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD

Description This option selects the baud rate for the diagnostic/debug serial channel

SCI 2.

3.5.2 EDOSK-2674 Real-time clock constants
Option Name Real-time clock numerator

CDL Name CYGNUM_HAL_RTC_NUMERATOR

Description The NUMERATOR divided by the DENOMINATOR gives the number of

nanoseconds per tick.

Option Name Real-time clock denominator

CDL Name CYGNUM_HAL_RTC_DENOMINATOR

Description The NUMERATOR divided by the DENOMINATOR gives the number of

nanoseconds per tick.

20 EDOSK-2674 Configuration Options

 21 EDOSK-2674 Configuration Options

Option Name Real-time clock period

CDL Name CYGNUM_HAL_RTC_PERIOD

Description The PERIOD is the divider to be programmed into a hardware timer that

is driven from an appropriate hardware clock, such that the timer

overflows once per tick. The EDOSK board uses the TPU channel 5 as

hardware timer.

Option Name Real-time clock frequency

CDL Name CYGNUM_HAL_RTC_FREQUENCY

Description This is the frequency of the real-time clock. This is the clock source for

the eCos operating system. The frequency is calculated from numerator

and denominator.

3.5.3 EDOSK-2674 build options
Option Name EDOSK-2674 tests

CDL Name CYGPKG_HAL_ H8S_H8S2674_EDOSK2674_TESTS

Description This option specifies the set of tests for the EDOSK-2674 platform.

3.6 Serial Device Driver Configuration
Options

3.6.1 Generic H8S SCI driver
This option enables the generic serial device driver for the SCI module in Hitachi H8S

CPUs.

No configuration options available.

3.6.2 EDOSK-2674 serial device drivers

This option enables the serial device drivers for the EDOSK-2674 board, based on the

generic H8S SCI driver.

Option Name SCI2 serial device driver

CDL Name CYGPKG_IO_SERIAL_H8S_EDOSK2674_SERIAL2

Description This option includes the serial device driver for the SCI 2 port. The SCI 2

port is the only SCI port which is connected to a RS232 interface on the

board.

Option Name Device Name

CDL Name CYGDAT_IO_SERIAL_H8S_EDOSK2674_SERIAL2_NAME

Description This option specifies the device name for the SCI 2 port.

Option Name Baud Rate

CDL Name CYGDAT_IO_SERIAL_H8S_EDOSK2674_SERIAL2_BAUD

Description This option specifies the default baud rate (speed) for the SCI port 2. The

EDOSK-2674 port is to slow for baud rates higher than 14400 baud when

using interrupt driven mode.

Option Name Interrupt priority

CDL Name CYGDAT_IO_SERIAL_H8S_EDOSK2674_SERIAL2_INT_PRIO

Description This option specifies the priority of all SCI 2 interrupts (ERI2, RXI2, TXI2

and TEI2). The lowest priority is 0 and the highest priority is 7. By default

(reset) all H8S/2674 interrupt priorities are initialized to priority level 7.

Option Name Receiver is interrupt driven

CDL Name CYGDAT_IO_SERIAL_H8S_EDOSK2674_SERIAL2_RX_INTDRV

Description This option enables interrupt controlled receiver. If this option is turned off

only simple serial polling driver is available for receiver. The EDOSK

board provides only one serial channel. This channel is also used for

debugging with GDB. In order to use interrupts the CTRL C and break

support for GDB have to be turned off because they use the same

interrupt vector like this serial driver

Option Name Buffer size for receiver

CDL Name CYGDAT_IO_SERIAL_H8S_EDOSK2674_SERIAL2_RX_BUFSIZE

Description This option specifies the size of the internal receive buffer used for the

SCI port 2. A receive buffer is only required in interrupt driven mode.

Option Name Transmitter is interrupt driven

CDL Name CYGDAT_IO_SERIAL_H8S_EDOSK2674_SERIAL2_TX_INTDRV

Description This option enables interrupt controlled transmitter. If this option is turned

off only simple serial polling driver is available for transmitter. The

EDOSK board provides only one serial channel. This channel is also

used for debugging with GDB. In order to use interrupts the CTRL C and

break support for GDB have to be turned of because they use the same

interrupt vector like this serial driver

22 EDOSK-2674 Configuration Options

 23 EDOSK-2674 Configuration Options

Option Name Buffer size for receiver

CDL Name CYGDAT_IO_SERIAL_H8S_EDOSK2674_SERIAL2_TX_BUFSIZE

Description This option specifies the size of the internal transmit buffer used for the

SCI port 2. A transmit buffer is only required in interrupt driven mode.

Option Name Testing parameters

CDL Name CYGDAT_IO_SERIAL_H8S_EDOSK2674_TESTING

Description This option defines various parameters required for running the serial

tests.

3.7 Ethernet Device Driver Configuration
Options

3.7.1 SMSC LAN91CXX compatible Ethernet driver
Ethernet driver for SMSC LAN91CXX compatible controllers

Option Name SIOCSIFHWADDR records ESA (MAC address) in EEPROM

CDL Name CYGSEM_DEVS_ETH_SMSC_LAN91CXX_WRITE_EEPROM

Description The ioctl() socket call with operand SIOCSIFHWADDR sets the interface

hardware address - the MAC address or Ethernet Station Address (ESA).

This option causes the new MAC address to be written into the EEPROM

associated with the interface, so that the new MAC address is

permanently recorded. Doing this should be a carefully chosen decision,

hence this option.

Option Name Interrupt priority when registering interrupt handler

CDL Name CYGNUM_DEVS_ETH_SMSC_LAN91CXX_INT_PRIO

Description When registering the interrupt handler this specifies the priority of the

interrupt. Some hardware platforms require values other than the default

given here. Such platforms can then override this value in the hardware

specific package.

3.7.2 EDOSK-2674 SMC91C96 Ethernet driver
Ethernet driver for EDOSK-2674 boards

Option Name EDOSK-2674 Ethernet port driver

CDL Name CYGDAT_DEVS_ETH_H8S_EDOSK2674_ETH0

Description This option includes the ethernet device driver for the EDOSK-2674 port.

Option Name Device name for the ethernet driver

CDL Name CYGDAT_DEVS_ETH_H8S_EDOSK2674_ETH0_NAME

Description This option sets the name of the ethernet device for the ethernet port.

Option Name Set the ethernet station address

CDL Name CYGDAT_DEVS_ETH_H8S_EDOSK2674_ETH0_SET_ESA

Description Enabling this option will allow the ethernet station address to be forced to

the value set by the configuration. This may be required if the hardware

does not include a serial EEPROM for the ESA. The EDOSK-2674 board

contains an EEPROM so setting the ESA here is not required

Option Name Set the ethernet station address

CDL Name CYGDAT_DEVS_ETH_H8S_EDOSK2674_ETH0_ESA

Description A static ethernet station address. Caution: Booting two systems with the

same MAC on the same network will cause severe conflicts.

3.8 H8S/2674 Watchdog driver Configuration
Options

Option Name Watchdog input clock divider rate (Processor Clock/n)

CDL Name CYGNUM_DEVS_WATCHDOG_H8S_H8S2674_DIVIDER_RATE

Description Selects the clock source to be input to watchdog timer. The clock is

calculated from the H8S/2674 processor speed and this clock divider.

Option Name Watchdog timer overflow period in ns

CDL Name CYGNUM_DEVS_WATCHDOG_H8S_H8S2674_PERIOD

Description The rough calculated time interval in nanoseconds allowed between

resets before watchdog triggers. The interval depends on the divider rate

for the watchdog clock source.

24 EDOSK-2674 Configuration Options

 25 EDOSK-2674 Configuration Options

3.9 Wallclock Device Driver Configuration
Options

3.9.1 Wallclock device driver for Dallas 1672
This package provides a file with init, get and set functions for the Dallas 1672 clock part.

No configuration options available.

3.9.2 EDOSK-2674 board RTC driver
RTC driver for EDOSK2674 board

No configuration options available.

3.10 FLASH Memory Device Driver
Configuration Options

3.10.1 Intel StrateFLASH memory support
FLASH memory device support for Intel StrataFlash

No configuration options available.

3.10.2 EDOSK-2674 FLASH memory support
FLASH memory device support for MAIN Flash memory (INTEL 28F320J3A) on EDOSK-

2674 board

No configuration options available.

 Realtime Characterization

4 Realtime Characterization
This is the result of the tm_basic.c test from eCos test suite. The test was built and

executed with assertions disabled in order to get the real performance of a final

application:

Board: Renesas EDOSK-2674

CPU: Renesas H8S/2674

Startup, main stack : stack used 74 size 2048
Startup : Interrupt stack used 115 size 4096
Startup : Idlethread stack used 40 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 10 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 111.72 microseconds (230 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 132.92 96.97 168.73 18.05 50% 25% Create thread
 21.33 21.33 21.33 0.00 100% 100% Yield thread [all suspended]
 20.25 19.88 20.36 0.17 76% 23% Suspend [suspended] thread
 20.61 20.36 20.85 0.24 100% 50% Resume thread
 35.13 34.91 35.39 0.24 54% 54% Set priority
 3.17 2.91 3.39 0.24 54% 45% Get priority
 84.27 83.88 84.36 0.15 81% 18% Kill [suspended] thread
 21.57 21.33 21.82 0.24 51% 51% Yield [no other] thread
 41.27 41.21 45.09 0.12 98% 98% Resume [suspended low prio] thread
 19.92 19.39 20.36 0.08 89% 1% Resume [runnable low prio] thread
 33.23 32.97 35.39 0.27 98% 51% Suspend [runnable] thread
 21.37 21.33 21.82 0.07 92% 92% Yield [only low prio] thread
 20.22 19.88 20.36 0.20 70% 29% Suspend [runnable->not runnable]
 83.39 83.39 83.39 0.00 100% 100% Kill [runnable] thread
 50.38 49.94 50.91 0.11 84% 12% Destroy [dead] thread
 105.33 104.73 108.61 0.26 67% 9% Destroy [runnable] thread
 132.36 131.88 152.24 0.63 98% 98% Resume [high priority] thread
 50.81 49.94 51.39 0.17 76% 0% Thread switch

 2.32 1.94 2.42 0.16 78% 21% Scheduler lock
 12.62 12.61 13.09 0.03 96% 96% Scheduler unlock [0 threads]
 12.62 12.61 13.09 0.04 96% 96% Scheduler unlock [1 suspended]
 12.59 12.12 13.09 0.05 92% 5% Scheduler unlock [many suspended]
 12.63 12.61 13.09 0.04 95% 95% Scheduler unlock [many low prio]

 5.92 5.82 6.30 0.17 78% 78% Init mutex
 25.06 24.73 25.21 0.21 68% 31% Lock [unlocked] mutex
 33.89 33.45 34.91 0.16 75% 18% Unlock [locked] mutex
 22.51 22.30 22.79 0.24 56% 56% Trylock [unlocked] mutex
 18.23 17.94 18.42 0.23 59% 40% Trylock [locked] mutex
 4.68 4.36 4.85 0.22 65% 34% Destroy mutex

26

 27 Realtime Characterization

 177.59 176.97 177.94 0.22 65% 3% Unlock/Lock mutex

 11.11 10.67 11.15 0.08 90% 9% Create mbox
 2.47 1.94 2.91 0.19 65% 12% Peek [empty] mbox
 28.55 28.12 29.09 0.13 81% 15% Put [first] mbox
 2.45 1.94 2.91 0.23 56% 18% Peek [1 msg] mbox
 28.58 28.12 29.09 0.09 87% 9% Put [second] mbox
 2.45 1.94 2.91 0.14 75% 9% Peek [2 msgs] mbox
 28.33 28.12 28.61 0.24 56% 56% Get [first] mbox
 28.33 28.12 28.61 0.24 56% 56% Get [second] mbox
 25.95 25.70 26.18 0.24 53% 46% Tryput [first] mbox
 23.89 23.76 24.24 0.20 71% 71% Peek item [non-empty] mbox
 31.21 31.03 31.52 0.23 62% 62% Tryget [non-empty] mbox
 21.76 21.33 22.30 0.13 81% 15% Peek item [empty] mbox
 21.70 21.33 22.30 0.20 68% 28% Tryget [empty] mbox
 3.30 2.91 3.39 0.15 81% 18% Waiting to get mbox
 3.18 2.91 3.39 0.24 56% 43% Waiting to put mbox
 28.51 28.12 28.61 0.15 81% 18% Delete mbox
 95.15 94.55 95.52 0.23 62% 6% Put/Get mbox

 4.76 4.36 4.85 0.15 81% 18% Init semaphore
 19.06 18.91 19.39 0.21 68% 68% Post [0] semaphore
 21.73 21.33 21.82 0.15 81% 18% Wait [1] semaphore
 17.85 17.45 17.94 0.15 81% 18% Trywait [0] semaphore
 18.21 17.94 18.42 0.24 56% 43% Trywait [1] semaphore
 5.79 5.33 6.30 0.09 87% 9% Peek semaphore
 4.23 3.88 4.36 0.20 71% 28% Destroy semaphore
 99.24 98.91 99.39 0.21 68% 31% Post/Wait semaphore

 8.82 8.73 9.21 0.15 81% 81% Create counter
 5.83 5.82 6.30 0.03 96% 96% Get counter value
 5.20 4.85 5.33 0.20 71% 28% Set counter value
 32.73 32.48 32.97 0.24 100% 50% Tick counter
 4.82 4.36 5.33 0.11 81% 12% Delete counter

 4.76 4.36 4.85 0.15 81% 18% Init flag
 19.41 19.39 19.88 0.03 96% 96% Destroy flag
 17.00 16.48 17.45 0.08 87% 3% Mask bits in flag
 20.89 20.85 21.33 0.08 90% 90% Set bits in flag [no waiters]
 32.50 32.00 32.97 0.09 84% 6% Wait for flag [AND]
 32.24 32.00 32.48 0.24 100% 50% Wait for flag [OR]
 33.09 32.97 33.45 0.18 75% 75% Wait for flag [AND/CLR]
 32.82 32.48 32.97 0.21 68% 31% Wait for flag [OR/CLR]
 1.42 0.97 1.94 0.14 75% 15% Peek on flag

 16.23 16.00 16.48 0.24 53% 53% Create alarm
 47.71 47.52 48.00 0.23 59% 59% Initialize alarm
 17.09 16.97 17.45 0.18 75% 75% Disable alarm
 40.36 40.24 40.73 0.18 75% 75% Enable alarm
 21.15 20.85 21.33 0.23 62% 37% Delete alarm
 39.94 39.76 40.24 0.23 62% 62% Tick counter [1 alarm]
 285.52 282.67 370.42 5.31 96% 96% Tick counter [many alarms]
 74.35 74.18 74.67 0.22 65% 65% Tick & fire counter [1 alarm]
 1606.42 1591.27 1689.21 24.05 84% 84% Tick & fire counters [>1 together]
 326.53 323.39 411.15 5.29 96% 96% Tick & fire counters [>1 separately]
 98.84 97.94 161.45 0.99 99% 99% Alarm latency [0 threads]
 110.97 97.94 161.45 10.43 50% 54% Alarm latency [2 threads]
 114.61 97.94 165.33 10.84 46% 31% Alarm latency [many threads]
 213.20 201.70 530.42 4.96 98% 0% Alarm -> thread resume latency

 19 0 145 (main stack: 943) Thread stack used (956 total)
All done, main stack : stack used 943 size 2048
All done : Interrupt stack used 159 size 4096
All done : Idlethread stack used 133 size 2048

Timing complete - 29160 ms total

PASS:<Basic timing OK>
EXIT:<done>

 Porting Guide

5 Porting Guide

5.2 H8S eCos Exception-/Interrupt Handling
explained

1. Hardware vect. tbl
000 __start
001 __start
002 shadow vector 002
003 shadow vector 003
004 shadow vector 004
... ...

127 shadow vector 127

2. Shadow vector table

000 jsr @interrupt_entry
001 jsr @interrupt_entry
002 jsr @interrupt_entry
003 jsr @interrupt_entry
004 jsr @interrupt_entry
... ...

127 jsr @interrupt_entry

3. interrupt_entry
This is the trampoline code
that saves the complete
interrupt state and then
calls the vector service
routine from the VSR table.

4. VSR table

000 __default_exception_vsr
001 __default_exception_vsr
002 __default_exception_vsr
... ...
015 __default_interrupt_vsr
016 __default_interrupt_vsr
... ...
127 __default_interrupt_vsr

8.__default_exception_vsr
CPU state is already saved
– simply calls
cyg_hal_exception_handler

5.__default_interrupt_vsr
Decodes the actual interrupt
being delivered and invokes
the appropriate ISR

6. hal_interrupt_handlers
000 isr 0
001 isr 1
002 isr 2
... ...
127 isr 127

cyg_hal_exception_handler
Does further exception
processing.

7. user ISR
Does further interrupt
processing

28

 29 Porting Guide

5.2.1 Hardware Vector Table
rent exception/interrupt sources. The

hardware exception vector table contains 128 vector addresses for 128 different

This is the beginning of startup code where execution begins

terrupt occurs, the PC is loaded with the appropriate shadow vector address

or Table
exception/interrupt vectors. Each shadow

vector belongs to an appropriate vector in the hardware vector table. Each shadow vector

within the

.2.3 The Interrupt Entry Routine
 some kind of trampoline code

that saves all registers and then calls the appropriate vector service routine from VSR

 VSR Table
VSR) table is an array of pointers to the default exception

and interrupt handler routines located at a fixed memory location. The size of this table is

Different vector addresses are assigned to diffe

exception/interrupt sources of H8S architecture. The table’s base address is 0x00 and the

size of each entry is 4 byte. (the table ranges from 0x0 – 0x200). The size of this table is

4 x 128 bytes = 512 bytes.

The first two entries are the reset vectors (hardware reset and manual reset) and point to

the entry point “__start”.

after reset.

All other entries point to appropriate entries within the shadow vector table. When an

exception/in

and execution continues there.

5.2.2 Shadow Vect
The shadow vector table contains 128 shadow

table entry contains one instruction: a jsr instruction. This jsr instruction jumps to

interrupt_entry routine. The position of the shadow vector table is configurable. It

can reside in ROM or RAM. If it resides in ROM then its base address is 0x200 and if it

resides in RAM its base address is 0xffbe00 (ranges from 0xffbe00 – 0xffc000)

The shadow vector table is required because it is the only possibility to calculate the

interrupt vector number required for addressing the vector service routines

VSR. Both vector tables can be found in the file vectors.S under the arch subdirectory.

5
The interrupt_entry routine (in file vectors.S) is

table.

5.2.4
The Vector Service Routine (

128 x 4 = 512 bytes. It is always located in RAM and its base address is specified in

platforms CDL file. (CYGHWR_HAL_VSR_TABLE). For the EDOSK platform the actual

address is 0xffbb00. This allows RAM applications to take control over certain exception

service routines. Depending on the occurred interrupt/exception

__default_interrupt_vsr or __default_exception_vsr will be called. This

table is defined in the file vectors.S.

5.2.5 Default Interrupt VSR
This routine does some stuff like switching to interrupt stack and incrementing the

cyg_scheduler_sched_lock kernel variable to ensure that scheduling does not take

place. The __default_interrupt_vsr then needs to find out what Interrupt Service

Routine (ISR) to call. This VSR can be found in the file vectors.S.

5.2.6 Interrupt Handler Table
This table contains the addresses of the interrupt service routines installed by the

application. The default interrupt VSR calls the appropriate user ISR from this table.

5.2.7 User ISR
The ISR, which executes at the application level, performs any necessary functions for

the particular interrupt. The ISR then notifies the kernel that the DSR should be posted for

execution by returnings CYG_ISR_CALL_DSR. The ISR also returns CYG_ISR_HANDLED

to terminate any chained interrupt processing.

5.2.8 Default Exception VSR
If a synchronous exception occurs then the default exception VSR will be executed. The

job of this default exception VSR is to perform common processing of all exceptions,

which includes calling any kernel-level handler routine to perform additional processing

and restoring the state of the processor prior to returning to normal program execution.

The default exception VSR is in the file vectors.S under the HAL arch subdirectory.

5.2.9 Exception Handler
The routine that is called to handle the HAL-to-kernel transition is

cyg_hal_exception_handler. This routine is found in hal_misc.c under the HAL

arch subdirectory.

5.3 Understanding HAL Startup
To get a better understanding of the H8S, H8S/2674 and EDOSK-2674 HAL, we need to

take a look at the startup process the software goes through to initialize the hardware.

Below is a Flowchart of the routines involved during the initializations of the HAL for the

Renesas EDOSK-2674 board. In addition, note that the startup procedure might deviate

30 Porting Guide

 31

from what is shown in the flowchart depending on the configuration options selected for

HAL. The routines described are implemented in either assembly language or C.

1. The starting point for the system startup is after

a power cycle has occured. This startup process

also applies for a soft reset startup

1. Hardware Powerup

2. reset_vector

3. __start

4. hal_cpu_init

8. hal_mmu_init

5. hal_memc_init

9. hal_cache_init

6. Setup stack pointer

7. hal_diag_init

10. hal_intc_init

11. hal_timer_init

12. hal_mon_init

13. Setup shadow vect. tbl.

14.Copy rom image into ram

2. After a hard or soft reset occures, the H8S

processor jumps to its reset vector. The reset

vector is found in the file vectors.S.

3. Next, the reset vector jumps to __start. This

is also found in vectors.S and the main starting

point for HAL initilization.

4. Next, the macro hal_cpu_init is called, witch

is located in arch.inc. It handles setting of CCR

and EXR (masks all interrupts), to ensure that the

processor is in known state for the remainder of

the initilization process. This macro, and also the

following macros, are conditionally defined. So

they can be overwritten by variant or platform

HALs.

5. The next macro called is hal_memc_init. This

macro is responsible for initializing memory and

bus controller of EDOSK board. After execution of

this macro it is possible to access internal and

external RAM and ROM safely.

6. Now that it is safe to access RAM memory, the

stack pointer is initialized to point to the interrupt

stack. This stack is always present and large enough to handle startup function calls.

Now it is possible to call C functions because a valid stack pointer is set up.

7. The macro hal_diag_init is empty at the moment. Here it is possible for a variant

or platform HAL to setup diagnostic stuff like LEDs.

Porting Guide

8./9. The macros hal_mmu_init, hal_cache_init are empty at the moment because

the H8S/2674 does not contain MMU or caches. Variant or platform HALs can use these

macros to setup any MMU or cache controller.

10. Next hal_intc_init in file platform.inc initializes the internal interrupt

controller of H8S/2674 processor. This macro sets up interrupt control mode 2 so that 8

priority levels are available for interrupt handling and masking. Further it configures the

external interrupts of EDOSK-2674 board in order to fulfil the requirements in the

EDOSK-2674 user manual.

11. The next macro called is hal_timer_init. This macro sets up the clock which

drives the eCos RTC later. The macro is located in varint.inc and sets up the PLL

circuit and the frequency divider for the internal H8S/2674 clock pulse generator.

12. The code executed in hal_mon_init, located in variant.inc is configuration

dependent. When executing as a ROM monitor or ROM application (ROM or ROMRAM

startup) the main task for this routines is to ensure that default exception handlers and

default interrupt handlers are installed for every exception/interrupt supported by

H8S/2674. When executing as RAM application then only default interrupt handlers will

be installed and exception vectors remains to ROM monitor.

13. When a RAM location of the shadow vector table is selected then this step will copy

the shadow vector table from ROM to its final location in RAM.

17. hal_variant_init

18. hal_platform_init

19. initialize_stub

20. hal_ctrlc_isr_init

21. Invoke constructors

22. cyg_start

15. setup data section

16. clear bss section

14. The next step is configuration dependent. When

executing a ROMRAM startup then this step will

copy the complete application image from ROM to its

final location in RAM. Then the RAM image

continues startup execution.

15. When we execute a ROM or ROMRAM

application the data section containing initialized

variables has to be copied from ROM into its final

position in RAM.

16. The next step in the HAL initialization process is

to clear the bss section, which contains all no

initialized local and global variables with static

storage class.

17. Next the C function hal_varint_init located

32 Porting Guide

 33 Porting Guide

in file var_misc.c is called in order to give the variant HAL the possibility of executing

complex variant specific initialisation code that cannot be done in assembly code.

17. Next the C function hal_varint_init located in file var_misc.c is called in order

to give the variant HAL the possibility of executing complex variant specific initialisation

code that cannot be in assembly code.

18. Next, the C routine hal_platformm_init is called located in plf_misc.c. This, in

turn calls hal_if_init, found in file hal_if.c of the HAL common subdirectory. The

routine hal_if_init initializes the virtual vector table based on configuration options

selected.

19. If the configuration is set up for a debug environment and a ROM monitor is not

providing debug support, the next routine called is initialize_stub, located in the

HAL common subdirectory in the file generic_stub.c. The routine initializes the

hardware for debug.

20. If CTRL C support is selected for debugging, then hal_ctrlc_isr_init is called

next, which installs the SCI 2 ISR for handling CTRL C requests.

21. Next, all global C++ constructors are called from

cyg_hal_invoke_constructors. This routine is in the file hal_misc.c under the

arch subdirectory.

22. Finally, the last step in the HAL initialization process is to turn control over to the

kernel for its initialization. The routine cyg_start is the playe for HAL-to-kernel

transition.

5.4 Variant HAL Porting to H8S/2357
This chapter explains porting process for a new H8S variant - the Renesas H8S/2357.

This is a H8S family processor with a H8S/2000 CPU core internal FLASH memory of

128 Kbytes and internal RAM of 8 KBytes..

Doing a variant port requires a pre-existing architecture HAL port. This is the H8S

architecture HAL. The next chapter demonstrates the platform port for a board with

H8S/2357 processor. Variant and platform port should be done at the same time if it is to

be tested.

5.4.1 HAL Variant Porting Process
The easiest way to make a new variant HAL is simply to copy an existing variant HAL and

change the files to match the new variant. For H8S architecture only one variant HAL

implementation exists at the moment – the H8S/2674 variant. This will be our reference

variant HAL to be copied. The first step is to create a new directory h8s2357 under

packages/hal/h8s. Next we simply copy the content of the h8s2674 directory into

the h8s2357 directory.

5.4.2 HAL Variant CDL
Each variant needs an entry in the ecos.db file. Here it is also a good idea to copy and

modify the existing H8S/2674 entry. This is the one for the H8S/2357:

package CYGPKG_HAL_H8S_H8S2357 {
 alias { "Hitachi H8S/2357 variant HAL" hal_h8s2357
h8s2357_hal}
 directory hal/h8s/h8s2357
 script hal_h8s_h8s2357.cdl
 hardware
 description "
 The H8S/2357 HAL package provides the support needed to
 run eCos on a Renesas H8S/2357 processor."
}

The variant CDL file contains a package entry, named according to architecture and

variant, matching the package name in the ecos.db file. We rename the file

hal_h8s_h8s2674.cdl under the h8s2357/current/cdl directory in

hal_h8s_h8s2357.cdl. Then we can simply modify the entries to match our new H8S

variant. Here is the initial part of the H8S/2357 CDL file:

cdl_package CYGPKG_HAL_H8S_H8S2357 {
 display "H8S/2357 variant"
 parent CYGPKG_HAL_H8S
 implements CYGINT_HAL_H8S_VARIANT

34 Porting Guide

 35 Porting Guide

 hardware
 include_dir cyg/hal
 define_header hal_h8s_h8s2357.h
 description "
 The H8S/2357 variant HAL package provides generic support
 for the H8S/2357 processor. It is also necessary to select
 a specific target platform HAL package."

This defines the package, placing it under the H8S architecture package in the hierarchy.

The implements line indicates that this is a H8S variant. The architecture package uses

this to check that exactly one variant is configured in. The main difference to the same

entry in H8S/2674 CDL is the missing statement

 implements CYGHWR_HAL_H8S_CPU_2600

This configures the architecture HAL to support H8S/2000 CPU core instead of H8S/2600

CPU core for H8S/2674 variant. We can leave the following build options unchanged for

our new variant HAL.

define_proc {
 puts $::cdl_header "#include <pkgconf/hal_h8s.h>"
 }

 compile var_misc.c var_intr.S

The define_proc causes the architecture configuration file to be included into the

configuration file for the variant. The compile option causes compilation of the two

source files for this variant, var_misc.c and var_int.s.

The internal watchdog module of H8S/2357 does not differ from watchdog module of

H8S/2674. Therefore we can take the next part almost unchanged into our new variant.

cdl_option CYGBLD_HAL_H8S_WATCHDOG_INTERRUPT_CODE {
 display "Watchdog module mask, unmask, ackn. support"
 default_value 0
 description "
 Watchdog module interrupt mask, unmask and acknowledge
 differs from other H8S/2674 modules. In order to support
 the function cyg_interrupt_mask, cyg_interrupt_unmask and
 cyg_interrupt_acknowledge for the watchdog module (also if
 you use it as a simple overflow timer), additional code
 is necessary that is executed every time one of the
 functions above is called. If you don't need the module or
 if you use the eCos H8S/2674 watchdog driver then you do
 not need this extra code. This will save some time in
 ISR's and decrease code size a little bit."
}

Next we set up the configuration options for the H8S/2357 clock settings. The Clock

Pulse Generator of H8S/2357 differs from Clock Pulse Generator of H8S/2674 and we

have to do some modifications here. The first part of the clock settings can be taken

almost unchanged:

cdl_component CYGHWR_HAL_H8S_CLOCK_SETTINGS {
 display "H8S/2357 on-chip generic clock controls"
 description "
 The various clocks used by the system are controlled by
 these options, some of which are derived from platform
 settings. "
 flavor none
 no_define

H8S/2357 clock pulse generator differs from H8S/2674 and we have to rewrite these part.

The H8S/2357 clock pulse generator is simpler and internal modules always operate on

high speed clock. We drop the options CYGHWR_HAL_H8S_DIVIDER_RATE,

CYGHWR_HAL_H8S_MULT_RATE and change the option

CYGHWR_HAL_H8S_INTERNAL_MODULE_CLOCK this way:

cdl_option CYGHWR_HAL_H8S_INTERNAL_MODULE_CLOCK {
 display "Internal clock to peripheral modules (Hz)"
 flavor data
 calculated { CYGHWR_HAL_H8S_CPG_INPUT }
 description "
 On-chip supporting modules other than bus masters
 (CPU, DTC and DMAC) always operate on high-speed clock.
 High speed system clock is provided directly by an
 oscillator circuit. The oscillator circuit value has to
 be provided by a platform."
}

The option CYG_HAL_H8S_INTERNAL_MODULE_CLOCK is not really a configuration

option because it is calculated from CYGHWR_HAL_H8S_CPG_INPUT which is provided

by a specific platform. But this value is used by mod_regs_sci.h for baudrate

calculation.

5.4.3 Module Register Description
Under the h8s2357/current/include directory are header files for description of

internal H8S/2357 modules. These files contain symbolic constants for all registers of a

particular module. These header files have to be modified in order to match the H8S/2357

registers adresses. If a variant HAL contains additional modules or lacks single modules

then header files have to be added or removed. The register adresses for each module

are available from the Renesas H8S/2357 hardware manual. The following files from

H8S/2674 variant HAL have to be modified for H8S/2357 variant HAL. You should read

the Renesas H8S/2357 Hardware manual and replace the H8S/2674 register addresses

with the H8S/2357 register addresses.

36 Porting Guide

 37 Porting Guide

Header File Module

mod_regs_adc.h A/D D/A Converter Register

mod_regs_bsc.h Bus Controller Register

mod_regs_dmac.h DMA Controller Register

mod_regs_intc.h Interrupt Controller Register

mod_regs_pio.h Port I/O Controller Registers

mod_regs_ppg.h Programmable Pulse Generator Register

mod_regs_sci.h Serial Communication Interface Register

mod_regs_sys.h System Controller Register

mod_regs_tmr.h TPU/TMR Register

mod_regs_wdt.h Watchdog Timer Register

5.4.4 Interrupt Vectors
We do not have to change the files var_arch.h and var_intr.h for H8S/2357 and so

we can leave both files untouched. The file var_intr_numbers.h contains symbolic

constants for all exception and interrupt sources. The sources do not differ much between

H8S/2674 and H8S/2357 but the vector numbers differ and so we have to modify the file.

For example the SCI 2 interrupts are defined this way for H8S/2357 variant HAL:

#define CYGNUM_HAL_INTERRUPT_ERI2 88
#define CYGNUM_HAL_INTERRUPT_RXI2 89
#define CYGNUM_HAL_INTERRUPT_TXI2 90
#define CYGNUM_HAL_INTERRUPT_TEI2 91

The H8S/2357 HAL should also use the TPU channel 5 for the eCos realtime clock and

so we do not modify the following line.

#define CYGNUM_HAL_INTERRUPT_RTC CYGNUM_HAL_INTERRUPT_TGI5A

5.4.5 Variant Startup Macros
On HAL startup the file vectors.S executes some macros wich are defined in the file

variant.inc. We have to modify these macros in order to match the H8S/2357 variant

requirements. The first step is to modify the macro hal_intc_init. The H8S/2357

uses SYSCR instead of INTCR for setting the interrupt control mode.

#ifndef CYGPKG_HAL_H8S_INTC_DEFINED
 #define CYGPKG_HAL_H8S_INTC_DEFINED
 .macro hal_intc_init
 #if defined(CYG_HAL_STARTUP_ROM) ||
 defined(CYG_HAL_STARTUP_ROMRAM)
 mov.b @CYGARC_SYSCR, r0l
 bclr #4,r0l

 Porting Guide

 bset #5,r0l
 mov.b r0l, @CYGARC_SYSCR
 #endif
 .endm
#endif

Because the H8S/2357 timer module is always driven with high speed clock we do not

need to make special settings in hal_timer_init and can leave this macro empty.

#ifndef CYGPKG_HAL_H8S_TIMER_DEFINED
 #define CYGPKG_HAL_H8S_TIMER_DEFINED
 .macro hal_timer_init
 .endm
#endif

The macro hal_mon_init intializes the VSR table with the default exception VSR and

default interrupt VSR. The H8S/2674 source for this macro is also valid for the H8S/2357

variant HAL and we do not need to modify it.

5.4.6 The File var_misc.c
This file contains miscellaneous functions for a specific H8S variant. The first function is

hal_variant_init. This function executes complex variant initialisations which cannot

be done in assembly. We leave this function empty because it is nothing to do here at the

moment.

void hal_variant_init(void)
{
 // Nothing to do here at the moment
}

The first thing we are goint to modify is the definition of priority bit group values. The

H8S/2357 variant uses 8 Bit interrupt priority registers. (H8S/2674 uses 16 Bit interrupt

priority registers). For H8S/2357 we need only the following three bit groups and and bit

group mask:

//---
// Priority bit group values for prio_bit_group member of
// hal_int_reg_conf
//
#define PRIO_RESERVED 7
#define PRIO_06_TO_04 1
#define PRIO_02_TO_00 0

#define PRIO_BITGRP_MASK 1

The next thing we have to modify is the hal_int_prio_conf_table. This table stores

priority registers and the bitgroups for setting an interrupt priority for a certain interrupt

source. The H8S/2357 uses only 8 Bit registers here and so we have to change the

38

 39 Porting Guide

whole table. You should read the chapter “Interrupt Sources” in H8S/2357 hardware

manual in order to change this table. For external H8S/2357 interrupts the table would

look like this way:

...
PRIO_CONF_TBL_ENTRY(IPR_NONE, PRIO_RESERVED), // 015 RSV
PRIO_CONF_TBL_ENTRY(IPR('A'), PRIO_06_TO_04), // 016 IRQ 0
PRIO_CONF_TBL_ENTRY(IPR('A'), PRIO_02_TO_00), // 017 IRQ 1
PRIO_CONF_TBL_ENTRY(IPR('B'), PRIO_06_TO_04), // 018 IRQ 2
PRIO_CONF_TBL_ENTRY(IPR('B'), PRIO_06_TO_04), // 019 IRQ 3
PRIO_CONF_TBL_ENTRY(IPR('B'), PRIO_02_TO_00), // 020 IRQ 4
PRIO_CONF_TBL_ENTRY(IPR('B'), PRIO_02_TO_00), // 021 IRQ 5
PRIO_CONF_TBL_ENTRY(IPR('C'), PRIO_06_TO_04), // 022 IRQ 6
PRIO_CONF_TBL_ENTRY(IPR('C'), PRIO_06_TO_04), // 023 IRQ 7
...

Now we have to modify the hal_int_prio_tbl[]. The H8S/2357 variant uses only 92

interrupts (vector 0 – vector 91) and therefore we have to delete some entries from this

table (should contain 92 entries).

cyg_uint8 hal_int_prio_tbl[CYGNUM_HAL_ISR_COUNT] =
{
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
};

The hal_int_ackn_tbl[] ist the next thing we have to modify in order to match

H8S/2357 register structure. You should read the part of your H8S hardware manual

where the adresses, functions and single bits of the registers are described. This table

contains the adresses of the registers and the bits in these registers which have to be

cleared in order to acknowledge an interrupt source. Reserved vectors should contain a

zero for register address and bit to be cleared. For register addresses you should use the

symbolic names which you have defined in the module include files. Here is a small part

of the table for H8S/2357

...
ACKN_TBL_ENTRY(CYGARC_ISR, CLR_BIT(0)), // 016 IRQ 0
ACKN_TBL_ENTRY(CYGARC_ISR, CLR_BIT(1)), // 017 IRQ 1
ACKN_TBL_ENTRY(CYGARC_ISR, CLR_BIT(2)), // 018 IRQ 2
ACKN_TBL_ENTRY(CYGARC_ISR, CLR_BIT(3)), // 019 IRQ 3
ACKN_TBL_ENTRY(CYGARC_ISR, CLR_BIT(4)), // 020 IRQ 4
ACKN_TBL_ENTRY(CYGARC_ISR, CLR_BIT(5)), // 021 IRQ 5
ACKN_TBL_ENTRY(CYGARC_ISR, CLR_BIT(6)), // 022 IRQ 6
ACKN_TBL_ENTRY(CYGARC_ISR, CLR_BIT(7)), // 023 IRQ 7
ACKN_TBL_ENTRY(0, 0), // 024 SWDTEND
ACKN_TBL_ENTRY(CYGARC_TCSRR, CLR_BIT(7)), // 025 WOVI
ACKN_TBL_ENTRY(CYGARC_DRAMCR,CLR_BIT(4)), // 026 CMI
ACKN_TBL_ENTRY(0, 0), // 037 RSV

 Porting Guide

ACKN_TBL_ENTRY(CYGARC_ADCSR, CLR_BIT(7)), // 028 ADI
...

It is also necessary to modify hal_int_mask_tbl[]. This table contains adresses of

the registers and the bits within theses registers wich have to be set in order to mask

interrupts for a certain interrupt source. Here you should also use the symbolic names

you have defined before in module register include files. Here is a small part of the table

for H8S/2357 variant. Reserved vectors should contain zeros and interrupts without mask

registers (like NMI) should contain NO_MASK_REG for register address value.

...
MASK_TBL_ENTRY(CYGARC_IER, BIT(0)), // 016 IRQ 0
MASK_TBL_ENTRY(CYGARC_IER, BIT(1)), // 017 IRQ 1
MASK_TBL_ENTRY(CYGARC_IER, BIT(2)), // 018 IRQ 2
MASK_TBL_ENTRY(CYGARC_IER, BIT(3)), // 019 IRQ 3
MASK_TBL_ENTRY(CYGARC_IER, BIT(4)), // 020 IRQ 4
MASK_TBL_ENTRY(CYGARC_IER, BIT(5)), // 021 IRQ 5
MASK_TBL_ENTRY(CYGARC_IER, BIT(6)), // 022 IRQ 6
MASK_TBL_ENTRY(CYGARC_IER, BIT(7)), // 023 IRQ 7
MASK_TBL_ENTRY(NO_MASK_REG, 0), // 024 SWDTEND
MASK_TBL_ENTRY(CYGARC_TCSRW, BIT(5)), // 025 WOVI
MASK_TBL_ENTRY(CYGARC_DRAMCR,BIT(3)), // 026 CMI
MASK_TBL_ENTRY(0, 0), // 027 RSV
MASK_TBL_ENTRY(CYGARC_ADCSR, BIT(6)), // 028 ADI
...

Now we have to change the function hal_interrupt_set_level because the

H8S/2357 interrupt priority registers are only 8 Bit and the H8S/2674 ones are 16 Bit. The

logic of the function is right but we have to modify the sizes of the register data types and

we have to use different register access macros. First we change the size of

prio_data, mask and prio_grp_mask_tbl from 16 to 8 bit. Then we delete the last

two entries from prio_grp_mask_tbl.

void hal_interrupt_set_level(int vector, int level)
{
 cyg_uint32 prio_reg;
 cyg_uint8 prio_data;
 cyg_uint8 mask;
 int_prio_conf_t *pint_regs;
 static const cyg_uint8 prio_grp_mask_tbl[2] =
 {
 0x07, 0x70
 };
 ...

40

 41 Porting Guide

Then we change the access macros from 16 to 8 Bit. This should be all for this function in

order to work properly for H8S/2357.

HAL_READ_UINT8(prio_reg, prio_data);
mask = prio_grp_mask_tbl[pint_regs->prio_bit_group;
prio_data &= ~mask;
prio_data |= (level << (pint_regs->prio_bit_group << 2));
HAL_WRITE_UINT8(prio_reg, prio_data);

In function hal_interrupt_configure we have to change the second assertion

because H8S/2357 supports only 8 external interrupt sources.

CYG_ASSERT((CYGNUM_HAL_INTERRUPT_EXTERNAL_0 <= vector
 && CYGNUM_HAL_INTERRUPT_EXTERNAL_7 >= vector)
 || CYGNUM_HAL_INTERRUPT_NMI, "only external interrupts
 and NMI are configurable");

Then we have to change the NMI part of this function because H8S/2357 uses another

register than H8S/2674 variant for NMI configuration:

if (CYGNUM_HAL_INTERRUPT_NMI == vector)
{
 HAL_READ_UINT8(CYGARC_SYSCR, reg_data);
 if (up)
 {
 reg_data |= CYGARC_SYSCR_NMIEG_RIS;
 }
 else
 {
 reg_data &= ~CYGARC_SYSCR_NMIEG_RIS;
 }
 HAL_WRITE_UINT8(CYGARC_SYSCR, reg_data);

 return;
}

And then we have to change the part for all other interrupts. H8S/2357 uses only one 16

Bit sense control register because it has only 8 external interrupts instead of 16 of

H8S/2674 (two 16 Bit sense control registers). So we do not need to calculate if we use

CYGARC_ISCRH ord CYGARC_ISCRL because we only need CYGARC_ISCR and

therefore we can delete the line:

iscr = (vector <= CYGNUM_HAL_INTERRUPT_EXTERNAL_7) ?
 CYGARC_ISCRL : CYGARC_ISCRH;

And the remaining lines will become a little bit simpler in H8S/2357 variant:

mask = 3 << ((vector - CYGNUM_HAL_INTERRUPT_EXTERNAL_0) << 1);
HAL_READ_UINT16(CYGARC_ISCR, reg_data);
reg_data &= ~mask;
reg_data |= (int_req_conf <<

 Porting Guide

 ((vector - CYGNUM_HAL_INTERRUPT_EXTERNAL_0) << 1));
HAL_WRITE_UINT16(CYGARC_ISCR, reg_data);

The two functions hal_interrupt_attach and h8s_reset_watchdog are ok for

H8S/2357 variant and we do not need to change anything within these functions. This

should be all for the file var_misc.c. The file var_intr.S contains interrupt mask, unmask

and acknowledge functions written completely in assembly in order to make them as fast

as possible. These functions also work for H8S/2357 without any change so we do not

need to touch this file. The H8S/2357 variant is finished now.

5.5 Platform HAL Porting to Cetoni MCU2357
This chapter describes eCos platform port for Cetoni MCU2357. This is a microcontroller

unit based on the Renesas H8S/2357 microcontroller. Doing a platform port requires a

preexisting architecture and variant HAL port. This is the H8S architeture HAL and the

H8S/2357 variant HAL described in previous chapter. The MCU2357 board does not

contain any external RAM or ROM. Only the internal H8S/2357 RAM (8 KByte) and ROM

(128 KByte FLASH) are available. This is not enough for running eCos but it is possible to

run RedBoot and it is ok as an example for this porting guide.

5.5.1 HAL Platform Porting Process
The easiest way to make a new platform HAL is simply to copy an existing platform HAL

and change the files to match the new platform. For H8S architecture only one platform

HAL implementation exists at the moment – the EDOSK-2674 platform. This will be our

reference platform HAL to be copied. The first step is to create a new directory mcu2357

under packages/hal/h8s. Next we simply copy the content of the edosk2674

directory into the mcu2357 directory.

5.5.2 HAL Platform CDL
Each platform needs an entry in the ecos.db file. Here it is also a good idea to copy and

modify the existing EDOSK-2674 entry. This is the one for the Cetoni MCU2357:

package CYGPKG_HAL_H8S_H8S2357_MCU2357 {
 alias { "Cetoni MCU2357" hal_h8s2357_mcu2357
 h8s2357_mcu2357_hal }
 directory hal/h8s/mcu2357
 script hal_h8s_h8s2357_mcu2357.cdl
 hardware

 description "
 The Cetoni MCU2357 HAL package provides the support needed to run
 eCos on a Cetoni microcontroller unit with Renesas H8S/2357
 microcontroller."
}

42

 43 Porting Guide

In order to select and build the eCos library for Cetoni MCU2357 a target entry in ecos.db

is required. We simply copy the EDOSK-2674 target and modify it for the MCU2357

board.

target mcu2357 {
 alias { "Cetoni MCU2357" }
 packages { CYGPKG_HAL_H8S
 CYGPKG_HAL_H8S_H8S2357
 CYGPKG_HAL_H8S_H8S2357_MCU2357
 }
 description "
 The Cetoni MCU2357 target provides the packages need to run
 eCos on the Cetoni microcontroller unit for Renesas H8S/2357"
}

The platform CDL file contains a package entry, named according to architecture, variant

and platform, matching the package name in the ecos.db file. We rename the file

hal_h8s_h8s2674_edos2674.cdl under the mcu2357/current/cdl directory in

hal_h8s_h8s2357_mcu2357.cdl. Then we can simply modify the entries to match our

new H8S/2357 platform. We remove the implementation of

CYGINT_HAL_H8S_PLATFORM_LINUX_BOOT_SUPPORT because this platform does not

support booting of Linux via RedBoot. Here is the initial part of the MCU2357 CDL file:

cdl_package CYGPKG_HAL_H8S_H8S2357_MCU2357 {
 display "Cetoni MCU2357 platform"
 parent CYGPKG_HAL_H8S
 requires CYGPKG_HAL_H8S_H8S2357
 implements CYGINT_HAL_VIRTUAL_VECTOR_SUPPORT
 implements CYGINT_HAL_VIRTUAL_VECTOR_COMM_BAUD_SUPPORT
 implements CYGINT_HAL_DEBUG_GDB_STUBS
 implements CYGINT_HAL_DEBUG_GDB_STUBS_BREAK
 implements CYGINT_HAL_H8S_USE_COMMON_SCI_CODE
 implements CYGINT_HAL_H8S_USE_COMMON_DIAG_CODE
 implements CYGINT_HAL_H8S_USE_COMMON_GDB_STUB
 define_header hal_h8s_h8s2357_mcu2357.h
 include_dir cyg/hal
 description "
 The Cetoni MCU2357 HAL package provides the support needed to run
 eCos on a Cetoni microcontroller unit for H8S/2357"

 compile plf_misc.c plf_diag.c delay_us.S

Next we have to rename the names for header files in CDL file and select a place for

VSR-Table and Virtual-Vector-Table in RAM. The H8S/2357 has 8 Kbytes internal RAM.

We place the two tables at the start of this internal RAM. (read H8S/2357 hardware

manual for description of memory map in each operating mode).

define_proc {
 puts $::cdl_system_header "#define CYGBLD_HAL_TARGET_H
 <pkgconf/hal_h8s_h8s2357.h>"

 Porting Guide

 puts $::cdl_system_header "#define CYGBLD_HAL_PLATFORM_H
 <pkgconf/hal_h8s_h8s2357_mcu2357.h>"
 puts $::cdl_system_header "#define CYGBLD_HAL_PLATFORM_IO_H
 <cyg/hal/plf_io.h>"
 puts $::cdl_header "#define CYG_HAL_H8S"
 puts $::cdl_header "#define CYGHWR_HAL_VSR_TABLE 0xffdc00"
 puts $::cdl_header "#define CYGHWR_HAL_VECTOR_TABLE 0xffde00"
 puts $::cdl_header "#define HAL_PLATFORM_CPU \"H8S/2357F-ZTAT\""
 puts $::cdl_header "#define HAL_PLATFORM_BOARD \"Cetoni MCU2357\""
 puts $::cdl_header "#define HAL_PLATFORM_EXTRA \"\""
}

MCU2357 board only supports ROM startup because it does not contain external RAM

and the internal H8S/2357 RAM is not enough for RAM or ROMRAM bootstrap.

Therefore we have to modify the startup part. The “calculated” option means that user

cannot change this value in configuration tool.

cdl_component CYG_HAL_STARTUP {
 display "Startup type"
 flavor data
 calculated {"ROM"}
 no_define
 define -file system.h CYG_HAL_STARTUP
 description "
 When targetting the Cetoni MCU2357 board, it is possible to build
 the system only for ROM bootstrap because it does not have enough
 RAM form RAM or RAMROM bootstrap. The ROM bootstrap requires that
 the eCos application be blown into H8S/2357 FLASH."

In the CYG_HAL_STARTUP component we just have to rename EDOSK-2674 board into

Cetoni MCU2357 board. For CYGHWR_MEMORY_LAYOUT we have to change the

filenames. Because the board support only ROM startup we can remove all definitions

and filenames for any other startup type.

cdl_component CYGHWR_MEMORY_LAYOUT {
 display "Memory layout"
 flavor data
 no_define
 calculated {(CYG_HAL_STARTUP=="ROM") ? "h8s_h8s2357_mcu2357_rom" : "" }
 description "
 This is the memory layout used for building. It is selected according
 to the startup (RAM, ROM, ROMRAM) settings."

CYGHWR_MEMORY_LAYOUT_LDI selects the memory layout linker script fragment files.

We also have to adjust these filenames.

cdl_option CYGHWR_MEMORY_LAYOUT_LDI {
 display "Memory layout linker script fragment"
 flavor data
 no_define
 define -file system.h CYGHWR_MEMORY_LAYOUT_LDI
 calculated {(CYG_HAL_STARTUP == "ROM") ?
 "<pkgconf/mlt_h8s_h8s2357_mcu2357_rom.ldi>" : "" }
}

44

 45 Porting Guide

And last but not least we need to change the filenames of the memory layout header files:

cdl_option CYGHWR_MEMORY_LAYOUT_H {
 display "Memory layout header file"
 flavor data
 no_define
 define -file system.h CYGHWR_MEMORY_LAYOUT_H
 calculated {(CYG_HAL_STARTUP == "ROM") ?
 "<pkgconf/mlt_h8s_h8s2357_mcu2357_rom.h>" : "" }
}

Next we have to specify the MCU2357 I/O options related to serial I/O. The Cetoni

MCU2357 board supports 3 independent serial channels – the EDOSK-2674 board

supports only one serial channel. Therefore we have to do some modifications here.

cdl_component CYGPKG_HAL_H8S_H8S2357_MCU2357_IO_OPTIONS {
 display "I/O related options"
 flavor none
 description "
 I/O related options including control over
 communications channels, debug and console channel."

 cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS {
 display "Number of communication channels on the board"
 flavor data
 calculated 3
 description "
 The H8S/2357 has three independent serial communication
 channels (SCI0, SCI1 and SCI2). The Cetoni MCU2357 board
 supports all three channels."
 }

The Cetoni MCU2357 board supports three independent serial channels. Therefore we

can make the debug and diagnostic console channel configurable by the user. First we

set up the debug serial channel:

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS {
 display "Number of communication channels on the board"
 flavor data
 calculated 3
 description "
 The H8S/2357 has three independent serial communication channels
 (SCI0, SCI1 and SCI2). The Cetoni MCU2357 board supports all
 three channels."
}

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL {
 display "Debug serial channel"
 flavor data
 default_value 0
 legal_values 0 to CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS-1
 description "
 This option chooses which channel will be used to connect to a
host
 running GDB. On the Cetoni MCU2357 board all three channels of

 Porting Guide

 H8S/2357 are connected to an RS-232 interface and can be used for
 debugging"
}

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD {
 display "Debug serial channel baud rate"
 flavor data
 legal_values 9600 14400 19200 38400 57600 115200
 default_value 57600
 description "
 This option selects the baud rate used for the GDB debug channel.
 The debug channel is used for debug connections to GDB.
 Note: this should match the value chosen for the diagnostic port
if

}

Then we have to set up the diagnostic serial channel for the Cetoni MCU2357 board.

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL {
 display "Diagnostic channel"
 flavor data
 legal_values 0 to CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS-1
 default_value 1
 description "
 This option chooses which channel will be used for diagnostic
 output. On the Cetoni MCU2357 board only all H8S/2357 serial
 channels are connected to an RS-232 interface and can be used
 for diagnostic output."
}

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD {
 display "Diagnostic serial channel baud rate"
 flavor data
 legal_values 9600 14400 19200 38400 57600 115200
 default_value 57600
 description "
 This option selects the baud rate used for the diagnostic port.
 Note: this should match the value chosen for the GDB port if
 the diagnostic and GDB port are the same."
}

Now we have to set up the real-time clock specific constants. The configuration values

CYGNUM_HAL_RTC_CONSTANTS, CYGNUM_HAL_RTC_NUMERATOR and

CYGNUM_HAL_RTC_DENOMINATOR for the MC2357 board are the same like the values

for EDOSK-2674 board. eCos for MCU2357 board should also operate on frequency of

100 Hz. So we do not need to change anything here.

cdl_component CYGNUM_HAL_RTC_CONSTANTS {
 display "Real-time clock constants."
 flavor none

 cdl_option CYGNUM_HAL_RTC_NUMERATOR {
 display "Real-time clock numerator"
 flavor data
 calculated 1000000000
 description "

46

 47 Porting Guide

 The NUMERATOR divided by the DENOMINATOR gives the number of
 nanoseconds per tick."
 }

 cdl_option CYGNUM_HAL_RTC_DENOMINATOR {
 display "Real-time clock denominator"
 flavor data
 calculated 100
 description "
 The NUMERATOR divided by the DENOMINATOR gives the number of
 nanoseconds per tick."
 }

Next we have to enter the value for the period to be programmed into hardware timer. We

use TPU channel 5 like the EDOSK-2674 board. This is a 16 Bit counter that counts to a

maximum value of 65.535. The counter is driven by the internal clock of H8S/2357. This

clock operates on 7372800 Hz for Cetoni MCU2357 board. Because we need a

frequency of 100 Hz for eCos we need an interrupt each time the counter reaches a value

of 7372800 Hz / 100 Hz = 73728. This value is too large for 16 bit counter. Therefore we

need a clock divider for TPU. The TPU module supports a clock divider of 4. With this

clock divider the channel is driven with 7372800 Hz / 4 and we need an interrupt each

time we reach 73728 / 4 = 18432. This will be the period to be programmed into hardware

timer.

cdl_option CYGNUM_HAL_RTC_PERIOD {
 display "Real-time clock period"
 flavor data
 calculated { 18432 }
 description "
 The PERIOD is the divider to be programmed into a hardware timer
 that is driven from an appropriate hardware clock, such that the
 timer overflows once per tick. The MCU2357 board uses the TPU
 channel 5 as hardware timer."
}

We do not need the value CYGNUM_HAL_RTC_FREQUENCY and can delete it from CDL

file. Next we have to modify the value for H8S/2357 Clock Pulse Generator input. The

MCU2357 board uses a crystal of 7.3728 MHz and we have to setup this value in CDL

file:

cdl_option CYGHWR_HAL_H8S_CPG_INPUT {
 display "OSC/Clock Frequency"
 flavor data
 calculated 7372800
 description "
 The value of the crystal is 7.3728 MHz."
}

The next two settings CYGBLD_GLOBAL_OPTIONS and

CYGBLD_GLOBAL_COMMAND_PREFIX are also valid for MCU2357 board and we can take

them unchanged for our new board:

cdl_component CYGBLD_GLOBAL_OPTIONS {
 display "Global build options"
 flavor none
 parent CYGPKG_NONE
 description "
 Global build options including control over
 compiler flags, linker flags and choice of toolchain."

 cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {
 display "Global command prefix"
 flavor data
 no_define
 default_value { "h8300-elf" }
 description "
 This option specifies the command prefix used when
 invoking the build tools."
 }

Now we have to remove the –ms2600 flags from compiler- and linker flags because the

H8S/2357 contains a H8S2000 CPU but the EDOSK-2674 board contains a H8S2600

CPU. The remaining flags are valid also for MCU2357 board and we leave them

unchanged:

cdl_option CYGBLD_GLOBAL_CFLAGS {
 display "Global compiler flags"
 flavor data
 no_define
 default_value {
 CYGBLD_BUILD_FOR_DEBUG == 0 ?
 "-ms -mint32 -mecos -g -O2 -Wall -Wpointer-arith
 -Wstrict-prototypes -Winline -Wundef -Woverloaded-virtual
 -fsigned-char -fdata-sections -fno-rtti -fno-exceptions
 -finit-priority -finline-limit=100000" : \
 "-ms -mint32 -mecos -g -g2 -Wall -Wpointer-arith
 -Wstrict-prototypes -Winline -Wundef -Woverloaded-virtual
 -fsigned-char -fdata-sections -fno-rtti -fno-exceptions
 -finit-priority -finline-limit=100000" }
 description "
 This option controls the global compiler flags which are used to
 compile all packages by default. Individual packages may define
 options which override these global flags."
}

cdl_option CYGBLD_GLOBAL_LDFLAGS {
 display "Global linker flags"
 flavor data
 no_define
 default_value {
 CYGBLD_BUILD_FOR_DEBUG == 0 ?
 "-ms -mint32 -mecos -g -nostdlib -Wl,--gc-sections -Wl,-static" : \
 "-ms -mint32 -mecos -g -g2 -nostdlib -Wl,--gc-sections -Wl,-static"
 }
 description "
 This option controls the global linker flags. Individual
 packages may define options which override these global flags."
}

48 Porting Guide

 49 Porting Guide

The next CDL configuration options CYGBLD_BUILD_FOR_DEBUG,

CYGBLD_BUILD_GDB_STUBS, CYGSEM_HAL_ROM_MONITOR,

CYGSEM_HAL_USE_ROM_MONITOR and CYGBLD_BUILD_REDBOOT_BIN are valid for

MCU2357 and we do not need to change anything here.

Now we remove the three Linux boot options BOOT_ENTRY, COMMAND_LINE and

COMMAND_START because the MCU2357 does not have enough RAM to support uCLinux

booting and there is no uCLinux port available for this platform. We can also remove the

test and build options because at the moment we do not provide platform specific tests

for MCU2357 and this board also does not need special build options.

Now the CDL file and ecos.db entries are ready and it should be possible to load the

Cetoni MCU2357 target into the eCos configuration GUI – for MCU2357 board it looks

this way:

5.5.3 Platform include files
Within the include directory of our new platform there are a number of include files we

have copied from EDOSK-2674 platform. Now we have to look into these files in order to

see if we have to change something for MCU2357 platform.

If we look into the files then we see that we have to change nothing in the files plf_stub.h,

plf_intr.h and hal_diag.h. From file plf_io.h we can remove all register bit definitions so

that this file is empty now. We do not delete this file yet – maybe we have to provide

platform specific I/O functions or I/O register definitions later if we develop platform

drivers (for FLASH, SCI...).

5.5.3.1 platform.inc
This is the assembler include file included by vectors.S that executes low level

initializations. From this file we can delete the macro hal_intc_init because this

macro contains EDOSK-2674 specific initializations of interrupt controller. We already

50 Porting Guide

 51 Porting Guide

defined this macro in variant.inc – it initializes the interrupt controller there (interrupt

control mode 2).

 In macro hal_memc_init we initialise MCU2357 bus- and memory controller and

general purpose I/O.

We can keep a lot of this macro but we have to change the registers and their values in

init_regs. For MCU2357 board the register initialisation values look like this (we use

the symbolic register names von module register include files of H8S/2357 variant):

...
init_regs:
INIT_REGS_DATA(CYGARC_ABWCR, 0xFF)
INIT_REGS_DATA(CYGARC_ASTCR, 0xFF)
INIT_REGS_DATA(CYGARC_BCRH, 0x00)
INIT_REGS_DATA(CYGARC_BCRL, 0x1C)
INIT_REGS_DATA(CYGARC_WCRH, 0xFF)
INIT_REGS_DATA(CYGARC_WCRL, 0xFF)
INIT_REGS_DATA(CYGARC_MCR, 0x00)
INIT_REGS_DATA(CYGARC_DRAMCR, 0x00)
INIT_REGS_DATA(CYGARC_RTCOR, 0x00)
INIT_REGS_DATA(CYGARC_P6DDR, 0x00)
INIT_REGS_DATA(CYGARC_PADDR, 0x00)
INIT_REGS_DATA(CYGARC_PBDDR, 0xFF)
INIT_REGS_DATA(CYGARC_PCDDR, 0xFF)
INIT_REGS_DATA(CYGARC_PFDDR, 0x80)
INIT_REGS_DATA(CYGARC_MSTPCRL,0x00)
 .word 0
...

5.5.4 Platform source files

5.5.4.1 plf_misc.c
This file contains miscellaneous platform specific functions provided by HAL. The first

function we need to modify a little bit is hal_clock_initialize. We use TPU channel

5 like EDOSK-2674 board but we need a clock divider of 4 (EDOSK-2674 uses a clock

divider of 16) in order to get a 100 Hz frequency for eCos real-time clock. We have to

change only one single line within this function:

...
// initialize 16 bit timer - first we select timer counter clock and
// counter clearing source TGR
// Clock prescaler is 4 (clock/4) and TCNT is clear at compare match A
//
HAL_WRITE_UINT8(CYGARC_TCR5, CYGARC_TCR_CLR_CMA | CYGARC_TCR_TPSC_4);
...

Now we only need to remove the function cyg_plf_memory_segment, because the

MCU2357 board contains only one memory segment, and we are finished with this file.

5.5.4.2 plf_diag.c
This file contains platform specific functions required for diagnostic output. This file

defines and sets up the various diagnostic channels used by a specific platform. We have

to change this file a little bit in order to match the requirements of MCU2357 board. The

first thing we are going to modify is the channels[] table for diagnostic channel data.

The EDOSK-2674 board supports only one channel but MCU2357 board supports all

three serial channels – therefore we have to enhance the table. The initialisation of the

table depends on the selected baud rate and selected debug channel in configtool.

Therefore we first insert some defines which enable compile time initialisation of serial

channels according to selected baud rate:

#if CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL == 0
#define CYGNUM_HAL_SCI0_BAUD CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD
#define CYGNUM_HAL_SCI1_BAUD
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD
#define CYGNUM_HAL_SCI2_BAUD
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD
#elif CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL == 1
#define CYGNUM_HAL_SCI0_BAUD
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD
#define CYGNUM_HAL_SCI1_BAUD CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD
#define CYGNUM_HAL_SCI2_BAUD
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD
#elif CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL == 2
#define CYGNUM_HAL_SCI0_BAUD
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD
#define CYGNUM_HAL_SCI1_BAUD
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD
#define CYGNUM_HAL_SCI2_BAUD CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD
#elif
#error "Wrong debug channel value"
#endif

static channel_data_t channels[CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS] =
{
 CHAN_TBL_ENTRY(CYGARC_SCI0_BASE,
 1000,
 CYGNUM_HAL_SCI0_BAUD,
 CYGNUM_HAL_INTERRUPT_RXI0),

 CHAN_TBL_ENTRY(CYGARC_SCI1_BASE,
 1000,
 CYGNUM_HAL_SCI1_BAUD,
 CYGNUM_HAL_INTERRUPT_RXI1),

 CHAN_TBL_ENTRY(CYGARC_SCI2_BASE,
 1000,
 CYGNUM_HAL_SCI2_BAUD,
 CYGNUM_HAL_INTERRUPT_RXI2),
};

52 Porting Guide

 53 Porting Guide

Then we have to modify the hardwired diagnostic channel – normally this channel is not

required because we support virtual vector calling interface – but for standardisation and

debug reasons we also support hardwired channel:

static channel_data_t channel =
{
 (cyg_uint8 *)CYGARC_SCI0_BASE,
 (cyg_uint32)1000,
 CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD,
 CYGNUM_HAL_INTERRUPT_RXI0
};

Well, this should be all for platform source files.

5.5.5 Memory Layout
The last thing we have to do is to setup the memory layout linker script fragments and

memory layout header files. These files are located in directory

mcu2357\current\include\pkgconf. This directory contains linker script fragments

for ROM, RAM and ROMRAM startup. As an example we will setup the files for ROM

startup now.

For ROM startup we setup the file mlt_h8s_h8s2357_mcu2357_rom.ldi. The first

step is to setup the memory for MCU2357. The board does not provide any external ROM

or RAM memory. So we can only use the internal H8S/2357 memory. In H8S/2357

hardware manual you will find a detailed description about the memory layout. H8S/2357

contains 128 Kbytes FLASH memory and 8 Kbytes RAM. This is not enough RAM for

running eCos – but this is only a demonstration of porting process and it is enough RAM

for running RedBoot.

#include <cyg/infra/cyg_type.inc>

OUTPUT_FORMAT("elf32-h8300")
OUTPUT_ARCH(h8300s)

MEMORY
{
 rom : ORIGIN = 0x00000000, LENGTH = 0x200000
 ram : ORIGIN = 0x00ffdc00, LENGTH = 0x2000
}

Now we setup the single sections. We use the sections from EDOSK-2674 file and

change them for MCU2357 board. If shadow vector table should be located in ROM we

place it immediately after the hardware vector table in FLASH at address 0x200. If it

should be located in RAM then we place it after VSR table and Virtual Vector table in

RAM at address 0xffdf00.

SECTIONS
{
 SECTIONS_BEGIN
 SECTION_rom_vectors (rom, 0x000000, LMA_EQ_VMA)
#if defined(CYGBLD_HAL_H8S_SHADOW_VECTOR_TABLE_POS_ROM)
 SECTION_svects (rom, 0x200, LMA_EQ_VMA)
#endif
 SECTION_text (rom, ALIGN (0x4), LMA_EQ_VMA)
 SECTION_fini (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_rodata (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_rodata1 (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_fixup (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_gcc_except_table (rom, ALIGN (0x1), LMA_EQ_VMA)
#if defined(CYGBLD_HAL_H8S_SHADOW_VECTOR_TABLE_POS_RAM)
 SECTION_svects (ram, 0xffdf00,
FOLLOWING(.gcc_except_table))
 SECTION_data (ram, 0xffe100, FOLLOWING(.svects))
#else
 SECTION_data (ram, 0xffdf00,
FOLLOWING(.gcc_except_table))
#endif
 SECTION_bss (ram, ALIGN (0x4), LMA_EQ_VMA)
 CYG_LABEL_DEFN(__heap1) = ALIGN (0x4);
 SECTIONS_END
}

The last thing we have to do is to setup the memory layout header file

mlt_h8s_h8s2357_mcu2357_rom.h. We start with main flash memory. It starts at address

0x00, its size is 128 Kbytes (0x20000 Bytes) and it is read only:

// main flash memory 128 KByte
#define CYGMEM_REGION_rom (0)
#define CYGMEM_REGION_rom_SIZE (0x20000)
#define CYGMEM_REGION_rom_ATTR (CYGMEM_REGION_ATTR_R)

Next we setup values for internal H8S/2357 RAM. It starts at address 0xFFDC00 and its

size is 8 KByte (0x2000 Byte) and it is read-/writeable:

// internal RAM of H8S/2357 is 8 KByte
#define CYGMEM_REGION_ram (0xffdc00)
#define CYGMEM_REGION_ram_SIZE (0x2000)
#define CYGMEM_REGION_ram_ATTR
(CYGMEM_REGION_ATTR_R|CYGMEM_REGION_ATTR_W)

The next thing is the heap. The heap starts at the end of the RAM memory RedBoot

requires for its execution. The size depends on the RAM RedBoot needs. It ranges from

end of RedBoot in RAM to end of RAM memory (0xfffc00):

// heap
#ifndef __ASSEMBLER__
extern char CYG_LABEL_NAME (__heap1) [];
#endif
#define CYGMEM_SECTION_heap1 (CYG_LABEL_NAME (__heap1))

54 Porting Guide

 55 Porting Guide

#define CYGMEM_SECTION_heap1_SIZE(0xfffc00-
(size_t)CYG_LABEL_NAME(__heap1))

And last but not least we setup values for shadow vector table area:

// shadow vector table
#ifndef __ASSEMBLER__
extern char CYG_LABEL_NAME (_svects) [];
#endif
#define CYGMEM_SECTION_svects (CYG_LABEL_NAME (_svects))
#define CYGMEM_SECTION_svects_SIZE (0x200)

Within memory layout script fragments, header files and in platform CDL file we have set

up the memory layout for MCU2357 ROM startup. The following picture shows the

memory layout for ROM startup:

Hardware vector table 0x000000

Shadow vector table 0x000200

RedBoot ROM image 0x000400

O
n-

ch
ip

 R
O

M

unused FLASH memory

0x1FFFFF

 External address space

VSR table 0xFFDC00

Virtual Vector table 0xFFDE00

RedBoot RAM data 0xFFDF00

O
n-

ch
ip

 R
A

M

heap
0xFFFBFF

Now it should be possible to compile RedBoot or the eCos library for eCos. The Cetoni

MCU2357 board shows the following RedBoot banner after startup:

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version 0.8 - built 19:13:49, Mar 2 2004

Platform: Cetoni MCU2357 (H8S/2357F-ZTAT)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00ffdc00-0x00fffc00, [0x00fff478-0x00fffc00] available
RedBoot>

Because of the limited memory of H8S/2357 only 1.928 Bytes are available for

applications. This is not enough for eCos applications.

With the help of this porting guide it should be possible to use the EDOSK-2674 port as

base for any other H8S related eCos port. If you did an eCos port for H8S and RedBoot

does not work the first time you donwload it to your target then you should do the

following things:

• Upload the RedBoot elf file in H8S simulator, set a breakpoint to __start and

step through the startup procedure in order to see if the program flow is right. If

you do this it is important not to execute the data_init_loop which initializes

the .data section because in simulator this would destroy content of .data

section. So if you enter datas_init_loop then you should jump behind it.

• Check, if you have enabled the SCI modules in H8S module stop registers.

Check hardware manual for a detailed description about the single bits in module

stop register.

• Check if SCI registers are initialized in the right way.

• Check if the interrupt stack in configuration tools is large enough.

56 Porting Guide

 57 Application Development

6 Application Development

6.2 Symbolic Interrupt Vector Names
Whenever it is necessary to provide an interrupt vector number during application

development (i.e. on a function call to cyg_interrupt_create,

cyg_interrupt_delete, cyg_interrupt_attach and

cyg_interrupt_detach) the following symbolic constants, provided by H8S/2674

variant HAL in file var_intr_numbers.h, should be used.

6.2.1 External Interrupts

Interrupt source Symbolic name

External pin CYGNUM_HAL_INTERRUPT_NMI

CYGNUM_HAL_INTERRUPT_EXTERNAL_0

CYGNUM_HAL_INTERRUPT_EXTERNAL_1

CYGNUM_HAL_INTERRUPT_EXTERNAL_2

CYGNUM_HAL_INTERRUPT_EXTERNAL_3

CYGNUM_HAL_INTERRUPT_EXTERNAL_4

CYGNUM_HAL_INTERRUPT_EXTERNAL_5

CYGNUM_HAL_INTERRUPT_EXTERNAL_6

CYGNUM_HAL_INTERRUPT_EXTERNAL_7

CYGNUM_HAL_INTERRUPT_EXTERNAL_8

CYGNUM_HAL_INTERRUPT_EXTERNAL_9

CYGNUM_HAL_INTERRUPT_EXTERNAL_10

CYGNUM_HAL_INTERRUPT_EXTERNAL_11

CYGNUM_HAL_INTERRUPT_EXTERNAL_12

CYGNUM_HAL_INTERRUPT_EXTERNAL_13

CYGNUM_HAL_INTERRUPT_EXTERNAL_14

CYGNUM_HAL_INTERRUPT_EXTERNAL_15

6.2.2 Miscellaneous Interrupts

Interrupt source Symbolic name

DTC – Data Transfer

Controller

CYGNUM_HAL_INTERRUPT_SWDTEND

CYGNUM_HAL_INTERRUPT_WOVI WDT - Watchdog Timer

CYGNUM_HAL_INTERRUPT_RFSH_CMI Refresh Controller

CYGNUM_HAL_INTERRUPT_ADI A/D Converter

6.2.3 TPU - 16 Bit Timer Pulse Unit Interrupts

Interrupt source Symbolic name

CYGNUM_HAL_INTERRUPT_TGI0A TPU 0 – Timer Channel 0
CYGNUM_HAL_INTERRUPT_TGI0B

CYGNUM_HAL_INTERRUPT_TGI0C

CYGNUM_HAL_INTERRUPT_TGI0D

CYGNUM_HAL_INTERRUPT_TCI0V

CYGNUM_HAL_INTERRUPT_TGI1A TPU 1 – Timer Channel 1
CYGNUM_HAL_INTERRUPT_TGI1B

CYGNUM_HAL_INTERRUPT_TCI1V

CYGNUM_HAL_INTERRUPT_TCI1U

CYGNUM_HAL_INTERRUPT_TGI2A TPU 2 – Timer Channel 2
CYGNUM_HAL_INTERRUPT_TGI2B

CYGNUM_HAL_INTERRUPT_TCI2V

CYGNUM_HAL_INTERRUPT_TCI2U

CYGNUM_HAL_INTERRUPT_TGI3A TPU 3 – Timer Channel 3
CYGNUM_HAL_INTERRUPT_TGI3B

CYGNUM_HAL_INTERRUPT_TGI3C

CYGNUM_HAL_INTERRUPT_TGI3D

CYGNUM_HAL_INTERRUPT_TCI3V

CYGNUM_HAL_INTERRUPT_TGI4A TPU 4 – Timer Channel 4
CYGNUM_HAL_INTERRUPT_TGI4B

CYGNUM_HAL_INTERRUPT_TCI4V

58 Application Development

 59 Application Development

CYGNUM_HAL_INTERRUPT_TCI4U

TPU 5 – Timer Channel 5 CYGNUM_HAL_INTERRUPT_TGI5A

CYGNUM_HAL_INTERRUPT_TGI5B

CYGNUM_HAL_INTERRUPT_TCI5V

CYGNUM_HAL_INTERRUPT_TCI5U

6.2.4 TMR - 8 Bit Timers

Interrupt source Symbolic name

TMR 0 – Timer Channel 0 CYGNUM_HAL_INTERRUPT_CMIA0

CYGNUM_HAL_INTERRUPT_CMIB0

CYGNUM_HAL_INTERRUPT_OVI0

TMR 1 – Timer Channel 1 CYGNUM_HAL_INTERRUPT_CMIA1

CYGNUM_HAL_INTERRUPT_CMIB1

CYGNUM_HAL_INTERRUPT_OVI1

6.2.5 DMA & EXDMA Controller Interrupts

Interrupt source Symbolic name

DMAC – DMA Controller CYGNUM_HAL_INTERRUPT_DEND0A

CYGNUM_HAL_INTERRUPT_DEND0B

CYGNUM_HAL_INTERRUPT_DEND1A

CYGNUM_HAL_INTERRUPT_DEND1B

EXDMAC – EXDMA Controller CYGNUM_HAL_INTERRUPT_EXDEND0

CYGNUM_HAL_INTERRUPT_EXDEND1

CYGNUM_HAL_INTERRUPT_EXDEND2

CYGNUM_HAL_INTERRUPT_EXDEND3

6.2.6 SCI – Serial Communication Interface
Interrupts

Interrupt source Symbolic name

CYGNUM_HAL_INTERRUPT_ERI0 SCI 0 – SCI Channel 0
CYGNUM_HAL_INTERRUPT_RXI0

CYGNUM_HAL_INTERRUPT_TXI0

CYGNUM_HAL_INTERRUPT_TEI0

CYGNUM_HAL_INTERRUPT_ERI1 SCI 1 – SCI Channel 1
CYGNUM_HAL_INTERRUPT_RXI1

CYGNUM_HAL_INTERRUPT_TXI1

CYGNUM_HAL_INTERRUPT_TEI1

CYGNUM_HAL_INTERRUPT_ERI2 SCI 2 – SCI Channel 2
CYGNUM_HAL_INTERRUPT_RXI2

CYGNUM_HAL_INTERRUPT_TXI2

CYGNUM_HAL_INTERRUPT_TEI2

6.3 Interrupt Priority Levels
When calling cyg_interrupt_create it is necessary to provide an interrupt priority

level. The H8S architecture supports 8 priority levels in interrupt control mode 2 (eCos

sets up interrupt control mode 2 at startup – interrupt control mode 0 is not supported at

the moment). The following symbolic constants should be used for providing interrupt

priority levels. When assertions are enabled then other values will raise an assertion

error.

CYGNUM_HAL_INT_PRIO_LOWEST (complies to CYGNUM_HAL_INT_PRIO_0)

CYGNUM_HAL_INT_PRIO_0

CYGNUM_HAL_INT_PRIO_1

CYGNUM_HAL_INT_PRIO_2

CYGNUM_HAL_INT_PRIO_3

CYGNUM_HAL_INT_PRIO_4

CYGNUM_HAL_INT_PRIO_5

CYGNUM_HAL_INT_PRIO_6

CYGNUM_HAL_INT_PRIO_7

CYGNUM_HAL_INT_PRIO_HIGHEST (complies to CYGNUM_HAL_INT_PRIO_7)

60 Application Development

 61 Application Development

NOTE .The lowest priority CYGNUM_HAL_INT_PRIO_0

means that this interrupt is blocked and will not occur. So the

lowest priority for an interrupt which should not be blocked is
CYGNUM_HAL_INT_PRIO_1

6.4 Interrupt Configuration
It is possible to program the interrupt controller with the method for detecting an interrupt.

This can be done by a function cal to cyg_interrupt_configure. The following

EDOSK-2674 interrupts are configurable with the following configuration options. (If

level is FALSE then up selects rising or falling edge detection. If level is true the up

selects low level or high level). If assertions are enabled then all other values and value

combinations will raise an assertion error.

void

cyg_interrupt_configure(

 cyg_vector_t vector,

 cyg_bool_t level,

 cyg_bool_t up

);

Symbolic interrupt name
Falling
Edge

Rising
Edge

Low
Level

High
Level

CYGNUM_HAL_INTERRUPT_NMI

yes yes - -

CYGNUM_HAL_INTERRUPT_EXTERNAL_0

yes yes yes -

CYGNUM_HAL_INTERRUPT_EXTERNAL_1

yes yes yes -

...

CYGNUM_HAL_INTERRUPT_EXTERNAL_15

yes yes yes -

7 Configuring the Windows Host

7.2 Installing the Cygwin Native Tools
This installation instruction is for the eCos H8S development CD. This is a CD I have

created for fast access to all tools for a complete eCos H8S development environment.

Maybe these installation instructions are also helpful for people without this CD.

STEP 1

The first step for installing Cygwin is to execute setup.exe from Cygwin install directory on

CD.

STEP 2

The next step in the

Cygwin installation is to

select the location we

want to install from. The

options are shown in the

following dialog box. We

select Install from Local

Directory and click the

Next button.

62 Configuring the Windows Host

 63

STEP 3

Now we want to select

the location of the

Cygwin packages we

want to install, Local

Package Directory. We

set this option to the CD

directory where the

installation files are

located.

STEP 4

Next we set up the

location where we want

the tools installed,

Select Root Insatll

Directory. We set this

option to D:\cygwin

by either typing it in or

directly clicking the

Browse button to find

the proper directory.

As Default Text File

Type we select DOS.

We can now click the

Next button.

Configuring the Windows Host

STEP 5

The next step is to

select the packages we

want to install. The

packages contained on

the CD ROM might not

be the latest versions

available because

changes to the Cygwin

tools are continuously

occuring. However, the

CD-ROM files have

been installed and

configured into a

working eCos development system.

Click once on the View button to show the Full view. In addition to the packages which

are installed by default, it is essential to install the following packages:

gcc, make, sharutils, tcltk, wget.

Click once on the rotating arrows symbol against each of the above packages to select

them for installation.

STEP 6

After successful installation of the Cygwin tools, the dialog box shown

right is displayed. Click OK completes Cygwin installation. To ensure

proper installation of the Cygwin tools, we can run the bash program

by double clicking on the desktop shortcut created in. This should bring

up a UNIX bash shell environment. The last thing we have to do is to add the

cygwin\bin directory to the Windows environment path.

7.3 Installing H8S Cross-Development Tools
The CD or “UK’s EDOSK-2674” hompage contains pre-built versions of h8300 GNU

development tools for Cygwin. For the installation of these tools we simply have to unzip

the package containing the tools into the cygwin directory. After unzipping the tools

there should be two directories cygwin\tools\gcch8 and cygwin\tools\gdbh8.

64 Configuring the Windows Host

 65

7.4 Installing the eCos Development Kit
The CD or “UK’s EDOSK-2674” hompage contains the latest snapshot of a working eCos

tree including the latest H8S and EDOSK-2674 sources. For installation you simply have

to execute the following steps.

STEP 1

The first step for installing eCos is to unzip the compressed eCos snapshot from CD into

a directory. For example unzipping the snapshot to D:\ will create the directory

D:\ecos.

STEP 2

The next step is to go into the directory ecos\tools\bin and execute the file

platforms.reg. This will register all supported platforms in Windows registry.

STEP 3

Now we execute the file

configtool.exe in:

Configuring the Windows Host

 ecos\tools\bin.

Because it is the first time we

execute this file we have to

specify the root of eCos repository tree. If we unzipped eCos to drive D: then this would

be D:\ecos.

STEP 4

The next step is to select a template

(Build -> Templates). Here we select

Renesas EDOSK2674 as Hardware

and redboot as Package. We can

now click the OK button.

STEP 5

Now we have to select the

buil tools path. This is the

path where the binaries of

the H8S cross

development tools are

located. (Tools -> Path ->

Build Tools). The required directory is the cygwin\tools\cch8\bin directory.

We continue with OK.

STEP 6

The next step is to select

the user tools folder. This

is the directory where the

cygwin binaries are

located. Normaly hey are

located in cygwin\bin.

We proceed with OK.

STEP 7

Selecting Tools -> Platforms will bring

up the Platforms window. Here you

can select the edosk2674_h8s

platform by double clicking on it. The

Modify Platform window will pop up

and you can setup or change the

arguments for GDB when executing

the tests. Normally these settings

should be OK after executing the

platforms.reg file. Read the

chapter about eCos tests in this

manual for further instructions on

eCos tests.

In order to run the eCos tests from Configuration tool we have to add the GDB binaries

path cygwin\tools\gdbh8\bin (if you installed Cygwin on drive D then the path

would be D:\cygwin\tools\gdbh8\bin.

Now the eCos development is completely installed and ready for H8S development.

66 Configuring the Windows Host

 67 Debugging with Insight

8 Debugging with Insight

8.2 Starting Insight
This chapter covers only things which are specific for debugging of H8S related eCos

applications. For a general and detailed description of debugging with GDB or Insight you

should read the appropriate manuals.

For debugging of H8S eCos applications you should use GDB or Insight version v401

available at www.kpitgnutools.com. These versions have been approved to work properly

for H8S eCos development. If you start GDB or Insight then you should use the

gdb_remote_h8s.ini file available on the H8S eCos development CD or on “UK’s

EDOSK-2674 eCos page”. This file sets up GDB for debugging of H8S eCos applications.

If this file is not available then you should create an ini file with the following settings:

set serial configuration
set remotedevice com1
set remotebaud 115200

Set debugging of remote protocol. When enabled, each packet
sent or received with the remote target is displayed
set debug remote 0
set debug serial 0
set debug arch 0
set debug event 0
set debug expression 0
set debug monitor 0
set debug target 0

Set filename for remote session recording
set remotelogfile \gdb.log

Set machine type
set architecture h8300s

Set the maximum size of the address (in bits) in a memory packet
set remoteaddresssize 32

Set the maximum number of bytes per memory-write packet
set remote memory-write-packet-size 64
set remote memory-write-packet-size fixed

define additional commandos
define reset
maintenance packet r
detach
end

You then should use this ini file when starting Insight:

http://www.kpitgnutools.com/

 Debugging with Insight

h8300-elf-insight.exe -x gdb_remote.ini

8.3 Debugging

8.3.1 Debugging using serial line
If we debug eCos

applications using the

serial line then we have to

set up GDB for serial

connection (File -> Target

Settings).

We have to set Target to

Remote/Serial, Baud

Rate to the baud rate of

EDOSK-2674 board serial

line (normally this should

be 115200) and Port to

the com port connected to

EDOSK-2674 board.

For Run Options you should check Attach to Target, Download Program and Continue

from Last Stop.

If we run the eCos tests then it is a good idea to set breakpoints at cyg_test_exit and

cyg_assert_fail. So we can reset the board by typing reset in console window

when a test fails or finishes.

68

 69

8.3.2 Debugging via Ethernet
If we debug eCos

applications using

ethernet then we have

to set up GDB for

TCP/IP connection (File

-> Target Settings).

Debugging with Insight

We have to set Target

to Remote/TCP,

Hostname to IP address

of EDOSK-2674 board

and Port to TCP port we

have configured when

building RedBoot.

The remaining options

8.3.3 Special GDB commands
e_h8s.ini file when we have the

should be the same like the options for debugging using serial connection.

If we executed GDB or Insight with the gdb_remot

additional command reset. This command sends a reset package to the EDOSK-2674

board and then detaches GDB from target. The reset packet causes a reset of the

EDOSK-2674 board. So if you finished debugging and wish to restart debug another file

or restart debugging of the same file then you simply enter the reset command and you

are able to connect to target again immediately without pressing reset switch on the

board.

	1 Table of contents
	2 Installation and Testing
	2.2 Overview
	2.3 Initial Installation Method
	2.4 RedBoot commands
	2.5 Memory Map
	2.6 EDOSK-2674 Tests
	2.6.1 Running the eCos tests
	2.6.1.1 Setting up connection
	2.6.1.2 Setting up platform settings
	2.6.1.3 Building the tests
	2.6.1.4 Executing the tests

	3 EDOSK-2674 Configuration Options
	3.2 Introduction
	3.3 H8S Architecture Configuration Options
	3.3.1 H8S services
	3.3.2 H8S build options

	3.4 H8S/2674 Variant Configuration Options
	3.4.1 H8S/2674 on-chip generic clock controls
	3.4.2 H8S/2674 build options

	3.5 EDOSK-2674 Platform Configuration Options
	3.5.1 EDOSK-2674 I/O related options
	3.5.2 EDOSK-2674 Real-time clock constants
	3.5.3 EDOSK-2674 build options

	3.6 Serial Device Driver Configuration Options
	3.6.1 Generic H8S SCI driver
	3.6.2 EDOSK-2674 serial device drivers

	3.7 Ethernet Device Driver Configuration Options
	3.7.1 SMSC LAN91CXX compatible Ethernet driver
	3.7.2 EDOSK-2674 SMC91C96 Ethernet driver

	3.8 H8S/2674 Watchdog driver Configuration Options
	3.9 Wallclock Device Driver Configuration Options
	3.9.1 Wallclock device driver for Dallas 1672
	3.9.2 EDOSK-2674 board RTC driver

	3.10 FLASH Memory Device Driver Configuration Options
	3.10.1 Intel StrateFLASH memory support
	3.10.2 EDOSK-2674 FLASH memory support

	4 Realtime Characterization
	5 Porting Guide
	5.2 H8S eCos Exception-/Interrupt Handling explained
	5.2.1 Hardware Vector Table
	5.2.2 Shadow Vector Table
	5.2.3 The Interrupt Entry Routine
	5.2.4 VSR Table
	5.2.5 Default Interrupt VSR
	5.2.6 Interrupt Handler Table
	5.2.7 User ISR
	5.2.8 Default Exception VSR
	5.2.9 Exception Handler

	5.3 Understanding HAL Startup
	5.4 Variant HAL Porting to H8S/2357
	5.4.1 HAL Variant Porting Process
	5.4.2 HAL Variant CDL
	5.4.3 Module Register Description
	5.4.4 Interrupt Vectors
	5.4.5 Variant Startup Macros
	5.4.6 The File var_misc.c

	5.5 Platform HAL Porting to Cetoni MCU2357
	5.5.1 HAL Platform Porting Process
	5.5.2 HAL Platform CDL
	5.5.3 Platform include files
	5.5.3.1 platform.inc

	5.5.4 Platform source files
	5.5.4.1 plf_misc.c
	5.5.4.2 plf_diag.c

	5.5.5 Memory Layout

	6 Application Development
	6.2 Symbolic Interrupt Vector Names
	6.2.1 External Interrupts
	6.2.2 Miscellaneous Interrupts
	6.2.3 TPU - 16 Bit Timer Pulse Unit Interrupts
	6.2.4 TMR - 8 Bit Timers
	6.2.5 DMA & EXDMA Controller Interrupts
	6.2.6 SCI – Serial Communication Interface Interrupts

	6.3 Interrupt Priority Levels
	6.4 Interrupt Configuration

	7 Configuring the Windows Host
	7.2 Installing the Cygwin Native Tools
	7.3 Installing H8S Cross-Development Tools
	7.4 Installing the eCos Development Kit

	8 Debugging with Insight
	8.2 Starting Insight
	8.3 Debugging
	8.3.1 Debugging using serial line
	8.3.2 Debugging via Ethernet
	8.3.3 Special GDB commands

