

Vivado Design Suite Tutorial

Programming and Debugging

UG936 (v2015.1) May 18, 2015

Programming and Debugging www.xilinx.com 2
UG936 (v2015.1) May 18, 2015

Revision History

The following table shows the revision history for this document.

Date Version Changes

05/18/2015 2015.1 Updates to the tutorials to reflect the 2015.1 Vivado software changes.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=2

Programming and Debugging www.xilinx.com 3
UG936 (v2015.1) May 18, 2015

Table of Contents

Revision History ..2

Debugging in Vivado Tutorial ...5

Introduction ..5

Objectives ...5

Getting Started ...6

Lab 1: Using the Netlist Insertion Method for Debugging a Design .. 11

Introduction ... 11

Step 1: Creating a Project with the Vivado New Project Wizard ... 11

Step 2: Synthesizing the Design ... 12

Step 3: Probing and Adding Debug IP .. 14

Step 4: Implementing and Generating Bitstream .. 24

Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado .. 25

Introduction ... 25

Step 1: Creating a Project with the Vivado New Project Wizard ... 25

Step 2: Synthesize Implement and Generate Bitstream ... 27

Lab 3: Using a VIO Core for Debugging a Design in Vivado ... 29

Introduction ... 29

Step 1: Creating a Project with the Vivado New Project Wizard ... 30

Step 2: Synthesize, Implement, and Generate Bitstream ... 35

Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design .. 36

Introduction ... 36

Step 1: Create a Synplify Pro Project ... 36

Step 2: Synthesize the Synplify Project ... 43

Step 3: Create EDIF Netlists for the Black Box Created in Synplify Pro ... 44

Step 4: Create a Post Synthesis Project in Vivado IDE ... 46

Step 5: Add (more) Debug Nets to the Project .. 48

Step 6: Implementing the Design and Generating the Bitstream ... 50

Using Vivado Logic Analyzer to Debug Hardware ... 51

Introduction ... 51

Step 1: Verifying Operation of the Sine Wave Generator ... 51

Step 2: Debugging the Sine Wave Sequencer State Machine (Optional) .. 62

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=3

Programming and Debugging www.xilinx.com 4
UG936 (v2015.1) May 18, 2015

Verifying the VIO Core Activity (Only applicable to Lab 3) .. 67

Lab 5: Using Vivado Serial Analyzer to Debug Serial Links .. 79

Introduction ... 79

Design Description ... 79

Step 1: Creating, Customizing, and Generating an IBERT Design .. 80

Step 2: Adding an IBERT core to the Vivado Project ... 81

Step 3: Synthesize, Implement and Generate Bitstream for the IBERT design ... 88

Step 4: Interact with the IBERT core using Serial I/O Analyzer ... 90

Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions ... 107

Introduction ... 107

Design Description ... 108

Step 1: Opening the JTAG to AXI Master IP Example Design and Configuring the AXI Interface Debug
Connections ... 108

Step 2: Program the KC705 Board and Interact with the JTAG to AXI Master Core ... 126

Step 3: Using ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction .. 133

Legal Notices .. 139

Please Read: Important Legal Notices ... 139

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=4

Programming and Debugging www.xilinx.com 5
UG936 (v2015.1) May 18, 2015

Debugging in Vivado Tutorial

Introduction
This document contains a set of tutorials designed to help you debug complex FPGA designs. The first

four labs explain different kinds of debug flows that you can chose to use during the course of debug.

These labs introduce the Vivado® debug methodology recommended to debug your FPGA designs.

The labs describe the steps involved in taking a small RTL design and the multiple ways of inserting the

Integrated Logic Analyzer (ILA) core to help debug the design. The fifth lab is for debugging high-speed

serial I/O links in Vivado. The sixth lab is for debugging JTAG-AXI transactions in Vivado. The first four

labs converge at the same point when connected to a target hardware board.

Example RTL designs are used to illustrate overall integration flows between Vivado logic analyzer, ILA,

and Vivado Integrated Design Environment (IDE). In order to be successful using this tutorial, you

should have some basic knowledge of Vivado Design Suite tool flow.

TRAINING: Xilinx provides training courses that can help you learn more about the

concepts presented in this document. Use these links to explore related courses:

 Vivado Design Suite Hands-on Introductory Workshop Training Course

 Vivado Design Suite Tool Flow Training Course

 Essentials of FPGA Design Training Course

 Vivado Design Suite User Guide: Programming and Debugging, (UG908).

Objectives
These tutorials:

 Show you how to take advantage of integrated Vivado logic analyzer features in the Vivado design

environment that make the debug process faster and simpler.

 Provide specifics on how to use the Vivado IDE and the Vivado logic analyzer to debug common

problems in FPGA logic designs.

 Provide specifics on how to use the Vivado Serial I/O Analyzer to debug high-speed serial links.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=fpga/essentials-of-fpga-design.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015_1;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=5

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 6
UG936 (v2015.1) May 18, 2015

After completing this tutorial, you will be able to:

 Validate and debug your design using the Vivado Integrated Design Environment (IDE) and the

Integrated Logic Analyzer (ILA) core.

 Understand how to create an RTL project, probe your design, insert an ILA core, and implement the

design in the Vivado IDE.

 Generate and customize an IP core netlist in the Vivado IDE.

 Debug the design using Vivado logic analyzer in real-time, and iterate the design using the Vivado

IDE and a KC705 Evaluation Kit Base Board that incorporates a Kintex®-7 device.

 Analyze high-speed serial links using the Serial I/O Analyzer.

Getting Started

Setup Requirements

Before you start this tutorial, make sure you have and understand the hardware and software

components needed to perform the labs included in this tutorial as listed below.

Software

 Vivado Design Suite 2015.1

Hardware

 Kintex-7 FPGA KC705 Evaluation Kit Base Board

 Digilent Cable

 Two SMA (Sub-miniature version A) cables

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=6

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 7
UG936 (v2015.1) May 18, 2015

Figure 1: KC705 Board Showing Key Components

Tutorial Design Components

Labs 1 through 4 include:

 A simple control state machine

 Three sine wave generators using AXI-Streaming interface, native DDS Compiler

 Common push buttons (GPIO_BUTTON)

 DIP switches (GPIO_SWITCH)

 LED displays (GPIO_LED) VIO Core (Lab 3 only)

Push Button Switches: Serve as inputs to the de-bounce and control state machine circuits. Pushing a

button generates a high-to-low transition pulse. Each generated output pulse is used as an input into

the state machine.

DIP Switch: Enables or disables a de-bounce circuit.

De-bounce Circuit: In this example, when enabled, provides a clean pulse or transition from high to

low. Eliminates a series of spikes or glitches when a button is pressed and released.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=7

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 8
UG936 (v2015.1) May 18, 2015

Sine Wave Sequencer State Machine: Captures and decodes input from the two push buttons.

Provides sine wave selection and indicator circuits, sequencing among 00, 01, 10, and 11 (zero to three).

LED Displays: GPIO_LED_0 and GPIO_LED_1 display selection status from the state machine outputs,

each of which represents a different sine wave frequency: high, medium, and low.

Lab5 includes:

 An IBERT core

 A top-level wrapper that instantiates the IBERT core.

Board Support and Pinout Information

Table 1: Pinout Information for the KC705 Board

Pin Name Pin Location Description

CLK_N AD11 Clock

CLK_P AD12 Clock

GPIO_BUTTONS[0] AA12 Reset

GPIO_BUTTONS[1] AG5 Sine Wave Sequencer

GPIO_SWITCH Y28 De-bounce Circuit Selector

LEDS_n[0] AB8 Sine Wave Selection[0]

LEDS_n[1] AA8 Sine Wave Selection[1]

LEDS_n[2] AC9 Reserved

LEDS_n[3] AB9 Reserved

Design Files

1. In your C: drive, create a folder called /Vivado_Debug.

2. Find the tutorial source files at the following location:

https://secure.xilinx.com/webreg/clickthrough.do?cid=385007

CAUTION! The tutorial and design files may be updated or modified between software releases.

You can download the latest version of the material from the Xilinx website.

3. Unzip the tutorial source file to the /Vivado_Debug folder. There are five labs that use different

methodologies for debugging your design. Select the appropriate lab and follow the steps to

complete them

Send Feedback

http://www.xilinx.com/
https://secure.xilinx.com/webreg/clickthrough.do?cid=385007
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=8

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 9
UG936 (v2015.1) May 18, 2015

Lab 1: This lab walks you through the steps of marking nets for debug in HDL as well as the post-

synthesis netlist (Netlist Insertion Method). Following are the required files:

 debounce.vhd

 fsm.vhd

 sinegen.vhd

 sinegen_demo.vhd

 sine_high/sine_high.xci

 sine_low/sine_low.xci

 sine_mid/sine_mid.xci

 sinegen_demo_kc705.xdc

Lab 2: This lab goes over the details of marking nets for debug in the source HDL (HDL instantiation

method) as well as instantiating an ILA core in the HDL. Following are the required files:

 debounce.vhd

 fsm.vhd

 sinegen.vhd

 sinegen_demo_inst.vhd

 ila_0/ila_0.xci

 sine_high/sine_high.xci

 sine_low/sine_low.xci

 sine_mid/sine_mid.xci

 sinegen_demo_kc705.xdc

Lab 3: You can test your design even if the hardware is not physically accessible, using a VIO core. This

lab walks you through the steps of instantiating and customizing a VIO core that you will hook to the

I/Os of the design. Following are the required files:

 debounce.vhd

 fsm.vhd

 sinegen.vhd

 sinegen_demo_inst_vio.vhd

 sine_high/sine_high.xci

 sine_low/sine_low.xci

 sine_mid/sine_mid.xci

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=9

 Debugging in Vivado Tutorial

Programming and Debugging www.xilinx.com 10
UG936 (v2015.1) May 18, 2015

 ila_0/ila_0.xci

 sinegen_demo_kc705.xdc

Lab 4: Nets can also be marked for debug in a third-party synthesis tool using directives for the

synthesis tool. This lab walks you through the steps of marking nets for debug in the Synplify tool and

then using Vivado to perform the rest of the debug. Following are the required files:

 dds_compiler_v6_0_viv.edn

 dds_compiler_v6_0_viv_parameterized1.edn

 dds_compiler_v6_0_viv_parameterized3.edn

 debounce.vhd

 fsm.vhd

 sine_high.xci

 sine_low.xci

 sine_mid.xci

 sinegen.edn

 sinegen_synplify.vhd

 synplify_1.sdc

 sinegen_demo_kc705.xdc

Lab 5: Debug high-speed serial I/O links using the Vivado Serial I/O Analyzer. This lab uses the Vivado

IP example design.

Lab 6: Using Vivado ILA core to debug JTAG-to-AXI transactions. This lab uses the Vivado IP example

design.

Connecting the Boards and Cables

1. Connect the Digilent cable from the Digilent cable connector to a USB port on your computer.

2. Connect the two SMA cables (for lab 5 only) as follows:

a. Connect one SMA cable from J19 (TXP) to J17 (RXP).

b. Connect the other SMA cable from J20 (TXN) to J66 (RXN).

The relative locations of SMA cables on the board are shown in Figure 1: KC705 Board Showing Key

Components.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=10

Programming and Debugging www.xilinx.com 11
UG936 (v2015.1) May 18, 2015

Lab 1: Using the Netlist Insertion Method for
Debugging a Design

Introduction
In this lab, you will mark signals for debug in the source HDL as well as the post synthesis netlist. Then

you will create an ILA core and take the design through implementation. Finally, you will use Vivado®

to connect to the KC705 target board and debug your design using Vivado Integrated Logic Analyzer.

Step 1: Creating a Project with the Vivado New Project
Wizard
To create a project, use the New Project wizard to name the project, to add RTL source files and

constraints, and to specify the target device.

1. Invoke the Vivado IDE.

2. In the Getting Started screen, click Create New Project to start the New Project wizard. Click Next.

3. In the Project Name screen, name the new project proj_netlist and provide the project location

(C:/Vivado_Debug). Ensure that Create Project Subdirectory is selected and click Next.

4. In the Project Type screen, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources screen:

a. Set Target Language to VHDL.

b. Click the Add Files button.

c. In the Add Source Files dialog box, navigate to the /src/Lab1 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into Project is selected. Click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=11

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 12
UG936 (v2015.1) May 18, 2015

7. In the Add Existing IP (optional) dialog box:

a. Click the Add Files button.

b. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_high directory.

c. Select XCI source file, and click OK.

d. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_mid directory.

e. Select XCI source file, and click OK.

f. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_low directory.

g. Select XCI source file, and click OK.

h. Verify that the files are added and Copy Sources into Project is selected. Click Next.

8. In the Add Constraints (optional) dialog box, the provided XDC file, sinegen_demo_kc705.xdc,

should automatically appear in the main window. Click Next.

9. In the Default Part dialog box, specify the xc7k325tffg900-2 part for the KC705 platform. You can

also select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

10. Review the New Project Summary page. Verify that the data appears as expected, per the steps

above, and click Finish.

Note: It could take a moment for the project to initialize.

Step 2: Synthesizing the Design
1. In the Project Manager, click Project Settings as shown in the following figure.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=12

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 13
UG936 (v2015.1) May 18, 2015

Figure 2: Configuring the Project Settings

IMPORTANT: As an optional step, in the Project Settings dialog box, select Synthesis from the

left and change flatten hierarchy to none. The reason for changing this setting to none is to

prevent the synthesis tool from performing any boundary optimizations for this tutorial.

2. In the Vivado Flow Navigator, expand the Synthesis drop-down list, and click Run Synthesis.

Note: When synthesis runs, a progress indicator appears, showing that synthesis is occurring. This

could take a few minutes.

3. In the Synthesis Completed dialog box, click Cancel as shown in the following figure. You will

implement the design later.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=13

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 14
UG936 (v2015.1) May 18, 2015

Figure 3: Synthesis Completed Dialog Box

Step 3: Probing and Adding Debug IP
To add a Vivado ILA core to the design, take advantage of the integrated flows between the Vivado IDE

and Vivado logic analyzer.

In this step, you will accomplish the following tasks:

 Add debug nets to the project.

 Run the Set Up Debug wizard.

 Implement and open the design.

 Generate the bitstream.

Adding Debug Nets to the Project

Following are some ways to add debug nets using the Vivado IDE:

 Add mark_debug attribute to HDL files.

VHDL

attribute mark_debug : string;

attribute keep : string;

attribute mark_debug of sine : signal is "true";

attribute mark_debug of sineSel : signal is "true";

Verilog

(* mark_debug = "true" *) wire sine;

(* mark_debug = "true" *) wire sineSel;

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=14

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 15
UG936 (v2015.1) May 18, 2015

This method provides lets you probe signals at the HDL design level. This can prevent optimization

that might have otherwise occurred to that signal. It also lets you pick up the signal tagged for post

synthesis, so you can insert these signals into a debug core and observe the values on this signal

during FPGA operation. This method gives you the highest probability to preserve HDL signal

names after synthesis.

 Right-click and select Mark Debug or Unmark Debug on a synthesized netlist.

This method is flexible since it allows probing the synthesized netlist in the Vivado IDE and allowing

you to add/remove MARK_DEBUG attribute at any hierarchy in the design. In addition this method

doesn’t require HDL source modification. However there may be situations where synthesis may not

preserve the signals due to netlist optimization involving absorption or merging of design

structures.

 Use a Tcl prompt to set the mark_debug attribute on a synthesized netlist.

set_property mark_debug true [get_nets –hier [list {sine[*]}]]

This applies the MARK_DEBUG on the current, open netlist.

This method is flexible since you can turn MARK_DEBUG on and off by modifying the Tcl command.

In addition, this method does not require HDL source modification. However, there may be

situations where synthesis does not preserve the signals due to netlist optimization involving

absorption or merging of design structures.

In the following steps, you learn how to add debug nets to HDL files and the synthesized design using

Vivado IDE.

TIP: Before proceeding, make sure that the Flow Navigator on the left panel is enabled.

Use Ctrl-Q to toggle it off and on.

1. In the Flow Navigator under the Synthesis drop-down list, click Open Synthesized Design as

shown in the following figure.

Figure 4: Open Synthesized Design

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=15

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 16
UG936 (v2015.1) May 18, 2015

2. In the Window menu, select Layout > Debug. When the Debug window opens. Click the window if

it is not already selected.

3. Expand Unassigned Debug Nets folder. The following figure shows those debug nets that were

tagged in sinegen_demo.vhd with mark_debug attributes.

Figure 5: VHDL Example Using MARK_DEBUG Attributes

Figure 6: Unassigned Debug Nets Post-Synthesis

4. Select the Netlist tab and expand Nets. Select the following nets for debugging shown in the

following figure.

o GPIO_BUTTONS_IBUF[0] and GPIO_BUTTONS_IBUF[1] - Nets folder under the top-

level hierarchy

o sel(2) - Nets folder under the U_SINEGEN hierarchy

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=16

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 17
UG936 (v2015.1) May 18, 2015

o sine(20)- Nets folder under the U_SINEGEN hierarchy

Figure 7: Add Nets for Debug from the Synthesized Netlist

Note: These signals represent the significant behavior of this design and are used to verify and

debug the design in subsequent steps.

5. Right-click the selected nets and select Mark Debug as shown in the following figure.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=17

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 18
UG936 (v2015.1) May 18, 2015

Figure 8: Adding Nets from the Netlist Tab

6. Next, mark nets for debug in the Tcl console. Mark nets “sine(20)” under the U_SINEGEN

hierarchy for debug by executing the following Tcl command.

set_property mark_debug true [get_nets –hier [list {sine[*]}]]

TIP: In the Debug window, you can see the unassigned nets you just selected. In the Netlist

window, you can also see the green bug icon next to each scalar or bus, which indicates that a

net has the attribute mark_debug = true as shown the following two figures.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=18

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 19
UG936 (v2015.1) May 18, 2015

Figure 9: Newly Added Nets for Debug from the Synthesized Netlist

Figure 10: Netlist View of Nets Marked for Debug

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=19

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 20
UG936 (v2015.1) May 18, 2015

Running the Set Up Debug Wizard

7. From the Debug window or Tools menu, select Set Up Debug. The Set up Debug wizard opens.

Figure 11: Launching the Set up Debug Wizard

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=20

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 21
UG936 (v2015.1) May 18, 2015

8. When the Set up Debug wizard opens, click Next.

Figure 12: Set up Debug Wizard

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=21

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 22
UG936 (v2015.1) May 18, 2015

9. In the Nets to Debug page, ensure that all the nets have been added for debug and click Next.

Figure 13: Specify Nets to Debug

10. In the ILA Core Options page, go to the Trigger and Storage Settings section. Select both the

Capture Control and Advanced Trigger settings. Click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=22

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 23
UG936 (v2015.1) May 18, 2015

11. In the Setup Debug Summary page, make sure that all the information is correct and as expected.

Click Finish.

Figure 14: Set up Debug Summary

Upon clicking Finish the relevant XDC commands to insert the ILA core(s) are generated.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=23

 Lab 1: Using the Netlist Insertion Method for Debugging a Design

Programming and Debugging www.xilinx.com 24
UG936 (v2015.1) May 18, 2015

Step 4: Implementing and Generating Bitstream
1. Click Generate Bitstream from the Program and Debug drop-down list in the Flow Navigator.

Figure 15: Implement Design and Generate Bitstream

2. In the Save Project dialog box click Save. This applies the mark_debug attributes on the newly

marked nets. You can see those constraints by inspecting the sinegen_demo_kc705.xdc file.

3. When the No Implementation Results Available dialog box pops up, click Yes.

4. When the bitstream generation completes, the Bitstream Generation Completed dialog box pops

up. Click OK.

5. In the dialog box asking to close synthesized design before opening implemented design. Click Yes.

6. In the Implementation is Out-of-date dialog box, click Yes.

7. Examine the Timing Summary report to ensure that all the specified timing constraints are met.

Figure 16: View the Timing Summary Report

Proceed to to complete the rest of the steps for

debugging the design.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=24

Programming and Debugging www.xilinx.com 25
UG936 (v2015.1) May 18, 2015

Lab 2: Using the HDL Instantiation Method for
Debugging a Design in Vivado

Introduction
The HDL Instantiation method is one of the two methods supported in Vivado® Debug Probing. For

this flow, you will generate an ILA IP using the Vivado IP Catalog and instantiate the core in a design

manually as you would with any other IP.

Step 1: Creating a Project with the Vivado New Project
Wizard
To create a project, use the New Project wizard to name the project, to add RTL source files and

constraints, and to specify the target device.

1. Invoke the Vivado IDE.

2. In the Getting Started page, click Create New Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_hdl and provide the project location

(C:/Vivado_Debug). Ensure that Create Project Subdirectory is selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page:

a. Set Target Language to VHDL.

b. Click Add Files.

c. In the Add Source Files dialog box, navigate to the /src/Lab2 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into Project is selected. Click Next.

6. 6. In the Add Existing IP (optional) page:

a. Click Add Files.

b. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_high directory.

c. Select XCI source file, and click OK.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=25

 Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 26
UG936 (v2015.1) May 18, 2015

d. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_mid directory.

e. Select XCI source file, and click OK.

f. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_low directory.

g. Select XCI source file, and click OK.

h. In the Add Configurable IP dialog box, navigate to the /src/lab1/ila_0 directory.

i. Select XCI source file, and click OK.

j. Verify that the files are added, and Copy Sources into Project is selected. Click Next.

7. In the Add Constraints (optional) page, the provided XDC file, sinegen_demo_kc705.xdc

should automatically appear in the main window. Click Next.

8. In the Default Part page, specify the xc7k325tffg900-2 part for the KC705 platform. You can also

select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

9. Review the New Project Summary page. Verify that the data appears as expected, per the steps

above. Click Finish.

10. In the Sources window in Vivado IDE, expand sinegen_demo_inst to see the source files for this

lab. Note that ila_0 core has been added to the project.

Figure 17: ILA Instantiation in HDL

Double-click the sinegen_demo_inst.vhd file to open it and inspect the instantiation and port

mapping of the ILA core in the HDL code.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=26

 Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 27
UG936 (v2015.1) May 18, 2015

Figure 18: Hook Signals that Requiring Debugging in the ILA

Step 2: Synthesize Implement and Generate Bitstream
1. From the Program and Debug drop-down list, in Flow Navigator, click Generate Bitstream. This

will synthesize, implement and generate a bitstream for the design.

Figure 19: Generate Bitstream

2. The No Implementation Results Available dialog box appears. Click Yes.

3. After bitstream generation completes, the Bitstream Generation Completed dialog box appears.

Open Implemented Design is selected by default. Click OK.

4. In the Report Timing Summary dialog box. Make sure that all timing constraints are met. Click OK.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=27

 Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 28
UG936 (v2015.1) May 18, 2015

Figure 20: Review Timing Summary

5. Proceed to Using Vivado Logic Analyzer to Debug Hardware chapter to complete the rest of this lab.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=28

Programming and Debugging www.xilinx.com 29
UG936 (v2015.1) May 18, 2015

Lab 3: Using a VIO Core for Debugging a Design in
Vivado

Introduction
The Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal

FPGA signals in real time. The number and width of the input and output ports are customizable in size

to interface with the FPGA design. Because the VIO core is synchronous to the design being monitored

and/or driven, all design clock constraints that are applied to your design are also applied to the

components inside the VIO core. Run time interaction with this core requires the use of the Vivado®

logic analyzer feature. The following figure is a block diagram of the new VIO core.

Figure 21: VIO Block Diagram

This lab walks you through the steps of instantiating and configuring the VIO core. It walks you through

the steps of connecting the I/Os of the design to the VIO core. This way, you can debug your design

when you do not have access to the hardware or the hardware is remotely located.

The following ports are created:

 One 4-bit PROBE_IN0 port. This has two bits to monitor the 2-bit Sine Wave selector outputs from

the finite state machine (FSM) and other two bits to mimic the state of the other two LEDs on the

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=29

 Lab 3: Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 30
UG936 (v2015.1) May 18, 2015

board. We will configure these 4-bit signals as LEDs during run time to mimic the LEDs displayed on

the KC705 board.

 One 2-bit PROBE_OUT0 port to drive the input buttons on the FSM. We will configure it so one bit

can be used as a toggle switch during run time to mimic the “PUSH_BUTTON”, SW3, and second bit

will be used as the “PUSH_BUTTON”, SW6.

Step 1: Creating a Project with the Vivado New Project
Wizard
To create a project, use the New Project wizard to name the project, to add RTL source files and

constraints, and to specify the target device.

1. Invoke Vivado IDE.

2. In the Getting Started page, click Create New Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_hdl_vio and provide the project location

(C:/Vivado_Debug). Ensure that Create project subdirectory is selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page:

a. Set Target Language to VHDL.

b. Click Add Files.

c. In the Add Source Files dialog box, navigate to the /src/Lab3 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into Project is selected. Click Next.

6. In the Add Existing IP (optional) page:

a. Click the Add Files.

b. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_high directory.

c. Select all XCI source files, and click OK.

d. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_mid directory.

e. Select all XCI source files, and click OK.

f. In the Add Configurable IP dialog box, navigate to the /src/lab1/sine_low directory.

g. Select all XCI source files, and click OK.

h. In the Add Configurable IP dialog box, navigate to the /src/lab1/ila_0 directory.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=30

 Lab 3: Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 31
UG936 (v2015.1) May 18, 2015

i. Select all XCI source files, and click OK.

j. Verify that the files are added and Copy sources into project is selected. Click Next.

7. In the Add Constraints (optional) dialog box, the provided XDC file, sinegen_demo_kc705.xdc,

should automatically appear in the main window. Click Next.

8. In the Default Part page, specify the xc7k325tffg900-2 part for the KC705 platform. You can also

select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

9. Review the New Project Summary page. Verify that the data appears as expected, per the steps

above. Click Finish.

Note: It might take a moment for the project to initialize.

10. In the Sources window in Vivado IDE, expand sinegen_demo_inst_vio to see the source files for this

lab. Note that ila_0 core has been added to the project. However, vio_0 (the VIO core) is

missing.

Figure 22: Missing Source for VIO Core

In the following step, you will instantiate and configure this VIO core.

11. From the Flow Navigator, click IP Catalog, expand Debug & Verification, then expand Debug,

and double-click VIO. The Customize IP dialog box opens.

12. On the General Options tab, leave the Component Name to its default value of vio_0, set Input

Probe Count to 1, Output Probe Count to 1, and select the Enable Input Probe Activity

Detectors check box.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=31

 Lab 3: Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 32
UG936 (v2015.1) May 18, 2015

Figure 23: Configure General Options of the VIO Core

13. On the PROBE_IN Ports tab, set Probe Width to 4 bits wide.

Figure 24: Configure PROBE_IN Ports of the VIO Core

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=32

 Lab 3: Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 33
UG936 (v2015.1) May 18, 2015

14. On the PROBE _OUT Ports, set Probe Width to 2 bits wide with an initial value of 0 in hex format.

Figure 25: Configure the PROBE_OUT Ports of the VIO Core

15. Click OK to generate the IP. The Generate Output Products dialog box will appear. Click Generate.

Figure 26: Generate Output Products for the VIO Core

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=33

 Lab 3: Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 34
UG936 (v2015.1) May 18, 2015

Output product generation should take less than a minute. At this point, you have finished

customizing the VIO. This core has already been instantiated in the top level design as shown in the

following figure.

Figure 27: VIO Instantiation in the Top Level Design

At this point, the Sources window should look as shown in the following figure.

Figure 28: Instantiated VIO Core in the Sources Window

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=34

 Lab 3: Using a VIO Core for Debugging a Design in Vivado

Programming and Debugging www.xilinx.com 35
UG936 (v2015.1) May 18, 2015

16. Double-click sinegen_demo_inst.vhd in the Sources window, to open it and inspect the

instantiation and port mapping of the ILA core in the HDL code.

Figure 29: Hook signals that need to be debugged in the ILA

Step 2: Synthesize, Implement, and Generate Bitstream
1. From the Program and Debug drop-down list, in Flow Navigator, click Generate Bitstream. This

synthesizes, implements, and generates a bitstream for the design.

2. The No Implementation Results Available dialog box appears. Click Yes.

3. After bitstream generation completes, the Bitstream Generation Completed dialog box appears.

Open Implemented Design is selected by default. Click OK.

4. Inspect the Timing Summary report and make sure that all timing constraints have been met.

Figure 30: Report Timing Summary Dialog Box

5. Proceed to Using Vivado Logic Analyzer to Debug Hardware. chapter to complete the rest of the

steps for debugging the design. Skip forward to Verifying the VIO Core Activity (Only applicable

to Lab 3) section to complete the rest of this lab.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=35

Programming and Debugging www.xilinx.com 36
UG936 (v2015.1) May 18, 2015

Lab 4: Using Synplify Pro Synthesis Tool and Vivado
for Debugging a Design

Introduction
This simple tutorial shows how to do the following:

 Create a Synplify Pro project for the wave generator design.

 Mark nets for debug in the Synplify Pro constraints file as well as VHDL source files.

 Synthesize the Synplify Pro project to create an EDIF netlist.

 Create a Vivado® project based on the Synplify Pro netlist.

 Use the Vivado IDE to setup and debug the design from the synthesized design using Synplify Pro

(Version 2013-3 SP1).

Step 1: Create a Synplify Pro Project
1. Launch Synplify Pro and select File > New. Set File Type to Project File (Project) as highlighted in

the following figure. In the New File Name box, enter synplify_1. Click OK.

Figure 31: Synplify Pro New Project Dialog Box

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=36

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 37
UG936 (v2015.1) May 18, 2015

2. If you get a dialog box asking you to create a non-existing directory click OK.

Figure 32: Synplify Pro project Confirmation Dialog Box

3. In the left panel of the Synplify Pro window, click Add File as shown in the following figure.

Figure 33: Adding Files to a Synplify Pro Project

4. In the Add Files to Project dialog box, change the Files of Type to HDL File. Navigate to

C:\Vivado_Debug\src\Lab4, which shows all the VHDL source files needed for this lab. Select

the following three files by pressing the Ctrl key and clicking on them.

 debounce.vhd

 fsm.vhd

 sinegen_demo.vhd

Click Add.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=37

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 38
UG936 (v2015.1) May 18, 2015

Figure 34: Adding VHDL Source Files to the Synplify Pro Project

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=38

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 39
UG936 (v2015.1) May 18, 2015

6. In the same dialog box set Files of type to Constraints File. This shows the synplify_1.sdc file.

Select the file and click Add as shown in the following figure.

Figure 35: Adding SDC Constraints File to the Synplify Pro Project

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=39

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 40
UG936 (v2015.1) May 18, 2015

7. In the same dialog box set Files of type to Compiler Directives File. This shows the

synplify_1.cdc file. Select the file and click Add as shown in the following figure. Click OK.

Figure 36: Adding CDC Constraints File to the Synplify Pro Project

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=40

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 41
UG936 (v2015.1) May 18, 2015

8. Now, you need to set the implementation options. Click Implementation Options in the Synplify

Pro window as shown in the following figure.

Figure 37: Opening Implementation Options in Synplify Pro

9. This brings up the Implementation Options dialog box as shown in the following figure. In the

Device tab, set Technology to Xilinx Kintex7, Part to XC7K325T, Package to FFG900 and Speed

to -2. Leave all the other options at their default values. Click OK.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=41

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 42
UG936 (v2015.1) May 18, 2015

Figure 38: Specifying Implementation Options in Synplify Pro

10. You need to preserve the net names that you want to debug by putting attributes in the HDL files.

These attributes are already placed in the sinegen_demo.vhd, file of this tutorial. Open the

sinegen_demo.vhd file and inspect the lines shown.

Figure 39: Specifying Attributes to Preserve Net Names in Synplify

11. You also can specify the mark_debug attributes in the source HDL files to mark the signals for

debug, as shown in the snippet code from singen_demo.vhd file.

Figure 40: Add Mark_Debug Attribute in HDL File

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=42

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 43
UG936 (v2015.1) May 18, 2015

12. The synplify_1.sdc file contains various kinds of constraints such as pin location, I/O standard,

and clock definition. The synplify_1.cdc file contains directives for the compiler. Here is where

the nets of interest to us that are marked for debug are located. The attribute and the nets selected

for debug are shown in the following figure.

Figure 41: Synplify Pro Constraints in CDC Files

In the above constraints, sinegen has been defined as a black box by using the syn_black_box

attribute. Second, the syn_no_prune attribute has been used so that the I/Os of this block are not

optimized away. Finally, two nets, sine[20:0] and sel[1:0] have been assigned the

mark_debug attribute such that these two nets should show up in the synthesized design in Vivado

IDE for further debugging. For further information on these attributes, please refer to the Synplify

Pro User Manual and Synplify Pro Reference Manual.

Step 2: Synthesize the Synplify Project
1. Before implementing the project, you need to set the name for the output netlist file. By default, the

name of the output netlist file is synplify_1.edf. To change the name of the output file, type the

following command at the Tcl command prompt:

%project -result_file "./rev_1/sinegen_demo.edf"

You will use this file in Vivado IDE.

2. With all the project settings in place, click the Run button in the left panel of the Synplify Pro

window to start synthesizing the design.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=43

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 44
UG936 (v2015.1) May 18, 2015

Figure 42: Synthesize the Design in Synplify

3. During synthesis, status messages appear in the Tcl Script tab. Warning messages are expected, but

there should not be any Error messages. To see detailed messages, click the Messages tab in the

bottom left-hand corner of the Synplify Pro console.

4. When synthesis completes, the output netlist is written to the file:

 rev_1/sinegen_demo.edf

[Optional] To view the netlist select View > View Result File.

5. Click File > Save All to save the project, then click File > Exit.

Step 3: Create EDIF Netlists for the Black Box Created in
Synplify Pro
The black box, sinegen, created in the Synplify Pro project, contains the Direct Digital Synthesizer IP.

You need to create a synthesized design for this block. To do this, create an RTL type project in Vivado

IDE by following the steps outlined below.

1. Launch Vivado IDE.

2. Click Create New Project. This opens up the New Project wizard. Click Next.

3. Under Project Name, set the project name to proj_synplify_netlist. Click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=44

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 45
UG936 (v2015.1) May 18, 2015

4. Under Project Type, select RTL Project. Click Next.

5. Under Add Sources, click Add Files, navigate to the Vivado_Debug/src/Lab4 folder and select

the sinegen.vhd file. Set Target Language to VHDL. Ensure that Copy sources into project box

is selected. Click Next.

6. Under Add Existing IP, click Add Files, navigate to the Vivado_Debug/src/Lab4 folder and

select the sine_high.xci, sine_low.xci, and sine_mid.xci files. Click Next.

7. Under Add Constraints, the .sdc files are automatically added to the project. These files are not

needed for this step. Remove them from this project by clicking Remove Selected File on the right

of the dialog box. Click Next.

8. Under Default Part, select Boards and then select the Kintex-7 KC705 Evaluation Platform and

correct version for your hardware. Click Next.

9. Under New Project Summary, ensure that all the settings are correct. Click Finish.

10. Once the project has been created, in Vivado Flow Navigator, under the Project Manager folder,

click Project Settings. In the pop-up dialog box, in the left panel, click Synthesis. From the pull

down menu on the right panel, set -flatten_hierarchy to none. Click OK.

11. In Vivado IDE Flow Navigator, under Synthesis Folder, click Run Synthesis.

12. When synthesis completes the Synthesis Completed dialog box appears. Select Open Synthesized

Design and click OK.

13. Now you need to write the netlist file for all the components used in the sinegen block. The four

netlist files used in this tutorial are already provided as a part of the source files. However, you can

overwrite them by using your own netlist files. To do this use the following Tcl command in the Tcl

console of Vivado IDE.

write_edif -force ../Vivado_Debug/src/Lab4/sinegen.edn

Ensure that the path specified to the src folder is correct. At this point, you should see four .edn

files in the Vivado_Debug/src folder as shown below:

o dds_compiler_v6_0_viv.edn

o dds_compiler_v6_0_viv_parameterized1.edn

o dds_compiler_v6_0_viv_parameterized3.edn

o sinegen.edn

14. Click File > Exit in Vivado IDE. When the OK to exit dialog box pops up, click OK.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=45

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 46
UG936 (v2015.1) May 18, 2015

Step 4: Create a Post Synthesis Project in Vivado IDE
1. Launch Vivado IDE.

2. Click Create New Project. This opens up the New Project wizard. Click Next.

3. Set the Project Name to proj_synplify. Click Next.

4. Under Project Type, select Post-synthesis Project. Click Next.

5. Under Add Netlist Sources, click Add Files, navigate to the Vivado_Debug/synopsys/rev_1

folder, and select sinegen_demo.edf. Click OK.

6. Add the four netlist files created in the previous section. Click Add Files again, navigate to the

Vivado_Debug/src/Lab4 folder and select the following files:

 sinegen.edn

 dds_compiler_v6_0_viv.edn

 dds_compiler_v6_0_viv_parameterized1.edn

 dds_compiler_v6_0_viv_parameterized3.edn

Click OK in the Add Source Files dialog box. In the Add Netlist Sources dialog box ensure that

Copy Sources into Project is selected. Click Next.

7. Under Add Constraints, a .sdc file. should be automatically populated. Remove this file by

selecting it and clicking Remove Selected File on the right of the dialog box. Click Add Files ,

navigate to the Vivado_debug/src folder, and select the sinegen_demo_kc705.xdc file. This file

has the appropriate constraints needed for this Vivado project. Click OK in the Add Constraints File

dialog box. In the Add Constraints (optional) dialog box ensure that Copy Constraints into

Project is selected. Click Next.

8. Under Default Part, select Boards and then select Kintex-7 KC705 Evaluation Platform and the

right version number for your hardware. Click Next.

9. Under New Project Summary, ensure that all the settings are correct and click Finish.

10. In the Sources window, select sinegen_demo.edf and select Specify Top Module.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=46

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 47
UG936 (v2015.1) May 18, 2015

Figure 43: Specifying the Top-Level Module

11. In the Specify Top Module dialog box, click Browse.

Figure 44: Browse to the Top Module

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=47

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 48
UG936 (v2015.1) May 18, 2015

12. In the Select Top Module dialog box, select sinegen_demo, then click OK.

Figure 45: Select the Top Level Module

13. Click OK in the Specify Top Module dialog box after ensuring that the top level module is correct.

Figure 46: Specify sinegen_demo as the Top Level Module

Step 5: Add (more) Debug Nets to the Project
1. In Vivado IDE, in the Flow Navigator, select Open Synthesized Design from the Netlist Analysis

folder.

2. Select the Netlist tab in the Netlist window to expand Nets. Select the following nets for

debugging:

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=48

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 49
UG936 (v2015.1) May 18, 2015

 GPIO_BUTTONS_c(2)

 sine (20)

 sineSel (2)

After selecting all the nets mentioned above click Mark Debug.

Figure 47: Mark Additional Signals for Debug

3. In the Confirm Debug Net(s) dialog box, click OK.

4. You should be able to see all the nets that are marked for debug as shown in the following figure.

Figure 48: Nets Added for Debug through the Synplify Pro Flow in Vivado IDE

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=49

 Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design

Programming and Debugging www.xilinx.com 50
UG936 (v2015.1) May 18, 2015

Running the Set up Debug Wizard

5. Click the Set up Debug icon in the Debug window or select the Tools menu, and select Set up

Debug. The Set up Debug wizard opens.

Figure 49: Run the Set up Debug Wizard

6. Click through the wizard to create Vivado logic analyzer debug cores, keeping the default settings.

Note: In the Specify Nets to Debug dialog box, ensure that all the nets marked for debug have

the same clock domain.

Step 6: Implementing the Design and Generating the
Bitstream
1. In the Flow Navigator, under the Program and Debug drop-down list, click Generate Bitstream.

2. In the Save Project dialog box, click Save.

3. When the Bitstream generation finishes, the Bitstream Generation Completed dialog box pops-up

and Open Implemented Design is selected by default. Click OK.

4. If you get a dialog box asking to close the synthesized design before opening the implemented

design, click Yes.

5. Proceed to Using Vivado Logic Analyzer to Debug Hardware to complete the rest of this lab.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=50

Programming and Debugging www.xilinx.com 51
UG936 (v2015.1) May 18, 2015

Using Vivado Logic Analyzer to Debug Hardware

Introduction
The final step in debugging is to connect to the hardware and debug your design using the Integrated

Logic Analyzer. Before continuing, make sure you have the KC705 hardware plugged into a machine.

In this step, you learn:

 How to debug the design using the Vivado® logic analyzer.

 How to use the currently supported Tcl commands to communicate with your target board (KC705).

 How to discover and correct a circuit problem by identifying unintended behaviors of the push

button switch.

 Some useful techniques for triggering and capturing design data.

Step 1: Verifying Operation of the Sine Wave Generator
After doing some setup work, you will use Vivado logic analyzer to verify that the sine wave generator is

working correctly. Your two primary objectives are to verify that:

 All sine wave selections are correct.

 The selection logic works correctly.

Target Board and Server Set Up

Connecting to the target board remotely

If you plan to connect remotely, you will need to make sure you have KC705 hardware plugged into a

machine and you are running an hw_server application on that machine. If you plan to connect locally,

skip steps 1-4 below and go directly to the Connecting to the Target Board Locally section.

1. Connect the Digilent USB JTAG cable of your KC705 board to a USB port on a Windows system.

2. Ensure that the board is plugged in and powered on.

3. Power cycle the board to clear the device.

4. Turn DIP switch positions (pin 1 on SW13, De-bounce Enable) to the OFF position.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=51

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 52
UG936 (v2015.1) May 18, 2015

5. Assuming you are connecting your KC705 board to a 64-bit Windows machine and you will be

running the hw_server from the network instead of your local drive, open a cmd prompt and type

the following:

<Xilinx_Install>\Vivado\2015.1\bin\hw_server

Leave this cmd prompt open while the hw_server is running. Note the machine name that you are

using, you will use this later when opening a connection to this instance of the hw_server

application.

Connecting to the Target Board Locally

If you plan to connect locally, ensure that you have your KC705 hardware plugged into a Windows

machine and then perform the following steps:

1. Connect the Digilent USB JTAG cable of your KC705 board to a USB port on a Windows system.

2. Ensure that the board is plugged in and powered on.

3. Power cycle the board to clear the device.

4. Turn DIP switch positions (pin 1 on SW13, De-bounce Enable) to the OFF position.

Using the Vivado Integrated Logic Analyzer

1. In the Flow Navigator, from the Program and Debug drop-down list, select Open Hardware

Manager.

Figure 50: Open Hardware Manager

2. The Hardware Manager window opens. Click Open New Target… . The Open New Hardware

Target wizard opens.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=52

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 53
UG936 (v2015.1) May 18, 2015

Figure 51: Connect to a Hardware Target

3. In the Hardware Server Settings page, type the name of the server (or select Local server if the

target is on the local machine) in the Connect to field.

Figure 52: Hardware Server Settings

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=53

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 54
UG936 (v2015.1) May 18, 2015

Note: Depending on your connection speed, this may take about 10 to 15 seconds.

4. If there is more than one target connected, you will see multiple entries in the Select Hardware

Target page. In this tutorial, there is only one target, as shown in the following figure. Click Next.

Figure 53: Select Hardware Target

5. Leave these settings at their default values. Click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=54

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 55
UG936 (v2015.1) May 18, 2015

6. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

Figure 54: Hardware Target Summary

7. Wait for the connection to the hardware to complete. The dialog in following figure appears while

hardware is connecting.

Figure 55: Open Hardware Target

After the connection to the hardware target is made, the dialog shown in the following figure

appears.

Note: The Hardware tab in the Debug view shows the hardware target and XC7K325T device

detected in the JTAG chain.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=55

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 56
UG936 (v2015.1) May 18, 2015

Figure 56: Active Target Hardware

8. Next, program the XC7K325T device using the .bit bitstream file that was created previously by

right-clicking the XC7K325T device and selecting Program Device as shown in the following

figure.

Figure 57: Program Active Target Hardware

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=56

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 57
UG936 (v2015.1) May 18, 2015

9. In the Program Device dialog box verify that the .bit file is correct for the lab that you are

working on and click Program to program the device as shown in the following figure.

Figure 58: Select Bitstream File to Download for Lab 1

CAUTION! The file paths of the bitstream to be programmed will be different for different labs.

Ensure that the relative paths are correct.

Note: Wait for the program device operation to complete. This may take few minutes.

10. Ensure that an ILA core was detected in the Hardware panel of the Debug view.

Figure 59: ILA Core Detection

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=57

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 58
UG936 (v2015.1) May 18, 2015

11. The Integrated Logic Analyzer dashboard opens.

Figure 60: The Vivado Integrated Logic Analyzer window

Verifying Sine Wave Activity

12. Click Run Trigger Immediate to trigger and capture data immediately as shown in shown in the

following figure.

Figure 61: Run Trigger Immediate Button

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=58

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 59
UG936 (v2015.1) May 18, 2015

13. In the Waveform window, verify that there is activity on the 20-bit sine signal as shown in the

following figure.

Figure 62: Output Sine Wave Displayed in Digital Format

Displaying the Sine Wave

14. Right-click U_SINEGEN/sine[19:0] signals, and select Waveform Style >Analog as shown in the

following figure.

TIP: The waveform does not look like a sine wave. This is because you must change the radix

setting from Hex to Signed Decimal, as described in the following subsection.

Figure 63: Output Sine Wave Displayed in Analog Format - High Frequency 1

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=59

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 60
UG936 (v2015.1) May 18, 2015

15. Right-click U_SINEGEN/sine[19:0] signals, and select Radix > Signed Decimal. You should now

be able to see the high frequency sine wave as shown in the following figure instead of the square

wave.

Figure 64: Output Sine Wave Displayed in Analog Format - High Frequency 2

Correcting Display of the Sine Wave

To view the mid, and low frequency output sine waves, perform the following steps:

16. Cycle the sine wave sequential circuit by pressing the GPIO_SW_E push button as shown in the

following figure.

Figure 65: Sine Wave Sequencer Push Button

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=60

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 61
UG936 (v2015.1) May 18, 2015

17. Click Run Trigger Immediately again to see the new sine selected sine wave. You should see the

mid frequency as shown in the following figure. Notice that the sel signal also changed from 0 to 1

as expected.

Figure 66: Output Sine Wave Displayed in Analog Format - Mid Frequency

18. Repeat step 17 and 18 to view other sine wave outputs.

Figure 67: Output Sine Wave Displayed in Analog Format - Low Frequency

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=61

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 62
UG936 (v2015.1) May 18, 2015

Figure 68: Output Sine Wave Displayed in Analog Format - Mixed Frequency

Note: As you sequence through the sine wave selections, you may notice that the LEDs do not light

up in the expected order. You will debug this in the next section of this tutorial. For now, verify for

each LED selection, that the correct sine wave displays. Also, note that the signals in the Waveform

window have been re-arranged in the previous three figures.

Step 2: Debugging the Sine Wave Sequencer State Machine
(Optional)
As you were correcting the sine wave display, the LEDs might not have lit up in sequence as you

pressed the Sine Wave Sequencer button. With each push of the button, there should be a single, cycle-

wide pulse on the GPIO_BUTTONS_re[1] signal. If there is more than one, the behavior of the LEDs

becomes irregular. In this section of the tutorial, use Vivado logic analyzer to probe the sine wave

sequencer state machine, and to view and repair the root cause of the problem.

Before starting the actual debug process, it is important to understand more about the sine wave

sequencer state machine.

Sine Wave Sequencer State Machine Overview

The sine wave sequencer state machine selects one of the four sine waves to be driven onto the sine

signal at the top-level of the design. The state machine has one input and one output. The following

figure shows the schematic elements of the state machine. Refer to this diagram as you read the

following description and as you perform the steps to view and repair the state machine glitch.

 The input is a scalar signal called “button”. When the button input equals “1”, the state machine

advances from one state to the next.

 The output is a 2-bit signal vector called “Y”, and it indicates which of the four sine wave generators

is selected.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=62

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 63
UG936 (v2015.1) May 18, 2015

The input signal button connects to the top-level signal GPIO_BUTTONS_re[1], which is a low-to-high

transition indicator on the Sine Wave Sequencer button. The output signal Y connects to the top-level

signal, sineSel, which selects the sine wave.

Figure 69: Sine Wave Sequencer Button Schematic

Viewing the State Machine Glitch

You cannot troubleshoot the issue you identified above by connecting a debug probe to the

GPIO_BUTTON [1] input signal itself. The GPIO_BUTTON [1] input signal is a PAD signal that is not

directly accessible from the FPGA fabric. Instead, you must trigger on low-to-high transitions (rising

edges) on the GPIO_BUTTON_IBUF signal, which is connected to the output of the input buffer of the

GPIO_BUTTON [1] input signal.

As described earlier, the glitch reveals itself as multiple low-to-high transitions on the

GPIO_BUTTONS_1_IBUF signal, but it occurs intermittently. Because it could take several button presses

to detect it, you will now set up the Vivado logic analyzer tool to Repetitive Trigger Run Mode. This

setting makes it easier to repeat the button presses and look for the event in the Waveform viewer.

1. Open the Debug Probes window if not already open by selecting Window > Debug Probes from

the menu.

2. In the ILA Properties window scroll down to the link marked To view editable ILA Properties:

Open ILA Dashboard and set the following:

a. Trigger Mode to BASIC_ONLY

b. Capture Mode to BASIC

c. Window Data Depth to 1024

d. Trigger position to 512

e. Press the + button in the Trigger setup window and add probe GPIO_BUTTONS_IBUF_1.

Change the Compare Value field to RX by clicking in the Compare Value column and typing

the value RX in the Value field, as shown in the following figure.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=63

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 64
UG936 (v2015.1) May 18, 2015

Figure 70: Setting Trigger Conditions

CAUTION! For different labs the GPIO_BUTTONS_IBUF may show up differently. This may show

up as two individual bits or two bits lumped together in a bus. Ensure that you are using bit 1 of

this bus to set up your trigger condition. For example in case of a two-bit bus, you will set the

Value field in the Compare Value dialog box to RX.

CAUTION! The ILA properties window may look slightly different for different labs.

3. Enable the Auto-Retrigger mode on the ILA debug core as shown below.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=64

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 65
UG936 (v2015.1) May 18, 2015

Figure 71: Enable Auto-retrigger

When you issue a Run Trigger or a Run Trigger Immediate command after setting the Auto

Retrigger mode, the ILA core does the following repetitively until you disable the Auto Retrigger

mode option.

o Arms the trigger.

o Waits for the trigger.

o Uploads and displays waveforms.

.

4. On the KC705 board, press the Sine Wave Sequencer button until you see multiple transitions on

the GPIO_BUTTONS_1_IBUF signal (this could take 10 or more tries). This is a visualization of the

glitch that occurs on the input. An example of the glitch is shown in the following two figures.

CAUTION! You may have to repeat the previous 2 steps repeatedly to see the glitch. Once you

can see the glitch, you may observe signal glitches are not at exactly the same location as

shown in the figure below.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=65

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 66
UG936 (v2015.1) May 18, 2015

Figure 72: GPIO_BUTTONS_BUF1 Signal Glitch

Figure 73: GPIO Buttons_1_re Signal Glitch magnified

Fixing the Signal Glitch and Verifying the Correct State Machine Behavior

The multiple transition glitch or “bounce” occurs because the mechanical button is making and

breaking electrical contact just as you press it. To eliminate this signal bounce, a “de-bouncer” circuit is

required.

5. Enable the de-bouncer circuit by setting DIP switch position on the KC705 board (labeled De-

bounce Enable in Figure 1: KC705 Board Showing Key Components) to the ON or UP position.

6. Enable the Auto-Retrigger mode on the ILA debug core and click RunTrigger on the ILA core,

and:

o Ensure that you no longer see multiple transitions on the GPIO_BUTTON_re[1] signal on a

single press of the Sine Wave Sequencer button.

o Verify that the state machine is working correctly by ensuring that the sineSel signal

transitions from 00 to 01 to 10 to 11 and back to 00 with each successive button press.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=66

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 67
UG936 (v2015.1) May 18, 2015

Verifying the VIO Core Activity (Only applicable to Lab 3)
1. From the Program and Debug section in Flow Navigator, click Open Hardware Manager.

Figure 74: Open Hardware Manager

2. The Hardware Manager window opens. Click Open a new hardware target.

Figure 75: Connect to a New Hardware Target

3. The Open New Hardware Target wizard opens. Click Next.

4. In the Hardware Server Settings page, type the name of the server (or select Local server if the

target is on the local machine) in the Connect to field.

5. Ensure that you are connected to the right target by selecting the target from the Hardware

Targets page. If there is only one target, that target is selected by default. Click Next.

6. In the Set Hardware Target Properties page, click Next.

7. In the Open Hardware Target Summary page, verify that all the information is correct, and click

Finish.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=67

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 68
UG936 (v2015.1) May 18, 2015

8. Program the device by selecting and right-clicking the device in the Sources window and then

selecting Program Device.

Figure 76: Program FPGA

9. In the Program Device dialog box, ensure that the bit file to be programmed is correct. Click OK.

Figure 77: Program Device with the sinegen_demo_inst_vio.bit File

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=68

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 69
UG936 (v2015.1) May 18, 2015

10. After the FPGA device is programmed, you see the VIO and the ILA core in the Hardware window.

Figure 78: The ILA and VIO Cores in the Hardware Window

You now have two debug dashboards one for the ILA core and the other for the VIO core.

Figure 79: ILA Core and VIO Core Dashboards

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=69

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 70
UG936 (v2015.1) May 18, 2015

11. Click Run Trigger Immediate to capture the data immediately.

Figure 80: Run Trigger Immediate

12. Make sure that there is activity on the sine [19:0] signal.

13. Select the sine signal in the Waveform window, right-click and select Waveform Style > Analog.

14. Select the sine signal in the Waveform window again, right-click and select Radix > Signed

Decimal. You should be able to see the sine wave in the Waveform window.

Figure 81: Sine Wave after Modifying the Properties of the sine [19:0] Signal

15. Instead of using the GPIO_SW push button to cycle through each different sine wave output

frequency, you are going to use the virtual “push_button_vio” toggle switch from the VIO core.

16. You can now customize the ILA dashboard options to include the VIO window. This allows you to

toggle the VIO output drivers and observe the impact on the ILA waveform window all in one

dashboard. Slide out the Dashboard Options window.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=70

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 71
UG936 (v2015.1) May 18, 2015

Figure 82: Invoking Dashboard Options

17. Add the VIO window to the ILA dashboard.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=71

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 72
UG936 (v2015.1) May 18, 2015

Figure 83: Dashboard Options Adding VIO

Note:The ILA dashboard now contains the VIO window as well.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=72

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 73
UG936 (v2015.1) May 18, 2015

18. Adjust the ILA Basic Trigger window and the VIO window so that they are side by side as shown

below.

Figure 84: ILA Basic Trigger Window and VIO Window Adjustment

19. In the VIO Probes window, select the green + button to put all the probes into the VIO core tab.

Note the initial values of all the probes.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=73

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 74
UG936 (v2015.1) May 18, 2015

Figure 85: VIO Add Probes Window

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=74

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 75
UG936 (v2015.1) May 18, 2015

20. Note the values on all probes in the VIO Probes window.

Figure 86: VIO Probes Added to VIO Core Window

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=75

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 76
UG936 (v2015.1) May 18, 2015

21. Set the “push_button_reset” output probe by right-clicking push_botton_reset and select Toggle

Button. This will toggle the output driver from logic from ‘0’ to ‘1’ to ‘0’ as you click. It is similar to

the actual push button behavior, though there is no bouncing mechanical effect as with a real push

button switch.

Figure 87: Toggle the push_button_reset Signal

The Value field for push_button_reset is highlighted. Click in the Value field to change its value to 1.

Figure 88: Toggle the Value of push_button_reset

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=76

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 77
UG936 (v2015.1) May 18, 2015

22. Follow the step above to change the push_button_vio to Toggle button as well.

23. Set these two bits of the “sineSel” input probe by right-clicking PROBE_IN0[0] and PROBE_IN0[1]

and selecting LED.

Figure 89: Change sineSel to LED

24. In the Select LED Colors dialog box, pick the Low Value Color and the High Value Color of the

LEDs as you desire and click OK.

Figure 90: Pick the Low Value and High Value Color of the LEDs

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=77

 Using Vivado Logic Analyzer to Debug Hardware

Programming and Debugging www.xilinx.com 78
UG936 (v2015.1) May 18, 2015

25. When finished, your VIO Probes window in the Hardware Manager should look similar to the

following figure.

Figure 91: Input and Output VIO Signals Displayed

26. To cycle through each different sine wave output frequency using the virtual “push_button_vio”

from the VIO core, follow the following simple steps:

a. Toggle the value of the “push_button_vio” output driver from 0 to 1 to 0 by clicking on the logic

displayed under the Value column. You will notice the sineSel LEDs changed accordingly – 0, 1,

2, 3, 0, etc…

b. Click Run Trigger for hw_ila_1 to capture and display the selected sine wave signal from the

previous step.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=78

Programming and Debugging www.xilinx.com 79
UG936 (v2015.1) May 18, 2015

Lab 5: Using Vivado Serial Analyzer to Debug Serial
Links

Introduction
The Serial I/O analyzer is used to interact with IBERT debug IP cores contained in a design. It is used to

debug and verify issues in high speed serial I/O links.

The Serial I/O Analyzer has several benefits as listed below:

 Tight integration with Vivado® IDE.

 Ability to script during netlist customization/generation and serial hardware debug.

 Common interface with the Vivado Integrated Logic Analyzer.

The customizable LogiCORE™ IP Integrated Bit Error Ratio Tester (IBERT) core for 7 series FPGA GTX

transceivers is designed for evaluating and monitoring the GTX transceivers. This core includes pattern

generators and checkers that are implemented in FPGA logic, and provides access to ports and the

dynamic reconfiguration port attributes of the GTX transceivers. Communication logic is also included

to allow the design to be run time accessible through JTAG.

In the course of this tutorial, you:

 Create, customize, and generate an Integrated Bit Error Ratio Tester (IBERT) core design in the

Vivado Integrated Design Suite.

 Interact with the design using Serial I/O Analyzer. This includes connecting to the target KC705

board, configuring the device, and interacting with the IBERT/Transceiver IP cores.

 Perform a sweep test to optimize your transceiver channel and to plot data using the IBERT sweep

plot GUI feature.

Design Description
You can customize the IBERT core and use it to evaluate and monitor the functionality of transceivers

for a variety of Xilinx devices. The focus for this tutorial is on Kintex®-7 GTX transceivers. Accordingly,

the KC705 target board is used for this tutorial.

The following figure shows a block diagram of the interface between the IBERT Kintex-7 GTX core

interfaces with Kintex-7 transceivers.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=79

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 80
UG936 (v2015.1) May 18, 2015

 DRP Interface and GTX Port Registers: IBERT provides you with the flexibility to change GTX

transceiver ports and attributes. Dynamic reconfiguration port (DRP) logic is included, which allows

the runtime software to monitor and change any attribute in any of the GTX transceivers included in

the IBERT core. When applicable, readable and writable registers are also included. These are

connected to the ports of the GTX transceiver. All are accessible at run time using the Vivado Logic

Analyzer tool.

 Pattern Generator: Each GTX transceiver enabled in the IBERT design has both a pattern generator

and a pattern checker. The pattern generator sends data out through the transmitter.

 Error Detector: Each GTX transceiver enabled in the IBERT design has both a pattern generator and

a pattern checker. The pattern checker takes the data coming in through the receiver and checks it

against an internally generated pattern.

Figure 92: IBERT Design Flow

Step 1: Creating, Customizing, and Generating an IBERT
Design
To create a project, use the New Project wizard to name the project, to add RTL source files and

constraints, and to specify the target device.

JTAG

BSCAN

DRP

Interface

Pattern

Generator

Error

Detector

GTX Port

Detector

DRP

Ports

Tx Data

Rx Data

Kintex 7 GTX

Transceiver

TxN/TxP

RxN/RxP

External Serial

Loopback via

SMA Cables

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=80

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 81
UG936 (v2015.1) May 18, 2015

1. Invoke the Vivado IDE.

2. In the Getting Started screen, click Create New Project to start the New Project wizard. Click

Next.

3. In the Project Name page, name the new project ibert_tutorial and provide the project location

(C:/ibert_tutorial). Ensure that Create Project Subdirectory is selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page, click Next.

6. In the Add Existing IP page, click Next.

7. In the Add Constraints page, click Next.

8. In the Default Part page, select Boards and then select Kintex-7 KC705 Evaluation Platform.

Click Next.

9. Review the New Project Summary page. Verify that the data appears as expected, per the steps

above. Click Finish.

Note: It might take a moment for the project to initialize.

Step 2: Adding an IBERT core to the Vivado Project
1. In the Flow Navigator click IP Catalog. The IP Catalog opens.

Figure 93: Opening the Vivado IP Catalog

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=81

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 82
UG936 (v2015.1) May 18, 2015

2. In the search field of the IP Catalog type IBERT, to display the IBERT 7 Series GTX IP.

Figure 94: Instantiating the IBERT IP from the Vivado IP Catalog

3. Double-click IBERT 7 Series GTX IP. This brings up the customization GUI for the IBERT.

4. In the Customize IP dialog box, choose the following options in the Protocol Definition tab:

a. Type the name of the component in the Component Name field. In this case, leave the name as

the default name, ibert_7series_gtx_0.

b. Ensure that the Silicon Version is selected as General ES/Production.

c. Ensure that the Number of Protocols option is set to 1.

d. Change the LineRate (Gbps) to 8.

e. Change DataWidth to 40.

f. Change Refclk (MHz) to 125.

g. Ensure that the Quad Count is set to 2.

h. Ensure Quad PLL box is selected.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=82

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 83
UG936 (v2015.1) May 18, 2015

Figure 95: Setting the Protocol Definition on the IBERT Core

5. Under the Protocol Selection tab, update the following selections:

a. For GTX Location QUAD_117, in the Protocol Selected column, click the pull-down menu and

select Custom 1 / 8 Gbps. This should automatically populate Refclk Selection to

MGTREFCLK0 117 and TXUSRCLK Source to Channel 0.

b. For GTX Location QUAD_118, do the following:

i. In the Protocol Selected column, click the pull-down menu and select Custom 1 / 8

Gbps.

ii. In the Refclk Selection column, change the value to MGTREFCLK0 117.

iii. In the TXUSRCLK Source column, change the value to Channel 0.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=83

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 84
UG936 (v2015.1) May 18, 2015

Figure 96: Setting the Protocol Selection on the IBERT Core

6. Click the Clock Settings tab and make the following changes for both QUAD_117 and QUAD_118:

a. Leave the Source column at its default value of External.

b. Change the I/O Standard column to DIFF SSTL15.

c. Change the P Package Pin to AD12.

d. Change the N Package Pin to AD11.

e. Leave the Frequency(MHz) at its default value of 200.00.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=84

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 85
UG936 (v2015.1) May 18, 2015

Figure 97: Specifying clock settings for the IBERT Core

7. Click the Summary tab and ensure that the content matches the following figure. Click OK.

Figure 98: IBERT Core Summary Page

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=85

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 86
UG936 (v2015.1) May 18, 2015

8. When the Generate Output Products dialog box opens, click Generate.

Figure 99: Generate Output Products

9. In the Project Manager window, right-click the IP, and select Open IP Example Design.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=86

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 87
UG936 (v2015.1) May 18, 2015

Figure 100: Open Example IP Design Menu Item

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=87

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 88
UG936 (v2015.1) May 18, 2015

10. In the Open IP Example Design dialog box, ensure that the Overwrite existing example project is

selected and click OK.

Figure 101: Open IP Example Design Dialog Box

Step 3: Synthesize, Implement and Generate Bitstream for
the IBERT design
1. Click Generate Bitstream in the Flow Navigator. When the No Implementation Results Available

dialog box appears. Click Yes.

Figure 102: No Implementation Results Available Dialog Box

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=88

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 89
UG936 (v2015.1) May 18, 2015

2. When the bitstream generation is complete, the Bitstream Generation Completed dialog box

appears. Select Open Hardware Manager. Click OK.

Figure 103: Bitstream Generation Completed Dialog Box

3. The Hardware Manager window appears as shown in the following figure.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=89

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 90
UG936 (v2015.1) May 18, 2015

Figure 104: Hardware Manager Window

Step 4: Interact with the IBERT core using Serial I/O Analyzer
In this tutorial step, you connect to the KC705 target board, program the bitstream created in the

previous step, and then use the Serial I/O Analyzer to interact with the IBERT design that you created in

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=90

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 91
UG936 (v2015.1) May 18, 2015

Step 1. You perform some analysis using various input patterns and loopback modes, while observing

the bit error count.

Figure 105: Open a New Hardware Target

1. Click Open a new hardware target. When the Open New Hardware Target wizard opens, click

Next.

Figure 106: Open New Hardware Target Wizard

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=91

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 92
UG936 (v2015.1) May 18, 2015

2. In the Connect to field, choose Local server. Click Next.

Figure 107: Vivado CSE Server Name Page

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=92

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 93
UG936 (v2015.1) May 18, 2015

3. In the Select Hardware Target page, click Next. There is only one target board in this case to

connect to, so the default is selected.

Figure 108: Select Hardware Target Page

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=93

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 94
UG936 (v2015.1) May 18, 2015

4. In the Open Hardware Target Summary page, review the options that you selected. Click Finish.

Figure 109: Open Hardware Target Summary Dialog Box

5. The Hardware window in Vivado IDE should show the status of the target FPGA device on the

KC705 board.

Figure 110: Hardware Window Showing the XC7K325T Device on the KC705 Board

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=94

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 95
UG936 (v2015.1) May 18, 2015

6. Select XC7K325T_0(0) in the Hardware window, right-click and select Program Device.

Figure 111: Program Target Device

7. The Program Device dialog box opens. Make sure that the correct bitfile is selected and click OK.

Figure 112: Program Device Dialog Box

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=95

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 96
UG936 (v2015.1) May 18, 2015

8. Click No in response to “Do you want to auto-detect serial I/O links for IBERT cores?”

Figure 113: Auto-Detect Serial I/O links

9. The Hardware window now shows the IBERT IP that you customized and implemented from the

previous steps. It contains two QUADS each of which has four GTX transceivers. These components

of the IBERT were detected while scanning the device after downloading the bitstream. If you do not

see the QUADS then select the XC7K325 device, right-click and select Refresh Device.

Figure 114: The Hardware Window Showing the QUADS after Device Programming

10. Next, create links for all eight transceivers. Vivado Serial I/O analyzer is a link-based analyzer, which

allows users to link between any transmitter and receiver GTs within the IBERT design. For this

tutorial, simply link the TX and RX of the same channel. To create a link, right-click the IBERT Core

in the Hardware window and click Create Links.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=96

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 97
UG936 (v2015.1) May 18, 2015

Figure 115: Create Links

The Create Links dialog box opens. Make sure the first transceiver pairs (MGT_X0Y8/TX and

MGT_X0Y8/RX) are selected.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=97

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 98
UG936 (v2015.1) May 18, 2015

Figure 116: Selecting the Transceiver Pairs for Creating New Links

Click the green + button add a new link. In the Link group description field, type Link Group

SMA. Select the Internal Loopback check box.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=98

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 99
UG936 (v2015.1) May 18, 2015

Figure 117: Create Links Dialog Box

For the first link group, call this Link Group SMA as this is the only transceiver channel that is linked

through the SMA cables. The new link shows up in the Links window.

Figure 118: Create Link Groups for Other Transceiver Pairs

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=99

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 100
UG936 (v2015.1) May 18, 2015

Click Create Link again to create link groups for the rest of the transceiver pairs. To do this ensure

that the transceiver pairs are selected, and click the + sign icon (add new link) repeatedly, until all

the links have been added to the new link group called Link Group Internal Loopback. Click OK.

Figure 119: Create Link Dialog Box to Create the Second Link Group

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=100

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 101
UG936 (v2015.1) May 18, 2015

11. Once the links have been created, they are added to the Links window as shown.

Figure 120: Links Window after Link Groups are Created

The status of the links indicate an 8.0 Gbps line rate.

For more information about the different columns of the Links windows, refer to Vivado Design Suite

User Guide: Programming and Debugging, (UG908).

Change the GT properties of the rest of the transceivers as described above.

12. Next, create a 2D scan. Click Create Scan in the Links window.

Figure 121: Creating a 2D Scan for Link 1

The Create Scan dialog box opens. In this dialog box, you can change the various scan properties.

In this case, leave everything to its default value and click OK. For more information on the scan

properties, see Vivado Design Suite User Guide: Programming and Debugging, (UG908).

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015_1;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015_1;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015_1;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=101

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 102
UG936 (v2015.1) May 18, 2015

Figure 122: The Create Scan Dialog Box

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=102

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 103
UG936 (v2015.1) May 18, 2015

The Scan Plot window opens as shown below.

Figure 123: 2D Scan Plot

The 2D Scan Plot is a heat map of the BER value.

13. You can also perform a Sweep test on the links that you created earlier. In the Links window,

highlight Link 0 under the Link called Link Group SMA, right-click and select Create Sweep.

Figure 124: Create a Sweep Test

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=103

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 104
UG936 (v2015.1) May 18, 2015

14. The Create Sweep dialog box opens, as shown below. Various properties for the Sweep test can be

changed in this dialog box. Leave all the values to its default state and click OK.

Figure 125: Create Sweep Dialog Box

Since there are four different Sweep Properties and each of these properties has three different

values (as seen in the Values to Sweep column), a total number of 81 sweep tests are carried out.

The Scans window shows the results of all the scans that have been done for the selected link.

CAUTION! Since there are 81 scans to be done, it could be a few minutes before all the scans

are complete.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=104

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 105
UG936 (v2015.1) May 18, 2015

Figure 126: Sweep Test Results in the Scans Window

To see the results of any of the scans that have been performed, highlight the scan, right-click, and

select Display Scan Plots.

Figure 127: Displaying Scan Plots

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=105

 Lab 5: Using Vivado Serial Analyzer to Debug Serial Links

Programming and Debugging www.xilinx.com 106
UG936 (v2015.1) May 18, 2015

The Scan Plots window opens showing the details of the scan performed.

Figure 128: Analyzing the Results of Individual Scans

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=106

Programming and Debugging www.xilinx.com 107
UG936 (v2015.1) May 18, 2015

Lab 6: Using Vivado ILA core to Debug JTAG-AXI
Transactions

Introduction
The purpose of this tutorial is to provide a very quick and easy to reproduce introduction to inserting an

ILA core into the JTAG to AXI Master IP core example design, and using the ILA's advanced trigger and

capture capabilities.

What is the JTAG to AXI Master IP core?

The LogiCORE™ IP JTAG-AXI core is a customizable core that can generate AXI transactions and drive

AXI signals internal to FPGA at run-time. This supports all memory-mapped AXI interfaces (except AXI4-

Stream) and Lite protocol and can be selected using a parameter. The width of AXI data bus is

customizable. This IP can drive any AXI4-Lite or Memory Mapped Slave directly. This can also be

connected as master to the interconnect. Run-time interaction with this core requires the use of the

Vivado® logic analyzer feature.

Key Features

 AXI4 master interface

 Option to select AXI4-Memory Mapped and AXI4-Lite interfaces

 User controllable AXI read and write enable

 User Selectable AXI datawidth : 32 and 64

 User Selectable AXI ID width up to four bits

 Vivado logic analyzer Tcl Console interface to interact with hardware

Additional Documentation

LogiCORE IP JTAG AXI Master v1.0 Product Guide (AXI), (PG174) contains more information the JTAG to

AXI Master IP core.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=jtag_axi;v=latest;d=pg174-jtag-axi.pdf
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=107

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 108
UG936 (v2015.1) May 18, 2015

Design Description
This section has three steps as follows:

1. Opening the JTAG to AXI Master IP Example Design project and adding mark_debug to the AXI

interface connection. Inserting an ILA core into the design and configuring it for advanced trigger is

also included in this step.

2. Programming the KC705 board and interacting with the JTAG to AXI Master IP core.

3. Using the ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction.

Step 1: Opening the JTAG to AXI Master IP Example Design
and Configuring the AXI Interface Debug Connections
To create a project, use the New Project wizard to name the project, add RTL source files and

constraints, and specify the target device.

1. Invoke the Vivado IDE.

2. In the Getting Started screen, click Create New Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project jtag_2_axi_tutorial and provide the project

location (C:/jtag_2_axi_tutorial). Ensure that Create Project Subdirectory is selected. Click

Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page, click Next.

6. In the Add Existing IP page, click Next.

7. In the Add Constraints page, click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=108

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 109
UG936 (v2015.1) May 18, 2015

8. In the Default Part page choose Boards and choose the Kintex-7 KC705 Evaluation Platform.

Click Next.

Figure 129: Choosing the Kintex-7 KC705 Evaluation Platform board

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=109

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 110
UG936 (v2015.1) May 18, 2015

9. In the New Project Summary page click Finish.

Figure 130: New Project Summary

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=110

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 111
UG936 (v2015.1) May 18, 2015

10. In the leftmost panel of the Flow Navigator under Project Manager, click IP Catalog.

Figure 131: Synthesis Completed Dialog Box

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=111

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 112
UG936 (v2015.1) May 18, 2015

11. In the Search field on the right of the IP Catalog tab, type in JTAG to AXI.

Note: The JTAG to AXI Master core shows up under the Debug & Verification -> Debug

category.

Figure 132: JTAG to AXI Master IP Core

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=112

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 113
UG936 (v2015.1) May 18, 2015

12. Double-click JTAG to AXI Master core. The Customization dialog of the core appears. Accept the

default core settings by clicking OK.

Figure 133 JTAG to AXI Master Customization Dialog

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=113

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 114
UG936 (v2015.1) May 18, 2015

13. In the Generate Output Products dialog, click Generate.

Figure 134: Generate Output Products Dialog Box

14. The jtag_axi_0 IP core is inserted into the design.

Figure 135: Generated JTAG to AXI Master IP in the Design

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=114

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 115
UG936 (v2015.1) May 18, 2015

15. Right-click jtag_axi_0 and select Open IP Example Design.

Figure 136: Open IP Example Design Menu Item

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=115

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 116
UG936 (v2015.1) May 18, 2015

16. In the Open IP Example Design dialog, ensure that Overwrite existing example project is

selected. Click OK.

Figure 137: Open IP Example Design Dialog Box

17. Open the example_jtag_axi_0.v file and notice that the jtag_axi_0 module is connected to an

axi_bram_ctrl_0 (AXI-BRAM block memory) module.

18. In the example_jtag_axi_0.v file, add the following string to the beginning of the wire declaration for

each axi_* signal from lines 72-108:

(* mark_debug *)

Note: Do not put mark_debug on the axi_aclk signal since this might result in Vivado

Synthesis adding a LUT1 to the clock path, which could possibly cause you to not meet timing.

Lines 72-108 should look like this:

(* mark_debug *) wire [31:0]axi_araddr;

(* mark_debug *) wire [1:0]axi_arburst;

(* mark_debug *) wire [3:0]axi_arcache;

(* mark_debug *) wire [0 :0]axi_arid;

(* mark_debug *) wire [7:0]axi_arlen;

(* mark_debug *) wire axi_arlock;

(* mark_debug *) wire [2:0]axi_arprot;

(* mark_debug *) wire [3:0]axi_arqos;

(* mark_debug *) wire axi_arready;

(* mark_debug *) wire [2:0]axi_arsize;

(* mark_debug *) wire axi_arvalid;

(* mark_debug *) wire [31:0]axi_awaddr;

(* mark_debug *) wire [1:0]axi_awburst;

(* mark_debug *) wire [3:0]axi_awcache;

(* mark_debug *) wire [0 :0]axi_awid;

(* mark_debug *) wire [7:0]axi_awlen;

(* mark_debug *) wire [7:0]axi_awlen;

(* mark_debug *) wire axi_awlock;

(* mark_debug *) wire [2:0]axi_awprot;

(* mark_debug *) wire [3:0]axi_awqos;

(* mark_debug *) wire axi_awready;

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=116

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 117
UG936 (v2015.1) May 18, 2015

(* mark_debug *) wire [2:0]axi_awsize;

(* mark_debug *) wire axi_awvalid;

(* mark_debug *) wire [0 :0]axi_bid;

(* mark_debug *) wire axi_bready;

(* mark_debug *) wire [1:0]axi_bresp;

(* mark_debug *) wire axi_bvalid;

(* mark_debug *) wire [31 :0]axi_rdata;

(* mark_debug *) wire [0 :0]axi_rid;

(* mark_debug *) wire axi_rlast;

(* mark_debug *) wire axi_rready;

(* mark_debug *) wire [1:0]axi_rresp;

(* mark_debug *) wire axi_rvalid;

(* mark_debug *) wire [31 :0]axi_wdata;

(* mark_debug *) wire axi_wlast;

(* mark_debug *) wire axi_wready;

(* mark_debug *) wire [3 :0]axi_wstrb;

(* mark_debug *) wire axi_wvalid;

19. Save changes to example_jtag_axi_o.v file.

20. In the Flow Navigator on the left side of the Vivado window, click Run Synthesis.

21. Open the synthesized design by selecting Open Synthesized Design and clicking OK.

Figure 138: Open Synthesized Design

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=117

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 118
UG936 (v2015.1) May 18, 2015

22. Once the synthesized design opens, do the following:

a. Select the Debug layout in the main toolbar of the Vivado IDE.

Figure 139: Debug Layout in the Vivado IDE Toolbar

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=118

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 119
UG936 (v2015.1) May 18, 2015

b. Select the Debug window near the bottom of the Vivado IDE.

Figure 140: Debug Window in the Vivado IDE

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=119

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 120
UG936 (v2015.1) May 18, 2015

c. Click the Set up Debug toolbar button to launch the Set up Debug wizard.

Figure 141: Set Up Debug Wizard

23. Once the Set up Debug wizard pops up, click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=120

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 121
UG936 (v2015.1) May 18, 2015

24. In the next page of the Setup Debug wizard, note that some of the nets that you would like to

debug have no detectable clock domains selected. Click the more info link in the message banner.

Figure 142: Missing Clock Domain Dialog Box

25. In the resulting pop-up, click Assign All Clock Domains.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=121

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 122
UG936 (v2015.1) May 18, 2015

26. In the resulting pop-up, select the aclk clock net, then click OK.

Figure 143: Select Clock Domain Dialog Box

27. Observe that all of the nets now have an assigned clock domain. Click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=122

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 123
UG936 (v2015.1) May 18, 2015

28. In the Trigger and Storage Settings page, ensure that Advanced Trigger and Capture Control

are selected. Click Next.

Figure 144: Trigger and Capture Modes Page

29. Click Finish.

Note: See that the ILA core was inserted and attached to the dbg_hub core.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=123

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 124
UG936 (v2015.1) May 18, 2015

Figure 145: ILA Core Inserted into the Design

30. Save the constraints by clicking Save.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=124

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 125
UG936 (v2015.1) May 18, 2015

31. The insertion of debug cores and changing of properties on those debug cores adds constraints to

your target XDC constraint file. This modification of your target constraints file currently sets your

synthesis out of date. You can force the design up to date by selecting the Run in the Design Runs

tab, right-clicking, and selecting Force Up-to-Date.

Figure 146: Forcing Synthesis Up-To-Date

32. In the Flow Navigator on the left side of the Vivado IDE, click Generate Bitstream.

33. Click Yes to implement the design.

34. Wait until the Vivado status shows write_bitstream complete.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=125

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 126
UG936 (v2015.1) May 18, 2015

35. In the Bitstream Generation Completed dialog box, select Open Hardware Manager and click

OK.

Figure 147: Open Hardware Manager

Step 2: Program the KC705 Board and Interact with the JTAG
to AXI Master Core
1. Connect your KC705 board's USB-JTAG interface to a machine that has Vivado IDE and cable drivers

installed on it and power up the board.

2. The Hardware Manager window opens. Click Open a new hardware target. The Open New

Hardware Target dialog box opens.

Figure 148: Connect to a Hardware Target

3. In the Connect to field choose Local server, and click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=126

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 127
UG936 (v2015.1) May 18, 2015

Figure 149: Hardware Server Name

Note: Depending on your connection speed, this may take about 10 to 15 seconds.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=127

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 128
UG936 (v2015.1) May 18, 2015

4. If there is more than one target connected to the hardware serve, you will see multiple entries in the

Select Hardware Target page. In this tutorial, there is only one target as shown in the following

figure. Click Next.

Figure 150: Select Hardware Target

5. Leave these settings at their default values as shown. Click Next.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=128

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 129
UG936 (v2015.1) May 18, 2015

6. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

Figure 151: Open Hardware Summary

7. Wait for the connection to the hardware to complete. The dialog in the following figure appears

while hardware is connecting.

Figure 152: Open Hardware Target

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=129

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 130
UG936 (v2015.1) May 18, 2015

Once the connection to the hardware target is made, the dialog shown in the following figure

appears.

Note: The Hardware tab in the Debug view shows the hardware target and XC7K325T device

that was detected in the JTAG chain.

Figure 153: Hardware Target and XC7K325T Device

8. Next, program the XC7K325T device using the .bit bitstream file that was created previously by

right-clicking the XC7K325T device and selecting Program Device as shown in the following figure.

Figure 154: Program Active Target Hard

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=130

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 131
UG936 (v2015.1) May 18, 2015

9. In the Program Device dialog box verify that the .bit file is correct for the lab that you are

working on. Click the OK to program the device.

Figure 155: Select Bitstream File to Download

Note: Wait for the program device operation to complete. This may take few minutes.

10. Verify that the JTAG to AXI Master and ILA cores are detected by locating the hw_axi_1 and

hw_ila_1 instances in the Hardware Manager window.

Figure 156: ILA Core Instances in the Hardware Window

11. You can communicate with the JTAG to AXI Master core with Tcl commands only. You can issue AXI

read and write transactions using the run_hw_axi command. However, before issuing these

transactions, it is important to reset the JTAG to AXI Master core. Because the aresetn input port

of the jtag_axi_0 core instance is not connected to anything, you need to use the following Tcl

commands to reset the core:

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=131

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 132
UG936 (v2015.1) May 18, 2015

reset_hw_axi [get_hw_axis hw_axi_1]

Figure 157: Reset JTAG to AXI core

12. The next step is to create a 4-word AXI burst transaction to write to the first four locations of the

BRAM:

set wt [create_hw_axi_txn write_txn [get_hw_axis hw_axi_1] -type WRITE -address

00000000 -len 128 -data {44444444_33333333_22222222_11111111}]

where:

o "write_txn" is the name of the transaction

o "[get_hw_axis hw_axi_1]" returns the hw_axi_1 object

o "-address 00000000" is the start address

o "-len 4" sets the AXI burst length to 128 words

o "-data {44444444_33333333_22222222_11111111}" is the data to be written.

Note: The data direction is MSB to the left (i.e., address 3) and LSB to the right (i.e., address 0). Also

note that the data will be repeated from the LSB to the MSB to fill up the entire burst.

13. The next step is to set up a 128-word AXI burst transaction to read the contents of the first four

locations of the AXI-BRAM core:

set rt [create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] -type READ -address 00000000 -len 128]

where:

o read_txn is the name of the transaction

o [get_hw_axis hw_axi_1] returns the hw_axi_1 object

o -address 00000000 is the start address

o -len 128 sets the AXI burst length to 4 words

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=132

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 133
UG936 (v2015.1) May 18, 2015

14. After creating the transaction, you can run it as a write transaction using the run_hw_axi command:

 run_hw_axi $wt

This command should return the following:

INFO: [Labtools 27-147] vcse_server: WRITE DATA is :

44444444333333332222222211111111…

15. After creating the transaction, you can run it as a read transaction using the run_hw_axi

command:

run_hw_axi $rt

This command should return the following:

INFO: [Labtools 27-147] vcse_server: READ DATA is :

44444444333333332222222211111111…

Step 3: Using ILA Advanced Trigger Feature to Trigger on an
AXI Read Transaction
1. In the ILA – hw_ila_1 dashboard, locate the Trigger Mode Settings area and set Trigger mode to

ADVANCED_ONLY.

2. In the Capture Mode Settings area set the Trigger position to 512.

3. In the Trigger State Machine area click the Create new trigger state machine link.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=133

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 134
UG936 (v2015.1) May 18, 2015

Figure 158: Setting Trigger Mode to ADVANCED and Trigger Position to 512 in the ILA Dashboard

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=134

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 135
UG936 (v2015.1) May 18, 2015

4. In the New Trigger State Machine File dialog box set the name of the state machine script to

txns.tsm.

Figure 159: Creating a New Trigger State Machine Script

5. A basic template of the trigger state machine script is displayed in the Trigger State Machine

gadget. Expand the trigger state machine gadget in the ILA dashboard. Copy the script below after

line 17 of the state machine script and save the file.

The "wait_for_arvalid" state is used to detect the start

of the read address phase of the AXI transaction which

is indicated by the axi_arvalid signal equal to '1'

state wait_for_arvalid:

 if (axi_arvalid == 1'b1) then

 goto wait_for_rready;

 else

 goto wait_for_arvalid;

 endif

The "wait_for_rready" state is used to detect the start

of the read data phase of the AXI transaction which

is indicated by the axi_rready signal equal to '1'

state wait_for_rready:

 if (axi_rready == 1'b1) then

 goto wait_for_rlast;

 else

 goto wait_for_rready;

 endif

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=135

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 136
UG936 (v2015.1) May 18, 2015

The "wait_for_rlast" state is used to detect the end

of the read data phase of the AXI transaction which

is indicated by the axi_rlast signal equal to '1'.

Once the end of the data phase is detected, the ILA core

will trigger.

state wait_for_rlast:

 if (axi_rlast == 1'b1) then

 trigger;

 else

 goto wait_for_rlast;

 endif

Note: The state machine is used to detect the various phases of an AXI read transaction:

 Beginning of the read address phase.

 Beginning of the read data phase.

 End of the read data phase.

6. Arm the trigger of the ILA by right-clicking the hw_ila_1 core in the Hardware Manager window

and selecting Run Trigger.

Figure 160: Run Trigger

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=136

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 137
UG936 (v2015.1) May 18, 2015

7. In the Trigger Capture Status window, note that the ILA core is waiting for the trigger to occur, and

that the trigger state machine is in the wait_for_a_valid state. Note that the pre-trigger capture of

512 samples has completed successfully:

Figure 161: Trigger Capture Status Window

8. In the Tcl console, run the read transaction that you set up in the previous section of this tutorial.

run_hw_axi $rt

Note: The ILA core has triggered and the trigger mark is on the sample where the axi_rlast

signal is equal to '1', just as the trigger state machine program intended.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=137

 Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions

Programming and Debugging www.xilinx.com 138
UG936 (v2015.1) May 18, 2015

Figure 162: Waveform window

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=138

Programming and Debugging www.xilinx.com 139
UG936 (v2015.1) May 18, 2015

Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum

extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES

AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,

including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in

connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss

or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party)

even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no

obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not

reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and

conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP

cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or

intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products

in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

© Copyright 2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are

trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Programming%20and%20Debugging&releaseVersion=2015.1&docPage=139

	Vivado Design Suite Tutorial: Programming and Debugging
	Revision History
	Table of Contents
	Debugging in Vivado Tutorial
	Introduction
	Objectives
	Getting Started
	Setup Requirements
	Software
	Hardware
	Tutorial Design Components
	Board Support and Pinout Information
	Design Files
	Connecting the Boards and Cables

	Lab 1: Using the Netlist Insertion Method for Debugging a Design
	Introduction
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesizing the Design
	Step 3: Probing and Adding Debug IP
	Adding Debug Nets to the Project
	VHDL
	Verilog

	Running the Set Up Debug Wizard

	Step 4: Implementing and Generating Bitstream

	Lab 2: Using the HDL Instantiation Method for Debugging a Design in Vivado
	Introduction
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesize Implement and Generate Bitstream

	Lab 3: Using a VIO Core for Debugging a Design in Vivado
	Introduction
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesize, Implement, and Generate Bitstream

	Lab 4: Using Synplify Pro Synthesis Tool and Vivado for Debugging a Design
	Introduction
	Step 1: Create a Synplify Pro Project
	Step 2: Synthesize the Synplify Project
	Step 3: Create EDIF Netlists for the Black Box Created in Synplify Pro
	Step 4: Create a Post Synthesis Project in Vivado IDE
	Step 5: Add (more) Debug Nets to the Project
	Running the Set up Debug Wizard

	Step 6: Implementing the Design and Generating the Bitstream

	Using Vivado Logic Analyzer to Debug Hardware
	Introduction
	Step 1: Verifying Operation of the Sine Wave Generator
	Target Board and Server Set Up
	Connecting to the target board remotely
	Connecting to the Target Board Locally

	Using the Vivado Integrated Logic Analyzer
	Verifying Sine Wave Activity
	Displaying the Sine Wave
	Correcting Display of the Sine Wave

	Step 2: Debugging the Sine Wave Sequencer State Machine (Optional)
	Sine Wave Sequencer State Machine Overview
	Viewing the State Machine Glitch
	Fixing the Signal Glitch and Verifying the Correct State Machine Behavior

	Verifying the VIO Core Activity (Only applicable to Lab 3)

	Lab 5: Using Vivado Serial Analyzer to Debug Serial Links
	Introduction
	Design Description
	Step 1: Creating, Customizing, and Generating an IBERT Design
	Step 2: Adding an IBERT core to the Vivado Project
	Step 3: Synthesize, Implement and Generate Bitstream for the IBERT design
	Step 4: Interact with the IBERT core using Serial I/O Analyzer

	Lab 6: Using Vivado ILA core to Debug JTAG-AXI Transactions
	Introduction
	What is the JTAG to AXI Master IP core?
	Key Features
	Additional Documentation

	Design Description
	Step 1: Opening the JTAG to AXI Master IP Example Design and Configuring the AXI Interface Debug Connections 
	Step 2: Program the KC705 Board and Interact with the JTAG to AXI Master Core
	Step 3: Using ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction

	Legal Notices
	Please Read: Important Legal Notices

