
Project CS 2008
Product Report

Amir Monshi Christian Axelsson Erdem Aksu Jing Yao
Johan Vikman Karl Sundequist Blomdahl Muneeb Anwar

Niklas Ronnblom Xiaoming Yu Xiaoyan Ni
Yunyun Zhu Zou Hanzheng

January 16, 2009

Abstract

During the autumn of 2008 a group of 12 computer science students at Uppsala Univer-
sity taking the Project CS course set out in cooperation with Mobile Arts and Ericsson
to develop a next generation instant messaging system for mobile networks on top of
Ericssons IMS or ”IP Multimedia Subsystem” platform. Not did they only do that but
in the end they also implemented a framework for Erlang development on this platform.
This document contains technical details about the developed product.

Contents
1 Introduction 3

1.1 Original Product Proposal . 3
1.2 Final Product – what we ended up with 3

2 Preliminaries 4
2.1 Concepts . 4
2.2 Glossary . 4
2.3 Development tools / languages . 6

3 IMS 7
3.1 Architecture . 8

4 Application Server (AS) 8
4.1 System descriptions . 9
4.2 Design / Architecture . 10

4.2.1 API . 11
4.2.2 SIP . 11
4.2.3 Diameter / Sh . 13
4.2.4 SMTP . 13
4.2.5 Web front-end . 14

4.3 Implementation details . 14
4.3.1 API . 15
4.3.2 SIP . 16
4.3.3 Diameter / Sh . 18
4.3.4 SMTP . 18
4.3.5 Web front-end . 18

4.4 Testing . 20
4.4.1 Distributed development model 20
4.4.2 EUnit (Unit Testing) . 20
4.4.3 OpenIMS Core + UCT IMS Client (System Testing) 21

5 Diameter / Sh 22
5.1 Requirements . 22
5.2 Design / Architecture . 23
5.3 System descriptions . 23
5.4 Functionalities / Features . 24
5.5 Implementation details . 25

6 Messaging Application Server (MAS) 26
6.1 Requirements . 26
6.2 Design / Architecture . 27

6.2.1 Originating MAS . 28
6.2.2 Terminating MAS . 29

6.3 System descriptions . 31
6.4 Functionalities / Features . 32
6.5 Implementation details . 33

6.5.1 User Configuration . 33
6.5.2 Web front-end . 34

1

6.5.3 Testing . 34
6.6 Mobile Client . 35

6.6.1 Requirements & System descriptions 35
6.6.2 Design . 35
6.6.3 Functionalities / Features . 37
6.6.4 Implementation details . 37

7 Problems Issues 38
7.1 Insufficient testing . 38
7.2 Delayed Access to IMS environment 38

8 Known Unresolved Issues 38
8.1 Use defensive programming in the AS API 38
8.2 Unfinished work in the MAS . 39
8.3 Delivery Receipts . 39

9 Conclusion and future work 39
9.1 Extend the SIP/SIMPLE stack . 39
9.2 XCAP . 39
9.3 Spam filter for MAS . 39
9.4 User Configuration security and functionality 39
9.5 Security . 40
9.6 Removing unused tables from Configuration DB 40

A Installation / Upgrade Instructions 40
A.1 Erlang installation . 40

A.1.1 Compiling from source code 40
A.2 AS installation and upgrading instructions 41

A.2.1 Compiling the AS . 41
A.3 Web front-end for administration setup instructions 43
A.4 MAS Installation and Upgrading . 43

A.4.1 Installing . 43
A.4.2 Upgrading . 44
A.4.3 Configuration files . 45
A.4.4 MAS Web Front-end . 45
A.4.5 User configuration Manual 46

B User Manual 47
B.1 Application Server API . 47

B.1.1 ims . 48
B.1.2 uac email . 48
B.1.3 uac message . 48
B.1.4 uas message . 49

B.2 Source Code documentation . 50

2

1 Introduction
The course primary focus was to get experience of a larger scale project than what
is common in the usual courses given by the University of Uppsala. This was done
by giving the students a large project in cooperation with real companies, in this case
Ericsson Research and Mobile Arts.

1.1 Original Product Proposal
Our original product proposal was to implement an instant messaging service in the
Erlang programming language on top of Ericssons IMS platform. The IMS platform
was supplied by Ericsson and the specifications for the instant messaging service was
provided by Mobile Arts. A requirement from Mobile Arts worth noting was that the
server side software should be written in Erlang while the existing IMS software from
Ericsson was all written in Java. This way developers gets an alternative to the Java
environment. The features that we were required to implement in the instant messaging
service were:

• Basic SIP Instant Messaging (IM)

• Centralized message store while absent receiver.

• Delivery Receipt (DR) to sender at message delivery/discard.

• Receiver defined Auto Reply (AR) to sender.

• Receiver defined forwarding (FWD) of received messages to another receiver.

1.2 Final Product – what we ended up with
Beside implementing the required features mentioned above the following features
where also implemented:

• Sender/Receiver defined Email Copy (EC) of sent/received messages

• Logging of sent/received messages in MAS Logging Data Base (LDB)

• Group conversation by Cloning (CL) received messages to one or more recipients

• Blacklists for blocking users the receiver do not want to receive any messages
from

• IM/service preferences trough Subscribe Data Base (SDB) accessible for config-
uration through a web interface

Due to the lack of an already existing Erlang environment in Ericssons IMS net-
work we also ended up writing and deploying an Erlang application server (AS). We
focused on implementing only the features that we needed but it still ended up being
a project as large as the instant messaging application. Since we did not get access to
Ericssons Home Subscriber Server (HSS) we also implemented our own HSS together
with the AS.

3

2 Preliminaries

2.1 Concepts
AS

Application Server, an Erlang application server for IMS application develop-
ment. It hosts a number of different applications and provides an abstract inter-
face towards the hosted applications for the different services in the IMS plat-
form.

MAS
Messaging Application Server, hosted over the AS. It processes user “instant
messages” and other requests like group-invitations, etc. There are two modes
of operation – originating which processes sender’s requests/messages, and ter-
minating which process messages at the receiver’s end.

2.2 Glossary
AR

Auto Reply, according to the user configuration, the sender will receive an auto-
matic reply if auto-reply is turned on.

Black list
According to the user’s configuration, a receiver will not receive the messages
from the senders, whose user names are in the receiver’s black list.

Check config
The module that checks user’s configuration while sending/receiving a message,
exists in both Mas Org and Mas Term.

Clone
A module in MAS and handles the message sent to a group. It copies the mes-
sages and sends them to the group members respectively.

Clone DB
Clone Database, the database that stores the user groups.

Config DB
Config Database, the database that logs all user configurations in the MAS. May
also be called Subscriber database.

Diameter
Diameter is a computer networking protocol for AAA (Authentication, Autho-
rization and Accounting).

EC
E-mail Copy, the module responsible for transcoding IM’s to e-mails, if the user
have such configuration enabled.

Group messages
Group Message, a message that is sent to a group, which usually contains more
than one person

4

Home Server
Hosts the AS and it’s corresponding applications related to a particular user.

HSS
Home Subscriber Database, the component responsible for storing user data in
IMS.

IM
Instant Message.

IMS
The IP Multimedia Subsystem (IMS) is an architectural framework for delivering
IP multimedia services.

LDB
Log Database, logs all kinds of messages sent through the MAS.

MAS
Messaging Application Server

MAS ORG
The originating side of MAS, processes sender’s requests/messages.

MAS TERM
The Terminating side of MAS, processes messages at the receiver’s end.

MSDB
Message Store Database, the database in MAS that stores the offline messages.

Message Store
The module in MAS that stores the offline message into the MSDB and sends
them later when the recipient comes online.

Offline Message
A message that is sent when the receiver is offline.

PGM
Presence and Group Management (PGM) is the component responsible for stor-
ing user accessible data in IMS.

Presence
The status of a user, e.g. online, offline.

S-CSCF
A SIP server in IMS responsible for session management. Short for Session Call
Session Control Function. In this project used for checking register information
(whether users are online or not).

SIMPLE
The Session Initiation Protocol for Instant Messaging and Presence Leveraging
Extensions (SIMPLE) is protocol suite for instant messaging based on SIP.

Sh
Sh is an application interface for the Diameter protocol used to query and update
user data in the HSS.

5

SIP
The Session Initiation Protocol (SIP) is a signaling protocol, widely used for
setting up and tearing down multimedia communication sessions such as voice
and video calls over the Internet.

SMTP
Simple Mail Transfer Protocol (SMTP) is an Internet standard for electronic mail
(e-mail) transmission across Internet Protocol (IP) networks.

2.3 Development tools / languages
lighttpd

An HTTP server.

Coffee
Life giving substance made from hot water and grinded coffee beans. Revives
people falling asleep at exactly 15:00 each day.

Coffee Machine
Useful for brewing coffee.

Danish Cookies
The best cookies ever made.

Dia
An open-source diagram/graphics tool.

Eclipse
An Java IDE.

Emacs
Escape Meta Alt Control Shift (Emacs), a text editor. There is a useful Erlang-
mode for Emacs.

Erlang
A functional programming language with especially good support for concur-
rency. It was developed by Ericsson for use in telecom development, together
with OTP it form the Erlang / OTP development platform.

J2ME
The Java Platform, Micro Edition, is a specification of a subset of the Java plat-
form aimed at providing a certified collection of Java APIs for the development
of software for tiny, small and resource-constrained devices based on micro-
controllers.

JUDE
A UML modeling tool used to generate class diagrams.

Mediawiki
A widely used wiki software.

Mercurial
A distributed version control system.

6

OTP
Open Telecom Platform is the standard library for the Erlang programming lan-
guage, it is built with a focus on resilience and availability.

Microsoft Visio
A diagram drawing tool.

OpenIMS
Open Source IMS setup from Fraunhofer FOKUS NGNI. We used it for testing
our AS and MAS.

Open Office
An open-source office suite.

PHP
PHP is a script language especially well suited for development of dynamic web
pages.

Post-its
We farmed a small forest for these.

SDS 4.1
Ericsson Service Development Studio, is a service-creation tool that provides a
unique environment for operators and independent software vendors to design
and test their own IP Multimedia Subsystem (IMS) applications.

Sony Ericsson SDK
A mobile phone emulator based on Java Platform.

UCT IMS Client
Before we had our own client, we used this one.

Wiki
A page or collection of Web pages that anyone who accesses it to contribute or
modify content, using a simplified markup language.

Wireshark
For tracking network traffic.

Whiteboards
Very helpful in every part of the project.

3 IMS
IP Multimedia Subsystem (IMS) is an architectural framework for delivering IP multi-
media services. It was standardized by 3GPP using existing IETF standard protocols
(such as SIP) to be a next generation mobile network. IMS offers a number of ad-
vantages over previous mobile technology, (1) a common core layer and (2) new and
exciting features such as:

• Find and connect

• Presence

7

• List and group management

• Message and data/file transfer

• Event subscription and notification

• Publish

• Automatic account provisioning

3.1 Architecture
The architecture of IMS, as can be seen in figure 1, is split into three layers. The
application layer, the IMS layer and the transport layer. Our project is limited to the
application layer or more specific the AS and the application part. However the AS do
communicate with a few other entities, the S-CSCF and the HSS.

Figure 1: An overview of the IMS architecture

4 Application Server (AS)
The application server (or from here on the AS) was an attempt to create reusable
components based on the more generic parts of the project. This means that while we
had a fairly good idea of some of the components that would end up in the AS – such
as the SIP stack – most of the requirements showed up as unplanned items. At the end
of the course the following features were included in the AS.

• SIP/SIMPLE stack (mostly [2, RFC 3261] compliant)

8

Figure 2: System architecture of the AS

– Proxy, server and client behavior.

– MESSAGE support.

– Third party REGISTER support.

• Diameter / Sh stack

• Application message routing

• Application Programming Interface (API)

• OTP style code upgrade

• Web administration

4.1 System descriptions
The model used during the design of the AS can be seen in figure 2. It is split into
three main layers, in a top-down order the first is the application layer, this is where
the hosted applications live. Typically each application is only interested in a small
subset of the services and traffic offered by the lower layers. Second is our middleware,
the AS. It has the ability to interact with all of the different services available below
and transcodes all of the different protocols into the language that is used between it
and its hosted applications. In this way it provides an abstract interface for the hosted
applications to communicate with the lower layers without having to reinvent the wheel
in each of the applications. It also have a filtering function that prevents any application
from receiving messages that it is not interested in, saving code complexity in each of
the hosted applications. Last is the service layer or in this case the IMS environment.
The IMS environment contain a great number of different services, part of these and
the ones that the AS interacts with are the S-CSCF (Instant messaging + Third-party
registration) and the HSS (User presence).

Rather than limiting our AS to only the IMS environment we also extended it to
include a few other useful services that we judged to either be general enough for
inclusion or just too useful to pass up. These kind of services include the SMTP stack
and the web administration interface.

Above this it is also worth mentioning that the AS is written in Erlang and follows
the OTP design principles. This means that in addition to being incredibly stable in the
first place it also have a great number of fault tolerant features built-in.

The main services that the AS provide to its hosted applications are:

9

Application routing
As the AS can (and usually do) host more than one application at any point in
time it have support for routing incoming message according to its application
ID. This is one of the main features of the AS.

SIP / SIMPLE
The AS features a simple but mostly [2, RFC 3261] compatible SIP stack with
support for both page mode instant messaging and third-party registration. This
allows for the development of both peer-to-peer and multicast communication
applications as well as user presence aware services. This is one of the main
features of the AS.

Third-party registration
Using the SIP/SIMPLE stack the AS can take advantages of features offered by
IMS such as third-party registration. This allow the AS to be aware of a users
login and logout events effectively providing user presence awareness.

Diameter / Sh
Using the Diameter / Sh stack, we developed, the AS can and do provide its
hosted applications with the connection status of a user on demand. (This is
similar to the third-party registration mentioned above but not the same)

E-mail
An SMTP stack that provides support for sending e-mails.

Hot code-swapping
Due to properties inherit from the Erlang programming language and the OTP
design principles the AS have support for hot code-swapping. This means that
you can upgrade the AS to the latest version without ever stopping or having to
restart the system.

Message routing
Whenever an application decide that it is no longer interested in a received mes-
sage that was routed to it, it can forward it to the next interested node. This is
one of the main features of the AS.

Web administration
For administration the AS uses a PHP based web front-end in true Web 2.0 spirit.
This front-end have complete control over the whole AS and can not only change
any part of it either through direct command-line access or through hot code-
swapping but also have read-write access to all configuration files available and
related to the AS.

4.2 Design / Architecture
The AS use a layered architecture with two main layers, the API which is responsible
for communication with the hosted applications; and the service layer which commu-
nicate with the different services offered by IMS. The only component that is an excep-
tion to this rule is the web front-end which exists as a completely separate application
running beside and interacting with the AS though the Erlang run-time system.

This architecture can be seen in figure 3 and have a number of advantages. The
most important of these advantages are:

10

1. It provides a good level of abstraction.

2. It allowed each of the different protocols to be developed independently. (SIP,
Diameter / Sh and SMTP)

3. If any one of the layers crash there is minimal impact on the surrounding envi-
ronment (only the connecting two layers will be affected)

Figure 3: Design overview of the AS

4.2.1 API

The API is the top layer in our AS, it works as the bridge between the AS and the hosted
applications. It is responsible for providing the necessary interfaces to all functions that
the applications may need. We can have three different kinds of API:

1. API for SIP, this is used to provide instant message access for applications.
Through this API, applications can create, get and set information when using
instant messaging. Its also used for sending error- and different acknowledgment
messages (such as 200 OK).

2. API for Diameter / Sh, used to give applications ability to get the registry status
for users (online/offline status).

3. API for SMTP, gives the applications functions that enables sending of email
messages.

4.2.2 SIP

IMS aims to help the multimedia access for applications. To this end, one of the IETF
protocols that have been incorporated in IMS platform is the SIP protocol. SIP or
Session Initiation Protocol as it name implies, is a protocol for creation, modification,
and termination of multimedia sessions. SIP provides the means by which applications
can agree on a set of multimedia capabilities such as text, voice, etc. Modification
of session properties include multimedia properties such as the aforementioned agree-
ments regarding text and voice, but it also includes dynamically adding or removing
nodes(e.g. clients), and changing node addresses. The later feature is very useful to
fulfill wireless and mobile applications requirements. In this regard we have imple-
mented a mostly RFC compliant SIP protocol stack to both use some of these features
and to be able to interact with other IMS applications.

11

Our SIP protocol stack is composed of three separate layers, where each layer pro-
vides a set of services to their upper layers, hence the term SIP protocol stack. De-
signing a protocol in layers allows ease of logical design and more importantly allows
modification of each layer independently of the others as long as interfaces of layers
are not changed improperly. Layers for the SIP protocol stack as implied by [2, RFC
3261] are from top to bottom the Transaction User, Transaction, and Transport layers.
The general overview of their design and implementation considerations is described
in the following sections.

Transport Layer Transport layer is the bridge between the upper layers and the
TCP/UDP transport layers which makes the upper layers independent of the under-
lying transport protocols. Transport layer is responsible for delivering SIP messages
over TCP/UDP and to do it efficiently and robustly. There are some features or func-
tionalities incorporated in the transport layer based on [2, RFC 3261] which makes it
more complicated than a basic client/server implementations. The functionalities of the
transport layer comprise SIP persistent connections, P2P behavior, protocol switching,
and address resolution.

• SIP Persistent Connection

Connection persistence allows communication ends (e.g. a client and the appli-
cation server) to use the same connection for sending and receiving requests and
responses. This prevents the connection start-up overheads which are inevitable
if persistence connections are not used. However, to make this transparent for
the above layers there are some implementation considerations made, we will
study this in the implementation section.

• P2P Behavior

The AS transport layer provides a P2P kind of service which enables upper layers
to implicitly act as both servers and clients for other servers when waiting for
requests and sending responses. Or the other way around, act as both servers and
clients for other server when sending requests and waiting for responses.

• Protocol Switching

Transport layer is capable of switching between TCP and UDP when necessary.
This might be necessary for instance when there is an error in making a connec-
tion to the other side over TCP and therefore it is desired to switch the trans-
mission to UDP or the other way around. There might be application related
requirements for this feature too.

• Address resolution

There might be cases where a SIP message does not contain the real IP address
of an originating side (e.g. the source address is in the nominal form or the
originating side is behind a NAT).

Transaction Layer The SIP protocol is based on a transaction model very similar to
the HTTP request/response approach. In other words, a transaction is started when a
client forms and sends a SIP message requesting a function from a server and finishes
when receiving a SIP response from the server. These requests and responses might
also pass through intermediate proxies to get to the other end. The responsibility of the

12

transaction layer in our implementation can be summarized in provision of client and
server transaction management, and stateless proxy behavior.

• Client and Server Transaction Management

Generally, transaction management hides away the details of dealing with cre-
ation, look up, error handling, and termination of transactions from the upper
layers.

• Stateless Proxy behavior

When a client sends a request it might be delivered via intermediary nodes which
in turn will deliver the message to other intermediary nodes or the terminating
server. Thus, intermediary nodes will just act as proxies which send forth and
back the requests and responses respectively between the originating and termi-
nating sides.

Transaction User This layer is the interface of the basic SIP stack functionalities
to the higher level logic (which can be the SIP API or the raw user application mes-
sages). Modules in this layer are responsible for checking the validity of incoming SIP
requests or responses from a previous hop of the communication. The responsibilities
are divided between the UAC and the UAS.

• UAS(User Agent Server)

The UAS is representative of a server application to the transaction layer. In
other words when a request is received by the transaction layer it is forwarded
to the UAS to handle it. There are a series of checks done according to [2,
RFC 3261] on the content of the whole message in order to assure the validity
of the SIP message. If any of the steps fail, an error message is sent back and
the transaction is completed (i.e. terminated). If the request passes all the tests,
then according to the method of the request, further processing will be done on
it which can be seen in the implementation details.

• UAC(User Agent Client)

UAC is representative of a client application to the transaction layer. In other
words when a request is generated by an application it is forwarded to the UAC
to handle it. There are a series of checks done on the content of the whole
message in order to validate it.

4.2.3 Diameter / Sh

See the Diameter documentation section for an introduction to the Diameter / Sh stack
in the AS.

4.2.4 SMTP

The SMTP Client is another component under the API layer in the AS. This component
enables applications to send emails.

We are using a third part SMTP client module which was written by Michael Brad-
ford for our project (The module can be downloaded at [7, trapexit]). It is a simple
SMTP client using the gen fsm behavior. It supports basic SMTP & ESMTP com-
mands, including MD5, plain and login authentication.

13

Figure 4: Design of the web front-end

4.2.5 Web front-end

The web front-end is as the name suggests an HTTP interface for the AS designed to
provide administrative capabilities without any physical access to either the server or
an SSH connection. The features offered by the web front-end are:

• Uploading of new AS versions (for OTP hot code-swapping)

• Erlang shell access.

• Editing configuration files.

• Editing Erlang start-up files.

• Restarting the physical machine (in the case of a panic situations)

In order to provide these functions the web fronted uses a standard MVC architec-
ture, but instead of using a database as an exchange media between the Erlang run-time
environment and the web front-end it interacts directly with the Erlang shell. The re-
sult can be seen in figure 4 and a short summary of each components role and design
follows.

Web front-end
A group of PHP scripts.

Erlang
The Erlang run-time environment, the web front-end interacts with it directly
instead of using some kind of in-between media such as a database.

Configuration
The configuration files that the AS reads from. These are located on the file
system.

Start-up files
The Erlang environment start-up files
which defines things like location of databases, etc.

4.3 Implementation details
In the following sections we discuss implementation details regarding the different
components of the AS. These details try to answer two questions, (1) how they are
structures and how they work and (2) why this implementation was chosen.

14

Figure 5: Implementation details of the AS API

4.3.1 API

The main tasks of the API is twofold, (1) to allow the user to access the functionality
of the AS through a unified interface and (2) to allow the AS to inform its applica-
tions of various events (such as receiving of new instant messages). For this purpose
a simple wrapper implementation would have been sufficient. However that would
have imposed a large drawback, namely that both the AS and all of its hosted appli-
cations would have to run in the same Erlang environment and this would have a few
implications.

1. You have to upgrade all of them at the same time.

2. They have read / write access to each other.

To prevent this we chose to make the applications live in a different Erlang envi-
ronment than the AS, of course this means that you can no longer have simple wrapper
functions as the API instead we had to add a Server-Client architecture with the AS
hosting an API server and each application running a client as can be seen in figure 5.

The language spoken between the client and the server are in Erlang terms and form
a simple request and response pattern. Typical messages look like:

{ ims, request, Tag, Request }

In this instance the message would have been sent from the AS to an application in-
formation them that they just received the SIP message Request. If the client decide
that they want to respond to this message they would respond with:

{ ims, respond, Module, Tag, Response }

Where Response is the SIP response, Module the module that they respond through
(typically an UAC) and Tag the same as the Tag element in the corresponding request.
There are 6 more messages that can be sent and the full documentation for each of them
can be seen in the docs/api flow.txt file. However they all fall into one of these
categories.

• Informing application / AS of events.

• Sending messages / responses.

• Register / Unregister applications.

15

lib chan The library we use to implement the Server-Client architecture is lib chan.
It is a service layer running on top of TCP/IP that provide both authentication and
streaming of Erlang terms in a transparent fashion. It was developed by Joe Armstrong
and it available in the Programming Erlang book. For a full description of how it works
read appendix D in aforementioned book.

There are however a few modifications made to this library for it to better fit into
our architecture.

1. Make it run in a supervisor tree.

2. Only listen to loopback instead of any network interface.

3. Use our configuration interface instead of its own.

4. Use SASL error logging instead of its own.

4.3.2 SIP

In the following we will discuss general considerations in the implementation of our
SIP protocol stack which was explained earlier.

Transport Layer

SIP Persistent Connections
To utilize persistent connections, one can use the simple method of spawning
new threads for incoming TCP connection requests. However, there is a draw-
back to this method when we try to make persistent connections functionality
transparent to the above layers. Consider the situation where the newly spawned
child thread which is interacting with the above layer is terminated by client mis-
behavior in sending a premature TCP close message. In this case, the transport
layer has no way of finding out if it was due to termination of the commitment
of a transaction or a terminating due to misbehavior from the client. Therefore,
the thread is terminated gracefully without knowing that the transaction is not
finished yet. At this point, when the above layer wants to send back the re-
sponse, it confronts a dead thread ID which it can not interact with. Hence, it
must call on the main thread of the transport layer to spawn a new thread for a
new connection with the client. This compromises the transparency of persistent
connections service. To overcome this problem, we register the ID of each newly
spawned thread in a general balanced tree (implemented in Erlang) and limit the
interaction of the upper layer to the main thread of the transport layer. This way,
whenever the above layer wants to send out a message on a supposedly-live con-
nection, it sends it to the main thread which is keeping track of it’s child threads
liveness. In case a thread ID is not registered, it means that the thread was ter-
minated. Therefore, the main thread makes a new connection with the other end,
spawns a new thread, registers it and finally forwards the message to the new
thread. The new thread will in turn deliver the message on the new connection
to the other end and follows the further interaction with the above layer.

P2P Behavior
Transport layer provides the upper layers with a neat interface to send and re-
ceive messages to other nodes hiding away details about the underlying choice
of protocols, connection and thread management, and other low level details,

16

thus providing a P2P behavior. It is also worth mentioning that in our imple-
mentation, if the TCP protocol is used as the underlying protocol, then all the
requests and responses to the same node are sent over the same connection.

Protocol Switching
One problem occurs when one end wants to use a protocols for message transfer
but the other end does not support that protocol. Thus the originating side will
have to switch to the other transport protocol, this is all taken care of. Another
problem is when a message needs to be transported over a congestion controlled
transport protocol (which is TCP in our implementation) due to size constraint,
the constraint in our case is that messages bigger than 1300 bytes needs to be
transported over such protocol. This feature is also implemented. All these
protocol changes result in changing the protocol type in the top Via header in a
SIP messages [2, RFC 3261].

Address Resolution Transport layer is responsible for transmitting data to the other
side by resolution of the IP used to send the message. The IP could be different
from the address mentioned in the SIP message because it might be simply in
its nominal form or the other end being behind a NAT. In order to achieve this,
each incoming SIP message is inspected and if the address in the parsed top Via
header field is different from the IP of the source, then a ”received” is added to
the top via header field containing the IP of the source. This address will be the
preferred address for further communication with the source.

Transaction Layer

Client and Server Transaction Management
We have divided these functionality into two different modules one for each of
the client and server behaviors which are responsible of making request and re-
sponse transactions respectively. Basically, both of this modules create a trans-
action and register it for each new incoming request from upper/lower layers
and will look the transaction up again upon reception of response(s) based on
a Branch field value generated and embedded in the transaction SIP messages.
Transactions are removed by a function call provided to the layer that started
them in the first place. It is worth mentioning that if a message is not acknowl-
edged by the recipient after a time-out expires, then an error report is delivered
to the upper layer.

Stateless Proxy Behavior
In order to keep track of incoming and outgoing messages and their correla-
tions(if any) , stateless proxies use the notion of transactions as do stateful prox-
ies I.e. originating and terminating sides. Each proxy adds a new header i.e. Via
header, to SIP messages indicating address of the proxy and a unique param-
eter i.e. Branch field, which identifies the transaction. When the server sends
back the response, it is routed on the same sequence of sender proxies but in the
reverse order, allowing them to peel off the Via headers.

Transaction User

UAS
As we mentioned earlier in UAS behavior a series of checks are done on the

17

incoming request. One of those is to check for the type of incoming request. If a
request is of type REGISTER, it is sent to all the applications in the application
server. Then, the client is registered with an HSS(Home Subscriber Server) by
the SH protocol specifying an expiry time-out or not according to the preferences
specified in the request message. Finally, the appropriate SIP acknowledgment
message is sent back to the client. However, if a message is not of REGISTER
type, it will be directed to the proper application according to Accept-Contact2
header field in the request. In case a message is not matched with any residing
application, it will be forwarded using the proxy behavior in the transaction layer.
But If the request is sent to an application, the UAS waits for the response of the
application(with a time-out) and sends back the response to the transaction layer
when received.

UAC
A thing worth mentioning about the implementation of UAC is that it adds a new
Via header and a newly generated Branch field to the outgoing request which
will help the transaction layer identify the transaction. If any of the steps fail,
an error message is sent back and the transactions is completed i.e. terminated.
If the request passes all the tests, it is sent to the transaction layer to start a new
client transaction. After that, UAC enters a time limited waiting state, expecting
a response from transaction layer.

4.3.3 Diameter / Sh

The AS contains functionality for registering and querying presence via the HSS. The
HSS is accessed through the Diameter/Sh protocol. For more information please see
the Diameter documentation.

4.3.4 SMTP

As mentioned earlier we use an open source SMTP module. The module is good
enough as is, but it still had some small defects when we evaluated it. To make it more
suitable for our project, we made some modifications. That includes updating to make
it support the latest version of Erlang, removing warnings that occur when its compiled,
adding logging capabilities and fixing various bugs.

4.3.5 Web front-end

The web front-end is a set of operations, each written in the PHP programming lan-
guage. Each of them are designed according to the template in figure 6. In the figure
Operation is the feature being implemented, Utilities a common library containing
shared code and Configuration all of the configuration variables. Further there is also
a Header component not in the figure that each operation should include in the begin-
ning, this component takes care of setting the correct CSS style and adding a menu at
the top of each page.

The split between what should go into Utilities and what should go into the Op-
eration part of the code have been decided according to a twist of the MVC model.
Namely that the Operation part should only be the viewer and therefore contain a min-
imal amount of code, the bulk of each feature should be divided into a number of well
defined functions and put in Utilities.

18

Figure 6: Implementation details of the web front-end.

Most of the operations performed by the web front-end are obvious, e.g. reading
and writing of configuration and start-up files is simple file IO and restarting of the
computer is executing a shell command. There are however two aspect of the web
front-end that require further explanation, the interface between it and the Erlang run-
time environment and its upgrading procedure.

Erlang run-time The web front-end interact with the Erlang run-time on a shell
level, this means that its got access to the environment at the same level as if you had
typed erl in the command line. However, the web front-end does not just spawn an
Erlang shell, that would end up in a different run-time environment than the one the
AS is running in. Actually it connects to the shell that the AS’s run-time environment
started.

This is done by reading and writing to a number of UNIX pipes. These pipes
was created by the Erlang environment at start-up (for exactly this purpose), the pipes
connect to the standard input and output of the shell for this specific shell instance.
Typically these are located in /tmp/erlang.[rw].1 but can be moved to a more
suitable directory.

One of the modifications we did to the Erlang run-time environment was add pos-
sibility to set the permissions of these pipes, before our patch they were always set to
0500.

Self upgrade Due to obvious reasons we needed to be able to upgrade the web front-
end. Since the web front-end wasn’t written in Erlang we couldn’t depend on the OTP
utilities for help on building a hot code-swapping feature. In order to be able to update
the web front-end remotely, we had to invent our own system. The result consist of
three main steps:

1. Create a backup copy of the original code.

2. Upload a tarball of the new web front-end.

3. Extract this new web front-end.

But is not as simple as it looks, since we ran into one complication – you couldn’t
overwrite a file that was being used by the HTTP server. This mean that the upgrade
script itself and all of the related include- and configuration files which are used during
upgrade process couldn’t be upgraded. This was of course unacceptable, since that’s
more than half the code.

Our solution was simple, it meant inserting two extra steps:

1. Create a backup copy of the original code.

19

2. Upload a tarball of the new web front-end.

3. Switch to running the backup code.

4. Extract this new web front-end.

5. Switch to running the new code.

There is a race condition when someone else executes the code while we are doing
the upgrade, but we decided that it’s an acceptable risk.

4.4 Testing
One of the the goals with the AS project was to ensure a stable and correct application;
and it is – in practice – impossible to accomplish this without at least some kind of test-
ing outside of the intended environment hence following is a collection of the different
kind of testing environments we used in the project.

Each section is dedicated to one of the types of testing that we have used, further
each of these subsection discuss at least three different subject ”why”, ”how” and the
results.

4.4.1 Distributed development model

During the project we used a distributed version control system, namely [6, Mercurial
(Hg)]. This means that we did not use the (de facto) standard development model
where everyone read and write to a central repository; but the model in figure 7 where
each user have their own public repository that they work on. When they consider their
work done or stable enough they tell a testing responsible person who will copy their
changes to the main repository. Of course everyone can and do read from the main
repository to ensure at least a decent level of sync between the individual repositories.

The model have several advantages over the standard model.

• It allow us to review changes that go into the main repository, and reject code
that introduce regressions.

• Since each user have their own repository (that does not necessary have to be
in sync with the main) you cannot break each others code daily due to small
changes. This can only happen when you merge it with the main repository.

• Since each user have their own repository they can have as many local branches
as they want.

• It is easier to keep local changes.

4.4.2 EUnit (Unit Testing)

Early in the development cycle it became obvious that in order for us to be able to meet
our fairly strict quality goals on the code level of our project and to be able to take full
use of the scrum development method (which encourage refactoring) we had to employ
some kind of unit testing to our project. EUnit was our framework of choice for this,
mainly because of the following points.

1. It was suggested by our lecturer during our early course in Erlang.

20

Figure 7: The distributed development model used.

2. It was included in the Erlang distribution (this was actually after we began using
it).

3. It is easy to use.

Setup EUnit is included in any new version of Erlang (since version R12-B5) so to
run it you should only have to run make test in the root of the source code directory.

Results The results of our unit testing was not as good as it could have been, mainly
because three things:

1. Too many intra-module dependencies making it hard to test just one component.

2. Lack of good guidelines on how to write unit tests.

3. Simple lack of adaption during the very early stages of development (hence it
was missing from some important modules and we just never got around to fix
it).

4.4.3 OpenIMS Core + UCT IMS Client (System Testing)

Before we deployed our application at Ericsson we wanted to make sure that our AS
worked, or at least didn’t crash so hard we had to send a completely new disk to Eric-
sson (since that would take a few calendar days of work just to ship it there). So what
we needed was a testing environment that we had complete control over down to the
hardware – just in case we needed to push the reset button.

Platform Our solution was to install a number of virtual machines running the Open-
IMS Core platform, an open source (GPL2) implementation of the IMS environment
based on the SER SIP stack. And to interact with this environment we used the UCT
IMS Client, an open source (GPL3) IMS client developed by the University of Cape
Town, South Africa using the osip SIP stack.

21

Combining these two gave us a complete open source solution that we could test
our AS (and MAS) in without any fear of crashing it or its environment. This had
several advantages that we would make use of.

1. We could inspect the source code of any part of the project to figure out exactly
what it was doing and why.

2. We could make changes to any part of the project to make it behave as we wanted
it to.

3. Since they were running on virtual machines we could ”travel back” in time to
an earlier working state (no need to clean up after dirty crashes)

The first advantage was of limited use because both OpenIMS and UCT IMS Client
(especially the OpenIMS Core platform) are huge projects with many tens of thousands
of lines of code. However we did make good use of the second point in the UCT IMS
Client to make it work together with the AS (and MAS), to make it more suitable for
testing and behave more like something in a mobile framework, changed include:

• Displaying of messages other than text/plain

• Adding of application ID to outgoing messages / responses.

• Stop the spam of status messages (this made the logs very hard to read)

Results The OpenIMS Core testing environment was our first real contact with an
IMS environment hence it gave us a great deal of help both fixing bugs and (especially)
in adding features that we noticed were missing or didn’t think we would need earlier.

For just a taste of the bugs that was discovered (and fixed) due to the OpenIMS
Core testing environment here is a short list.

• Lack of proxy behavior in the SIP/SIMPLE stack.

• How do discovered originating / terminating end of a session.

• Tons of minor bugs in various parts of the code.

5 Diameter / Sh
The Diameter is an Authentication, Authorization and Accounting (AAA) protocol
which is used by HSS to interface between CSCFs and application servers. Sh is the
application that is used to send the actual data built on Diameter protocol.

5.1 Requirements
Requirements for implementing Diameter protocol and Sh applications arose from the
need of a secondary registration mechanism, when we weren’t allowed to access the
IMS registration facilities directly because of Ericsson’s security policies. This mecha-
nism allow us to implement presence based services in the MAS application, but it can
be used by any applications on top of the AS.

Any agent who wants to use IMS platform must register itself using SIP register
messages, which is basically a logon. These messages are handled and the data is stored

22

by the HSS. Our MAS application also needs the registration data. Before implement-
ing Diameter protocol and Sh applications we had the following possible scenarios to
access the registration data:

1. Directly accessing the HSS using Sh client and Sh server applications.

2. Having our own HSS implementation and accessing it via Sh client and Sh server
applications.

3. Implementing a not standardized and not specified database and be free to use
any protocol or methodology to access and manipulate the data.

As stated earlier, we couldn’t use the first option so we were left with second and
third option. After analyzing the alternatives we found that the second option’s protocol
is well specified so implementation would be more straight forward. And when using
an open source HSS implementation we did not need to implement an HSS. Another
argument for the second option is that the data access protocol used in the first option,
to access the HSS directly demands the use of Diameter and Sh applications. Diameter
and Sh was needed for both first and second option and hence we decided to use the
second approach.

5.2 Design / Architecture
Sh applications are implemented independent from any other module or application
in the system. The specification of HSS says that communication between HSS and
AS must be done using Diameter/Sh. Our implementation of Sh applications could be
integrated in any module. We decided to have a design where the Sh server applica-
tion integrated to the HSS and Sh client integrated to the AS. In the perfect case both
ends have both client and server applications to support pull data, push data, update
notifications and to subscribe to notification operations.

In our requirements, supporting notification system had a very low priority and our
functional requirements are satisfied with only pull and push.

In any normal action, AS queries the HSS database using pull or push operation
through the Sh Client. HSS is listening for queries using the Sh Server and handles
both pull and push operations (retrieving and sending operations).

The diagram in figure 8 below shows the interaction between the HSS, the AS and
the application (the MAS in the picture). It also shows where the Sh client and server
are located and that the diameter protocol is used between them.

5.3 System descriptions
Diameter protocol is described in [1, RFC 3588] and Sh Applications are specified by
3GPP in the [3, 29.328] and [4, 29.329] documents. The HSS and the data stored is
specified in part of [5, 3GPP 23.008] document.

Sh applications are running on diameter protocol and the heavy work is done by
the protocol. Sh applications brings some additional data types to make the protocol
support the HSS operations.

The protocol supports two transport layer protocols, SCTP and TCP. Both SCTP
and TCP are implemented in our implementation. Handling the packages are done in
the transaction layer and a finite state machine is used for this purpose. On the top of

23

Figure 8: Architecture diagram

transaction layer SH applications are run and they communicate directly with the state
machine below.

All the data are delivered using the Attribute Value Pairs (AVPs) defined in the
Diameter protocol and the extra AVPs that required to support Sh applications.

5.4 Functionalities / Features
We only need a partial implementation of the Diameter protocol to meet our require-
ments, but it has enough infrastructure to support full functionality for a future devel-
opment. The Sh application is also partially implemented for the same reason. In our
version pull and push operations are supported by the system. So our MAS application
is able to process a register message and register the user to the secondary registration
database, which is functionally an HSS, and make queries and modifications on the
data stored.

24

5.5 Implementation details
Diameter protocol and Sh applications are implemented on the Erlang/OTP platform.
According to our system needs, and nature of the architecture, an implementation using
all of the specifications isn’t needed. The biggest difference between specification and
implementation is that it’s recommended to separate connection logic from session
logic in the specification. We implemented sessions dependent on connection between
pairs. This is because we don’t need to place any redirect or proxy servers in the
network.

Another issue is the logic of SCTP based sessions and TCP based sessions. Parallel
processing of two session between the same pair doesn’t need to be supported accord-
ing to the specifications. We have support for parallel sessions in TCP connections but
parallel sessions for SCTP connections aren’t supported for now. Since this feature
isn’t required and would have taken a lot of time compared to its low priority, it was
skipped.

Any session initialization is started with a trigger call to the corresponding module
and starts a chain reaction in the architecture. When a connection is established, trans-
port layer module initializes session data, stores needed information and triggers upper
layer module packet handler. Packet handler does the same and triggers state machine
in the upper layer. Diameter protocol logic runs in the state machine and triggers cor-
responding Sh application. During the session, data and information flow goes through
the same way, see figure 9. If the session is initialized from the Sh client, the chain of
flow starts from top and goes down.

Figure 9: Message flow between layers

Any new application like CX or DX may be added in the future in the same way
Sh is added today. The Diameter implementation is done independent from the Sh
application implementation and it supports other applications as well.

25

6 Messaging Application Server (MAS)
The MAS is a messaging service available to the end-users of the Ericsson IMS frame-
work, which allows them to deliver instant messages to other users of the network
while each user, both at the sending and the receiving end, are able to maintain their
own preferences for the application. Making the application suit the users need.

The Messaging Application Server or simply the MAS is an application, hosted
over the Erlang application server provided by the AS team, which in turn is hosted
over the IMS platform (the AS is described in detail in section 4). MAS processes mes-
sages sent between end users such as text message, delivery-receipt, auto-reply, group-
invitations etc. The name of this application might be slightly misleading (it should
have been something like IMA – Instant Messaging Application, but we couldn’t agree
on a name during the project). The MAS is not really an Application Server in itself
but simply one of the applications hosted over the AS; however, we still keep the name
to avoid any confusion regarding the CS project.

The MAS offers the following services to the end-users:

• Simple text messaging

• Offline messaging

• Delivery receipt

• Auto-reply

• Email copy

• Message forwarding

• Group messaging

• Blacklists

• Message logging

• Application level registration

We will describe each of them in detail in the following sections.

6.1 Requirements
The general requirements for the MAS application, as provided by the customer (Mo-
bile Arts), is explained under the following points:

Simple text messaging
A user registered with the IMS network should be able to send instant text mes-
sages to other users who are registered with the IMS network.

Offline messaging
If a user is unavailable or offline (busy/out-for-lunch or not registered with the
IMS network), the messages sent to the user should be stored in some intermedi-
ate storage and delivered to him/her as soon as he/she becomes available (comes
online).

26

Email copy
Users sending and/or receiving instant text messages should be able to send them
as email messages to specified email addresses.

Delivery receipt
Users should be able to receive delivery success notification in case of success-
ful message delivery and delivery failure notification in case message delivery
failure occurs due to any technical reason. Users should also be able to enable
and disable such a service.

Auto-reply
Users using the services of the MAS should be able to specify auto-reply mes-
sages, independent of their status being online or offline. Auto-reply messages
are sent back as an automated response from the receivers to those sending mes-
sages. Users should also be able to enable and disable such a service.

Message forwarding
Users should be able to enable receiver defined forwarding of received messages
to another receiver, i.e. to forward all its received messages from one of his/hers
addresses to another. This function must also come with loop detection and
cancellation when messages are forwarded more than once.

Group messaging
Users should be able to enter into group conversations on invitation from an
existing group member. Each group member should be able to join, leave and
send/receive messages visible to the entire group i.e. all members of the group.

Blacklists
Users should be able to avoid receiving messages from other users by specifying
them. The users sending messages will not be aware of their messages being
ignored by the receiver. Auto replies will be skipped in this case.

Message logging
MAS should log all messages being received and sent by all the users. This is
used for administrative purposes. However, it may be made available to users in
a read-only mode through a web interface.

Application level registration management
Besides getting presence information from the IMS network, the MAS applica-
tion should be able to maintain private application level registration information
in order to leverage the MAS of the IMS presence information dependency. This
is particularly useful in case of IMS “presence status” conflicts with other appli-
cations the user might be using.

User settings management (subscriber/configuration database)
Users should be able to save and change their settings and preferences in a sub-
scriber’s repository to avoid specifying preferences every time they start using
the application.

6.2 Design / Architecture
Like any typical telecom application, the MAS is a distributed application where mul-
tiple instances can be hosted over the IMS network keeping in mind load distribution
and distributed service availability for the users of the entire IMS network.

27

The services of the MAS are made accessible by hosting it as an application over
the AS, which in turn is deployed over the IMS platform. The AS subscribes to the S-
CSCF to request forwarding of specific SIP messages, which are received from specific
registered or recognized users. All the SIP messages received by the AS from the IMS
network are forwarded to the originating or the terminating side of the MAS, according
to the information provided in the relevant header of the SIP message. This however,
is determined by the AS (by looking at the ACCEPT-CONTACT2 field of the SIP
message) and is not needed to be taken care of by the MAS.

The MAS has two modes of operation, the originating and the terminating. The
originating MAS processes requests on the sending users end, whereas the terminating
MAS processes messages/requests at the receivers end. Messages/requests processed
by the originating part of an MAS will be processed by the terminating part of the next
MAS (which may be the same as where the originating is; this is very much possible
in distributed applications), before the message or request is completed or delivered to
the receiving user.

6.2.1 Originating MAS

The originating MAS is a part of the MAS application, which handles messages soon
after it arrives at the home server of the sender. The message is first processed by the
originating MAS where logging, message type checking and other relevant actions are
taken depending on the type of the message request. If required the message is then
forwarded to the AS, which sends it onwards to the MAS at the receiver’s home server;
there the message is processed by the terminating MAS.

The architectural flow of the Originating MAS as shown in the diagram 10 can be
described in the following steps:

1. A SIP message received by the AS is forwarded to the “Read SIP” message
module, which unpacks and parses the sip message.

2. The message and parsed information is logged (2B), and relevant information
from the SIP message is passed to the Type Checker module (2A), concurrently.
Message Type Checker detects the type of request and takes the following actions
accordingly.

1. If the request is of type group-message, the message information is sent to
the Clone module which sends relevant messages to all the group members.
Group members information is retrieved from the Clone DB.

2. If the request is that for a simple instant message, the message information
is forwarded to the “Check Config” module, which may add relevant infor-
mation to the message depending upon the sender’s settings as present in
the Configuration DB. The message information which may now be mod-
ified is forwarded to the next modules. The following two operations may
be performed in parallel.

1. Message information is forwarded to the “Send SIP message mod-
ule”, which composes a new SIP request and sends it back to the AS,
which then forwards this request to the AS-MAS bundle at the re-
ceiver’s home server.

2. If the Email copy has been enabled, the “Check Config” module in-
vokes the Email-Copy module which then embeds the message body

28

in an email message and sends it to the email address specified in the
Configuration DB.

3. If the request is a 200 OK, the message information is sent to the Check
Response Message module, which takes relevant action on the request (if
needed). In the current implementation, this module is never used since
the AS handles SIP status messages internally and doesn’t forward such
requests to the MAS at all.

4. If the type of the request is a REGISTER, then the “Check Offline Mes-
sages” module retrieves all the offline messages addressed to the sender,
embeds all the messages in new SIP messages addressed to the sender and
forwards them to the AS.

Figure 10: MAS originating side message flow

6.2.2 Terminating MAS

The Terminating MAS is the part of the MAS application which handles messages
received on the receiver’s home server, after it has been processed by the Originating
MAS. Terminating MAS logs the incoming messages just like the Originating MAS.
Besides logging, Terminating MAS takes necessary actions for cloning requests, offline
messages, generating Auto-reply and Delivery-receipts. If required, the message is
forwarded to the AS which in a final step delivers the message to the receiver.

The architectural flow of the Terminating MAS as shown in the diagram 11 can be
described in the following steps.

1. Sip message received by the AS is forwarded to the “Read SIP message” module,
which unpacks and parses the SIP messages.

29

2. The message and parsed information is logged (2B), and relevant information
from the SIP message is passed to the Type Checker module (2A), concurrently.
Message Type Checker detects the type of request and takes the following actions
accordingly.

1. If the type of the request is “instant message”, the message information is
forwarded to the “Check Config” module, which may add relevant infor-
mation to the message depending upon the receiver’s settings in the Con-
figuration DB. The message information which may now be modified is
forwarded to the next modules.

1. If the Email copy has been enabled in the receiver’s settings, the
“Check Config” module invokes the “Email-Copy” module which then
embeds the message body in an email message and sends it to the email
address specified in the Configuration DB (3.1A)

2. If the receiver is found to be offline through the presence module, the
“Check Config” module invokes the “Auto-Reply” module which may
send an auto-reply to the sender if the receiver has enabled this service
(3.1.1).
1. If enabled, the “Auto-Reply” module sends the original message

to the message store and forwards the auto-reply message to the
AS, concurrently.

3. If the receiver is online, as per information form the Presence mod-
ule, “Check Config” module forwards the message to the “Deliver or
Forward” module, which then forwards the message to the AS to be
delivered to the receiver (3.1.2).

2. If the request is a 200 OK (or with any other valid code), the message
information is sent to the “Check Response Message” module, which takes
relevant action on the request (if needed) and forwards the message to the
AS. In the current implementation, this module is never used since the AS
handles SIP status messages internally and doesn’t forward such requests
to the MAS at all.

3. If the request is an “offline message”, the message is forwarded to the
“Check Config” module. From there the message is forwarded to the “De-
liver or Forward” module, which in turn sends the offline message to the
AS to be delivered to the receiver.

4. If the request is a group message, it is forwarded to the “Clone” module
which takes the following steps accordingly;

1. In case of “Group-Message”, the message is simply forwarded to the
“Deliver or Forward” module, provided the receiver is online. This
information is fetched from the Presence module.

2. If the receiver is offline, a “remove me from the group” group message
is composed and sent to all the members of the group, which the re-
ceiver had been a part of. The group members information is retrieved
from the Clone DB.

Presence Module is an information retrieval module, which informs about the on-
line status of a user when invoked by any other module or process. Presence module
gets the presence status information from the HSS, an essential part of the IMS plat-
form.

30

Figure 11: MAS terminating side message flow

6.3 System descriptions
The MAS is simply a message processing application which performs certain user-
defined actions on incoming messages. The MAS is an application registered and
hosted by the AS through a well-defined TCP interaction layer. The AS is in turn
hosted over the IMS platform. The AS receives user messages as SIP messages from
the IMS, and forwards them to the MAS which has subscribed with the AS to forward
different types of requests to its originating and terminating sides. Messages that have
been previously processed by an Originating MAS are sent to the Terminating MAS by
the AS. The MAS works with the incoming requests independent of the IMS platform
details with the help of the abstraction provided by the AS.

The MAS message processing mechanism is specific to SIP 2.0 standard and is not
capable of processing any other messaging protocol. This is because, the MAS was an
application intended for use over the IMS platform, which itself extensively uses SIP
2.0 for its own internal messaging.

Besides the normal message headers, the MAS uses following custom headers;

• Group-ID

• Group-Members

MAS also makes use of the following self-defined custom SIP Content-Types;

• application/auto-reply

• application/delivery-receipt

• application/group-invite

• application/group-add-user

31

• application/group-remove-user

• application/group-message

6.4 Functionalities / Features
The MAS can fulfill the following functionalities

Simple text messaging
A user registered with the IMS network or the MAS application through the
MAS registration management can send instant text messages to other users who
are registered.

Offline messaging
If a user is not available or is not online, then the messages sent to him are
delivered to him as soon as he comes online.

Email copy
Users sending and/or receiving instant text messages can also copy the instant
messages as e-mails to email addresses specified by them.

Delivery receipt
Users having enabled the Delivery-Receipt option will receive delivery-
receipts for each simple instant message they send. Please note that this service is
not applied to group-messages, auto-replies, forwarded messages and delivery-
receipts.

Auto-reply
Users having enabled the Auto-Reply option will cause the MAS to send auto-
matically generated replies on that user’s behalf to anyone sending messages to
it. Please note that this service is not applied to group-messages, auto-replies,
forwarded messages and delivery-receipts.

Message forwarding
Users can forward messages to other users by enabling this option and specifying
the other user’s SIP address. Forwarding is not applied to group-messages, auto-
replies and delivery-receipts.

Group messaging
Users can initiate a group conversation and become a part of it on invitation from
an existing group member. Each group member can join, leave and send/receive
messages to the entire group. Groups are automatically destroyed when there are
no more users in them.

Blacklists
Users can avoid receiving messages from other users by enabling this option and
specifying target users. The users sending messages will not be aware of their
messages being ignored by the receiver. Auto-replies, forwarding and delivery-
receipts will not be applied in this case.

Message logging
MAS logs all messages being received and sent by all the users. This is done by
separate logging logic’s on both the terminating and originating sides.

32

Application level registration management
Besides getting presence information from the IMS network, the MAS applica-
tion is able to maintain private application level registration information in order
to leverage the MAS of the IMS presence information dependency. This is done
by emulating the HSS and making it a part of the application itself.

6.5 Implementation details
The MAS application is implemented entirely in Erlang using the OTP standards. For
the data layer requirements and repositories, Erlang environment’s inherently avail-
able database MNESIA has been used. Separate databases are used for Logging,
Clone/Group information, subscriber configuration and temporary offline message stor-
age.

The internal logic of the MAS handles each request, that is received from the appli-
cation server, by spawning a new process for each module that is going to process that
message. Each module runs as a separate process and is responsible for processing just
one request at that stage. We call this logic “Dynamically linked pipelined message
processing”, since a message at any given stage/module is independent of the previous
stage worker thread which can work on any other request, if needed. An intermediate
data buffer is used to pass a message between two modules. A load balancer keeps track
of the number of working processes and waiting requests at an intermediate data buffer
between every two modules. The load balancer kills or generates processes depending
upon the number of available requests waiting in the buffer queue. A minimum pool of
all processes is always kept alive, to handle sudden burst of requests efficiently. This
can be changed with the help of the provided configuration files. This minimum pool
is an efficiency improvement from the design point of view and may not be visibly
efficient in the actual running environment, since in the Erlang environment killing and
creating processes is extremely cheap. This will however affect efficiency in any other
environment like the JRE (Java run-time environment), where frequent creation and
killing of processes can be very expensive.

The MAS uses Erlang messaging for application’s internal message passing and
communication. For interaction with the application server, the MAS uses a well-
defined protocol of registering, message passing and de-registering mechanisms
through a TCP layer. All messages exchanged between the MAS and the AS are com-
municated through the API served by AS. Communication port for each application
hosted by the AS is defined in AS configuration files and can be changed if required.

6.5.1 User Configuration

To be able to use the application, each user needs a user configuration stored in the
configuration database. They only need to make one for each MAS they intend to use.

The database has multiple tables, with one super-table and several sub-tables de-
tailing the behavior of the application.

user config
The super table. Contains alias and password, the password is intended to be
used with user configuration edit page.

delivery receipt
This is a deprecated table that still remains. Its not used.

33

email copy
Details the behavior for the email copy module.

presence
This is a deprecated table that still remains. Its not used.

forwarding
Details forwarding behavior.

auto reply
Details auto reply behavior.

black list
Details the blocking list.

When a user is deleted, all the corresponding rows in other tables should also be
deleted. E.g. when user A is deleted in table “user config”, user A’s information in
“email copy”, “delivery receipt”, etc is also removed.

Looking at email copy we get a good idea on how it works.

email copy • Key: user name

• org bool: default value as false. Origin side, set as true when a user is
online and uses email copy

• term online: default value as false. Terminating side: set as true when a
user is online and uses email copy

• term offline: default value as false. Terminating side: set as true when a
user is offline and uses email copy

• email copy data: application data

6.5.2 Web front-end

To be able to maintain the application, do upgrades and error checks we used a copy
of the AS web front-end see section 4.2.5. The only added functionality is to edit user
configurations. This is also possible through the mas config db module’s exported
get/set-functions.

6.5.3 Testing

During the MAS development lifecycle, development and testing has gone hand in
hand. We thoroughly tested every functionality, once we had completed it. However,
the development and testing environment has not been very straightforward. Develop-
ment and testing in the early phases began over a simulated IMS environment called
OpenIMS, since Ericsson hadn’t granted our application server access to the Ericsson
IMS network. Once we gained access to the Ericsson IMS network, we had to retest
and adjust our implementation to that environment. Our entire testing has been based
on the actual running environment of the Ericsson IMS platform.

The first test runs on the OpenIMS was helpful because we could verify that the
application started and stopped correctly. When this was done we could do the release
upgrades and test the uploads in a controlled environment. We didn’t finalize the ap-
plication in this stage, but we did get something that we knew we could upgrade and
restart if some error surfaced. This way we were confident that we could solve most of

34

the problems that could occur when the application was deployed, without having to
involve Ericssons staff.

We used a distributed development model in a similar way as we did with the AS
section 4.4.1. Each user maintained their own version with their local changes and
we had a group which where responsible for adding all the changes into one main
repository. This worked fairly well, the problem was once again lack of experience.
We did faulty pushes to the repositories.

6.6 Mobile Client
6.6.1 Requirements & System descriptions

The whole purpose of having a mobile client in this project is to test the functional-
ities of our Application Server and Message Application Server which are above the
Ericsson’s IMS platform and Open IMS platform.

The focus of this mobile client is not about building a perfect mobile program but
testing our Application Server, Message Application Server and the communication
between IMS platform.

Our mobile client is implemented in a rather short time comparing to the AS and
the MAS. We would say that it might not be a perfect mobile solution but we have got
what we wanted.

Our development environment is Ericsson Service Development Studio – SDS 4.1
together with Sony Ericsson SDK and J2ME. We randomly choose type Sony Erics-
son JP8 240∗320 as our emulator.

6.6.2 Design

A class diagram of the design can be seen in figure 12 Here is the class diagram of our
mobile client:

GUI Layer The GUI layer is responsible for displaying the pages (frames). It does
not do much work, its only tasks is to display the information we received from the
server as well as remembering the information that the user have inputted and pass the
actions to the lower technical layer.

Technical Layer The technical layer is the event handler. There are two classes:

Commands
Implements the interface ActionListener and is responsible for handling events
from the GUI layer.

MyCoreServiceListener
Implements the interface CoreServiceListener and is responsible for listening for
SIP messages received from the server, and sending them to the GUI layer.

The API we used in this layer is [8, IMS Innovation].

35

Figure 12: Design of the mobile client.

36

6.6.3 Functionalities / Features

Register Page The register page is used to register to IMS platform before send,
group invite and receive messages from mobile client. We are supposed to send the
following items to the IMS:

• ProxyURI (sip:193.180.168.44:35060),

• PubUI (sip:Xiaoming.Yu1@imsinnovation.com),

• Realm (imsinnovation.com),

• RegisterURI (sip:imsinnovation.com),

• PriUI (Xiaoming.Yu1@imsinnovation.com),

• Password (UUErlang)

• Phone Number

Send Page The send page is used to send IM messages with a single recipient.

• Destination address (sip:Xiaoming.Yu2@imsinnovation.com),

• DR-enable (True/False), whether delivery receipt is enabled.

• Message body.

Group Invite Page The group invite page is used to fulfill the group invite function-
alities which can be divided into two parts, one part is the sponsor of the group invite,
it should contain:

• Friend address which is the SIP address of the friend that you want to invite.

• Group-Id, an unique identifier for the group.

• Message body.

The other part is the group send functionality. It contains the same information as
above and is used for sending group messages to an already existing group. Of course
clients are able to leave the group at any time.

Receive Page The Receive Page is used to display received messages.

6.6.4 Implementation details

Libraries Used

LWUIT.jar
Graphical framework for J2ME.

IMS 1.1.1
Framework provided by [8, IMS Innovation].

JUDE-1.2.1
Class diagram generation framework.

37

Problems In the beginning our Application Server and Message Application Server
was hosted on the OpenIMS platform and we had problems with connecting our mobile
client to the AS. We were stuck here for a while, but later we figured out that there is
nothing we can do except shifting our AS and MAS to the Ericssons IMS platform
which “solved” the problem.

We also encountered problems with our own custom headers in the SIP messages
like Group-ID and DR-enabled. However, the [8, IMS Innovation] API does not
allow us to do that. We post our problem on the portal and got a reply with a fixed API
which allow us to edit our own custom headers.

Future Work It would be great if we can deploy our program on a real mobile in the
future, moreover, fixing bugs within the program. Making some fancy GUI would also
be nice.

Testing We have not done a lot on testing our mobile client and we did not have
a formal testing procedure since we started with it rather late and it is not the main
goal of our project. This is the part we could do better. Our emulator is Sony Erics-
son JP8 240∗320. We could test our mobile client on real mobile phones.

7 Problems Issues

7.1 Insufficient testing
Due to both lack of encouragement and general laziness we didn’t acquire the level of
automated testing that we wanted. This means that the many module in the source code
still lacks unit tests and we do not have an automated system test.

This did not have any large impact on the end result as our application is rock
solid anyway but we could probably have reached this goal a lot faster and with less
struggle if we had done proper test driven development and had an automated system /
integration test.

7.2 Delayed Access to IMS environment
Due to delays in acquiring access to the Ericsson IMS network, we had to emulate the
IMS network with the help of OpenIMS, and run the AS and MAS over it. Although
it provided a good enough development and testing environment for the time being,
it was still a different flavor from the Ericsson version of it. Once we had shifted
from the OpenIMS to Ericsson’s IMS innovation environment, we had to retest the
application from scratch and even fix a few bugs that never appeared in the OpenIMS.
This probably happened due to the essential implementation differences in the two
environments.

8 Known Unresolved Issues

8.1 Use defensive programming in the AS API
Currently the API does not check the input coming from the hosted applications. This
have lead to some fairly hard to track down bugs (such as improper lists as message

38

bodies, etc.). It would ease debugging if the API employed defensive programming
techniques to ensure correct input.

8.2 Unfinished work in the MAS
• The load balancer described in previous section has not been fully tested / inte-

grated into MAS.

• More testing for some very late discovered bugs in the message cloning func-
tionality is still needed. Specifically a bug was found when a user leaves a group
while other users still remains, resulting in the unwanted behavior that the re-
maining users can’t get messages delivered to the group any more

8.3 Delivery Receipts
When the users send messages they can choose whether they want to get delivery re-
ceipts or not. This doesn’t work right now. When the SIP-message is sent to the user
a delivery-callback is set (mas term delivery callback). This module creates the deliv-
ery receipt and sends it back to the sender. However something doesn’t work when the
delivery-callback is called.

9 Conclusion and future work

9.1 Extend the SIP/SIMPLE stack
The SIP/SIMPLE stack in the AS is very simple and only have support for a very
limited part of the standard. Most interesting of these features are:

• INVITE support.

9.2 XCAP
Support for the XCAP protocol which would allow us to access the PGM server in the
IMS service layer.

9.3 Spam filter for MAS
It would be interesting to develop a SPAM filter mechanism that would prevent unnec-
essary and unwanted messages being sent around to the users using services from the
MAS.

9.4 User Configuration security and functionality
There is no security in the editor (userconfig.php, the ”Edit User Config”-page) at the
moment. The input should be checked to increase security, cleaned from any malicious
input. There should be one ”admin” page where the administrator(s) can change any
user configuration and one user page where the users themselves can change the con-
figuration. For both of these pages there has to be extra security through logins, no user
should be able to change another users configuration, the easiest way might be to add
this in the mas config db module. The user configuration should be expanded to be

39

user-friendly, there is a lot of functions in the mas config db module that could be used
to change one part of the configuration instead of changing the whole configuration at
once each time you want to do an update.

9.5 Security
Many of the modules assume that the parameters and input has been checked for mali-
cious code. This needs to be corrected if the application is to be deployed.

9.6 Removing unused tables from Configuration DB
When we started out, we stored presence and delivery receipt information in the config-
uration database. Later on we used HSS to get the presence and added delivery receipt
information to the SIP-messages directly. However the presence and delivery receipt
is still left in the configuration database. The use of these tables could be removed, it
would affect the mas config db module, the user configuration editor and some of the
test files.

A Installation / Upgrade Instructions

A.1 Erlang installation
We are using a special version of Erlang for our project since the vanilla version didn’t
contain everything we needed to get running. The difference between our flavor and
the vanilla is that you can set permissions of the UNIX pipes generated when running
Erlang in embedded mode.

A.1.1 Compiling from source code

To compile (and install) Erlang with our modifications you need to first download the
source code, apply our patch and then compile it. That can be done with the following
sequence of shell commands:

$ tar zxf otp_src_R12B-5.tar.gz # From CD
$ cd otp_src_R12B-5
$ patch -p1 < ../run_erl-pipeperms.patch # From CD
$./configure
$ make

And then the following as root:

make install

Note that you will also need to have a number of dependencies installed (when
compiling) the source code as we make use of these features in the AS and MAS.

• SSL

• ODBC

• JDK

40

A.2 AS installation and upgrading instructions
Download the AS Code:

You will follow the following instructions to get the system installed and real-time
updated

System setup This is where we will install our final system:

export INSTALL_PATH=/usr/local/erl-target
groupadd erl
mkdir $INSTALL_PATH
chgrp erl $INSTALL_PATH
chmod 2775 $INSTALL_PATH

Now make sure that everyone that are supposed to install applications have are
members of the ’erl’ group. That includes the web server.

A.2.1 Compiling the AS

Before you do this you need to have done everything in the previous chapter.

$ cd server
$ make build
$ cd ebin
$ erl -pa .
erl> target_system:create("app_server").

Installing the AS Before you do this you need to have done everything in the previ-
ous chapter.

$ cd server/ebin
$ umask 0002 # We need to be sure that the group has

write permissions.
$ erl -pa .
erl> target_system:install("app_server",

"/usr/local/erl-target/").

Edit /usr/local/erl-target/bin/start and add the
following lines somewhere before the last line:

editor> umask 0002
editor> export PIPE_PERMISSIONS=0660
editor> export PIPE_GROUP=erl

’erl’ is the group that you created in section System
setup

Running the AS Before you do this you need to have done everything in the previous
sections.

$ $INSTALL_PATH/bin/start

41

Attaching to the AS shell

$ $INSTALL_PATH/bin/to_erl
From here you can run any normal erl commands.

Shutting down the AS

$ $INSTALL_PATH/bin/to_erl
erl> q().

Release upgrade Refer to the appup documentation on in the Erlang documentation
for details. Now create a relup file:

$ cd /path/to/new_vsn/ebin
$ erl -pz /path/to/old_vsn/ebin -pz .
erl> systools:make_relup("app_server-<new_version>",

["app_server-<old_version>"],
["app_server-<old_version>"]).

Make sure both the new version and the old version of ”.rel” files are placed in ebin.
Create the boot script and package the release:

$ erl -pa .
erl> systools:make_script("app_server-<new_version>",

[no_module_tests]).
erl> systools:make_tar("app_server-<new_version>",

[no_module_tests]).

The .tar.gz file in ebin (named app server-<new version>.tar.gz) is ready
to be uploaded to the PHP front-end. Upload the tar file to the web page, and copy the
file to the release folder using the upload page. Go to the web console and unpack the
release using the command:

web> release_handler:unpack_release(
"app_server-<new_version>").

Install and run the new version of the release.

web> release_handler:install_release("<new_version>").

This will not make it permanent (the old version is still default when you restart the
system). To make it permanent go to the web console and run:

web> release_handler:make_permanent("<new_version>").

Refer to the release handler documentation for more information on what can be
done with releases.

42

A.3 Web front-end for administration setup instructions
You will find the php files and docs at http://hg.sysrq.se/hg/www/ or you can run

hg clone http://hg.sysrq.se/hg/www/ tmp\begin{verbatim}

in the shell. Here is the instructions about how to do it:

Web system setup
================
export INSTALL_PATH=/as/uploads
mkdir -p $INSTALL_PATH
chown lighttpd:erl
chmod 2775 $INSTALL_PATH

Web server configuration
========================
Make sure that the user that the web server uses
(lighttpd in the above example) is a member of the
group that’s used in the AS setup (erl in the above
example). To make it a member execute:

usermod -a -G erl lighttpd

Make sure that PHP and PEAR is installed and that
upload_max_size and post_max_size in php.ini are large
enough for the files that you want to upload. You must
also turn off "magic_quotes_gpc".

A.4 MAS Installation and Upgrading
A.4.1 Installing

The installation of the MAS is very similar to the installation of the AS

$ make build
$ cd ebin
$ erl -pa . -pz <Path to AS ebin directory> \

-sys config
This starts an erl shell in which we create and
install the application.
erl> target_system:create("mas_app").
erl> target_system:install("app_server",

"/usr/local/erl-target/").

Running the MAS
==============
$ $INSTALL_PATH/bin/start

Attaching to the MAS shell
=========================
$ $INSTALL_PATH/bin/to_erl

43

From here you can run any normal erl commands.

Shutting down the MAS
====================
$ $INSTALL_PATH/bin/to_erl
erl> q().

A.4.2 Upgrading

The MAS upgrade follows the OTP Upgrade guidelines, to get more information on
how it works please check the OTP Design Principles.

Before you can start an upgrade you need to have four files. These are

Release resource file
The .rel file, contains information about which applications it relies on. Also
version information. It is named mas-¡version¿.rel.

Application resource file
The .app file and contains version, registered modules and information how to
start/stop the application. It is named mas.app for all releases, but each release
will have its own mas.app.

Application upgrade file
The .appup file, this file describes how to upgrade/downgrade between versions.

System configuration
The sys.config file, this is copied automatically when you do
”make build”/”make”, it contains information on what S-CSCF to use and where
to listen for the app application api (the application server interface).

The normal MAS release upgrade allows upgrade and downgrade to/from only the
earlier version and that is what we describe here.

This assumes a new .rel-file is created

$ cd /path/to/new_vsn/ebin

$ erl -pa . -pz <path to old versions ebin directory> \
-pz <path to app_server_api ebin directory> \
-sys config

erl> systools:make_relup("mas-<new_version>",
["mas-<old_version>"],["mas-<old_version>"]).

Create the boot script and package the release:

erl> systools:make_script("app_server-<new_version>",
[no_module_tests]).

erl> systools:make_tar("app_server-<new_version>",
[no_module_tests]).

The .tar.gz file in ebin (named mas-<new version>.tar.gz) is ready to be
uploaded to the PHP front-end. Upload the tar file to the web page, and copy the file to
the release folder using the upload page in figure 13.

Don’t forget to copy the package to the releases directory.
Go to the ”Web Console” page and unpack the release using the command:

44

Figure 13: The release upload feature in the MAS web front-end

web> release_handler:unpack_release("mas-<new_version>").

Install and run the new version of the release.

web> release_handler:install_release("<new_version>").

This will not make it permanent (the old version is still default when you restart the
system). To make it permanent go to the web console and run:

web> release_handler:make_permanent("<new_version>").

Refer to the release handler documentation for more information on what can be
done with releases.

A.4.3 Configuration files

These are examples of configuration files.

System Configuration Called sys.config, there should be a copy in the src directory

[{ app_server_api,
[
{ host, "localhost" },
{ port, 8001 },
{ scscf, "sip:172.23.214.27:5063" }
]
}

].

The app server api tuple contains vital information to access the app server api,
namely the address and port the api listens to. The information should be mirrored
from the information in the AS sys.config.

A.4.4 MAS Web Front-end

If you got the mas from the repository you should have a sub-directory called ”web”,
in there you’ll find the web pages. The front-end is installed by copying it into the web
directory.

45

Figure 14: User configuration page on the MAS web front-end.

A.4.5 User configuration Manual

For the users to be able to customize the application behavior there has to exist user
configurations for each user.

If its the first time you use the application, you have to add the user to the configu-
ration database. To do this, enter the user information into the fields on figure 14.

User name
The username for the user.

Password
This password is intended to be used when the user wants to update his/her user
configuration, not used for now.

Alias
Unused for now.

Org Flag
This boolean value states whether the user wants to have email copy enabled on
the originating side.

Term offline flag
This boolean value states whether the user wants to have email copy enabled on
the terminating side when the user is offline.

Term online flag
This boolean value states whether the user wants to have email copy enabled on
the terminating side when the user is online.

Deliver Receipt Flag
Deprecated, set in the client for now. The user has to be set all the same.

Presence
Also deprecated. The presence is gotten from the as module.

46

Auto reply flag
States whether the user wants to have auto replies active. It is possible to set
the body of the auto-reply, but this isn’t supported through the user configuration
page.

Forwards flag
Boolean to show if forwarding is enabled or not.

Forwarding address
Where to forward.

Blacklist Flag
If blacklist is enabled.

Blacklist
This list states which sip addresses who are blocked from sending messages to
the users.

The simplest way to change a users configuration is to make a query on the user,
if the user is available in the db the fields are populated and one can change the values
and press ”Add or Update User Configuration”.

B User Manual

B.1 Application Server API
The AS offer an API to the hosted applications, this API can be found in the application
app server api and it includes the following modules and behaviors.

ims
The main module, it is here that each application register for use of the API and
create instances of each other service.

uac message
Module for sending SIP page instant messages.

uas message
Module for retrieving information about a received message.

uac email
Module for sending e-mails.

ims application (behavior)
A behavior that each hosted application should implement, it define functions for
receiving SIP messages.

ims instant message (behavior)
A behavior for receiving status report of sent instant messages (whether they
arrived or not).

Overall the API is designed to have an overall look and feel similar to the one
provided by the Sailfin framework developed by Ericsson. Following this tenet the
API make use of the observer pattern heavily. This means that almost all operations
are asynchronous with an optional setting of a callback module that can be used to
retrieve additional information.

47

B.1.1 ims

The main responsible module that takes care of creating instances of the other or reg-
istering applications.

register application(AppName, Callback, IARI)
Establish a connection to the AS and register an application named
AppName which is identified by the IARI IARI. Any received messages is sent
to the Callback module which should implement the ims application behav-
ior.

unregister application(AppName)
Close the connection to the AS for the application registered under the name
AppName.

is registered(AppName, SipURI)
Check whether the user SipURI is online.

create instant message(AppName)
Create and return an instance for the module uac message.

create email(AppName)
Create and return an instance for the module uac email.

B.1.2 uac email

Module responsible for sending e-mail messages, the ID argument is acquired through
the use of ims:create email/1.

set sender(ID, Sender)
Set from whom the e-mail should be addressed.

set receiver(ID, Receiver)
Set to whom the e-mail should be addressed.

set subject(ID, Subject)
Set the subject of the e-mail.

set body(ID, Body)
Set the body of the e-mail.

send(ID)
Send the e-mail.

B.1.3 uac message

Module responsible for sending SIP instant page messages, the ID argument is ac-
quired through the use of ims:create instant message/1.

set sender(ID, Sender)
Set from whom the message should appear to come from. (Since the AS is a
trusted entity in the IMS network you can send from anyone, even none existing
users).

48

get sender(ID)
Get from whom the message is addressed.

set receiver(ID, Receiver)
Set to whom the message should be delivered.

get receiver(ID)
Get to whom the message is addressed.

set body(ID, Content, ContentType)
Set what the body of the message should contain and what type it should be
recorded as.

add header(ID, Key, Value)
Add an extra SIP header to the message.

set raw(ID, RawSIP)
Set the raw SIP message to send. Note that if you use this function you override
any changes made using other methods.

set callback(ID, Callback)
Set the callback module of the message, this module will be called when we
know the destiny of the message (e.g. 200 OK or 404).

send(ID)
Send the message.

B.1.4 uas message

Module responsible for receiving information about a received SIP message. The ID
argument is acquired through the ims application behavior.

get sender(ID)
Get from whom the message was addressed.

get receiver(ID)
Get to whom the message was addressed.

get session case(ID)
Get the session-case of the message.

get expires(ID)
Get the expiring date of the message.

get body(ID)
Get the content of the message.

get request uri(ID)
Get the Request-URI of the message.

get header(ID, Key)
Get the first matching header in the message.

get headers(ID, Key)
Get all matching headers in the message.

49

get raw(ID)
Get the raw SIP message.

received(ID)
Send a 200 OK back in response to the message.

reject(ID)
Send a 400 back in response to the message.

respond(ID, Code)
Send a Code response back.

forward(ID)
Forward the message using SIP proxy behavior.

B.2 Source Code documentation
To generate the source code documentation for either of the projects type

make all_doc

in their source code directories. This will create the documentation in HTML format
and store it in either the doc/ or the docs/ directory.

References
[1] http://tools.ietf.org/html/rfc3588

[2] http://tools.ietf.org/html/rfc3261

[3] http://www.3gpp.org/ftp/Specs/html-info/29328.htm

[4] http://www.3gpp.org/ftp/Specs/html-info/29329.htm

[5] http://www.3gpp.org/ftp/Specs/html-info/23008.htm

[6] http://www.selenic.com/mercurial/wiki/

[7] http://www.trapexit.org/

[8] http://www.imsinnovation.com/

50

