
Open platform for mixed-criticality applications  
 

Miguel Méndez Macías 

Seven Solutions Inc. 

Peligros, (Granada) 18210, Spain 

mmendez@sevensols.com 

Jose Luis Gutiérrez, David Fernández, Javier Díaz 

Dpto. de Arquitectura y Tecnología de Computadores 

Universidad de Granada 

Granada, Spain 

{jlgutierrez, dfernandez, jdiaz}@atc.ugr.es

 

 

Abstract— In this work we present a reliable and fully open-

hardware platform developed in the frame of RECOMP project 

that  provides a initial approach towards the utilization of open 

platforms for safety critical applications. This paper describes 

how the platform has been developed according to the RECOMP 

project guidelines and taking into account the avionic standards 

DO-254 and DO-178C as well as the industrial standards IEC 

61508. The results present a modular platform composed by two 

main processing chips, an ARM9 processor and a Virtex-6 FPGA 

with two different configurations, one based on a Quad-core 

Leon-3 and a Dual-core MicroBlaze. OS support based on the 

PikeOS and OpenRTOS-FreeRTOS respectively are provided.  

The paper states how open hardware platforms as here described 

can be used for safety-critical applications, improving the 

collection of evidences of robustness, reducing time-to-

market/cost and helping in the process of certification/re-

certifications of safety critical products. 

Keywords— open-hardware, reliable, COTS, safety-critical 

systems, certification, DO-254 standard, FPGA, multicore 

architecture 

I.  INTRODUCTION 

Nowadays, social globalization and competitive markets are 

increasing the necessity of standardizing and designing high-

quality and reliable electronic systems. Reducing time-to-

market and costs are driving forces of this process.  This is a 

critical factor for systems where human being integrity is at 

risk. In this framework, the utilization of open software 

elements such as RTOS, middleware and other software 

libraries significantly help to achieve the aforementioned 

goals. Unfortunately, although open hardware initiatives are 

becoming more and more popular, (see for instance 

http://www.arduino.cc/ or http://www.ohwr.org) the 

development of open hardware platforms for safety 

applications is still at a very early stage.  

This paper details the process and steps that we have 

achieved to develop a complete and reliable platform ready to 

be used in safety-critical systems. This platform is based in 

diverse and redundant powerful hardware which can provide 

different multi-core architectures depending on application’s 

necessities. 

Different challenges have been faced during the 

development of this board. To begin with, the introduction of 

multi-core processing platforms into these reliable systems is 

quite complex as it poses significant challenges on various 

levels like scheduling, sharing resources access or core to core 

communication. These problems become more critical in 

safety systems where a heavy validation and verification 

process need to be successfully accomplished. In fields like 

industry, automotive, automation or aeronautic, it is essential 

to rely on their electronic systems and use methodologies and 

tools, properly validated. This reason, joined to the growth and 

complexity of embedded systems, is the basics for the strict 

regulations to certify safety embedded systems. 

The motivation of this paper has its origin in an European 

project called RECOMP [1]. One of the main objectives of 

RECOMP project aims to reduce certification costs by 

developing multicore architectures for safety-critical systems 

where each application has its own criticality level but can 

coexist together on the same multicore device. In those mixed-

criticality systems, the achieved criticality will not be 

necessarily the highest level that supplies the less reliable 

application provided that are used in proper isolated systems 

[2]. 

In this way, the Artemis RECOMP research project [1] 

seeks to form a joint European task force contributing to the 

European Standard Reference Technology Platform by 

enabling cost-efficient certification and re-certification of 

safety-critical systems and mixed-criticality systems based on 

multicore processors. The aim is to establish methods, tools 

and platforms to enable cost-efficient (re-)certification of 

safety-critical and mixed-criticality systems. The application 

fields addressed are: automotive, aerospace and industrial 

control systems as lifts or transportation systems.  

One of the methods to reduce certification and 

recertification cost, as here described, is by the utilization of 

an open platform. A reliable platform with different multi-

processor architectures based on reconfigurable hardware, 

which has been developed taking into account requirements, 

tools and methods that industrial and aeronautic standards 

apply for the safety of their systems is here described. This 

architecture is implemented using custom IP-cores (developed 

specifically for the system), COTS components, open-source 

hardware and commercial IP-cores to study the criticality they 

can achieve in addition to the advantages that they can provide 

to a safety-critical system. 

http://www.arduino.cc/
http://www.ohwr.org/


The next subsections will provide further motivation for the 

utilization of the open-hardware approach as well as provide a 

quick overview of the standard that has been considered in the 

development of this platform.  

A. Open-source hardware 

Open-source means, with some exceptions, that the design 

is published for reviewing, modifying and/or producing. Most 

of these licenses are persistent, which means that it will 

remain open keeping future modifications and system 

improvements available to the community. Furthermore, for 

some licenses, manufactures must inform designers of dates 

and quantities of production. This process results in a more 

reliable design since a large number of developers and 

institutions are debugging, improving and using the system 

providing feed-back to the community. 

This open-source methodology also allows the re-utilization 

of designs, making it possible to add more features to the 

system, or even to integrate the whole system (or some parts 

of it) in larger designs. But one of the main advantages that 

these architectures and methodology have is the reduction of 

costs and time-to-market of the product which is, in such a 

competitive market, essential. This advantage is also more 

effective when FPGA architectures are used because they 

make the design easier and more reliable as they can quickly 

provide a complex digital system prototype leading ultimately 

to a faster production of boards or applications. Certainly, 

there are now more advantages in using FPGAs, not only due 

to the fact that the number of gates and features have 

increased, allowing a system on- chip (SoC) to be finally 

realized on a single device, but also, leading FPGA vendors 

and open-source developers to offer easy-to-use development 

tools and specific IP-cores, buses, etc. that accelerate the 

product development and allow not only increased design 

productivity but also a reduction in the cost of development. 

Nevertheless, these embedded blocks must be configured, 

verified, validated and properly connected to the rest of the 

system in order to increase the safety and reliability of a 

complete system [3]. 

Regarding the certification process, the possibility of using 

open-source designs allows collecting evidences of robustness 

and safety in the system, something hard to obtain by closed 

solutions. Therefore, companies that are interested in 

implementing and developing safety-critical systems based on 

open-hardware could address the certification of their system 

without requiring expensive qualified elements provided by 

third-party companies which, at the same time, do not 

completely solve the problem because modular certification is 

still (practically) not possible according to current certification 

standards.  

As main conclusion, the benefits of using an open-source 

hardware platform, available within the source files and 

documentation, can improve the collection of safety evidences 

that can be useful to simplify the certification process of a 

specific project and, as consequence, reduce the time-to-

market and associated certification cost. 

B. Certifaction estandards 

The platform here presented has been developed taken into 

account different safety-critical requirements related to 

RECOMP project and its specific applications. They are: 

1) IEC 61508 [4]: The Industrial standard has under its 

scope the electrical, electronic and programmable electronic 

safety systems. It is the basic functional safety standard for 

designers of functional-safety related devices and system 

integrators. 

The IEC 61508 describes requirements to prevent failures 

by the avoidance of fault injections and to control failures by 

ensuring safety, even when faults are present. Additionally, 

the standard provides requirements for product's overall safety 

lifecycle. It specifies four discrete safety integrity levels 

(SILs)-levels of safety performance for a safety function. SIL 

1 is the lowest level of safety integrity, and SIL 4 is the 

highest level. Requirements to achieve safety integrity at the 

higher levels are more meticulous than at lower levels. 

The SIL requirements for hardware safety integrity are 

based on a probabilistic analysis of the device. To achieve a 

concrete SIL, the dangerous failure probability must be less 

than the one specified, and also it must be greater than the 

specified safe failure fraction. These failure probabilities are 

calculated for instance by performing a Failure Mode and 

Effects Analysis (FMEA) or any of its variations. The actual 

targets required vary depending on the likelihood of a demand, 

the complexity of the device(s), and the types of redundancy 

used. 

2)  DO-254 [5] /DO-178C [6]: The aerospace safety 

standard is divided into different standards: 

DO-178B/C, Software Considerations in Airborne Systems 

and Equipment Certification is a document used by the US 

Federal Aviation Administration (FAA) to determine the 

conditions in which some software, that is required to be 

certified, is able to run, safely and reliable, in an airborne 

environment. 

This software standard is normally accompanied with DO-

254, Design Assurance Guidance for Airborne Electronic 

Hardware Considerations in Airborne Systems and Equipment 

Certification. 

As SIL for the industrial field, the Design Assurance Level 

(DAL) is determined from the safety assessment process and 

hazard analysis by examining the effects of a failure condition 

in the system. The failure conditions are categorized by their 

effects on the aircraft, crew, and passengers from DAL A 

(highest level) to DAL E (lowest level which has no impact on 

safety). 

DO-254 standard is involved in the compliance for the 

design of complex electronic hardware in airborne systems. 

Complex electronic hardware includes devices like FPGAs, 

PLDs and ASICs. The hardware design and hardware 

verification need to be done with independence, which means 

that the hardware designers should work to ensure the design 



meets the defined requirement and the verification team 

should create a test that verifies all of the derived 

requirements. Rather than specify how to implement the 

standard or which test should be completed, it specifies the 

requirements for a process of design assurance and 

certification. 

II. BOARD SPECIFICATIONS 

The platform developed, which is called Avionic 

Computing Platform (ACP) in the framework of the RECOMP 

project, is a modular board composed of two boards. The core 

board, called AION, provides two different processor devices: 

an ARM9 single-processor and a Virtex-6 FPGA (where 

additional processors are implemented). The second board is a 

peripheral one, connected to AION, which includes the 

common peripherals to fulfil safety-critical requirements and 

connections requested on the RECOMP project. It is called 

RECOMP Sensor Board (RSB). The ACP platform connects 

both boards through an external interface connector, as it can 

be seen in the Fig. 1 where AION, RSB and ACP are shown. 

Both boards have been designed by Seven Solutions as an 

open-hardware design.  

 

 

Figure 1: Images of the development platform. AION on the top-left, 

RSB on the top-right  and finally ACP on the bottom of the picture 

are the board shown in the picture.  

 

To understand all the possibilities and FPGA architectures 

that this board provides, a review of its hardware components 

and structure has been provided on Fig. 2 and Table 1. 

 

Figure 2: Avionic Computing Platform Diagram 

 

A. AION board 

The board includes an ARM (SAM9G45 [7]) and a FPGA 

(Virtex-6 [8]) device, as processors, and some peripherals, 

memories and fast external/interface connectors (differential 

pair), which allow the communication between 

external/extension/peripheral boards. The physical size of the 

AION board fulfils the microTCA standard in order to be also 

used as a co-processor platform in microTCA systems. 

TABLE I.  AION+RSB PERIPHERAL DETAILS 

AION 

peripherals 

Processor connections 

FPGA ARM Share 

External memory Xa Xa Xb 

External WatchDog X X  

Ethernet Port Xc X  

USB port (OHCI host port and 

transceiver) 
 X  

Serial ports (RS232, SPI) Xc X X 

LEDs and buttons Xc X  

JTAG debug and configuration port X X  

Temp. sensors and FPGA onchip 
monitor (voltage supply and temp.) 

X   

General Purpuse I/O X X X 

VCO with PLLx5 and oscillators X X  

a. The ARM has 64MB of DDR2 and 512MB of Flash, while the FPGA has 
4.608 MB of QDRII RAM and 32MByte of Flash. 

b. Through a FPGA controller. It controls the communication between ARM 

and FPGA which is done through a 32 bits asynchronous bus that can be 

customized. 

c. Through the RSB board. 

This board includes a few general peripherals and it would 

rather include serial and debug ports for processor devices and 



memories, leaving the specific application peripherals for the 

RSB board. 

B. RSB board 

The RSB, as its name indicates, is a sensor board where 

some actuators, serial ports and others peripherals are 

implemented following safety-critical requirements. 

Furthermore, monitoring ports, redundant peripherals and a 

monitor display have been included in order to facilitate 

testing, to increase the safety capabilities and to be able to 

monitor the correct operation of the platform. 

The common peripherals like two Ethernet, two RS232 

serial port, eight LEDs (with a feedback mechanism so that it 

is possible to read their state at the end of the line), five 

position LEDs and five buttons are implemented in this board 

and they have been duplicated in order to be used 

independently for each AION processor (see Table 1). This 

allows on one hand, to implement an AMP multiprocessor 

architecture, or, in the other hand, to have a redundancy 

system in case of SMP multicore architecture. 

III. FPGA MULTICORE PROCESSOR ARCHITECTURES 

Thanks to the flexibility that Xilinx FPGAs [9] provide, 

different multi-core architectures depending on the application 

needs can be implemented. In this paper, two different multi-

core architectures are presented. They are based on COTS and 

open-source IP core components.  

A. AMP dual-processor architecture based on Microblaze 

In an AMP system, each processor has different 

independent peripherals and memories. Moreover, each 

software process and OS is locked to a single core, which 

means that they only share one communication channel, a fast 

and safe bus, to share data. 

1) FGPA hardware layer 

In this case, a full FPGA on-chip architecture is developed 

using the tools provided by the vendor (ISE suite from Xilinx) 

and tested by ModelSim [10] and ChipScope. It fulfils the 

communication and control of each board peripheral whereas, 

at the same time, provides a suitable and reliable dual-

processor architecture for safety-critical systems. Two 

independent Microblaze softprocessor [11] are implemented in 

the FPGA, meaning that each Microblaze has all peripherals 

and memories it needs to run independently. This can be 

possible since the ACP board provides two different QDRII 

memory chips connected to the FPGA and the RSB duplicated 

peripherals, following the chosen AMP architecture. Both 

processors are connected to each other through mailbox and 

mutex IP-cores in order to share data packets and instructions; 

as well as with a 64KB shared memory for sharing larger 

amount of data. 

Since the project uses a Xilinx FPGA, the fastest way to 

develop an on-chip architecture is to use the controllers and 

cores provided by Xilinx, which have been already tested and 

validated. Given that, the Microblaze processors are connected 

to the peripherals and external memories through a PLB bus 

which will be the main bus of the system. Moreover, a variety 

of IP-cores, tools and their history of use can help to go 

through the certification process since homologous IP-cores 

(the commonly used) and the Microblaze processor are being 

implemented in a safe and certifiable way for Xilinx in 

collaboration with third-party partners in the frame of critical 

projects. This development process does not ensure the 

certification of the entire system since no modular/partial 

certification is possible but  the history of its utilization makes 

easier the recertification in future projects. 

This architecture gives functionality to all peripherals and 

memories included in hardware, implementing some safety 

mechanisms like dual and diverse channels for each QDRII 

memory, and isolation between external peripherals. 

It also includes a bridge between a PLB proprietary bus 

and an open-source bus (Wishbone) in each processor so that 

any open-source controller can be safely included in the 

architecture. 

2) OS and application layer  

The main target of the current architecture focuses on 

industrial applications. We have developed simple routines to 

periodically monitor and check the status of the board 

peripherals. Hence, the utilization of a Real-Time Operating 

System (RTOS) is mandatory because it provides the system 

with multitasking features. Moreover, the possibility of adding 

a priority level to any single task, is obligatory for achieving a 

proper scheduling, specially a key point for reliable and 

safety-critical systems. 

In this case, we have decided to implement our system 

using FreeRTOS [12], which is a market leading RTOS from 

Real Time Engineers Ltd. Furthermore, FreeRTOS is an open-

source OS making the whole system strictly quality controlled, 

robust, supported, and free to use in commercial products. It is 

also worth to mention that there are additional compatible 

versions of FreeRTOS, such as OpenRTOS and SafeRTOS 

that are specifically designed for safety-critical applications 

but they are not used in this design.  

The application test we provided is composed by two 

running versions of FreeRTOS. Each FreeRTOS program is 

mapped into a different processor, which is connected to 

different peripherals as described in section II. The first 

FreeRTOS instance, which is mapped to processor0, owns 

tasks related to: temperature sensors, serial port outputs, board 

LEDs, buttons, and LCD status messages. On the other hand, 

the other FreeRTOS instance is mapped to processor1 and is 

in charge of performing system monitoring measurements and 

controlling DIP switch changes, LEDs and serial port outputs. 

The combination of these two FreeRTOS programs, in 

conjunction to their scheduled tasks, represents the 

demonstrator application developed for the ACP platform 

using a MicroBlaze-targeted architecture, which has been 

described on previous sections. 



B. SMP quad-processor architecture based on Leon-3  

In order to cover a wider range of architectures, we have 

also developed an alternative architecture for the ACP board, 

based, this time, on Leon-3 softprocessors with an AMBA 

bus. 

In symmetric multiprocessing (SMP) systems, a single OS, 

manages all processor cores simultaneously. With SMP 

support, any processor can execute any task allowing the OS 

to easily move tasks between processors to balance the 

workload efficiently, which is something important in the 

current design needs [13]. For this reason, we found 

interesting to design a SMP open architecture for our safety-

critical platform. 

1) FPGA hardware layer 

The architecture is based on the well-known soft-processor 

Leon3, developed by the European Space Agency (ESA) and 

Gaisler Aeroflex. LEON3 is a 32-bit processor core 

conforming to the [IEEE-1754] (SPARC V8) architecture. It is 

described in synthesizable VHDL with a GPL license and it 

has multi-processing support for SMP [14]. 

The architecture consists of four Leon3 processors 

connected to a single AMBA bus. This bus is arbitrated by the 

AMBA controller which connects all the elements in the 

system in a master-slave configuration, allowing all processors 

to communicate which each other through a QDRII slave 

memory. In addition to these main components, the following 

ones are also included: the timer controller is the element in 

charge of each of the timers for each processor. The IRQ 

element is accessible through the bus AMBA to trigger an 

interrupt on each processor. Several elements are used to 

communicate the board with the surroundings: GPIO ports, 

Ethernet ports and the UART. Some of them are accessible in 

the APB AMBA bus through the AHB-APB Bridge, and 

others trough the AHB AMBA bus directly by the main 

arbiter. 

 

 
Figure 3 Quad-core Leon3 architecture 

 

The multi-processor system is used in SMP mode, using 

the message passing mechanism through shared memory in 

order to perform the core-to-core communications. Also, non-

shared cache memories for each processor are added to speed-

up access to main memory and reduce system bus traffic. 

2) OS application layer 

In order to meet some safety-critical requirements 

regarding spatial and time isolation (see section IV) the ACP 

Leon3 architecture uses the hypervisor PikeOS. PikeOS is a 

platform for developing embedded systems where multiple 

operating systems and applications can run simultaneously in 

a secure environment [15].  

The PikeOS architecture is based on a microkernel design 

with a small, compact microkernel providing a core set of 

services such as resource and time partitioning. Resource 

partitions provide spatial segregation between applications in a 

way that write at the same place in shared memory is not 

allowed. Using time partitions we improve the management of 

concurrent access to the memory bus.  

C. ARM utilization  

Although the ARM9 single-processor is not used as a 

safety critical system, it has been flashed with a vanilla linux 

kernel v2.6.39 (compiled using buildroot 2011.11) as an 

example of use. This development is open-source design 

which supports the following peripherals (all of them provided 

by the ACP board): 

 Memory controllers’ support: 64MB DDR2, 256MB 

NAND Flash (used as the root file system) and 8MB boot 

flash. 

 TCP/IP library and SSH server supported with 

standard daemons like: TFTP, DNS, DHCP, etc already 

includes. 

 EBI port’s support to communicate with the FPGA. 

 Specific application to flash the FPGA directly from 

the ARM through serial JTAG port. The ARM can be 

therefore used as watchdog and reinitialized the FPGA in case 

an error occurs. 

In a mixed-criticality system, this processor can provide 

monitoring functions to the safety part whereas it is isolated 

from the FPGA using its own peripherals and memories. 

Additionally, this device provides robustness to common 

cause effects that could affect FPGA cores and therefore help 

to increase the certification capabilities of the whole platform. 

In order to enable communication between the safe and 

non-safe part, a specific controller is developed. This 

controller shares part of the QDRII memory to connect both, 

the ARM and the FPGA. Since isolation between these two 

parts is needed, the controller (included in the safety part) is 

able to set by hardware permission for the shared memory 

part. In this case, the safety part (FPGA) is able to read and 



write to the whole shared memory, while the non-safety part 

(ARM) is just able to read data. 

IV. SAFETY MECHANISMS 

A typical approach to achieve safety in complex systems 

consists in proving that the relation between different 

subsystems is deterministic and known, or even non-existent. 

For this reason, spatial and time partitioning are common 

practices. In this section we show how we ensure time and 

spatial isolation, as well as memory protection and secure 

core-to-core communications in our different architectures. 

A. Isolation 

The platform gives the possibility to have an AMP 

multicore architecture thanks to the separated memory chips, 

external WatchDogs, different clock oscillators and duplicated 

peripherals which provide isolation between cores.  

Moreover, the ACP has two different processor devices 

that can provide diversity: ARM single-processor and a FPGA 

multiprocessor architecture with possible safety mechanisms. 

In the SMP architecture everything is shared. Then, 

isolation is achieved, basically, through memory and bus 

contention, cache coherency, and concurrent and exclusive 

access mechanism performed by the OS. 

Concurrent access to shared memory and bus is avoided at 

hardware level by the bus arbiter and the bus architecture 

itself. Although it can be said that there is only one shared bus, 

in fact there are multiple sub-buses that connect each 

component to the bus arbiter in a star topology. The bus 

arbiter acts as a multiplexer, provides a time division multiple 

access contention (TDMA) against concurrent access, where 

the priority is rotated among all masters requesting the bus 

each AHB transfer where the worst-case-execution-time to 

access the bus is bounded up. 

B. C2C communication 

Different mechanisms for commutation can be used in this 

system. The FPGA multiprocessor architecture can use two 

mechanisms: 

 Xilinx cores: mutex and mailbox, for free 

communication matters between buses. These cores 

provide simple synchronization and message passing 

features between the two processors. 

 Wittenstein (http://www.highintegritysystems.com/) 

libraries over the OpenRTOS which provides safety 

and reliable communication between cores. 

Whereas the ARM single-processor is connected to the 

FPGA architecture through an EBI bus, meaning that a shared 

memory (within the QDRII external memory) is used as a 

core-to-core communication between ARM-FPGA 

architectures. The C2C controller is implemented in a way that 

both cores are isolated and one can not affect the memory 

access of the other.  

C. System memory protection 

At hardware level, diversity within memory chips can 

handle some hardware failure as well as isolation between 

processors.  

Moreover, the QDRII controller is initialized with a 

calibration process that evaluates the correct behaviour of the 

memory. It also has the possibility to include a parity bit 

protection mechanism for each memory byte. In order also to 

avoid bus failures the QDRII controller has two independent 

channels with different bus access implemented (PLB [16] and 

Wishbone [17] bus). 

In the SMP architecture, where the main memory is totally 

shared, coherency mechanisms are also needed. The use of the 

write-through caches for each processor, along with the 

snooping mechanism, guarantee memory coherency in main 

shared memory [18]. 

D. Operating system 

In this kind of systems, it is common to use a Memory 

Management Unit (MMU) to handle CPU memory access 

requests. Unfortunately, MMU support is not available in 

FreeRTOS for MicroBlaze architectures. However, this RTOS 

provides other mechanisms to fill this lack which is the 

utilization of a scheduler and the possibility of running tasks 

atomically.  

Owing to guarantee the correct behaviour of the AMP 

platform and the schedulability of the tasks that are executed 

in each processor, FreeRTOS offers a routine that ensures the 

atomic execution of critical sections. These routines are: 

 portENTER_CRITICAL(); 

 portEXIT_CRITICAL(); 

The utilization of these routines ensures that the 

instructions which are in between, are executed atomically. 

This means that the scheduler will never extract the task from 

the processor during the execution of these lines, avoiding 

undesirable and unpredictable reads/writes on peripherals. 

Example: 

TABLE II.  CRITICAL SECTION SOURCE CODE 

    

   portENTER_CRITICAL(); 

   { 

      QDRIImemory_test(XPAR_WBANDPLB_QDRII_0_BASEA

 DDR, XPAR_PLB2WB_BRIDGE_0_BASEADDR);  

   } 

   portEXIT_CRITICAL(); 

 

As described in the figure above, the QDRIImemory_test() 

function involves several clock cycles to test all the memory. 

Since this test performs writing and reading data from the 

memory, the fact of stopping and resuming the task that 

arranges this test, can bring to an inconsistent state of the 

memory, ignoring any undesirable behaviour and erroneous 

readings. By adding the routines portENTER_CRITICAL() and 

portEXIT_CRITICAL(), we ensure that the test is 

http://www.highintegritysystems.com/


accomplished atomically, ensuring the correct reading and 

writing process in, for example, shared devices. 

Other safety mechanism available for RTOS is the 

virtualization of different shared resources. This feature is not 

available for FreeRTOS but it is for PikeOS, as discussed in 

the previous section, which achieves time and spatial isolation 

by using a hypervisor with resource and time partitions 

support. [19] 

The purpose of the resource partitions is to provide spatial 

segregation between applications (using the underlying 

hardware memory protection capabilities) and to control 

access to system resources such as IO devices and memory. 

Time partitioning is a mechanism for allocating CPU time 

amongst the partitions. It can be used to ensure that all 

partitions get a predefined amount of execution time and to 

prevent any thread from starving others, even in the case of a 

faulting thread. In its simplest form, time partitioning can be 

used to allocate a certain CPU quota to each resource partition. 

E. Test and verification 

For hardware fabrication: Acceptance of finished printed 

boards is in accordance with IPC-A-600, class 2.  Fabrication 

and inspection are according to IPC-6011 and IPC-6012, class 

3. And all quality controls are performed per IPC-TM-650 

procedures and per IPC-4552. 

On the other hand, depending on the FPGA architecture, 

different test and verification methods and tools are used. For 

instance, the Microblaze architecture simulation tests have 

been done with ModelSim from Mentor Graphics [19], and the 

hardware analysis with ChipScope from Xilinx. These tests 

provide verification at functional level for those specific IP-

cores created for the design and for the complete system. 

Nevertheless, a more exhaustive validation and verification 

method for each IP-core and the overall system should be 

provided to pass the certification process of safety-critical 

system  

V. CONCLUSIONS 

We have presented a reliable open hardware platform 

based on the requirements of RECOMP project and industrial-

avionics safety standards. It introduces safety hardware 

mechanisms like environmental monitoring, redundant and 

diverse peripherals as well as different multicore architectures 

using the FPGA: a Quad-core Leon-3 and a Dual-core 

MicroBlaze. OS support based on the PikeOS and 

OpenRTOS-FreeRTOS respectively are provided for each 

configuration, adding safety options to the overall system. On 

the other hand, the ARM9 flashed with a standard Linux OS 

provides a simple interface for non-safety part or low critical 

applications, whereas an isolated multicore-processor is on the 

FPGA.  

This paper describes a feature-rich platform with many 

applications on safety related industrial and aerospace 

markets, and briefly describes how system’s reliability can be 

increased by diverse redundancy. As has been previously said, 

redundant diverse field equipment can help unmask additional 

dangerous undetected faults, thus increasing Safe Failure 

Fraction. On the other hand, the paper also describes how the 

system cost and time-to-market can be reduced by the open-

source philosophy or the possibility to use COTS components. 

Finally, this paper introduces the open-hardware/open-

source approach inside the certification process as open-boxes 

or systems. As important advantage, it helps to save time-to-

market and development costs but, as key element, the 

utilization of open platforms helps to improve the reliability of 

the overall system because reviewers, source code and 

documented safety evidences can be completely examined and 

verified. As consequence, the main goal of safety-critical 

systems, reducing the risk of damage of human beings, can be 

better guarantied.  
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