
Open platform for mixed-criticality applications

Miguel Méndez Macías

Seven Solutions Inc.

Peligros, (Granada) 18210, Spain

mmendez@sevensols.com

Jose Luis Gutiérrez, David Fernández, Javier Díaz

Dpto. de Arquitectura y Tecnología de Computadores

Universidad de Granada

Granada, Spain

{jlgutierrez, dfernandez, jdiaz}@atc.ugr.es

Abstract— In this work we present a reliable and fully open-

hardware platform developed in the frame of RECOMP project

that provides a initial approach towards the utilization of open

platforms for safety critical applications. This paper describes

how the platform has been developed according to the RECOMP

project guidelines and taking into account the avionic standards

DO-254 and DO-178C as well as the industrial standards IEC

61508. The results present a modular platform composed by two

main processing chips, an ARM9 processor and a Virtex-6 FPGA

with two different configurations, one based on a Quad-core

Leon-3 and a Dual-core MicroBlaze. OS support based on the

PikeOS and OpenRTOS-FreeRTOS respectively are provided.

The paper states how open hardware platforms as here described

can be used for safety-critical applications, improving the

collection of evidences of robustness, reducing time-to-

market/cost and helping in the process of certification/re-

certifications of safety critical products.

Keywords— open-hardware, reliable, COTS, safety-critical

systems, certification, DO-254 standard, FPGA, multicore

architecture

I. INTRODUCTION

Nowadays, social globalization and competitive markets are

increasing the necessity of standardizing and designing high-

quality and reliable electronic systems. Reducing time-to-

market and costs are driving forces of this process. This is a

critical factor for systems where human being integrity is at

risk. In this framework, the utilization of open software

elements such as RTOS, middleware and other software

libraries significantly help to achieve the aforementioned

goals. Unfortunately, although open hardware initiatives are

becoming more and more popular, (see for instance

http://www.arduino.cc/ or http://www.ohwr.org) the

development of open hardware platforms for safety

applications is still at a very early stage.

This paper details the process and steps that we have

achieved to develop a complete and reliable platform ready to

be used in safety-critical systems. This platform is based in

diverse and redundant powerful hardware which can provide

different multi-core architectures depending on application’s

necessities.

Different challenges have been faced during the

development of this board. To begin with, the introduction of

multi-core processing platforms into these reliable systems is

quite complex as it poses significant challenges on various

levels like scheduling, sharing resources access or core to core

communication. These problems become more critical in

safety systems where a heavy validation and verification

process need to be successfully accomplished. In fields like

industry, automotive, automation or aeronautic, it is essential

to rely on their electronic systems and use methodologies and

tools, properly validated. This reason, joined to the growth and

complexity of embedded systems, is the basics for the strict

regulations to certify safety embedded systems.

The motivation of this paper has its origin in an European

project called RECOMP [1]. One of the main objectives of

RECOMP project aims to reduce certification costs by

developing multicore architectures for safety-critical systems

where each application has its own criticality level but can

coexist together on the same multicore device. In those mixed-

criticality systems, the achieved criticality will not be

necessarily the highest level that supplies the less reliable

application provided that are used in proper isolated systems

[2].

In this way, the Artemis RECOMP research project [1]

seeks to form a joint European task force contributing to the

European Standard Reference Technology Platform by

enabling cost-efficient certification and re-certification of

safety-critical systems and mixed-criticality systems based on

multicore processors. The aim is to establish methods, tools

and platforms to enable cost-efficient (re-)certification of

safety-critical and mixed-criticality systems. The application

fields addressed are: automotive, aerospace and industrial

control systems as lifts or transportation systems.

One of the methods to reduce certification and

recertification cost, as here described, is by the utilization of

an open platform. A reliable platform with different multi-

processor architectures based on reconfigurable hardware,

which has been developed taking into account requirements,

tools and methods that industrial and aeronautic standards

apply for the safety of their systems is here described. This

architecture is implemented using custom IP-cores (developed

specifically for the system), COTS components, open-source

hardware and commercial IP-cores to study the criticality they

can achieve in addition to the advantages that they can provide

to a safety-critical system.

http://www.arduino.cc/
http://www.ohwr.org/

The next subsections will provide further motivation for the

utilization of the open-hardware approach as well as provide a

quick overview of the standard that has been considered in the

development of this platform.

A. Open-source hardware

Open-source means, with some exceptions, that the design

is published for reviewing, modifying and/or producing. Most

of these licenses are persistent, which means that it will

remain open keeping future modifications and system

improvements available to the community. Furthermore, for

some licenses, manufactures must inform designers of dates

and quantities of production. This process results in a more

reliable design since a large number of developers and

institutions are debugging, improving and using the system

providing feed-back to the community.

This open-source methodology also allows the re-utilization

of designs, making it possible to add more features to the

system, or even to integrate the whole system (or some parts

of it) in larger designs. But one of the main advantages that

these architectures and methodology have is the reduction of

costs and time-to-market of the product which is, in such a

competitive market, essential. This advantage is also more

effective when FPGA architectures are used because they

make the design easier and more reliable as they can quickly

provide a complex digital system prototype leading ultimately

to a faster production of boards or applications. Certainly,

there are now more advantages in using FPGAs, not only due

to the fact that the number of gates and features have

increased, allowing a system on- chip (SoC) to be finally

realized on a single device, but also, leading FPGA vendors

and open-source developers to offer easy-to-use development

tools and specific IP-cores, buses, etc. that accelerate the

product development and allow not only increased design

productivity but also a reduction in the cost of development.

Nevertheless, these embedded blocks must be configured,

verified, validated and properly connected to the rest of the

system in order to increase the safety and reliability of a

complete system [3].

Regarding the certification process, the possibility of using

open-source designs allows collecting evidences of robustness

and safety in the system, something hard to obtain by closed

solutions. Therefore, companies that are interested in

implementing and developing safety-critical systems based on

open-hardware could address the certification of their system

without requiring expensive qualified elements provided by

third-party companies which, at the same time, do not

completely solve the problem because modular certification is

still (practically) not possible according to current certification

standards.

As main conclusion, the benefits of using an open-source

hardware platform, available within the source files and

documentation, can improve the collection of safety evidences

that can be useful to simplify the certification process of a

specific project and, as consequence, reduce the time-to-

market and associated certification cost.

B. Certifaction estandards

The platform here presented has been developed taken into

account different safety-critical requirements related to

RECOMP project and its specific applications. They are:

1) IEC 61508 [4]: The Industrial standard has under its

scope the electrical, electronic and programmable electronic

safety systems. It is the basic functional safety standard for

designers of functional-safety related devices and system

integrators.

The IEC 61508 describes requirements to prevent failures

by the avoidance of fault injections and to control failures by

ensuring safety, even when faults are present. Additionally,

the standard provides requirements for product's overall safety

lifecycle. It specifies four discrete safety integrity levels

(SILs)-levels of safety performance for a safety function. SIL

1 is the lowest level of safety integrity, and SIL 4 is the

highest level. Requirements to achieve safety integrity at the

higher levels are more meticulous than at lower levels.

The SIL requirements for hardware safety integrity are

based on a probabilistic analysis of the device. To achieve a

concrete SIL, the dangerous failure probability must be less

than the one specified, and also it must be greater than the

specified safe failure fraction. These failure probabilities are

calculated for instance by performing a Failure Mode and

Effects Analysis (FMEA) or any of its variations. The actual

targets required vary depending on the likelihood of a demand,

the complexity of the device(s), and the types of redundancy

used.

2) DO-254 [5] /DO-178C [6]: The aerospace safety

standard is divided into different standards:

DO-178B/C, Software Considerations in Airborne Systems

and Equipment Certification is a document used by the US

Federal Aviation Administration (FAA) to determine the

conditions in which some software, that is required to be

certified, is able to run, safely and reliable, in an airborne

environment.

This software standard is normally accompanied with DO-

254, Design Assurance Guidance for Airborne Electronic

Hardware Considerations in Airborne Systems and Equipment

Certification.

As SIL for the industrial field, the Design Assurance Level

(DAL) is determined from the safety assessment process and

hazard analysis by examining the effects of a failure condition

in the system. The failure conditions are categorized by their

effects on the aircraft, crew, and passengers from DAL A

(highest level) to DAL E (lowest level which has no impact on

safety).

DO-254 standard is involved in the compliance for the

design of complex electronic hardware in airborne systems.

Complex electronic hardware includes devices like FPGAs,

PLDs and ASICs. The hardware design and hardware

verification need to be done with independence, which means

that the hardware designers should work to ensure the design

meets the defined requirement and the verification team

should create a test that verifies all of the derived

requirements. Rather than specify how to implement the

standard or which test should be completed, it specifies the

requirements for a process of design assurance and

certification.

II. BOARD SPECIFICATIONS

The platform developed, which is called Avionic

Computing Platform (ACP) in the framework of the RECOMP

project, is a modular board composed of two boards. The core

board, called AION, provides two different processor devices:

an ARM9 single-processor and a Virtex-6 FPGA (where

additional processors are implemented). The second board is a

peripheral one, connected to AION, which includes the

common peripherals to fulfil safety-critical requirements and

connections requested on the RECOMP project. It is called

RECOMP Sensor Board (RSB). The ACP platform connects

both boards through an external interface connector, as it can

be seen in the Fig. 1 where AION, RSB and ACP are shown.

Both boards have been designed by Seven Solutions as an

open-hardware design.

Figure 1: Images of the development platform. AION on the top-left,

RSB on the top-right and finally ACP on the bottom of the picture

are the board shown in the picture.

To understand all the possibilities and FPGA architectures

that this board provides, a review of its hardware components

and structure has been provided on Fig. 2 and Table 1.

Figure 2: Avionic Computing Platform Diagram

A. AION board

The board includes an ARM (SAM9G45 [7]) and a FPGA

(Virtex-6 [8]) device, as processors, and some peripherals,

memories and fast external/interface connectors (differential

pair), which allow the communication between

external/extension/peripheral boards. The physical size of the

AION board fulfils the microTCA standard in order to be also

used as a co-processor platform in microTCA systems.

TABLE I. AION+RSB PERIPHERAL DETAILS

AION

peripherals

Processor connections

FPGA ARM Share

External memory Xa Xa Xb

External WatchDog X X

Ethernet Port Xc X

USB port (OHCI host port and

transceiver)
 X

Serial ports (RS232, SPI) Xc X X

LEDs and buttons Xc X

JTAG debug and configuration port X X

Temp. sensors and FPGA onchip
monitor (voltage supply and temp.)

X

General Purpuse I/O X X X

VCO with PLLx5 and oscillators X X

a. The ARM has 64MB of DDR2 and 512MB of Flash, while the FPGA has
4.608 MB of QDRII RAM and 32MByte of Flash.

b. Through a FPGA controller. It controls the communication between ARM

and FPGA which is done through a 32 bits asynchronous bus that can be

customized.

c. Through the RSB board.

This board includes a few general peripherals and it would

rather include serial and debug ports for processor devices and

memories, leaving the specific application peripherals for the

RSB board.

B. RSB board

The RSB, as its name indicates, is a sensor board where

some actuators, serial ports and others peripherals are

implemented following safety-critical requirements.

Furthermore, monitoring ports, redundant peripherals and a

monitor display have been included in order to facilitate

testing, to increase the safety capabilities and to be able to

monitor the correct operation of the platform.

The common peripherals like two Ethernet, two RS232

serial port, eight LEDs (with a feedback mechanism so that it

is possible to read their state at the end of the line), five

position LEDs and five buttons are implemented in this board

and they have been duplicated in order to be used

independently for each AION processor (see Table 1). This

allows on one hand, to implement an AMP multiprocessor

architecture, or, in the other hand, to have a redundancy

system in case of SMP multicore architecture.

III. FPGA MULTICORE PROCESSOR ARCHITECTURES

Thanks to the flexibility that Xilinx FPGAs [9] provide,

different multi-core architectures depending on the application

needs can be implemented. In this paper, two different multi-

core architectures are presented. They are based on COTS and

open-source IP core components.

A. AMP dual-processor architecture based on Microblaze

In an AMP system, each processor has different

independent peripherals and memories. Moreover, each

software process and OS is locked to a single core, which

means that they only share one communication channel, a fast

and safe bus, to share data.

1) FGPA hardware layer

In this case, a full FPGA on-chip architecture is developed

using the tools provided by the vendor (ISE suite from Xilinx)

and tested by ModelSim [10] and ChipScope. It fulfils the

communication and control of each board peripheral whereas,

at the same time, provides a suitable and reliable dual-

processor architecture for safety-critical systems. Two

independent Microblaze softprocessor [11] are implemented in

the FPGA, meaning that each Microblaze has all peripherals

and memories it needs to run independently. This can be

possible since the ACP board provides two different QDRII

memory chips connected to the FPGA and the RSB duplicated

peripherals, following the chosen AMP architecture. Both

processors are connected to each other through mailbox and

mutex IP-cores in order to share data packets and instructions;

as well as with a 64KB shared memory for sharing larger

amount of data.

Since the project uses a Xilinx FPGA, the fastest way to

develop an on-chip architecture is to use the controllers and

cores provided by Xilinx, which have been already tested and

validated. Given that, the Microblaze processors are connected

to the peripherals and external memories through a PLB bus

which will be the main bus of the system. Moreover, a variety

of IP-cores, tools and their history of use can help to go

through the certification process since homologous IP-cores

(the commonly used) and the Microblaze processor are being

implemented in a safe and certifiable way for Xilinx in

collaboration with third-party partners in the frame of critical

projects. This development process does not ensure the

certification of the entire system since no modular/partial

certification is possible but the history of its utilization makes

easier the recertification in future projects.

This architecture gives functionality to all peripherals and

memories included in hardware, implementing some safety

mechanisms like dual and diverse channels for each QDRII

memory, and isolation between external peripherals.

It also includes a bridge between a PLB proprietary bus

and an open-source bus (Wishbone) in each processor so that

any open-source controller can be safely included in the

architecture.

2) OS and application layer

The main target of the current architecture focuses on

industrial applications. We have developed simple routines to

periodically monitor and check the status of the board

peripherals. Hence, the utilization of a Real-Time Operating

System (RTOS) is mandatory because it provides the system

with multitasking features. Moreover, the possibility of adding

a priority level to any single task, is obligatory for achieving a

proper scheduling, specially a key point for reliable and

safety-critical systems.

In this case, we have decided to implement our system

using FreeRTOS [12], which is a market leading RTOS from

Real Time Engineers Ltd. Furthermore, FreeRTOS is an open-

source OS making the whole system strictly quality controlled,

robust, supported, and free to use in commercial products. It is

also worth to mention that there are additional compatible

versions of FreeRTOS, such as OpenRTOS and SafeRTOS

that are specifically designed for safety-critical applications

but they are not used in this design.

The application test we provided is composed by two

running versions of FreeRTOS. Each FreeRTOS program is

mapped into a different processor, which is connected to

different peripherals as described in section II. The first

FreeRTOS instance, which is mapped to processor0, owns

tasks related to: temperature sensors, serial port outputs, board

LEDs, buttons, and LCD status messages. On the other hand,

the other FreeRTOS instance is mapped to processor1 and is

in charge of performing system monitoring measurements and

controlling DIP switch changes, LEDs and serial port outputs.

The combination of these two FreeRTOS programs, in

conjunction to their scheduled tasks, represents the

demonstrator application developed for the ACP platform

using a MicroBlaze-targeted architecture, which has been

described on previous sections.

B. SMP quad-processor architecture based on Leon-3

In order to cover a wider range of architectures, we have

also developed an alternative architecture for the ACP board,

based, this time, on Leon-3 softprocessors with an AMBA

bus.

In symmetric multiprocessing (SMP) systems, a single OS,

manages all processor cores simultaneously. With SMP

support, any processor can execute any task allowing the OS

to easily move tasks between processors to balance the

workload efficiently, which is something important in the

current design needs [13]. For this reason, we found

interesting to design a SMP open architecture for our safety-

critical platform.

1) FPGA hardware layer

The architecture is based on the well-known soft-processor

Leon3, developed by the European Space Agency (ESA) and

Gaisler Aeroflex. LEON3 is a 32-bit processor core

conforming to the [IEEE-1754] (SPARC V8) architecture. It is

described in synthesizable VHDL with a GPL license and it

has multi-processing support for SMP [14].

The architecture consists of four Leon3 processors

connected to a single AMBA bus. This bus is arbitrated by the

AMBA controller which connects all the elements in the

system in a master-slave configuration, allowing all processors

to communicate which each other through a QDRII slave

memory. In addition to these main components, the following

ones are also included: the timer controller is the element in

charge of each of the timers for each processor. The IRQ

element is accessible through the bus AMBA to trigger an

interrupt on each processor. Several elements are used to

communicate the board with the surroundings: GPIO ports,

Ethernet ports and the UART. Some of them are accessible in

the APB AMBA bus through the AHB-APB Bridge, and

others trough the AHB AMBA bus directly by the main

arbiter.

Figure 3 Quad-core Leon3 architecture

The multi-processor system is used in SMP mode, using

the message passing mechanism through shared memory in

order to perform the core-to-core communications. Also, non-

shared cache memories for each processor are added to speed-

up access to main memory and reduce system bus traffic.

2) OS application layer

In order to meet some safety-critical requirements

regarding spatial and time isolation (see section IV) the ACP

Leon3 architecture uses the hypervisor PikeOS. PikeOS is a

platform for developing embedded systems where multiple

operating systems and applications can run simultaneously in

a secure environment [15].

The PikeOS architecture is based on a microkernel design

with a small, compact microkernel providing a core set of

services such as resource and time partitioning. Resource

partitions provide spatial segregation between applications in a

way that write at the same place in shared memory is not

allowed. Using time partitions we improve the management of

concurrent access to the memory bus.

C. ARM utilization

Although the ARM9 single-processor is not used as a

safety critical system, it has been flashed with a vanilla linux

kernel v2.6.39 (compiled using buildroot 2011.11) as an

example of use. This development is open-source design

which supports the following peripherals (all of them provided

by the ACP board):

 Memory controllers’ support: 64MB DDR2, 256MB

NAND Flash (used as the root file system) and 8MB boot

flash.

 TCP/IP library and SSH server supported with

standard daemons like: TFTP, DNS, DHCP, etc already

includes.

 EBI port’s support to communicate with the FPGA.

 Specific application to flash the FPGA directly from

the ARM through serial JTAG port. The ARM can be

therefore used as watchdog and reinitialized the FPGA in case

an error occurs.

In a mixed-criticality system, this processor can provide

monitoring functions to the safety part whereas it is isolated

from the FPGA using its own peripherals and memories.

Additionally, this device provides robustness to common

cause effects that could affect FPGA cores and therefore help

to increase the certification capabilities of the whole platform.

In order to enable communication between the safe and

non-safe part, a specific controller is developed. This

controller shares part of the QDRII memory to connect both,

the ARM and the FPGA. Since isolation between these two

parts is needed, the controller (included in the safety part) is

able to set by hardware permission for the shared memory

part. In this case, the safety part (FPGA) is able to read and

write to the whole shared memory, while the non-safety part

(ARM) is just able to read data.

IV. SAFETY MECHANISMS

A typical approach to achieve safety in complex systems

consists in proving that the relation between different

subsystems is deterministic and known, or even non-existent.

For this reason, spatial and time partitioning are common

practices. In this section we show how we ensure time and

spatial isolation, as well as memory protection and secure

core-to-core communications in our different architectures.

A. Isolation

The platform gives the possibility to have an AMP

multicore architecture thanks to the separated memory chips,

external WatchDogs, different clock oscillators and duplicated

peripherals which provide isolation between cores.

Moreover, the ACP has two different processor devices

that can provide diversity: ARM single-processor and a FPGA

multiprocessor architecture with possible safety mechanisms.

In the SMP architecture everything is shared. Then,

isolation is achieved, basically, through memory and bus

contention, cache coherency, and concurrent and exclusive

access mechanism performed by the OS.

Concurrent access to shared memory and bus is avoided at

hardware level by the bus arbiter and the bus architecture

itself. Although it can be said that there is only one shared bus,

in fact there are multiple sub-buses that connect each

component to the bus arbiter in a star topology. The bus

arbiter acts as a multiplexer, provides a time division multiple

access contention (TDMA) against concurrent access, where

the priority is rotated among all masters requesting the bus

each AHB transfer where the worst-case-execution-time to

access the bus is bounded up.

B. C2C communication

Different mechanisms for commutation can be used in this

system. The FPGA multiprocessor architecture can use two

mechanisms:

 Xilinx cores: mutex and mailbox, for free

communication matters between buses. These cores

provide simple synchronization and message passing

features between the two processors.

 Wittenstein (http://www.highintegritysystems.com/)

libraries over the OpenRTOS which provides safety

and reliable communication between cores.

Whereas the ARM single-processor is connected to the

FPGA architecture through an EBI bus, meaning that a shared

memory (within the QDRII external memory) is used as a

core-to-core communication between ARM-FPGA

architectures. The C2C controller is implemented in a way that

both cores are isolated and one can not affect the memory

access of the other.

C. System memory protection

At hardware level, diversity within memory chips can

handle some hardware failure as well as isolation between

processors.

Moreover, the QDRII controller is initialized with a

calibration process that evaluates the correct behaviour of the

memory. It also has the possibility to include a parity bit

protection mechanism for each memory byte. In order also to

avoid bus failures the QDRII controller has two independent

channels with different bus access implemented (PLB [16] and

Wishbone [17] bus).

In the SMP architecture, where the main memory is totally

shared, coherency mechanisms are also needed. The use of the

write-through caches for each processor, along with the

snooping mechanism, guarantee memory coherency in main

shared memory [18].

D. Operating system

In this kind of systems, it is common to use a Memory

Management Unit (MMU) to handle CPU memory access

requests. Unfortunately, MMU support is not available in

FreeRTOS for MicroBlaze architectures. However, this RTOS

provides other mechanisms to fill this lack which is the

utilization of a scheduler and the possibility of running tasks

atomically.

Owing to guarantee the correct behaviour of the AMP

platform and the schedulability of the tasks that are executed

in each processor, FreeRTOS offers a routine that ensures the

atomic execution of critical sections. These routines are:

 portENTER_CRITICAL();

 portEXIT_CRITICAL();

The utilization of these routines ensures that the

instructions which are in between, are executed atomically.

This means that the scheduler will never extract the task from

the processor during the execution of these lines, avoiding

undesirable and unpredictable reads/writes on peripherals.

Example:

TABLE II. CRITICAL SECTION SOURCE CODE

 portENTER_CRITICAL();

 {

 QDRIImemory_test(XPAR_WBANDPLB_QDRII_0_BASEA

 DDR, XPAR_PLB2WB_BRIDGE_0_BASEADDR);

 }

 portEXIT_CRITICAL();

As described in the figure above, the QDRIImemory_test()

function involves several clock cycles to test all the memory.

Since this test performs writing and reading data from the

memory, the fact of stopping and resuming the task that

arranges this test, can bring to an inconsistent state of the

memory, ignoring any undesirable behaviour and erroneous

readings. By adding the routines portENTER_CRITICAL() and

portEXIT_CRITICAL(), we ensure that the test is

http://www.highintegritysystems.com/

accomplished atomically, ensuring the correct reading and

writing process in, for example, shared devices.

Other safety mechanism available for RTOS is the

virtualization of different shared resources. This feature is not

available for FreeRTOS but it is for PikeOS, as discussed in

the previous section, which achieves time and spatial isolation

by using a hypervisor with resource and time partitions

support. [19]

The purpose of the resource partitions is to provide spatial

segregation between applications (using the underlying

hardware memory protection capabilities) and to control

access to system resources such as IO devices and memory.

Time partitioning is a mechanism for allocating CPU time

amongst the partitions. It can be used to ensure that all

partitions get a predefined amount of execution time and to

prevent any thread from starving others, even in the case of a

faulting thread. In its simplest form, time partitioning can be

used to allocate a certain CPU quota to each resource partition.

E. Test and verification

For hardware fabrication: Acceptance of finished printed

boards is in accordance with IPC-A-600, class 2. Fabrication

and inspection are according to IPC-6011 and IPC-6012, class

3. And all quality controls are performed per IPC-TM-650

procedures and per IPC-4552.

On the other hand, depending on the FPGA architecture,

different test and verification methods and tools are used. For

instance, the Microblaze architecture simulation tests have

been done with ModelSim from Mentor Graphics [19], and the

hardware analysis with ChipScope from Xilinx. These tests

provide verification at functional level for those specific IP-

cores created for the design and for the complete system.

Nevertheless, a more exhaustive validation and verification

method for each IP-core and the overall system should be

provided to pass the certification process of safety-critical

system

V. CONCLUSIONS

We have presented a reliable open hardware platform

based on the requirements of RECOMP project and industrial-

avionics safety standards. It introduces safety hardware

mechanisms like environmental monitoring, redundant and

diverse peripherals as well as different multicore architectures

using the FPGA: a Quad-core Leon-3 and a Dual-core

MicroBlaze. OS support based on the PikeOS and

OpenRTOS-FreeRTOS respectively are provided for each

configuration, adding safety options to the overall system. On

the other hand, the ARM9 flashed with a standard Linux OS

provides a simple interface for non-safety part or low critical

applications, whereas an isolated multicore-processor is on the

FPGA.

This paper describes a feature-rich platform with many

applications on safety related industrial and aerospace

markets, and briefly describes how system’s reliability can be

increased by diverse redundancy. As has been previously said,

redundant diverse field equipment can help unmask additional

dangerous undetected faults, thus increasing Safe Failure

Fraction. On the other hand, the paper also describes how the

system cost and time-to-market can be reduced by the open-

source philosophy or the possibility to use COTS components.

Finally, this paper introduces the open-hardware/open-

source approach inside the certification process as open-boxes

or systems. As important advantage, it helps to save time-to-

market and development costs but, as key element, the

utilization of open platforms helps to improve the reliability of

the overall system because reviewers, source code and

documented safety evidences can be completely examined and

verified. As consequence, the main goal of safety-critical

systems, reducing the risk of damage of human beings, can be

better guarantied.

REFERENCES

[1] RECOMP Project website, Accessed on Nov. 2012 at:
http://www.recomp-project.eu/

[2] Anton Hattendorf, Andreas Raabe and Alois Knoll. Shared Memory
Protection for Spatial Separation in Multicore Architectures. In 7th IEEE
International Symposium on Industrial Embedded Systems (SIES'12).
Karlsruhe, Germany, 2012.

[3] Bsiss Mohammed and Amami Benaissa. Safety Fuzzy Logic Controller
of 1oo2 Architecture for FPGA Implementation. April 20, 2011

[4] IEC 61508: IEC Standard 61508, March 2000. Functional Safety of
Electrical / Electronic /Programmable Electronic Safety-Related
Systems

[5] RTCA DO-254/EUROCAE ED-80 “Design assurance guidance for
airborne electronic hardware,” RTCA, Inc, Tech. Rep., 19th April 2000.

[6] RTCA DO-178 “Software considerations in airborne systems and
equipment certification,” RTCA, Inc, Tech. Rep., 1st Dec. 1992. Last
version DO-178C release in Jan. 2012.

[7] AT91SAM ARM-based Embedded MPU SAM9G45. Accessed on Sep.
2012: http://www.atmel.com/Images/doc6438.pdf

[8] Virtex-6 Family overview delivered 28.Jan.2010. Accessed on Sep.
2012:
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

[9] Xilinx website. Accessed on Sep. 2012: http://www.xilinx.com/

[10] ModelSim User’s Manual (software version 6.4a). Accessed on Sep.
2012:
http://hornad.fei.tuke.sk/predmety/ncs/FPGA_Advantage_Documentatio
n/modelsim_se_user.pdf

[11] Microblaze Processor Reference Guide. Accessed Sep. 2012:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/
mb_ref_guide.pdf

[12] FreeRTOS Real-Time Operating System. Accessed on Nov. 27, 2012.
http://www.freertos.org/

[13] SMP - Simetric Multiprocessing.

[14] GRLIB IP Library User’s Manual, Aeroflex Gaisler, 2012.

[15] PikeOS 3.3 Datasheet http://www.sysgo.com/nc/products/document-
center/data-sheets/?cid=1431&did=797&sechash=204a3eca

[16] PLBv4.6 Slave Burst (v1.01a) Product Specifications. DS562 June 22,
2010. Accessed on Spe. 2012:
http://www.xilinx.com/support/documentation/ip_documentation/plbv46
_slave_burst.pdf

[17] Wishbone B4 specifications. Accessed on Sep. 2012:
http://cdn.opencores.org/downloads/wbspec_b4.pdf

[18] GRLIB IP Core User’s Manual, Aeroflex Gaisler, 2012. Mentor
Graphic. Accessed on Sep. 13: http://www.mentor.com/

http://www.recomp-project.eu/
http://www.atmel.com/Images/doc6438.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/
http://hornad.fei.tuke.sk/predmety/ncs/FPGA_Advantage_Documentation/modelsim_se_user.pdf
http://hornad.fei.tuke.sk/predmety/ncs/FPGA_Advantage_Documentation/modelsim_se_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/mb_ref_guide.pdf
http://www.freertos.org/
http://www.sysgo.com/nc/products/document-center/data-sheets/?cid=1431&did=797&sechash=204a3eca
http://www.sysgo.com/nc/products/document-center/data-sheets/?cid=1431&did=797&sechash=204a3eca
http://www.xilinx.com/support/documentation/ip_documentation/plbv46_slave_burst.pdf
http://www.xilinx.com/support/documentation/ip_documentation/plbv46_slave_burst.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://www.mentor.com/

