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Abstract. A hash-based micropayment scheme is introduced that takes
advantage of good properties of bilinear maps, provides anonymity of the
customers and makes it possible to shop at multiple vendors. The pro-
posed scheme minimizes computational and financial costs. We proved
that it possesses secure payment authorization under the chosen-target
Computational Diffie-Hellman assumption in the random oracle model
and customer’s anonymity and coin unreusability against any passive
adversary with unlimited computational power.

1 Introduction

Micropayment schemes were invented as a consequence of Internet applications.
In particular, there are content and service providers that charge very small
amount (e.g. less than a dollar). The usual online purchasing method - payment
by credit cards - requires minimal transaction fee and other extra costs, hence it
is not applicable for charging small amounts. Special payment systems, so-called
micropayment schemes, are required. One can read an overview of micropayment
schemes in [17].

Designing micropayment schemes requires special care. First of all, electronic
payment systems deal with personal, confidential financial data, that should
be protected against malicious attackers. On the other hand financial and also
computational costs should be minimized.

In order to minimize financial costs the e-payment scheme should be off-
line, that means the broker is off-line during the shopping process (i.e. broker is
not required to verify whether users can cover their payments or not). We can
decrease customers’ expenses, if they do not have to possess signature certificates,
either.

Computational costs especially for customers during the shopping process
should be reduced. Usually, slow asymmetric cryptographic building blocks should
be avoided.



One of the most well known hash-based micropayment scheme is the Pay-
Word scheme [13], introduced in 1997. PayWord is not anonymous and designed
to be one-vendor, thus if we apply it for multiple vendors, it does not protect
against double spending.

Our scheme is multi-vendor and provides anonymity for the customers. Com-
paring to other protocols in the literature, in order to accomplish multi-vendor
property we do not use blacklists ([15],[16]), that means brokers maintain a list
of users who did not pay for the products or services. In 2003 Payeras-Capella,
Ferrer-Gomila and Huguet-Rotger designed an anonymous hash-based scheme
(see [12]), that is semi-offline, i.e. every time when a customer is willing to switch
to another vendor he should contact with the broker to get the authorized cer-
tificate. Therefore in [12] if a customer shops at k vendors, then k signature ver-
ifications are needed by the customer. We designed our solution to be off-line. In
2010 Hosseinkhani, Tarameshloo and Shajari in [8] introduced an anonymous,
multi-vendor hash-based scheme. They achieved anonymity via an Insert Ticket,
that is different for different customers and makes it possible to insert values in
the broker’s database. This database contains information about the customer’s
last spent coin, and vendors check it for every purchase. In this scheme double
spending protection is achieved via an all time available on-line database, that
increases costs.

Bilinear pairings, namely Weil pairing and Tate pairing of algebraic curves
were used in cryptography for MOV attack [11] using Weil pairing and FR attack
[6] using Tate pairing. These attacks reduce the discrete logarithm problem on
some elliptic or hyperelliptic curves to the discrete logarithm problem in a finite
field. Bilinear pairings have recently been used to design cryptographic proto-
cols, since as a consequence new constructions of primitives appeared. These
primitives either cannot be built using other techniques (e.g. three-party one-
round Diffie-Hellman key agreement in [10], Identity-based encryption in [2]),
or they can be created via traditional methods, but pairings provide improved
functionality (e.g. threshold signature, multisignature, blind signature [4]). Here,
we show how these new primitives can be applied in micropayments to accom-
plish necessary security requirements reducing both financial and computational
costs.

We also give a detailed computational security evaluation of our scheme. Most
of the proposed micropayment schemes do not prove security properties. There
are few solutions ([1],[9]) that give formal security evaluation based on applied pi
calculus [14] with the help of automatic protocol verifier called Proverif [3]. We
prove that our scheme provides secure payment authorization under the chosen-
target Computational Diffie-Hellman assumption in the random oracle model
and customer’s anonymity and coin unreusability against any passive adversary
with unlimited computational power.

The rest of the paper is organized as follows: Basic definitions, notation and
building blocks are given in section 2. In section 3 the proposed micropayment
scheme is detailed. Section 4 contains the security evaluation of the scheme



starting with the definitions of the requirements that followed by the proofs. At
the end, time and space complexity are given and the conclusion.

2 Preliminaries

2.1 Definitions, notation

In order to give a security evaluation we review some basic definitions, notation.
A negligible function is a function ε(λ) such that for all polynomials poly(λ),
ε(λ) < 1/poly(λ) holds for all sufficient large λ. We call an algorithm efficient,
if it is a probabilistic Turing machine running in expected polynomial time.
An adversary A is a PPT (probabilistic polynomial-time) interactive Turing
machine. For a finite set X, let x ← X denote the algorithm that samples an
element uniformly random from X.

Our micropayment scheme is based on bilinear pairings. Let us review the
definition of the admissible bilinear map [2].

Definition 1. Let G1 and G2 be two groups of order q for some large prime q.
A map e : G1 ×G1 → G2 is an admissible bilinear map if satisfies the following
properties:

1. Bilinear: We say that a map e : G1 × G1 → G2 is bilinear if e(aP, bQ) =
e(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in G1 ×G1 to the identity
in G2. Since G1, G2 are groups of prime order, if P is a generator of G1

then e(P, P ) is a generator of G2.
3. Computable: There is an efficient algorithm to compute e(P,Q) for any

P,Q ∈ G1.

We should mention that bilinearity can be restated to for all P,Q,R ∈ G1

e(P + Q,R) = e(P,R)e(Q,R) and e(P,Q + R) = e(P,Q)e(P,R). We can find
G1 and G2 where these properties hold. The Weil and Tate pairings prove the
existence of such constructions. Typically, G1 is an elliptic-curve group and G2

is a finite field. Let us review the relevant security problems.

Definition 2. Let P, aP, bP are given, for some a, b ∈ Z∗q . The problem of com-
puting abP is called Computational Diffie-Hellman problem (CDHP) in G1.

We assume that CDHP is intractable, which means there is no polynomial time
algorithm to solve CDHP with nonnegligible probability.

Definition 3. Let P, aP, bP, cP are given, for some a, b, c ∈ Z∗q . The problem
of deciding whether c ≡ ab mod q is called Decisional Diffie-Hellman problem
(DDHP) in G1.

DDH problem in G1 can be solved in polynomial time by verifying e(aP, bP ) =
e(P, cP ), hence DDH problem in G1 is easy.

Definition 4. When DDHP is easy but the CDHP is hard on the group G1, we
call G1 a Gap Diffie-Hellman (GDH) group.

Such groups can be found on supersingular elliptic curves or hyperelliptic curves
over a finite field.



2.2 Building blocks

In the proposed scheme we apply a blind signature scheme given in [4], that works
as follows. Let G1 be a GDH group, P ∈ G1 a generator of G1 and H : {0, 1}n →
G∗1 is a one way hash function. We assume a bilinear map e : G1 ×G1 7→ G2 is
given. The signer randomly chooses s ∈ Z∗q , and calculates sP . Users hold the
public key PK = (G1, P,H, sP ). In order to blindly sign a message M ∈ {0, 1}∗,
the user picks a random number r ∈ Z∗q , computes M = rH(M) and sends it to

the signer. The signer knows secret key SK = s, computes σ = sM and sends
it to the user. The users computes σ = r−1σ = sH(M) and outputs (M,σ).
Signature σ on M is a valid, since e(H(M), sP ) = e(sH(M), P ).

Signatures we receive in this way are called short signatures [5] and have
many useful features. They are approximately 170 bits long instead of 320 or
1024, having the same security level. In protocols dealing with many signatures
originating from the same user, bilinear short signatures can be verified in an
aggregate way, calculating only two bilinear maps. Hence we can significantly
increase efficiency. We use bilinear blind short signatures to authorize the coin
commitment values and also provide customer’s anonymity. Security of this blind
signature scheme is based on the chosen-target CDH problem in G1.

Definition 5. (chosen-target CDH assumption)
Let G =< P > be a GDH group of prime order q, and y ← Z∗q be a secret,
and Y = yP a public key generated according to security parameter λ. The
adversary is given (P,G, q, Y ) and has access to a target oracle OT , that returns
random points Zi from G, and also a helper oracle OH , that calculates yQ for
an input point Q. Let nT and nH denote the number of queries the adversary
can make to the target and helper oracle, respectively. Adversary A outputs:
((X1, j1), . . . , (Xl, jl)). The advantage of the adversary Advct−CDHG,A (λ) defined
by

Pr[∀1 ≤ i ≤ l ∃1 ≤ ji ≤ nT Xi = yZji ∧ Xi are distinct ∧ nH < nT ].

The chosen-target Computational Diffie-Hellman assumption states, that for all
PPT adversary Advct−CDHG,A (λ) is negligible.

Observe, that if the adversary A makes exactly one query to the OT , then the
chosen-target CDH assumption is equivalent to the standard CDH assumption.
We assume that chosen-target CDH problem is intractable for all groups, where
the standard CDH problem is hard.

3 The proposed scheme

Let us introduce our micropayment scheme. We consider the following partici-
pants. There is a Broker, that authorizes the coins and checks whether there is
sufficient fund on user’s account. There are k Vendors that sell their products
and there are several Customers, who intend to shop at more then one Vendor.



In order to run the protocol, system parameters, secret and public keys are
generated. First of all bilinear map e : G1 ×G1 7→ G2 is set determining groups
G1 =< P >,G2 with prime order q. A security parameter λ and two hash
functions are chosen, H : G1 7→ G1 is necessary for signature generation and
Hq : Z∗q 7→ Z∗q is used for generating the coins.

Secret and public keys are generated for the Broker and all the Vendors. The
length of the keys depends on the security parameter λ. The Broker’s key pair
is (SK,PK) = (b, bP ),where b ← Z∗q and SK denotes the secret and PK the
public key. Broker’s secret key is used for signature generation, the public key
for signature verification. Similarly, all Vendors receive (SK,PK) = (vi, viP )
key pairs, where vi ← Z∗q . In the proposed scheme Customers are not required
to possess a key pair.

The scheme consists of three stages. In the first stage Customers apply for
the Broker’s authorization on their coins. During the second stage Customers
proceed their shopping with the Vendors and at the end Vendors redeem the
coins at the Broker.

Customer-Broker relationship

A Customer first decides about the Vendors where he would like to shop. Let
us denote the number of chosen Vendors by k. For each Vendor he generates a
hash chain. The elements of the chain are the coins. Random values win ← Z∗q ,

where i = 1, . . . , k are generated, and the hash chain elements wij = Hq(w
i
j+1),

where j = n − 1, . . . , 0 are calculated. We call values wi0 commitment values.
These commitment values are made vendor specific by a multiplication: wi0v

iP ,
where viP is the Vendor’s public key.

A Customer requires the Broker’s authorization via a blind signature scheme,
he generates ri ← Z∗q , sends ρi = riH(wi0v

iP ) and his identity number ID to
the Broker on an open channel. He also calculates

Γ =

k∑
i=1

H(wi0v
iP ).

The Broker authenticates the Customer in a secure way. The entity authen-
tication and authorization might happen even off-line. The Broker debits the
proper amount on the Customer’s account and sends εi = briH(wi0v

iP ), where
i = 1, . . . , k back.

The Customer after receiving the messages, with the knowledge of ri, calcu-
lates σi = bH(wi0v

iP ) and

∆ =

k∑
i=1

bH(wi0v
iP ) = b

k∑
i=1

H(wi0v
iP ).

The Customer verifies whether

e(Γ, bP ) = e(∆,P )



Observe that the Customer in order to verify all the signatures calculates only
two bilinear maps.

Customer-Vendor relationship
In order to start the shopping process with Vendor i, the Customer sends

the certificate σi = bH(wi0v
iP ) and commitment value wi0 on an open chan-

nel. The vendor calculates H(wi0v
iP ) from wi0, and verifies whether e(σi, P ) =

e(H(wi0v
iP ), bP ) and stores wi0. The customer starts spending the coins with

wi1, wi2, etc. After receiving wij the vendor verifies whether H(wij) equals to the

value stored. If the verification holds, then the vendor stores wij and sends the
product.

Observe, that for the verification processes the broker does not need to be
available.

Vendor-Broker relationship
After receiving a few coins, that can happen at the end of the day or after

few days, the vendor starts to redeem them. He sends (σi, wi0, w
i
l , l) to the bro-

ker. The broker verifies the certificate by calculating H(wi0v
iP ) and bH(wi0v

iP )
and correctness of the last coin by H l(wil) = wi0. If all verifications hold, then
transfers the proper amount to the vendor.

4 Security evaluation

4.1 Security requirements

We consider three security requirements for micropayment schemes: anonymity,
secure payment authorization and unreusability. We define anonymity and secure
payment authorization properties via experiments involving an adversary A and
the challenger.

Payment authorization guarantees a proof for the vendor, that there is suffi-
cient fund on the user’s account. This proof or certificate is created by the broker.
Secure payment authorization is achieved, if the certificate is undeniable.

Definition 6. (Secure Payment Authorization) The experiment is parameter-
ized by security parameter λ and l.

1. The challenger generates the public system parameters, which include groups
G1 =< P >, G2 and the bilinear map e, runs key generation algorithm for
the input 1λ. Public keys are given to the adversarial user A.

2. Adversary A makes polynomial number l certificate queries from the Broker.
The Broker provides valid certificates to A.

3. Adversary A outputs a list of message-certificate pairs: (m1, σ1), . . . , (mt, σt).

We define the advantage of A by

AdvSPAMS,A(λ) = Pr[∀1 ≤ i ≤ t VerPKB
(mi, σi) = 1 ∧ l < t],

where VerPKB
(mi, σi) = 1 denotes, that certificate σi is valid for message mi.

A micropayment scheme provides secure payment authorization if for all PPT



adversary AdvSPAMS,A(λ) is negligible, where probability is taken over the coin-flips
of A, as well as the random coins used in the experiment for key generation.

A chooses a random value w that is different from the previous ones, and
must then produce a valid signature on H(wviP ). If he can produce any such
document/signature pair which is accepted by the verication algorithm, then the
attack is successful.

There are situations when customers do not want to reveal their real identity
during their shopping process. We also consider providing anonymity for the
users.

Definition 7. (Anonymity) The experiment is parameterized by security param-
eter λ and a bit b.

1. The challenger generates the public system parameters, which include groups
G1 =< P >, G2 and the bilinear map e. Broker’s and Vendors’ secret and
public keys are generated for input 1λ and they are given to the adversarial
user A.

2. Adversary A outputs a pair of identity numbers ID0, ID1, that represent two
different customers.

3. The protocol is run with the customer possessing IDb and adversary A, where
b is the randomly chosen input bit.

4. Adversary A outputs a bit b′ according to the knowledge A gained colluding
with the Broker and the Vendors.

We define the advantage of A by

AdvAnonMS,A(λ) = |2Pr[b = b′]− 1|.

A micropayment scheme provides customer anonymity if for all PPT adver-
sary AdvAnonMS,A(λ) is negligible, where probability is taken over the coin-flips of A,
as well as the random coins used in the experiment for key and identity number
generation.

The proposed micropayment scheme is off-line, hence the Broker is not able
to prevent double spending. Being a multi-vendor scheme we show, that coins
already spent are not reusable, neither at the same vendor, nor at different ones.

Definition 8. (Coin unreusability) A micropayment scheme provides coin un-
reusability, if an adversary resends a coin that was already spent before, then the
vendor detects it with overwhelming probability.

4.2 Results

In this section we show that our proposed scheme is secure, i.e. it provides
payment authorization, user’s anonymity and coin unreusability.



Theorem 1. (Payment authorization) The proposed scheme provides secure pay-
ment authorization under the chosen-target Computational Diffie-Hellman as-
sumption in the random oracle model.

Proof. We prove the security of our scheme by contradiction in the random
oracle model. We suppose our scheme is not secure, there exists an adversary A
that is able to break secure payment authorization of the scheme. If A exists,
then we are able to build an efficient simulator algorithm S, that with the help
of A succeeds in breaking the chosen-target CDH assumption, that leads to a
contradiction.

Let G1 =< P > and G2 be groups of prime order q, where G1 is a GDH
group, and given e : G1×G1G1 → G2. After key generation simulator S receives
public key Y = yP , where y ← Z∗q is the secret key. With the knowledge of
(P, q,G1, G2, e, Y ) algorithm S simulates the challenger for A in the following:

1. S provides A public parameters (P, q,G1, G2, e) and also gives Y + rP as a
public key, where r ← Z∗q .

2. In order to respond valid certificates, S has access to a target oracle OT
and a helper oracle OH . OT works as follows. S maintains a list of tuples
(mi, ai, bi, ci), that is empty at the beginning. For a hash request of a message
mi ∈ G1:
– If mi is on the list, then S outputs ai as a hash value.
– Otherwise, S generates a random bit bi with Pr[b = 0] = 1

nT
probability,

chooses ci ← Z∗q and calculates ai = (1− bi)mi + ciP . Finally S inserts
(mi, ai, bi, ci) to the list.

Observe, that ai is uniform in G1 and independent of A’s view, hence S
perfectly simulates the real has query operation.

3. Helper oracle OH is constructed in a way, that for an input mi first calls the
target oracle OT to calculate ai = H(mi), then:
– If bi = 0, then S terminates.
– Otherwise, signature σi = ciyP + rai = (y + r)ciP is returned back.

Observe, that σi is a valid signature for mi under the public key Y +rP .
4. Adversary A asks the target oracle OT to calculate hash of m, and with the

help ofH(m) provides a list of message-certificate pairs: (m1, σ1), . . . , (mt, σt),
that contains the (m,σ) pair.
– If σ is not a valid signature for m, then S terminates.
– Otherwise, S looks for m from the list of OT . Let denote this tuple

by (m, a, b, c). If b = 1, then S terminates, if b = 0, then S calculates
σ− rm− ra. We remark, that a = m+ cP , and assuming that σ is valid:

σ − rm− rcP = (y + r)(m+ cP )− rm− rcP = y(m+ cP ).

S outputs (mi, ciyP ) for all signatures that are generated with the help
of OH and (m,σ − rm− rcP ).

Observe, that S outputs a correct signature on m.
We prove that S generates the correct output with non-negligible probability.
We consider the situation, when S does not terminate. There are events that
should happen:



– ε1: For certificate queries S does not terminate, i.e. bi = 1.
– ε2: For message m in the (m, a, b, c) tuple b = 0.
– ε3: A provides valid (m,σ) pair.

Let us denote the probability that S succeeds by Pr[ε]. It is easy to see that
Pr[ε] = Pr[ε1 ∧ ε2 ∧ ε3] = Pr[ε1] · Pr[ε2|ε1] · Pr[ε3|ε2].
Assuming there are nT − 1 target oracle queries Pr[ε1] = (1− 1

nT
)(nT−1) >

1
e , where e denotes the base of the natural logarithm. Similarly, Pr[ε2] =
1
nT

. The probability of event ε3 is the advantage AdvSPAMS,A(λ). Therefore

Pr[ε] > 1
enT
· AdvSPAMS,A(λ). Since AdvSPAMS,A is non-negligible, Pr[ε] is also

non-negligible.
We show that S is efficient. S makes nT hash and nH signature queries,
for each signature query a hash query also happen. Including calculating
the output, efficiency of S is (nT + 3nH + 2)MULT and (nH + 2)ADD,
where MULT and ADD denote operations multiplication and addition in
the GDH group.

Theorem 2. (Anonymity, coin unreusability) The proposed micropayment scheme
provides customer’s anonymity and coin unreusability against any passive adver-
sary with unlimited computational power.

Proof. First we deal with the customer’s anonymity. It is sufficient to prove
that, for any view (ρ, ID, ε) of the adversary A and any message-certificate pair
(w0, σ), there exists a blind factor that maps the view and the message-certificate
pair.

Let (ρi, IDi, εi) for i = 0, 1 two views ofA and (wj0, σ
j) two message-signature

pairs from customer j = 0, 1. Since A colludes with the Broker and all the
Vendors, we assume that A observes two views, that correspond to the same
Vendor with keys (v, vP ). We state that, with the knowledge of vP ,

s = ρi[H(wj0vP )−1]

is a correct blind factor for any (ρi, IDi, εi), (wj0, σ
j) pairs. Since

sσj = ρi[H(wj0vP )−1]bH(wj0vP ) = bρi = εi.

It is easy to see that, even if A knows the Broker’s and Vendors’ secret and
public keys (b, bP, vi, viP ) for i = 1, . . . , k, adversary A does not gain more
knowledge about the chosen blind factor.

Since (ρ0, ID0, ε0) and (ρ1, ID1, ε1) have the same relation to (wj0, σ
j), any

adversary with unlimited computational power can guess j correctly with prob-
ability exactly 1/2.

Let us prove coin unreusability of the scheme. We assume, that a passive
adversary A possesses a valid certificate σi = bH(wi0v

iP ) and the commitment
value wi0 that are sent to vendor i with public key viP . Without the loss of
generality, we consider double spending of wi1. We assume that coin wi1 is already
sent once, hence vendor i stores wi1 as the last coin in the database. Resending
these values to a vendor leads to two cases:



1. Tuple (σi, wi0, w
i
1) is sent to vendor i. The vendor notice, that these values

are already received before and checks whether H(wi1) is the stored value.
2. Tuple (σi, wi0, w

i
1) is sent to vendor j, where i 6= j. The vendor looks for the

certificate in his database, since he does not find it verifies the validity of σi

by testing e(H(wi0v
jP ), bP ) = e(σi, P ).

In both cases the vendor detects double spending.

5 Comments

Due to their good properties, bilinear maps are often used in cryptographic
protocols. Some pairing-based constructions provide breakthroughs, that other
techniques cannot. We take advantage of aggregate signature verification in effi-
ciency. We achieved that customers verify all the certificates by calculating only
two bilinear maps.

Customers’ time complexity during the shopping process is very low, only
hash calculations are made. In the registration process, that happens only once,
customers compute 2k multiplications, 2k additions and k multiplicative inverses
in G1 and only two bilinear maps. We refer to [7], that one (supersingular)
mapping e : G1 × G1 7→ G2 is approximately equal to eight multiplications in
G1 for a security level of 256 bits.

Vendors’ time complexity is only one multiplication and a hash calculation
in G1 and two bilinear map computations per a customer. Brokers proceed k
multiplications in G1 per a customer during registration and two multiplications
in G1 per a certificate besides hash calculations.

Considering implementation of our scheme, the Broker is off-line and cus-
tomers do not need to have certificates, hence we minimized financial expenses.

Our scheme minimizes space complexity on the user side. Users store k hash
root values for calculating hash chain elements with the indexes that show which
coins were spent already and also store k short signatures.

6 Conclusion

Bilinear maps are used for broad wide of cryptographic applications. We intro-
duced a hash-based micropayment scheme that is anonymous and multi-vendor.
By using bilinear maps we increased efficiency and decreased space complexity.
We also proved that our scheme provides secure payment authorization under
the chosen-target Computational Diffie-Hellman assumption in the random ora-
cle model and customer’s anonymity and coin unreusability against any passive
adversary with unlimited computational power.
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