
Building Vision for BusinessMVTec Software GmbHwww.mvtec.com

MVTec Software GmbH
Machine Vision Technologies
München, Germany

©
 1

99
6

–
20

09
 M

VT
ec

 S
of

tw
ar

e
G

m
bH

. A
ll

rig
ht

s
re

se
rv

ed
. A

ll
sp

ec
ifi

ca
tio

ns
 a

re
 s

ub
je

ct
 to

 c
ha

ng
e

w
ith

ou
t n

ot
ic

e.

HDevelop User's Guide
This is your comprehensive guide to HDevelop. It describes
the graphical user interface, the language used in HDevelop
programs, and explains how to export programs to other
programming languages like C++, C#, or Visual Basic (.NET).

H
A

LCO
N

 9.0
H

Develop U
ser's G

uide

HDevelop User's Guide

HDevelop, the interactive development environment of HALCON, Version 9.0.4

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 July 1997
Edition 2 November 1997
Edition 3 March 1998 (HALCON 5.1)
Edition 4 April 1999 (HALCON 5.2)
Edition 5 October 2000 (HALCON 6.0)
Edition 6 June 2002 (HALCON 6.1)
Edition 6a December 2002 (HALCON 6.1.1)
Edition 7 December 2003 (HALCON 7.0)
Edition 7a July 2004 (HALCON 7.0.1)
Edition 8 July 2005 (HALCON 7.1)
Edition 8a April 2006 (HALCON 7.1.1)
Edition 8b December 2006 (HALCON 7.1.2)
Edition 9 June 2007 (HALCON 8.0)
Edition 9a October 2007 (HALCON 8.0.1)
Edition 9b April 2008 (HALCON 8.0.2)
Edition 10 December 2008 (HALCON 9.0)
Edition 10a June 2009 (HALCON 9.0.1)
Edition 10b March 2010 (HALCON 9.0.2)

Copyright © 1997-2011 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Protected by the following patents: US 7,062,093, US 7,239,929, US 7,751,625, US 7,953,290, US
7,953,291. Further patents pending.

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, Windows Server 2003, Windows
Vista, Windows Server 2008, Windows 7, Microsoft .NET, Visual C++, Visual Basic, and ActiveX are
either trademarks or registered trademarks of Microsoft Corporation.
Silicon Graphics, SGI, IRIX, and OpenGL are either trademarks or registered trademarks of Silicon
Graphics, Inc.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com/

About This Manual

This manual is a guide to HDevelop, the interactive development environment for the HALCON machine
vision library. It provides all the necessary information to understand HDevelop’s philosophy and to use
HDevelop.

This manual is intended for users who want to use HDevelop as a convenient gateway to the HALCON
library or who want to deploy and test machine vision applications with it. However, it is not an intro-
duction to the HALCON machine vision library. A working knowledge of the concepts of HALCON is
assumed. Please refer to the Quick Guide to become acquainted with HALCON.

This manual does not assume that you are an expert in image processing. Regardless of your skills, it is
quite easy to work with HDevelop. Nevertheless, it is helpful to have an idea about the functionality of
graphical user interfaces (GUI)1, and about some basic image processing aspects.

The manual is divided into the following chapters:

• Introducing HDevelop
This chapter explains the basic concepts of HDevelop.

• Getting Started
This chapter explains how to start HDevelop. It provides a quick overview of the graphical user
interface, and shows you how to run the supplied example programs.

• Acquiring Images with HDevelop
This chapter explains the fundamental part of machine vision applications – how to acquire images.

• Programming HDevelop
This chapter explains how to develop applications in HDevelop.

• Graphical User Interface
This chapter explains the graphical user interface of HDevelop and how to interact with it.

• HDevelop Assistants
This chapter describes how to use the machine vision assistants of HDevelop.

• HDevelop Language
This chapter explains the syntax and semantics of the language used in HDevelop expressions.

• Code Export
This chapter explains the export of a HDevelop program to C, C++, Visual Basic, Visual Basic
.NET, or C#.

1consult your operating system’s documentation for general information.

• Tips & Tricks
This chapter describes keycodes, warning and error windows, and provides miscellaneous infor-
mation.

Contents

1 Introducing HDevelop 9
1.1 Facts about HDevelop . 10
1.2 HDevelop Procedures . 10
1.3 HDevelop XL . 11
1.4 Terminology & Usage . 11

2 Getting Started 15
2.1 Running HDevelop . 15
2.2 Running Example Programs . 18

3 Acquiring Images with HDevelop 21
3.1 Reading Images From Files . 21
3.2 Viewing Images . 22
3.3 Image Acquisition Assistant . 23

3.3.1 Acquiring Images From Files or Directories . 23
3.3.2 Acquiring Images Through Image Acquisition Interfaces 25
3.3.3 Modifying the Generated Code . 29

4 Programming HDevelop 31
4.1 Start a New Program . 31
4.2 Enter an Operator . 32
4.3 Specify Parameters . 32
4.4 Getting Help . 33
4.5 Add Additional Program Lines . 34
4.6 Understanding the Image Display . 36
4.7 Inspecting Variables . 37
4.8 Improving the Threshold Using the Gray Histogram . 37
4.9 Edit Lines . 38
4.10 Re-Execute the Program . 38
4.11 Save the Program . 39
4.12 Selecting Regions Based on Features . 39
4.13 Looping Over the Results . 41
4.14 Summary . 42

5 Graphical User Interface 43
5.1 Main Window . 43

5.2 Menu Bar . 46
5.2.1 Menu File . 46
5.2.2 Menu Edit . 56
5.2.3 Menu Execute . 74
5.2.4 Menu Visualization . 79
5.2.5 Menu Procedures . 90
5.2.6 Menu Operators . 92
5.2.7 Menu Suggestions . 98
5.2.8 Menu Assistants . 99
5.2.9 Menu Window . 99
5.2.10 Menu Help . 102

5.3 Tool Bar . 104
5.4 Program Window . 105

5.4.1 Editing Programs . 105
5.4.2 Program Counter, Insert Cursor, and Break Points 111
5.4.3 Creating and Editing Procedures . 112

5.5 Operator Window . 125
5.5.1 Operator Name Field . 125
5.5.2 Parameter Display . 125
5.5.3 Control Buttons . 128

5.6 Variable Window . 129
5.6.1 Iconic Variables . 131
5.6.2 Control Variables . 133

5.7 Graphics Window . 136
5.8 Help Window . 140
5.9 Zoom Window . 143
5.10 Gray Histogram Window . 145

5.10.1 Interactive Visual Operations . 148
5.11 Feature Histogram Window . 151
5.12 Feature Inspection Window . 153
5.13 Dialogs . 155

5.13.1 File Selection Dialog . 155
5.13.2 Unsaved Changes . 156

6 HDevelop Assistants 157
6.1 Image Acquisition Assistant . 158

6.1.1 Tab Source . 159
6.1.2 Tab Connection . 159
6.1.3 Tab Parameters . 161
6.1.4 Tab Code Generation . 162
6.1.5 Menu Bar . 163

6.2 Calibration Assistant . 164
6.2.1 Introducing the Calibration Assistant of HDevelop 164
6.2.2 How to Calibrate with the Calibration Assistant 166
6.2.3 Results of the Calibration . 177
6.2.4 Generating Code . 178
6.2.5 Calibration Assistant Reference . 181

6.3 Matching Assistant . 185
6.3.1 Introducing the Matching Assistant of HDevelop 185
6.3.2 How to Use the Matching Assistant of HDevelop 185
6.3.3 Matching Assistant Reference . 188

7 HDevelop Language 211
7.1 Basic Types of Parameters . 211
7.2 Control Types and Constants . 212
7.3 Variables . 214
7.4 Operations on Iconic Objects . 215
7.5 Expressions for Input Control Parameters . 215

7.5.1 General Features of Tuple Operations . 215
7.5.2 Assignment . 217
7.5.3 Basic Tuple Operations . 219
7.5.4 Tuple Creation . 220
7.5.5 Basic Arithmetic Operations . 222
7.5.6 Bit Operations . 223
7.5.7 String Operations . 223
7.5.8 Comparison Operations . 228
7.5.9 Boolean Operations . 229
7.5.10 Trigonometric Functions . 230
7.5.11 Exponential Functions . 230
7.5.12 Numerical Functions . 231
7.5.13 Miscellaneous Functions . 232
7.5.14 Operation Precedence . 233

7.6 Reserved Words . 233
7.7 Control Flow Operators . 233
7.8 Error Handling . 239

7.8.1 Tracking the Return Value of Operator Calls . 240
7.8.2 Exception Handling . 240

7.9 Summary of HDevelop operations . 242
7.10 HDevelop Error Codes . 245

8 Code Export 249
8.1 Code Generation for C++ . 249

8.1.1 Basic Steps . 250
8.1.2 Optimization . 251
8.1.3 Used Classes . 251
8.1.4 Limitations and Troubleshooting . 251

8.2 Code Generation for C# (HALCON/.NET) . 253
8.2.1 Basic Steps . 253
8.2.2 Program Structure . 254
8.2.3 Limitations and Troubleshooting . 255

8.3 Code Generation for C# (HALCON/COM) . 255
8.3.1 Basic Steps . 256
8.3.2 Program Structure . 256
8.3.3 Limitations and Troubleshooting . 257

8.4 Code Generation for Visual Basic .NET (HALCON/.NET) 258
8.4.1 Basic Steps . 258
8.4.2 Program Structure . 259
8.4.3 Limitations and Troubleshooting . 259

8.5 Code Generation for Visual Basic .NET (HALCON/COM) 260
8.5.1 Basic Steps . 260
8.5.2 Program Structure . 261
8.5.3 Limitations and Troubleshooting . 262

8.6 Code Generation for Visual Basic 6 (HALCON/COM) 263
8.6.1 Basic Steps . 263
8.6.2 Program Structure . 263
8.6.3 Limitations and Troubleshooting . 265

8.7 Code Generation for C . 265
8.7.1 Basic Steps . 265

8.8 General Aspects of Code Generation . 267
8.8.1 User-Defined Code Blocks . 267
8.8.2 Assignment . 267
8.8.3 Variable Names . 268
8.8.4 ’for’ Loops . 268
8.8.5 Protected External Procedures . 269
8.8.6 System Parameters . 269
8.8.7 Graphics Windows . 269

9 Tips & Tricks 273
9.1 Keycodes . 273
9.2 Online Help . 273
9.3 Warning and Error Windows . 273
9.4 Emergency Backup . 274

A Glossary 277

B Command Line Switches 279

Index 281

Introducing HDevelop 9

Chapter 1

Introducing HDevelop

HDevelop is a tool box for building machine vision applications. It facilitates rapid prototyping by
offering a highly interactive programming environment for developing and testing machine vision appli-
cations. Based on the HALCON library, it is a sophisticated machine vision package suitable for product
development, research, and education.

There are four basic ways to develop image analysis applications using HDevelop:

• Rapid prototyping in the interactive environment HDevelop.
You can use HDevelop to find the optimal operators or parameters to solve your image analysis
task, and then build the application using various programming languages, e.g., C, C++, C#, Visual
Basic .NET, or Delphi.

• Development of an application that runs within HDevelop.
Using HDevelop, you can also develop a complete image analysis application and run it within the
HDevelop environment. The example programs supplied with HDevelop can be used as building
blocks for your own applications.

• Execution of HDevelop programs or procedures using HDevEngine.
You can directly execute HDevelop programs or procedures from an application written in C++
or any language that can integrate .NET or COM objects using HDevEngine. This is described in
detail in the Programmer’s Guide, part VI on page 169.

• Export of an application as C, C++, Visual Basic, Visual Basic .NET, or C# source code.
Finally, you can export an application developed in HDevelop as C, C++ , Visual Basic, Visual
Basic .NET, or C# source code. This program can then be compiled and linked with the HALCON
library so that it runs as a stand-alone (console) application. Of course, you can also extend the
generated code or integrate it into existing software.

Let’s start with some facts describing the main characteristics of HDevelop.

In
tr

od
uc

tio
n

10 Introducing HDevelop

1.1 Facts about HDevelop

HDevelop actively supports your application development in many ways:

2 With the graphical user interface of HDevelop, operators and iconic objects can be directly se-
lected, analyzed, and changed within a single environment.

2 HDevelop suggests operators for specific tasks. In addition, a thematically structured operator
list helps you to find an appropriate operator quickly.

2 An integrated online help contains information about each HALCON operator, such as a detailed
description of the functionality, typical successor and predecessor operators, complexity of the
operator, error handling, and examples of application. In addition, the online help provides a
search facility that allows to search the complete documentation of HALCON.

2 HDevelop comprises a program interpreter with edit and debug functions. It supports standard
programming features, such as procedures, loops, or conditional statements. Parameters can be
changed even while the program is running.

2 HDevelop immediately displays the results of operations. You can try different operators and/or
parameters, and immediately see the effect on the screen. Moreover, you can preview the results
of an operator without changing the program.

2 Several graphical tools allow to examine iconic and control data online. For example, you can
extract shape and gray value features by simply clicking onto the objects in the graphics window,
or inspect the histogram of an image interactively and apply real-time segmentation to select
parameters.

2 Built-in graphical assistants provide interactive interfaces to more complex machine vision tasks.
The assistants can also generate HDevelop code in the current program.

2 Variables with an automatic garbage collection are used to manage iconic objects or control
values.

1.2 HDevelop Procedures

HDevelop offers a mechanism for the creation and execution of procedures. Procedures are meant to
increase the readability and modularity of HDevelop programs by encapsulating functionality of multiple
operator calls in one or more procedure calls. It also makes it easier to reuse program code in other
HDevelop programs by storing repeatedly used functionality in external procedures.

An HDevelop procedure consists of an interface and a program body. Procedure interfaces resemble
the interfaces of HALCON operators, i.e., they contain parameter lists for iconic and control input and
output parameters. The procedure body contains a list of operator and procedure calls. Furthermore,
HDevelop provides extensive support to supplement procedures with structured documentation. The
documentation is automatically integrated into the online help system.

Every HDevelop program is made up of one or more procedures. It always contains the main procedure,
which has a special status inside the program, because it is always the top-most procedure in the calling
hierarchy and cannot be deleted from the program.

1.3 HDevelop XL 11

HDevelop offers all necessary mechanisms for creating, loading, deleting, copying, modifying, saving,
and exporting procedures. Once a procedure is created, it can basically be used like an operator: Calls to
the procedure can be added to any program body and be executed with the appropriate calling parameters.
Generally, the concept of using procedures inside HDevelop is an extension to the concept of calling
HALCON operators since procedure and operator interfaces have the same parameter categories, and the
same rules apply for passing calling parameters.

Local and external procedures are differentiated in HDevelop. Local procedures are stored inside the
HDevelop program while external procedures are stored separately and therefore can be shared between
different HDevelop programs and, what is most advantageous, the modification of an external procedure
immediately affects all HDevelop programs using it. In order to manage a large collection of procedures,
the procedures can be ordered in a hierarchical way, i.e., procedures can be ordered by chapters and
sections just like operators. Furthermore, external procedures can be protected by passwords, so that
they can be applied but not viewed or modified by unauthorized users.

1.3 HDevelop XL

In addition to the standard HDevelop, there is also a variant called HDevelop XL, which is based on
HALCON XL. The user interface is identical, but underneath HALCON XL is optimized for large im-
ages. In the remainder of this document, when we refer to HDevelop you can substitute HDevelop XL if
that is the variant you will be using.

1.4 Terminology & Usage

HDevelop adheres to well-established conventions and usage patterns regarding its graphical user inter-
face. Most of the terminology explained here will have become second nature to most users and may
most likely be skimmed over.

Mouse Usage

click A single click with the left mouse button, e.g., to mark and select items or to activate buttons. To
select multiple items, hold down the <Ctrl> key and click the desired items. To select many items
from a list, click the first item, hold down the <Shift> key and click the last item. All intermediate
items are then also selected.

double-click Two quick successive clicks with the left mouse button, e.g., to open dialogs of selected
items. Double-clicks are mostly shortcuts for single clicks followed by an additional action.

right-click A single click with the right mouse button to access additional functionality of the user
interface, e.g., context-sensitive menus. Clicking the right mouse button also ends interactive
drawing functions in HDevelop.

drag Keeping the left mouse button pressed while moving the mouse and finally releasing the mouse
button. Typically used to move items, resize windows, select multiple items at once, e.g., program
lines, or to draw shapes.

In
tr

od
uc

tio
n

12 Introducing HDevelop

drag-and-drop HDevelop supports drag-and-drop of image files and HDevelop programs from other
applications. You can, e.g., drag an HDevelop program icon from a file browser and drop it on the
HDevelop window to load it.

middle mouse button With three-button mice, the middle mouse button is used under UNIX to paste
text from the clipboard into text fields.

mouse wheel Most recent three-button mice combine the middle mouse button with a scrolling wheel.
HDevelop supports the mouse wheel in many places. The mouse wheel operates the GUI ele-
ment under the mouse cursor. Using the mouse wheel you can, for instance, quickly scroll large
program listings, select values from lists or perform continuous zooming of displayed images. In
general, windows that provide a scroll bar can be quickly scrolled with the mouse wheel. Further-
more, the values of spinner boxes (text fields that expect numerical data) can be decremented and
incremented with the mouse wheel.

Keyboard Usage

HDevelop is very keyboard-friendly. Most functions of the graphical user interface that can be operated
using the mouse can be accessed from the keyboard as well. Many of the most important functions
are available through keyboard shortcuts, which are worthwhile memorizing. When programming with
HDevelop, keeping both hands on the keyboard can increase the productivity. Therefore, many naviga-
tional tasks like selecting parameter fields or selecting values from lists can be easily done using just the
keyboard. The most common keyboard functions are listed in the appendix.

Windows and Window Managers

In the default window mode of HDevelop, windows can be freely moved inside the main window by
dragging the title bar. They can be resized by dragging the window border. Windows can be focused by
clicking inside the window area. This also raises the corresponding window to the front. Windows that
are completely covered by other windows can be brought to the front by selecting them from the Window
menu.

The window title provides some buttons with additional functionality. Clicking the icon in the left edge
of the window title opens a menu from which all window management functions (move, resize, mini-
mize...) can be selected. The buttons on the right edge of the window allow to 1) minimize/restore, 2)
maximize/restore, and 3) close the corresponding window (from left to right).

maximize

minimize closemenu

Figure 1.1: Window title.

There is an alternative window mode called SDI (see also section 5.1 on page 45) which delegates the
functionality of the window title to the window manager.

1.4 Terminology & Usage 13

Abbreviations

BP break point

IC insert cursor

GUI graphical user interface

MDI multi-document interface

PC program counter

SDI single-document interface

XLD extended line description (see also chapter A on page 277)

In
tr

od
uc

tio
n

14 Introducing HDevelop

Getting Started 15

Chapter 2

Getting Started

In this chapter the following topics are covered:

• running HDevelop

• specifying command line switches

• short introduction to the windows of HDevelop

• running example programs in HDevelop

2.1 Running HDevelop

In the following it is assumed that HALCON has already been installed as described in the Installation
Guide.

Windows

Under Windows, HDevelop is usually started from the Windows “Start” menu:

Start . Programs . MVTec HALCON . HDevelop

You can also start HDevelop from the Windows Command Prompt or from the Start . Run... menu,
making it easy to pass optional command line switches:

hdevelop

UNIX

Under UNIX, HDevelop is started from the shell:

hdevelop &

G
et

tin
g

S
ta

rt
ed

16 Getting Started

1 2

4 3

tool bar

status bar

menu bar

graphics window operator window

program windowvariable window

window title

Figure 2.1: User interface.

Command Line Switches

Under both Windows and UNIX, HDevelop supports several command line switches to modify its startup
behavior. You can add the name of an HDevelop program on the command line to load it directly. This is
identical to an invocation of HDevelop without any parameters and a subsequent loading of the program.
Or, you can convert HDevelop programs to other programming languages without opening the graphical
user interface at all. A full list of the supported command line switches is available with the following
command:

hdevelop --help

See appendix B on page 279 for a listing of the available switches.

2.1 Running HDevelop 17

User Interface

When HDevelop is started for the first time it looks similar to figure 2.1. The main window offers a menu
and a tool bar for quick access to frequently used functions. The status bar at the bottom of the window
displays messages and image properties. In addition, the following windows are available by default:

1. Graphics window

This window displays iconic data: images, regions, and XLDs. It provides its own tool bar to
quickly zoom and pan the displayed image, and a context menu to adapt the visualization settings.
The context menu is available by right-clicking inside the window1 It contains the most frequently
used entries from the menu Visualization. You can open multiple graphics windows. The one
marked with a lit bulb in the upper right corner is the active graphics window, i.e., it is the target
for subsequent display operations. The graphics window works like an image stack: Images can
be overlayed with regions or XLDs, or with images that have a reduced domain.

2. Operator window

You can select HALCON operators (and HDevelop procedures) in this window. The parameters
of the selected operator can be specified, and the operator can be executed, entered in the current
program, or both. You can also get online help for the selected operator from this window.

3. Program window

This window displays the current program. It provides syntax highlighting with user-definable
colors. The left column displays the program line numbers. The small black triangle is the insert
cursor, which is where new program lines will be added. In the following, it is referred to as
IC. The green arrow is the program counter which marks the next line to be executed. In the
following, the program counter is referred to as PC. You can also add or remove break points in
the current program in this column. These will halt the program execution at user-defined places
so that intermediate results may be examined.

The program source can be edited directly in this window provided that the full text editor is en-
abled (see section 5.4 on page 105). When adding new lines or modifying existing lines, advanced
autocompletion features speed up typing and help keeping the program consistent. Program lines
can also be modified by double-clicking them and editing them in the operator window. This is the
classical way to edit HDevelop programs. It is a more form-based approach to program editing.
Furthermore, different parameters can be easily tested in the operator window without changing
the program. Both the full text editor and the operator window can be used interchangeably for
program editing.

4. Variable window

Program variables can be watched in this window. It displays all variables of the current procedure
and their current values. Iconic variables are displayed as thumbnails, whereas control variables
are displayed as text. The layout of this window can be switched between horizontal and vertical
splitting by double-clicking the separator. You can double-click iconic variables to display them in
the active graphics window. Double-clicking control variables opens an inspection window with a
nicely formatted list of the current values and statistical data.

There are many other windows which will be covered later in this manual.
1Unless the context menu has been disabled in the preferences to prevent any interference with interactive drawing functions.

See section 5.2.2.11 on page 62.

E
xa

m
pl

es

18 Getting Started

2.2 Running Example Programs

HALCON comes with a large number of HDevelop example programs from a variety of application
areas. These range from simple programs that demonstrate a single aspect of HALCON or HDevelop to
complete machine vision solutions. As an introduction to HDevelop we recommend to try some of these
programs to quickly get accustomed to the way HDevelop works.

One of the examples demonstrates many different capabilities of HALCON in one program. It is the only
HDevelop example program that can be started from the “Start” menu under Windows. The UNIX path
to this program is $HALCONROOT/examples/hdevelop/explore_halcon.dev. Running this program
is highly recommended to get a good overview of the many application areas of HALCON.

Figure 2.2: Explore the power of HALCON.

The example programs have been categorized by application area, industry, method, and operator usage.
A special category “New in version” groups examples by their appearance in specific HALCON releases.
Browsing these categories, you can quickly find example programs that cover image processing problems
that you may wish to solve with HALCON. These programs may serve as a foundation for your own
development projects.

2.2 Running Example Programs 19

Figure 2.3: Browse Examples dialog.

Browse and Load Example Programs

• Click File . Browse Examples....

This will open the example program browser (see figure 2.3). Similar to a file browser, it shows
a tree of categories on the left and a list of example programs from the selected categories on the
right. Categories that contain hidden subtopics are marked with a + . Double-click on a category
label to open the subtopics (or click +). Double-click again to close the subtopics (or click −).

Browse the categories: Click on a category to select it and display its example programs. You can
select multiple categories at once by holding the <Ctrl> key while clicking on the categories.

Filter the example programs: To reduce the amount of listed example programs, enter a word or
substring into the Filter text field. Subsequently, only example programs matching this substring
in the file name or short description will be displayed.

We pretend that you are looking for a measuring example from the semiconductor industry:

• Click on + next to Industry.

• Click on the subtopic Semiconductors. The examples belonging to the semiconductor industry
are listed on the right.

• Enter the word measure into the Filter text field.

Note how the list is updated as you type. Now, you have a short list of example programs to select
from. You may need to resize the example browser to fully read the short descriptions of the listed
programs.

• Select measure_ic_leads.dev by clicking on it.

• Click Open. The selected example program is then loaded. Alternatively, you can load an example
program by double-clicking on it. The example browser is closed unless Keep dialog open is
checked.

The program lines of the loaded example program are now displayed in the program window. The PC
is set to the first executable line of the program (leading comments are ignored). The variable window
is also updated: It lists the variables that are used in the main procedure, which is initially the current
procedure. The variables are currently uninstantiated, i.e., their current value is undefined. This is
indicated by the question mark (?). Both windows are displayed in figure 2.4.

E
xa

m
pl

es

20 Getting Started

iconic variables control variables current procedurePC (program counter)

Figure 2.4: The variable and program window after loading the example program.

Run Example Program

• Click Execute . Run or click the corresponding button from the tool bar (see figure 2.5).

The program line next to the PC is executed, the PC is moved to the following line and so forth
until the execution stops. There are four reasons for the program execution to stop: 1) the last
program line has been executed, 2) a breakpoint has been reached, 3) the HDevelop instruction
stop has been encountered as in this example, or 4) an error has occurred.

During execution, the graphics window is used for visualization. Changes to the variables are
reflected in the variable window. When the program execution stops, the status bar displays the
number of executed lines and the processing time.

To continue with the program execution, click Execute . Run again until the end of the program
is reached.

• Click Reset Program Execution to reset the program to its initial state. (see figure 2.5).

• Using the button Step Over you can execute the program line by line and inspect the immediate
effect of each instruction.

Reset Program ExecutionRun StopStep Over

Figure 2.5: The basic execution buttons.

Acquiring Images with HDevelop 21

Chapter 3

Acquiring Images with HDevelop

Image acquisition is crucial for machine vision applications. It will usually be an early if not the first
step in your programming projects. This chapter explores the different ways of image acquisition in
HDevelop.

3.1 Reading Images From Files

Especially in the prototyping phase you often have a set of sample image files to work from. HDevelop
(or rather the underlying HALCON library) supports a wealth of image formats that can be loaded
directly (see read_image in the Reference Manual).

Drag-and-Drop

The easiest way to read an image is to simply drag it from a file browser to the HDevelop window and
drop it there. When the file is dropped, HDevelop opens the dialog Read Image (see figure 3.1).

This dialog displays the full path of the image and automatically proposes a variable name derived from
the file name. This name can be edited, or another iconic variable name from the current program may
be selected from the drop-down list.

Furthermore, a preview of the image and basic image properties are displayed in the dialog (width,
height, color type, and number of channels). If you picked the wrong image, you can select another one
from the same directory by pressing the button next to the file name. This will open a file browser native
to the operating system, i.e., on Windows you may be able to switch to thumbnail view in this dialog.
When another image is selected, the dialog is updated accordingly.

When you click the button OK, the instruction read_image is added to the current program. With the
setting of Insert Position you determine where the instruction will be put: At the IC or the PC. If
you changed your mind about reading the selected image at all, click Cancel.

Im
ag

e
A

cq
ui

si
tio

n

22 Acquiring Images with HDevelop

Figure 3.1: After dragging an image file onto the HDevelop window.

Images from Selected Directories

Apart from dragging and dropping images, there is an equivalent method from within HDevelop: Select
File . Read Image to get a list of image directories to choose images from. Again, this will open a
native file selection dialog. Browse to and select the desired image from there, and click OK to open up
the dialog Read Image described above.

3.2 Viewing Images

When images are read as described above, they are automatically displayed in the active graphics win-
dow. This is the default behavior in HDevelop, but the automatic display of images can be suppressed if
desired, e.g., to speed up computationally intensive programs.

Initially, the loaded image fills the graphics window entirely. The window itself is not resized so the
aspect ratio of the image might be skewed. Using the tool box of the graphics window you can easily
zoom the image, or change the window size with regard to the image.

We recommend to adapt the window size to the size of the image because otherwise the display is slowed
down. The image size, the window size and the displayed part of the image are set with the tool bar icons
of the graphics window (see figure 3.2).

An iconic view of the loaded image is also displayed in the variable window. When the image is cleared
in the graphics window, it can always be restored by double-clicking this icon.

3.3 Image Acquisition Assistant 23

zoom
in/out

pan image

image size

window size

magnifyselectclear

Figure 3.2: Tools in the graphics window.

3.3 Image Acquisition Assistant

The image acquisition assistant is a powerful tool to acquire images from files (including AVI files),
directories or image acquisition devices supported by HALCON through image acquisition interfaces.
To use this assistant, select Assistants . Open New Image Acquisition. The window is displayed
in figure 3.3. It features several tab cards that can be stepped through one after another. Ultimately, the
assistant generates HDevelop code that can be inserted into the current program. Select the entry Help
in the menu of the image acquisition assistant to open its online help.

Figure 3.3: Image acquisition assistant.

The tab card Source determines the acquisition method and the image source. In the default setting
images are acquired from files. This is described in the following section. Alternatively, images are
acquired from an image acquisition device, e.g., a camera. This is described in section 3.3.2 on page 25.

3.3.1 Acquiring Images From Files or Directories

You can specify a selection of image files or a directory to load images from. Make sure the radio button
Image File(s) is selected in the tab card Source. You can directly enter image names or the name of
a directory into the text field. Multiple image names are separated by a semicolon. Usually, it is more
convenient to use one of the following buttons:

Im
ag

e
A

cq
ui

si
tio

n

24 Acquiring Images with HDevelop

Select File(s) ...

HDevelop opens a file selection dialog in the current working directory, displaying the image files sup-
ported by HALCON. Multiple image files can be selected by holding down the <Ctrl> key while click-
ing additional image files. Click Open to confirm the selection. The first selected image is displayed in
the active graphics window.

Select Directory ...

HDevelop opens a directory browser. It is not possible to select multiple directories. Confirm your
selection by clicking Open or OK. The first image from the selected directory is displayed in the active
graphics window. If the check box Recursive is ticked, all subdirectories of the specified directory are
scanned for images as well.

View Images

You can single-step through the selected images by clicking the Snap button (see figure 3.4). Each time
you click the button, the next image is displayed in the active graphics window. You can also loop
through the images by clicking the button Live. This is especially useful for animations. Both functions
are also available from the menu Acquisition.

Snap (single−step images)

Connect Live (continuous display)

Figure 3.4: Browsing the selected images.

Generate Code

Switch to the tab card Code Generation, and specify a variable name in the text field Image Object.
You can later access the image in the program by this name. If multiple images or a directory were
selected in the tab card Source, the image acquisition assistant will read the images in a loop. In this
case the following additional variable names need to be specified:

Loop Counter: The name of the loop index variable. While looping over the images in the program,
this variable will contain the object number of the current image.

Image Files: The name of the variable that will contain the names of the selected images.

Click Code Preview to inspect the code that would be generated from the currently specified parame-
ters.

Click Insert Code to generate the code and insert it at the position of the IC in the current program.

The following piece of code is an example generated from three selected images. It is a self-contained
HDevelop program that runs without alteration.

3.3.2 Acquiring Images Through Image Acquisition Interfaces 25

Figure 3.5: Specifying variable names and previewing the code.

* Code generated by Image Acquisition 01
ImageFiles := []
ImageFiles[0] := 'C:/Program Files/MVTec/HALCON/images/fin1.png'

ImageFiles[1] := 'C:/Program Files/MVTec/HALCON/images/fin2.png'

ImageFiles[2] := 'C:/Program Files/MVTec/HALCON/images/fin3.png'

for Index := 0 to |ImageFiles| - 1 by 1
read_image (Image, ImageFiles[Index])

* Do something
endfor

3.3.2 Acquiring Images Through Image Acquisition Interfaces

Select Image Acquisition Interface in the Source tab. The drop-down list below the radio button
becomes active. Initially, it lists all image acquisition interfaces supported by HALCON. You can tidy
this list by clicking the button Detect. HDevelop will then probe all the image acquisition interfaces
and remove those that do not respond. Probing the interfaces might cause the system to hang due to
erroneously installed drivers or hardware failures. If there are unsaved changes in the current program,
HDevelop will display a warning dialog. You are advised to save the changes before you proceed. You
can also ignore the warning and proceed, or abort the operation. After the interfaces have been probed,
you can select the desired image acquisition interface from the list.

Selecting the entry Help from the menu of the image acquisition assistant will open the online help for
the selected image acquisition interface.

Im
ag

e
A

cq
ui

si
tio

n

26 Acquiring Images with HDevelop

detect image acquisition interfaces...

... and select from the list

Figure 3.6: Source selection (example).

Connect to the Device

Once an image acquisition interface is selected, its connection parameters are detected and updated in the
tab card Connection (see figure 3.7). Here you can specify the device that is connected to the selected
image acquisition interface. If, for example, the interface of a frame grabber board with multiple cameras
has been selected as the source, the actual device can be selected here. The parameters of this tab card
are described in general in the reference section of the operator open_framegrabber; please refer to
the HTML page of the selected interface for detailed information (menu Help).

Figure 3.7: Connection parameters (example).

If the acquisition interface File is selected, two buttons become available to select an image file or an
image directory, respectively. The File interface also supports AVI files, or sequence files (.seq). The
latter are special to HALCON; they contain a list of image file names that will be loaded in succession.

Specify the desired connection parameters and click Connect to establish or update the connection to
the actual device. The connection status can also be toggled in the tool bar (see figure 3.4 on page 24).

3.3.2 Acquiring Images Through Image Acquisition Interfaces 27

You can grab single images with the button Snap, or switch to continuous grabbing mode using the
button Live. Live mode can be stopped by clicking the same button again which is now labeled Stop.

Clicking the button Detect attempts to re-detect valid parameters for the currently selected image ac-
quisition interface. Usually, this is done automatically, when the interface is selected from the list on the
tab card Source.

The button Reset All sets all connection parameters back to their default values.

Set Device Parameters

The tab card Parameters contains a list of parameters specific to the selected device. It becomes
available once the connection to the device has been activated. See figure 3.8 for an example parameter
list. Please refer to the HTML page of the selected interface for detailed information. You can click the
help button of the assistant to get to the corresponding page automatically.

Depending on the parameter type, different selection methods are enabled. As an example, parameters
with a defined range of values can be specified by dragging a slider or entering the value parametrically.
If a value is changed, a reset button to the right is activated. Some parameters provide a check box which
attempts to set the parameter automatically if clicked.

If Update Image is checked, parameter changes are immediately reflected in the graphics window by
acquiring a new image. The button Refresh updates the list of parameters, which is useful if parameters
have side effects. You can reset all parameters to their default values at once by clicking Reset All.

acquire new image at parameter

change

reset parameter

selection of parameters (optional)

and sorting

set parameter automatically

Figure 3.8: Device-specific parameters (example).

Im
ag

e
A

cq
ui

si
tio

n

28 Acquiring Images with HDevelop

Generate Code

On the tab card Code Generation the settings made in the other tab cards are turned into executable
code. The basic structure of the code and the corresponding variable names can be specified.

Control Flow

Initialization Only: Generate only code to initialize the image acquisition interface with the param-
eters specified in the other tab cards and to close it down properly. Additional code for image acquisition
and processing can be added later.

Acquire Single Image: Also generate code to acquire an image.

Acquire Images in Loop: Also add a loop around the image acquisition code. Further image pro-
cessing can be added inside this loop.

The image acquisition interface is addressed by a so-called handle. The variable name of this handle can
be specified in the text field Connection Handle. The variable name of the acquired image(s) can be
set in Image Object.

Click Code Preview to inspect the code. Click Insert Code to generate the code in the program
window at the IC.

Figure 3.9: Code generation.

3.3.3 Modifying the Generated Code 29

Here is a code example:

* Code generated by Image Acquisition 01
open_framegrabber ('uEye', 1, 1, 0, 0, 0, 0, 'interlaced', 8, 'default', -1,

'false', 'UI154x-M', '1', 0, -1, AcqHandle)
set_framegrabber_param (AcqHandle, 'exposure', 99.9248)
grab_image_start (AcqHandle, -1)
while (true)

grab_image_async (Image, AcqHandle, -1)
* Do something
endwhile
close_framegrabber (AcqHandle)

3.3.3 Modifying the Generated Code

After the generated code has been inserted into the program window, HDevelop internally keeps the code
linked to the corresponding assistant. This link is kept until the assistant is quit using the menu entry
File . Exit Assistant. If you close the assistant using the menu entry File . Close Dialog or
using the close icon of the window, the assistant can be restored from the top of the menu Assistants.

You can change the settings inside the assistant and update the generated code accordingly. The code
preview will show you exactly how the generated code lines will be updated. Furthermore, you can
delete the generated code lines, or release them. When code lines are released, the internal links between
the assistant and those lines is cut off. Afterwards, the same assistant can generate additional code at a
different place in the current program.

Im
ag

e
A

cq
ui

si
tio

n

30 Acquiring Images with HDevelop

Programming HDevelop 31

Chapter 4

Programming HDevelop

This chapter explains how to use HDevelop to develop your own machine vision applications. It is
meant to be actively followed in a running instance of HDevelop. In the following, it is assumed that the
preferences of HDevelop are set to the default values. This is always the case after a fresh installation
of HALCON. If you are uncertain about the current settings, you can always start HDevelop with the
default settings by invoking it from the command line in the following way (see also chapter 2 on page
15):

hdevelop -reset_preferences

This chapter deals with a simple example. Given is the image displayed in figure 4.1. The objective is to
count the clips and determine their orientation.

Figure 4.1: Paper clips.

4.1 Start a New Program

Start HDevelop or, if it is still running, click File . New Program to start a new program. HDevelop will
notify you if there are unsaved changes in the current program. If it does, click Discard to throw away
the changes and start anew. In case you rearranged the windows, click Window . Organize Windows
to restore the default layout displayed in figure 2.1 on page 16.

P
ro

gr
am

m
in

g

32 Programming HDevelop

The first thing to do is read the image and store it in an iconic variable. From the last chapter we know
that we can simply drag an image to the HDevelop window. We also know that this inserts the operator
read_image into the program. Therefore, we can just as well insert the operator directly.

4.2 Enter an Operator

Click into the text box of the operator window, type read_image and press <Return>. You can also type
any partial operator name and press <Return>. HDevelop will then open a list of operators matching
that partial name. This way, you can easily select operators without having to type or even know the
exact name. Selection is done with the mouse or using the arrow keys to highlight the desired operator
and pressing <Return>. If you selected the wrong operator by accident, you can reopen the list by
clicking on the drop-down arrow next to the operator name. When entering a partial name, operators
commencing with that name appear at the top of the list.

Figure 4.2: Matching operators after typing read_ and pressing <Return>.

4.3 Specify Parameters

After selecting an operator, its parameters are displayed in the operator window. They are grouped by
iconic and control parameters. The icons next to the parameter names denote the parameter type: Input
vs. output (see figure 4.3). The semantic type is displayed to the right of the parameters. Parameters are
specified in the text fields. The first parameter gets the input focus.

Enter Clip into the text field Image. The image will be stored in this variable. Next, enter ’clip’ into
the text field FileName. You can press <Tab> to go to the next input field. Pressing <Shift> <Tab>
takes you back to the previous field. This way you can enter all parameters without using the mouse.

Click OK or press <Return> to submit the operator to the current program. This will do the following:

4.4 Getting Help 33

semantic type

data type

iconic output

control input

file selection dialog

Figure 4.3: Specifying parameters.

• An operator call is added as the first line of the current program.

• The IC is advanced, so that additional lines will be added after the inserted line.

• The program line is executed and the PC is advanced. To be more precise: All the lines from the
PC to the IC are executed which makes a difference when adding program lines in larger programs.

• The character * is added to the window title to indicate unsaved changes in the current program.

• The image is displayed in the graphics window.

• The status bar is updated, i.e., the execution time of the operator read_image is displayed and the
format of the loaded image is reported.

• The output variable Clip is created and displayed in the variable window.

• The operator window is cleared and ready for the insertion of the next operator.

4.4 Getting Help

You may be wondering where the clip image was loaded from since we did not specify any path or even
a file extension. This is a detail that is related to the way the HALCON operator read_image works.
HDevelop does not know anything about it. It just executes the operator with the parameters you supply.
Nonetheless, it is easy to access the documentation of the operators from within HDevelop.

Double-click the first program line in the program window. The operator is displayed in the operator
window for editing. Now click Help to open the HDevelop online help window. It will automatically
jump to the documentation of the displayed operator (see figure 4.4). The reference manual is completely
cross-linked. The navigation at the left part of the window provides quick access to the documentation.
The tab card Contents presents the hierarchical structure of the reference manual (plus access to other
HALCON manuals). The tab card Operators lists all operators for direct access. Enter any desired
substring into Filter to quickly find an operator.

In the remainder of this chapter, try to use the online help as much as possible to get information about
the used operators. The online help window is described in section 5.8 on page 140.

P
ro

gr
am

m
in

g

34 Programming HDevelop

Figure 4.4: The online help window showing the documentation of the operator read_image.

4.5 Add Additional Program Lines

Select the clips by thresholding

Now, we want to separate the clips from the background, i.e., select them. They clearly stand out from
the background, thus a selection based on the gray value is appropriate. This operation is known as
thresholding.

Enter threshold into the operator window. This is both the full name of an operator and part of other
operator names. Thus, you get a list of matching operators with threshold pre-selected when you press
<Return>. Press <Return> once more to confirm the selected operator and show its parameters.

In figure 4.5 you can see that the input parameter Image is set to Clip automatically. For input variables
with no default value, reasonable suggestions are inferred automatically by collecting previous output
variables of the same type. Therefore, the name of the most recent matching output parameter will be
suggested (most recent being the closest predecessor of the current program line). In this example, only
Clip is available.

Set MinGray and MaxGray to 0 and 30, respectively. This will select the dark pixels in the image.

Click Apply. This button executes the operator without adding it to the program. Additionally, it keeps
the current parameters open for editing. This way, you can easily try different settings and immediately
see the result. The selected pixels (the so-called region) are stored in the output variable Region, which

4.5 Add Additional Program Lines 35

Figure 4.5: Parameter suggestions.

is displayed in the variable window. The region is an image mask: White pixels are selected while black
pixels are not.

The region is also displayed as an overlay in the graphics window. The selected pixels are displayed in
red (unless you changed the default settings).

The selected threshold values are not perfect, but we will correct this later. For now, click Enter to add
the operator to the program window. Contrary to clicking OK, this does not execute the operator. Note
that the variable Region keeps its value but is no longer displayed in the graphics window. Also, the PC
is not advanced, indicating that the second line of the program is yet to be executed.

Adding program lines with Enter is especially useful if some of the input parameters use variable names
that will be added to the program at a later time.

Successor

Click on the just inserted program line to select it. You can let HDevelop suggest operators based on the
selected line. Open the menu Suggestions . Successors. This menu is filled dynamically to show
typical successors of the currently selected operator. We want to split the selected pixels into contiguous
regions. Move the mouse pointer over the menu entries. The status bar displays a short description of
the highlighted operator. Looking through the menu entries, the operator connection looks promising,
so we click on it. Any operator selected through this menu is transferred to the operator window.

Again, the variable names suggested by HDevelop look reasonable, so press <Return>. This is equiva-
lent to clicking the OK button (though this can be changed in the preferences of HDevelop). This time,
two program lines are executed: The threshold operation and the connection operation. As noted
above: Clicking OK executes from the PC to the IC.

In the graphics window, the contiguous regions calculated by the operator connection are now dis-
played in alternating colors.

P
ro

gr
am

m
in

g

36 Programming HDevelop

4.6 Understanding the Image Display

After having executed the three lines of our program, the graphics window actually displays three layers
of iconic variables: the image Clip, the region Region, and the tuple of regions ConnectedRegions
(from bottom to top). Place the mouse pointer over the icons in the variable window to obtain basic
information about the variables.

The display properties of images and the topmost region can be adjusted from the context menu of the
graphics window. For images, the look-up table (henceforth called LUT) and the display mode (referred
to as “paint”) can be set. The LUT specifies gray value mappings. Experiment with different settings:
Right-click in the graphics window and select some values from the menus Lut and Paint. Make sure,
the menu entry Update Window is checked. Notice how the display of the image changes while the
regions remain unchanged.

The menu entries Colored, Color, Draw, Line Width, and Shape change the display properties of
the topmost region. Set Draw to ‘margin’, Color to ‘cyan’, and Shape to ‘ellipse’. The display of
ConnectedRegions (which is the topmost layer) changes accordingly. The region Region is still dis-
played in filled red.

A more convenient way to set many display properties at once is available through the menu entry Set
Parameters.... It opens the settings window displayed in figure 4.6.

After trying some settings, click the button Reset to restore the default visualization settings.

Figure 4.6: Changing the display parameters.

You cannot change the display properties of regions (or XLDs) other than the topmost. What you can
do is rebuild the image stack in the graphics window manually by double-clicking iconic variables in
the variable window and changing the properties each time another layer is added. The stack is cleared

4.7 Inspecting Variables 37

Figure 4.7: Interactive inspection of an iconic variable containing regions.

whenever an image is added that uses the full domain. To clear the stack (and thus the graphics window)
manually, click the clear icon (see figure 3.2 on page 23).

4.7 Inspecting Variables

When you move the mouse cursor over the variable ConnectedRegions you see that it contains 98
regions.

Right-click on the icon ConnectedRegions and select Clear / Display to display only the con-
nected regions in the graphics window. Right-click again and select Display Content . Select....
This menu entry opens a variable inspection window which lists the contents of the variable
ConnectedRegions. The selected region of this inspection window is displayed in the graphics win-
dow using the current visualization settings. Set Draw to ‘margin’ and Shape to ‘ellipse’ and select some
regions from the list. An example is illustrated in figure 4.7.

For now, close the variable inspection window. The large number of regions is due to the coarse setting
of the bounds of the threshold operator. In the following we will use one of HDevelop’s visual tools
to find more appropriate settings interactively.

4.8 Improving the Threshold Using the Gray Histogram

Click Visualization . Gray Histogram to open a tool for the inspection of gray value histograms.
One of its uses is to determine threshold bounds visually. Because the graphics window currently dis-
plays only regions, the gray histogram is initially empty. Double-click the Clip icon in the variable
window to re-display the original image and watch its gray histogram appear.

P
ro

gr
am

m
in

g

38 Programming HDevelop

visualize threshold operation

Figure 4.8: Determining threshold bounds interactively using the gray histogram.

Select Threshold in the column Operation of the gray histogram window, and click the icon next
to Threshold to visualize the operation. Now, you can try different threshold bounds by altering the
values in Min and Max or by dragging the lines in the histogram area (see figure 4.8). Any changes to
these values are immediately visualized in the active graphics window. The values 0 and 56 seem suitable
for the lower and upper bounds, respectively.

4.9 Edit Lines

As previously noted, the default editing mode in HDevelop is dialog-based. All parameter modifications
in the program are done through the operator window. To edit a line, double-click it in the program
window. Then, the parameters are displayed in the operator window for editing. If you click OK or
Enter, the original line in the program is updated. There is also a full text editor which is explained in
section 5.4.1.2 on page 108.

Double-click the second line of the program to adjust the threshold operation. Replace the value 30 with
56 and click Enter. The program line is updated in the program window.

4.10 Re-Execute the Program

The last editing step was just a tiny modification of the program. Often, after editing many lines in your
program with perhaps many changes to the variables you want to reset your program to its initial state
and run it again to see the changes.

4.11 Save the Program 39

Click Execute . Reset Program Execution to reset the program. Now, you can select Execute .
Run to run the complete program, or click Execute . Step Over repeatedly to execute the program line
by line.

4.11 Save the Program

Perhaps now is a good time to save your program. Select File . Save and specify a target directory
and a file name for your program.

4.12 Selecting Regions Based on Features

Inspecting the variable ConnectedRegions after the changed threshold operation yields a much better
result. Still, a contiguous area at the left edge of the image is returned. To obtain only the regions
that coincide with the clips, we need to further reduce the found regions based on a common criterion.
Analogous to the gray histogram tool, which helps to select regions based on common gray values,
HDevelop provides a feature histogram tool, which helps to select regions based on common properties
or features.

Click Visualization . Feature Histogram to open the tool. The column Feature allows to select
the feature that the region selection will be based on. The default feature is “area”, which is adequate in

visualize feature selectionget rid of this region

Figure 4.9: Selecting regions with a similar area in the feature histogram.

P
ro

gr
am

m
in

g

40 Programming HDevelop

this case: The actual clips are all the same size, thus the area of the regions is a common feature. In the
feature histogram the horizontal axis corresponds to the values of the selected feature. The vertical axis
corresponds to the frequency of certain feature values.

Similar to the gray histogram window, you can visualize the selected regions, i.e., the regions whose
area falls between the values Min and Max, which are represented by the green and red vertical lines,
respectively. Click the icon next to the selected feature (area) to enable the visualization.

Specify the parameters in the Output section of the feature histogram window as shown in figure 4.9 on
page 39. Drag the green and red line to see how this affects the selected regions. In the histogram we can
see that in order to cover all the clips, we can safely select regions whose area is between, say, 4100 and
the maximum value in the histogram. When you are satisfied with the selection, click the button Insert
Code. The following line (with similar numeric values) will be added to your program at the position of
the IC:

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 4100, 5964)

Run the program, and inspect the output variable SelectedRegions. The regions corresponding to the
clips are now determined correctly. To obtain the orientation and the center of gravity of the clips, add
the following operator calls to the program:

orientation_region (SelectedRegions, Phi)
area_center (SelectedRegions, Area, Row, Column)

The operator orientation_region returns a tuple of values: For each region in SelectedRegions
a corresponding orientation value in Phi is returned. The operator area_center in the same way
returns the area, row and column of each input region as tuples. Again, run the program and inspect the
calculated control variables. You can inspect multiple control variables in one inspection window. This is
especially useful if the control variables all relate to each other as in this example. In the variable window
select all control variables (hold down the <Ctrl> key), and right-click Inspect (see figure 4.10).

Figure 4.10: Inspecting control variables.

4.13 Looping Over the Results 41

4.13 Looping Over the Results

Being an integrated development environment, HDevelop provides features found in other programming
languages as well: Variable assignment, expressions, and control flow. Variable assignment and control
flow are implemented in terms of specific HDevelop operators. These operators can be selected from the
menu Operators . Control. Expressions are implemented in terms of a specific HDevelop language
which can be used in input control parameters of operator calls.

To iterate over the elements in Phi, we use a for loop which counts from zero (the index of the first
element of a tuple) to the number of elements minus one. The for loop is entered just like a common
HALCON operator: Enter for into the operator window and specify the parameters as in figure 4.11.
The notation |Phi| - 1 is part of the HDevelop language. This operation calculates the number of
elements in Phi minus one. When inserted in the program window, the operator for is displayed in a
different format to make it more readable. Note that the closing endfor is entered automatically if the
corresponding check box is ticked. Also note that the IC is placed between the added lines so that the
body of the loop can be entered.

Figure 4.11: Entering a loop in HDevelop.

P
ro

gr
am

m
in

g

42 Programming HDevelop

Add the following lines to the program. They are automatically indented in the program window to
highlight the nesting inside the for loop.

set_tposition (3600, Row[Index], Column[Index])
write_string (3600, deg(Phi[Index]) + ' degrees')

The instruction set_tposition places the text cursor in the active graphics window at the center of
the region corresponding to the loop index variable Index. The value 3600 is the so-called window
handle of the target graphics window. This number is displayed in the title of the graphics window and
can be different in your environment. The notation Row[Index] is another operation of the HDevelop
language. It provides access to a single value of a tuple.

The instruction write_string outputs a given string at the current text cursor position in the graph-
ics window. The function deg is part of the HDevelop language. It converts its argument from radi-
ans to degrees. In this example the operation + performs a string concatenation because the argument
’ degrees’ is a string value. Before the two operands of + are concatenated, an automatic type con-
version (double to string) of the numeric argument takes place. The details of the HDevelop language
are explained in chapter 7 on page 211.

4.14 Summary

This is basically the way to create programs in HDevelop. Select an operator, specify its parameters, try
different settings using the button Apply, add a new program line using Enter or OK, and edit it later by
double-clicking it in the program window. Use the interactive tools provided by HDevelop to assist you,
e.g., to find appropriate values for the operators.

Graphical User Interface 43

Chapter 5

Graphical User Interface

This chapter is the reference to the graphical user interface of HDevelop.

5.1 Main Window

The main window handles HDevelop programs. It comprises the following components:

Window Title

The main window of HDevelop is identified by the title HDevelop followed by the name of the current
program (or unnamed if no file name has been specified yet). Unsaved changes in the current program
are indicated with a trailing asterisk (*) in the window title.

Menu Bar

The menu bar at the top provides access to the functionality of HDevelop. The menus and their entries
are described in the section “Menu Bar” on page 46.

Tool Bar

The tool bar icons provide convenient shortcuts for frequently used functions. It is described in the
section “Tool Bar” on page 104.

G
U

IR
ef

er
en

ce

44 Graphical User Interface

Window Area

The main part of the window is reserved for the windows and dialogs of HDevelop. The most important
windows are the following:

• Program window (see page 105)

• Operator window (see page 125)

• Variable window (see page 129)

• Graphics window (see page 136)

• Online help window (see page 140)

Status Bar

The status bar at the bottom of the main window displays status information, e.g., context-sensitive in-
formation about a specific user action or the runtime of operator or procedure calls (unless time measure-
ment has been deactivated in the preferences, see section “Runtime Settings -> Runtime Settings”
on page 72).

The status bar is divided into the following five areas (from left to right, see figure 5.1):

1. Status icon: Shows the current run status of the program.

2. Messages and runtime information. For example, if you select an operator from the menu, the
corresponding short description is displayed here.

The runtime information depends on the run mode: When single-stepping through the program,
the runtime of the last operator or procedure call is displayed. In continuous run mode, a runtime
summary of the executed program lines is displayed when the program stops. A history of the
most recent messages is also kept, see below.

3. Information about the image in the active graphics window. The display format is

[index] variable name (#=number of objects: height x width x channels x type)

4. Gray value of the image in the active graphics window at the mouse cursor position. For multi-
channel images, the gray values of all channels are displayed separated by commas.

5. Image coordinates in the graphics window (row, column).

run status image details gray value coordinatesmessages / runtime information

Figure 5.1: The status bar.

5.1 Main Window 45

The status bar has its own context menu:

You can toggle whether execution messages are displayed in the status bar by clicking the entry Show
Processing Time in the context menu of the status bar. To open the context menu, right-click in the
message area of the status bar.

A history of the latest execution messages is displayed as a tool tip when placing the mouse pointer over
the message area of the status bar. The history can be copied to the clipboard by selecting the entry Copy
History to Clipboard in the context menu of the status bar.

Window Modes

There are two different window modes in HDevelop, which can be toggled in the menu Window:

MDI (multiple-document interface): In this mode the main window contains all other windows and
dialogs (with the exception of the online help window and modal dialogs which block other win-
dows temporarily). You are free to move the windows according to your needs and preferences
inside the main window. You may iconify and/or deiconify them. HDevelop provides basic win-
dow management functions in this mode.

SDI (single-document interface): In this mode the main window contains only the menu bar, the tool
bar, the status bar, and the program window. All other windows are independent. You may find
this mode beneficial if you want to take advantage of special window manager capabilities under
UNIX.

G
U

IR
ef

er
en

ce

46 Graphical User Interface

5.2 Menu Bar

The menu bar of the main window provides access to the complete functionality of HDevelop. Here, you
may choose HALCON or HDevelop operators or procedures, or manipulate the graphical output. Every
menu item opens a pull-down menu (henceforth abbreviated as menu) with optional submenus. You open
a menu by clicking a menu item or via the keyboard (by pressing the <Alt> key in combination with the
underlined letter of the menu item). In the following sections the menu entries are described in the order
in which they appear.

5.2.1 Menu File

This menu provides functions to load images and existing programs and to save recently created or
modified programs and procedures, respectively. Furthermore, you may export HDevelop programs to
C++, C, Visual Basic, Visual Basic .NET, or C#, and also print them.

5.2.1.1 New Program

Synopsis: Initialize a new HDevelop program.

Checks for: Unsaved changes (page 156)

Shortcut: <Ctrl+N>

This menu item deletes the current program including all local procedures. The contents of variables are
deleted before removing them. In addition, all graphics windows except one are closed. The last graphics
window is cleared. The display parameters for the remaining graphics window are reset to the default
values stored in the preferences (see section “Visualization Settings -> Pen / LUT / Paint” on
page 72). The runtime settings of the preferences are reset to their default values (see section “Runtime
Settings -> Runtime Settings” on page 72).

5.2.1.2 Open Program...

Synopsis: Load an existing HDevelop program.

Checks for: Unsaved changes (page 156)

Shortcut: <Ctrl+O>

A file selection dialog (page 155) pops up to select an HDevelop program. Please note that only native
HDevelop programs can be loaded. Thus, text, C, C++, Visual Basic, Visual Basic .NET, and C# versions
of a file are rejected.

After you have loaded a program, the corresponding file name is added to the top of the menu Recent
Programs. This allows you to quickly switch between recently loaded programs.

5.2.1 Menu File 47

5.2.1.3 Browse Examples...

Synopsis: Load HDevelop example program by selecting it from a categorized list.

Checks for: Unsaved changes (page 156)

Shortcut: <Ctrl+E>

Selecting this menu item opens a dialog that allows you to load HDevelop example programs grouped
by categories. The dialog is displayed in figure 5.2.

Browsing the Categories

The tree on the left contains a structured list of categories. Clicking the icon in front of a category
toggles the display of its children. Alternatively, double-clicking any category label shows and hides the
subcategories while also selecting the node of the tree. There can be multiple levels of categories. If you
select a category, all its matching example programs are listed in the area on the right. You can select
multiple categories by holding down the <Ctrl> key while clicking additional categories. An HDevelop
example program may appear multiple times under different topics and categories.

Filtering the Matched Example Programs

Both the file name and the short description of the matched example programs are displayed. You can
reduce the number of listed programs by entering a search string into the Filter text box. As you type,
the list is updated to contain only example programs matching the string in either the file name or the
short description field. The filtering is case-insensitive.

Figure 5.2: Browse Examples....

G
U

IR
ef

er
en

ce

48 Graphical User Interface

Loading an Example Program

Double-click an example program in the list, or select it and click the button Open. Clicking Open in
new HDevelop opens the program in a new instance of HDevelop, which is useful if there are unsaved
changes in the current program.

Either way, you can keep the dialog open by checking the corresponding box beforehand. This can be
useful if you wish to scan through several example programs quickly.

5.2.1.4 Recent Programs

Synopsis: Load recently used HDevelop programs.

Checks for: Unsaved changes (page 156)

This submenu contains a list of the most recently used HDevelop programs. Simply click on a program
name to load it. This menu may be customized in the preferences (see General Options -> General
Options).

5.2.1.5 Insert Program

Synopsis: Insert (parts of) another HDevelop program into the current program.

Selecting an entry in this submenu opens a file selection dialog (page 155) for the selection of an HDe-
velop program.

2 Insert All...

Synopsis: Insert a complete HDevelop program into the current program.

The main procedure of the selected program is inserted at the IC. All local procedures of the selected
program are copied to the current program under their original name. If a local procedure of that name
already exists, the suffix _COPY_1 (or _COPY_2, _COPY_3... for subsequent imports) is added to the
imported local procedure. All invocations of the renamed procedure are updated automatically.

If the current program already contains an external procedure with the same name, the imported local
procedure overrides the external procedure.

2 Insert Procedures...

Synopsis: Insert local procedures of the selected program into the current program.

Via this menu item you can add local procedures from an HDevelop program to the current program.
All local procedures except the main procedure are loaded from the selected file. If the current program
already contains a local procedure with the same name, the newly added procedure will be renamed by
appending the suffix _COPY_1 to its name. If the current program already contains an external procedure
with the same name, the newly added local procedure overrides the external procedure.

5.2.1 Menu File 49

2 Insert Mainbody...

Synopsis: Insert only the main procedure of the selected program into the current program.

Insert the main body of the selected program at the IC. No local procedures are imported. If the current
program does not provide the procedures used in the imported program, the corresponding program lines
are marked as invalid code and will not be executed. Invalid code is turned into valid code by providing
the missing procedures.

5.2.1.6 Save

Synopsis: Save changes of the current HDevelop program or the currently selected external procedure.

Shortcut: <Ctrl+S>

The actual functionality of this menu entry depends on the selected procedure in the program window:

• Main or local procedure selected in program window:

Save changes of the current HDevelop program. If no file name has been specified yet, a file
selection dialog (page 155) will be opened. Local procedures are saved within the HDevelop
program.

The file name of the program you save is added to the menu Recent Programs.

Please note that modified external procedures are not saved automatically. To save them as well,
select the menu entry Menu File . Save All, or select the corresponding external procedure in
the program window and click Menu File . Save again (see below).

• External procedure selected in program window:

Save changes to the currently selected external procedure back to the originating file. The operation
is done quietly. A modified external procedure is marked with an asterisk (*) in the program
window.

If you try to save a file that has been modified outside of your running instance of HDevelop (possibly by
another user), a warning message is displayed asking whether you want to overwrite the file. If you are
uncertain about the external changes to the file, it is recommended to click No, and save your program
under a different name using Save Program As....

5.2.1.7 Save Program As...

Synopsis: Save changes of the current HDevelop program to a new file.

Shortcut: <Ctrl+Shift+S>

A file selection dialog (page 155) is opened. You can specify a new file name and save the current
program under that name. The new file name becomes the default name of the current program so that
subsequent Save operations will use that name instead of the old.

The file name of the program you save is added to the menu Recent Programs.

G
U

IR
ef

er
en

ce

50 Graphical User Interface

5.2.1.8 Save Procedure As...

Synopsis: Save current procedure as an external procedure or as a stand-alone HDevelop program.

Using this menu entry you can save the currently selected procedure as an external procedure or an
HDevelop program. A file selection dialog (page 155) is opened where you can select the file type:

• HDevelop procedures (*.dvp)

The procedure is saved as an external procedure. If the target directory is not already configured
in the external procedure directories (see Menu Edit . Preferences..., Directories (page
66)), HDevelop will suggest adding the directory to the list. An example dialog is displayed in
figure 5.3. If you click No, HDevelop will not be able to access the saved procedure unless the
directory is later added to the external procedure locations manually.

This is one method to make an internal procedure external. If you do not change the name of the
procedure, the internal procedure will conceal the external procedure.

Figure 5.3: Adding a new directory to the list of external procedure directories.

• HDevelop local procedure (*.dev)

If this file type is selected, an empty main procedure is added to the target file, and the procedure
is added to the program as a local procedure.

This menu item is disabled if the main procedure is selected in the program window.

5.2.1.9 Save All

Synopsis: Save the current program and all modified external procedures.

Shortcut: <Ctrl+Alt+S>

If no name has been specified for the current program yet, the behavior is similar to that of Save
Program As.... In addition, all modified external procedures marked with an asterisk (*) in the pro-
gram window’s combo box are saved.

5.2.1 Menu File 51

5.2.1.10 Export

Synopsis: Export program code to a programming language or as a text file.

See also: hdevelop -convert (command line switch)

Using this dialog, you can select an export format and write (parts of) the current program to a file in that
format. The dialog is displayed in figure 5.4.

The button next to the export file name opens a file selection dialog (page 155) to select a file name and
an export format. The following formats are supported (file extensions in parentheses):

• Text file (.txt)

• C (.c) . see also section 8.7 on page 265

• C++ (.cpp) . see also section 8.1 on page 249

• C# HALCON/.COM (.cs) . see also section 8.3 on page 255

• C# HALCON/.NET (.cs) . see also section 8.2 on page 253

• Visual Basic 6.0 HALCON/COM (.bas) . see also section 8.6 on page 263

• Visual Basic .NET HALCON/COM (.vb) . see also section 8.5 on page 260

• Visual Basic .NET HALCON/.NET (.vb) . see also section 8.4 on page 258

The file name extension corresponding to the selected export format is appended to the specified file
name.

Figure 5.4: Export.

G
U

IR
ef

er
en

ce

52 Graphical User Interface

Print Range: The export range specifies which parts of the current program are exported. The follow-
ing options are available:

• Program: The entire program is exported (main procedure and all local procedures). All
used external procedures are exported depending on the setting of the external procedure
options (see below).

• Current Procedure: The current procedure and all used local procedures are exported.
All used external procedures are exported depending on the setting of the external procedure
options (see below).

• External Procedures: All external procedures are exported depending on the setting of
the external procedure options (see below).

The short description and chapter information of procedures are exported as comments. Arbitrary
code can be embedded with special comment lines (see section 8.8 on page 267).

Procedure Options: Defines the export behavior for external procedures.

• Export Procedure Body: Determines whether only the procedure declaration or both the
declaration and the procedure body is exported.

Window Export: Specifies the export behavior of HALCON windows:

• Use HALCON Windows: Export as a stand-alone project.

• Use Export Template (HALCON/.NET and HALCON/COM only): Export as a project
using the supplied project template.

Encoding: Specifies the encoding of exported programs. The following options are available:

• Native: Export in the encoding defined by the operating system.

• UTF-8: Force export in UTF-8 encoding (Unicode).

Keep dialog open: Checking this box keeps the dialog open for subsequent exports.

5.2.1.11 Read Image

Synopsis: Read an image from a selected directory.

See also: read_image

This submenu contains several directories from which images can be loaded. The directory denoted
by . (a single dot) is the current working directory of HDevelop, i.e., the directory HDevelop was
started from. Below that entry, the directories specified by the environment variables HALCONROOT and
HALCONIMAGES are displayed.

Directories below the separator line are user-defined directories. Each time an image is loaded from a
directory which is not already listed, that directory name is appended to the menu. This is convenient
when several images from a non-standard directory must be read.

When clicking on an entry in this menu, a file selection dialog (page 155) of the given directory is opened.
Depending on the operating system you may be able to switch to a thumbnail view in this dialog. See
figure 5.5 for an example.

5.2.1 Menu File 53

Figure 5.5: Read Image.

After selecting a file name, the dialog Read Image is opened. It displays a thumbnail of the selected
image and some image properties. This is also displayed in figure 5.5. HDevelop suggests a variable
name derived from the selected file name. You may adopt or edit this name. If you want to use a name
of an already created iconic variable, a combo box offers you all known iconic variable names. Simply
click the arrow on the right side of the combo box to select a variable name. Note that the reuse of a
variable deletes the old content and replaces it with the new image.

Click OK to load the image into HDevelop. The operator read_image is inserted at the specified insert
position (IC or PC). The specified iconic variable is updated in the variable window and the image is
displayed in the active graphics window. Clicking Cancel aborts the operation.

5.2.1.12 Cleanup

Synopsis: Clean up allocated resources that are no longer being used.

See also: variable window . context menu (page 131)

This menu item deletes all unused variables (iconic and control data) from the current procedure. These
are variables in the variable window that are no longer used in any operator or procedure call in the
current procedure body. This can happen after the deletion of program lines or after editing variable
names, because the corresponding variables are not deleted automatically. You may use this menu item
during a longer editing session to reorganize your variable window (page 129).

G
U

IR
ef

er
en

ce

54 Graphical User Interface

5.2.1.13 Properties...

Synopsis: Display various properties of the current program.

The tab card General displays file properties of the current program, such as file name, path, creation
and modification date, and write permission. It also shows the file size, the number of lines of code, used
and unused local procedures, used external procedures and used protected procedures. This is displayed
in figure 5.6.

Figure 5.6: Properties: General (left), Used Modules (right).

The tab card Used Modules lists the HALCON modules used by the current program. Modules marked
with a lit bulb are used. This window allows you to get an estimate of how many modules your appli-
cation will need in a runtime license. Please refer to the Installation Guide for more information about
modules and runtime licenses. See figure 5.6 for the corresponding dialog of an OCR example.

Check only used procedures If checked, only used procedures are considered for the evaluation of
the used modules. Otherwise, all procedures are considered.

Copy to Clipboard Copy the names of the used modules to the system clipboard. This way the list
can be easily pasted into other applications.

5.2.1.14 Print

Synopsis: Print the current program or selected procedures.

Shortcut: <Ctrl+P>

The print dialog is displayed in figure 5.7.

Print Range

5.2.1 Menu File 55

Figure 5.7: Print.

Program: Complete program including all procedures.

Current Procedure: Current procedure and its used procedures.

Selection: Highlighted program lines and their used procedures.

External Procedures: All external procedures.

Procedure Options

Print Procedures: Define whether procedures are printed or not.

• Used Local Procedures: print only used local procedures.

• All Local Procedures: print all local procedures.

• Used External Procedures: also print used external procedures.

Only Procedure Interface: If this box is checked, the procedure body is not printed. Instead, only
the interface of the procedure is printed.

The bodies of external procedures that are locked by a password (see section “Protected External Proce-
dures” on page 123) are not printed.

5.2.1.15 Quit

Synopsis: Quit HDevelop.

Checks for: Unsaved changes (page 156)

Shortcut: <Ctrl+Q>

See also: exit

This menu item terminates HDevelop.

G
U

IR
ef

er
en

ce

56 Graphical User Interface

5.2.2 Menu Edit

In this menu you find all necessary functions to modify the current HDevelop procedure body displayed
in the program window. Furthermore, a comprehensive find and replace functionality is offered. You can
also access the preferences of HDevelop from this menu.

5.2.2.1 Undo

Synopsis: Undo your previous editing activities.

Shortcut: <Ctrl+Z>

You may undo your previous editing activities via this menu item. For example, by selecting it three
times you cancel the last three editing actions. The menu entry always states the last editing action that
will be undone, e.g.,

Undo Insert Program line at 23 (read_image)

The undo functionality purely applies to editing activities. No file operations will be undone. Thus, if
you create an external procedure from some selected lines and undo the operation, the external procedure
will not be removed from the file system.

The undo item does not work for the password assignment for external procedures (see section “Protected
External Procedures” on page 123). To undo the password assignment you either have to remove the
password as long as you can edit the procedure, or you quit HDevelop without saving the corresponding
procedure.

5.2.2.2 Redo

Synopsis: Revoke undo activities.

Shortcut: <Ctrl+Y>

This is a quick way to restore the state before the last undo operation. The menu action explicitly states
the last Undo action that will be revoked.

5.2.2.3 Cut

Synopsis: Cut the highlighted program lines in the program window to an internal buffer.

Shortcut: <Ctrl+X>

The highlighted program lines are removed from the selected procedure and placed in an internal buffer
for later use. Additionally, for every procedure call the corresponding procedure and all procedures that
can be reached from it are copied to the buffer. This is necessary in order to obtain a consistent program
when pasting procedure call lines to a program in which the corresponding procedures might not exist.
The highlighted program lines are also copied to the system clipboard.

5.2.2 Menu Edit 57

5.2.2.4 Copy

Synopsis: Copy the highlighted program lines from the program window to an internal buffer.

Shortcut: <Ctrl+C>

The highlighted program lines are copied to an internal buffer without affecting the program. Addition-
ally, for every procedure call the corresponding procedure and all procedures that can be reached from it
are copied to the buffer. This is necessary in order to obtain a consistent program when pasting procedure
call lines to a program in which the corresponding procedures might not exist. The highlighted program
lines are also copied to the system clipboard.

5.2.2.5 Paste

Synopsis: Insert text into the currently selected procedure at the IC.

Shortcut: <Ctrl+V>

You can insert code lines from previous Cut or Copy operations or text placed in the system clipboard
into the current procedure. The insert position depends on the editing mode: In the dialog-based editor,
valid code lines from the paste buffer are inserted at the IC. In the full text editor, the text from the paste
buffer is inserted at the text cursor position.

The following functionality is only available in the dialog-based editor: If the paste buffer contains
local procedures that do not exist, they are added to the current program. If the paste buffer contains
calls to external procedures, the paths to those procedures are copied, too. However, before an external
procedure path is added during a paste action, you are asked whether or not you want to add that particular
path to the external procedure paths. The mechanism of copying and pasting procedure calls together
with the corresponding procedures is an easy way to transfer procedures between different HDevelop
programs. It also works between multiple instances of HDevelop. The contents of the internal buffer are
kept, allowing this command to be repeated.

5.2.2.6 Delete

Synopsis: Delete the highlighted program lines from the program window.

Shortcut:

This menu item deletes all highlighted program lines without storing them in an internal buffer. The only
way to get the deleted lines back into your program body is to use the menu item Undo.

5.2.2.7 Activate

Synopsis: Uncomment the highlighted program lines.

Shortcut: <F3>

All of the highlighted program lines that were previously commented using the Deactivate command
are converted back to executable code. Comment lines created with the operator comment are unaffected
by this command.

G
U

IR
ef

er
en

ce

58 Graphical User Interface

5.2.2.8 Deactivate

Synopsis: Comment out the highlighted program lines.

Shortcut: <F4>

The highlighted program lines are converted into comments. This is a quick way to suppress the execu-
tion of portions of the program for testing purposes. Comment lines created with the operator comment
are unaffected by this command.

During testing, it is often useful to prevent some lines of the program from being executed. This can be
achieved by selecting the appropriate lines in the program window and then selecting Deactivate. An
asterisk is placed at the beginning of the selected lines, i.e., the lines appear as comments in the program
window and have no influence on the program during runtime.

The deactivated lines are still part of the program, i.e., they are stored like all other lines and their
variables are still needed like all other variables. To reverse this action, select Activate.

Note that you can insert a real comment into your program by using the operator comment.

5.2.2.9 Find/Replace...

Synopsis: Find and replace text in the current program.

Shortcut: <Ctrl+F>

This dialog provides comprehensive facilities for searching the program code. You can perform a full
text search or search for variable names as well as operator (or procedure) calls. In addition, you can
replace variable names and substitute operator or procedure calls. The dialog is displayed in figure 5.8.

Figure 5.8: Find/Replace.

5.2.2 Menu Edit 59

The search context can be set to one of the following entities:

Variables: Find program lines with variable names that match the search text.

Operators: Find program lines with operator or procedure calls that match the search text.

Texts: Full text search. Find program lines that match the search text anywhere. If the full text editor
is disabled, no replacing is allowed in this mode to ensure the consistency of the program code.

The search scope can be specified as follows:

All: Search the main procedure, all local and all external procedures.

Program: Search the main procedure and all used procedures.

Current Procedure: Search the current procedure only.

Please note that locked procedures are not searched (see section “Protected External Procedures” on page
123).

The following parameters specify how the search is performed:

Case Sensitive: By default, the case of the search text is ignored, thus searching for image will find
Image or IMAGE as well. Check this box to make the search case-sensitive.

Whole Words: By default, program lines are matched even if the search text is only part of a word, thus
an operator search for threshold also matches operator calls to bin_threshold. Check this box
to find only exact matches.

Backward: Check this box to reverse the search direction.

Finding Single Occurrences of the Search Text

Enter the search text and click Find. If there is no match, the text field will blink shortly. Otherwise,
the first matching program line in the current procedure is highlighted. Each subsequent click of Find
highlights the next matching program line. If the last matching line of the current scope has been reached,
the text field blinks shortly. The next click on Find starts over at the beginning.

Finding All Occurrences of the Search Text

Enter the search text and click Find All. All matched lines are listed at the bottom of the dialog
along with the corresponding procedure name and line number. Click on a search result to jump to
the corresponding procedure and highlight the matching program line. This function is recommended
before doing a global replace to preview which program lines will be affected. An example is displayed
in figure 5.9.

You can even select multiple lines from the search result by holding the <Ctrl> key. The following
actions may be performed for all selected lines (either from the context menu of the search result or
the corresponding menu entries or tool bar icons): Cut (page 56), Copy (page 57), Delete (page 57),
Activate (page 57), and Deactivate (page 58).

G
U

IR
ef

er
en

ce

60 Graphical User Interface

Figure 5.9: Finding all occurrences of the search text.

Replacing Variable Names

Click Variables to specify the search context. Enter the search text and the replace text. You can
replace parts of variable names by keeping Whole Words unchecked.

Click Find until the desired line is found. Afterwards, click Replace to replace all occurrences of the
search text in the matched line. The next matching line is highlighted automatically.

Click Replace All to replace all occurrences of the search text in the specified scope. It is recom-
mended to do a Find All beforehand, to estimate the extent of this operation.

Replacing Operator Calls

You can replace one operator or procedure call with another. Because different operators very likely have
different parameters, the source parameters have to be mapped to the target parameters beforehand. See
figure 5.10 for an example.

Click Operators to specify the search context. Enter the source operator or procedure name and the
target operator or procedure name. When both names are specified, the parameters of the target opera-
tor/procedure are listed at the bottom of the dialog. For every target parameter you have to select or enter
a corresponding source parameter.

5.2.2 Menu Edit 61

Figure 5.10: Replacing operator calls.

5.2.2.10 Find Again

Synopsis: Find the next match of the last entered search string.

Shortcut: <Ctrl+G>

This menu item repeats the search specified via the menu item Find/Replace....

G
U

IR
ef

er
en

ce

62 Graphical User Interface

5.2.2.11 Preferences...

Synopsis: Set global preferences of HDevelop.

HDevelop maintains a set of preferences that are persistent between sessions. You can customize the ap-
pearance of HDevelop’s user interface (syntax highlighting, fonts, and language) as well as its behavior,
configure the settings of external procedures, and change the default visualization settings of the graphics
windows.

Changes to the settings in this dialog are saved automatically without any user intervention. The location
of the generated file depends on the operating system:

Windows: %APPDATA%\MVTec\HDevelop.ini

UNIX: $HOME/.hdevelop/MVTec/HDevelop.ini

The dialog provides its own menu with the following entries:

Import Using this menu entry you can import a selection of preferences which were previously saved
using the menu entry Export (see below). The dialog is displayed in figure 5.11.

In the import dialog you can select a file with saved HDevelop preferences (default file extension:
.hdp). The check boxes allow to import groups of settings selectively. They correspond to the
categories of the dialog. The runtime settings are not persistent and can neither be exported nor
imported.

Export The export dialog is identical to the import dialog. Using the check boxes you can specify
which settings will be saved to the selected file.

Reset Selecting this menu entry resets all preferences (except the window geometry and layout) to the
default settings. If you want to reset the window geometry as well you can start HDevelop with
the following command line switch:

Figure 5.11: Import.

5.2.2 Menu Edit 63

hdevelop -reset_preferences

The preferences dialog contains a list of categories on the left and several related tab cards on the right.
The size and orientation of these elements are controlled by a splitter. The available categories of pref-
erences are described in the following sections.

G
U

IR
ef

er
en

ce

64 Graphical User Interface

2 User Interface . Program Listing

Font: Specifies the font that is used in the program window.

Indent Size: Specifies the number of spaces an indenting level in the program window accounts for.
In HDevelop the bodies of loops and conditionals are indented automatically.

Colors: Specifies the colors used for syntax highlighting in the program window. You can choose one
of the predefined color schemes, or set up your own by clicking on the colored buttons. Changing
any color automatically switches to the color scheme User defined.

Editor Settings: HDevelop supports two methods for editing programs:

• Dialog-based Editor

Specifies the classical dialog-based editing mode. In this mode, program lines are edited in
the operator window by double-clicking them in the program window. This editing mode is
described in the section “Dialog-based Editor” on page 106.

• Full Text Editor

Selects the full text editor. In this mode, text can be freely edited in the program window.
Double-clicking in the program window still sends the corresponding program line to the
operator window (unless the operator window has been closed). This way, the full text editor
can be used in conjunction with the classical dialog-based editing mode. This editing mode
is described in the section “Full Text Editor” on page 108.

If the full text editor is selected, the following option tweaks its operation:

• Advanced Autocompletion

Enables advanced autocompletion in the full text editor. This feature is described in the
section “Full Text Editor” on page 108.

These options can also be set in the program window (see section “Program Window Tool Bar” on
page 105).

2 User Interface . Fonts

In this tab card, the font settings of HDevelop may be modified.

• General: The font used throughout the user interface (menu entries, labels etc.)

• Help Window: The body font used in the help window (menu Help (page 102) . Help).

• Program Listing: The font used in the program window. This is the same font setting as on the
tab card Program Listing (see above).

• Advanced Autocompletion: The font used in the advanced autocompletion overlays.

• Values and Parameters: The font used for displaying values in the variable window and asso-
ciated inspection windows as well as parameters in the operator window.

• Printing: The font used when printing program listings.

5.2.2 Menu Edit 65

Figure 5.12: User Interface . Program Listing.

2 User Interface . Language

In this tab card you can change the language of the user interface. Please note that HDevelop needs to
be restarted if a different language is selected. By default, HDevelop uses the language that is specified
in the operating system locale (specifically, the environment variable LC_COLLATE). Once the language
is changed in this dialog, the operating system locale is disregarded.

2 User Interface . Layout

Show full path in main window title: This check box determines whether the full path of the
current program or only the file name is displayed in the title bar of the HDevelop window.

Default for Organize Windows: These combo boxes define the tiled layout of the four main win-
dows of HDevelop when using the menu entry Menu Window . Organize Windows (page 100).

G
U

IR
ef

er
en

ce

66 Graphical User Interface

2 External Procedures . Directories

Use this tab card to manage the list of directories that contain external procedures. The directories are
scanned for external procedures in their listing order. For each directory, the total number of procedures
is displayed. The number of loaded procedures is usually equal to the total number. However, external
procedures are not loaded if a directory contains procedures with the same name as a preceding directory.
The tab card is displayed in figure 5.13.

Please note that HALCON comes supplied with a set of standard procedures. These are general-purpose
procedures used by many of the supplied example programs. The path to these external procedures is
set to %HALCONROOT%\procedures under Windows and $HALCONROOT/procedures under UNIX, and
cannot be altered or deleted in this dialog. It is, however, possible to override the supplied external
procedures by placing external procedures with the same name in one of the user-defined directories.

The documentation of the supplied procedures is available in the online help of HDevelop under Proce-
dure Reference Manual.

Figure 5.13: External Procedures . Directories.

Add: Select an additional directory from the file selection dialog (page 155). This directory will be
added to the list. All subdirectories of the selected directory will be scanned as well.

Delete: Delete the selected directory from the list. Programs using any external procedure from that
directory will no longer run.

Rescan: Rescan all listed directories to reflect any changes in the file system.

5.2.2 Menu Edit 67

2 External Procedures . External Procedures

This tab card lists all external procedures in the order they are loaded from the configured directories
(page 66). For each procedure, the following information is displayed:

Field Meaning
Number of the external procedure.
Procedure Name Name of the external procedure.
State Loaded: The external procedure has been loaded successfully. It can be

used in any HDevelop program.
Unloaded: An error occurred while trying to load the external procedure,
e.g., the file permissions are wrong or the external procedure file is cor-
rupted.
Hidden: An external procedure with the same name has already been
loaded from a different directory.

Search Directory Directory name from the tab card Directories where this procedure is
found.

Relative Path Path name of the external procedure relative to the search directory.
Used by Usage counter and the names of the callers of this procedure.
Modifications The number of modifications to the external procedure after it has been

loaded.

Figure 5.14: External Procedures . External Procedures.

G
U

IR
ef

er
en

ce

68 Graphical User Interface

2 External Procedures . Manage Passwords

Using this tab card, you can conveniently manage the editing status and passwords of all external proce-
dures. The external procedures are divided into three categories (from left to right): External procedures
without a password (unprotected), external procedures for which the password has already been entered
in this session (unlocked), and external procedures that are locked with a password. For an explanation
of the different states, see section “Protected External Procedures” on page 123.

Using the arrow buttons between the columns or the left and right cursor key, you can move the selected
external procedures to a different status. If you move procedures from the first to the second column, a
password dialog is displayed which is described in section “Protecting a Procedure” on page 123. The
same password is applied to all selected procedures.

If you move procedures from the second to the third column, the bodies of the corresponding external
procedures will be locked. They can only be accessed if the correct password is supplied. This can either
be done from this dialog by simply moving the corresponding procedures back to the middle column
and entering the password. Or, you can unlock procedures individually from the program window as
described in section “Creating and Editing Procedures” on page 112.

If you select multiple procedures in the third column and move them to the left, a password dialog
appears to unlock the procedures. Only those procedures are moved (and thus unlocked) that match the
supplied password. This way, you can conveniently edit a group of external procedures that share the
same password.

The button Change Password is available if one or more procedures are selected in the middle column.
It assigns a new password to the selected procedures, regardless if the previous passwords were different.

Please note, that password changes or moving procedures from or to the first column require the corre-
sponding procedures to be saved. See Save (page 49) and Save All (page 50).

Figure 5.15: External Procedures . Manage Passwords.

5.2.2 Menu Edit 69

Figure 5.16: External Procedures . Procedure Use.

2 External Procedures . Procedure Use

This tab card lists the usage of procedures grouped by their calling procedures. You can select a proce-
dure and the type of used procedures (either local or external). For the main procedure you can also list
the unused procedures. The tab card is displayed in figure 5.16.

2 External Procedures . Unresolved Procedure Calls

This tab card helps you to find unresolved procedures in your current program. If the current program
or the loaded procedures contain unresolved procedure calls, they are listed here along with the calling
procedure name.

G
U

IR
ef

er
en

ce

70 Graphical User Interface

2 General Options . General Options

• Select the behavior of pressing the [Return] key in the operator window or
full text editor:

This option can also be set in the program window (see section “Program Window Tool Bar” on
page 105).

• OK (Enter and execute): Enter the operator in the program window and execute it (the
default behavior).

• Enter: Enter the operator without executing it.

• Save program and external procedures automatically before execution:

If this option is enabled and you click any of the execution buttons (like Run or Step Over) and
there are unsaved changes in the current program, the program will be saved before being executed.
Use this option with care: You usually do not want to select this option if you are experimenting
with a program, e.g., when trying out different parameter settings.

• Number of recent program files:

The number of recent program files that are displayed in the menu Menu File . Recent
Programs can be adjusted by altering this value.

• Show recent program files:

If you select the option Only available, the list of recent programs contains only programs that
are currently available. This option is useful, if the list is likely to contain files from network drives
that might be disconnected at times.

• Encoding for saving HDevelop programs and procedures:

HDevelop can save programs and procedures in two different encodings. Upon loading, HDevelop
detects the used encoding automatically. It is recommended to use UTF-8 encoding (Unicode) if
the program contains international characters that exceed the ASCII standard. However, in order
to load programs in older versions of HDevelop, you have to set the encoding to Native.

• Precision for displaying real values:

This option sets the number of significant digits that are displayed in the variable window (page
129) and variable inspection windows, see “Inspecting and Editing Variables” on page 134.

• Display string values with special characters quoted:

Special characters (like \n for a newline character) in string values are usually interpreted in the
variable window and the variable inspect window. If this option is ticked, special characters are
displayed verbatim, i.e., as they are entered. See table 7.1 on page 213 for a list of special charac-
ters.

• Precision for displaying mouse position values:

If set to a value greater than 0, subpixel mouse positions are enabled. See Position Precision
(page 82) for more information.

5.2.2 Menu Edit 71

2 General Options . Experienced User

• Show HALCON Low Level Error Messages:

Low-level errors are normally invisible for the user because they are transformed into more com-
prehensive error messages or simply ignored. Activating this item generates a message box each
time a low-level error occurs.

• Suppress error messages (throw directly an HDevelop exception):

HDevelop normally displays a dialog when a run-time error occurs (unless this has been changed
in the tab Runtime Settings -> Runtime Settings). If an error occurs in a watched block of
program lines (surrounded by try ... catch), the user may choose to cancel the program execution,
or to throw an exception, i.e., continue the execution at the corresponding catch ... endtry block.

Activate this option, if you always want exceptions to be thrown without any user intervention.

• Ignore semantic type:

By default, the parameter suggestions in the operator window and the full text editor (with ad-
vanced autocompletion enabled) include only variable names that match the semantic type of the
corresponding parameter. If Ignore semantic type is checked, these suggestions are extended
so that they also include suggestions of variables with a different semantic type.

• Show memory usage:

If this option is activated, the internal temporary memory usage of the last operator or procedure
call is displayed in the status bar.

• Suppress warnings for HALCON operators that are replaced by dev-operators:

Some operators are deprecated in HDevelop, and issue a warning message when selected in the
operator window. Activating this option suppresses the warning message.

• Disable parameter detection for acquisition operators:

In the operator window, the parameter suggestions for the operators open_framegrabber,
set_framegrabber_param, and get_framegrabber_param depend on the selected image ac-
quisition interface. This behavior can be disabled by ticking the check box. See also Parameter
Display on page 125.

G
U

IR
ef

er
en

ce

72 Graphical User Interface

2 Visualization Settings . Pen / LUT / Paint

The tab cards in this category define the default visualization settings for graphics windows when HDe-
velop is started. See the description of “Set Parameters...” on page 84. The dialog is displayed in
figure 5.17.

Figure 5.17: Visualization Settings . Visualization Parameters.

2 Runtime Settings . Runtime Settings

The settings in this category affect the runtime behavior of HDevelop. Please note that the runtime set-
tings are not persistent between sessions. The runtime settings are reset to their default values, when
a new HDevelop program is started with Menu File . New Program. The dialog is displayed in fig-
ure 5.18.

Figure 5.18: Runtime Settings.

5.2.2 Menu Edit 73

Give Error See also: dev_set_check

This check box specifies the behavior of HDevelop if an error occurs. If it is checked, HDevelop
stops the program execution and displays an error message. Otherwise the error is ignored.

Show Processing Time See also: dev_update_time

This check box indicates whether the required runtime of the last operator or procedure call should
be displayed after the execution has stopped. It is a measurement of the needed time for the current
operator or procedure call (without output and other management tasks of HDevelop). Along with
the required runtime, the name of the operator or procedure is displayed in the status bar at the
bottom of the main window. Please note that the displayed runtime can vary considerably. This is
caused by the inaccuracy of the operating system’s time measurement procedure.

This option can also be toggled from the context menu of the status bar (see page 44).

Update Program Counter See also: dev_update_pc

This option concerns the display of the current position while running the program. The PC always
indicates the line of the currently executing operator or procedure call or the line before the next
operator or procedure call to execute. Using the PC in this way is time consuming. Therefore, you
may suppress this option after your test phase or while running a program with a lot of “small”
operators inside a loop.

Update Variables See also: dev_update_var

This check box concerns the execution of a program: Every variable (iconic and control) is updated
by default in the variable window. This is very useful in the test phase, primarily to examine the
values of control data, since iconic data is also displayed in the graphics window. If you want
to save time while executing a program with many operator calls, you may suppress this output.
Independent of the selected mode, the display of all variables will be updated after the program
has stopped.

Update Graphics Window See also: dev_update_window

This item concerns the output of iconic data in the graphics window after the execution of a HAL-
CON operator. With the default settings, all iconic data computed in the run mode is displayed
in the current graphics window. You may want to suppress this automatic output, e.g., because it
slows down the performance or because the program handles the visualization itself. If the output
is suppressed, you have the same behavior as exported C, C++, Visual Basic, Visual Basic .NET,
or C# code, where automatic output of data is not supported.

Enable the Context Menu in the Graphics Window See also: dev_set_preferences

If this option is activated, the context menu is available when clicking in a graphics window with
the right mouse button. This behavior may be undesirable if a program provides user interaction
with the mouse.

G
U

IR
ef

er
en

ce

74 Graphical User Interface

5.2.3 Menu Execute

In this menu item you find all necessary functions to execute an HDevelop program. In HDevelop,
program execution is always continued at the top-most procedure call, which in most cases corresponds
to the current procedure call. The procedure body displayed in the program window belongs to the
current procedure.

5.2.3.1 Run

Synopsis: Execute the current program from the PC.

Shortcut: <F5>

The program line marked by the PC is the first line that is executed. All following program lines are going
to be performed until the end of the current program. After the execution is finished, the main procedure
becomes the current procedure. Note that a break point, stop instruction, or runtime error may interrupt
the execution of your program. If the HDevelop program waits for the user to draw something in the
graphics window, a notification message is printed in the status bar. The program halts until the user
finishes the draw operation and confirms this by clicking the right mouse button.

During the execution of operator or procedure calls the following special behavior occurs:

• You may initiate limited activities. For example, if you double-click variables in the variable
window (page 129) they will be visualized; you may modify parameters for the graphics windows
as described in the Menu Visualization; you may even modify the current procedure body.

Note that all user interaction except Stop is disabled during program execution in case the latter
was not started in the main procedure. HDevelop may be slow to react to your actions while the
program is running. This is caused by the fact that HALCON reacts to user input only between
calls to operators.

• A variable window update during runtime will only be performed if it has not been suppressed (see
section “Runtime Settings -> Runtime Settings” on page 72). In any case, the values of all
variables are shown in the variable window after the execution’s termination.

While the program is running, the menu items Run, Step Over, Step Into, and Step Out (and the
corresponding tool bar buttons) are grayed out, i.e., you cannot execute them.

You have the following possibilities to stop your HDevelop program:

• The program runs until the last operator or procedure call in the current program (i.e., the main
procedure body) has been called. The PC is positioned behind this operator. This is the usual way
a program terminates.

• The menu Menu Execute . Stop (or the corresponding tool bar button) is pressed.

• A break point is reached (see section “Program Window” on page 105). In this case, the last
operator or procedure call that will be executed is the one before the break point.

• The entry Menu File . Quit has been executed (see “Quit” on page 55).

5.2.3 Menu Execute 75

• A runtime error has occurred. An input variable without a value or values outside a valid range
might be typical reasons. In this case the PC remains in the line of the erroneous operator or
procedure call.

• A stop instruction is executed. The PC remains on the line containing the stop instruction. Note
that stop instructions inside protected external procedures (see “Protected External Procedures”
on page 123) are obeyed. However, the code of the protected procedure will only be visible if the
correct password is entered in the program window.

The procedure and procedure call in which program execution was stopped automatically become the
current procedure and procedure call.

5.2.3.2 Run to Insert Cursor

Synopsis: Run from PC to IC.

Shortcut: <Shift+F5>

The menu entry starts executing the program at the line next to the PC. The execution continues until
the line before the IC is executed. Any break points or stop instructions in between cause the program
execution to be stopped.

5.2.3.3 Step Over

Synopsis: Execute the next operator in the current program.

Shortcut: <F6>

This entry enables you to run a program (even if it is not complete) step by step. HDevelop executes the
operator or procedure call directly to the right of the PC.

After the operator or procedure call has terminated, all computed values are assigned to their respective
variables that are named in the output parameter positions. Their graphical or textual representation in
the variable window is also updated. If iconic data has been computed, you will see its presentation in
the active graphics window.

In the status bar the runtime of the operator or procedure call is indicated (unless the time measurement
has been deactivated).

The PC is then moved to the next operator or procedure call to execute. If the operators or procedure calls
are specified in a sequential order, this is the textual successor. In case of control statements (e.g., if ...
endif or for ... endfor), the PC is set on the end marker (e.g., endif or endfor) after the execution
of the last operator or procedure call inside the statement’s body. After endfor and endwhile, the PC
is always set on the beginning of the loop. If a condition (like if or while) evaluates to FALSE, the PC
is set behind the end marker.

Suggestions in the menu Menu Suggestions are determined for the recently executed operator. Finally,
HDevelop is available for further transactions. Any user input which has been made during execution is
handled now.

G
U

IR
ef

er
en

ce

76 Graphical User Interface

5.2.3.4 Step Forward

Synopsis: Execute the next line in the current program.

Shortcut: <Shift+F6>

This entry always steps forward in the current program. The difference to Step Over is apparent in
loops: Only the first run of the loop is single-stepped. When the closing statement of the loop is reached,
the remaining runs of the loop are executed without interruption, and the line following the loop is
executed stepwise again.

5.2.3.5 Step Into

Synopsis: Step into HDevelop procedure.

Shortcut: <F7>

This entry allows you to step into procedure calls. Executing Step Into with the PC on a procedure call
line causes the corresponding procedure and procedure call to become the current procedure and proce-
dure call, respectively. The PC is set on the first executable program line in the new current procedure.
Step Into has the same effect as Step Over if the program line to be executed is not a procedure call.

5.2.3.6 Step Out

Synopsis: Step out of HDevelop procedure.

Shortcut: <F8>

This entry steps out of the current procedure call. Program execution is continued until the first exe-
cutable program line after the previous procedure call in the calling procedure is reached. The previous
calling procedure becomes the current procedure. If the current procedure is the main procedure, the
behavior is the same as Run.

5.2.3.7 Stop

Synopsis: Stop program execution.

Shortcut: <F9>

HDevelop continues processing until the current operator has completed its computations. This may take
a long time if the operator is taking a lot of time to execute. There is no way of interrupting a HALCON
operator. The procedure and procedure call in which the program execution was stopped becomes the
current procedure and procedure call, respectively. After interrupting a program you may continue it by
selecting Run or Step Over, or Step Into if the next program line is a procedure call.

You may also edit the program before continuing it (e.g., by parameter modification, by exchanging
operators with alternatives, or by inserting additional operators).

5.2.3 Menu Execute 77

5.2.3.8 Call Stack...

Synopsis: Visualize the calling hierarchy.

Selecting this item depicts a dialog that contains a list of the names of all procedures that are currently
called on HDevelop’s internal call stack. The top-most procedure call belongs to the most recently
called procedure, the bottom-most procedure call always belongs to the main procedure. Clicking on a
procedure call in the dialog makes the selected procedure call the current procedure call and thus the
procedure belonging to the selected procedure call the current procedure.

When you click on a procedure call that belongs to a protected external procedure (for protected external
procedures see “Protected External Procedures” on page 123), you can only see the procedure body if
you enter the correct password in the program window.

Figure 5.19: Call Stack.

5.2.3.9 Set Breakpoint

Synopsis: Add break point(s) at selected line(s).

This menu item sets a break point on the lines that are currently selected in the program. In most cases,
however, it is more convenient to set individual break points by holding the <Ctrl> key and clicking
in the left column of the program window as described in “Program Counter, Insert Cursor, and Break
Points” on page 111.

5.2.3.10 Clear Breakpoint

Synopsis: Clear break point(s) at selected line(s).

These menu item clears break points on the lines that are currently selected in the program. In most cases,
however, it is more convenient to clear individual break points by holding the <Ctrl> key and clicking
in the left column of the program window as described in section “Program Counter, Insert Cursor, and
Break Points” on page 111.

5.2.3.11 Clear All Breakpoints

Synopsis: Clear all break points in the current program.

G
U

IR
ef

er
en

ce

78 Graphical User Interface

5.2.3.12 Reset Program Execution

Synopsis: Reset program to its initial state.

Shortcut: <F2>

The main procedure becomes the current procedure and the call stack is cleared of all procedure calls
except the main procedure call. The latter is reset, i.e., all variables have undefined values and the PC
is set to the first executable line of the main procedure. The break points, however, are not cleared. All
graphics windows except one are closed, and the remaining graphics window is cleared. This menu item
is useful for testing and debugging programs.

5.2.3.13 Reset Procedure Execution

Synopsis: Reset procedure execution.

Shortcut: <Shift+F2>

The variables of the current procedure are reset, i.e., all variables have undefined values, and the PC is set
to the first executable line of the current procedure. This menu item is useful for debugging procedures
without affecting the calling procedures.

5.2.3.14 Abort Procedure Execution

Synopsis: Abort execution of current procedure.

Shortcut: <Shift+F8>

All variables of the current procedure are reset. The PC is set back to the line in the calling procedure
from which the current procedure was called. The calling procedure becomes the current procedure.

5.2.4 Menu Visualization 79

5.2.4 Menu Visualization

Via this menu, you can open or close graphics windows and clear their displays. Furthermore, you may
specify their output behavior during runtime. Most functions are also available from the context menu
of the graphics windows.

5.2.4.1 Open Graphics Window...

Synopsis: Open a new graphics window.

See also: dev_open_window

When selecting this menu entry, a dialog window pops up. Here, you may specify some graphics window
attributes. The dialog is displayed in figure 5.20. The position, size and background color of the new
graphics window can be specified. For example, it is more convenient to have a white background while
building graphics for slides or reports (see the HALCON operator dump_window). If the window height
and width are set to -1, the window size is set by HDevelop. It is taken from the persistent preferences of
HDevelop (usually the size of the last graphics window in the previous HDevelop session). A position
value of -1 specifies that the window position is determined by the window manager (in SDI mode).

Figure 5.20: Specifying the parameters of the new graphics window.

The window handle of the new graphics window is displayed in its title bar. This number may be used
in operators that require a window handle (e.g., dev_set_window or dump_window). The handling of
graphics windows is described in more detail in the section “Graphics Window” on page 136.

5.2.4.2 Clear Graphics Window

Synopsis: Clear active graphics window.

See also: dev_clear_window

The history (previously displayed objects) of the window is also cleared.

G
U

IR
ef

er
en

ce

80 Graphical User Interface

5.2.4.3 Close Graphics Window

Synopsis: Close active graphics window.

See also: dev_close_window

5.2.4.4 Display

Synopsis: Select iconic variable to be displayed in active graphics window.

See also: dev_display

This submenu lists all instantiated iconic variables for quick selection. The submenu is split in three
parts (from top to bottom): images, regions, and XLDs.

5.2.4.5 Window Size

Synopsis: Set window size of active graphics window.

See also: dev_set_window_extents

This submenu offers a list of fixed percentages to resize the graphics window with respect to the size of
the most recently displayed image.

The entries Double and Half change the size of the graphics window to half and double its current
window size, respectively, independent of the size of the displayed image.

The entry Aspect Ratio 1:11 scales down the current window size, so that the aspect ratio of the
displayed image is maintained.

5.2.4.6 Image Size

Synopsis: Zoom image size of active graphics window.

The entry Fit Window scales the image to completely fill the graphics window.

A list of fixed percentages scales the image with respect to its natural size.

Double and Half double and half the current image size, respectively.

Aspect Ratio 1:11 scales down the image size, so that its aspect ratio is maintained.

5.2.4 Menu Visualization 81

5.2.4.7 Colored

Synopsis: Disambiguate the display of regions and XLDs by using multiple colors.

See also: dev_set_colored

This is an easy way to display multiple regions or XLDs. Each region is displayed in a different color,
where the number of different colors is specified in the submenu. You can choose between 3, 6 and
12 colors. If all regions are still displayed with one color, you have to use the operator connection
beforehand. You can check this also with the operator count_obj. The default setting is to use 12
colors.

5.2.4.8 Color

Synopsis: Display regions, XLDs, and text in a specific color.

See also: dev_set_color

This item allows you to choose a color for displaying segmentation results (regions and XLDs), text
created with write_string, and general line drawings (e.g., 3D plots, contour lines, and bar charts).
The number of colors that are available in the submenu depends on the graphics display (i.e., the number
of bits used for displaying). After selecting a color, the previously displayed region or XLD object will
be redisplayed with this color if the menu entry Apply Immediately is checked.

The default color is red.

5.2.4.9 Draw

Synopsis: Draw type of regions.

See also: dev_set_draw

Here, you can select a visualization mode to display regions. It can either be filled (menu entry fill) or
outlined (menu entry margin). If set to margin, the line thickness of the displayed regions is specified
using the menu item Line Width.

5.2.4.10 Line Width

Synopsis: Line width used for the display of lines in active graphics window.

See also: dev_set_line_width

Here, you determine the line width for painting XLDs, borders of regions, or other types of lines. You
can select between a wide range of widths using the submenu.

G
U

IR
ef

er
en

ce

82 Graphical User Interface

5.2.4.11 Shape

Synopsis: Specify representation shape for regions.

See also: dev_set_shape

Here, you specify the representation shape for regions. You can display not only the region’s original
shape but also its enclosing rectangle or its enclosing circle.

5.2.4.12 Lut

Synopsis: Specify look-up table for gray value mapping.

See also: dev_set_lut

This menu item activates different look-up tables, which can be used to display gray value images and
color images in different intensities and colors. In the case of a true color display the image has to be
redisplayed due to the missing support of a look-up table in the graphics hardware. For color images
only the gray look-up tables can be used, which change each channel (separately) with the same table.

5.2.4.13 Paint

Synopsis: Specify image visualization.

See also: dev_set_paint

This menu item defines the mode to display gray value images. For more information see the menu item
Set Parameters... below.

5.2.4.14 Position Precision

Synopsis: Select the precision of subpixel mouse positions.

By default, mouse positions are displayed as integers (precision 0), where the upper left image pixel is
displayed as 0, 0. Increasing the precision results in mouse positions being reported as subpixel-precise
positions. Please note that when subpixel mouse positions are enabled, the position 0.0, 0.0 refers to
the center of the upper left pixel, i.e, the upper left edge of the image is displayed as -0.5, -0.5.

5.2.4 Menu Visualization 83

5.2.4.15 Apply Immediately

Synopsis: Update behavior of visualization changes in active graphics window.

If this menu entry is checked, any changes to the visualization settings are applied immediately to the
active graphics window. Otherwise, the changes are deferred until the next object is displayed in the
active graphics window.

5.2.4.16 Update Window

Synopsis: Specify the output behavior of the active graphics window.

If this menu entry is checked, every object (image, region, or XLD) is displayed in the active graphics
window during program execution. Otherwise, the active graphics window is not updated.

5.2.4.17 Reset Parameters

Synopsis: Reset the visualization parameters of the active graphics window to the default settings.

Here, the display parameters of the active graphics window are set to their initial state (as defined in
the preferences, see page 62). The only exception is the size of the window. To clear the history of
previously displayed objects, use Clear Graphics Window. To set the size, use Window Size.

G
U

IR
ef

er
en

ce

84 Graphical User Interface

5.2.4.18 Set Parameters...

Synopsis: Set visualization parameters of the active graphics window with interactive preview.

This menu entry opens the window Visualization Parameters which allows convenient access to
the visualization settings of the active graphics window. Most of the settings are also available as indi-
vidual menu entries in the menu Visualization, but some more advanced settings are only provided
in this window. Furthermore, an interactive preview is provided, which visualizes the current settings.

• Select Graphics Window (only with multiple graphics windows)

Keep in mind that each graphics window keeps its own private set of visualization settings. When
multiple graphics windows are opened in the current session, you can switch between the settings
of the different graphics windows by selecting the corresponding window handle.

Figure 5.21: Visualization Parameters with multiple graphics windows.

• Update

This check box corresponds to the setting of Menu Visualization . Apply Immediately. If it
is checked, every change of a parameter will immediately lead to a redisplay of the image, regions,
or XLD in the graphics window. Otherwise, the parameters become active for the next display of
an object (double-click on an icon or execution of an operator).

• Reset

Reset to the visualization settings defined in the Preferences (page 62).

• Use settings for new windows

Make the current settings also the default settings for new graphics windows.

5.2.4 Menu Visualization 85

2 Pen settings

Here, the display modes for regions and XLDs are specified. You can select the color (single or multiple),
the drawing mode (filled or outlined), the line width, and the shape of the regions.

You can select up to 12 colors by clicking the appropriate check box. They are used to emphasize the
connectivity of different regions in the graphics window. If you choose a single color presentation you
may specify this color by selecting it in the list box.

With the parameter Shape (default is original), you may specify the presentation shape for regions.
You can display not only the region’s original shape but also its enclosing rectangle or its enclosing
circle, etc.

The line width of the presented regions, XLDs, or lines is specified with help of the menu item Line
Width.

For regions the draw mode can be specified: Either it might be filled (item fill) or outlined (item
margin).

These settings are also completely available from the corresponding menu entries in the menu
Visualization. A description of the functionality is provided there. The preview shows the current
settings, which is helpful if the active graphics window does not contain any regions or XLDs.

• “Draw”, see also page 81

• “Colored”, see also page 81

• “Color”, see also page 81

• “Shape”, see also page 82

• “Line Width”, see also page 81

G
U

IR
ef

er
en

ce

86 Graphical User Interface

2 LUT settings

Using LUT you are able to load different look-up tables for visualization. With the help of a false color
presentation you often get a better impression of the gray values of an image. In the case of a true
color display, the image has to be redisplayed due to the missing support of a look-up table in the
graphics hardware. For color images only the gray look-up tables can be used, which change each
channel (separately) with the same table.

See the description of the menu entry “Lut” on page 82.

Figure 5.22: Visualization Parameters: LUT settings.

5.2.4 Menu Visualization 87

2 Paint settings

Here, you can select between several graphical image presentations. In the default mode the image is
displayed unmodified. In the other modes the gray values of the image are taken as height information:
The greater the gray value, the higher the resulting image point. See figure 5.23 for an illustration of the
different modes. Further information can be found at the description of the operators dev_set_paint
and set_paint. If you have chosen a presentation mode, the window displays all possible parameters
you may modify.

• default

Display the image unmodified.

• row/column

Display the height information of a single horizontal/vertical image line. The gray values are
scaled by the specified factor. The corresponding row/column can be selected by clicking into the
graphics window or by entering the exact value.

• contourline

Display height lines. The gray value difference of the lines is defined by the parameter Step.

• 3d_plot_lines / _hidden_lines / _point

Display as a 3D plot using lines, computed hidden lines, or points.

• 3d_plot

Display a 3D plot using OpenGL which can interactively be modified in the graphics window. This
mode can also be enabled from the tool bar of the graphics window. See page 136.

default row 128, scale 20 contourline, step 15column 128, scale 20

3d_plot3d_plot_point3d_plot_hidden_lines3d_plot_lines

Figure 5.23: Comparison of the different paint settings.

G
U

IR
ef

er
en

ce

88 Graphical User Interface

2 Zoom settings

See also: dev_set_part

As opposed to the mouse-based zoom functionality that is available in the tool bar of the graphics win-
dow, the tab card Zoom is parameterized. You can specify the bounding box of the visible area of an
image, or set the center position.

Figure 5.24: Visualization Parameters: Zoom settings.

This tab card specifies which part of an image, region, XLD, or other graphic item is going to be dis-
played. The four text fields of Set part specify the coordinate system. Upper Left Corner defines
the pixel which will be displayed at the upper left corner of the window. Lower Right Corner defines
the pixel which will be displayed at the lower right side of the window.

Below the coordinates of the rectangle, you can specify its center.

The buttons Zoom Out and Zoom In activate a zooming with factor 0.5 or 2, respectively.

To get the image’s full view back on your graphics window, you simply click the button Reset.

The button Aspect adjusts the parameters so that the aspect ratio of the image is maintained.

5.2.4 Menu Visualization 89

5.2.4.19 Zoom Window

Synopsis: Open zoom window for image details and pixel inspection.

The zoom window is described in section “Zoom Window” on page 143.

5.2.4.20 New Zoom Window

Synopsis: Open additional zoom window.

See section “Zoom Window” on page 143.

5.2.4.21 Gray Histogram

Synopsis: Display gray value histogram of active graphics window.

Selecting this entry opens a sophisticated tool for the inspection of gray value histograms, which can
also be used to select thresholds interactively and to set the range of displayed gray values dynamically.
It is described in section “Gray Histogram Window” on page 145.

5.2.4.22 Feature Histogram

Synopsis: Interactive inspection of feature histograms.

This menu item opens a sophisticated tool for the inspection of feature histograms. It is described in
section “Feature Histogram Window” on page 151.

5.2.4.23 Feature Inspection

Synopsis: Inspection of shape and gray value features of individual regions.

This window provides a tool for the convenient inspection of shape and gray value features of individual
regions. It is described in section “Feature Inspection Window” on page 153.

5.2.4.24 Save Window ...

Synopsis: Save the contents of the active graphics window to an image file.

See also: dump_window

The graphics window is saved ‘as is’ (including displayed regions and XLDs). A file dialog pops up.
Select the destination directory, enter a file name, and select the output format (TIFF, BMP, JPEG, PNG,
or PostScript). Afterwards, click Save to actually save the image file, or Cancel to abort.

G
U

IR
ef

er
en

ce

90 Graphical User Interface

5.2.5 Menu Procedures

The menu Procedures contains all functionality that is needed to create, modify, copy, or delete HDe-
velop procedures. To save procedures, refer to the Menu File menu (page 46).

5.2.5.1 Create New Procedure

Synopsis: Create a new internal or external procedure.

Selecting this item opens the procedure interface dialog (page 113) window. The procedure interface
dialog and the mechanism of creating procedures are described in section “Creating and Editing Proce-
dures” on page 112.

5.2.5.2 Duplicate...

Synopsis: Copy a procedure under a different name.

Selecting this menu item opens a dialog with which it is possible to copy existing procedures. The dialog
is displayed in figure 5.25. The combo box Source contains all local procedures in the current program
and all external procedures. In the Target text field the name of the copied procedure can be entered.
Clicking the OK button creates a copy of the source procedure, Cancel dismisses the dialog. The copy
retains the status (local or external) of the source procedure. The copy of an external procedure is placed
in the same directory as the source procedure.

Figure 5.25: Duplicate Procedure.

Duplicating external procedures that are protected with a password (see “Protected External Procedures”
on page 123) is also possible. The associated password is also used for the duplicated procedure.

5.2.5.3 Edit Interface

Synopsis: Edit procedure interface.

This menu item opens the procedure interface window and displays the interface of the current procedure
(or the first procedure from the list, if “main” is the current procedure). The menu item has the same
effect as the button in the program window (page 105).

The interface of external procedures that are protected with a password can only be edited after the
corresponding password has been entered (see section “Protected External Procedures” on page 123.

5.2.5 Menu Procedures 91

5.2.5.4 Delete Current

Synopsis: Delete the current procedure.

If the current procedure is a local procedure, it is deleted from the program and the main procedure
becomes the current procedure. All calls to the local procedure in the current program are marked as
invalid code. This item is disabled if the current procedure is the main procedure, or if it is an external
procedure.

5.2.5.5 Delete All Unused Local

Synopsis: Delete all local procedures that are not used in the current program.

All local procedures that cannot be reached by any procedure call from the main procedure are deleted
from the program. If the current procedure is among the deleted procedures, the main procedure becomes
the current procedure.

5.2.5.6 Insert Used As Local

Synopsis: Insert all used external procedures into the current program as local procedures.

The external procedures used in the current program are copied as local procedures. The external proce-
dure files are left untouched.

5.2.5.7 Insert All As Local

Synopsis: Insert all external procedures into the current program as local procedures.

All external procedures are copied to the current program as local procedures, regardless if they are used
or not. The external procedure files are left untouched.

With this menu item, you can change all of your procedures to become local. If your program contains
protected external procedures, HDevelop issues a warning and inserts only the procedures that are not
locked. Individual procedures can be made local (or external) via the check box Local in the procedures
interface (see section “Procedure Interface Dialog” on page 113). For changing the edit status of an
external procedure see section “Protected External Procedures” on page 123.

5.2.5.8 Make All External

Synopsis: Convert all local procedures into external procedures.

The formerly local procedures are now stored as external procedures in a selectable directory of the list
of external procedure directories (see section “External Procedures -> Directories” on page 66).
If no directories are configured, you can select a target directory from a dialog. HDevelop will add
the selected target directory to the list if you tell it to. Otherwise, the operation will be canceled. For
changing the edit status of an external procedure see section “Protected External Procedures” on page
123.

G
U

IR
ef

er
en

ce

92 Graphical User Interface

5.2.5.9 External Procedure Settings...

Synopsis: Configure settings for external procedures.

When you select this menu item, the window Preferences... . External Procedures ->
Directories appears. With it, you can define one or more directories where external procedures are
stored and searched for. Inside the defined directories, also the contained subdirectories are scanned.
Therefore, it is recommended to select directories with a restricted depth in order to speed up the search
process. If you change the list of directories, the list of all available external procedures is updated.

See also section “External Procedures -> Directories” on page 66.

5.2.5.10 Edit Procedure

Synopsis: Select a procedure for editing in the program window.

This submenu lists all procedures in submenus grouped by chapter and section title (see section “Proce-
dure Interface Dialog” on page 113). Procedures without a chapter title are listed directly in the menu
Edit Procedure. If you click on a procedure name, it will become the current procedure in the program
window. You can also select procedures in the combo box of the program window (page 105).

5.2.6 Menu Operators

Synopsis: Select HALCON operators and procedures.

This menu item comprises all HALCON and HDevelop operators including the HDevelop control con-
structs. Furthermore, procedures can be selected from a submenu at the bottom of this menu.

The following descriptions provide an overview of the operators specific to HDevelop programs. For
detailed information about all operators it is highly recommended to read the corresponding sections of
the reference manual. To get there quickly, select an operator from the menu, and click the button Help
in the operator window.

5.2.6.1 Control

Synopsis: Select control flow operators.

Here, you may select control structures for the program. This involves the execution of a program
segment (henceforth named body) depending on a test (if, ifelse, and elseif) and the repetition
of a program segment (for, while, and repeat) with controlled loop execution (break, continue).
Exception handling is implemented with try, catch, and endtry along with throw for user-defined
exceptions. Furthermore, you may stop the program’s execution at any position (stop) or terminate
HDevelop (exit). The operators assign and insert do not influence the execution, but serve to specify
values for control data (assignment). The operator comment is used to add a comment, that means any
sequence of characters, to the program. The operator return terminates the current procedure call and

5.2.6 Menu Operators 93

returns to the calling procedure (see section “Creating and Editing Procedures” on page 112 for more
information about HDevelop procedures).

Selecting a menu item displays the corresponding control construct in the operator window, where you
can set the necessary parameters. After specifying all parameters you may transfer the construct into
your program. A direct execution for loops and conditions is not possible, in contrast to other HDevelop
and HALCON operators, because you have to specify the loop’s and condition’s body first to obtain
useful semantics. If necessary, you may execute the program after the input with Step Over or Run.
The IC is positioned after the construct head to ensure the input of the construct’s body occurs in the
correct place. This body is indented to make the nesting level of the control constructs visible, and thus
to help you in understanding the program structure. The semantics for loops and conditions are shown
in section “Control Flow Operators” on page 233.

Assignment

The operator assign serves as an assignment operator for control variables (numbers and strings). Anal-
ogously to “normal” operators the input is made in the operator window by specifying both “parameters”
Input and Result (i.e., right and left side of the assignment). An instruction in C, e.g.,

x = y + z;

is declared inside the operator window as

assign(y + z,x)

and displayed in the program window by

x := y + z

The operator insert implements the assignment of a single value (tuple of length 1) at a specified index
position of a tuple. Thus, an array assignment (here in C syntax)

a[i] = v;

is entered as

insert(a,v,i,a)

in the operator window, and is displayed as

a[i] := v

G
U

IR
ef

er
en

ce

94 Graphical User Interface

in the HDevelop program window.

Program termination

The operators stop and exit are used to terminate the program. More precisely, stop interrupts an
execution and exit terminates HDevelop. Having interrupted the execution you may continue the pro-
gram by pressing Step Over or Run. This is useful, e.g., in demo programs to install defined positions
for program interruption. Under UNIX, you can use exit in combination with a startup file and the
command line switch -run. Thus, HDevelop will not only load and run your application automatically,
but also terminate when reaching exit.

Comments

The operator comment allows to add a line of text to the program. This text has no effect on the execution
of the program. A comment may contain any sequence of characters.

5.2.6.2 Develop

Synopsis: Select operators specific to HDevelop.

This menu contains several operators that help to adapt the user interface. These operators offer the
same functionality that you have using mouse interaction otherwise. They are used to configure the
environment from within a program. Using these operators, the program performs actions similar to the
setting of a color in the parameter window, opening a window in the menu bar, or iconifying the program
window with the help of the window manager.

All operators in this menu start with the prefix dev_. It has been introduced to have a distinction to the
underlying basic HALCON operators (e.g., dev_set_color and set_color).

The effects of each operator are described as follows:

dev_open_window, dev_close_window, dev_clear_window The operators dev_open_window and
dev_close_window are used to open and to close a graphics window, respectively. During
opening, the parameterization allows you to specify the window’s size and position. The oper-
ator dev_clear_window clears the active window’s content and its history. This corresponds to
the usage of the button Clear in the graphics window. Please note that dev_open_window and
dev_close_window are not exported to Visual Basic, Visual Basic .NET, and C# because here
one HWindowXCtrl is used.

dev_set_window_extents With this operator, you can set the size and position of the active HDevelop
graphics window.

dev_set_window This operator activates the graphics window containing the given ID. This ID is an
output parameter of dev_open_window. After the execution, the output is redirected to this win-
dow. This operator is not needed for exported code in C++ or C, because here every window
operation uses the ID as a parameter. The operator has no effect for exported code in Visual Basic,
Visual Basic .NET, and C#.

dev_set_color, dev_set_colored dev_set_color has the same effects as the menu item Menu
Visualization . Color (page 81). dev_set_colored is equal to the menu item Menu
Visualization . Colored (page 81).

5.2.6 Menu Operators 95

dev_set_draw This operator has the same effects as the menu item Menu Visualization . Draw
(page 81).

dev_set_line_width For an explanation see the menu item Menu Visualization . Line Width
(page 81).

dev_set_lut For an explanation see the menu item Menu Visualization . Lut (page 82).

dev_set_paint For an explanation see the menu item Menu Visualization . Paint (page 82). If
you want to specify all possible parameters of a given paint mode, you have to specify them as a
tuple, analogously to the HALCON operator set_paint.

dev_set_shape For an explanation see the menu item Menu Visualization . Shape (page 82).

dev_set_part This operator adjusts the coordinate system for image, region, XLD and other graphic
output. This is done by specifying the upper left and the lower right corner coordinates. This
specified part is shown in the entire graphics window. If the width or height of the specified
rectangle has a negative value (e.g., Row1 > Row2), the result is equivalent to the menu Menu
Visualization . Reset Parameters: the zoom mode is switched off, i.e., the most recently
displayed image fills the whole graphics window. This feature of dev_set_part is not supported
for exported C, C++, Visual Basic, Visual Basic .NET, and C# code.

dev_display Iconic variables are displayed in the active graphics window by this operator. It is rea-
sonable to do this when the automatic output is suppressed (see dev_update_window below and
Menu Edit . Preferences... . Runtime Settings -> Runtime Settings (page 72).

dev_clear_obj This operator deletes the iconic object stored in the HDevelop variable that is passed
as the input parameter. In the variable window, the object is displayed as undefined (with a ? as
its icon).

dev_inspect_ctrl This operator opens an inspection window displaying the values of the variable
passed to the operator. To inspect multiple variables at once, you can pass a tuple of variable
names. In most cases a list dialog is opened, which shows all values of the variable (see also
section “Inspecting and Editing Variables” on page 134). In the case of an image acquisition
device handle, a description of this image acquisition device is opened. In addition, this dialog
allows online grabbing of images (see page 133). This operator is not supported for exported
code.

dev_close_inspect_ctrl This is the opposite operator to dev_inspect_ctrl, and closes the in-
spect window. This operator is not supported for exported code.

dev_map_par, dev_unmap_par These operators open and close the parameter dialog, which can also
be opened using the menu Menu Visualization . Set Parameters.... This operator is not
supported for exported code.

dev_map_var, dev_unmap_var These operators iconify the variable window (dev_unmap_var), and
retransform the iconified window to the normal visualization size, respectively (dev_map_var).
This means that the variable window always remains visible on the display in one of the two ways
of visualization. These operators can be executed with the help of the window manager. These
operators are not supported for exported code.

G
U

IR
ef

er
en

ce

96 Graphical User Interface

dev_map_prog, dev_unmap_prog Analogously to dev_map_var and dev_unmap_var, these opera-
tors iconify or deiconify the program window. These operators are not supported for exported
code.

dev_update_window, dev_update_var, dev_update_time, dev_update_pc Using these opera-
tors, you may configure the output at runtime. It corresponds to the settings in menu Menu Edit .
Preferences... . Runtime Settings -> Runtime Settings (page 72). These operators are
not supported for exported code.

dev_set_check This operator is equivalent to set_check of the HALCON library. It is used to handle
runtime errors caused by HALCON operators that are executed inside HDevelop. The parameter
value ’give_error’, which is the default, leads to a stop of the program together with an error
dialog if a value not equal to H_MSG_TRUE is returned. Using the value ’~give_error’, errors or
other messages are ignored and the program can continue. This mode is useful in connection with
operators like get_mposition, file_exists, read_image, or test_region_point, which
can return H_MSG_FAIL.

dev_error_var This operator specifies a variable that contains the return value (error code) of an
operator after execution. This value can be used to continue, depending on the given value.
dev_error_var is normally used in connection with dev_set_check. Note that, as the proce-
dure concept in HDevelop only allows for local variables, the variable set by dev_error_var will
only be valid in calls to the relevant procedure. Furthermore, every corresponding procedure call
will have an own instance of the variable, i.e. the variable might have different values in different
procedure calls. For an example how to use dev_error_var in connection with dev_set_check
see %HALCONROOT%\examples\hdevelop\Graphics\Mouse\get_mposition.dev.

Please note that operations concerning graphics windows and their corresponding operators have addi-
tional functionality in comparison to HALCON operators with corresponding names (without dev_):
graphics windows in HDevelop are based on HALCON windows (see open_window in the HALCON
reference manual), but in fact, they have an enhanced functionality (e.g., history of displayed objects,
interactive modification of size, and control buttons). This is also true for operators that modify visualiza-
tion parameters (dev_set_color, dev_set_draw, etc.). For example, the new visualization parameter
is registered in the parameter window when the operator has been executed. You can easily check this
by opening the dialog Menu Visualization . Set Parameters... . Pen and apply the operator
dev_set_color. Here you will see the change of the visualization parameters in the dialog box. You
have to be aware of this difference if you export dev_* to C, C++, Visual Basic, Visual Basic .NET, and
C# code.

In contrast to the parameter dialog for changing display parameters like color, the corresponding opera-
tors (like dev_set_color) do not change the contents of the graphics window (i.e., they don’t cause a
redisplay). They are used to prepare the parameters for the next display action.

5.2.6.3 Classification, File, Filter, ...

Synopsis: Select HALCON operators.

In the these menu entries, you can find all HALCON operators, arranged in chapters and sections. This
set of image analysis operators forms the most important part of HALCON: the HALCON library. HAL-

5.2.6 Menu Operators 97

CON operators implement the different image analysis tasks such as preprocessing, filtering, or measure-
ment.

You may look for a detailed description of each operator in the HALCON reference manual. Operators
in the menus Control and Develop are special operators of HDevelop. Thus, you will not find them in
the reference manuals for HALCON/C, HALCON/C++, or HALCON/COM.

The menu has a cascade structure, according to the chapter structure of the HALCON reference manual.
As this menu is built up dynamically when HDevelop starts, it might take some time until it is available.
During the build-up time the menu is “grayed out”. Selecting a chapter of the menu opens a pulldown
menu with the corresponding sections or operators, respectively.

This operator hierarchy is especially useful for novices because it offers all operators sorted by thematic
aspects. This might be interesting for an experienced user, too, if he wants to compare, e.g., different
smoothing filters, because they reside in the same subchapter. To get additional information, a short
description of an operator (while activating its name in the menu) is displayed in the status bar.

Note, that some operators are visible in the menus but should not be used, e.g., open_window (in Menu
Operators . Graphics . Window) or reset_obj_db (in Menu Operators . System . Database). If
you select one of these operators, a warning text is displayed in the operator window. This warning will
usually refer to a legal substitute. In the case of most of these operators, you should use the corresponding
Develop operator (e.g., dev_open_window instead of open_window) within HDevelop.

5.2.6.4 Procedures

Synopsis: Select procedures.

This menu lists all internal and external procedures in submenus grouped by chapter and section. If no
sectioning information is associated with a procedure, it appears directly in the submenu. Selecting a
procedure inserts it into the operator window for editing.

G
U

IR
ef

er
en

ce

98 Graphical User Interface

5.2.7 Menu Suggestions

Synopsis: Let HDevelop suggest operators based on the current operator.

This menu shows you another possibility how to select HALCON operators. But here they are proposed
to you in a different manner. It is assumed that you have already selected an operator in a previous step.
Depending on this operator, five different suggestions are offered.

Suggestions are separated into groups as described below.

5.2.7.1 Predecessors

Many operators require a reasonable or necessary predecessor operator. For example, before comput-
ing junction points in a skeleton (junctions_skeleton), you have to compute this skeleton itself
(skeleton). To obtain a threshold image you usually use a lowpass filter before executing a dynamic
threshold (dyn_threshold). Using the watershed algorithms (watersheds), it is reasonable to apply a
smoothing filter on an image first, because this reduces runtime considerably.

5.2.7.2 Successors

In many cases the task results in a “natural” sequence of operators. Thus, as a rule you use a thresholding
after executing an edge filter or you execute a region processing (e.g., morphological operators) after a
segmentation. To facilitate a reasonable processing, all the possible operators are offered in this menu
item.

5.2.7.3 Alternatives

Since HALCON includes a large library, this menu item suggests alternative operators. Thus, you
may, for example, replace mean_image with operators such as gauss_image, sigma_image, or
smooth_image.

5.2.7.4 See also

Contrary to Alternatives, operators are offered here which have some connection to the current oper-
ator. Thus, the median filter (median_image) is not a direct alternative to the mean filter (mean_image).
Similarly, the regiongrowing operator (regiongrowing) is no alternative for a thresholding. In any
case, they offer a different approach to solve a task. References might consist of pure informative nature,
too: the operator gen_lowpass, which is used to create a lowpass filter in the frequency domain, is a
reasonable reference to a Gaussian filter.

5.2.7.5 Keywords...

This menu item gives access to HALCON operators through keywords which are associated with each
operator. The tab card Keywords of the online help window is opened. It is described in section
“Keywords” on page 141.

5.2.8 Menu Assistants 99

5.2.8 Menu Assistants

This menu assembles assistants for specific machine vision tasks. The general concept of the assistants
is described in the chapter “HDevelop Assistants” on page 157.

The following assistants are available:

• Image Acquisition Assistant

• Calibration Assistant

• Matching Assistant

5.2.9 Menu Window

This menu offers support to manage the sub-windows of the main window, i.e., the program, operator,
variable, graphics window(s), and possibly other dialogs. At the bottom of the menu all open windows
are listed. Clicking an entry here brings the corresponding window to the front.

5.2.9.1 Open Graphics Window

Synopsis: Open an additional graphics window.

See also: dev_open_window, and section “Open Graphics Window...” on page 79.

If no graphics window is open, double-clicking an iconic variable will also open a new graphics window.

5.2.9.2 Open Program Listing

Synopsis: Open the program window.

See also: dev_map_prog

This menu item is grayed out if the program window is already open.

5.2.9.3 Open Variable Window

Synopsis: Open the variable window.

See also: dev_map_var

This menu item is grayed out if the variable window is already open.

5.2.9.4 Open Operator Window

Synopsis: Open the operator window.

This menu item is grayed out if the operator window is already open. If the full text editor is not enabled,
you can also open the operator window by double-clicking a line in the program window.

G
U

IR
ef

er
en

ce

100 Graphical User Interface

Figure 5.26: Tiled window layout of HDevelop.

5.2.9.5 Organize Windows

Synopsis: Clean up window area of main window.

When selecting this item, the main window is split into four areas: by default, all graphics windows
are cascaded to fit the upper left quarter, the operator window fits the upper right quarter, the variable
window fits the lower left quarter, and the program window fits the lower right quarter. The positioning
can be adjusted in the preferences (see page 65). All other windows that are currently open are cascaded
at the center of the main window. In this arrangement, the four most important windows are placed
in a non-overlapping fashion to provide maximum accessibility. It is therefore the default layout of
HDevelop.

If the full text editor is enabled and the operator window is closed, the program window will be stretched
to occupy the configured position of the operator window as well.

The tiled layout is displayed in figure 5.26.

5.2.9.6 Cascade Windows

Synopsis: Arrange windows in a cascade.

5.2.9 Menu Window 101

Figure 5.27: Cascaded window layout of HDevelop.

By selecting this item, HDevelop arranges the currently open windows in a cascade. The cascaded
window layout is displayed in figure 5.27.

5.2.9.7 SDI / MDI

Synopsis: Switch between multiple-document interface (the default) and single-document interface.

The different modes are explained in section “Main Window” on page 43.

G
U

IR
ef

er
en

ce

102 Graphical User Interface

5.2.10 Menu Help

Here, you may query information about HALCON itself and all HALCON and HDevelop operators.

5.2.10.1 Help

Synopsis: Open the online help window.

Shortcut: <F1>

The help window provides access to the documentation of HDevelop and HALCON. In particular, the
complete HALCON Reference Manual is available with extensive documentation of each operator. An-
other possibility of requesting information about the current operator is pressing the button Help inside
the operator window (see section “Operator Window” on page 125).

The help window is described in section “Help Window” on page 140.

5.2.10.2 HALCON Reference

Synopsis: Display the HALCON Reference Manual in the online help window.

5.2.10.3 HDevelop Reference

Synopsis: Display the HDevelop Reference chapter in the online help window.

5.2.10.4 HDevelop Language

Synopsis: Display the HDevelop Language chapter in the online help window.

5.2.10.5 Search Documentation

Synopsis: Open the online help window and show the search tab to enter search queries.

The online help provides an integrated search engine. You can enter search queries there and search the
HALCON documentation suite.

The search syntax is described in section “Help Window” on page 140.

5.2.10.6 HALCON News (WWW)

Synopsis: Visit the HALCON home page.

This menu item lets you check for the latest news about HALCON on MVTec’s WWW server, e.g.,
whether new extension packages, image acquisition interfaces, or HALCON versions are available.

5.2.10 Menu Help 103

5.2.10.7 About

Synopsis: Display HDevelop version and licensing host IDs.

This menu item delivers information about the current HALCON and HDevelop version. Furthermore,
it lists host IDs detected by the license manager (see the Installation Guide for more information).

G
U

IR
ef

er
en

ce

104 Graphical User Interface

5.3 Tool Bar

You use most icons in this tool bar to accelerate accessing important HDevelop features. These are
features which you are performing many times while working with HDevelop. Hence, there are buttons
to handle your HDevelop programs and to edit them. The most important buttons are used to start and to
stop a program (or parts of a program).

New program <(Ctrl+N>) (see page 46).

Open program <(Ctrl+O>) (see page 46).

Browse the supplied example program database <(Ctrl+E>) (see page 47).

Save program or selected external procedure <(Ctrl+S>) (see page 49).

Save all modifications in the program and external procedures <(Ctrl+Alt+S>) (see page 50).

Export the program to another programming language (see page 51).

Print (parts of) the current program <(Ctrl+P>) (see page 54).

Cut highlighted program lines to internal buffer and system clipboard <(Ctrl+X>) (see page 56).

Copy highlighted program lines to internal buffer and system clipboard <(Ctrl+C>) (see page 57).

Delete highlighted program lines <(Del>) (see page 57).

Paste program lines from internal buffer <(Ctrl+V>) (see page 57).

Undo last editing action <(Ctrl+Z>) (see page 56).

Redo last editing action <(Ctrl+Y>) (see page 56).

Activate highlighted program lines <(F3>) (see page 57).

Deactivate highlighted program lines <(F4>) (see page 58).

Find/replace text in the current program <(Ctrl+F>) (see page 58).

Run program from PC <(F5>) (see page 74).

Step over next program line <(F6>) (see page 75).

Step into procedure call <(F7>) (see page 76).

Step out of procedure <(F8>) (see page 76).

Stop program execution <(F9>) (see page 76).

Reset program execution <(F2>) (see page 78).

Reset current procedure execution <(Shift+F2>) (see page 78).

Abort current procedure execution <(Shift+F8>) (see page 78).

Display visualization settings (see page 84).

Open zoom window (see page 89).

Open gray histogram window (see page 89).

Open feature histogram window (see page 89).

Open feature inspection window (see page 89).

Open help window <(F1>) (see page 102).

5.4 Program Window 105

5.4 Program Window

The program window (see figure 5.28) is divided into three areas:

• The main part of the program window contains the program code of the current HDevelop proce-
dure. See section 5.4.1.

• The column at the left side displays line numbers. It also contains the PC, the IC, and optionally,
one or more break points. See section “Program Counter, Insert Cursor, and Break Points” on page
111.

• At the top, the displayed procedure can be selected from the drop-down list. The arrow buttons
provide convenient access to previously displayed procedures. If the current procedure is the main
procedure, and you select another procedure from the drop-down list, the left arrow button takes
you back to the main procedure. When you get there, the right arrow button moves forward, and
displays the previously selected procedure again.

Using the rightmost tool bar button of the program window, the interface of the current procedure
and its documentation can be edited, i.e., the number of parameters as well as their names and
types, can be modified. See section “Creating and Editing Procedures” on page 112 for a detailed
description. The remaining tool bar buttons affect the editing behavior.

Program Window Tool Bar

Move backwards in the history of displayed procedures.

Move forward in the history of displayed procedures.

Toggle editing mode (off : dialog-based editor, on: full text editor).

Toggle behavior of <Return> key (on: current program line is entered and executed, off : current line
is entered).

Toggle advanced autocompletion on/off (full text editor only).

Edit interface and documentation of current procedure.

5.4.1 Editing Programs

HDevelop provides two complementary editing modes. First, there is the classical dialog-based editing
mode. In this mode, program lines are edited in the operator window. It is the default method used in
HDevelop. Furthermore, there is a full text editing mode with advanced autocompletion. When it is
enabled, the program code can be modified directly in the program window.

The editing mode can be switched in the toolbar of the program window (see Program Window Tool
Bar). You can also set the editing mode in the preferences (see the option Editor Settings in the
User Interface -> Program Listing on page 64).

The two different editing modes are explained in the following sections.

G
U

IR
ef

er
en

ce

106 Graphical User Interface

browse history current procedure

editing mode

advanced autocompletion

edit interface

execute on <Return>

BP

IC

PC

Figure 5.28: Program window.

5.4.1.1 Dialog-based Editor

In this mode, the program window is used to visualize program lines, but not to modify them. You cannot
change the program body by modifying the text directly. Editing the program in HDevelop is done in
the operator window (see section “Operator Window” on page 125). The main reason for this principle
is the clear separation of the parameters and the advantage that it facilitates providing sophisticated help.
Thus, many input errors can be avoided.

Every line starts with an operator or procedure name, which is indented, if necessary, to highlight the
nesting level created by control structures.

After the operator or procedure name the parameters are displayed in parentheses. Parameters are sepa-
rated by commas.

To edit a line of a program, you double-click it with the left mouse button. In case of conditions and
loops the operator line with the parameters has to be selected. For example, you have to double-click
for in a for...endfor loop, but until in a repeat...until loop. You may edit only one operator
or procedure call at a time.

After double-clicking a program line, note the following:

5.4.1 Editing Programs 107

edit parameters

try parameters

submit edited program line

double−click

open online help

Figure 5.29: Editing a program line in the dialog-based editor.

• The program line is highlighted in a slanted font. This serves as a reminder that you are altering an
existing program line instead of adding a new one.

• The operator or procedure call of the program line is displayed in the operator window and can be
edited there.

• The window title of the operator window clearly indicates that you are editing an existing program
line. It also displays the procedure name and the line number.

• Clicking OK or Replace in the operator window will replace the original program line. This is
even the case if the corresponding program line is no longer in view, e.g., if a different procedure
is selected in the program window.

If the program line is deleted before the changes are committed in the operator window, the edited
line will be inserted as a new program line at the IC. If you are in doubt about the current status,
check the window title of the operator window.

Figure 5.29 illustrates the editing process.

Copy, Paste, Delete

Besides editing the parameters of a single operator or procedure call, single and multiple lines can be
deleted, cut, or pasted in one step using simple mouse functions. To use this feature, you select one or
more lines in the program window using the mouse:

• You select one line by clicking on it. Previously selected lines will then become deselected.

• To select more than one line, press the <Ctrl> key while clicking on the each additional line.

G
U

IR
ef

er
en

ce

108 Graphical User Interface

• The <Shift> key is used to select a sequence of lines using one mouse click: All lines between
the most recent selection and the new one will become select.

After the selection of lines, the edit function can be activated by either using the menu Menu Edit, or
the tool bar (see section “Tool Bar” on page 104), or via the context menu of the program window (see
page 111).

5.4.1.2 Full Text Editor

The full text editor enables free text editing. You can click in the program window to place the cursor,
and type ahead. You can select portions of the text with the mouse and have the selection replaced with
what you type afterwards. This makes small changes to parameter values much faster than using the
dialog-based editor.

Special input formats

The following assignments are equivalent. Both variants can be used in the full text editor, but the first
variant is more readable:

FileName := 'clip'

assign('clip', FileName)

Individual tuple elements can be set in the following way. Both variants are equivalent, but the first
variant is more readable:

Line[12] := 'text'

insert(Line, 'text', 1, Line)

Note that for loops always have to be entered in the following format:

for Index := 1 to 10 by 1
...
endfor

Line continuation

Unlike the dialog-based editor, operator calls may span several lines for readability. This is indicated by
entering the continuation character, i.e., a backslash character as the last character of the line.

For example, you can enter

disp_arrow (WindowID, \
Row[i], \
Column[i], \
Row[i]-Length*sin(Phi[i]), \
Column[i]+Length*cos(Phi[i]), \
4)

5.4.1 Editing Programs 109

instead of

disp_arrow (WindowID, Row[i], Column[i], Row[i]-Length*sin(Phi[i]), Column[i]+...

If you switch back to the dialog-based editor, continued lines will be displayed as single lines again.
Visually, the breaks seem to have disappeared. Actually, the formatting of the full text editor is preserved.
Thus, if you switch back to the full text editor mode, the formatting is restored in the program window.

Auto Indenting

The indent of new lines is adjusted automatically. Usually, the indent of the previous line is maintained.
If a line is continued inside the parentheses of an operator call, the new line is indented up to the opening
parenthesis. If the previous line opens a control structure (e.g., if or while), the indent is increased by
the indent size. The indent size is specified in the preferences (see Program Listing (page 64)). It
defaults to four spaces. If a control structure is closed (e.g., by entering endif or endwhile), the indent
of the current line is decreased by the indent size.

Advanced Autocompletion

The full text editor provides advanced autocompletion to support you in entering programs quickly and
correctly without restricting your typing in any way. Autocompletion is enabled by default. It can be
toggled on or off from the tool bar of the program window (see “Program Window Tool Bar” on page
105).

When you start typing a new line, HDevelop will suggest a list of matching operator names:

Note that the line is highlighted as invalid (red in the default color scheme) because it is still incomplete.

The list is updated immediately as you continue typing:

Press <Tab> to complete to the longest common string. In this example, only one operator name remains
in the list. Thus, it is fully completed, including the opening parenthesis of the operator call:

Once the cursor moves inside the parentheses, the suggestion list changes from operator mode to param-
eter mode. Furthermore, the signature of the selected operator is displayed, and the parameter corre-
sponding to the cursor position is highlighted in bold.

G
U

IR
ef

er
en

ce

110 Graphical User Interface

The first entry in this list is a suggestion that completes the full operator call up to the closing parentheses.
Again, typing ahead updates the list of suggestions accordingly. The remaining entries are suggestions
for the first parameter of the operator call.

At this point, press <Tab> to select the first suggestion,

or press <Up> or <Down> to step through the list entries,

and press <Tab> or <Return> to select the highlighted entry. Then, enter a comma or press <Tab> again
to get suggestions for the second parameter:

Note the browse button in the suggestion list. It opens up a file selection dialog (page 155) to specify the
file name parameter.

In this example, we want to load the image clip, so none of the suggestions fits. Just type the file name
in single quotes (’clip’) and press <Tab> to complete the parameter list. The closing parenthesis is
inserted automatically:

Special Keyboard Shortcuts in the Full Text Editor

General:

<F1> open the reference documentation of the oper-
ator or procedure call of the current line

<Tab> cursor at the beginning of line: adjust indenta-
tion of current line
selected text: indent corresponding code lines
one level

<Shift>+<Tab> selected text: outdent corresponding code lines
one level

<Shift>+<Return> reverse action of <Return> key (see Program
Window Tool Bar)

<Ctrl>+<Return> execute current line (same as clicking Apply
in operator window, see section “Control But-
tons” on page 128)

<Ctrl>+<F> open find/replace dialog with selected text
(section “Find/Replace...” on page 58).

5.4.2 Program Counter, Insert Cursor, and Break Points 111

Advanced autocompletion:

<Escape> hide suggestion list
<Ctrl>+<Space> re-display suggestion list based on cursor posi-

tion or selection
<Up> highlight previous entry in suggestion list
<Down> highlight next entry in suggestion list
<Tab> operator suggestions: complete to highlighted

suggestion or to longest common string from
suggestion list
parameter suggestions: complete to high-
lighted suggestion or first suggestion if no sug-
gestion is highlighted

5.4.2 Program Counter, Insert Cursor, and Break Points

The column to the left of the displayed program body contains the PC, represented as a green arrow
pointing to a program line, the IC (a black triangle between two program lines) and optionally one or
more break points (BP–a red STOP sign).

The program counter resides in the line of the next operator or procedure call to execute. The IC indicates
the position to insert a new program line. A break point shows the program line on which the program is
stopped.

You may position or activate these three labels by clicking in the left column of the program window.
That column itself is divided into three areas: Depending on the horizontal position of the mouse cursor,
all three label types are available. The actual type is indicated through a change of the mouse cursor.
At the leftmost position, break points can be placed. In the middle position, the PC can be placed. And
finally, in the rightmost position, the IC can be placed. HDevelop assists you by displaying the icon that
would be inserted. If this seems confusing, you can force a specific label by holding down the following
keys regardless of the horizontal position:

• Hold <Shift> to place the IC.

• Hold <Ctrl> to place or delete a BP.

• Hold <Shift>+<Ctrl> to place the PC.

Context Menu

By clicking into the program window with the right mouse button you can open a context menu, which
contains shortcuts to some of the actions of the menus Menu Edit, e.g., copy and paste lines, and Menu
Execute, e.g., activate and deactivate lines or set and clear break points. Please note that these actions
behave slightly differently than their counterparts in the main menus: When called via the main menus,
the actions are performed only on the selected part of the program; if nothing is selected, no action is
performed. In contrast, when an action is called via the context menu and no line is selected in the
program, the action is performed for the line onto which you clicked with the right mouse button.

Note that any actions that modify the position of the PC will cause the call stack to pop all procedure
calls until the current procedure call remains on top. This is relevant in case the current procedure call is

G
U

IR
ef

er
en

ce

112 Graphical User Interface

not the top-most procedure call and is necessary to secure the consistency of the call stack. Modification
of the PC can happen as well directly as described above or indirectly by, e.g., inserting a program line
above the PC in the current procedure body.

The following entries of the context menu are not available elsewhere:

Run Until Here Execute the lines from the PC to the line under the mouse cursor.

Help If the line under the mouse cursor contains an operator call, the corresponding page is opened in
the online help window. This is a shortcut to double-clicking the program line and clicking Help
in the operator window.

Show Procedure If the line under the mouse cursor contains a procedure call, the corresponding pro-
cedure becomes the current procedure, i.e., it is displayed for editing.

Show Caller This menu item lists all the places in the current program where the currently displayed
procedure is called. Clicking on an entry takes you to the corresponding program line.

Auto Indent If the full text editor is enabled, the indenting level of all selected program lines is in-
dented in the same way as in the dialog-based editor, i.e., nested program blocks are indented by
the amount of spaces set in the preferences.

5.4.3 Creating and Editing Procedures

HDevelop always displays one procedure, the current procedure, at a time. The combo box on top of the
program window displays the name of the current procedure. You can select another procedure from this
box. The first element of the list is the main procedure, followed by the local procedures of the current
program, followed by the available external procedures. The procedure groups are sorted alphabetically.
When selected from the list, a procedure becomes the current procedure and the corresponding procedure
call becomes the current procedure call. If the selected procedure has multiple calls on the stack, the last
of the procedure calls is displayed.

If the procedure is locked, a password button is displayed instead of the procedure body. See figure 5.30
for an illustration. In order to access the code, the correct password has to be entered (see also section
“Protected External Procedures” on page 123).

Figure 5.30: Display of a locked procedure in the program window.

5.4.3 Creating and Editing Procedures 113

output

input

input

add new parameter
output

{

{iconic

control

Figure 5.31: Creating a new procedure.

5.4.3.1 Procedure Interface Dialog

The interface of the current procedure can be viewed and modified in a separate window, the procedure
interface dialog. To open this dialog, click the button at the top of the program window. This button
performs the same action as the menu item Menu Procedures . Edit Interface.

The procedure interface dialog enables you to create new and edit existing procedures. Using the up-
per buttons of this dialog, you can select the data associated with the current procedure: The button
Interface provides access to the procedure name, its type and its parameters. The remaining buttons
provide access to the general documentation of the current procedure (General Documentation) and
the documentation of its parameters (Parameter Documentation).

The documentation of the procedure may be entered in multiple languages. The language used for
displaying the procedure documentation in the online help depends on the language set in the preferences
of HDevelop.

To edit the procedure documentation in a specific language, select the corresponding entry from the
drop-down list Language.

You can step through the individual tab cards of the dialog using the arrow buttons at the bottom of the
dialog.

OK Activating the button OK at the bottom of the dialog either creates a new procedure or commits the
changes made in the procedure interface, depending on whether the interface dialog was invoked
in order to create a new procedure or to modify an existing procedure. In the latter case not only

G
U

IR
ef

er
en

ce

114 Graphical User Interface

the interface itself might be changed but also the procedure’s program body and variable lists, as
new variables might have been added or existing variables might have been removed or renamed.

If you change the interface of an external procedure, be aware of the fact that other programs
containing it do not update the procedure calls. When loading these programs, the procedure calls
are disabled. If the changes were applied to a procedure that is called from inside a protected
external procedure, that procedure call is not even updated in the current program.

Cancel This button dismisses the dialog. Any changes to the interface or the documentation of the
edited procedure are lost (with the exception of the editing status, see section “Protected External
Procedures” on page 123).

Apply Applies the changes in the dialog (just like pressing OK) without closing it.

Help Displays the online help of the current procedure.

5.4.3 Creating and Editing Procedures 115

2 Interface

Procedure Name This text field specifies the name of the procedure. If the dialog is opened in order to
create a new procedure, it contains a text field for the procedure name to be entered. If you edit an
existing procedure, the name of the procedure is displayed in the combo box Procedure Name on
top of the dialog. You can edit the interface of another procedure by selecting it from the combo
box.

Type This check box determines whether the procedure is a local or external procedure. Local proce-
dures are saved within the HDevelop program while external procedures are saved as stand-alone
files. External procedures can be reused in other HDevelop programs.

Password External procedures can be protected by a password. Initially, external procedures are not
protected, i.e., they can be viewed and modified by all users. How to protect passwords is discussed
in section “Protected External Procedures” on page 123). Local procedures cannot be protected.

Adapt program If you are editing an existing procedure interface, this check box becomes available.
If it is checked, all calls to the procedure in the current program are checked for consistency and
updated if necessary. Note that if new parameters are added to an existing procedure interface, the
corresponding procedure calls are modified by adding new variables as input parameters, which
most likely will not be initialized at the time of the procedure call.

Directory (external procedures only) For external procedures a storage path must be specified. When
storing the external procedure for the first time, this path is preset to the first path in the list of ex-
ternal procedure locations as specified in the dialog Menu Procedures . External Procedure
Settings... (see page 92). You can select any of the configured external procedure paths from
the combo box. If you are editing an existing external procedure, the corresponding path is dis-
played but cannot be altered. Thus, once created external procedures can only be relocated in the
file system.

You can also specify a new target directory by clicking the browse button next to the combo box.
If the selected directory is not in the list of external procedure locations, HDevelop will suggest to
add it to the list when the changes to the dialog are committed. If the addition is canceled, the new
procedure will not be available unless you add the corresponding directory manually.

If the specified directory is a subdirectory of one of the preconfigured locations, it will not be
added to the list. This is because subdirectories are automatically searched in HDevelop.

Parameters

The next part of the dialog is used for the procedure interface parameters. As mentioned earlier, HDe-
velop procedure interfaces have the same structure as HALCON operator interfaces, that is, they may
contain parameters of the four categories iconic input, iconic output, control input, and control output in
this order. The procedure interface dialog contains four separate areas that offer the necessary functional-
ity for manipulating parameters. These areas correspond to above parameter classes and are independent
of each other. Every area is marked with an icon that describes the parameter class (see figure 5.31 on
page 113). It contains a button for inserting new parameters, which are always appended at the end of
the parameter list. The latter is displayed by an array of text fields containing the parameter names.

G
U

IR
ef

er
en

ce

116 Graphical User Interface

Reset If you are creating a new procedure, clicking this button removes all entered parameters. If
you are editing an existing procedure, the original interface is restored, i.e., any changes to the
parameters are undone.

Remove Using this button you can remove single parameters from the list. Before clicking this button,
focus the corresponding parameter by clicking its text field.

Move Up, Move Down Using these buttons you can alter the order of the parameters. Select a parameter
by clicking its text field and use the buttons to change its position.

5.4.3 Creating and Editing Procedures 117

2 General Documentation

Figure 5.32: Editing the general documentation of a procedure.

Basics

Procedures can be grouped by Library and Chapters (chapter and section).

Library This is the top level element of the content hierarchy in the procedure online help. It could
be used to apply a vendor-specific tag to a group of procedures. The external procedures supplied
with HALCON use the library tag “MVTec Standard Procedures”.

Chapters The text fields next to Chapters can be used to specify chapter and section, so that your
procedures can be grouped thematically in the list at the bottom of the menus Menu Procedures
and Menu Operators.

Note that the logical structure created by the chapter and section information does not correspond
to the automatically created directory structure. At least for the external procedures, you can
create the corresponding directory structure afterwards, outside of HDevelop. The recognition of
the procedures in HDevelop is still ensured, as all subdirectories of the external procedure paths
are scanned as well. When editing already existing external procedures, the changed procedures
are stored in the paths they were originally found in.

G
U

IR
ef

er
en

ce

118 Graphical User Interface

Short Description Enter a short description. Usually, this should be a single sentence that describes
the purpose of the procedure. It appears in the overview sections of the online help of the proce-
dures. Additionally, the short description is displayed in HDevelop’s status bar when the procedure
is selected from the menu.

Detailed Description Enter a detailed description of the procedure. Paragraphs are introduced with
a blank line.

Example

This section of the documentation is intended for code examples. This could be a working program or
some code fragments that illustrate the usage of the procedure.

Suggestions

The first field on this tab card allows to associate keywords with the procedure. Enter a comma-separated
list of keywords into this field. The tab card Keywords of the online help may be used as a reference for
keyword suggestions.

Furthermore, you can specify suggested successors, predecessors, and alternatives to the current pro-
cedure. Enter comma-separated lists of operator or procedure names into the fields. See Menu
Suggestions for the meaning of these fields.

Advanced

The text boxes in this tab card are for advanced usage only. It is recommended, to search the online
reference manual for usage examples.

Attention Notes about special observances when using the procedure.

Complexity Notes about intricate details about the procedure usage.

Warning Usually used to indicate obsolete or deprecated procedures that are kept for backward com-
patibility. The warning text should indicate the recommended alternative.

If the procedure is selected in the operator window, the warning text will be displayed as a re-
minder.

References Bibliographic references with recommended reading about certain aspects of the proce-
dure.

2 Parameter Documentation

This section of the dialog provides tab cards for all parameters of the current procedure. The documenta-
tion consists of a fine-grained specification of the parameters, and a short description. The specification
fields depend on the parameter type (iconic or control parameter), and on the selected semantics. In the
following, the most common fields of both iconic and control parameters are listed.

Please refer to the Extension Package Programmer’s Manual (Chapter 2.3) for additional information
about the documentation fields (especially, the semantic types).

5.4.3 Creating and Editing Procedures 119

Iconic Parameter Documentation

Field Meaning
Semantics Specifies the data class of the parameter.
Pixel Types Only available for Semantics image. Lists the

accepted pixel types. The buttons Select All
and None toggle the selection of all parameters.

Multi Channel Only available if Semantics = image.
False: Only the first channel of the image is
processed,
True: Only a multi-channel image is accepted,
Optional: Images with an arbitrary number of
channels are accepted.

Multi Value False: Only a single object (no object tuple) is
accepted,
True: Only object tuples are accepted,
Optional: A single object as well as an object
tuple is accepted.

Description Short description of the iconic parameter.

Figure 5.33: Editing the iconic parameter documentation of a procedure.
G

U
IR

ef
er

en
ce

120 Graphical User Interface

Control Parameter Documentation

Field Meaning
Semantics Specifies the data class of the parameter. For

some semantic types, additional subtypes may
be selected.

Type List Specifies the accepted data types.
Default Type Specifies the default data type.
Mixed Types False: All values of a tuple have the same type,

True: Values of different types can be mixed in
one tuple.

Default Value The entered value is suggested as the default
value by HDevelop.

Values Comma-separated list of suggested values.
Check Exclusively to restrict the selection to
the specified values.

Value Min Minimum value for numeric control data.
Check Enabled to enforce this setting.

Value Max Maximum value for numeric control data.
Check Enabled to enforce this setting.

Multi Value False: The parameter accepts only a single
value,
True: The parameter always expects a tuple of
values,
Optional: Single values as well as tuple values
are accepted.

Description Short description of the control parameter.

Figure 5.34: Editing the control parameter documentation of a procedure.

5.4.3 Creating and Editing Procedures 121

Figure 5.35: Creating a procedure from selected lines.

5.4.3.2 Creating Procedures

New procedures are created by clicking the entry Menu Procedures . Create New Procedure. The
program lines marked in the program window are copied and inserted in the program body of the new
procedure. This is illustrated in figure 5.35. If the last selected program line is not a return operator, a
return call is added at the end of the procedure body. If no lines are selected in the program window,

G
U

IR
ef

er
en

ce

122 Graphical User Interface

the newly created procedure body initially contains only the return operator.

By default, a local procedure is created. If you want to create an external procedure instead, you have to
disable the check box Local and optionally specify chapter and subchapter. Additionally, you can select
the path the procedure is stored in, which by default is the first path specified in the preferences (see
section “External Procedures -> Directories” on page 66). The section “Protected External Pro-
cedures” on page 123 shows how to protect an external procedure by a password so that only authorized
persons can view and modify it.

When creating a new procedure from selected program lines, HDevelop automatically determines suit-
able interface parameters for the procedure from the usage of the variables in the selected code. The
combo box Selection Scheme determines the suggestion of the procedure parameters. The meaning
of this selection is as follows:

Only In If the first use of a variable inside the selected lines is as an input variable, it will be suggested
as an input parameter of the procedure.

Only Out If the last use of a variable inside the selected lines is as an output variable, it will be sug-
gested as an output parameter of the procedure.

All In All input variables inside the selected lines are suggested as input parameters in the procedure.

All Out All output variables inside the selected lines are suggested as output parameters of the proce-
dure.

The classification of variables in the selected program lines is performed separately for iconic and control
variables.

If a variable is an input as well as an output variable, it is assigned to the first category, i.e., the corre-
sponding procedure parameter becomes an input parameter.

If, according to the above rules, a variable name would be suggested as an input as well as an output
parameter, it becomes an input parameter of the procedure. In addition, an output parameter with the
variable name extended by "Out" is created.

As an illustration, the following program lines are selected for a new procedure:

threshold (Image, Region, 128, 255)
connection (Region, ConnectedRegions)

Then, based on the selection scheme All In All Out, the procedure body will read

copy_obj (Region, RegionOut, 1, -1)
threshold (Image, RegionOut, 128, 255)
connection (RegionOut, ConnectedRegions)

If the option Replace selected program lines is checked, the selected program lines are replaced
by an appropriate call of the new procedure. Otherwise, the lines are kept and no procedure call is added.
In any case, the selected program lines are copied to the body of the new procedure as stated above.

The newly defined procedure is now available for selection in the operator window. The variables that
were used to determine the procedure interface parameters are now being offered as input parameters for
the procedure call.

5.4.3 Creating and Editing Procedures 123

Figure 5.36: Entering a password to protect an external procedure.

5.4.3.3 Protected External Procedures

External procedures can be protected by a password. The bodies of protected external procedures can
only be accessed if the correct password is supplied. Protected procedure can be used by all users but
viewed and modified only by authorized persons who know the password. The edit status of a procedure
can be changed via the procedure interface dialog (page 113). To manage the edit status of multiple
external procedures at once, click Menu Procedures . External Procedure Settings... and
select the tab card Manage Passwords (page 68).

By default, new procedures are local procedures, which cannot be protected. To make them external, the
check box Local has to be disabled. Now, the button Password becomes available.

Protecting a Procedure

If you want to protect a procedure with a password, do the following:

• Select the corresponding procedure in the program window.

• Click

to edit the interface of the selected procedure.

• Make sure Local is unchecked. Only external procedures can be protected.

• Click the button Password to assign a password to the procedure.

Then, a separate window appears and the new password must be entered twice. See figure 5.36 for an
example. If both times the same password is used, clicking OK assigns the password. Otherwise, an error
message is raised and you have to repeat the password assignment. When a protected procedure is finally
saved, it is stored in a binary format.

When you start HDevelop the next time, the protected procedure is locked, i.e., when trying to edit the
procedure, e.g., by selecting it from the combo box in the program window, a corresponding message
is displayed in the program window. See figure 5.37 for an example. Additionally, a password button
is displayed in the program window. Upon entering the correct password, the procedure is temporarily
unlocked and stays unlocked as long as you do not close HDevelop.

Changing the Edit Status of a Protected Procedure

To change the status of a protected procedure, you must first unlock it temporarily by entering the pass-
word. Then, you can use the procedure interface dialog (page 113) to change the password or remove the

G
U

IR
ef

er
en

ce

124 Graphical User Interface

Figure 5.37: A locked external procedure.

Figure 5.38: Changing the edit status of a protected procedure.

password to turn the protected external procedure into an unprotected external or even a local procedure.
Click the button Password to change the edit status.

The following options are available:

Lock You can lock the protected procedure so its body cannot be accessed in the current session without
supplying the password again.

Remove Selecting this option removes the password. When the procedure is saved, it is no longer pro-
tected. For turning a protected external procedure into a local procedure (without a password) it is
sufficient to activate the check box Local in the procedure interface dialog (page 113).

New password The password window appears and you assign the new password by the same process
you used for the old one.

Cancel The operation is canceled without altering the status.

Warning

When working with protected procedures, be aware that the password cannot be reconstructed, so be
very careful not to forget it and not to repeat a typing error when assigning it! Further, in some situations
protected external procedures behave differently from common external or local procedures. In particu-
lar, as they cannot be viewed and modified by unauthorized users, they also cannot be copied, printed,
or exported to any programming language (however, they can be duplicated using the menu entry Menu

5.5 Operator Window 125

Procedures . Duplicate...). Additionally, if a protected external procedure contains a call to an-
other procedure for which the interface was changed, the procedure call is not adapted to the changes but
is disabled for the current program.

5.5 Operator Window

This window is used to edit and display an operator or procedure call with all its parameters. Here you
will obtain information about the number of the parameters of the operator or procedure, the parameter
types, and parameter values. You can modify the parameter values according to your image processing
tasks. For this you may use the values proposed by HDevelop or specify your own values.

The operator window consists of the following three parts:

• At the top you find the operator name field, with which you can select operators or procedures.

• The large area below the operator name field is called the parameter display; it is used to edit the
parameters of an operator or procedure.

• The row of buttons at the bottom allows to control the parameter display.

5.5.1 Operator Name Field

The operator name field allows to select operators or procedures by entering (part of) their name. After
pressing <Return> or pressing the button of the combo box, the system is looking for all operators or
procedures that contain the entered name. The order of the listed result is as follows: Operators and
procedures whose names begin with the given substring are listed first, followed by all operators and
procedures that contain the substring elsewhere. Both parts of the list are sorted in alphabetical order.

If there is an unambiguous search result, the parameters are displayed immediately in the operator win-
dow. If there are several matching results, a combo box opens and displays all operators or procedures
containing the specified substring. By clicking the left mouse button you select one operator and the
combo box disappears. Now, the operator’s parameters are shown in the operator window.

The short description of the selected operator is displayed in the status bar. The operator name is dis-
played in the window title of the operator window.

5.5.2 Parameter Display

The parameter display is the main part of the operator window. If you have selected an operator or pro-
cedure call, HDevelop displays its interface, i.e., the name, value, and semantic type of each parameter.

• In the first column of the parameter display the parameter types are indicated by icons. Note that
icons are not repeated if a parameter is of the same type as its predecessor. Hover the mouse cursor
over the icons to get a tool tip with the short description of the parameter.

• In the second column of the operator window you find the parameter names.

G
U

IR
ef

er
en

ce

126 Graphical User Interface

Figure 5.39: Selecting an operator after typing select_.

• The third column consists of the text fields, which contain variable names in case of iconic and
control output parameters and expressions in case of control input parameters. If you want to
change the suggestions offered by the system (variable names or default values), you may do so
either manually or by pressing the arrow button connected with the respective text field. This
opens a list containing a selection of already defined variables and other reasonable values from
the operator knowledge base. By clicking the appropriate item, you set the text field and the list
disappears.

For the operators open_framegrabber, set_framegrabber_param, and
get_framegrabber_param, the value list of certain parameters is dynamic: It depends on
the selected image acquisition interface. An even more reasonable parameter suggestion is given
if the corresponding handle is opened. If this dynamic behavior is undesired, it can be disabled in
the preferences, see General Options -> Experienced User settings on page 71.

This column may also contain action buttons for special semantic types, e.g., a button to browse
the file system for the parameters that expect a file name.

• The fourth column indicates the parameter’s default semantic type and, optionally, its data type in
parentheses.

Hover the mouse cursor over the second to fourth column to get a short description for the corresponding
parameter as a tool tip.

Please refer to the following rules on how parameters obtain their values and how you may specify them:

Iconic input parameters Possible inputs for these parameters are iconic variables of the corresponding
type. If there is no need to execute the operator or procedure call immediately, you may specify
new variable names, i.e., names, that do not already exist in the variable window, but will be
instantiated later by adding further operators or procedure calls to the program body. In any case,

5.5.2 Parameter Display 127

Figure 5.40: Specifying parameters for the operator select_shape.

you have to specify iconic parameters exclusively with variable names. It is not possible to use
expressions.

Iconic output parameters These parameters contain default variables, which have the same names as
the parameters themselves. If a variable with the same name as the output parameter is already
instantiated, a number is added to the name to make it unique. Because the parameter names
characterize the computed result very well, you may adopt these default names in many cases.
Besides this, you are free to choose arbitrary names either by yourself or by opening the list (see
above). If you use a variable that already has a value, this value is overwritten with the new results.
It is possible to specify a variable both in an input and output position.

Control input parameters These parameters normally possess a default value. As an alternative, you
may use the text field’s button to open a combo box and to select a suggested value. In addition,
this combo box contains a list of variables that contain values of the required type. A restriction of
proposed variables is especially used for parameters that contain data like file, image acquisition,
or OCR handles.

Input control parameters may contain constants, variables, and expressions. Common types are
integer numbers (integer), floating-point numbers (real), boolean values (true and false),
and character strings (string).

You can also specify multiple values of these types at once by using tuples. This is an array
of values, separated by commas and enclosed in square brackets. Furthermore, you may build
up expressions with these values. You may use expressions in HDevelop similar to the use of
expressions in C or in Pascal. You will find a detailed description in section “Expressions for Input
Control Parameters” on page 215.

Control output parameters: These parameters are handled in the same way as iconic output parame-
ters. Their defaults are named as their parameter names. Other possibilities to obtain a control

G
U

IR
ef

er
en

ce

128 Graphical User Interface

output variable name are either using the combo box or specifying variable names manually. You
cannot use any expressions for these parameters.

After discussing what can be input for different parameters, it is explained how this is done. Nevertheless,
you have to keep in mind that you need to modify a parameter only if it contains no values or if you are
not satisfied with the suggested default values.

Text input: Give the input focus to a parameter field by clicking into it. Now, you may input num-
bers, strings, expressions, or variables. There are some editing functions to help you doing input:
<Backspace> deletes the character to the left and <Delete> deletes the one to the right. You may
also select a sequence of characters in the text field using the mouse or holding <Shift> and using
the cursor keys. If there is a succeeding input, the marked region is going to be deleted first and
afterwards the characters are going to be written in the text field. See page 273 for a summary of
the keyboard mappings.

Combo box selection: Using this input method, you can obtain rapid settings of variables and constants.
To do so, you have to click the button on the text field’s right side. A combo box is opened, in
which you may select an item. Thus, you are able to choose a certain variable or value without
risking erroneous typing. Previous entries are deleted. Afterwards, the combo box is closed. If
there are no variables or appropriate values, the combo box remains closed.

5.5.3 Control Buttons

Below the parameter display, you find five buttons that comprise the following functions:

Ok By clicking Ok you execute the operator or procedure call with the specified parameters. When doing
so, the execution mode depends on the position of the PC: If the PC is placed above the insertion
position, the system executes the program from the PC until the insertion position first. Then, the
operator or procedure call that has been edited in the operator window is executed. The reason for
this is that the parameter values that are used as input values for the currently edited operator or
procedure call have to be calculated. If the PC is placed at or after the insertion position, only the
currently edited operator or procedure call is executed.

The operator or procedure call is entered into the program window before it is executed. After the
execution, the PC is positioned on the next executable program line after the edited operator or
procedure call.

The computed output parameter values are displayed in the variable window. Iconic variables
are shown in the current graphics window if you haven’t suppressed this option (compare section
“Runtime Settings -> Runtime Settings” on page 72). Afterwards, the operator window is
cleared. If you did not specify all parameters or if you used wrong values, an error dialog is raised
and execution is canceled. In this case, the operator window remains open to allow appropriate
changes.

Enter / Replace By clicking the button Enter, the currently edited operator or procedure call is trans-
ferred into the program window without being executed. When editing existing program lines
(through double-clicking in the program window, see page 106), the button label changes to
Replace. When clicked, the original program line is replaced.

5.6 Variable Window 129

Apply If you click Apply, the operator is executed with the specified parameters, but not entered into
or changed in the program. This enables you to determine the optimum parameters rapidly since
the operator dialog remains open, and hence you can change parameters quickly. Note that this
functionality is not available for procedure calls, and thus the button is grayed out in this case.

Unlike the button Ok, only the single line you edit or enter is executed, no matter where the PC
is located. Thus, you have to ensure that all the input variables contain meaningful values. By
pressing Apply, the corresponding output variables are changed or created, if necessary, to allow
you to inspect their values. If you decide not to enter the line into the program body, some unused
variables may thus be created. You can easily remove them by selecting Menu File . Cleanup.

Cancel Clicking Cancel clears the contents of the operator window. Thus, there are neither changes in
the program nor in any variables.

Help Clicking Help invokes the online help for the selected operator or procedure. For this the system
activates the online help window (see Help Window).

5.6 Variable Window

There are two kinds of variables in HALCON, corresponding to the two parameter types of HALCON:
iconic objects (images, regions, and XLDs) and control data (numbers, strings). The corresponding vari-
ables are called iconic and control variables. These variables may possess a value or may be undefined.
An undefined variable is created, for example, when loading a program or after inserting an operator
with a new variable that is not executed immediately into a program. You may access these undefined
variables only by writing to them. If you try to read such a variable, a runtime error occurs. If a vari-
able obtains a value, the variable type is specified more precisely. A control variable that contains, for
example, an integer is of type integer. This type might change to real or a tuple of integer after
specifying new values for this variable. But it always remains a control variable. Similarly, this is the
case for iconic variables, which may contain regions, images, or XLDs. You may assign new values to
an iconic variable as often as you want to, but you cannot change its type so that it becomes a control
variable.

In addition to classifying HDevelop variables by whether they are iconic or control variables, they can
also be distinguished by whether they are interface parameters of the current procedure or local variables.
Generally, both kinds of variables are treated equally.

New variables are created in the operator dialog area during specification of operator or procedure call
parameters. Here, every sequence of characters without single quotation marks is interpreted as a variable
name. If this name did not exist before, the variable is created in the operator dialog area by pressing
Ok or Enter. The variable type is specified through the type of the parameter where it was used for the
first time: Variables that correspond to an iconic object parameter create an iconic variable; variables for
a control parameter create a control variable. Every time an operator or procedure call is executed, the
results are stored in variables connected to its output parameters. This is achieved by first deleting the
contents of the variable and then assigning the new value to it.

The variable window is similar to a watch window used in window-oriented debuggers. Inside this
window you are able to keep track of variable values. Corresponding to the two variable types, there
are two areas in the variable window. One for iconic data (above or left) and the other for control data
(below or right).

G
U

IR
ef

er
en

ce

130 Graphical User Interface

Figure 5.41: Variable window with instantiated iconic and control variables.

All computed variables are displayed showing their iconic or control values (unless the automatic update
has been switched off, see section “Runtime Settings -> Runtime Settings” on page 72). In case
of a tuple result which is too long, the tuple presentation is shortened, indicated by three dots. In this
case the full content of a variable can be displayed in an inspection window by double-clicking the value
list. See also the following sections.

Switching Between Horizontal and Vertical Layout

You can toggle the orientation of the two parts of the variable window. To do this, double-click the
dividing line between both parts. You can also drag that line to resize the parts.

Managing Variables

In large programs the variable window can become quite cluttered, which makes watching selected
variables difficult. Therefore, you can customize the selection of displayed variables. At the bottom of
the variable window, three tabs are available:

• All: All variables of the current procedure are displayed at once.

• Auto: The variables of the current and the previous operator call are displayed. This is useful when
single-stepping through the program, because only the variables relevant to the current context are
displayed.

• User: A user-defined selection of variables is displayed. Variables may be added and removed
using the context menu of the variable window (see below). If the tab User is active, variables may
be added from a list in the context menu. In the other two tabs variables are added by selecting
them first and clicking Add to User Tab in the context menu.

5.6.1 Iconic Variables 131

Context Menu

In both parts of the variable window distinct context menus are available by right-clicking in the window.
The entries that are common in both parts are described here.

• Clear Variable: The selected variables are cleared and appear as undefined.

• Add to User Tab: The selected variables are added to the tab User.

• Sort by Name: The variables are sorted in alphabetical order.

• Sort by Occurrence: The variables appear in the same order as they are defined in the program.

• Update Variables: Toggle whether variables will be updated during program execution. This is
the same setting as in the runtime preferences (see page 72).

• Cleanup: Delete all unused variables (see page 53).

Only applicable when the tab User is selected:

• Add Variable: This submenu contains a list of all variables that are currently not displayed in
the tab User. Clicking a variable name adds the variable to the tab.

• Remove from User Tab: The selected variables are removed from the tab User.

5.6.1 Iconic Variables

The iconic variables are represented by icons, which contain an image, a region or an XLD, depending
on the current value. The icons are created depending on the type of data according to the following
rules:

• For images the icon contains a zoomed version of them, filling the icon completely. Due to the
zooming onto the square shape of the icon, the aspect ratio of the small image might be wrong. If
there is more than one image in the variable, only the first image is used for the icon. Similarly, for
multi-channel images only the first channel is displayed. An exception is made for images with 3
channels: These are displayed as color icons (RGB).

The domain of the image is not reflected in the displayed icon. Information about the domain
can be obtained from the tool tip which appears when the mouse cursor points to the icon. See
figure 5.42 for an illustration.

• Regions are displayed by first calculating the smallest surrounding rectangle and then zooming it
so that it fills the icon using a border of one pixel. In contrast to images, the aspect ratio is always
correct. This can lead to black bars at the borders. The color used to draw the region is always
white without further modifications (except zooming).

• XLD data is displayed using the coordinate system of the largest image used so far. The color used
for XLD objects is white on black background.

Because of the different ways of displaying objects, you have to be aware that the coordinates cannot be
compared. The variable name is positioned below each icon. They are displayed in the variable window
in the order of occurrence or name from left to right. If there is not enough space, a scrollbar is created,
which you can use to scroll the icons.

G
U

IR
ef

er
en

ce

132 Graphical User Interface

Figure 5.42: Displaying information about an iconic variable with a reduced domain.

Displaying Iconic Variables

Double-clicking an icon with the left mouse button displays the data in the active graphics window. If
you use images of different sizes in a program, the system uses the following output strategy for an
automatic adaption of the zooming: Every window keeps track of the size of the most recently displayed
image. If you display an image with a different size, the system modifies the graphics window coordinate
system in a way that the image is visible completely in the graphics window. If a partial zooming has
been activated before (see section “Graphics Window” on page 136), it is going to be suppressed.

Displaying Information about Iconic Variables

You can get information about an instantiated variable by placing the mouse pointer over the correspond-
ing icon in the variable window. See also figure 5.42 for an illustration. The information depends on the
contents of the corresponding variable:

• Images: The image type and size and the number of channels is displayed. If the iconic variable
contains multiple images, the properties of the first image are reported.

• Regions: The area and the center of the region is displayed. If the iconic variable contains multiple
regions, the properties of the first region are reported.

• XLDs: The number of contour points and the length is displayed. If the iconic variable contains
multiple XLDs, the properties of the first XLD are reported.

Context Menu

Clicking on an icon with the right mouse button opens a context menu with several options. You can
display the corresponding iconic variable in the active graphics window (with or without clearing the
window first), and you can clear the iconic variable. If an iconic variable contains multiple items, you
can also select a specific item from a submenu. Up to 15 items are listed in this menu. If an iconic
variable contains more than 15 items, the remaining items can be accessed by clicking Select.... If
you click Select... in this submenu, you can quickly browse the items of the iconic variable from a
dialog. This also works for multi-channel images. See figure 5.43 for an example.

5.6.2 Control Variables 133

channel 1 channel 2 channel 3

Figure 5.43: Interactive channel selection from an RGB image.

Normally, regions, images, and XLDs are represented in variable icons. Besides this there are three
exceptions, which are shown by special icons:

• Undefined variables are displayed as a question mark (?) icon. You may write to but not read them,
because they do not have any value.

• Brackets ([]) are used if a variable is instantiated but does not contain an iconic object (empty
tuple). This may be the case using operators like select_shape with “wrong” specified thresholds
or using the operator gen_empty_obj. Such a value might be reasonable if you want to collect
iconic objects in a variable gradually in a loop using concat_obj. Here, an empty tuple is used as
starting value for the loop.

• A last exception is an empty region. This is one region that does not contain any pixels (points),
i.e., the area (number of points) is 0. You must not confuse this case with the empty tuple, because
there the area is not defined. The empty region is symbolized by an empty set icon (∅).

5.6.2 Control Variables

To the right of the variable name you find its values in the default representation (you have to keep in
mind that a floating point number without significant fractional part is represented as an integer, e.g., 1.0
is represented as 1). If you specify more than one value for one variable (tuple), they are separated by
commas and enclosed by brackets. If the number of values exceeds an upper limit, the output is clipped.
This is indicated by three dots at the end of the tuple. For undefined variables, their name and a ? are

G
U

IR
ef

er
en

ce

134 Graphical User Interface

shown in the variable field. An empty tuple is represented by []. Both exceptions use the same symbols
as the corresponding cases for the iconic variables.

Inspecting and Editing Variables

See also: dev_inspect_ctrl

Double-clicking a control variable opens a window that displays all its values in a tabular format. This is
helpful if you have tuple variables with a large number of values that you want to inspect. Below the list,
some statistical data may be displayed (minimum value, maximum value, sum of values, mean value,
deviation, types, number of values, and the semantics if appropriate. You can select which statistical data
is displayed by right-clicking on the statistics table and selecting the corresponding entries.

You can also select multiple control variables at once in the variable window by holding down the <Ctrl>
key. To inspect these variables in a single inspection window, right click on the selected variables and
select Inspect.

An example inspection window is displayed in figure 5.44.

Control variables that reference a matrix are displayed in a tabular format as displayed in figure 5.45.

Copying Values to the Clipboard

Within the variable window, the context menu offers an entry for copying the values of the selected
variable to the system clipboard. If the variable window has the keyboard focus, <Ctrl-C> can be used
as an alternative. Tuples with zero or more than one values are returned in tuple notation: [.., ..]. If
several variables are selected, the tuples of the different variables are separated by a new line.

Figure 5.44: Control variable inspection.

5.6.2 Control Variables 135

Figure 5.45: Inspection of a matrix control variable.

Inspecting Image Acquisition Device Handles

For an image acquisition device handle, a dialog representing basic image acquisition device parameters
is opened. Here you find the size, name, device, port, and other features of the image acquisition device.
The toggle button Online allows to grab images continuously and to display them in the active graphics
window. Multiple online inspections from different image acquisition devices at the same time are also
supported by opening additional graphics windows before clicking the corresponding button Online. If
an error occurs during grabbing, it is displayed in the status bar of the dialog. The dialog is displayed in
figure 5.46.

grab images

Figure 5.46: Inspecting an image acquisition device handle.
G

U
IR

ef
er

en
ce

136 Graphical User Interface

5.7 Graphics Window

This window displays iconic data. It has the following properties:

• The user may open several graphics windows.

• The active graphics window is shown by the lit bulb in the window’s tool bar.

• Pressing the clear button clears the graphics window content and the history of the window.

• You close a graphics window using the close button of the window frame.

Figure 5.47 shows an example graphics window which is displaying a gray value image of a tooth rim
overlaid with region data. One of the displayed regions is selected (illustrated by the dashed border).
The variable name and index of the selected region is displayed in the title bar.

Figure 5.47: Graphics Window.

Every HDevelop graphics window has its own visualization parameters. Thus, modifying the parameters
(see section “Menu Visualization” on page 79) applies to the currently active graphics window only,
i.e., the parameter settings of all other open graphics windows remain unchanged. Additionally, the new
parameter settings are used as the default settings in all graphics windows yet to be opened.

The origin of the graphics window is the upper left corner with the coordinates (0,0). The x values
(column) increase from left to right, the y values (row) increase from top to bottom. When the mouse
cursor is placed inside a graphics window, the coordinates (row, column) and the gray value at that
position are displayed in the status bar (see page 44). Sometimes, it is desired to display this information
close to the mouse cursor. This can be achieved by holding down the <Ctrl> key (note: this does not
work when the zoom in and out tool is selected since pressing <Ctrl> inverts the corresponding zoom
action). Figure 5.48 shows the coordinate/gray value display.

Normally, the coordinate system of the graphics window corresponds to the most recently displayed im-
age, which is automatically zoomed so that every pixel of the image is visible. The coordinate system can
be changed interactively using the tool bar of the graphics window or the menu Menu Visualization
. Set Parameters... . Zoom (see section “Menu Visualization” on page 79) or with the operator

5.7 Graphics Window 137

Figure 5.48: Coordinate display in the graphics window.

dev_set_part (see section “Develop” on page 94). Every time an image with another size is displayed,
the coordinate system will be adapted automatically.

Each window has a history that contains all

• objects and

• display parameters

that have been displayed or changed since the most recent clearing or display of an image. This history
is used for redrawing the contents of the window. The history is limited to a maximum number of 30
“redraw actions”, where one redraw action contains all objects of one displayed variable.

Other output like text or general graphics like disp_line or disp_circle or iconic data that is dis-
played using HALCON operators like disp_image or disp_region are not part of the history, and
are not redrawn. Only the object classes image, region, and XLD that are displayed with the HDevelop
operator dev_display or by double-clicking on an icon are part of the history.

You may change the size of the graphics window interactively by “gripping” the window border with the
mouse. Then you can resize the window by dragging the mouse pointer. After this size modification the
window content is redisplayed. Now, you see the same part of the window with changed zoom.

3D Plot Mode

Clicking activates an interactive 3D plot mode. It displays meaningful information for height field
images, i.e., images that encode height information as gray values. The greater the gray value, the higher
the corresponding image point. Figure 5.49 shows a height field image and the corresponding 3D plot.

The 3D plot mode uses OpenGL and benefits from hardware acceleration.

Using the mouse you can alter the view of the 3D image (select mode must be active for this to work,
click in the tool bar):

• Drag the image to rotate the view.

G
U

IR
ef

er
en

ce

138 Graphical User Interface

b)a) c)

Figure 5.49: a) Default image display, b) 3D plot mode, c) Display settings.

• Hold <Shift> and drag the image up and down to zoom out and in, respectively. Alternatively,
use the mouse wheel.

• Hold <Ctrl> and drag the image to translate the view.

There are four different rendering methods (texture, shaded, hidden_lines, and contour_lines) which can
be selected from the drop-down menu in the tool bar. See set_paint for detailed information about
the different methods. The display quality may be fine-tuned in the visualization parameters of the
graphics window. Right-click into the graphics window, select Set Parameters..., and open the tab
card Paint: "Mode"

• Mode sets the rendering mode just like the drop-down menu in the graphics window.

• Plot Quality allows to set the rendering quality in four steps. On systems without proper display
hardware acceleration a lower quality should be selected to speed up the display.

• Step sets the level of detail. In general, the lower the step value, the higher the level of detail.
However, if the rendering mode is set to contour_lines, increasing the step value increases the level
of detail.

• If Display Grid is enabled, the “floor” of the 3D plot is painted as a grid.

See also section “Paint settings” on page 87 for the other paint modes that may be selected in this
window.

Special Keyboard Shortcuts in the Graphics Window

<Left, Right, Up, Down> move mouse cursor 1 pixel
<Alt>+<Left, Right, Up, Down> move mouse cursor 10 pixels
<Ctrl>+<Left, Right, Up, Down> pan image 1 pixel
<Ctrl>+<Alt>+<Left, Right, Up, Down> pan image 10 pixels

Graphics Window Tool Bar Icons

Clear the graphics window and its history.

5.7 Graphics Window 139

Figure 5.50: Magnifying glass.

Switch to select mode. In this mode, you can select regions or XLDs that are displayed in the graphics
window. A selected item is highlighted with a dashed border. If multiple layers of region/XLD
data are displayed in the graphics window, the first click selects the uppermost region/XLD under
the mouse cursor. Each subsequent click at the same position selects the region/XLD below the
currently selected item. The variable name of the selected item is displayed in the title bar of the
graphics window for reference.

You can use the select mode to inspect gray value histograms and features of individual regions or
XLDs.

In the example image illustrated in figure 5.47 on page 136, the displayed image of a tooth rim is
overlaid with region data. A single region is selected.

Combined move/zoom tool. Drag the displayed image with the left mouse button to alter the dis-
played portion. Use the mouse wheel to zoom in and out.

Magnifying glass. Click into the graphics window to magnify the area at the mouse cursor. See
figure 5.50 for an illustration of this tool.

Zoom in. Click the small arrow next to the icon to switch to zoom out.

Zoom out. Click the small arrow next to the icon to switch to zoom in.

Set image size. Clicking this icon sets the image size to the shown value. The value can be selected
from the menu attached to the small arrow. See section “Image Size” on page 80 for additional
information.

Set window size. Clicking this icon sets the window size to the shown value. The value can be
selected from the menu attached to the small arrow. See section “Window Size” on page 80 for
additional information.

Toggle 3D plot mode.

G
U

IR
ef

er
en

ce

140 Graphical User Interface

Active graphics window.

Non-active graphics window. Click the icon to activate the corresponding graphics window. Only
one graphics window may be active any given time.

If you want to specify display parameters for a window, you may select the menu item Visualization
in the menu bar. Here you can set the appropriate parameters by clicking the desired item (see section
“Menu Visualization” on page 79). The parameters you have set this way are used for the active
window. The effects of the new parameters will be applied directly to the last object of the window
history and alter its parameters only.

5.8 Help Window

The help window provides access to the integrated online help of HDevelop. The window is split in two
areas: On the left, navigational panels are available as tab cards. They are described below. On the right,
the online help itself is displayed. Anyone familiar with a web browser will be able to navigate through
the hypertext. The size of the two parts of the help window can be altered by dragging the dividing line.

With the help window you can easily browse the HALCON Reference Manual, the Procedure Reference
Manual, the HDevelop Reference Manual and the Programmer’s Manuals. Furthermore, the complete
offline documentation of HALCON, which is available in PDF format, can be accessed from this window.
The help window also includes a full-text search engine to rummage both online and offline documenta-
tion.

Contents

This tab card presents the chapters and sections of the online documentation as a hierarchical tree. Click
on a node of the tree to display the associated document.

Operators

This tab card lists all operators in alphabetical order. Click on an operator name to display the corre-
sponding page from the Reference Manual. Enter any name into the text field Filter to show only
operators matching that name.

Search

Enter a search query into the text field, and click Search to start a full-text search. Both online docu-
mentation (HTML) and offline documentation (PDF) are searched. The search result is displayed below
the query. The rank (in percent) indicates how well each found document satisfies the query.

The query may consist of one or multiple words. HDevelop will find all documents that contain any of
the specified words.

To search for a phrase, enclose it in double quotes:

"radiometric calibration"

5.8 Help Window 141

Figure 5.51: Help Window.

Boolean searches with and, or, and not can also be specified. To find all documents that say anything
about filters except Gaussian filters, enter:

filter not gauss

Keywords

This tab card gives access to HALCON operators and relevant sections of the documentation through
keywords just like an index in a book. The list of keywords can be filtered by entering any word into the
text field Filter. If you enter multiple words, only keywords matching all the words are displayed.

When you select keywords from the list, the related operator names and links to the corresponding parts
of the documentation are displayed below the keywords. You can click on an operator name to read its
documentation in the online help. If you click on a documentation link, the corresponding PDF is opened
in the registered PDF viewer. Please note that the link text also includes the page number so you can find
the desired information very quickly.

G
U

IR
ef

er
en

ce

142 Graphical User Interface

Figure 5.52: Keywords and associated HALCON operators.

Bookmarks

This tab card lists all user-defined bookmarks. You can add the currently displayed document to the list
by clicking the button Add. To remove a bookmark from the list, select it and click the button Delete.

Help Window Tool Bar Icons

Go back in the browse history.

Go forward in the browse history.

Go to the starting page of the HALCON Reference Manual.

Increase the font size of the help window.

Decrease the font size of the help window.

Add the currently displayed document to the tab card Bookmarks.

Open the operating system dependent printer selection dialog to print the currently displayed page.

5.9 Zoom Window 143

If the currently displayed document is the reference page of a HALCON operator, select this operator
in the operator window.

Syntax The online pages of the HALCON Reference Manual are available for the language interfaces
HDevelop, C++, C, .NET, and COM. The displayed variant can be selected through this list box.

Find Enter a word or substring to find it in the currently displayed document. The first match is high-
lighted as you type. If no match is found, the text field blinks shortly. You can use the cursor keys
(down and up) to highlight the next match or the previous match, respectively. Alternatively, you
can use the following two buttons.

Next Highlight the next match.

Prev Highlight the previous match.

Special Keyboard Shortcuts in the Help Window

<Alt>+<Left> go back in the browse history
<Alt>+<Right> go forward in the browse history
<Alt>+<Home> go to starting the page of the HALCON Refer-

ence Manual
<Alt>+<Return> enter operator into operator window
<Ctrl>+<p> print current page
<Ctrl>+<+> increase font size
<Ctrl>+<-> decrease font size
<Ctrl>+<d> add current page to the bookmarks
<Tab> highlight next link
<Shift>+<Tab> highlight previous link
<Enter> jump to highlighted link

5.9 Zoom Window

Synopsis: Zoom window for image details and pixel inspection.

See also: Menu Visualization . Zoom Window

The zoom window enables the interactive inspection of image details. You can open up any number
of zoom windows with different zoom levels (see Menu Visualization . New Zoom Window). The
window also displays the gray values of each image channel at the mouse cursor position. Apart from
this, the pixel type, the number of channels, and the current position of the mouse cursor are displayed.
The percental scale can be selected from the combo box. It is related to the original size of the image.

There are multiple methods to navigate the zoom window:

Check Follow Mouse and move the mouse pointer over the image to select the zoomed area. Click
once to keep the currently displayed area in the zoom window, when the mouse cursor moves out of the
image window. Or, uncheck Follow Mouse and click (or drag) inside the image to select the zoomed

G
U

IR
ef

er
en

ce

144 Graphical User Interface

area. The red square in the center of the zoom window indicates the position of the mouse cursor. The
corresponding coordinates are also displayed at the bottom of the window.

You can select a particular pixel by single-clicking on it with the left mouse button. The zooming tool
stores this position internally, and will redisplay the thus selected part of the image object when you
leave the graphics window. This enables you to have a meaningful display in the zooming tool whenever
you want to do actions outside of the graphics window.

For finer control of the zoomed area, click inside the zoom window to give it the focus and use the cursor
keys to move pixel-wise. Press and hold the Alt key and use the cursor keys to move ten pixels at a time.
Click inside the zoom window to move relative to the center position. For example, clicking ten pixels
above the center will move the view up ten pixels.

The lower part of the window contains a gauge to display the gray value of the center pixel graphically.
The range goes from 0 (left) to 255 (right). Normally, the gray value of the first channel is displayed
with a black bar. For images with multiple channels the gauge is split accordingly to show individual
bars for each channel. Thus, for color images in RGB-space (three channels with red, green, and blue
values) three colored bars are used. If the gray value is below 1, the gauge is light gray (background). If
the value is above 255, the gauge is dark gray or colored for RGB images.

Above the gauge, the gray values are displayed as numbers. Up to five channels are displayed. If more
than five channels are present, the remaining channel values are truncated.

Next to the gauge, the coordinates of the mouse position are displayed. Below these, the image size,
pixel type, and the number of channels are shown.

The button next to the scale combo box enlarges the zoom window so that partially visible pixels at
the border become fully visible.

Figure 5.53: Zoom.

5.10 Gray Histogram Window 145

5.10 Gray Histogram Window

Synopsis: Display gray value histogram of active graphics window.

See also: Menu Visualization . Gray Histogram

The gray histogram window is a sophisticated tool for the inspection of gray value histograms, which can
also be used to select thresholds interactively and to set the range of displayed gray values dynamically.

When opening the tool, the histogram of the image shown in the currently active graphics window is
displayed. When the tool is already open, the following means of sending new image data to the tool are
available:

• Make another graphics window active or display another image in the active graphics window.

Figure 5.54: Gray Histogram.

G
U

IR
ef

er
en

ce

146 Graphical User Interface

Whenever you do so, the histogram of this image is computed and drawn, and the tool records the
graphics window from which the image was sent (the originating window).

• Whenever image data is displayed overlaid with region data in a graphics window (the graphics
window does not need to be active for this), you can click into any of the segmented regions, and
the histogram of the image within that region will be computed and shown. If you click into a part
of the image that is not contained in any of the overlaid regions, the histogram of the entire image
will be displayed.

• The same mechanism is used for regions that have gray value information, e.g., image objects
created by reduce_domain or add_channels. Here, the histogram of the image object you click
into will be displayed.

Freeze Gray Histogram

Sometimes, it is desirable to suppress the updating of the histogram when new image data is available,
e.g., if you want to select thresholds for a gradient image, but want to visualize the original image along
with the segmentation (see below). In that case you can freeze the histogram by unchecking Update. The
currently displayed histogram is preserved until Update is checked again in which case the histogram
will be re-calculated from the active graphics window.

Gray Histogram Display

The main part of the tool is the area, in which the histogram of the image is displayed in blue. This area
contains static parts and parts that can be interactively manipulated. The first static part is the horizontal
coordinate axis, which displays the gray values in the image. For byte images, this range is always
0...255. For all other image types, e.g., real images, the horizontal axis runs from the minimum to the
maximum gray value of the image, and the labeling of the axis is changed accordingly. To the left of the
display, the vertical axis representing the frequency of the gray values is drawn. The final static parts of
the display are three gray arrows. The two upward pointing arrows denote the maximum and minimum
gray value of the image. The downward pointing arrow denotes the peak of the histogram, i.e., the gray
value that occurs most frequently. This data is displayed in textual form within the Statistics area of
the display. For int4, int8, or real images, the peak value is displayed as a value range in the Statistics.
That is, the range of input values is divided in quantization steps to obtain a meaningful histogram, and,
as a consequence, the histogram’s “peak value” may actually represent a whole range of input values.

The dynamic parts of the histogram area are the two colored lines, which can be manipulated. The
vertical green and red lines denote the minimum and maximum selected gray value of the histogram,
respectively. The gray values on which the two vertical lines lie are displayed next to the lines in the
same color.

Histogram Options

• Quantization: Display the histogram quantized. The bucket size can be specified with the slider
or entered into the spinner box.

5.10 Gray Histogram Window 147

• Smoothing: Display the histogram smoothed. The smoothing factor can be specified with the
slider or entered into the spinner box.

Horizontal/Vertical: The visible part of the histogram can be specified parametrically by entering
the minimum and maximum values into the spinner boxes. These values are adapted when the visible
area is set with the buttons next to the histogram.

Whenever new image data is evaluated in the gray histogram window, the adaptation of these values
depends on the selected adaptation mode, which can be set independently for horizontal and vertical
ranges:

• adaptive

In this mode, the upper and lower boundary of the displayed gray values will always be adapted
when a new image is displayed. The maximum and minimum value for the threshold bars (green
and red) are also fixed to the maximum gray value of the type of image currently displayed.

Note that if you are using 8-bit and 16-bit images in a mixed mode, the histogram will constantly
be reset. Thus, it is not possible to display a 16-bit image, set thresholds, then display an 8-bit
image and keep the threshold values of the 16-bit image.

• increasing

In this mode, only the upper boundary of the displayed gray values will be adapted and it will only
increase, but never decrease. This for instance is useful when first inspecting 8-bit images, but
then switching to 16-bit images. In this situation, the histogram will simply display the 16-bit gray
value range after displaying the first 16-bit image.

In this mode, the minimum and maximum value of the threshold bars are not limited to the currently
displayed image type. The reason is simple: This mode allows to inspect images of a different
data type with the same threshold values. If the values were always limited, the histogram would
"forget" the values like in the adaptive mode.

• fixed

In this mode, the boundaries are not adapted automatically (but can be changed manually). This
mode is also suitable for scenarios with images of mixed data types.

Like in the mode increasing, the minimum and maximum value of the threshold bars are not
limited to the currently displayed image type.

Gray Histogram Tool Bar

Display linear histogram (the default).

Display logarithmic histogram.

Initially, the histogram is displayed at full vertical range, i.e., up to the peak value. The displayed part
can be manipulated with the following buttons:

Zoom histogram display to a selected area. Click this button and drag an area inside the histogram to
view that area.

Spread the histogram horizontally so that only the area between the lines is displayed.

G
U

IR
ef

er
en

ce

148 Graphical User Interface

Display the full histogram.

Reset the display of the histogram vertically.

Reset the display of the histogram horizontally.

Force minimum histogram width. Do not adjust the width of the histogram when resizing the window.

5.10.1 Interactive Visual Operations

The selected range of gray values can be used for two major purposes: Thresholding (segmentation) and
scaling the gray values.

threshold scalethreshold + connection

The gray values between the green line and the red line can be visualized either in the originating or the
active graphics window as specified in Output Destination in the Output area of the window.

The type of visualization is specified in the table below the histogram. Click the + button to add a new
operation to the table. Click the - button to remove an operation from the table. The column Operation
specifies the operation that is applied to a selected range of gray values (threshold or scale, see below).
To visualize a specific operation, click the corresponding icon next to the operation.

When a multi-channel image, e.g., a RGB color image, is sent to the tool, by default the histogram of the
first channel is displayed. The column Channel lets you select the channel from which to compute the
histogram.

The columns Min and Max correspond to the position of the green and the red line, respectively. Each
operation may specify its own range of gray values.

add operation

remove operation

visualize operation

5.10.1 Interactive Visual Operations 149

5.10.1.1 Threshold Operation

The image from which the histogram was computed is segmented with a threshold operation with the
selected minimum and maximum gray value.

With the three combo boxes Color, Draw, and Line Width in the Output section of the window you
can specify how the segmentation results are displayed (see also Colored, Draw, and Line Width).

If you want to select threshold parameters for a single image, display the image in the active graphics
window and open the histogram tool. For optimum visualization of the segmentation results, it is best to
set the visualization color to a color different from black or white. Now, set Operation to Threshold
and interactively drag the two vertical bars until you achieve the desired segmentation result. The pa-
rameters of the threshold operation can now be read off the two vertical lines.

If you want to select threshold parameters for an image that is derived from another image, but want
to display the segmentation on the original image, e.g., if you want to select thresholds for a gradient
image, two different possibilities exist. First, you can display the derived image, open the histogram
tool, deselect Update, display the original image, and then select the appropriate thresholds. This way,
only one window is needed for the visualization. For the second possibility you can display the derived
image in one window, activate another window or open a new window, display the original image there,
activate the first window again, open the histogram tool, activate the second window again, set Output
Destination to active window, and select your thresholds. Although in this case it is not necessary
to deselect Update, it is advantageous to do so, because this prevents the histogram from being updated
if you click into a graphics window accidentally.

Multiple Threshold Operations You can combine as many threshold operations as you like. If multiple
operations are visualized at the same time, the display depends on the combo box below the table of op-
erations: If none is selected, the results of the different threshold operations are displayed independently.
If union is selected, the results are combined to a single region. If intersection is selected, only the
common pixels from all results are visualized.

Connected Regions

Clicking Connection displays the connected regions of the selected gray values in the style specified
with Color, Draw, and Line Width.

This display mode is similar to a plain threshold operation. Additionally, it performs a connection
operation. The separate regions can only be distinguished if Color is set to colored 3, colored 6, or
colored 12.

Click the button Insert Code to generate HDevelop code that performs the currently visualized thresh-
old operation(s) in your program. The code is inserted at the IC.

5.10.1.2 Scale Operation

The scale operation maps the gray values between the green line and the red line to the full range (usually
0...255). See also scale_image.

The gray values of the image are scaled such that the gray value 0 of the scaled image corresponds to
the selected minimum gray value and the gray value 255 to the selected maximum gray value. Again,
the combo box Output Destination determines the graphics window, in which the result is displayed.

G
U

IR
ef

er
en

ce

150 Graphical User Interface

This mode is useful to interactively set a “window” of gray values that should be displayed with a large
dynamic range.

You can define as many scale operations as you like, but only one of them may be visualized in the
graphics window at the same time.

Click the button Insert Code to generate HDevelop code that performs the currently visualized scale
operation in your program. The code is inserted at the IC.

5.11 Feature Histogram Window 151

5.11 Feature Histogram Window

Synopsis: Interactive inspection of feature histograms.

See also: Menu Visualization . Feature Histogram

This window provides a sophisticated tool for the inspection of feature histograms. In contrast to the
gray value histogram described in the previous section, this tool does not inspect individual pixels, but
regions or XLDs; for these iconic objects, it displays the distribution of values of a selected feature,
e.g., the area of an XLD or the mean gray value of the pixels within a region. The feature histogram
can also be used to select suitable thresholds for the operators select_shape and select_shape_xld
interactively. Similar to the gray histogram tool, the interactive selection can be translated into generated
HDevelop program code.

Upon opening, the tool displays the histogram of the area (default feature selection) of the regions or
XLDs that were displayed most recently in the currently active graphics window. You can select various
features in the combo box Feature; Further information about region features can be found in section
“Feature Inspection Window” on page 153.

See figure 5.55 for an illustration. First, all objects (regions) of a certain size (area) are selected.
Then, the selection is refined by adding further restrictions. In this example, the final selection should
only include round objects, i.e., regions with a high roundness feature. The following code would be
generated if you clicked the button "Insert Code" in this example:

select_shape (Connection, SelectedRegions, ['area','roundness'], 'and',
[2900,0.72], [3900,0.79462])

Most parts of the tool are built up similarly to the gray value histogram, which is described in detail
in section “Gray Histogram Window” on page 145 (Menu Visualization . Gray Histogram). It
is highly recommended to read that description beforehand; in the following, we concentrate on points
specific to the feature histogram. An important point regards the “source” of the regions or XLDs: The
feature histogram is calculated for the regions or XLDs that were displayed most recently in the graphics
window. Thus, if you display an image, and there are no regions or XLDs, the histogram remains
“empty”. As soon as you display regions or XLDs on top of an image, the histogram is calculated. If you
display regions or XLDs without an image, you can still calculate feature histograms, but only for shape
features. Please keep in mind that only the most recently displayed regions or XLDs are the source of
the histogram, not all objects currently displayed in the graphics window!

The histogram itself is displayed with the horizontal axis corresponding to the feature values and the
vertical axis corresponding to the frequency of the values, i.e., to the number of regions or XLDs with a
certain feature value.

When comparing feature histograms to gray value histograms, you will note a typical difference: Because
in most cases the overall number of regions or XLDs is much smaller than the overall number of pixels,
feature histograms often consist of individual lines, most of them having the height 1. Of course, this
effect depends on the selected feature: For features with floating-point values, e.g., the orientation, the
probability that two regions or XLDs have the same feature value is very small, in contrast to features
with integer values, e.g., the number of holes.

G
U

IR
ef

er
en

ce

152 Graphical User Interface

select objects of similar size AND restrict the selection to round objects

Figure 5.55: Combining different features selections.

5.12 Feature Inspection Window 153

You can influence the calculation of the histogram with the slider Quantization. The selected value
is used to discretize the horizontal axis: Instead of determining the frequency of an “exact” feature
value, regions with feature values falling within discrete intervals are summed. Graphically speaking,
the horizontal axis is subdivided into “bins” with a width equal to the value selected with the slider
Quantization.

add feature

remove feature

visualize feature

As with the gray histogram operations, each selected feature has to be enabled to visualize the selection
in the graphics window.

5.12 Feature Inspection Window

Synopsis: Inspection of shape and gray value features of individual regions.

See also: Menu Visualization . Feature Inspection

This window provides a tool for the convenient inspection of shape and gray value features of individual
regions and XLDs. It can, for instance, be used to determine thresholds for operators that select regions
based on these features, e.g., select_shape or select_gray.

The strategy to determine the data from which to compute the features is very similar to that of the gray
histogram inspection window (see section “Gray Histogram Window” on page 145). You can display
an image or region by double-clicking on it in the variable window or you can select a region or an
image which is already displayed by single-clicking it. If you display or click into an image, the gray
value features of the entire image will be calculated. If you click into a region that is not underlaid
with an image, only the shape features of this region will be displayed. If you click into a region that is
underlaid with an image or into a region that has gray value information (e.g., from reduce_domain or
add_channels), both the shape and gray value features of that region will be displayed. Finally, if you
have overlaid an image with a region, but click into a part of the image that is outside the region, only
the gray value features of the entire image will be calculated.

Use the “select” tool of the graphics window to select a region or XLD. The selected region or XLD is
highlighted in the graphics window. The corresponding variable name and index are displayed in the
title of the feature inspection window.

The gray value features of a multi-channel image are calculated from all channels independently.

The tree on the left side of the feature inspection window groups the features into several categories. At
the top-most level, the following groups of features are distinguished:

• Region features: This group contains features that describe the selected region, e.g., area, center,
and orientation.

• Gray value features: The feature values of this group are calculated from the gray values of the
image under the selected region, e.g., minimum and maximum gray value, mean gray value,
anisotropy and entropy.

G
U

IR
ef

er
en

ce

154 Graphical User Interface

select selected region

feature value of selected region specified rangevisualization

Figure 5.56: Inspection of selected features.

• XLD features: This group contains features that describe the selected XLD (e.g., its dimensions or
shape properties).

You can select the features to be inspected by ticking the corresponding check boxes in the tree. The
selected features are displayed on the right side of the window. For each feature the calculated value
of the selected region or XLD is displayed (or the value for the entire image). The current value is
also visualized as a gauge in a value range that can be set to the desired values. Simply select Show
Minimum/Maximum, which is available in the context menu of the right side of the window.

See figure 5.56 for an illustration of a clip inspection. The range for the area feature has been set to
[4000, 6200]. Individual clips can be inspected by selecting them in the graphics window.

Moving the mouse pointer over a feature value displays a tool tip. It shows the name and short description
of the HALCON operator used for the calculation of that value. Using the context menu, you can insert
the corresponding operator into the operator window.

5.13 Dialogs 155

5.13 Dialogs

5.13.1 File Selection Dialog

The file selection dialogs opened by actions such as Open Program..., Save, or Read Image are
native windows of the operating system and thus their appearance and internal functionality is beyond
HDevelop’s control. Their basic functionality is to browse the file system, and to select one or multiple
files (or in some cases: directories). Usually, they have two buttons: The one labeled Open or OK confirms
the selection and thus performs the initial action (e.g., loading a file) while the other (labeled Cancel)
aborts the initial action.

As an example, the dialog Menu File . Open Program... is explained.

Figure 5.57: Example of a file selection dialog under Windows.

In the top-most text field you may specify a directory which contains your HDevelop programs. A combo
box at the right hand side helps you browsing your directories. To move one directory level up, you press
the button on the right hand side of this text field. The next button creates a new folder to store HDevelop
programs. By pressing the last button you can activate or deactivate the option to see more details about
your HDevelop programs, i.e., the program size, the program type, the date when the most recent user
update occurred, and file attributes.

The middle text area displays all available HDevelop files to choose from. By clicking the left mouse
button on a file name you select it. Double-clicking a file name opens the file immediately and displays
it in the program window (page 105).

Furthermore, you may specify the file name in the text field below the file list. The combo box for file
type has no effect because only HDevelop programs with the extension .dev can be loaded. To open

G
U

IR
ef

er
en

ce

156 Graphical User Interface

your specified file, you press the button Open. This action deletes an already loaded HDevelop program
and all created variables. The same actions as with File . New Program are performed. Now you can
see the main procedure body of your new program in the program window. The file name is displayed
in the title bar of the main window. All its (uninstantiated) variables are shown in the variable window.
To indicate that they do not have any computed values, the system labels the iconic and control variables
with a question mark. The program counter is placed on top of the program body and you are ready to
execute the program. The visualization and options will be reset after loading (same as Menu File .
New Program, see page 46).

You can cancel this task by pressing the corresponding button. By using one of the two buttons Open or
Cancel, the dialog window disappears.

5.13.2 Unsaved Changes

File operations that will delete the current program (such as loading a new program) trigger a security
check. This security check prevents you from deleting the current program accidentally if the program
has not been saved. A dialog box appears and asks whether you want to save the HDevelop program
before its dismissal:

Figure 5.58: Confirmation dialog.

Save Save the current program under its current name and proceed. If no name has been specified yet,
a file dialog pops up to enter the name.

Save As Save the current program under a different name and proceed.

Discard Discard unsaved changes and proceed.

Cancel Abort the current action.

HDevelop Assistants 157

Chapter 6

HDevelop Assistants

HDevelop contains assistants for specific machine vision tasks. Each assistant provides a user interface
tailored to the requirements of its task. Using this interface, you can interactively set up and configure
the assistant to solve a specific machine vision problem. Once the configuration is working satisfactorily,
the assistant can be instructed to generate HDevelop code into the current program. You can also save
an assistant’s configuration for later use.

The following assistants are available:

• Image Acquisition: Using this assistant you can generate code to acquire images from different
sources (files, directories, image acquisition interfaces).

The assistant is described in section “Image Acquisition Assistant” on page 158. A tutorial about
using this assistant is available in section 3.3 on page 23.

• Calibration: Using this assistant you can calibrate your camera and therefore gain information
about parameters of the camera system and distortions in the image. Calibrating your system
constitutes a preparation for your subsequent application as it provides the basis for you to measure
with high precision in the world coordinate system.

The assistant is described in section “Calibration Assistant” on page 164.

• Matching: Using this assistant you can generate code to perform shape-based matching in your
HDevelop program. You can load a reference image to train a model. Using a selection of test
images containing the model you can tweak a set of parameters to find the model in all varia-
tions permitted by the application. Furthermore, the parameters can be optimized to increase the
processing speed.

The assistant is described in section “Matching Assistant” on page 185.

Common Features of all HDevelop Assistants

Some features are common to all HDevelop assistants. First of all, you can open multiple assistants.
Assistants of the same type are numbered consecutively, e.g., if you open two image acquisition assis-
tants, they are labeled “Image Acquisition 01” and “Image Acquisition 02”, respectively. When
you open a new assistant, a menu entry is added to the top of the menu Assistants, from which the

A
ss

is
ta

nt
s

158 HDevelop Assistants

corresponding assistant can be restored if it has been closed. The current setup is lost and the menu entry
disappears if the associated assistant is exited explicitly (see below). If you want to keep the setup for
later sessions, you can always save it to a file.

Different assistants have different menus (usually corresponding to the available tab cards). These menus
provide functionality specific to the assistant’s task. There are also some menu entries that are available
in every assistant. They are described in the following.

File . Load Assistant Settings Using this entry, a previous configuration can be loaded from a
file which has been generated using the menu entry Save Current Assistant Settings.

File . Save Current Assistant Settings You can save the configuration of an assistant to a file
for later use. The default extension for these configuration files is .das.

File . Close Dialog The assistant is closed, but the current configuration is preserved. This menu
entry performs the same function as the assistant’s close button. You can restore a closed assistant
by clicking the numbered entry in the menu Assistants which is generated when a new assistant
is opened.

File . Exit Assistant The assistant is quit. The resources used by the assistant are released. The
link to the generated code is lost, i.e., it is not possible to restore the assistant unless the setup has
been saved to a file. The menu entry in the menu Assistants is also removed.

Code Generation . Insert Code Insert HDevelop code based on the current settings of the assistant.
The code is inserted at the IC. As long as the associated assistant is not quit, you can change the
settings and update the code accordingly.

Code Generation . Release Generated Code Lines The link to the generated code is cut off.
The code remains in the program, but can no longer be updated or removed from the (formerly)
associated assistant. Nevertheless, you can generate new code with the current settings of the
assistant.

Code Generation . Delete Generated Code Lines The generated code is deleted from the pro-
gram. Please note that any manual changes to the generated lines are deleted as well.

Code Generation . Show Code Preview Generate a preview of the code based on the current setup
of the assistant. If the program already contains generated code which is linked to the current
assistant, the changed code lines can be compared side-by-side in the preview.

6.1 Image Acquisition Assistant

The image acquisition assistant is an easy-to-use front-end to the various image acquisition methods
supported by HALCON. Firstly, it lets you read images from the file system (selected files or whole
directories). More importantly, it supports acquiring images from image acquisition devices that are sup-
ported by HALCON’s image acquisition interfaces. When an image acquisition interface is selected, the
corresponding device parameters, e.g., the image format can be set. After establishing a connection to the
selected image acquisition interface, images can be grabbed and displayed in the active graphics window.
Using live images, the parameters supported by the selected interface can be explored interactively.

6.1.1 Tab Source 159

When a suitable setup is achieved, the settings of the assistant can be saved for later reuse. The assistant
can also be instructed to generate HDevelop code that will connect to the selected image acquisition
interface, set the specified parameters and grab images.

6.1.1 Tab Source

Synopsis: Select from where to acquire images.

Image File(s)

Activate this radio button to load images from files. You can enter the names of image files in the text
field. Multiple file names are separated by a semicolon “;”. If an image with no path name or a relative
path name is given, the image files are searched in the directories specified by the environment variables
HALCONROOT and HALCONIMAGES.

You can also enter the full path of an image directory to specify all images of the given directory. If the
check box Recursive is ticked, the images of all subdirectories are specified as well.

Pressing <Return> will display the first of the specified images in the active graphics window.

The buttons Select File(s) ... and Select Directory ... open a file browser to select multiple
images or an image directory, respectively. After clicking OK in the file browser, the text field is updated
with the selected items, and the first image is displayed in the active graphics window.

Use the entry Snap or Live in the menu Acquisition, or the corresponding tool bar buttons to view
the selected images one after another.

Image Acquisition Interface

Activate this radio button to acquire images from an image acquisition interface. The drop-down list
contains the list of all supported image acquisition interfaces.

Clicking Detect probes the image acquisition interfaces in turn, and removes those interfaces from the
list that do not respond. It is recommended to save your program before probing the image acquisition
interfaces.

6.1.2 Tab Connection

Synopsis: Setup connection parameters for the image acquisition interface selected in the tab Source.

This tab card is only available if the image source is set to an image acquisition interface. The connection
parameters are described below. See the description of the operator open_framegrabber for additional
information about the fields.

A
ss

is
ta

nt
s

160 HDevelop Assistants

Configuration

Device Select the ID of a board, camera, or logical device if multiple devices are available for the
selected image acquisition interface.

Upon building the list of devices, the assistant queries the status of each device. Depending on the
image acquisition interface, devices may be reported as misconfigured. If you select such a device,
the assistant may suggest a Generic parameter that potentially resolves the misconfiguration. If
you confirm this suggestion, the parameter will be entered into the Generic slot (see below). If a
device is labeled with a question mark icon, it is either read-only, busy, or unknown.

Port Select the ID of the input port.

Camera Type Select a camera configuration or signal type.

Select... Select a camera configuration file (in XML format) from a file browser.

Trigger Tick the check box if the image acquisition is controlled by an external trigger.

Resolution (X / Y) Specify the factor for image width / height.

Color Space Specify the configuration for color acquisition.

Field Specify the frame selection for interlaced cameras.

Bit Depth Specify the number of bits used for one image channel.

Generic Some image acquisition interfaces support device-specific parameters to preset selected values
before the camera is initialized. The parameters the interface claims to support are suggested as
a drop-down list. To set a generic parameter, select it from the list, and edit the assigned value,
i.e., the value after the =. Multiple generic parameters may be set by separating the entries with a
comma.

If the selected image acquisition interface does not support generic parameters, this field is grayed
out.

See the documentation of the individual image acquisition interfaces for more information about
the supported generic parameters.

Action Buttons

Once the connection parameters are set up, the action buttons are used to connect to and acquire images
from the specified device. Messages about connection errors are displayed in the status line of the image
acquisition assistant window.

Connect Connect to the specified image acquisition device. If the connection fails, carefully check
the configuration in the above fields. Not all combinations of settings are allowed for all devices.
It is recommended to enable low level error messages (see General Options -> Experienced
User) to find out what is going wrong. Please note that an established connection is closed auto-
matically, if the connection parameters are modified.

When the connection is established, this button can be used to disconnect the device.

6.1.3 Tab Parameters 161

Snap Acquire a single image from the device (first connecting to the device if needed). The image is
displayed in the active graphics window unless Display Image is set to Disabled.

Live Start/stop live image acquisition mode. The images are displayed in the active graphics window
unless Display Image is set to Disabled. The live mode is stopped automatically if an error
occurs.

Detect Clicking this button will attempt to redetect valid parameters for the current device.

Reset All Reset all connection parameters to their default values.

Image Display

The following display options are available:

Display Image It is recommended to set the display mode to Normal unless you wish to make speed
measurements. Other modes are Volatile (volatile grabbing), and Disabled (grabbing images
without displaying them).

Show frames per second during live acquisition Usually, the number of grabbed images
and the acquisition time of the last image are displayed in the lower right corner of the window.
Ticking this check box causes the frame rate (frames per second) to be displayed in live mode.

6.1.3 Tab Parameters

Synopsis: Set parameters for the selected image acquisition device.

This tab card is available if the image source is set to an image acquisition interface and a connection
to an image acquisition device has already been established. Press <F1> for more information about the
displayed parameters.

Interface Library The image acquisition interface library (DLL or shared object) used by the cur-
rent connection is displayed in this field.

Update Image If this check box is ticked, a new image is acquired immediately after each parameter
change. Disable the check box if you want to change multiple parameters at once.

Refresh Refreshes the list of supported parameters and their value ranges. This is useful for parameters
with side affects.

Reset All Resets all parameters to their default values. Individual parameters can be reset by clicking
the corresponding button displayed to the right of each parameter.

A
ss

is
ta

nt
s

162 HDevelop Assistants

Parameter Grouping

The available parameters are grouped by user parameters, read-only parameters, action parameters and
write-only parameters. The latter cannot be changed in the assistant and are listed only for reference.
The parameters of some of the interfaces are additionally grouped by category and visibility. If grouping
information is available, the amount of displayed parameters can be reduced by choosing a subject matter
from the down-down list Category. You can further filter the parameters by selecting a skill level from
the down-down list Visibility (beginner, expert, or guru).

By default the parameters are sorted thematically. You can also sort the parameters by name (check box
Sort by Name).

Setting Parameters

The parameters are displayed in a tabular format. Hover the mouse pointer over a table row to get the
short description of the corresponding parameter as a tool tip. The tool tip also includes the value range
for numeric parameters (min.-max.).

The first column shows the parameter name. The second column depends on the parameter type:

• If the parameter is editable, its value can be entered into a text field. This field may contain value
suggestions as a drop-down list. Numeric values can be incremented/decremented using the arrows
next to the text field.

• If the parameter is read-only, its value is displayed, but cannot be modified.

• For action parameters, the corresponding action can be triggered by clicking the Apply button.

The third column is reserved for numeric parameters. It contains a slider to quickly alter the parameter
value within the defined range. Please note that low level error messages are suppressed while dragging
the slider. If the minimum value is below -10000, or the maximum value is above 10000, or no range is
defined at all, no slider is displayed.

The fourth column contains a reset button for editable parameters. Click it to reset altered parameters to
their default value.

6.1.4 Tab Code Generation

Synopsis: Preview / generate HDevelop program lines.

The settings made in the tab cards Source, Connection, and Parameters can be distilled to program
lines that perform the desired image acquisition in your current program. The fields in this tab card
specify the code generation details. You can preview the code lines in the panel Code Preview. This
panel can be toggled between hidden and displayed state by clicking the button next to the panel label.

Acquisition

The settings of this section are available if images are acquired from an image acquisition interface.

Control Flow: The initialization code for the selected image acquisition interface is always generated
(setting Initialize Only). It opens a connection to the specified image acquisition device, and sets

6.1.5 Menu Bar 163

all changed parameters. You can also generate code to acquire a single image (setting Acquire Single
Image), or to acquire images in a loop (setting Acquire Images in Loop).

Acquisition Mode: You can switch between synchronous and asynchronous acquisition. The latter
runs in the background and is recommended for continuous acquisition.

Variable Names

This section defines the variable names that are used in the generated code.

Connection Handle: Variable storing the acquisition handle. The image acquisition interface is ac-
cessed by this name. Set to AcqHandle in the example below.

Image Object: Variable used for the acquired images. Set to Image in the example below.

The following variables have to be specified if Source is set to Image File(s) and multiple files are
specified:

Loop Counter: Variable storing the loop index.

Image Files: Variable for storing the image names as a tuple.

Generate the Code

Insert Code: The actual code is inserted at the IC.

Example Code

* Code generated by Image Acquisition 01
open_framegrabber ('GigEVision', 1, 1, 0, 0, 0, 0, 'progressive', 8, 'gray', \

-1, 'false', 'default', '003053095003_Basler_scA160014gc', \
0, -1, AcqHandle)

grab_image_start (AcqHandle, -1)
while (true)

grab_image_async (Image, AcqHandle, -1)
* Do something
endwhile
close_framegrabber (AcqHandle)

6.1.5 Menu Bar

Menus File, Code Generation, Help

For the description of the corresponding menu entries see Common Features of all HDevelop Assistants.

Menu Acquisition

Connect Connect / disconnect the selected image acquisition device. See Tab Connection.

Snap Acquire a single image. See Tab Connection.

Live Acquire images in live mode. See Tab Connection.

A
ss

is
ta

nt
s

164 HDevelop Assistants

6.2 Calibration Assistant

6.2.1 Introducing the Calibration Assistant of HDevelop

Most applications that need a previous calibration of the camera system belong to the area of 3D machine
vision. These applications require a 3D model of the camera system. Calibration is necessary in order to
gain information about distortions (perspective and lens distortions) in an image and about parameters
of the camera system. Calibrating your camera system with the HALCON Calibration Assistant enables
you to measure in the world coordinate system with a high accuracy. This task can be performed by
taking images of a known object, a calibration plate.

The Calibration Assistant of HDevelop is a front-end to HALCON’s operator camera_calibration.
Using the Calibration Assistant you can

• either perform a complete calibration or

• take advantage of the user-defined mode and only calibrate chosen parameters, if the rest is already
known (e.g. if you are using a special setting).

All you need is a set of ideally 10 to 20 calibration images. The Calibration Assistant then returns the
calibration results and enables you to generate code and insert it into a given program.

The Calibration Assistant can calibrate vision systems based on standard lenses as well as on telecentric
lenses.

With the HALCON Calibration Assistant you can

• perform a calibration (page 166),

• view the calibration results (page 177),

• generate code (page 178) for the calibration or for using the calibration results and insert it into a
program for further use in a subsequent application.

A reference to the elements of the Calibration Assistant can be found in the Calibration Assistant Refer-
ence (page 181).

For further information about camera calibration, please refer to the corresponding chapter in the solution
guide on 3D Vision.

ATTENTION: Remember that it is essential to keep your camera setup (aperture, focus, pose)
fixed, once you have chosen it! This applies to the calibration process itself as well as to the sub-
sequent application. Any changes will result in the failure of the calibration or - even worse - in
wrong output values.

In this guide, the following special terms are used:

Calibration By calibrating (page 169) a vision system, you extract information about it, e.g., its focal
length or its position and orientation relative to the "world". However, even with such information
you cannot fully reconstruct the 3D world from a single image. For example, you can determine
the (3D) size of an object only if you know its distance from the vision system (when using a
standard lens). Calibration is a preparation for all subsequent image processing applications. The

6.2.1 Introducing the Calibration Assistant of HDevelop 165

Calibration Assistant needs to grab a set of images of a special calibration object placed in front of
your vision system. You can choose between a Full Calibration and a User-Defined Calibration,
where known parameters are not calibrated again.

Calibration Plate This (page 167) is an object whose shape is known precisely. Calibration plates are
available in different sizes. Transparent calibration plates are available for applications requiring
backlight illumination. Which calibration plate is suited best depends on your machine vision
task: As a rule of thumb, if you grab an image of the plane of measurement, it should fill a
fourth of the image. For example, if an image of the plane of measurement corresponds to an
area of 80mm x 60mm, you should choose the 30mm calibration plate. The bigger calibration
plates (100mm and 200mm, made from aluminum) come together with a file containing their
exact measurements (caltab_100mm.descr and caltab_200mm.descr). Please copy this file
to the subdirectory calib of the HALCON base directory you chose during installation. This is
not necessary for smaller (ceramics) calibration plates as they can be manufactured very precisely
and can therefore use standard description files. If you use your own calibration plate, you have to
create the description file yourself and copy it into the subdirectory calib.

Calibration Plate Extraction Parameters These parameters (page 176) influence the extraction of the
calibration plate. You may change them in order to improve the extraction of the plate if necessary.
We recommend, however, that you try to improve your image quality first.

Camera Parameters Internal Camera Parameters (page 167) describe the camera itself, e.g., its
Focal Length, Cell Width and Cell Height. These parameters are part of the calibration
results, initial values for some of them are also needed for the setup of the calibration.

Camera Pose The position and orientation of the world coordinate system relative to the camera are
called the external Camera Parameters (page 167). They are part of the calibration results.

Display Parameters On the Calibration (page 169) tab, you can choose the display parameters, like
colors, as you prefer them. See also Display Parameters (page 176).

Full Calibration In a Full Calibration, the complete camera system is calibrated. The only infor-
mation needed are approximate values for Camera Type, Cell Width, Cell Height and Focal
Length as well as the question whether you are using a Telecentric camera (in which case the
Focal Length is not required).

Image Rectification Based on the calibration results, you can remove image distortions. This is called
image rectification. Example code is available from the Code Generation tab (page 178).

Pose Estimation Once the interior parameters are calibrated, it is possible to estimate the camera pose
from a single image. Example code is available from the Code Generation tab (page 178).

Reference Image This image locates the world coordinate system, which then has its origin in the
middle of the calibration plate in the reference image. By default, the first calibration image is used
as the reference image. However, you can choose any other image of the calibration sequence.

Standard Lenses A standard lens is similar to the one in the human eye: It performs a perspective
projection; hence, objects become smaller in the image the further they are away.

Telecentric Lenses Telecentric lenses perform a parallel projection. Therfore, objects have the same
size in the image independent of their distance to a camera. This means that they can lie in
different planes; only the orientation of the planes relative to the camera must be identical.

A
ss

is
ta

nt
s

166 HDevelop Assistants

User-Defined Calibration The setup step Calibration Task provides a User-Defined
Calibration, which enables you to perform calibrations with special setups or re-use
parameters from previous calibrations.

World Coordinates Measurements and XLD contours can, after finishing the calibration, be trans-
formed into (3D) world coordinates, meaning the coordinates of the world (e.g. in millimeters), as
opposed to those of an image (in pixels). Example code is available from the Code Generation
tab under Sample Usage (page 179).

Quality Issues A high quality of the calibration images is essential not only for the calibration itself but
for the quality of the calibration results. Examples for bad image quality are overexposure of the
calibration plate, bad mark contrast or very small mark size. These quality issues are listed under
Quality Issues (page 172) on the Calibration tab. Sorting out images with too many defects
improves the calibration results.

6.2.2 How to Calibrate with the Calibration Assistant

By using the Calibration Assistant, you can set up and optimize your calibration application in three
steps:

• Choose the right calibration mode,

• load the calibration images (page 169),

• and respond to image quality feedback (page 172).

6.2.2.1 Choosing the correct Calibration Mode and Basic Parameters

For the calibration setup in the Setup tab, the basic information has to be filled in. Which information
is necessary for your application will depend on the answer to the question whether you want to perform
a full calibration, whether you have a special setup or you have calibrated before and therefore want to
take advantage of the user-defined calibration. Furthermore, information about the calibration plate and
the camera is required.

In short, the setup information includes

• the Calibration Task,

• the Calibration Plate,

• and the known Camera Parameters.

2 Choosing the task for your application

If you want to calibrate all parameters, e.g. if you are calibrating for the first time with your setup, click
the radio button Full Calibration: Pose and all Camera Parameters.

If you are using a special setting or you have already calibrated your system before and want to
re-use your resulting parameters, choose User-defined: Select Individual Parameters for
Calibration.

6.2.2 How to Calibrate with the Calibration Assistant 167

After having decided on your calibration task, proceed with the details about your Calibration Plate.

2 Calibration Plate Parameters

First, choose the description file for your calibration plate and the calibration plate Thickness (in mm).
The description file consists of the size of the plate, and you have to choose a filename ending with
"_old" if you are using an "old" plate without a black triangle in one of the edges (you can "update"
your plate by drawing the triangle in one of the edges). With the parameter Thickness, you can modify
the position of the world coordinate system and the measurement plane, which is located beneath the
calibration plate surface by the value of Thickness in the Reference Image (page 171).

Then proceed to set the Camera Parameters.

2 Set Camera Parameters

For setting up the camera parameters

• first choose the Camera Model,

• then set the parameters for a full calibration or

• set the parameters for a user-defined calibration (page 169).

It is also possible to import parameters from a file. If you should decide to do this, just click the Import
Parameters button.

Once you have finished this last part of the Setup tab, proceed to the Calibration (page 169) tab.

3 Choose your Camera Model

First choose the Camera Model you are using:

• either Area Scan (Division),

• Area Scan (Polynomial)

• or Line Scan

Even though the camera model Area Scan (Division) typically returns good results for your appli-
cation, you can improve the accuracy and lower the error rate by using the Area Scan (Polynomial)
camera model. We therefore recommend for you to use the Area Scan (Polynomial) model if the
Mean Error on the Results (page 177) tab under Calibration Status (page 177) is too high. If you
decide for the Area Scan (Polynomial) model, it is especially important that you thoroughly cover
the field of view with calibration plate images and do not leave out the edges.

Note, that a higher Mean Error might be caused by inappropriate calibration images.

3 Set Parameters for Full Calibration

If you choose a full calibration for an area-scan camera, you must specify approximate values for Cell
Width (Sx), Cell Height (Sy) and Focal Length . Please have a look at the data sheet of your
camera for suitable values. Information about the Focal Length can be found on the lens itself.

A
ss

is
ta

nt
s

168 HDevelop Assistants

If your lens is telecentric, choose Telecentric, and the Focal Length will be grayed out.

If you have a line-scan camera, you must additionally specify approximate values for the motion param-
eters Motion x (Vx), Motion y (Vy) and Motion z (Vz).

6.2.2 How to Calibrate with the Calibration Assistant 169

3 Set Parameters for User-Defined Calibration

In the user-defined mode for the area-scan camera (division), you can also choose Center
Column (Cx), Center Row (Cy) and Kappa. The area-scan camera (polynomial) model al-
lows you to also choose the lens distortion parameters for radial distortion Radial 2nd Order (K1),
Radial 4th Order (K2), Radial 6th Order (K3) and the two parameters for tangential distortion
Tangential 2nd Order (P1) and Tangential 2nd Order (P2).

If you want to change the parameters Cell Width and Cell Hight independently from each other,
click the chain button.

6.2.2.2 Acquiring Calibration Images

The main part of the calibration process consists of acquiring images of the calibration plate in different
positions and orientations relative to the vision system. Please note that the more you vary the position
and orientation, the better the calibration results will be. Therefore, place the plate so that it appears
in different corners, at different distances to the camera, and in different planes, i.e., tilt it for some
images. Note that it is necessary to not only place the calibration plate in the center of the field of view,
but also move it to the corners and margins. Good calibration images will improve your calibration
results significantly. Detailed instructions on how to take calibration images can be found in the section
Acquiring Images for a Successful Calibration.

Obligatory steps for calibration are

• acquiring calibration plate images,

• choosing your image source (page 171),

• and calibrating (page 171).

Optional parameters, which may be changed, are

• parameters concerning Quality Issues (page 172),

• Display Parameters (page 176), and

• Calibration Plate Extraction Parameters (page 176)

ATTENTION: Remember that it is essential to keep your camera setup (aperture, focus, pose)
fixed, once you have chosen it! This applies to the calibration process itself as well as to the sub-
sequent application. Any changes will result in the failure of the calibration or - even worse - in
wrong output values.

Once the calibration images are available, you can push the Calibrate button and move on to the
Results (page 177) tab.

2 Acquiring Images for a Successful Calibration

Note that the calibration assistant currently only supports 8-bit (’byte’) images.

Steps that will improve your calibration results:

A
ss

is
ta

nt
s

170 HDevelop Assistants

Figure 6.1: Example for suitable calibration images.

1. Use a calibration plate that is big enough to fill a large part of the image (at least one fourth of the
image’s total area).

2. The minimum diameter of the circular marks should be 10 pixels. To check this, move the mouse
pointer over a calibration mark and examine whether the difference between the start and end
position, as displayed in the row/column section of the Status Bar, is more than 10 pixels.

3. Use an illumination where the background is dark and the calibration plate is bright.

4. The white background of the calibration plate should have a gray value of at least 100. You can
check the gray value of an area by moving the mouse pointer on the particular area in the graphics
window. The gray value is then displayed in the HDevelop Status Bar.

5. The contrast between the foreground and the background of the calibration plate, i.e., its bright
and dark parts, respectively, should be better than 100 gray values.

6. Use an illumination where the calibration plate is represented with homogeneous gray values.

7. The images must not be overexposed, which means that they should not have a peak at 255 in
the histogram. You can use the Live mode and run the tests, which can be found under Quality
Issues, to check that no part of the calibration plate is totally white. Another option is checking
the gray values in the status bar as described above. If your image is too bright, close the lens
aperture a bit more or use an illumination that is less bright. If your image is too dark, use a
brighter illumination or open the lens aperture a bit more until you achieve a satisfying image
from which the marks can be segmented easily. Then, push the Snap button to keep your image.

8. In this way, cover the whole field of view with multiple images, i.e., position the calibration plate
in all areas of the field of view (upper left corner, upper right corner, lower left corner, lower right
corner and image middle). Do not forget to also take images right in the corners and along the
margins of the field of view.

9. Use various orientations of the calibration plate: Use at least four images with different tilt in every
direction as shown in Figure 6.1 (we recommend to tilt the plate in every quadrant of the image
twice and vary the tilting direction).

10. In total you should acquire at least 10, better 15 to 20 images.

6.2.2 How to Calibrate with the Calibration Assistant 171

2 Choosing an Image Source

The images for the calibration can either be loaded from a file or acquired directly using the Image
Acquisition Assistant.

When loading images from a file, just click the radio button Image Files.

To acquire new images, click the radio button Image Acquisition Assistant (page 158). The assis-
tant will then appear in a new window and support you with acquiring new calibration images.

Note that the calibration works on a single channel. For color RGB images, the red channel will be used.
A color transformation can be performed with the operator trans_from_rgb.

2 Calibration

The three basic steps of each calibration are

• acquiring calibration images,

• selecting a reference image, and

• calibrating.

3 Calibration Images

All images from files will be displayed with their path on the Calibration tab, whereas images ac-
quired using the Acquisition Assistent will be displayed with their consecutive numbers. Furthermore,
the image status gives information about the quality of each image. Details concerning quality can be
found under Quality Issues. If you use the Image Acquisition Assistant and want to see a live image,
you can also activate Live Image on the Calibration tab and click the Snap button whenever you
want to keep an image for calibration. If you Load... images from a file into the Calibration Assistant
and then decide to acquire new images with the Image Acquisition Assistant, you will be warned that the
images from the file will be removed from the window. With the Remove and Remove All buttons on
the left, you can remove either one or all images of the list. The Save and Save All buttons will save
one or all images of the list. Click Update to control the time when camera parameters, segmentation
parameters or quality adjustments shall be transferred for the existing images. Activate Auto Update
to automatically update to the latest adjustments. Quality Issues are updated with a little delay af-
ter adapting Calibration Plate Extraction Parameters (page 176). Deactivating Auto Update
enables you to change several parameters at once and speeds up the processing bigger data sets.

3 Select a Reference Image

With the pose of the calibration plate in the reference image, you specify the world coordinate system and
the measurement plane for subsequent 3D measurements (see figure 6.2). Thus, in one calibration image
(typically, the first one), you should place the calibration plate such that it lies on top of the measurement
plane. If this is not possible, place the calibration plate in a position parallel to the measurement plane
and "move" the coordinate system by adapting the parameter Thickness. The star on the left side of
the Calibration window indicates the reference image. It is by default set on the first image. You can,
however, by clicking the Set Reference button, pick another image as reference.

A
ss

is
ta

nt
s

172 HDevelop Assistants

Figure 6.2: Calibration plate image with coordinate system.

3 Calibrating

Click the button Calibrate to finally perform the calibration task. You should, however, check first
whether you have 10 to 20 images that are of sufficient quality. You can check the quality under
Quality Issues. If necessary, you can also change Calibration Plate Extraction Parameters
(page 176) before actually calibrating. In case your calibration fails and displays the error "Camera
calibration did not converge", check possible error sources in the Checklist for Calibration Er-
rors (page 173).

2 Handling Quality Issues

Under Quality Issues you find an evaluation of each image, which includes descriptions of the de-
fective image features and a quality percentage that tells you how severe the problem is. A result of
0% indicates a very defective image feature whereas 100% equals ideal quality. This can help you to
improve your calibration result by deleting images which are not good enough and might lead to a higher
error rate during the calibration process. If you need a certain quality level you can set a Warn Level
and the defects will be listed under Quality Issues. The quality issues are detected by image tests
and sequence tests. If you want the program to run faster or if you do not need quality feedback, you can
change Image Tests and Sequence Tests either to Quick, which performs less tests, or None, which
does not perform any tests at all. If the defects are too severe e.g. if the calibration marks or the even
the calibration plate are not found, the Calibration button will be grayed out, making it impossible to
calibrate unless all images of such poor quality are deleted from the list.

The test results referring to the calibration plate’s tilting may be ignored if later measurements are always
conducted in exactly the same plane. In this case, however, the values for the Focal Length and Z are
not correct each for itself but only in their combination. The reason for this is that neither of these values
can be determined for itself which leads to the result that if you get, for example, a Focal Length that
is double the value that it should be, Z will be half as high and vice versa. Besides, the further you place
an object above the plane in which you have performed the calibration, the less precise the result will be.

Note that poor image quality leads to poor calibration results and subsequently causes bad or wrong
measuring values. However, acceptable results are usually achieved even with quality warnings in the

6.2.2 How to Calibrate with the Calibration Assistant 173

Possible Error Source Solution
Did any camera settings (like aperture, focus
or pose of the camera) change during the cali-
bration process?

Take new calibration images and do not change
any settings during calibration and later during
the application. If you decide to change any-
thing you have to start a new calibration.

Did you acquire the calibration images the way
they are required?

Check if you have acquired 10 to 20 images,
if the calibration plate has been positioned ev-
erywhere in the field of view and if it has
been tilted in every direction. If you are un-
sure about how to take good calibration im-
ages, read the instruction (page 169).

Are you using an extreme wide angle lens? The distortions that appear close to the im-
age borders cause a higher Mean Error or can
even be responsible for the failure of the cali-
bration. You must use another lens in this case.

Is the size of your camera chip compatible with
the lens?

Using a lens that is not compatible with your
camera chip size (this information should be
included in the instructions of the lens) will de-
crease the quality of your image.

Table 6.1: Checklist for Calibration Errors.

range of 40% to 70%. If necessary check the following tables for suggestions about improving your
image quality. When trying to improve your image quality, do not forget to check other error sources.

ATTENTION: Remember that once you change your camera setup (aperture, focus, pose) either
during the calibration process or during the subsequent application, you have to restart your cali-
bration with the new setup. Any changes will result in the failure of the calibration or - even worse
- in wrong output values.

Note: Due to special settings or unchangable specifications of your work environment, it may be possible
that you cannot fully avoid any quality reductions. If you follow these instructions, you should, however,
be able to reach a feasible quality level to work with.

A
ss

is
ta

nt
s

174 HDevelop Assistants

Quality Issue Explanation Possible Solution
Plate is overexposed The image is too bright, it

reaches the highest gray value
(255) in some parts. This leads
to a shifting of edges and there-
fore calculates a wrong center
position.

Close the lens aperture or the
shutter a bit more or turn down
the brightness of your illumina-
tion until an adequate quality is
reached.

Illumination is inhomogeneous The image is illuminated inho-
mogeneously, i.e. the bright-
ness of the calibration plate
changes within one image.
This condition makes it diffi-
cult to locate the calibration
plate and consequently leads to
a lower accuracy.

Inhomogeneity in an image is
often the result of using lat-
eral illumination. If that is the
case: Can you change the set-
ting and instead use illumina-
tion from above? Another pos-
sibility would be to use diffuse
illumination.

Contrast is low The difference between the
gray values of the calibration
plate and the calibration marks
is not big enough.

Reasons can be either overex-
posure or underexposure. To
improve your results, change
your aperture or the brightness
of your illumination.

Plate in image is too small The plate size is too small in re-
lation to the image size.

The object should cover ap-
proximately one fourth of the
image’s total area. Mount the
camera closer to the object, use
a longer focal length or use a
larger calibration plate.

Marks on plate are out of focus The marks are not completely
focussed, some of them appear
blurry. This leads to a lower ro-
bustness.

The depth of field has to in-
clude the whole object. To fix
this error, change either your
focal length or the distance of
the object to the camera. Al-
ternatively you can also make
the aperture smaller and use
brighter illumination.

Quality assessment failed The image test failed, even
though the plate could be found
in the image.

Check, if any part of the image
is occluded and if the occlusion
interrupts the black margin of
the calibration plate.

6.2.2 How to Calibrate with the Calibration Assistant 175

Quality Issue Explanation Possible Solution
Mark extraction failed for
some images

It was impossible to extract the
calibration plate marks in some
images, which makes it also im-
possible to calibrate in this state.

Delete the images for which mark
extraction has failed and use new
images instead or adapt the ex-
teraction parameters. Make sure
that you follow the steps for good
calibration images (page 169) and
check for possible error sources
(page 173).

Quality issues detected
for some images

The quality of some images is be-
low the warn level.

Check the quality issues of the sin-
gle images by clicking on their
names in the list. Handle qual-
ity issues as described in the table
above.

Number of images is too
low

The number of images is lower
than recommended.

Check if you have taken enough
images. Less than 10 images will
lead to a low percentage in the
quality ranking whereas 20 images
equal 100 percent.

Field of view is not cov-
ered by plate images

Some part of the field of view is
not covered by any image of the
calibration plate, i.e. there are ar-
eas with no marks.

Press the Show button, which
appears in a column named
Details, to see all areas in red
that are not covered by calibration
plate images (compare figure
6.3). Before continuing, add
the missing image(s) to your
sequence. You can avoid this
problem by following the steps
for good calibration images (page
169).

Tilt angles are not cov-
ered by sequence

The calibration plate has not been
tilted enough.

Add more images of your calibra-
tion plate tilted in different direc-
tions. We recommend to tilt the
plate in every quadrant of the im-
age twice and vary the tilting di-
rection.

Not all image sizes are
identical

The image list contains images of
different sizes.

You have changed your setup
while taking calibration images.
Therefore, you should delete those
images taken before the change in
order to get useful results back.

A
ss

is
ta

nt
s

176 HDevelop Assistants

b) a)

c)

d)

not covered

covered

Figure 6.3: Not enough calibration images have been taken. a) and b): calibration sequence consisting of
two calibration plate images c) A Show button appears due to the fact that the coverage is not
sufficient. d) An image shows which parts of the field of view are not covered by calibration
plate images.

6.2.2.3 Display Parameters

The drop-down menus under Display Parameters enable you to choose the the colors and drawing
parameters for the calibration images display that you prefer. You can either leave the default values or
choose your own values for Plate Region, Mark Centers or the Coordinate System. The Draw
option lets you choose whether you want to see margins or filled regions.

6.2.2.4 Calibration Plate Extraction Parameters

You should always aim for high quality images. If for some reason you should, however, have trouble
with your image quality and see no other option of improving it, you can still adapt some parameters
under Calibration Plate Extraction Parameters. There are three groups of parameters which
may be changed:

• Locating the Calibration Plate, including Filter Size, Mark Threshold and Minimum Mark
Diameters,

• Extracting the Mark Regions, including Initial Threshold, Threshold Decrement and
Minimum Threshold, and

6.2.3 Results of the Calibration 177

• Extracting the Mark Contours, including Smoothing (Alpha), Minimum Contour Length and
Maximum Diameters.

For more information about the first group of parameters, please refer to the reference manual en-
try of the HALCON operator find_caltab. Groups two and three equate to HALCON operator
find_marks_and_pose.

6.2.3 Results of the Calibration

Two types of parameters of your vision system are calculated as results: internal parameters, e.g., the
precise focal length, the size of the camera chip, or the distortion caused by an imperfect lens, and
external parameters, i.e., the position and orientation of the vision system.

Consequently, the calibration returns the following results:

• Calibration Status,

• Camera Parameters, and

• the Camera Pose.

The results displayed in Camera Parameters and Camera Pose can also be saved to a file by clicking
the Save buttons on the right.

Display Results enables you to choose which results should be displayed.

Once you are finished with the results, go on to the Code Generation (page 183) tab.

6.2.3.1 Calibration Status

This box displays the Status of the calibration, i.e. whether the calibration was successful, and the
Mean Error in pixels.

If you either delete calibration images (page 171) or change Calibration Plate Extraction
Parameters (page 176) or Camera Parameters (page 167) after having calibrated, the former calibra-
tion data is not valid any more. Therefore, the Status will display that no calibration data is available.
To continue working with your changed camera parameters, calibration parameters or images, just click
Calibrate (page 172) again on the Calibration tab.

2 Mean Error

Mean Error designates the average error in pixels during the calibration process. Once the system has
been calibrated, the ideal centers of the calibration marks are calculated and compared to the real mark
centers. Mean Error is the deviation value between the ideal and the real mark centers. A value of 0.1
and lower can be regarded as a good result. Possible calibration errors are described in the tables about
quality issues under Quality Issues (page 172); most of them can usually be solved quite easily, often
just by taking better calibration images (page 169).

A
ss

is
ta

nt
s

178 HDevelop Assistants

6.2.3.2 Camera Parameters

The internal camera parameters include Cell Width (Sx) and Cell Height (Sy) in micrometer,
Focal Length in mm, Center Column (Cx) and Center Row (Cy), Image Width and Image
Height in pixels. They also include Kappa in 1/ m2 or instead of Kappa, the distortion parameters
Radial 2nd Order (K1) in 1/ m2 , Radial 4th Order (K2) in 1/ m4 , Radial 6th Order in
m6 , Tangential 2nd Order (P1) and Tangential 2nd Order (P2) in 1/ m2 for the polynomial
area-scan camera model.

If you have a line-scan camera, additionally to the values of the area-scan camera
(division)model, values for the motion parameters Motion x (Vx), Motion y (Vy) and Motion
z (Vz) in micrometer/pixel will be returned.

6.2.3.3 Camera Pose

The 3D pose of the world coordinate system relative to the camera is described by the external camera
parameters X, Y and Z in mm and Rotation X, Rotation Y and Rotation Z in degrees.

6.2.3.4 Display Results

Via radio buttons you can choose Original Reference Image, to see the previously chosen refer-
ence image and Simulated Reference Image to display a synthetic reference image, which has been
calculated using the internally known measures of the calibration plate and the pose of the plate in the
reference image. You can also decide whether or not you want to Display Coordinate Axes of the
coordinate system of the calibration plate.

6.2.4 Generating Code

This tab helps you to generate and insert code for calibrating and for using the calibration results in your
HDevelop program. The tab is subdivided into four parts:

• Calibration

• Sample Usage

• Variable Names (page 180)

• Code Preview (page 181)

Once you are finished with configuring the options, check the position of the insert cursor and click
Insert Code (page 183) under Calibration or Sample Usage to insert the code into your HDevelop
program. Note that if you have already inserted code into your program and you click insert code again,
the previous code will be replaced regardless of the cursor position.

6.2.4 Generating Code 179

6.2.4.1 Calibration

Choose your Export Mode, either

• Calibration Procedure which exports the generated code,

• Calibration Data (Tuple) which exports the resulting calibration parameters
(CameraParameters and CameraPose) as tuples,

• or Calibration Results (File) which writes the calibration results into the specified files and
generates code lines for reading those files.

For the last one you can click the folder icons to browse for a stored file. Subsequently select Parameter
File and Pose File.

In order to save the calibration results to files it is necessary that

• a successful calibration took place before and

• a file name exists for both files.

To generate code for initializing the image acquisition when using the Image Acquisition
Assistant (page 158), enable Initialize Acquisition.

Once you are finished, check the position of the insert cursor and click Insert Code (page 183) to
insert the code into your HDevelop program.

6.2.4.2 The Browse button

The Browse button on the Code Generation tab is similar to the Save button on the Results tab.
It can be used in order to create file names into which the calibration results can then be written when
choosing the option Calibration Results (File).

6.2.4.3 Sample Usage

Sample Usage shows you what is possible with your calibration data and provides code, which you
can adapt to your own purposes. Choose the action you are interested in and the example code will be
inserted into your program.

You have the choice between:

• Transform Measurements into World Coordinates,

• Transform XLD Contours into World Coordinates,

• Estimate Pose from Single Image and

• Rectify Image .

Once you are finished, check the position of the insert cursor and click Insert Code (page 183) to
insert the code into your HDevelop program.

A
ss

is
ta

nt
s

180 HDevelop Assistants

2 Transform Measurements into World Coordinates

In the example code, the image coordinates of the first two mark center points are transformed into world
coordinates and this (3D) distance is calculated. First, the image coordinates of some points of interest
lying in the reference plane are obtained. Here, simply the first two mark center points of the plate
are chosen and a line is drawn between the two points for visualization. Then image coordinates are
converted into world coordinates using HALCON operator image_points_to_world_plane. The Z
coordinates will be 0 by definition because the measurement plane is the plane with the world coordinate
Z=0 (on reference plane). The distance in world coordinates is determined using distance_pp.

To adapt this code to your application, you typically exchange the mark centers for "real" points of
interest.

2 Transform XLD Contours into World Coordinates

In the example code, the XLD contours are transformed into world coordinates and this (3D) distance is
calculated. The points are visualized by a line. First an XLD in image coordinates, which relates to some
interesting features in the image, is obtained. Here, we simply generate a contour connecting the mark
center points of the plate by using the HALCON operator gen_contour_polygon_xld. Then a conver-
tion into world coordinates is performed with HALCON operator countour_to_world_plane_xld.
Using the operator get_contour_xld, mark center points are extracted in world coordinates.

To adapt this code to your application, you typically exchange the mark centers for "real" points of
interest and adapt or remove the visualization.

For further information about pose estimation, please refer to the section "Pose Estimation of known 3D
Objects With a Single Camera" in the Solution Guide III-C.

2 Estimate Pose from Single Image

First, the position of mark centers on the calibration plate is determined. With known camera parameters,
one image is enough to determine the new pose using the HALCON operator camera_calibration.

This sample code always determines the pose of the calibration plate. There is no further adaption
possible.

2 Rectify Image

First the desired width of the visible area in world coordinates in mm is chosen and converted to m.
Then set_origin_pose adjusts the origin so the plate is roughly centered. The HALCON operator
gen_image_to_world_plane_map generates the rectification map. Finally, images can be rectified
using the rectification map by map_image.

To adapt this code to your application, you typically change the scale and origin of the new image
coordinate system.

6.2.4.4 Variable Names

For each calibration, default variable names are chosen. You can, however, use your own variable names
and change variable names for:

6.2.5 Calibration Assistant Reference 181

• Connection Handle

• Image Object

• Camera Parameters

• Start Parameters

• Loop Counter

• Image Files

• Camera Pose

• Window

Note: These are variables which you might set before the generated code or use after the generated code.
Intermediate variables have fixed names starting with TmpCtrl or TmpObj.

Once you are finished, check the position of the insert cursor and click Insert Code (page 183) to
insert the code into your HDevelop program.

6.2.4.5 Code Preview

Here, you can, e.g., edit or replace individual operators of the code lines proposed by the Calibration
Assistant.

For details, see also Code Generation (page 183) in the menu.

6.2.5 Calibration Assistant Reference

The Calibration Assistant consists of the following elements.

Pull-down menus:

• File

• Calibration (page 183)

• Code Generation (page 183)

• Help (page 184)

Tool bar with a selection of important buttons:

• Load Assistant Settings

• Save Current Assistant Settings

• Insert Code (page 183)

• Calibrate (page 169)

• Help (page 184)

Tabs with the dialogs for most of the tasks that can be done with the Calibration Assistant:

A
ss

is
ta

nt
s

182 HDevelop Assistants

• Setup (page 184)

• Calibration (page 184)

• Results (page 184)

• Code Generation (page 178)

Furthermore, it provides a status bar at the bottom in which messages are displayed. The status bar also
displays the calibration results (page 177), i.e., if the calibration was successful. Please note that the
status bar does not provide a scrolling mechanism; if the displayed message is too long, move the mouse
over it, so that a tool tip displaying the full message pops up. Alternatively, if the message is only slightly
larger than the status bar, you can also drag the left or right border of the Calibration Assistant window
to enlarge it.

Images are displayed in the graphics window of HDevelop.

6.2.5.1 The Menu File

Via the menu File you can

• load formerly used and saved settings of the Calibration Assistant,

• save the current settings of the Calibration Assistant for later use,

• close the Calibration Assistant dialog (while retaining the current settings as long as the HDevelop
session is active), and

• exit the Calibration Assistant dialog (discarding the settings).

2 Loading Assistant Settings

If you have saved the settings of a former Calibration Assistant session, you can load them again by the
menu item File . Load Assistant Settings or via the corresponding button of the tool bar.

2 Save Current Assistant Settings

You can save the current settings of a Calibration Assistant session using the menu item File . Save
Current Assistant Settings or the corresponding button in the tool bar. Then, you can load them
again in a later session.

2 Close the Calibration Assistant Dialog

When closing the Calibration Assistant dialog with the menu item File . Close Dialog, the current
settings are stored for the duration of the current HDevelop session. That is, as long as you do not exit
HDevelop, you can again open the Calibration Assistant with the same settings. In contrast to this, when
you exit the Calibration Assistant, the settings are lost also for the current HDevelop session.

2 Exit the Calibration Assistant

6.2.5 Calibration Assistant Reference 183

When you exit the Calibration Assistant with the menu item File . Exit Assistant, the assistant’s
dialog is closed and the current settings are lost unless you have stored them via the menu item File .
Save Current Assistant Settings (page 190). If you want to close the dialog but keep its settings
for the current HDevelop session, you should use the menu item Close Dialog instead.

6.2.5.2 The Menu Calibration

Via the menu Calibrate you can run a calibration as described in the section Calibrating (page 172).

6.2.5.3 The Menu and Tab Code Generation

Via the menu Code Generation you can

• insert code to the program window of HDevelop according to the current settings of the Calibration
Assistant,

• release the generated code lines in the program window,

• delete the generated code lines from the program window as long as you did not release them, and

• open the dialog for the code preview inside the tab Code Generation.

2 Insert the Generated Code Lines

Via the menu item Code Generation . Insert Code (also accessible as tool bar button or as button
inside the tab Code Generation), you can insert the code that is generated according to the current
settings of the Calibration Assistant into the program window. Inserting code via menu or tool bar will
generate code for calibration and samples.

2 Release the Generated Code Lines

Via the menu item Code Generation . Release Generated Code Lines you can release the gen-
erated and inserted code lines. After releasing the code lines, all connections between the Calibration
Assistant and the program window of HDevelop are lost. That is, changes, e.g., the deletion of code lines,
can then only be applied directly in the program window and not from within the Calibration Assistant
anymore.

2 Delete the Generated Code Lines

Via the menu item Code Generation . Delete Generated Code Lines you can delete the code
lines that you have previously generated and inserted into the program window of HDevelop from within
the Calibration Assistant. Note that this works only as long as you have not yet released the code lines.

2 Preview of the Generated Code Lines

Via the menu item Code Generation . Show Code Preview you can open the dialog for the Code
Preview in the tab Code Generation.

A
ss

is
ta

nt
s

184 HDevelop Assistants

6.2.5.4 The Menu Help

Via the menu Help you can access the online documentation.

6.2.5.5 The Tab Setup

The Setup tab consists of the following subdivisions:

• Calibration Task (page 166)

• Calibration Plate (page 167)

• Camera Parameters (page 167)

6.2.5.6 The Tab Calibration

The Calibration tab includes:

• Image Source (page 171)

• Calibration (page 171)

• Quality Issues (page 172)

• Display Parameters (page 176)

• Calibration Plate Extraction Parameters (page 176)

6.2.5.7 The Tab Calibration Results

The Calibration Results tab includes the following subdivisions:

• Calibration Status (page 177)

• Camera Parameters (page 178)

• Camera Pose (page 178)

• Display Results (page 178)

6.3 Matching Assistant 185

6.3 Matching Assistant

6.3.1 Introducing the Matching Assistant of HDevelop

The Matching Assistant of HDevelop is a front-end to HALCON’s powerful shape-based matching,
which lets you locate objects with sub-pixel accuracy at a high speed, even when they appear rotated,
partly occluded, or under changing illumination. Using the Matching Assistant you can

• configure and test the matching process with a few mouse clicks and

• optimize the parameters interactively to get the maximum matching speed and recognition rate.

All you need is a single model image and a set of test images. The Matching Assistant further assists
you by automatically calculating suitable parameter values based on your selections.

How to use the Matching Assistant is described here.

A reference to the elements of the Matching Assistant can be found here (page 188).

In this online help, the following special terms are used:

Matching Matching is the process of locating an object described by a model in an image. The results
of the matching process are the position and orientation of the object and the matching score.

Model In order to locate an object, you must provide the Matching Assistant with an example image of
the object. From this, the Matching Assistant creates the so-called model, an internal representa-
tion of the object containing only the information characterizing the object. This representation is
then used when searching for the object in the test images.

Model Image This is the image containing your example of the object to be searched for. This image
should be a characteristic image of the object, i.e., the object should appear in its default position
and orientation and not be occluded; furthermore, the image should not contain clutter. You can
open this image via the menu item File . Open Model Image (page 189).

Model Region of Interest (ROI) This is the region in the model image which contains the object to be
found. You can mark this region via the menu item Create Model . Create ROI (page 190).

Test Image You can test the performance of the matching process by providing test images via the menu
item Use Model . Test Images . Load Test Images (page 200). These images should be
representative images from your matching application, i.e., the object should appear in all allowed
variations of its position, orientation, occlusion, and illumination.

Score When comparing a region in a test image with the model, the Matching Assistant calculates a
measure of similarity, the so-called score, which ranges between 0 (no similarity) and 1 (perfect
similarity).

6.3.2 How to Use the Matching Assistant of HDevelop

By using the Matching Assistant, you can set up and optimize your matching application quickly and
easily in three steps:

A
ss

is
ta

nt
s

186 HDevelop Assistants

• Create the model,

• Test the model, and

• Optimize the matching speed.

We recommend to reset all parameters via the button Reset (page 199) inside the tab Model Creation
(page 190) before starting with a new matching application.

6.3.2.1 Creating the Model

A model (page 185) is created in three steps:

• Open the so-called model image (page 185) via the menu item File . Open Model Image (page
189), the corresponding button in the tool bar, or the text field and button of Model Image inside
the tab Model Creation.

• Create an ROI (page 185) around the object either via the menu items at Create Model . Create
ROI (page 190) or via the corresponding buttons inside the tab Model Creation.

• Specify the parameter Contrast (page 193) inside the tab Model Creation (accessible also
via Create Model . Standard Model Parameters (page 192)) so that the model consists of
enough points to be recognizable.

Alternatively, you can load a model (page 189) that you have saved (page 190) with the Matching Assis-
tant or HALCON.

Now, you can test the model on test images (page 185).

6.3.2.2 Testing the Model

After you created the model (page 185) you test it in the following steps:

• Load one or more test images (page 185) via the menu item Use Model . Test Images . Load
Test Images (page 200) or via the button Load inside the dialog Test Images in the tab Model
Use.

• Specify standard search parameters via the menu item Use Model . Standard Model Use
Parameters (page 203), which opens the corresponding dialog in the tab Model Use. Espe-
cially the number of object instances (page 204) to search for in an image should be specified. If
the number of object instances varies from test image to test image, you can specify the number of
visible objects (page 202) for each image separately; in this case the search parameter mentioned
above should be set to 0 or to the maximum number of visible objects.

• Assure that all objects are found (page 202) in all test images.

Now, you can optimize the speed of the matching process by tuning the parameters.

6.3.2 How to Use the Matching Assistant of HDevelop 187

6.3.2.3 Optimizing the Parameters

After you configured the matching (page 185) process such that the search is successful in all test images,
you can start to optimize the parameters to speed up the matching as far as possible.

To support this process, the Matching Assistant allows to optimize the search parameters Minimum
Score (page 203) and Greediness (page 204) automatically via the menu item Use Model . Optimize
Recognition Speed (page 206), which can be accessed also via the tab Model Use.

If the reached recognition speed is not sufficient, you can try to modify parameters manually. However,
please be aware that such a modification may result in a lower accuracy of the calculated position, orienta-
tion, or scale, or even prevent the Matching Assistant from finding the object! Therefore, we recommend
to check whether the matching still succeeds in all test images (page 185) after each modification.

How the different parameters influence the recognition speed is described below. Please note that when-
ever you modify a model parameter, the internally stored model must be created anew; you must start
this creation (and the search) explicitly using the button Find Model or the button Detect All in the
tab Model Use. After each modification determine the resulting recognition speed using the dialog
Optimize Recognition Speed (page 206).

The following modifications can speed up the matching processes:

Create Model . Standard Model Parameters (page 192):

• Number of Pyramid Levels (page 194)

Increase the value and check whether the matching still succeeds in all images.

• Allowed ranges of rotation (page 195) and scale (page 195)

Set the parameters Start Angle (page 195), Angle Extent (page 195), Min Row Scale (page
195), Max Row Scale (page 195), Min Column Scale (page 195), and Max Column Scale
(page 195), according to the ranges probably needed for your images.

Create Model . Advanced Model Parameters (page 196):

• Minimum Contrast (page 198)

Increase the value and check whether the matching still succeeds in all images.

• Optimization (page 198) (Point Reduction)

Select a higher reduction rate and check whether the matching still succeeds in all images.

• Angle Step (page 196) size and Scale Step (page 197) size

Increase the values and check whether the matching still succeeds in all images. Please note that
the accuracy may suffer if you increase the step size!

Use Model . Advanced Model Use Parameters (page 204):

• Subpixel (page 204)

If your application doesn’t require sub-pixel accuracy, you can speed up the matching by selecting
the value ’none’.

Last Pyramid Level (page 205)

A
ss

is
ta

nt
s

188 HDevelop Assistants

Increase the value and check whether the matching still succeeds in all images. Note that as a result
of this modification wrong instances of the model may be found. Furthermore, the accuracy of the
calculated position, orientation, and scale may decrease.

6.3.3 Matching Assistant Reference

The Matching Assistant consists of the following elements.

Pull-down menus:

• File

• Create Model (page 190)

• Use Model (page 199)

• Inspect (page 206)

• Code Generation (page 208)

• Help (page 209)

Tool bar with a selection of important buttons:

• Load Assistant Settings (page 190)

• Save Current Assistant Settings (page 190)

• Insert Code (page 209)

• Open Model Image

• Display Model (page 191)

• Optimize Recognition Speed (page 206)

• Determine Recognition Rate (page 207)

Tabs with the dialogs for most of the tasks that can be done with the Matching Assistant:

• Model Creation (page 190)

• Model Use (page 199)

• Inspect (page 206)

• Code Generation (page 208)

Furthermore, it provides a status bar at the bottom in which messages are displayed. The status bar
also displays the matching results, i.e., the number of found instances, the needed time, and for each
found instance the position, orientation, scale, and score. Please note that the status bar does not provide
a scrolling mechanism; if the displayed message is to long, move the mouse over it, so that a tool tip
displaying the full message pops up. Alternatively, if the message is only slighly larger than the status
bar, you can also drag the left or right border of the Matching Assistant window to enlarge it.

Images and models are displayed in the graphics window of HDevelop.

6.3.3 Matching Assistant Reference 189

6.3.3.1 The Menu File

Via the menu File you can

• open the model image,

• load an already existing shape model,

• save a shape model,

• load formerly used and saved settings of the Matching Assistant,

• save the current settings of the Matching Assistant for later use,

• close the Matching Assistant dialog (while retaining the current settings as long as the HDevelop
session is active), and

• exit the Matching Assistant dialog (discarding the settings).

2 Opening the Model Image

The so-called model image (page 185) is used to create the model (page 185) of the object you want to
find later. This image should be a characteristic image of the object, i.e., the object should appear in its
default position and orientation and not be occluded; furthermore, the image should not contain clutter.

When you select the menu item File . Open Model Image or press the corresponding button either
in the tool bar or in the dialog Model Image in the tab Model Creation, a standard file selection box
appears. The Matching Assistant can read the image file types TIFF, BMP, GIF, JPEG, PPM, PGM,
PNG, and PBM.

The selected image is displayed automatically. Typically, the next step is to create a region of interest
around the object.

As an alternative to loading a model image and creating the model (page 186) interactively, the menu
item File . Load Model can be used to load a model that you have saved with the Matching Assistant
or HALCON.

Note that the matching works on a single channel. For color RGB images, the red channel will be used.
A color transformation can be performed with the operator trans_from_rgb.

2 Loading a Shape Model

As an alternative to opening a model image (page 185) and creating (page 186) the model (page 185)
interactively, the menu item File . Load Model or the corresponding button Load in the tab Model
Use can be used to load a model that you have saved with the Matching Assistant or HALCON.

Note that when you load the model from a file, all the menu items, buttons, and dialogs that enable
you to change the model parameters or display the model image will not be selectable because a loaded
model cannot be changed and contains no information about the image from which it was created. Thus,
e.g., the menu items Create Model . Create ROI, Create Model . Standard Model Parameters
(page 192), and Create Model . Advanced Model Parameters (page 196), and the Display button
of the dialog accessed by Create Model . Display Image Pyramid (page 191), which is used to
inspect the model, are enabled.

A
ss

is
ta

nt
s

190 HDevelop Assistants

2 Saving a Shape Model

The menu item File . Save Model enables you to save the created model (page 186) in a file for later
use. For example, the model (page 185) can be loaded into the Matching Assistant again in a later session
with File . Load Model (page 189).

2 Loading Assistant Settings

If you have saved the settings of a former Matching Assistant session, you can load them again by the
menu item File . Load Assistant Settings or via the corresponding button of the tool bar.

2 Save Current Assistant Settings

You can save the current settings of a Matching Assistant session using the menu item File . Save
Current Assistant Settings or the corresponding button in the tool bar. Then, you can load them
again in a later session.

2 Close the Matching Assistant Dialog

When closing the Matching Assistant dialog with the menu item File . Close Dialog, the current
settings are stored for the duration of the current HDevelop session. That is, aslong as you do not exit
HDevelop, you can again open the Matching Assistant with the same settings. In contrast to this, when
you exit the Matching Assistant, the settings are lost also for the current HDevelop session.

2 Exit the Matching Assistant

When you exit the Matching Assistant with the menu item File . Exit Assistant, the assistant’s
dialog is closed and the current settings are lost unless you have not stored them via the menu item File
. Save Current Assistant Settings. If you want to close the dialog but keep its settings for the
current HDevelop session, you should use the menu item Close Dialog instead.

6.3.3.2 The Menu Create Model and the Tab Model Creation

Via the menu Create Model as well as the tab Model Creation you can

• create a model ROI,

• display the image pyramid, and

• specify standard (page 192) and advanced model parameters (page 196).

In the tab Model Creation you can additionally reset (page 199) the model.

2 Creating a Region of Interest Around the Object

Via the menu items in Create Model . Create ROI or the corresponding buttons in the tab Model
Creation you can mark the region that serves as the model by drawing it on the displayed model image.

6.3.3 Matching Assistant Reference 191

The Matching Assistant provides different ROI (page 185) shapes: axis-parallel and arbitrarily oriented
rectangles, circles and ellipses, as well as free-form shapes including polygons.

You draw rectangular, circular, and elliptic ROIs as follows: Select the corresponding drawing mode and
click into the image. Then, move the mouse over the object while keeping the left mouse button pressed;
the selected shape appears. After releasing the mouse button you can move the ROI by dragging its center
(marked with a cross) with the left mouse button. Furthermore, you can edit the shape by dragging its
boundaries. You finish the creation by clicking once with the right mouse button or by clicking the Stop
button in the tool bar of the main window.

By selecting the menu item Create Model . Create ROI . Arbitrary Region or the corresponding
button in the tab Model Creation you can create polygons and free-form shapes. To create a polygon
click with the left mouse button to mark each corner point; a click with the right mouse button closes
the polygon and finishes the creation. To create a free-form ROI draw it directly while keeping the left
mouse button pressed; a click with the right mouse button closes the shape and finishes the creation.
Note that in both cases you cannot edit the ROI after its creation!

In order to create an optimal model, please assure that the region of interest contains only characteristic
parts of the object and no clutter!

After creating an ROI, you can specify standard model parameters. Typically, you now select what
contrast (page 193) the points must have in order to be included in the model.

2 Displaying the Model Image

Pressing the button Display Model in the tool bar of the Matching Assistant, you can display the model
image if available (if you loaded a shape model (page 189) from file, the model image is not available).

You can alternatively display the model image via the button Display in the dialog Display Image
Pyramid of the tab Model Creation (accessed also via the menu item Create Model . Display
Image Pyramid). If you already created a model ROI (page 185), the model itself is displayed as well.
When increasing the values for Image and Model using the sliders or the text boxes, you can display the
pyramid levels (see the corresponding section about pyramid images).

2 Displaying the Image Pyramid

Using the dialog Display Image Pyramid (accessed via the menu item Create Model . Display
Image Pyramid or directly inside the tab Model Creation), you can display the model image (page
185) (see how to display the model image) and inspect the pyramid of models and the corresponding
images by

• selecting which model level is displayed,

• selecting which image level is displayed, and

• locking or unlocking model and image level.

2 Displaying the Model on the Different Pyramid Levels

You can select the desired pyramid level of the model by using the slider or text box for Model inside the
dialog Display Image Pyramid of the tab Model Creation. The model is overlaid onto the pyramid

A
ss

is
ta

nt
s

192 HDevelop Assistants

image selected with the slider or text box Image within the same dialog. By default, the model and
the image are displayed on the same pyramid level; you can unlock and again lock the levels using the
lock/unlock button right to the sliders.

Note that the highest available pyramid level is determined automatically by the Matching Assistant
based on the size of the model ROI (page 185); depending on the selected Contrast and Minimum
Component Size (page 194), higher pyramid levels may not contain any model points.

Detailed information about the model image pyramid can be found here (page 194).

2 Displaying the Model Image on the Different Pyramid Levels

You can select the desired pyramid level of the model image using the slider or text box for Image inside
the dialog Display Image Pyramid of the tab Model Creation. Onto this image, the model on the
pyramid level selected with the slider or text box for Model (page 191) within the same dialog is overlaid.
By default, the model and the image are displayed on the same pyramid level; you can unlock and again
lock the levels using the lock/unlock button right to the sliders.

Note that the highest available pyramid level is determined automatically by the Matching Assistant
based on the size of the model ROI (page 185); depending on the selected Contrast and Minimum
Component Size (page 194), higher pyramid levels may not contain any model points.

Detailed information about the model image pyramid can be found here (page 194).

2 Locking the Display of Model and Image Pyramid

By default, the pyramid levels of the displayed model (page 191) and model image are locked. When
pressing the unlock button right to the sliders, which are used for specifying the pyramid levels, you can
select different pyramid levels for the model image and the model. When pressing the button again, both
levels are locked again.

Detailed information about the model image pyramid can be found here (page 194).

2 Specifying Standard Model Parameters

Via the menu item Create Model . Standard Model Parameters the tab Model Creation is
opened and you can specify basic parameters for the model, which describe the appearance of the object
to recognize, e.g., the contrast of significant points or the allowed range of rotation.

By default, these parameters are set to values which work well for most tasks; by modifying them you
can optimize the model for your application and speed up the search process.

The following parameters can be specified in this dialog:

• the Contrast which points must have in order to be included in the model,

• the Minimum Component Size (page 194) of model components,

• the number of Pyramid Levels (page 194) on which the model is created,

• the Start Angle (page 195) of the allowed range of rotation,

• the allowed range of rotation (Angle Extent (page 195)), and

6.3.3 Matching Assistant Reference 193

• the scale range (page 195).

In most applications, specifying the standard parameters will already suffice. Therefore, you can directly
test the model (page 186) now. Additionally, advanced model parameters can be specified via the menu
item Create Model . Advanced Model Parameters (page 196).

2 The Model Parameter Contrast (Low/High)

The two parameters Contrast (Low) and Contrast (High) determine which pixels in the selected
ROI (page 185) are included in the model (page 185); typically, the points corresponding to the contours
of the object should be selected.

When you select a value, either by using the sliders or by entering a value in the text fields next to them,
the included pixels are marked in the displayed image. In order to obtain a suitable model we recommend
to choose the contrast in such a way that the significant pixels of the object are included, i.e., those pixels
that characterize it and allow to discriminate it clearly from other objects or from the background. Please
assure that no clutter is included, i.e., pixels that do not belong to the object!

You can use the parameters in two ways:

1. Simple threshold:

Set both parameters to the same value. Then, all pixels with a contrast higher than this value are
included in the model.

You can modify both parameters at the same time as follows: To increase the value, use the slider
of Contrast (Low); then, the value Contrast (High) will follow automatically. Vice versa, to
decrease the value use the slider of Contrast (High).

2. Hysteresis threshold:
If there is no single contrast value that selects all significant object pixels without including clutter,
try using different values for Contrast (Low) and Contrast (High). Then, pixels are selected
in two steps: First pixels that have a contrast higher than Contrast (High) are selected; then,
pixels that have a contrast higher than Contrast (Low) and that are connected to a high-contrast
pixel, either directly or via another pixel with contrast above the lower threshold, are added.

We recommend to proceed as follows: Increase both values (using the slider of Contrast (Low)),
until no clutter pixels are selected anymore. Then, decrease Contrast (Low) to add more object
pixels. If significant object parts remain unselected, decrease Contrast (High).

Note that these parameters are used only to select model points in the model image. In the test images,
the object may have a lower contrast.

You can also let the Matching Assistant select suitable values automatically based on the model image.

An additional method for removing clutter is to specify a minimum size for the model components. If
you cannot find suitable parameter values that exclude the clutter, we recommend to create a new model
ROI via the menu item Create Model . Create ROI (page 190).

A
ss

is
ta

nt
s

194 HDevelop Assistants

2 Letting the Matching Assistant Select a Suitable Value for Contrast

When you click the button Auto Select that is placed right beside the sliders for the parameters
Contrast (Low/High) the Matching Assistant selects suitable values for the contrast by trying to ob-
tain many long and straight contour segments.

Note that you may need to set the value manually if certain model components should be included or
suppressed because of application-specific reasons or if the object contains several different contrasts.

2 The Model Parameter Minimum Component Size

The parameter Min Component Size specifies the minimum size, i.e., number of pixels, which contour
parts must have to be included in the model (page 185). This parameter is useful to exclude clutter.

You can also let the Matching Assistant select a suitable value automatically based on the model image
(page 185).

Note that the selected value is divided by two for each successive pyramid level.

2 Letting the Matching Assistant Select a Suitable Value for Minimum Component Size

When you click the button Auto Select that is placed right beside the slider for the parameter Minimum
Component Size the Matching Assistant selects a suitable value for the minimum component size based
on the model image.

2 The Model Parameter Pyramid Levels

To speed up the matching process, a so-called image pyramid is created, both for the model image and
for the search images. The pyramid consists of the original, full-sized image and a set of downsampled
images. For example, if the original image (first pyramid level) has the size 600x400, the second level
image has the size 300x200, the third level 150x100, and so on. The object is then searched first on the
highest pyramid level, i.e., in the smallest image. The results of this fast search are then used to limit the
search in the next pyramid image, whose results are used on the next lower level until the lowest level is
reached. Using this iterative method the search is both fast and accurate.

You can inspect the model image pyramid together with the corresponding models via the menu item
Create Model . Display Image Pyramid (page 191), which opens the corresponding dialog of the
tab Model Creation. We recommend to choose the highest pyramid level at which the model contains
at least ten pixels (and still resembles the original shape). You can enter the value directly in the text
field or by using the slider next to it. Alternatively, you can let the Matching Assistant select a suitable
value automatically.

Note that the Matching Assistant can check whether the model contains enough points on the selected
number of pyramid levels only when actually creating the model. In case the model does not contain
enough model points a corresponding error dialog appears.

2 Letting the Matching Assistant Select a Suitable Value for Pyramid Levels

When you click the button Auto Select that is placed right beside the slider for the parameter Pyramid
Levels the Matching Assistant selects a suitable number of pyramid levels automatically, thus relieving
you of the task of examining the model image pyramid.

6.3.3 Matching Assistant Reference 195

Please note that in rare cases the automatic selection will yield a too low value and thereby slow down
the search process, or a too high value, resulting in failures to recognize the object. In such a case we
recommend to inspect the model image pyramid (page 191) and select a suitable value manually.

2 The Model Parameter Start Angle

With the parameter Start Angle you can specify the starting angle of the allowed range of rotation
(unit:°). With another parameter you can specify the extent of the allowed range. Note that the range of
rotation is defined relative to the model image, i.e., a starting angle of 0° corresponds to the orientation
the object has in the model image. Therefore, to allow rotations up to +/-5°, e.g., you should set the
starting angle to -5° and the angle extent to 10°.

2 The Model Parameter Angle Extent

With the parameter Angle Extent you can specify how much the object is allowed to rotate (unit:°).
With another parameter you can specify the starting angle of this allowed range. Note that the range of
rotation is defined relative to the model image, i.e., a starting angle of 0° corresponds to the orientation
the object has in the model image. Therefore, to allow rotations up to +/-5°, e.g., you should set the
starting angle to -5° and the angle extent to 10°.

We recommend to limit the allowed range of rotation as much as possible in order to speed up the search
process and to minimize the required memory. If the loaded test images (page 200) show the object
in its extreme orientations, you can let the Matching Assistant determine the range of rotation, i.e., the
Pose Bounds (page 207), by pressing the Run button of the tab Inspect and viewing the result in the
Statistics output of the same tab.

Furthermore, you must limit the allowed range if the object is (almost) symmetrical. Otherwise the
search process will find multiple, almost equally good matches on the same object at different angles;
which match (at which angle) is returned as the best can therefore "jump" from image to image. The
suitable range of rotation depends on the symmetry: For a cross-shaped or square object the allowed
extent must be less than 90°, for a rectangular object less than 180°, and for a circular object 0°.

Note that if you have chosen a very large angle and scale range you may find it useful to switch off the
complete pregeneration (page 198) of the model.

2 The Model Parameters for the Scale Range

The allowed range of scale is defined separately in row and column direction. Thus, it is described by
the parameters:

• Minimum Row Scale

• Maximum Row Scale

• Minimum Column Scale

• Maximum Column Scale

In the model image, the scales all have the value 1.0.

A
ss

is
ta

nt
s

196 HDevelop Assistants

Note that if you have chosen a very large angle extent and scale range you may find it useful to switch
off the complete pregeneration (page 198) of the model.

Depending on the specified parameters, the most efficient matching method is used. This method deter-
mines how the shape model is created in the generated code.

• Unscaled matching:

This method is used if all four scale factors are equal to 1.0.

• Scale invariant matching:

This method is used if all four scale factors are equal (but not 1.0) or locked.

• Anisotropic scale invariant matching:

This method is used if none of the above applies.

2 Specifying Advanced Model Parameters

In most applications, specifying the Standard Model Parameters (page 192) will already suffice.
The menu item Create Model . Advanced Model Parameters provides additional parameters that
let you handle special cases like changing the contrast polarity or enable you to further optimize the
model.

The following parameters can be specified in this dialog:

• the Angle Step at which the model is created,

• the scale steps at which the model is created,

• whether to use the polarity of the contrast (Metric) in the model,

• whether to optimize the model (page 198) by using a reduced number of points,

• whether to pregenerate the model completely (page 198), and

• the Minimum Contrast (page 198) points must have in a search image to be compared with the
model.

2 The Model Parameter Angle Step

The standard model parameters Start Angle (page 195) and Angle Extent (page 195) specify how
much the object is allowed to rotate. To speed up the matching process the Matching Assistant pre-
computes instances of the model at intermediate angles in this range, at steps specified in the parameter
Angle Step.

Note that each time you create a model ROI (page 185) or change the parameter Contrast (page 193),
the Matching Assistant automatically selects a suitable value to obtain the highest possible accuracy. You
can select a higher value manually. This may be useful to speed up the search process in special cases;
please note however, that a large value may decrease the accuracy of the estimated orientation and even
prevent the Matching Assistant from finding the object! You can restore the automatically selected value
by clicking the button Auto Select.

6.3.3 Matching Assistant Reference 197

If you already loaded test images (page 200) you can quickly test the effect of the selected parameter
value via the menu item Inspect . Determine Recognition Rate (page 207).

2 Letting the Matching Assistant Select a Suitable Value for Angle Step

When you click the button Auto Select that is placed right beside the slider for the parameter Angle
Step the Matching Assistant selects a suitable value for the angle step size to obtain the highest possible
accuracy.

2 The Model Parameters Row Scale Step and Column Scale Step

The standard model parameters for the scale range (page 195) specify how much the object is allowed
to be scaled in row and column direction. To speed up the matching process the Matching Assistant pre-
computes instances of the model at intermediate scales in this range, at steps specified in the parameters
Row Scale Step and Column Scale Step.

Note that each time you create a model ROI (page 185) or change the parameter Contrast (page 193),
the Matching Assistant automatically selects a suitable value to obtain the highest possible accuracy. You
can select a higher value manually. This may be useful to speed up the search process in special cases;
please note however, that a large value may decrease the accuracy of the estimated orientation and even
prevent the Matching Assistant from finding the object! You can restore the automatically selected value
by clicking the button Auto Select.

If you already loaded test images (page 200) you can quickly test the effect of the selected parameter
value via the menu item Inspect . Determine Recognition Rate (page 207).

2 Letting the Matching Assistant Select a Suitable Value for Row Scale Step and Column Scale
Step

When you click the button Auto Select that is placed right beside the sliders for the parameters
Row/Column Step Size the Matching Assistant selects suitable values for both scale step sizes based
on the model image.

2 The Model Parameter Metric

The parameter Metric lets you choose whether the polarity of the contrast is to be observed when
comparing a test image with the model. By default, the polarity is used (’use_polarity’), i.e., the points
in the test image must show the same direction of the contrast as the corresponding points in the model.

You can choose to ignore the polarity globally (’ignore_global_polarity’), at the cost of a slightly lower
recognition speed. In this mode, an object is recognized also if the direction of its contrast reverses, e.g.,
if your object can appear both as a dark shape on a light background and vice versa.

A third mode lets you ignore the polarity locally (’ignore_local_polarity’), i.e., objects are also recog-
nized if the direction of the contrast changes only in some parts. This mode can be useful, e.g., if the
object consists of a part with a medium gray value, within which either darker or brighter sub-objects lie.
Please note, however, that the recognition speed decreases dramatically in this mode, especially if you
allowed a large range of rotation (page 195).

A
ss

is
ta

nt
s

198 HDevelop Assistants

Finally, you can choose to ignore the color polarity (’ignore_color_polarity’) to apply shape based match-
ing to multi-channel images.

If you already loaded test images (page 200) you can quickly test the effect of the selected parameter
value via the menu item Inspect . Determine Recognition Rate (page 207).

2 The Model Parameter Optimization

After you created a model ROI (page 185), by default all points showing the required Contrast (page
193) (and belonging to components larger than the Minimum Size (page 194)) are selected for the model
(page 185) and marked in the image. For particularly large models, i.e., a large number of model points,
it might be useful to reduce the number of points using the parameter Optimization in order to speed up
the matching (page 185) process and to reduce memory requirements. You can select a low, medium, or
high point reduction; please note that regardless of your selection all points passing the contrast criterion
are displayed, i.e., you cannot check which points are part of the model.

You can also let the Matching Assistant select a suitable value automatically based on the model image.

Another possibility to reduce the memory requirements of the model is to switch off the complete pre-
generation of the model.

If you already loaded test images (page 200) you can quickly test the effect of the selected parameter
value via the menu item Inspect . Determine Recognition Rate (page 207).

2 Letting the Matching Assistant Select a Suitable Value for Optimization

When you click the button Auto Select that is placed right beside the slider for the parameter
Optimization the Matching Assistant optimizes, i.e., reduces the number of model points based on
the model image.

2 The Model Parameter Pregenerate Shape Model

The parameter Pregenerate Shape Model specifies whether the internal representation of the shape
model is pregenerated completely whenever the model is created.

If you select a complete pregeneration by checking the check box Pregenerate Shape Model the
model generation may require a substantial amount of time and memory. In contrast, if you switch
off the complete pregeneration, the model creation will be very fast and the model will consume less
memory.

The advantage of selecting a complete pregeneration is that the model can typically be found slightly
faster than if the complete pregeneration is switched off. Typically, you may find it useful to switch off
the complete pregeneration if your model uses a large angle and scale range.

2 The Model Parameter Minimum Contrast

In order to select significant object points for the model (page 185) you specified which Contrast (page
193) the points must show in the model image (page 185). With the parameter Minimum Contrast you
can specify a separate minimum contrast for the matching (page 185) process itself, i.e., when searching

6.3.3 Matching Assistant Reference 199

for the object in the test images (page 185). The main use of this parameter is to exclude noise, i.e., gray
value fluctuations, from the matching process.

Note that a low value for Minimum Contrast slows down the matching process because more points in
the test image must be compared with the model. Therefore, we recommend to choose a value which is
higher than the noise in the test images. You can also let the Matching Assistant select a suitable value
automatically based on the model image.

Note that although this parameter is only used during the search, it is already included when creating the
model in order to speed up the matching process.

If you already loaded test images you can quickly test the effect of the selected parameter value via the
menu item Inspect . Determine Recognition Rate (page 207).

2 Letting the Matching Assistant Select a Suitable Value for Minimum Contrast

When you click the button Auto Select that is placed right beside the slider for the parameter Minimum
Contrast (page 198) the Matching Assistant selects a suitable value for the minimum contrast by eval-
uating the gray value fluctuations, i.e., the noise in the model image.

Note that an automatic determination only makes sense if the image noise during the recognition is
similar to the noise in the model image. For this reason, it is typically not useful when using a synthetic
model image (without noise).

2 Reset All Parameters

The button Reset inside the tab Model Creation resets all model and search parameters to their default
settings and deletes the model image (page 185), the model ROI (page 185), and the test images (page
185).

6.3.3.3 The Menu Use Model and the Tab Model Use

Via the menu Use Model as well as the tab Model Use you can

• load test images,

• delete a selected test image,

• delete all test images at once,

• display the selected test image (page 201),

• access the test image settings in the tab Model Use,

• open the dialog for the standard (page 203) and advanced search parameters (page 204),

• open the dialog for the optimization of the recognition speed (page 206), and

• directly start to optimize the recognition speed (page 206).

A
ss

is
ta

nt
s

200 HDevelop Assistants

In the tab Model Use you can additionally

• select a test image,

• specify the number of visible objects (page 202) in the image, and

• start the matching for a selected test image or

• for the whole sequence of test images.

2 Loading Test Images

The so-called test images (page 185) should be representative images from your matching application,
i.e., the object should appear in all allowed variations of its position, orientation, occlusion, and illumi-
nation.

When you select the menu item Use Model . Test Images . Load Test Images (or click the cor-
responding button Load in the tab Model Use), a standard file selection box appears, in which you can
select one or more images to load. The Matching Assistant can read the image file types TIFF, BMP,
GIF, JPEG, PPM, PGM, PNG, and PBM. Please note that the test images must have the same size as the
model image!

A dialog appears in the tab Model Use which enables you to test the matching on the loaded images.

2 Deleting a Test Image

When you select the menu item Use Model . Test Images . Delete Test Image or click the but-
ton Delete inside the dialog Test Images of the tab Model Use, the currently selected test image is
deleted from the list of test images. You can select a test image by clicking onto its index number or path
in the text field left to the buttons.

You can also delete all test images at once.

2 Deleting All Test Images

When you select the menu item Use Model . Test Images . Delete All Test Images or click the
button Delete All in the dialog Test Images of the tab Model Use, all test images are deleted from
the list of test images.

You can also delete a selected test image.

2 Test Images

With the menu item Use Model . Test Images you can

• load test images,

• delete a selected test image or delete all test images,

• display an already selected test image, and

• open the dialog Test Images inside the tab Model Use

6.3.3 Matching Assistant Reference 201

The dialog Test Images inside the tab Model Use you need to additionally

• select a test image for display or deletion,

• specify the number of visible objects for each image, and

• search for the model in the complete sequence of test images, in the currently selected test image,
or automatically after each selection.

2 Searching for the Object in a Test Image

When you click the button Find Model in the dialog Test Images of the tab Model Use the object is
searched for in the currently selected test image; the result is displayed in the graphics window.

Please note that if the button is clicked for the first time or after you changed a model parameter, the
internally stored model is actually created, which takes some time. If the model creation takes a long
time (i.e., if you have chosen a very large angle (page 195) and scale range (page 195)), you may find it
useful to switch off the complete pregeneration (page 198) of the model.

You can also search for the object in the whole sequence of test images at once.

2 Searching for the Object in All Test Images

When you click the button Detect All inside the dialog Test Images of the tab Model Use, the
object is searched for in the complete sequence of test images that were loaded (page 200) before. The
results are displayed successively in the graphics window.

Please note that if the button is clicked for the first time or after you changed a model parameter, the
internally stored model is actually created, which takes some time. If the model creation takes a long
time (i.e., if you have chosen a very large angle (page 195) and scale range (page 195)), you may find it
useful to switch off the complete pregeneration (page 198) of the model.

You can also search for the object in a single test image.

2 Automatically Searching for the Object in the Test Images

If you check the box Always Find in the dialog Test Images of the tab Model Use (also accessible
via the menu item Use Model . Test Images . Show Test Image Settings), the object is searched
for automatically whenever you select a new test image.

Please note that if the matching process is started for the first time or after you changed a model param-
eter, the internally stored model is created, which takes some time. If the model creation takes a long
time (i.e., if you have chosen a very large angle and scale range), you may find it useful to switch off the
complete pregeneration (page 198) of the model.

2 Selecting and Displaying a Test Image

You can select a test image by clicking with the left mouse button onto its number (index) or path in
the text box of the dialog Test Images of the tab Model Use. The selected image is automatically
displayed in the graphics window of HDevelop.

A
ss

is
ta

nt
s

202 HDevelop Assistants

If the checkbox labelled Always Find is checked, the matching process is started automatically on the
selected test image; its result is displayed in the graphics window.

If you want to redisplay the selected test image in a later step, e.g., after you displayed the model image
(page 191) again, you can also display it via the menu item Use Model . Test Images . Display
Selected Test Image without newly selecting it.

2 Specifying the Number of Objects Visible in a Test Image

In the dialog Test Images (page 200) in the tab Model Use, you can specify how many objects are
visible in the current test image using the corresponding text box that appears when clicking onto the
currently displayed number of visible objects in the text field of the currently selected test image. The
default value is 1.

If you select the corresponding recognition mode in the dialog accessed via Use Model . Go To
Optimize Recognition Speed (page 206), the specified numbers of visible objects are used when
determining the recognition rate, i.e., the recognition rate is 100% when the sum of all objects found in
the test images is equal to the sum of the specified numbers.

2 Assuring the Matching Success

After loading (page 200) the test images you can quickly test whether all objects are found successfully
via the dialog Inspect . Determine Recognition Rate (page 207). If the matching succeeds in all
test images, i.e., if a recognition rate of 100% is reached, you can start to optimize the speed (page 187)
of the matching process.

If the matching fails in one or more test images, proceed as follows:

• Open the dialog Test Images (page 200) in the tab Model Use.

• Check the box Always Find (page 201).

• Step through the test images (page 201) to determine the images where the matching fails.

• If an object is not found check whether one of the following situations causes your problem:

• Is the object crossing the image border, i.e., does it lie partially outside the test image?

By default the objects must lie completely within the test image in order to be found. This be-
havior can be changed in the dialog Advanced Model Use Parameters (page 204) in the
tab Model Use via the parameter Shape models may cross the image border (page
205).

• Is the Matching Assistant too greedy ?

By default, the Matching Assistant uses a fast search heuristic which might overlook an
object. Therefore, try reducing the corresponding parameter Greediness (page 204) in the
dialog Advanced Model Use Parameters (page 204) manually or automatically via the
menu item Inspect . Optimize Recognition Speed (page 206).

• Is the object partly occluded?

If the object is to be recognized in this state nevertheless, try reducing the parameter Minimum
Score in the dialog Standard Model Use Parameters in the tab Model Use manually or
automatically via the menu item Inspect . Optimize Recognition Speed (page 206).

6.3.3 Matching Assistant Reference 203

• Has the object a low contrast?

If the object is to be recognized in this state nevertheless, try reducing the parameter Minimum
Contrast (page 198) in the dialog Standard Model Parameters (page 192) in the tab
Model Creation.

• Do multiple objects overlap?

If the objects are to be recognized in this state nevertheless, try decreasing the Maximum
Overlap in the dialog Advanced Model Use Parameters in the tab Model Use.

• If the object is found but not at the expected position or orientation check the following:

• If multiple matches are found on one and the same object, decrease the Maximum Overlap
in the dialog Advanced Model Use Parameters.

• If an almost symmetric object is found at the wrong orientation try reducing the param-
eters specifying the allowed range of rotation (page 195) in the dialog Standard Model
Parameters (page 192) in the tab Model Creation.

2 Specifying Standard Model Use Parameters

Via the menu item Use Model . Standard Model Use Parameters, you can specify

• the Minimum Score the object must have and

• the number of instances of the object that are searched for in an image (Maximum Number of
Matches).

Additionally, advanced search parameters can be specified via the menu item Use Model . Advanced
Model Use Parameters.

2 The Search Parameter Minimum Score

When comparing a region in a test image with the model (page 185), the Matching Assistant calculates
a measure of similarity, the so-called score (page 185), which ranges between 0 (no similarity) and 1
(perfect similarity). With the parameter Minimum Score you can specify a minimum score that a match
must reach.

Graphically speaking, the parameter specifies how much of the object, i.e., of the model points, must
be visible. A part of the object may be invisible not only because it is occluded, but also if its contrast
is lower than the selected minimum contrast value (page 198) or has the wrong polarity (page 197). A
further cause of invisibility could be a (too) large angle step size (page 196).

The larger the value is chosen, the faster the search is, because candidate matches can be discarded
earlier. Therefore, this parameter can be optimized easily: Starting from the maximum value, reduce the
value until the object is found in all test images (page 185); in fact, this method is used by the Matching
Assistant itself when you start the optimization via the menu item Inspect . Optimize Recognition
Speed (page 206).

Choosing small values may cause the program to search for quite a while. In such a case we recommend
to enter a larger value in the text box instead of using the slider.

A
ss

is
ta

nt
s

204 HDevelop Assistants

Please note that by default the objects must lie completely within the test images in order to be found.
This behavior can be changed via the parameter Shape models may cross the image border
(page 205) in the dialog accessed via the menu item Use Model . Advanced Model Use Parameters.

2 The Search Parameter Maximum Number of Matches

The parameter Maximum Number of Matches specifies how many instances of the object are searched
for in the image. Note that the parameter sets a maximum value, i.e., if more object instances are present
in the image only the best instances of the specified number are displayed. If you specify the value 0, all
found instances are displayed.

2 Specifying Advanced Model Use Parameters

Via the menu item Use Model . Advanced Model Use Parameters, you can specify:

• the Greediness of the search algorithm,

• how much the objects may overlap (Maximum Overlap),

• the accuracy (Subpixel) of the calculated position, orientation, and scale,

• the lowest pyramid level Last Pyramid Level to which the found matches are tracked, and

• whether objects that lie partially outside the image (Shape model may cross the image
border) should be searched.

2 The Search Parameter Greediness

The parameter Greediness influences the search algorithm used by the Matching Assistant. It ranges
between 0 and 1. If you select a low value, the search is thorough but relatively slow. The higher the
value, the faster the search algorithm becomes, but at the cost of thoroughness, i.e., an object might not
be found even though it is visible in the image.

This parameter can be optimized easily: Starting from the value 0, increase the value until the matching
fails in a test image, and then use the last value for which the object is found; in fact, this method is
used by the Matching Assistant itself when you start the optimization via the menu item Use Model .
Optimize Recognition Speed (page 206).

2 The Search Parameter Maximum Overlap

The parameter Maximum Overlap specifies how much two matches may overlap in the image; its value
ranges between 0 and 1. Especially in the case of an almost symmetric object the allowed overlap should
be reduced to prevent multiple matches on the same object.

2 The Search Parameter Subpixel

The parameter Subpixel allows to select the accuracy with which the position, orientation, and scale
are calculated. If you select the value ’none’, the position is determined only with pixel accuracy, and

6.3.3 Matching Assistant Reference 205

the accuracy of the orientation and scale is equal to the angle step size (page 196) and scale step size
(page 197), respectively.

If you select the value ’interpolation’, the Matching Assistant examines the matching scores at the neigh-
boring positions, angles, and scales around the best match and determines the maximum by interpolation.
Using this method, the position is therefore estimated with sub-pixel accuracy. The accuracy of the es-
timated orientation and scale depends on the size of the object: The larger the size, the more accurately
the orientation and scale can be determined. For example, if the maximum distance between the center
and the boundary is 100 pixel, the orientation is determined with an accuracy of about 0.1°.

Because the interpolation is very fast, you can select ’interpolation’ in most applications.

When you choose the values ’least_squares’, ’least_squares_high’, or ’least_squares_very_high’, a least-
squares approximation is used instead of an interpolation, resulting in an even higher accuracy. However,
this method requires additional computation time.

2 The Search Parameter Last Pyramid Level

With the parameter Last Pyramid Level you can select the lowest pyramid level to which the found
matches are tracked. For example, when selecting the value 2, the matching starts at the highest pyramid
level and tracks the matches to the second lowest pyramid level (the lowest pyramid level is denoted by
a value of 1).

This mechanism can be used to speed up the matching. It should be noted, however, that in general the
accuracy of the extracted position, orientation, and scale is lower in this mode than in the normal mode,
in which the matches are tracked to the lowest pyramid level. Hence, if a high accuracy is desired, the
parameter Subpixel (page 204) should be set to at least ’least_squares’.

Note that if the lowest pyramid level to use is chosen too large, it may happen that the desired accuracy
cannot be achieved, or that wrong instances of the model are found because the model is not specific
enough on the higher pyramid levels to facilitate a reliable selection of the correct instance of the model.
In this case, the lowest pyramid level to use must be set to a smaller value.

2 The Search Parameter Shape models may cross the image border

With the parameter Shape models my cross the image border you can specify whether shape
models that cross the image border, i.e., that lie partially outside the test images, should be searched.

If you switch off the check box Shape models may cross the image border the shape model will
only be searched within those parts of the test images in which the shape model completely lies within
the image.

If you switch on the check box Shape models may cross the image border the shape model will
be searched for in all positions in which the model additionally lies partially outside the test images, i.e.,
in which the shape model extends beyond the image border. Here, points lying outside the image are
regarded as being occluded, i.e., they lower the score. This should be taken into account while selecting
the Minimum Score (page 203). Please note that the runtime of the search will increase in this mode.

A
ss

is
ta

nt
s

206 HDevelop Assistants

2 Optimizing the Recognition Speed

When you select the menu item Use Model . Optimize Recognition Speed or click either the corre-
sponding button in the tool bar or the button Run Optimization in the dialog Optimize Recognition
Speed of the tab Model Use, the Matching Assistant automatically determines values for the parameters
Minimum Score (page 203) and Greediness (page 204) to optimize the recognition speed. The speed
is calculated as the average recognition speed over all test images. You can interrupt this process by
clicking the button labelled Stop; please note however, that this event is processed only after the current
search has finished.

The two parameters are optimized as follows: At the beginning, the greediness is set to 0 and the mini-
mum score to 1. Then, the minimum score is decreased until the matching succeeds in all test images,
i.e., until the recognition rate is 100%. Now, the greediness is increased as long as the matching suc-
ceeds. This process is repeated until the optimum parameters are found. You can lower the threshold of
acceptance for the recognition rate manually using the corresponding slider or text box at the bottom of
the dialog.

The Matching Assistant then displays the optimal minimum score and greediness and the reached recog-
nition time. It automatically enters the parameter values in the dialogs Use Model . Standard Model
Use Parameters (page 203) and Use Model . Advanced Model Use Parameters (page 204), re-
spectively.

If a test image can contain more than one object, the term ’recognition rate’ is ambiguous. Therefore,
you can choose between three recognition modes:

• In each test image, at least one object is expected. The recognition rate is calculated as the per-
centage of test images which fulfill this condition, i.e., it is 100% if in all test images at least one
object is found.

• In each test image, as many objects are expected as specified in the parameter Maximum
Number of Matches (page 204) in the dialog accessed via Use Model . Standard Model Use
Parameters (page 203). The recognition rate is calculated as the relation of found objects to the
sum of expected objects over all images, i.e., it is 100% if in all test images (at least) Maximum
Number of Matches objects are found.

• In each test image, as many objects are expected as specified manually (page 202) in the dialog
Test Images (page 200) of the tab Model Use. The recognition rate is calculated as the relation
of found objects to the sum of expected objects over all images, i.e., it is 100% if in each image
exactly as many objects are found as specified.

Note that if you select Maximum Number of Matches = 0 and by mistake specify a lower num-
ber of visible objects than actually present in a test image, a recognition rate . 100% results, which
completely confuses the optimization algorithm. You may handle this case by selecting the condi-
tion . = 100% for the recognition rate.

6.3.3.4 The Menu and Tab Inspect

Via the menu Inspect you can determine the recognition rate and the pose bounds of the object for the
used set of test images. Besides the automatical determination of the recognition rate, the tab Inspect
is opened. Alternatively, you can directly open the tab and select the button Run. Inside the tab, you can

6.3.3 Matching Assistant Reference 207

also specify the maximum number (page 204) of object instances the Matching Assistant should search
for.

2 Determining the Recognition Rate

With the menu item Inspect . Determine Recognition Rate or when you click either the corre-
sponding button in the tool bar or the button Run in the tab Inspect, the Matching Assistant determines
the recognition rate by searching the object in all loaded test images. You can interrupt this process by
clicking the button labelled Stop; please note however, that this event is processed only after the current
search has finished.

The Matching Assistant then displays at Recognition Rate the recognition rate calculated for different
criteria and at Statistics the mean, minimum, and maximum score (page 185), as well as the mean,
minimum, and maximum matching time.

You can choose between three recognition modes:

• In each test image, at least one object is expected. The recognition rate is calculated as the per-
centage of test images which fulfill this condition.

• In each test image, as many objects are expected as specified in the parameter Maximum
Number of Matches (page 204) in the dialog accessed via Use Model . Standard Model Use
Parameters (page 203). The recognition rate is calculated as the relation of found objects to the
sum of expected objects over all images (in percent).

Please keep in mind that if an image contains more objects than specified in the parameter Maximum
Number of Matches, only the best Maximum Number of Matches instances are found! There-
fore, if there are, e.g., two test images containing 1 and 3 objects, respectively, and you select
Maximum Number of Matches = 2, the recognition rate will be 75%, i.e., 3 out of 4 expected
objects.

• In each test image, as many objects are expected as specified manually (page 202) in the dialog
accessed via Use Model . Standard Model Use Parameters (page 203). The recognition rate
is calculated as the relation of found objects to the sum of expected objects over all images (in
percent).

Before using this mode, please check the value specified for the parameter Maximum Number of
Matches (page 204): If it is not set to 0, it should not be smaller than the maximum number of
objects visible in a test image; otherwise, the recognition rate will be below 100%.

Note that if you select Maximum Number of Matches = 0 and by mistake specify a lower num-
ber of visible objects than actually present in a test image, a recognition rate . 100% results. To
further extend this line of thought: If for some reason in another test image an object is not found,
the two errors cancel each other out, i.e., the recognition rate is 100%! Therefore, we recommend
to check whether the correct objects are found via the dialog Test Images (page 200) in the tab
Model Use.

2 Determining the Pose Bounds

When you click the button Run in the tab Inspect, besides the recognition rate the Matching Assistant
determines so-called pose bounds, i.e., the range of positions, orientations, and scales in which the object

A
ss

is
ta

nt
s

208 HDevelop Assistants

appears in the test images. You can interrupt this process by clicking the button labelled Stop; please
note however, that this event is processed only after the current search has finished.

If the test images cover the whole ranges of allowed orientations and scales of the object you can use the
calculated ranges to optimize the parameters Angle Extent (page 195), Start Angle (page 195), and
the parameters for the scale range (page 195) in the dialog accessed via the menu item Create Model .
Standard Model Parameters (page 192); we recommend to use slightly larger values to get accurate
results at the boundaries of the ranges.

In a corresponding HALCON program you can use the calculated range of positions as a region of
interest and thus further speed up the matching process.

6.3.3.5 The Menu and Tab Code Generation

Via the menu Code Generation you can

• open the dialog Options inside the tab Code Generation, where options for the code generation
can be set,

• open the dialog Variable Names inside the tab Code Generation, where the names for the used
variables can be specified,

• insert code to the program window of HDevelop according to the current settings of the Matching
Assistant,

• release the generated code lines in the program window,

• delete the generated code lines from the program window as long as you did not released them,
and

• open the dialog for the code preview inside the tab Code Generation.

2 Specifying the Options for the Code Generation

Via the menu item Code Generation . Show Code Generation Options you can open the dialog
for determining the options for the code generation inside the tab Code Generation. The dialog con-
sists of the following parts:

• radio buttons for selecting whether the shape model is created at run time from the model image
(page 185) or if an already existing shape model is to be loaded. For the first case, you can
additionally select whether to use the model image and the ROI (page 185) that were specified
inside the Matching Assistant or whether a new ROI has to be drawn at run time,

• a check box to select whether to display the detected model instances in a loop, and

• the button Insert Code to insert the code generated by the Matching Assistant into the program
window of HDevelop.

6.3.3 Matching Assistant Reference 209

2 Specifying the Variables for the Code Generation

Via the menu item Code Generation . Show Variables for Code Generation you can open the
dialog for determining the variables used for the code generation inside the tab Code Generation. The
dialog consists of several text fields for the individual variables needed for the code lines. The Matching
Assistant automatically generates reasonable variable names, but you can change the individual names
via the text fields.

2 Insert the Generated Code Lines

Via the menu item Code Generation . Insert Code (also accessible as tool bar button or as button
inside the tab Code Generation), you can insert the code that is generated according to the current
settings of the Matching Assistant into the program window.

2 Release the Generated Code Lines

Via the menu item Code Generation . Release Generated Code Lines you can release the gen-
erated and inserted code lines. After releasing the code lines, all connections between the Matching
Assistant and the program window of HDevelop are lost. That is, changes, e.g., the deletion of code
lines, can then only be applied directly in the program window and not from within the Matching Assis-
tant anymore.

2 Delete the Generated Code Lines

Via the menu item Code Generation . Delete Generated Code Lines you can delete the code
lines that you have previously generated and inserted into the program window of HDevelop from within
the Matching Assistant. Note that this works only as long as you have not yet released the code lines.

2 Preview of the Generated Code Lines

Via the menu item Code Generation . Show Code Preview you can open the dialog for the Code
Preview in the tab Code Generation. Here, you have the possibility to, e.g., edit or replace individual
operators of the code lines proposed by the Matching Assistant.

6.3.3.6 The Menu Help

Via the menu Help you can access the online documentation.
A

ss
is

ta
nt

s

210 HDevelop Assistants

HDevelop Language 211

Chapter 7

HDevelop Language

This chapter introduces the syntax and the semantics of the HDevelop language. In other words, it
illustrates what you can enter into a parameter slot of an operator or procedure call. In the simplest case
this is the name of a variable, but it might also be an arbitrary expression like sqrt(A). Besides, control
structures (like loops) and the semantics of parameter passing are described.

Note that the HALCON operators themselves are not described in this chapter. For this purpose refer
to the HALCON reference manual. All program examples used in this chapter can also be found in the
directory %HALCONROOT%\examples\hdevelop\Manuals\HDevelop.

7.1 Basic Types of Parameters

HALCON distinguishes two kinds of data: control data (numbers or strings) and iconic data (images,
regions, etc.)

By further distinguishing input from output parameters, we get four different kinds of parameters. These
four kinds always appear in the same order in the HDevelop parameter list. In the reference manual
operator signatures are visualized in the following way:

operator (iconic input : iconic output : control input : control output)

As you see, iconic input objects are always passed first, followed by the iconic output objects. The iconic
data is followed by the control data, and again, the input parameters succeed the output parameters.

Any of the four types of parameters may be empty. For example, the signature of read_image reads

read_image (: Image : FileName :)

The operator read_image has one output parameter for iconic objects Image and one input control
parameter FileName. The parameter types are reflected when entering operators in the operator window.
The actual operator call displayed in the HDevelop program window is:

La
ng

ua
ge

212 HDevelop Language

read_image (Image, 'Name')

The parameters are separated by commas. Input control parameters can either be variables, constants or
expressions. An expression is evaluated before it is passed to a parameter that receives the result of the
evaluation. Iconic parameters must be variables. Control output parameters must be variables, too, as
they store the results of an operator evaluation.

7.2 Control Types and Constants

All non-iconic data is represented by so called control data (numbers or strings) in HDevelop. The name
is derived from their respective functions within HALCON operators where they control the behaviour
(the effect) of image processing (e.g., thresholds for a segmentation operator). Control parameters in
HDevelop may contain arithmetic or logical operations. A control data item can be of one of the follow-
ing types: integer, real, string, and boolean.

integer and real The types integer and real are used under the same syntactical rules as in C.
Integer numbers can be input in the standard decimal notation, in hexadecimal by prefixing the
number with 0x, and in octal by prefixing the number with 0. For example:

4711
-123
0xfeb12
073421
73.815
0.32214
.56
-17.32e-122
32E19

Data items of type integer or real are converted to their machine-internal representations: real
becomes the C-type double (8 bytes) and integer becomes the C-type long (4 or 8 bytes).

string A string is a sequence of characters that is enclosed in single quotes (’). The maximum string
length is limited to 1024 characters. Special characters, like the line feed, are represented in the
C-like notation, as you can see in table 7.1 (see the reference of the C language for comparison).
You can enter arbitrary characters using the format \xnn where nn is a two-digit hexadecimal
number, or using the format \0nnn where nnn is a three-digit octal number. Less digits may be
used if the string is unambiguous. For example, a line feed may be specified as \xa unless the
string continues with another hexadecimal digit (0-F).

For example: The string Sobel’s edge-filter has to be specified as ’Sobel\’s
edge-filter’. A Windows directory path can be entered as ’C:\\Programs\\MVTec\\
Halcon\\images’

boolean The constants true and false belong to the type boolean. The value true is internally
represented by the number 1 and the value false by 0. This means, that in the expression Val

7.2 Control Types and Constants 213

Meaning Abbreviation Notation

line feed NL (LF) \n

horizontal tabulator HT \t

vertical tabulator VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

bell BEL \a

backslash \ \\

single quote ’ \’

arbitrary character (hexadecimal) \xnn

arbitrary character (octal) \0nnn

Table 7.1: Surrogates for special characters.

:= true the effective value of Val is set to 1. In general, every integer value other than 0 means
true. Please note that some HALCON operators take logical values for input (e.g., set_system).
In this case the HALCON operators expect string constants like ’true’ or ’false’ rather than
the boolean values true or false.

In addition to these general types, there are special constants and the type tuple, which are specific to
HALCON or HDevelop, respectively.

constants There are constants for the return value (result state) of an operator. The constants can be used
together with the operator dev_error_var and dev_set_check. These constants represent the
normal return value of an operator, so called messages. For errors no constants are available (there
are more than 400 error numbers internally, see the Extension Package Programmer’s Manual).

In table 7.2 all return messages can be found.

tuple The control types are only used within the generic HDevelop type tuple. A tuple of length 1 is
interpreted as an atomic value. A tuple may consist of several numerical data items with different

Constant Meaning Value

H_MSG_TRUE No error; for tests: (true) 2

H_MSG_FALSE For tests: false 3

H_MSG_VOID No result could be computed 4

H_MSG_FAIL Operator did not succeed 5

Table 7.2: Return values for operators.

La
ng

ua
ge

214 HDevelop Language

,

boolean

[]

string

integer

real

Value

Value

ValueTuple constant

Figure 7.1: The syntax of tuple constants.

types. The standard representation of a tuple is a listing of its elements included into brackets.
This is illustrated in figure 7.1.

[] specifies the empty tuple. A tuple with just one element is to be considered as a special case,
because it can either be specified in the tuple notation or as an atomic value: [55] defines the same
constant as 55. Examples for tuples are:

[]
4711
0.815
'Text'

[16]
[100.0,100.0,200.0,200.0]
['FileName','Extension']
[4711,0.815,'Hugo']

7.3 Variables

Names of variables are built up as usual by composing letters, digits and the underscore ‘_’. The max-
imum length of a variable name is limited to 256 characters. The kind of a variable (iconic or control
variable) depends on its position in the parameter list in which the variable identifier is used for the first
time (see also section 7.1 on page 211). The kind of the variable is determined during the input of the
operator parameters: whenever a new identifier appears, a new variable with the same identifier is cre-
ated. Control and iconic variables must have different names. The value of a variable (iconic or control)
is undefined until the first assignment defines it (the variable has not been instantiated yet). A read access
to an undefined variable leads to a runtime error (Variable <x> not instantiated).

HDevelop provides a pre-defined variable named _ (single underscore). You can use this variable for
output control parameters whose value you are not interested in. Please note that it is not allowed to
use this variable for HDevelop-specific operators (chapters Control and Develop in the HALCON

7.4 Operations on Iconic Objects 215

reference manual). It is not recommended to use the variable _ in programs that will later be exported
to a foreign programming language.

Instantiated variables contain tuples of values. Depending on the kind of the variable, the data items are
either iconic objects or control data. The length of the tuple is determined dynamically by the performed
operation. A variable can get new values any number of times, but once a value has been assigned the
variable will always keep being instantiated, unless you select the menu item Menu Execute . Reset
Program Execution. The content of the variable is deleted before the variable is assigned new values.

The concept of different kinds of variables allows a first (“coarse”) typification of variables (control or
iconic data), whereas the actual type of the data (e.g., real, integer, string, etc.) is undefined until
the variable gets assigned with a concrete value. Therefore, it is possible that the type of a new data item
differs from that of the old.

7.4 Operations on Iconic Objects

Iconic objects are exclusively processed by HALCON operators. HALCON operators work on tuples of
iconic objects, which are represented by their surrogates in the HALCON data management. The results
of those operators are again tuples of iconic objects or control data elements. For a detailed description
of the HALCON operators refer to the HALCON reference manual and the remarks in section 7.5.3 on
page 219.

7.5 Expressions for Input Control Parameters

In HDevelop, the use of expressions like arithmetic operations or string operations is limited to control
input parameters; all other kinds of parameters must be assigned by variables.

7.5.1 General Features of Tuple Operations

This section intends to give you a short overview over the features of tuples and their operations. A more
detailed description of each operator mentioned here is given in the following sections.

Please note that in all following tables variables and constants have been substituted by letters which
indicate allowed data types. These letters provide information about possible limitations of the areas of
definition. The letters and their meaning are listed in table 7.3. Operations on these symbols can only be
applied to parameters of the indicated type or to expressions that return a result of the indicated type.

The symbol names i, a, l, and s can denote atomic tuples (tuples of length 1) as well as tuples with
arbitrary length.

Operations are normally described assuming atomic tuples. If the tuple contains more than one element,
most operators work as follows:

• If one of the tuples is of length one, all elements of the other tuples are combined with that single
value for the chosen operation.

La
ng

ua
ge

216 HDevelop Language

Symbol Types

i integer

a arithmetic, that is: integer or real

b boolean

s string

v all types (atomic)

t all types (tuple)

Table 7.3: Symbols for the operation description.

Input Result

5 * 5 25

[5] * [5] 25

[1,2,3] * 2 [2,4,6]

[1,2,3] * 2.1 + 10 [12.1,14.2,16.3]

[1,2,3] * [1,2,3] [1,4,9]

[1,2,3] * [1,2] runtime error

’Text1’ + ’Text2’ ’Text1Text2’

17 + ’3’ ’173’

’Text ’ + 3.1 * 2 ’Text 6.2’

3.1 * (2 + ’Text’) runtime error

3.1 + 2 + ’ Text’ ’5.1 Text’

3.1 + (2 + ’Text’) ’3.12 Text’

Table 7.4: Examples for arithmetic operations with tuples and strings.

• If both tuples have a length greater than one, both tuples must have the same length (otherwise a
runtime error occurs). In this case, the selected operation is applied to all elements with the same
index. The length of the resulting tuples is identical to the length of the input tuples.

• If one of the tuples is of length 0 ([]), a runtime error occurs.

In table 7.4 you can find some examples for arithmetic operations with tuples. Pay special attention to
the order in which the string concatenations are performed. The basic arithmetic operations in HDevelop
are +, -, *, /. Please note that + is a dimorphic operation: If both operands are numeric, it adds numbers.
If at least one of the operands is a string, it concatenates both operands as strings.

7.5.2 Assignment 217

7.5.2 Assignment

In HDevelop, an assignment is treated like an operator. To use an assignment you have to select the
operator assign(Input, Result). This operator has the following semantics: It evaluates Input
(right side of assignment) and stores it in Result (left side of assignment). However, in the program
text the assignment is represented by the usual syntax of the assignment operator: Result := Input.
The following example outlines the difference between an assignment in C syntax and its transformed
version in HDevelop:

The assignment in C syntax

u = sin(x) + cos(y);

is defined in HDevelop using the assignment operator as

assign(sin(x) + cos(y), u)

which is displayed in the program window as:

u := sin(x) + cos(y)

If the result of the expression does not need to be stored into a variable, the expression can directly be
used as input value for any operator. Therefore, an assignment is necessary only if the value has to be
used several times or if the variable has to be initialized (e.g., for a loop).

A second assignment operator is available: insert(Input, Value, Index, Result). It is used to
assign tuple elements. If the first input parameter and the first output parameter are identical, the call:

insert (Areas, Area, Radius-1, Areas)

is not presented in the program text as an operator call, but in the more intuitive form as:

Areas[Radius-1] := Area.

As an example:

assign([1,2,3], Area)
assign(9, Areas)
insert(Areas, Area, 1, Areas)

sets Areas to [1,9,3].

To construct a tuple with insert, normally an empty tuple is used as initial value and the elements are
inserted in a loop:

La
ng

ua
ge

218 HDevelop Language

Tuple := []
for i := 0 to 5 by 1
Tuple[i] := sqrt(real(i))

endfor

As you can see from the examples, the indices of a tuple start at 0.

An insertion into a tuple can generally be performed in one of the following ways:

1. In case of appending the value at the ‘back’ or at the ‘front’, the tuple concatenation operation ,
(comma) can be used. Here the operator assign is used with the following parameters:

assign([Tuple,NewVal],Tuple)

which is displayed as

Tuple := [Tuple,NewVal]

2. If the index position is somewhere in between, the operator insert has to be used. It takes the
following arguments as input: first the tuple in which the new value should be inserted; then the
new value and after that the index position as the third input parameter. The result (the fourth
parameter) is almost identical with the input tuple, except of the new value at the defined index
position (see the example above).

In the following example regions are dilated with a circle mask and afterwards the areas are stored into
the tuple Areas. In this case the operator insert is used.

read_image (Mreut, 'mreut')
threshold (Mreut, Region, 190, 255)
Areas := []
for Radius := 1 to 50 by 1
dilation_circle (Region, RegionDilation, Radius)
area_center (RegionDilation, Area, Row, Column)
Areas[Radius-1] := Area

endfor

Please note that first the variable Areas has to be initialized in order to avoid a runtime error. In the
example Areas is initialized with the empty tuple ([]). Instead of insert the operator assign with
tuple concatenation

Areas := [Areas,Area]

could be used, because the element is appended at the back of the tuple. More examples can be found in
the program assign.dev.

7.5.3 Basic Tuple Operations 219

Operation Meaning HALCON operator

t := [t1,t2] concatenate tuples tuple_concat

i := |t| get number of elements of tuple
t

tuple_length

v := t[i] select element i of tuple t; 0
<= i < |t|

tuple_select

t := t[i1:i2] select from element i1 to ele-
ment i2 of tuple t

tuple_select_range

t := subset(t,i) select elements specified in i
from t

tuple_select

t := remove(t,i) remove elements specified in i
from t

tuple_remove

i := find(t1,t2) get indices of all occurrences
of t2 within t1 (or -1 if no
match)

tuple_find

t := uniq(t) discard all but one of succes-
sive identical elements from t

tuple_uniq

Table 7.5: Basic operations on tuples (control data) and the corresponding HALCON operators.

7.5.3 Basic Tuple Operations

A basic tuple operation may be selecting one or more values, combining tuples (concatenation) or getting
the number of elements (see table 7.5 for operations on tuples containing control data).

The concatenation accepts one or more variables or constants as input. They are all listed between the
brackets, separated by commas. The result again is a tuple. Please note the following: [[t]] = [t] =
t.

|t| returns the number of elements of a tuple. The indices of elements range from zero to the number
of elements minus one (i.e., |t|-1). Therefore, the selection index has to be within this range. 1

Tuple := [V1,V2,V3,V4]
for i := 0 to |Tuple|-1 by 1
fwrite_string (FileHandle,Tuple[i]+'\n')

endfor

In the following examples the variable Var contains [2,2,3,’a’,’a’,2,3,’b’,’b’]:

1Please note that the index of objects (e.g., select_obj) ranges from 1 to the number of elements.

La
ng

ua
ge

220 HDevelop Language

control iconic

[] gen_empty_obj()

[t1,t2] concat_obj(p1, p2, q)

|t| count_obj(p, num)

t[i] select_obj(p, q, i+1)

t[i1:i2] copy_obj(p, q, i1+1, i2-i1+1)

Table 7.6: Equivalent tuple operations for control and iconic data.

[3,Var,[8,9]] [3,2,2,3,’a’,’a’,2,3,’b’,b’,8,9]
|Var| 9
Var[4] ’a’
Var[4:6] [’a’,2,3]
subset(Var,[3,6,7]) [’a’,3,’b’]
remove(Var,[3,6,7]) [2,2,3,’a’,2,’b’]
find(Var,[2,3]) [1,5]
uniq(Var) [2,3,’a’,2,3,’b’]

Further examples can be found in the program tuple.dev. The HALCON operators that correspond to
the basic tuple operations are listed in table 7.5 on page 219.

Note that these direct operations cannot be used for iconic tuples, i.e., iconic objects cannot be selected
from a tuple using [] and their number cannot be directly determined using ||. For this purpose,
however, HALCON operators are offered that carry out the equivalent tasks. In table 7.6 you can see
tuple operations that work on control data (and which are applied via assign or insert) and their
counterparts that work on iconic data (and which are independent operators). In the table the symbol t
represents a control tuple, and the symbols p and q represent iconic tuples.

7.5.4 Tuple Creation

The simplest way to create a tuple, as mentioned in section 7.2 on page 212, is the use of constants
together with the operator assign (or in case of iconic data one of its equivalents shown in table 7.6):

assign ([],empty_tuple)
assign (4711,one_integer)
assign ([4711,0.815],two_numbers)

This code is displayed as

empty_tuple := []
one_integer := 4711
two_numbers := [4711,0.815]

7.5.4 Tuple Creation 221

This is useful for constant tuples with a fixed (small) length. More general tuples can be created by
successive application of the concatenation or the operator insert together with variables, expressions
or constants. If we want to generate a tuple of length 100, where each element has the value 4711, it
might be done like this:

assign ([],tuple)
for (1,100,1,i)
assign ([tuple,4711],tuple)

endfor

which is displayed as

tuple := []
for i := 1 to 100 by 1
tuple := [tuple,4711]

endfor

Because this is not very convenient a special function called gen_tuple_const is available to construct
a tuple of a given length, where each element has the same value. Using this function, the program from
above is reduced to:

assign(gen_tuple_const(100,4711),tuple)

which is displayed as

tuple := gen_tuple_const(100,4711)

If we want to construct a tuple with the same length as a given tuple there are two ways to get an easy
solution, The first one is based on gen_tuple_const:

assign(gen_tuple_const(|tuple_old|,4711),tuple_new)

which is displayed as

tuple_new := gen_tuple_const(|tuple_old|,4711)

The second one is a bit tricky and uses arithmetic functions:

assign((tuple_old * 0) + 4711,tuple_new)

which is displayed as

tuple_new := (tuple_old * 0) + 4711

La
ng

ua
ge

222 HDevelop Language

Operation Meaning HALCON operator

a1 / a2 division tuple_div

a1 * a2 multiplication tuple_mult

a1 % a2 modulus tuple_mod

a1 + a2 addition tuple_add

a1 - a2 subtraction tuple_sub

-a negation tuple_neg

Table 7.7: Basic arithmetic operations.

Here we get first a tuple of the same length with every element set to zero. Then, we add the constant to
each element.

In the case of tuples with different values we have to use the loop version to assign the values to each
position:

assign([],tuple)
for (1,100,1,i)
assign([tuple,i*i],tuple)

endfor

which is displayed as

tuple := []
for i := 1 to 100 by 1
tuple := [tuple,i*i]

endfor

In this example we construct a tuple with the square values from 12 to 1002.

7.5.5 Basic Arithmetic Operations

See table 7.7 for an overview of the available basic arithmetic operations.

All operations are left-associative, except the right-associative unary minus operator. The evaluation
usually is done from left to right. However, parentheses can change the order of evaluation and some
operators have a higher precedence than others (see section 7.5.14).

The arithmetic operations in HDevelop match the usual definitions. Expressions can have any number of
parentheses.

The division operator (a1 / a2) can be applied to integer as well as to real. The result is of type
real, if at least one of the operands is of type real. If both operands are of type integer, the division
is an integer division. The remaining arithmetic operators (multiplication, addition, subtraction, and

7.5.6 Bit Operations 223

Operation Meaning HALCON operator

lsh(i1,i2) left shift tuple_lsh

rsh(i1,i2) right shift tuple_rsh

i1 band i2 bitwise and tuple_band

i1 bxor i2 bitwise xor tuple_bxor

i1 bor i2 bitwise or tuple_bor

bnot i bitwise complement tuple_bnot

Table 7.8: Bit operations.

negation) can be applied to either integer or real numbers. If at least one operand is of type real, the
result will be a real number as well.

Examples:

Expression Result
4/3 1
4/3.0 1.3333333
(4/3) * 2.0 2.0

Simple examples can be found in the program arithmetic.dev.

7.5.6 Bit Operations

This section describes the operators for bit processing of numbers. The operands have to be integers.

The result of lsh(i1,i2) is a bitwise left shift of i1 that is applied i2 times. If there is no overflow
this is equivalent to a multiplication by 2i2. The result of rsh(i1,i2) is a bitwise right shift of i1 that
is applied i2 times. For non-negative i1 this is equivalent to a division by 2i2. For negative i1 the
result depends on the used hardware. For lsh and rsh the result is undefined if the second operand has
a negative value or the value is larger than 32. More examples can be found in the program bit.dev.

7.5.7 String Operations

There are several string operations available to modify, select, and combine strings. Furthermore, some
operations allow to convert numbers (real and integer) to strings.

$ (string conversion)

See also: tuple_string

$ converts numbers to strings or modifies strings. The operation has two operands: The first one (left of
the $) is the number that has to be converted. The second one (right of the $) specifies the conversion.
It is comparable to the format string of the printf() function in the C programming language. This
format string consists of the following four parts

La
ng

ua
ge

224 HDevelop Language

<flags><width>.<precision><conversion>

or as a regular expression:

[-+ #]?([0-9]+)?(\.[0-9]*)?[doxXfeEgGsb]?

(which roughly translates to zero or more of the characters in the first bracket pair followed by zero or
more digits, optionally followed by a dot which may be followed by digits followed by a conversion
character from the last bracket pair).

Some conversion examples might show it best:

Input Output
23 \$ '10.2f' ' 23.00'

23 \$ '-10.2f' '23.00 '

4 \$ '.7f' '4.0000000'

1234.56789 \$ '+10.3f' ' +1234.568'

255 \$ 'x' 'ff'

255 \$ 'X' 'FF'

0xff \$ '.5d' '00255'

'total' \$ '10s' ' total'

'total' \$ '-10s' 'total '

'total' \$ '10.3' ' tot'

flags Zero or more flags, in any order, which modify the meaning of the conversion specification. Flags
may consist of the following characters:

v$s convert v using specification s

v1 + v2 concatenate v1 and v2

strchr(s1,s2) search character s2 in s1

strstr(s1,s2) search substring s2 in s1

strrchr(s1,s2) search character s2 in s1 (reverse)

strrstr(s1,s2) search substring s2 in s1 (reverse)

strlen(s) length of string

s{i} select character at position i; 0 <= i <= strlen(s)

s{i1:i2} select substring from position i1 to position i2

split(s1,s2) split s1 in substrings at s2

regexp_match(s1,s2) extract substrings of s1 matching the regular expression s2

regexp_replace(s1,s2,s3) replace substrings of s1 matching the regular expression s2 with s3

regexp_select(s1,s2) select tuple elements from s1 matching the regular expression s2

regexp_test(s1,s2) return how many tuple elements in s1 match the regular expression s2

Table 7.9: String operations.

7.5.7 String Operations 225

- The result of the conversion is left justified within the field.

+ The result of a signed conversion always begins with a sign, + or -.

<space> If the first character of a signed conversion is not a sign, a space character is prefixed to
the result. This means that if the space flag and + flag both appear, the space flag is ignored.

The value is to be converted to an “alternate form”. For d and s (see below) conversions, this
flag has no effect. For o conversion (see below), it increases the precision to force the first
digit of the result to be a zero. For x or X conversion (see below), a non-zero result has 0x
or 0X prefixed to it. For e, E, f, g, and G conversions, the result always contains a radix
character, even if no digits follow the radix character. For g and G conversions, trailing zeros
are not removed from the result, contrary to usual behavior.

width An optional string of decimal digits to specify a minimum field width. For an output field, if the
converted value has fewer characters than the field width, it is padded on the left (or right, if the
left-adjustment flag - has been given) to the field width.

precision The precision specifies the minimum number of digits to appear for integer conversions (the
field is padded with leading zeros), the number of digits to appear after the radix character for
the e and f conversions, the maximum number of significant digits for the g conversion, or the
maximum number of characters to be printed from a string conversion. The precision takes the
form of a period . followed by a decimal digit string. A null digit string is treated as a zero.

conversion A conversion character indicates the type of conversion to be applied:

d, o, x, X The integer argument is printed in signed decimal (d), unsigned octal (o), or unsigned
hexadecimal notation (x and X). The x conversion uses the numbers and lower-case let-
ters 0123456789abcdef, and the X conversion uses the numbers and upper-case letters
0123456789ABCDEF. The precision component of the argument specifies the minimum num-
ber of digits to appear. If the value being converted can be represented in fewer digits than
the specified minimum, it is expanded with leading zeroes. The default precision is 1. The
result of converting a zero value with a precision of 0 is no characters.

f The floating-point number argument is printed in decimal notation in the style [-]ddd.ddd,
where the number of digits after the radix character, ., is equal to the precision specifica-
tion. If the precision is omitted from the argument, six digits are output; if the precision is
explicitly 0, no radix appears.

e,E The floating-point-number argument is printed in the style [-]d.ddde+dd, where there is
one digit before the radix character, and the number of digits after it is equal to the precision.
When the precision is missing, six digits are produced; if the precision is 0, no radix character
appears. The E conversion character produces a number with E introducing the exponent
instead of e. The exponent always contains at least two digits. However, if the value to be
printed requires an exponent greater than two digits, additional exponent digits are printed as
necessary.

g, G The floating-point-number argument is printed in style f or e (or in style E in the case of a
G conversion character), with the precision specifying the number of significant digits. The
style used depends on the value converted; style e is used only if the exponent resulting from
the conversion is less than -4 or greater than or equal to the precision. Trailing zeros are
removed from the result. A radix character appears only if it is followed by a digit.

La
ng

ua
ge

226 HDevelop Language

s The argument is taken to be a string, and characters from the string are printed until the end of
the string or the number of characters indicated by the precision specification of the argument
is reached. If the precision is omitted from the argument, it is interpreted as infinite and all
characters up to the end of the string are printed.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the conversion
result.

Examples for the string conversion can be found in the program string.dev.

+ (string concatenation)

The string concatenation (+) can be applied in combination with strings or all numerical types; if neces-
sary, the operands are first transformed into strings (according to their standard representation). At least
one of the operands has to be already a string so that the operator can act as a string concatenator. In the
following example a file name (e.g., ’Name5.tiff’) is generated. For this purpose two string constants
(’Name’ and ’.tiff’) and an integer value (the loop-index i) are concatenated:

for i := 1 to 5 by 1
read_image (Image, 'Name'+i+'.tiff')

endfor

str(r)chr

See also: tuple_strchr, tuple_strrchr

str(r)chr(s1,s2) returns the index of the first (last) occurrence of one of the character in s2 in string
s1, or -1 if none of the characters occur in the string. s1 may be a single string or a tuple of strings.

str(r)str

See also: tuple_strstr, tuple_strrstr

str(r)str(s1,s2) returns the index of the first (last) occurrence of string s2 in string s1, or -1 if s2
does not occur in the string. s1 may be a single string or a tuple of strings.

strlen

See also: tuple_strlen

strlen(s) returns the number of characters in s.

{}

See also: tuple_str_bit_select

s{i} selects a single character (specified by index position) from s. The index ranges from zero to the
length of the string minus 1. The result of the operator is a string of length one.

s{i1:i2} returns all characters from the first specified index position (i1) up to the second specified
position (i2) in s as a string. The index ranges from zero to the length of the string minus 1.

7.5.7 String Operations 227

split

See also: tuple_split

split(s1,s2) divides the string s1 into single substrings. The string is split at those positions where it
contains a character from s2. As an example the result of

split('/usr/image:/usr/proj/image',':')

consists of the two strings

['/usr/image','/usr/proj/image']

Regular Expressions

HDevelop provides string functions that use Perl compatible regular expressions. Detailed infor-
mation about them can be found in the Reference Manual at the descriptions of the corresponding
operators, which have the same name but start with tuple_. In particular, at the description of
tuple_regexp_match you find further information about the used syntax, a list of possible options,
and a link to suitable literature about regular expressions.

regexp_match

See also: tuple_regexp_match

regexp_match(s1,s2) searches for elements of the tuple s1 that match the regular expression s2.
It returns a tuple with the same size as the input tuple (exceptions exist when working with capturing
groups, see the description of tuple_regexp_match in the Reference Manual for details). The resulting
tuple contains the matching results for each tuple element of the input tuple. For a successful match the
matching substring is returned. Otherwise, an empty string is returned.

regexp_replace

See also: tuple_regexp_replace

regexp_replace(s1,s2,s3) replaces substrings in s1 that match the regular expression s2 with the
string given in s3. By default, only the first matching substring of each element in s1 is replaced. To
replace all occurrences, the option ’replace_all’ has to be set in s2 (see tuple_regexp_replace).

For example:

assign(regexp_replace(List, '\\.jpg$', '.png'), List)

substitutes file names that look like JPEG images with PNG images.

La
ng

ua
ge

228 HDevelop Language

Operation Meaning HALCON operator

t1 < t2 less than tuple_less

t1 > t2 greater than tuple_greater

t1 <= t2 less or equal tuple_less_equal

t1 >= t2 greater of equal tuple_greater_equal

t1 = t2 equal tuple_equal

t1 # t2 not equal tuple_not_equal

Table 7.10: Comparison operations.

regexp_select

See also: tuple_regexp_select

regexp_select(s1,s2) returns only the elements of the tuple s1 that match the regular expression
s2. In contrast to regexp_match, the original tuple elements instead of the matching substrings are
returned. Tuple elements that do not match the regular expression are discarded.

For example:

assign(regexp_select(List, '\\.jpg$'), Selection)

sets Selection to all the strings from List that look like file names of JPEG images. Please note that
the backslash character has to be escaped to be preserved.

regexp_test

See also: tuple_regexp_test

regexp_test(s1,s2) returns the number of elements of the tuple s1 that match the regular expression
s2. Additionally, a short-hand notation of the operator is available, which is convenient in conditional
expressions:

s1 =~ s2

7.5.8 Comparison Operations

In HDevelop, the comparison operations are defined not only on atomic values, but also on tuples with
an arbitrary number of elements. They always return values of type boolean. Table 7.10 shows all
comparison operations.

t1 = t2 and t1 # t2 are defined on all types. Two tuples are equal (true), if they have the same length
and all the data items on each index position are equal. If the operands have different types (integer
and real), the integer values are first transformed into real numbers. Values of type string cannot be
mixed up with numbers, i.e., string values are considered to be not equal to values of other types.

7.5.9 Boolean Operations 229

1st Operand 2nd Operand Operation Result

1 1.0 = true

[] [] = true

’’ [] = false

[1,’2’] [1,2] = false

[1,2,3] [1,2] = false

[4711,’Hugo’] [4711,’Hugo’] = true

’Hugo’ ’hugo’ = false

2 1 > true

2 1.0 > true

[5,4,1] [5,4] > true

[2,1] [2,0] > true

true false > true

’Hugo’ ’hugo’ < true

Table 7.11: Examples for the comparison of tuples.

Operation Meaning HALCON operator

l1 and l2 logical ’and’ tuple_and

l1 xor l2 logical ’xor’ tuple_xor

l1 or l2 logical ’or’ tuple_or

not l negation tuple_not

Table 7.12: Boolean operations.

The four comparison operations compute the lexicographic order of tuples. On equal index positions
the types must be identical, however, values of type integer, real, and boolean are adapted auto-
matically. The lexicographic order applies to strings, and the boolean false is considered to be smaller
than the boolean true (false < true). In the program compare.dev you can find examples for the
comparison operations.

7.5.9 Boolean Operations

The boolean operations and, xor, or, and not are defined only for tuples of length 1. l1 and l2 is set
to true (1) if both operands are true (1), whereas l1 xor l2 returns true (1) if exactly one of both
operands is true. l1 or l2 returns true (1) if at least one of the operands is true (1). not l returns
true (1) if the input is false (0), and false (0), if the input is true (1).

La
ng

ua
ge

230 HDevelop Language

7.5.10 Trigonometric Functions

All these functions work on tuples of numbers as arguments. The input can either be of type integer
or real. However, the resulting type will be of type real. The functions are applied to all tuple values,
and the resulting tuple has the same length as the input tuple. For atan2 the two input tuples have to be
of equal length. table 7.13 shows the provided trigonometric functions. For the trigonometric functions
the angle is specified in radians.

Operation Meaning HALCON Operator

sin(a) sine of a tuple_sin

cos(a) cosine of a tuple_cos

tan(a) tangent of a tuple_tan

asin(a) arc sine of a in the interval [−π/2, π/2], a ∈ [−1, 1] tuple_asin

acos(a) arc cosine a in the interval [−π/2, π/2], a ∈ [−1, 1] tuple_acos

atan(a) arc tangent a in the interval [−π/2, π/2], a ∈ [−∞,+∞] tuple_atan

atan2(a1,a2) arc tangent a1/a2 in the interval [−π, π] tuple_atan2

sinh(a) hyperbolic sine of a tuple_sinh

cosh(a) hyperbolic cosine of a tuple_cosh

tanh(a) hyperbolic tangent of a tuple_tanh

Table 7.13: Trigonometric functions.

7.5.11 Exponential Functions

All these functions work on tuples of numbers as arguments. The input can either be of type integer or
real. However, the resulting type will be of type real. The functions are applied to all tuple values and
the resulting tuple has the same length as the input tuple. For pow and ldexp the two input tuples have
to be of equal length.

See table 7.14 for the provided exponential functions.

Operation Meaning HALCON operator

exp(a) exponential function ea tuple_exp

log(a) natural logarithm ln(a), a > 0 tuple_log

log10(a) decadic logarithm, log10(a), a > 0 tuple_log10

pow(a1,a2) a1a2 tuple_pow

ldexp(a1,a2) a1 · 2a2 tuple_ldexp

Table 7.14: Exponential functions.

7.5.12 Numerical Functions 231

Operation Meaning HALCON operator

min(t) minimum value of the tuple tuple_min

min2(t1,t2) element-wise minimum of two tuples tuple_min2

max(t) maximum value of the tuple tuple_max

max2(t1,t2) element-wise maximum of two tuples tuple_max2

sum(t) sum of all tuple elements or string concatenation tuple_sum

mean(a) mean value tuple_mean

deviation(a) standard deviation tuple_deviation

cumul(a) cumulative sums of a tuple tuple_cumul

median(a) median of a tuple tuple_median

select_rank(a,i) element at rank i of a tuple tuple_select_rank

sqrt(a) square root
√

a tuple_sqrt

deg(a) convert radians to degrees tuple_deg

rad(a) convert degrees to radians tuple_rad

real(a) convert integer to real tuple_real

int(a) truncate real to integer tuple_int

round(a) convert real to integer tuple_round

abs(a) absolute value of a (integer or real) tuple_abs

fabs(a) absolute value of a (always real) tuple_fabs

ceil(a) smallest integer value not smaller than a tuple_ceil

floor(a) largest integer value not greater than a tuple_floor

fmod(a1,a2) fractional part of a1/a2, with the same sign as a1 tuple_fmod

sgn(a) element-wise sign of a tuple tuple_sgn

Table 7.15: Numerical functions.

7.5.12 Numerical Functions

The numerical functions shown in table 7.15 work on different data types.

The functions min and max select the minimum and the maximum values of the tuple values. All of
these values either have to be of type string, or integer/real. It is not allowed to mix strings with
numerical values. The resulting value will be of type real, if at least one of the elements is of type
real. If all elements are of type integer the resulting value will also be of type integer. The same
applies to the function sum that determines the sum of all values. If the input arguments are strings, string
concatenation will be used instead of addition.

The functions mean, deviation, sqrt, deg, rad, fabs, ceil, floor and fmod work with integer and
real; the result is always of type real. The function mean calculates the mean value and deviation
the standard deviation of numbers. sqrt calculates the square root of a number.

La
ng

ua
ge

232 HDevelop Language

cumul returns the different cumulative sums of the corresponding elements of the input tuple, and
median calculates the median of a tuple. For both functions, the resulting value will be of type real, if
at least one of the elements is of type real. If all elements are of type integer the resulting value will
also be of type integer. select_rank returns the element at rank i and works for tuples containing
int or real values. The index i is of type int.

deg and rad convert numbers from radians to degrees and from degrees to radians, respectively.

real converts an integer to a real. For real as input it returns the input. int converts a real to an
integer and truncates it. round converts a real to an integer and rounds the value. For integer it
returns the input. The function abs always returns the absolute value that is of the same type as the input
value.

The following example (file name: euclid_distance.dev) shows the use of some numerical functions:

V1 := [18.8,132.4,33,19.3]
V2 := [233.23,32.786,234.4224,63.33]
Diff := V1 - V2
Distance := sqrt(sum(Diff * Diff))
Dotvalue := sum(V1 * V2)

First, the Euclidian distance of the two vectors V1 and V2 is computed, by using the formula:

d =
√∑

i

(V 1i − V 2i)2

The difference and the multiplication (square) are successively applied to each element of both vectors.
Afterwards sum computes the sum of the squares. Then the square root of the sum is calculated. After
that the dot product of V1 and V2 is determined by the formula:

〈V 1, V 2〉 =
∑

i

(V 1i ∗ V 2i)

7.5.13 Miscellaneous Functions

sort sorts the tuple values in ascending order, that means, that the first value of the resulting tuple is the
smallest one. But again: strings must not be mixed up with numbers. sort_index sorts the tuple values
in ascending order, but in contrast to sort it returns the index positions (0..) of the sorted values.

The function inverse reverses the order of the tuple values. Both sort and inverse are identical, if
the input is empty, if the tuple is of length 1, or if the tuple contains only one value in all positions, e.g.,
[1,1,...,1].

is_number returns true for variables of the type integer or real and for variables of the type string
that represent a number.

The function number converts a string representing a number to an integer or a real depending on
the type of the number. Note that strings starting with 0x are interpreted as hexadecimal numbers, and

7.5.14 Operation Precedence 233

Operation Meaning HALCON operator

sort(t) sorting in increasing order tuple_sort

sort_index(t) return index instead of values tuple_sort_index

inverse(t) reverse the order of the values tuple_inverse

is_number(v) test if value is a number tuple_is_number

number(v) convert string to a number tuple_number

environment(s) value of an environment variable tuple_environment

ord(a) ASCII number of a character tuple_ord

chr(a) convert an ASCII number to a character tuple_chr

ords(s) ASCII number of a tuple of strings tuple_ords

chrt(i) convert a tuple of integers into a string tuple_chrt

rand(a) create random numbers tuple_rand

Table 7.16: Miscellaneous functions.

strings starting with 0 (zero) as octal numbers; for example, the string ’20’ is converted to the integer
20, ’020’ to 16, and ’0x20’ to 32. If called with a string that does not represent a number or with a
variable of the type integer or real, number returns a copy of the input.

environment returns the value of an environment variable. Input is the name of the environment variable
as a string.

ord gives the ASCII number of a character as an integer. chr converts an ASCII number to a character.

ords converts a tuple of strings into a tuple of (ASCII) integers. chrt converts a tuple of integers into a
string.

7.5.14 Operation Precedence

See table 7.17 for the precedence of the operations for control data. Some operations (like functions, |
|, t[], etc.) are left out, because they mark their arguments clearly.

7.6 Reserved Words

The identifiers listed in table 7.18 on page 235 are reserved words and their usage is strictly limited to
their predefined meaning. They cannot be used as variable names.

7.7 Control Flow Operators

The operators introduced in this section execute a block of operators conditionally or repeatedly. Usually,
these operators come in pairs: One operator marks the start of the block while the other marks the end.

La
ng

ua
ge

234 HDevelop Language

band

bxor bor

and

xor or

=

<= >= < >

+ -

/ * %

- (unary minus) not

$

Table 7.17: Operation precedence (increasing from top to bottom).

The code lines inbetween are referred to as the body of a control flow structure.

When you enter a control flow operator to start a block, HDevelop also adds the corresponding closing
operator by default to keep the program code balanced. In addition, the IC is placed between the control
flow operators. This is fine for entering new code blocks. If you want to add control flow operators to
existing code, you can also add the operators individually. Keep in mind, however, that a single control
flow operator is treated as invalid code until its counterpart is entered as well.

In the following, <condition> is an expression that evaluates to an integer or boolean value. A
condition is false if the expression evaluates to 0 (zero). Otherwise, it is true. HDevelop provides the
following operators to control the program flow:

if ... endif This control flow structure executes a block of code conditionally. The operator if takes
a condition as its input parameter. If the condition is true, the body is executed. Otherwise the
execution is continued at the operator call that follows the operator endif.

To enter both if and endif at once, select the operator if in the operator window and make sure
the check box next to the operator is ticked.

if (<condition>)
...

endif

ifelse (if ... else ... endif) Another simple control flow structure is the condition with alternative.
If the condition is true, the block between if and else is executed. If the condition is false, the
part between else and endif is executed.

To enter all three operators at once, select the operator ifelse in the operator window and make
sure the check box next to the operator is ticked.

if (<condition>)
...

7.7 Control Flow Operators 235

abs acos and asin

assign atan atan2 band

bnot bor break bxor

by catch ceil chr

chrt comment continue cos

cosh cumul deg deviation

else elseif endfor endif

endtry endwhile environment exit

exp fabs false find

floor fmod for gen_tuple_const

H_MSG_FAIL H_MSG_FALSE H_MSG_TRUE H_MSG_VOID

if ifelse insert int

inverse is_number ldexp log

log10 lsh max max2

mean median min min2

not number or ord

ords pow rad rand

real regexp_match regexp_replace regexp_select

regexp_test remove repeat return

round rsh select_rank sgn

sin sinh sort sort_index

split sqrt stop strchr

strlen strrchr strrstr strstr

subset sum tan tanh

throw to true try

uniq until while xor

Table 7.18: Reserved words.

else
...

endif

elseif This operator is similar to the else-part of the previous control flow structure. However, it
allows to test for an additional condition. The block between elseif and endif is executed if
<condition1> is false and <condition2> is true. elseif may be followed by an arbitrary number
of additional elseif instructions. The last elseif may be followed by a single else instruction.

if (<condition1>)

La
ng

ua
ge

236 HDevelop Language

...
elseif (<condition2>)
...

endif

This is syntactically equivalent and thus a shortcut for the following code block:

if (<condition1>)
...

else
if (<condition2>)
...

endif
endif

while ... endwhile This is a looping control flow structure. As long as the condition is true, the body
of the loop is executed. In order to enter the loop, the condition has to be true in the first place.
The loop can be restarted and terminated immediately with the operator continue and break,
respectively (see below).

To enter both while and endwhile at once, select the operator while in the operator window and
make sure the check box next to the operator is ticked.

while (<condition>)
...
endwhile

repeat ... until This loop is similar to the while loop with the exception that the condition is tested
at the end of the loop. Thus, the body of a repeat ... until loop is executed at least once. Also in
contrast to the while loop, the loop is repeated if the condition is false, i.e., until it is finally true.

To enter both repeat and until at once, select the operator until in the operator window and
make sure the check box next to the operator is ticked.

repeat
...

until (<condition>)

for ... endfor The for loop is controlled by a start and an end value and an increment value, step, that
determines the number of loop steps. These values may also be expressions, which are evaluated
immediately before the loop is entered. The expressions may be of type integer or of type real.
If all input values are of type integer, the loop variable will also be of type integer. In all other
cases the loop variable will be of type real.

Please note that the for loop is displayed differently in the program window than entered in the
operator window. What you enter in the operator window as for(start,end,step,index) is
displayed in the program window as:

7.7 Control Flow Operators 237

for <index> := <start> to <end> by <step>
...

endfor

To enter both for and endfor at once, select the operator for in the operator window and make
sure the check box next to the operator is ticked.

The start value is assigned to the index variable. The loop is executed as long as the following
conditions are true: 1) The step value is positive, and the loop index is smaller than or equal to
the end value. 2) The step value is negative, and the loop index is greater than or equal to the end
value. After a loop cycle, the loop index is incremented by the step value and the conditions are
evaluated again.

Thus, after executing the following lines,

for i := 1 to 5 by 1
j := i

endfor

i is set to 6 and j is set to 5, while in

for i := 5 to 1 by -1
j := i

endfor

i is set to 0, and j is set to 1.

The loop can be restarted and terminated immediately with the operator continue and break,
respectively. (see below).

Please note, that the expressions for start and termination value are evaluated only once when en-
tering the loop. A modification of a variable that appears within these expressions has no influence
on the termination of the loop. The same applies to the modifications of the loop index. It also has
no influence on the termination. The loop value is assigned to the correct value each time the for
operator is executed.

If the for loop is left too early (e.g., if you press Stop and set the PC) and the loop is entered
again, the expressions will be evaluated, as if the loop were entered for the first time.

In the following example the sine from 0 up to 6π is computed and printed into the graphical
window (file name: sine.dev):

old_x := 0
old_y := 0
dev_set_color ('red')
dev_set_part(0, 0, 511, 511)
for x := 1 to 511 by 1

y := sin(x / 511.0 * 2 * 3.1416 * 3) * 255
disp_line (WindowID, -old_y+256, old_x, -y+256, x)
old_x := x
old_y := y

endfor

La
ng

ua
ge

238 HDevelop Language

In this example the assumption is made that the window is of size 512×512. The drawing is always
done from the most recently evaluated point to the current point.

continue The operator continue forces the next loop cycle of a for, while, or repeat loop. The
loop condition is tested, and the loop is executed depending on the result of the test.

In the following example, a selection of RGB color images is processed. Images with channel
numbers other than three are skipped through the use of the operator continue. An alternative is
to invert the condition and put the processing instructions between if and endif. But the form
with continue tends to be much more readable when very complex processing with lots of lines
of code is involved.

i := |Images|
while (i)
Image := Images[i]
count_channels (Image, Channels)
if (Channels # 3)
continue

endif
* extensive processing of color image follows

endwhile

break The opeator break enables you to exit for, while, and repeat loops. The program is then
continued at the next line after the end of the loop.

A typical use of the operator break is to terminate a for loop as soon as a certain condition
becomes true, e.g., as in the following example:

Number := |Regions|
AllRegionsValid := 1
* check whether all regions have an area <= 30
for i := 1 to Number by 1
ObjectSelected := Regions[i]
area_center (ObjectSelected, Area, Row, Column)
if (Area > 30)
AllRegionsValid := 0
break ()

endif
endfor

In the following example, the operator break is used to terminate an (infinite) while loop as soon
as one clicks into the graphics window:

while (1)
grab_image (Image, FGHandle)
dev_error_var (Error, 1)
dev_set_check ('~give_error')
get_mposition (WindowHandle, R, C, Button)

7.8 Error Handling 239

dev_error_var (Error, 0)
dev_set_check ('give_error')
if ((Error = H_MSG_TRUE) and (Button # 0))
break ()

endif
endwhile

stop The operator stop stops the program after the operator is executed. The program can be continued
by pressing the Step Over or Run button.

exit The exit operator terminates the HDevelop session.

return The operator return returns from the current procedure call to the calling procedure. If return
is called in the main procedure, the PC jumps to the end of the program, i.e., the program is
finished.

try ... catch ... endtry This control flow structure enables dynamic exception handling in HDevelop.
The program block between the operators try and catch is watched for exceptions, i.e., runtime
errors. If an exception occurs, diagnostic data about what caused the exception is stored in an
exception tuple. The exception tuple is passed to the catch operator, and program execution
continues from there. The program block between the operators catch and endtry is intended to
analyze the exception data and react to it accordingly. If no exception occurs, this program block
is never executed.

See section “Error Handling” on page 239, and the reference manual, e.g., the operator try for
detailed information.

throw The operator throw allows to generate user-defined exceptions.

7.8 Error Handling

This section describes how errors are handled in HDevelop programs. When an error occurs, the default
behavior of HDevelop is to stop the program execution and display an error message box. While this is
certainly beneficial at the time the program is developed, it is usually not desired when the program is
actually deployed. A finished program should react to errors itself. This is of particular importance if the
program interacts with the user.

There are basically two approaches to error handling in HDevelop:

• tracking the return value (error code) of operator calls

• using exception handling

A major difference between these approaches is the realm of application: The first method handles errors
inside the procedure in which they occur. The latter method allows errors to work their way up in the
call stack until they are finally dealt with.

La
ng

ua
ge

240 HDevelop Language

7.8.1 Tracking the Return Value of Operator Calls

The operator dev_set_check specifies if error message boxes are displayed at all.

To turn message boxes off, use

dev_set_check('~give_error')

HDevelop will then ignore any errors in the program. Consequently, the programmer has to take care of
the error handling. Every operator call provides a return value (or error code) which signals success or
failure of its execution. This error code can be accessed through a designated error variable:

dev_error_var('ErrorCode', 1)

This operator call instantiates the variable ErrorCode. It stores the error code of the last executed
operator. Using this error code, the program can depend its further flow on the success of an operation.

...
if (ErrorCode # H_MSG_TRUE)
* react to error

endif
* continue with program
...

The error message related to a given error code can be obtained with the operator get_error_text.
This is useful when reporting errors back to the user of the program.

Due to the lack of global variables in HDevelop, errors have to be responded to in the same procedure
where they occur. If the error is to be handled in a calling procedure, an appropriate output control
variable has to be added to the interface of each participating procedure.

7.8.2 Exception Handling

HDevelop supports dynamic exception handling, which is comparable to the exception handling in C++
and C#.

A block of program lines is watched for run-time errors. If an error occurs, an exception is raised and
an associated exception handler is called. An exception handler is just another block of program lines,
which is invisible to the program flow unless an error occurs. The exception handler may directly act on
the error or it may pass the associated information (i.e., the exception) on to a parent exception handler.
This is also known as rethrowing an exception.

In contrast to the tracking method described in the previous section, the exception handling requires
HDevelop to be set up to stop on errors. This is the default behavior. It can also be turned on explicitly:

dev_set_check('give_error')

7.8.2 Exception Handling 241

Furthermore, HDevelop can be configured to let the user choose whether or not an exception is thrown,
or to throw exceptions automatically. This behavior is set in the preferences tab General Options ->
Experienced User.

An HDevelop exception is a tuple containing data related to a specific error. It always contains the error
code as the first item. The operator dev_get_exception_data provides access to the elements of an
exception tuple.

HDevelop exception handling is applied in the following way:

...
try
* start block of watched program lines
...

catch(Exception)
* get error code
ErrorCode := Exception[0]
* react to error

endtry
* program continues normally
...

La
ng

ua
ge

242 HDevelop Language

7.9 Summary of HDevelop operations

Functionality HDevelop Operation HALCON operator
concatenation [t1,t2] tuple_concat
number of elements |t| tuple_length
select tuple element t[i] tuple_select
select tuple slice t[i1:i2] tuple_select_range
select elements subset(t,i) tuple_select
remove tuple elements remove(t,i) tuple_remove
lookup tuple values find(t1,t2) tuple_find
unify tuple elements uniq(t) tuple_uniq
tuple creation gen_tuple_const(i1,i2) tuple_gen_const
division a1 / a2 tuple_div
multiplication a1 * a2 tuple_mult
modulo a1 % a2 tuple_mod
addition a1 + a2 tuple_add
subtraction a1 - a2 tuple_sub
negation -a tuple_neg
left shift lsh(i1,i2) tuple_lsh
right shift rsh(i1,i2) tuple_rsh
bitwise and i1 band i2 tuple_band
bitwise xor i1 bxor i2 tuple_bxor
bitwise or i1 bor i2 tuple_bor
bitwise complement bnot i tuple_bnot
string conversion v$s tuple_string
string concatenation v1 + v2 tuple_concat
search character strchr(s1,s2) tuple_strchr
search character (reverse) strrchr(s1,s2) tuple_strrchr
search string strstr(s1,s2) tuple_strstr
search string (reverse) strrstr(s1,s2) tuple_strrstr
length of string strlen(s) tuple_strlen
select character s{i} tuple_str_bit_select
select substring s{i1:i2} tuple_str_bit_select
split string split(s1,s2) tuple_split
regular expression match regexp_match(s1,s2) tuple_regexp_match
regular expression replace regexp_replace(s1,s2,s3) tuple_regexp_replace
regular expression select regexp_select(s1,s2) tuple_regexp_select
regular expression test regexp_test(s1,s2) tuple_regexp_test
less than t1 < t2 tuple_less
greater than t1 > t2 tuple_greater
less or equal t1 <= t2 tuple_less_equal
greater or equal t1 >= t2 tuple_greater_equal
equal t1 = t2 tuple_equal
not equal t1 # t2 tuple_not_equal
logical and l1 and l2 tuple_and
logical xor l1 xor l2 tuple_xor

7.9 Summary of HDevelop operations 243

logical or l1 or l2 tuple_or
negation not l tuple_not
sine sin(a) tuple_sin
cosine cos(a) tuple_cos
tangent tan(a) tuple_tan
arc sine asin(a) tuple_asin
arc cosine acos(a) tuple_acos
arc tangent atan(a) tuple_atan
arc tangent2 atan2(a1,a2) tuple_atan2
hyperbolic sine sinh(a) tuple_sinh
hyperbolic cosine cosh(a) tuple_cosh
hyperbolic tangent tanh(a) tuple_tanh
exponential function exp(a) tuple_exp
natural logarithm log(a) tuple_log
decadic logarithm log10(a) tuple_log10
power function pow(a1,a2) tuple_pow
ldexp function ldexp(a1,a2) tuple_ldexp
minimum min(t) tuple_min
element-wise minimum min2(t1,t2) tuple_min2
maximum max(t) tuple_max
element-wise maximum max2(t1,t2) tuple_max2
sum function sum(t) tuple_sum
mean value mean(a) tuple_mean
standard deviation deviation(a) tuple_deviation
cumulative sum cumul(a) tuple_cumul
median median(a) tuple_median
element rank select_rank(a,i) tuple_select_rank
square root sqrt(a) tuple_sqrt
radians to degrees deg(a) tuple_deg
degrees to radians rad(a) tuple_rad
integer to real real(a) tuple_real
real to integer int(a) tuple_int
real to integer round(a) tuple_round
absolute value abs(a) tuple_abs
floating absolute value fabs(a) tuple_fabs
ceiling function ceil(a) tuple_ceil
floor function floor(a) tuple_floor
fractional part fmod(a1,a2) tuple_fmod
element-wise sign sgn(a) tuple_sgn
sort elements sort(t) tuple_sort
sort elements (returns index) sort_index(t) tuple_sort_index
reverse element order inverse(t) tuple_inverse
test for numeric value is_number(v) tuple_is_number
string to number number(v) tuple_number
environment variable environment(s) tuple_environment
character to ASCII number ord(a) tuple_ord
ASCII number to character chr(a) tuple_chr

La
ng

ua
ge

244 HDevelop Language

tuple of strings to ASCII numbers ords(s) tuple_ords
tuple of integers to string chrt(i) tuple_chrt
random number rand(a) tuple_rand

7.10 HDevelop Error Codes 245

7.10 HDevelop Error Codes

21000 HALCON operator error
21001 User defined exception (’throw’)
21002 User defined error during execution
21003 User defined operator does not implement execution interface
21010 HALCON license error
21011 HALCON startup error
21012 HALCON operator error
21020 Format error: file is not a valid HDevelop program or procedure
21021 File is no HDevelop program or has the wrong version
21022 External procedure could not be decompressed
21023 External procedure could not be compressed and encrypted for saving
21030 The program was modified inconsistently outside HDevelop.
21031 The program was modified outside HDevelop: inconsistent procedure lines.
21032 The program was modified outside HDevelop: unmatched control statements
21033 renaming of procedure failed
21040 Unable to open file
21041 Unable to read from file
21042 Unable to write to file
21043 Unable to rename file
21044 Unable to open file: invalid file name
21050 Old program version: Not supported for hdevelop_demo
21051 Wrong program crypt code: Not allowed in hdevelop_demo
21052 Inserting procedures is not supported in hdevelop_demo
21060 Iconic variable is not instantiated
21061 Control variable is not instantiated (no value)
21062 Wrong number of control values
21063 Wrong value type of control parameter
21064 Wrong value of control parameter
21065 Control parameter does not contain a variable
21066 Wrong number of control values in condition variable
21067 Wrong type: Condition variable must be an integer or boolean
21068 Variable names must not be empty
21069 Variable names must not start with a number
21070 Invalid variable name
21071 Invalid name for a control variable: the name is already used for an iconic variable
21072 Invalid name for an iconic variable: the name is already used for a control variable
21073 For loop variable must be a number
21074 Step parameter of for loop must be a number
21075 End parameter of for loop must be a number
21076 Variable names must not be a reserved expression
21100 Access to an erroneous expression
21101 Wrong index in expression list
21102 Empty expression
21103 Empty expression argument
21104 Syntax error in expression

La
ng

ua
ge

246 HDevelop Language

21105 Wrong number of function arguments in expression
21106 Expression expected
21107 Unary expression expected
21108 Expression list expected
21109 Function arguments in parentheses expected
21110 One function argument in parentheses expected
21111 Two function arguments in parentheses expected
21112 Three function arguments in parentheses expected
21113 Four function arguments in parentheses expected
21114 Five function arguments in parentheses expected
21115 Right parenthesis ’)’ expected
21116 Right curly brace ’}’ expected
21117 Right square bracket ’]’ expected
21118 Unmatched right parenthesis ’)’ found
21119 Unmatched right curly brace ’}’ found
21120 Unmatched right square bracket ’]’ found
21121 Second bar ’|’ expected
21122 Function name expected before parentheses
21123 Unterminated string detected
21124 Invalid character in an expression identifier detected
21125 Parameter expression expected
21200 Syntax error in operator expression
21201 Identifier (operator or variable name) expected
21202 Syntax error in parameter list
21203 Parenthesis expected
21204 No parenthesis expected
21205 List of parameters in parenthesis expected
21206 Wrong number of parameters
21207 Unexpected characters at end of line
21208 Assign operator ’:=’ expected
21209 Expression after assign operator ’:=’ expected
21210 Expression in brackets ’[]’ for the insert index expected
21211 In for statement, after keyword ’by’ expression for parameter ’Step’ expected
21212 In for statement, after keyword ’to’ expression for parameter ’End’ expected
21213 In for statement, after assign operation (’:=’) expression for parameter ’Start’ expected
21214 In for statement, after ’for .. := .. to ..’ keyword ’by’ expected
21215 In for statement, after ’for .. := ..’ keyword ’to’ expected
21216 In for statement, assign operation ’:=’ for initializing the index variable expected
21217 After ’for’ keyword, assignment of ’Index’ parameter expected
21218 In for statement, error after ’by’ keyword in expression of parameter ’Step’
21219 In for statement, error after ’to’ keyword in expression of parameter ’End’ or the following ’by’ keyword
21220 In for statement, error after assignment operation (’:=’) in expression of parameter ’Start’ or the following ’to’ keyword
21221 In for statement, invalid variable name in parameter ’Index’ or error in the following assignment operation (’:=’)
21222 for statement not complete
21223 In for statement, space after ’for’ expected
21224 In for statement, space after ’to’ expected
21225 In for statement, space after ’by’ expected

7.10 HDevelop Error Codes 247

21226 Unknown operator or procedure
22000 Internal operation in expression failed
22010 Parameters are tuples with different size
22011 Division by zero
22012 String exceeds maximum length
22100 Parameter is an empty tuple
22101 Parameter has more than one single value
22102 Parameter is not a single value
22103 Parameter has the wrong number of elements
22104 Parameter contains undefined value(s)
22105 Parameter contains wrong value(s)
22106 Parameter contains value(s) with the wrong type
22200 First parameter is an empty tuple
22201 First parameter has more than one single value
22202 First parameter is not a single value
22203 First parameter has the wrong number of elements
22204 First parameter contains undefined value(s)
22205 First parameter contains wrong value(s)
22206 First parameter contains value(s) with the wrong type
22300 Second parameter is an empty tuple
22301 Second parameter has more than one single value
22302 Second parameter is not a single value
22303 Second parameter has the wrong number of elements
22304 Second parameter contains undefined value(s)
22305 Second parameter contains wrong value(s)
22306 Second parameter contains value(s) with the wrong type
30000 User defined exception

La
ng

ua
ge

248 HDevelop Language

Code Export 249

Chapter 8

Code Export

The idea of code export or code generation is as follows: After developing a program according to the
given requirements it has to be translated into its final environment. For this, the program is transferred
into another programming language that can be compiled.

HDevelop allows to export a developed HDevelop program to the programming languages C++, Visual
Basic, Visual Basic .NET, C#, and C by writing the corresponding code to a file. The following sections
describe the general steps of program development using this feature for the languages

• C++ (section 8.1),

• C# - HALCON/.NET (section 8.2 on page 253),

• C# - HALCON/COM (section 8.3 on page 255),

• Visual Basic .NET - HALCON/.NET (section 8.4 on page 258),

• Visual Basic .NET - HALCON/COM (section 8.5 on page 260),

• Visual Basic 6 - HALCON/COM (section 8.6 on page 263),

• C (section 8.7 on page 265),

including some language-specific details of the code generation and optimization aspects.

Because HDevelop does more than just execute a HALCON program, the behavior of an exported pro-
gram will differ in some points from its HDevelop counterpart. A prominent example is that in HDe-
velop, all results are automatically displayed, while in the exported programs you have to insert the
corresponding display operators explicitly. Section 8.8 on page 267 describes these differences in more
detail.

8.1 Code Generation for C++

This section describes how to create a HALCON application in C++, starting from a program developed
in HDevelop.

C
od

e
E

xp
or

t

250 Code Export

8.1.1 Basic Steps

8.1.1.1 Program Export

The first step is to export the program using the menu File . Export.... Here, select the language
(C++ - HALCON/C++) and save it to a file. A file will be created that contains the HDevelop program as
C++ source code. For every HDevelop procedure except the main procedure, the exported file contains
a C++ procedure with the corresponding name. Iconic input and output parameters of a procedure
are declared as Hobject and Hobject*, respectively, while control input and output parameters are
declared as HTuple and HTuple*, respectively. All procedures are declared at the beginning of the file.
The program body of the HDevelop main procedure is contained in a procedure action() which is
called in the function main(). action() and main() can be excluded from compilation by inserting
the instruction #define NO_EXPORT_MAIN at the appropriate position in the application. Using the
instruction #define NO_EXPORT_APP_MAIN only the main() procedure is excluded from compilation.
This can be useful if you want to integrate exported HDevelop code into your application through specific
procedure interfaces. In that case, there is typically no need to export the main procedure, which was
probably used only for testing the functionality implemented in the corresponding ’real’ procedures.

Besides the program code, the file contains all necessary #include instructions. All local variables
(iconic as well as control) are declared in the corresponding procedures. Iconic variables belong to the
class Hobject and all other variables belong to HTuple.

8.1.1.2 Compiling and Linking in Windows Environments

The next step is to compile and link this new program. In the Windows environment, Visual C++ is
used for the compiling and linking. Example projects can be found in the directory %HALCONROOT%\
examples\cpp.

If you want to use HALCON XL, you have to include the libraries halconxl.lib/.dll and
halconcppxl.lib/.dll instead of halcon.lib/.dll and halconcpp.lib/.dll in your project
(see the Programmer’s Guide, chapter 7 on page 71, for more details).

8.1.1.3 Compiling and Linking in UNIX Environments

To compile and link the new program (called, e.g., test.cpp) under UNIX, you can use the example
makefile, which can be found in the directory $HALCONROOT/examples/cpp , by calling

make PROG=test

Alternatively, you can set the variable PROG in makefile to test and then just type make.

You can link the program to the HALCON XL libraries by calling

make PROG=test XL=1

or just type make XL=1 if you set the variable PROG as described above.

For more details see the Programmer’s Guide, chapter 7 on page 71.

8.1.2 Optimization 251

8.1.2 Optimization

Optimization might be necessary for variables of class HTuple. This kind of optimization can either
be done in HDevelop or in the generated C++ code. In most cases optimization is not necessary if you
program according to the following rules.

1. Using the tuple concatenation, it is more efficient to extend a tuple at the “right” side, like:

T := [T,New]

because this can be transformed to

T.Append(New);

in C++ and requires no creation of a new tuple, whereas

T := [New,T]

which is translated into

T = New.Append(T);

would need the creation of a new tuple.

2. Another good way to modify a tuple is the operator insert (see section 7.5.2 on page 217). In
this case HDevelop code like

T[i] := New

can directly be translated into the efficient and similar looking code

T[i] = New;

8.1.3 Used Classes

There are only two classes that are used: HTuple for control parameters and Hobject for iconic data.
There is no need for other classes as long as the program has the same functionality as in HDevelop.
When editing a generated program you are free to use any of the classes of HALCON/C++ to extend the
functionality.

8.1.4 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 8.8 on page 267, please also check the
description of the HDevelop operators in section 5.2.6.2 on page 94.

C
od

e
E

xp
or

t

252 Code Export

8.1.4.1 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in C++. In addition, there are different default behaviors
concerning the result state of operators.

Messages

In HALCON/C++ only severe errors cause an exception handling which terminates the program and
prints an error message. This might cause problems with minor errors, so called messages in HALCON.
These messages are handled as return values of the operators and can have the following values, which
are also available in HDevelop as constants:

H_MSG_TRUE

H_MSG_FALSE

H_MSG_FAIL

H_MSG_VOID

One of these messages is always returned indicating the status of the operator. Normally, the result is
H_MSG_TRUE. Some operators return H_MSG_FAIL like read_image or read_region to indicate that
they could not open a file or there was no permission to read it. In this case the programmer has to check
the return value and apply some adequate action. If the message H_MSG_FALSE is ignored, errors like

Halcon Error #4056: Image data management: object-ID is NULL

will happen in successive operators, because the predecessor operator did not calculate an appropriate
value.

Errors

In the case of hard errors (i.e., no message as described above) the program stops with an error message.
To prevent this behavior the HDevelop operators dev_error_var and dev_set_check can be used to
control the exception handling in the application. This works similarly in HDevelop and C++. One
difference is caused by the dynamic evaluation of dev_error_var in HDevelop. This means that each
time the operator is executed (e.g., in a loop) the use of the error variable might change. In contrast to
this, in C++ special code is added to store the return values of operators. This code will therefore be
static and cannot change during program execution. To understand how the code generation works let us
have a look at a short example. Here at first the HDevelop program:

dev_set_check('~give_error')

dev_error_var(error,true)

threshold(image,region,100,255)

dev_error_var(error,false)

if (error # H_MSG_TRUE)

write_string(WindowId,'error number = ' + error)

exit()

endif

dev_set_check('give_error')

8.2 Code Generation for C# (HALCON/.NET) 253

This program will be translated into

HTuple error;

set_check("~give_error");

error = threshold(image,®ion,100,255);

if (error != 2)

{

write_string(WindowId,HTuple("error number = ") + HTuple(error));

exit(1);

}

set_check("give_error");

As can be seen, the operator dev_error_var is eliminated and replaced by the use of the error variable
later on.

The points mentioned above might cause these two problems:

• If the second parameter of dev_error_var cannot be derived from the program (because no con-
stant false or true are used but expressions, the value will be interpreted as true, that means:
“start to use the variable”. To avoid confusion use only the constants false or true as values for
the second parameter.

• The usage of a variable starts after the first call of dev_error_var(ErrVariable,true).
In C++ this means that all successive lines (i.e., lines “below”), until the first
dev_error_var(ErrVariable,false) will have the assignment to ErrVariable. This might
lead to a different behavior compared with HDevelop, if dev_error_var is called inside a loop,
because here the operators inside the loop before dev_error_var might also use ErrVariable
after the second execution of the loop body. Therefore: Try not to use dev_error_var inside a
loop. Use it right at the beginning of the program.

8.2 Code Generation for C# (HALCON/.NET)

This section describes how to create a HALCON application in C#, starting from a program developed
in HDevelop. HALCON can be used together with C# based on the .NET interface of HALCON. A
detailed description of this interface can be found in the Programmer’s Guide, part III on page 83.

8.2.1 Basic Steps

8.2.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language
(C# - HALCON/.NET) and save it to file. The result is a new file with the given name and the extension
“.cs”.

C
od

e
E

xp
or

t

254 Code Export

8.2.1.2 The C# Template

If the file has been exported using the option Use Export Template, it is intended to be used together
with the predefined C# project that can be found in the directory

%HALCONROOT%\examples\c#\HDevelopTemplate

This project contains a form with a display window (HWindowControl) and a button labeled Run. Add
the file generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the
project is ready for execution: Run the project and then press the button Run on the form, which will call
the exported code.

Additional information about using the template can be found in the Programmer’s Guide, section 11.4.1
on page 114.

8.2.2 Program Structure

If the program has been exported using the option Use Export Template, the file created by HDe-
velop contains a subroutine with the corresponding name for every HDevelop procedure except the
main procedure, which is contained in the subroutine action(). Otherwise, the file is exported as a
standalone application. Iconic input and output parameters of a procedure are passed as HObject and
out HObject, respectively, while control input and output parameters are passed as HTuple and out
HTuple, respectively. The subroutine RunHalcon() contains a call to the subroutine action() and has
a parameter Window, which is of type HTuple. This is the link to the window on the form to which all
output operations are passed. In addition, another subroutine is created with the name InitHalcon().
This subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HObject and control variables belong to HTuple.

Depending on the program, additional subroutines and variables are declared.

8.2.2.1 Stop

The HDevelop operator stop is translated into a subroutine in C# that creates a message box. This
message box causes the program to halt until the button is pressed.

8.2.2.2 Used Classes

There are only four classes/types that are used: HTuple for control parameters and HObject for iconic
data. In addition, there is the class HWindowControl. It is used inside the project for the output window
and a variable of class HTuple directs the output to this window. Finally, the class HOperatorSet is
used as a container for all HALCON operators. There is no need for other classes as long as the program
has the same functionality as in HDevelop. When editing a generated program you are free to use any of
the classes of HALCON/.NET to extend the functionality.

8.2.3 Limitations and Troubleshooting 255

8.2.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 8.8 on page 267, please also check the
description of the HDevelop operators in section 5.2.6.2 on page 94.

8.2.3.1 Variable Names

The export adds the prefix ho_ to all local iconic and hv_ to all local control variables, respectively, in
order to avoid collisions with reserved words.

8.2.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in C#. The standard way to handle this in C# is by using the
try/catch mechanism. This allows to access the reason for the exception and to continue accordingly.
Thus, for HDevelop programs containing error handling ((dev_)set_check("˜give_error")) the
corresponding code is automatically included. Every operator call, for which it is assumed that the
HALCON error mechanism is turned off, is enclosed in a try block followed by a catch block. The
latter handles the exception and assigns the corresponding HALCON error number to the error variable
activated by dev_error_var or to a local error variable, otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

8.2.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported C# code every iconic object is represented by a .NET
HObject object. From the garbage collector’s point of view, a .NET HObject object is rather small.
Thus, it might not be collected from memory although the underlying iconic object (e.g., an image)
might in fact occupy a large portion of memory. In order to avoid memory leaks caused by this effect, in
the exported code every iconic object is deleted explicitly before it is assigned a new value.

8.3 Code Generation for C# (HALCON/COM)

This section describes how to create a HALCON application in C#, starting from a program developed
in HDevelop. HALCON can be used together with C# based on the COM interface of HALCON. A
detailed description of this interface can be found in the Programmer’s Guide, part IV on page 121.

Note that this export is only provided for backwards compatibility. We recommend to use the export
based on HALCON/.NET (see section 8.2 on page 253).

C
od

e
E

xp
or

t

256 Code Export

8.3.1 Basic Steps

8.3.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language (C#
- HALCON/COM) and save it to file. The result is a new file with the given name and the extension “.cs”.

8.3.1.2 The C# Template

If the file has been exported using the option Use Export Template, it is intended to be used together
with the predefined C# project that can be found in the directory

%HALCONROOT%\examples\c#\HDevelopTemplateCOM

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. Add
the file generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the
project is ready for execution: Run the project and then press the button Run on the form, which will call
the exported code.

8.3.2 Program Structure

If the program has been exported using the option Use Export Template, the file created by HDevelop
contains a subroutine with the corresponding name for every HDevelop procedure except the main pro-
cedure, which is contained in the subroutine action(). Otherwise, the file is exported as a standalone
application. Iconic input and output parameters of a procedure are passed as HUntypedObjectX and out
HUntypedObjectX, respectively, while control input and output parameters are passed as object and
out object, respectively. The subroutine RunHalcon() contains a call to the subroutine action()
and has a parameter Window, which is of type HWindowX. This is the link to the window on the form
to which all output operations are passed. In addition, another subroutine is created with the name
InitHalcon(). This subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to object.

Depending on the program, additional subroutines and variables are declared.

8.3.2.1 Arrays

If a single value is inserted into an object array, a special subroutine is called to ensure that the array is
valid. If the array is too small or of the wrong type, it is recreated in the appropriate way.

8.3.3 Limitations and Troubleshooting 257

8.3.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions can
be changed to simple C# expressions. For example, TupleSub becomes a simple subtraction. To ensure
that the exported program has the same effect in C#, this exchange is not applied automatically because
the semantics are not always identical.

8.3.2.3 Used Classes

There are only six classes/types that are used: object for control parameters and HUntypedObjectX for
iconic data. In addition, there is the container class HTupleX, which comprises all operators of HALCON
processing tuples, in this case the data type object. Then, there are the classes HWindowXCtrl and its
low-level content HWindowX. HWindowXCtrl is used inside the project for the output window and a
variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is used
as a container for all HALCON operators. There is no need for other classes as long as the program has
the same functionality as in HDevelop. When editing a generated program you are free to use any of the
classes of HALCON/COM to extend the functionality.

8.3.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 8.8 on page 267, please also check the
description of the HDevelop operators in section 5.2.6.2 on page 94.

8.3.3.1 Variable Names

The export adds the prefix ho_ to all local iconic and hv_ to all local control variables, respectively, in
order to avoid collisions with reserved words.

8.3.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in C#. The standard way to handle this in C# is by using the
try/catch mechanism. This allows to access the reason for the exception and to continue accordingly.
Thus, for HDevelop programs containing error handling ((dev_)set_check("˜give_error")) the
corresponding code is automatically included. Every operator call, for which it is assumed that the
HALCON error mechanism is turned off, is enclosed in a try block followed by a catch block. The
latter handles the exception and assigns the corresponding HALCON error number to the error variable
activated by dev_error_var or to a local error variable, otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

C
od

e
E

xp
or

t

258 Code Export

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

8.3.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported C# code every iconic object is represented by a .NET
HUntypedObjectX object, which contains a reference to a COM HUntypedObjectX object. From the
garbage collector’s point of view, a .NET HUntypedObjectX object is rather small. Thus, it might not
be collected from memory although the underlying iconic object (e.g., an image) might in fact occupy
a large portion of memory. In order to avoid memory leaks caused by this effect, in the exported code
every iconic object is deleted explicitly before it is assigned a new value.

8.4 Code Generation for Visual Basic .NET (HALCON/.NET)

This section describes how to create a HALCON application in Visual Basic .NET, starting from a
program developed in HDevelop. HALCON can be used together with Visual Basic .NET based on the
.NET interface of HALCON. A detailed description of this interface can be found in the Programmer’s
Guide, part III on page 83.

8.4.1 Basic Steps

8.4.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language
(Visual Basic .NET - HALCON/.NET) and save it to file. The result is a new file with the given name
and the extension “.vb”.

8.4.1.2 The Visual Basic .NET Template

If the file has been exported using the option Use Export Template, it is intended to be used together
with the predefined Visual Basic .NET project that can be found in the directory

%HALCONROOT%\examples\vb.net\HDevelopTemplate

This project contains a form with a display window (HWindowControl) and a button labeled Run. Add
the file generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the
project is ready for execution: Run the project and then press the button Run on the form, which will call
the exported code.

Additional information about using the template can be found in the Programmer’s Guide, section 11.4.1
on page 114.

8.4.2 Program Structure 259

8.4.2 Program Structure

If the program has been exported using the option Use Export Template, the file created by HDevelop
contains a subroutine with the corresponding name for every HDevelop procedure except the main pro-
cedure, which is contained in the subroutine action(). Otherwise, the file is exported as a standalone
application. Iconic input and output parameters of a procedure are passed as ByVal HObject and ByRef
HObject, respectively, while control input and output parameters are passed as ByVal HTuple and
ByRef HTuple, respectively. The subroutine RunHalcon() contains a call to the subroutine action()
and has a parameter Window, which is of type HTuple. This is the link to the window on the form
to which all output operations are passed. In addition, another subroutine is created with the name
InitHalcon(). This subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HObject and control variables belong to HTuple.

Depending on the program, additional subroutines and variables are declared.

8.4.2.1 Stop

The HDevelop operator stop is translated into a subroutine in Visual Basic .NET that creates a message
box. This message box causes the program to halt until the button is pressed.

8.4.2.2 Exit

The HDevelop operator exit is translated into the Visual Basic .NET routine End. Because this routine
has no parameter, the parameters of exit are suppressed.

8.4.2.3 Used Classes

There are only four classes/types that are used: HTuple for control parameters and HObject for iconic
data. In addition, there is the class HWindowControl. It is used inside the project for the output window
and a variable of class HTuple directs the output to this window. Finally, the class HOperatorSet is
used as a container for all HALCON operators. There is no need for other classes as long as the program
has the same functionality as in HDevelop. When editing a generated program you are free to use any of
the classes of HALCON/.NET to extend the functionality.

8.4.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 8.8 on page 267, please also check the
description of the HDevelop operators in section 5.2.6.2 on page 94.

8.4.3.1 Variable Names

In contrast to C, C++, or HDevelop, Visual Basic .NET has many reserved words. Thus, the export adds
the prefix ho_ to all iconic and hv_ to all control variables, respectively, in order to avoid collisions with
these reserved words. See also section 8.8.3 on page 268 about case sensitivity.

C
od

e
E

xp
or

t

260 Code Export

8.4.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in
a dialog window. This might not be useful in Visual Basic .NET. The standard way to handle this
in Visual Basic .NET is by using the Try/Catch mechanism. This allows to access the reason for
the exception and to continue accordingly. Thus, for HDevelop programs containing error handling
((dev_)set_check("˜give_error")) the corresponding code is automatically included. Every op-
erator call, for which it is assumed that the HALCON error mechanism is turned off, is enclosed in a
Try block followed by a Catch block. The latter handles the exception and assigns the corresponding
HALCON error number to the error variable activated by dev_error_var or to a local error variable,
otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

8.4.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported Visual Basic .NET code every iconic object is represented
by a .NET HObject object. From the garbage collector’s point of view, a .NET HObject object is rather
small. Thus, it might not be collected from memory although the underlying iconic object (e.g., an
image) might in fact occupy a large portion of memory. In order to avoid memory leaks caused by this
effect, in the exported code every iconic object is deleted explicitly before it is assigned a new value.

8.5 Code Generation for Visual Basic .NET (HALCON/COM)

This section describes how to create a HALCON application in Visual Basic .NET, starting from a
program developed in HDevelop. HALCON can be used together with Visual Basic .NET based on the
COM interface of HALCON. A detailed description of this interface can be found in the Programmer’s
Guide, part IV on page 121.

Note that this export is only provided for backwards compatibility. We recommend to use the export
based on HALCON/.NET (see section 8.4 on page 258).

8.5.1 Basic Steps

8.5.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language
(Visual Basic .NET - HALCON/COM) and save it to file. The result is a new file with the given name
and the extension “.vb”.

8.5.2 Program Structure 261

8.5.1.2 The Visual Basic .NET Template

If the file has been exported using the option Use Export Template, it is intended to be used together
with the predefined Visual Basic .NET project that can be found in the directory

%HALCONROOT%\examples\vb.net\HDevelopTemplateCOM

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. Add
the file generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the
project is ready for execution: Run the project and then press the button Run on the form, which will call
the exported code.

8.5.2 Program Structure

If the program has been exported using the option Use Export Template, the file created by HDevelop
contains a subroutine with the corresponding name for every HDevelop procedure except the main pro-
cedure, which is contained in the subroutine action(). Otherwise, the file is exported as a standalone
application. Iconic input and output parameters of a procedure are passed as ByVal HUntypedObjectX
and ByRef HUntypedObjectX, respectively, while control input and output parameters are passed as
ByVal Object and ByRef Object, respectively. The subroutine RunHalcon() contains a call to the
subroutine action() and has a parameter Window, which is of type HWindowX. This is the link to the
window on the form to which all output operations are passed. In addition, another subroutine is created
with the name InitHalcon(). This subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to Object.

Depending on the program, additional subroutines and variables are declared.

8.5.2.1 Arrays

If a single value is inserted into an Object array, a special subroutine is called to ensure that the array is
valid. If the array is too small or of the wrong type, it is recreated in the appropriate way.

8.5.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions
can be changed to simple Visual Basic .NET expressions. For example, TupleSub becomes a simple
subtraction. To ensure that the exported program has the same effect in Visual Basic .NET, this exchange
is not applied automatically because the semantics are not always identical.

8.5.2.3 Stop

The HDevelop operator stop is translated into a subroutine in Visual Basic .NET that creates a message
box. This message box causes the program to halt until the button is pressed.

C
od

e
E

xp
or

t

262 Code Export

8.5.2.4 Exit

The HDevelop operator exit is translated into the Visual Basic .NET routine End. Because this routine
has no parameter, the parameters of exit are suppressed.

8.5.2.5 Used Classes

There are only six classes/types that are used: Object for control parameters and HUntypedObjectX for
iconic data. In addition, there is the container class HTupleX, which comprises all operators of HALCON
processing tuples, in this case the data type Object. Then, there are the classes HWindowXCtrl and its
low-level content HWindowX. HWindowXCtrl is used inside the project for the output window and a
variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is used
as a container for all HALCON operators. There is no need for other classes as long as the program has
the same functionality as in HDevelop. When editing a generated program you are free to use any of the
classes of HALCON/COM to extend the functionality.

8.5.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 8.8 on page 267, please also check the
description of the HDevelop operators in section 5.2.6.2 on page 94.

8.5.3.1 Variable Names

In contrast to C, C++, or HDevelop, Visual Basic .NET has many reserved words. Thus, the export adds
the prefix ho_ to all iconic and hv_ to all control variables, respectively, in order to avoid collisions with
these reserved words.

8.5.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in
a dialog window. This might not be useful in Visual Basic .NET. The standard way to handle this
in Visual Basic .NET is by using the Try/Catch mechanism. This allows to access the reason for
the exception and to continue accordingly. Thus, for HDevelop programs containing error handling
((dev_)set_check("˜give_error")) the corresponding code is automatically included. Every op-
erator call, for which it is assumed that the HALCON error mechanism is turned off, is enclosed in a
Try block followed by a Catch block. The latter handles the exception and assigns the corresponding
HALCON error number to the error variable activated by dev_error_var or to a local error variable,
otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

8.6 Code Generation for Visual Basic 6 (HALCON/COM) 263

8.5.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported Visual Basic .NET code every iconic object is represented
by a .NET HUntypedObjectX object, which contains a reference to a COM HUntypedObjectX object.
From the garbage collector’s point of view, a .NET HUntypedObjectX object is rather small. Thus, it
might not be collected from memory although the underlying iconic object (e.g., an image) might in fact
occupy a large portion of memory. In order to avoid memory leaks caused by this effect, in the exported
code every iconic object is deleted explicitly before it is assigned a new value.

8.6 Code Generation for Visual Basic 6 (HALCON/COM)

This section describes how to create a HALCON application in Visual Basic 6, starting from a program
developed in HDevelop. HALCON can be used together with Visual Basic 6 based on the COM interface
of HALCON. A detailed description of this interface can be found in the Programmer’s Guide, part IV
on page 121.

8.6.1 Basic Steps

8.6.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language
(Visual Basic 6.0 - HALCON/COM) and save it to file. The result is a new file with the given name
and the extension “.bas”.

8.6.1.2 The Visual Basic 6 Template

If the file has been exported using the option Use Export Template, it is intended to be used together
with the predefined Visual Basic 6 project that can be found in the directory

%HALCONROOT%\examples\vb\HDevelopTemplate

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. The file
generated by HDevelop has to be added to this project. This is done by using the menu Project . Add
Module . Existing and selecting the file. Now the project is ready for execution: Run the project and
then press the button Run on the form, which will call the exported code.

8.6.2 Program Structure

If the program has been exported using the option Use Export Template, the file created by HDevelop
contains a subroutine with the corresponding name for every HDevelop procedure except the main pro-
cedure, which is contained in the subroutine action(). Otherwise, the file is exported as a standalone

C
od

e
E

xp
or

t

264 Code Export

application. Iconic input and output parameters of a procedure are passed as ByVal HUntypedObjectX
and ByRef HUntypedObjectX, respectively, while control input and output parameters are passed as
ByVal Variant and ByRef Variant, respectively. The subroutine RunHalcon() contains a call to
the subroutine action() and has a parameter Window, which is of type HWindowX. This is the link to
the window on the form to which all output operations are passed. In addition, another subroutine is
created with the name InitHalcon(). This subroutine applies the same initializations that HDevelop
performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to Variant. The
subroutine RunHalcon() has a parameter Window, which is of type HWindowX. This is the link to the
window in the panel to which all output operations are passed.

Depending on the program, additional subroutines and variables are declared.

8.6.2.1 Arrays

If a single value is inserted into a Variant array, a special subroutine is called to ensure that the index
is valid. If the array is too small it is resized.

8.6.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions can
be changed to simple Visual Basic expressions. For example, TupleSub becomes a simple subtraction.
To ensure that the exported program has the same effect in Visual Basic, this exchange is not applied
automatically because the semantics are not always identical.

8.6.2.3 Stop

The HDevelop operator stop is translated into a subroutine in Visual Basic that creates a message box.
This message box causes the program to halt until the button is pressed.

8.6.2.4 Exit

The HDevelop operator exit is translated into the Visual Basic routine End. Because this routine has no
parameter, the parameters of exit are suppressed.

8.6.2.5 Used Classes

There are only six classes/types that are used: Variant for control parameters and HUntypedObjectX
for iconic data. In addition, there is the container class HTupleX, which comprises all operators of HAL-
CON processing tuples, in this case the data type Variant. Then, there are the classes HWindowXCtrl
and its low-level content HWindowX. HWindowXCtrl is used inside the project for the output window

8.6.3 Limitations and Troubleshooting 265

and a variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is
used as a container for all HALCON operators. There is no need for other classes as long as the program
has the same functionality as in HDevelop. When editing a generated program you are free to use any of
the classes of HALCON/COM to extend the functionality.

8.6.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 8.8 on page 267, please also check the
description of the HDevelop operators in section 5.2.6.2 on page 94.

8.6.3.1 Variable Names

In contrast to C, C++, or HDevelop, Visual Basic has many reserved words. Thus, the export adds the
prefix ho_ to all iconic and hv_ to all control variables, respectively, in order to avoid collisions with
these reserved words.

8.6.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in Visual Basic. The standard way to handle this in Visual
Basic is by using the On Error Goto command. This allows to access the reason for the exception and
to continue accordingly. Thus, for HDevelop programs containing error handling (dev_error_var) the
corresponding code is automatically included.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

8.7 Code Generation for C

This section describes how to create a HALCON application in C, starting from a program developed in
HDevelop.

8.7.1 Basic Steps

8.7.1.1 Program Export

The first step is to export the program using the menu File . Export.... Here, select the language
(C - HALCON/C) and save it to file. A file will be created that contains the HDevelop program as C

C
od

e
E

xp
or

t

266 Code Export

source code. For every HDevelop procedure except the main procedure, the exported file contains a
C procedure with the corresponding name. Iconic input and output parameters of a procedure are de-
clared as Hobject and Hobject*, respectively, while control input and output parameters are declared
as Htuple and Htuple*, respectively. All procedures are declared at the beginning of the file. The
program body of the HDevelop main procedure is contained in a procedure action() which is called
in function main(). action() and main() can be excluded from compilation by inserting the instruc-
tion #define NO_EXPORT_MAIN at the appropriate position in the application. Using the instruction
#define NO_EXPORT_APP_MAIN only the main() procedure is excluded from compilation. This can
be useful if you want to integrate exported HDevelop code into your application through specific proce-
dure interfaces. In that case, there is typically no need to export the main procedure, which was probably
used only for testing the functionality implemented in the corresponding ’real’ procedures.

Besides the program code, the file contains all necessary #include instructions. All local variables
(iconic as well as control) are declared in the corresponding procedures. Iconic variables belong to the
class Hobject and all other variables belong to Htuple.

Please note that in the current version the generated C code is not optimized for readability. It is output
such that it always produces identical results as the HDevelop code.

8.7.1.2 Compiling and Linking in Windows Environments

The next step is to compile and link this new program. In the Windows environment, Visual C++ is
used for the compiling and linking. Example projects can be found in the directory %HALCONROOT%\
examples\c.

If you want to use HALCON, you have to include the libraries halconxl.lib/.dll and
halconcxl.lib/.dll instead of halcon.lib/.dll and halconc.lib/.dll in your project (see the
Programmer’s Guide, chapter 18 on page 159, for more details).

8.7.1.3 Compiling and Linking in UNIX Environments

To compile and link the new program (called, e.g., test.c) under UNIX, you can use the example
makefile, which can be found in the directory $HALCONROOT/examples/c , by calling

make TEST_PROG=test

Alternatively, you can set the variable TEST_PROG in makefile to test and then just type make.

You can link the program to the HALCON XL libraries by calling

make TEST_PROG=test XL=1

or just type make XL=1 if you set the variable TEST_PROG as described above.

For more details see the Programmer’s Guide, chapter 18 on page 159.

8.8 General Aspects of Code Generation 267

8.8 General Aspects of Code Generation

In the following, general differences in the behavior of a HDevelop program and its exported versions
are described.

8.8.1 User-Defined Code Blocks

HDevelop comments containing the # symbol as the first character are exported as plain text statements.
For example, the line

* #Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in HDevelop will result in

Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in Visual Basic 6. This feature can be used to integrate Visual Basic, Visual Basic .NET, C#, C++, or
C code into a HDevelop program. Furthermore, some additional special comments are recognized to
specify the destination of the plain text statements. For example, the line

* #^^#define NO_EXPORT_APP_MAIN

puts the given text at the very beginning of the exported program. Comments in this format are collected
from the main procedure first, followed by #^^ comments in other procedures.

The recognized special comments are summarized in table 8.1.

8.8.2 Assignment

In HDevelop each time a new value is assigned to a variable its old contents are removed automatically,
independent of the type of the variable. In the exported code, this is also the case for iconic objects

Prefix Where the text following the prefix goes in the exported program

The place of insertion

#ˆˆ Beginning of the program

#$$ End of the program

#ˆ Before the current procedure

#$ After the current procedure

Table 8.1: Special comments in HDevelop.

C
od

e
E

xp
or

t

268 Code Export

(HALCON/C++: Hobject, HALCON/.NET: HObject, HALCON/COM: HUntypedObjectX) and for
the class HTuple (HALCON/C++, HALCON/.NET), the type Variant (Visual Basic 6), and the class
object (HALCON/COM for .NET languages), as they all have a destructor that removes the stored
data. Because C does not provide destructors, the generated C code calls the operators clear_obj and
destroy_tuple to remove the content of iconic output parameters (Hobject) and control output pa-
rameters (Htuple) before each operator call. Memory issues regarding iconic objects in HALCON/.NET
are described in section 8.4.3.3 (Visual Basic .NET) and section 8.2.3.3 (C#). Memory issues regarding
iconic objects in HALCON/COM are described in section 8.5.3.3 (Visual Basic .NET) and section 8.3.3.3
(C#).

However, problems arise if a tuple (variant) contains a handle, for example for a file, a window, or for
OCR. In this case, the memory of the handle is automatically removed but not the data to which it points.
In the exported programs, this data therefore has to be removed explicitly by calling the corresponding
operators close_* like close_ocr or close_ocv. Please insert the close_* operators for all handles
in use

• before a new value is assigned to a handle and

• at the end of the program.

8.8.3 Variable Names

Variable names in HDevelop are case-sensitive, i.e., x and X are distinct variable names in HDevelop
programs. If you export such a program to a case-insensitive target language (e.g., Visual Basic .NET),
the development environment will complain about multiple declarations. Either plan ahead and avoid
these variable names, or use the Find/Replace dialog to substitute conflicting variable names before
exporting your program.

8.8.4 for Loops

HDevelop and the programming languages have different semantics for loops, which may cause confu-
sion. Because the problems are so rare and the generated code would become very difficult to understand
otherwise, the code generation ignores the different semantics. These differences are:

1. In the programming languages, you can modify the loop variable (e.g., by setting it to the end
value of the condition) to terminate the loop. This can’t be done in HDevelop because here the
current value is stored “inside” the for-operator and is automatically updated when it is executed
again.

2. In the programming languages, you can modify the step range if you use a variable for the
increment. This is also not possible with HDevelop because the increment is stored “inside” the
for-operator when the loop is entered.

3. The last difference concerns the value of the loop variable after exiting the loop. In the program-
ming languages, it has the value with which the condition becomes false for the first time. In
HDevelop it contains the end value, which was calculated when the loop was entered.

Looking at the mentioned points, we recommend to program according to the following rules:

8.8.5 Protected External Procedures 269

1. Don’t modify the loop variable or the step value inside the loop. If you need this behavior, use
the while-loop.

2. Don’t use the loop variable after the loop.

8.8.5 Protected External Procedures

As described for the different programming languages, HDevelop procedures are exported automatically
to procedures or subroutines of the selected programming language. This does not hold for the protected
external procedures described in section 5.4.3.3 on page 123. These procedures are protected by a
password so that they cannot be viewed and modified by unauthorized users. Thus, as long as they are
locked by the password, they can not be exported to any programming language.

8.8.6 System Parameters

You should know that HDevelop performs some changes of system parameters of HALCON by calling
the operator set_system (see the reference manual). This might cause the exported program not to
produce identical output. If such a problem arises, you may query the system parameters by means
of get_system in HDevelop after or while running the original HDevelop version of the program.
Depending to the problem, you can now modify relevant parameters by explicitly calling the operator
set_system in the exported program.

8.8.7 Graphics Windows

HALCON provides a functionality that emulates the behavior of HDevelop graphics windows for HAL-
CON windows. This HALCON window stack is accessible via class methods and functions in the
HALCON interfaces, and code exported from HDevelop uses this functionality when opening, closing,
setting, or accessing the active window. The HALCON window stack mechanism is threadsafe. Thus,
in a multithreaded application every thread has its own window stack. In order to avoid memory leaks
or similar problems, the application must take care to close all HALCON windows opened by a thread
before terminating the thread because this is not done automatically by HALCON.

For the .NET and COM code exports it is optional whether to export HDevelop programs as code using
the HDevelop export example templates or as code using the previously described HALCON window
stack functionality when doing graphics windows output. Additionally, in the latter case the exported
code contains a main function and thus is usable as a standalone application. The HDevelop Export
dialog allows to select the corresponding option.

The graphics windows of HDevelop and the basic windows of the HALCON libraries

• HALCON/C++: class HWindow,

• HALCON/.NET: class HWindowControl,

• HALCON/COM: class HWindowXCtrl, and

• HALCON/C: addressed via handles

C
od

e
E

xp
or

t

270 Code Export

have different functionality.

• Multiple windows
If you use the operator dev_open_window to open multiple graphics windows in HDevelop, these
calls will be converted into corresponding calls of open_window only if the export option Use
HALCON Windows is selected.

In the export of Visual Basic, Visual Basic .NET, and C# programs using the option Use Export
Template, all window operations are suppressed, because the exported code is intended to work
together with the corresponding template. If you want to use more than one window in programs
exported in this mode, you have to modify the code and project manually.

Note that the export of programs containing multiple windows using the option Use HALCON
Windows might be incorrect if the active graphics window was changed using the mouse during
program execution. It is recommended to use the operator dev_set_window explicitly to achieve
the same functionality.

• Window size
In exported Visual Basic, Visual Basic .NET, and C# programs, the size of the window on the form
is predefined (512× 512); thus, it will normally not fit your image size. Therefore, you must adapt
the size interactively or by using the properties of the window.

• Displaying results
Normally, the result of every operator is displayed in the graphics window of HDevelop. This
is not the case when using an exported program. It behaves like the HDevelop program running
with the option: “update window = off”. We recommend to insert the operator dev_display in
the HDevelop program at each point where you want to display data. This will not change the
behavior of the HDevelop program but result in the appropriate call in the exported code.

When generating code using the option Use HALCON Windows, close the default graphics window
(using dev_close_window) and open a new one (using dev_open_window) before the first call
of dev_display in order to assure a correct export.

• Displaying images
In HDevelop, images are automatically scaled to fit the current window size. This is not the case in
exported programs. For example, if you load and display two images of different size, the second
one will appear clipped if it is larger than the first image or filled up with black areas if it is smaller.
For a correct display, you must use the operator dev_set_part before displaying an image with
dev_display as follows:

dev_set_part (0, 0, ImageHeight-1, ImageWidth-1)

dev_display (Image)

In this example, Image is the image variable, ImageHeight and ImageWidth denote its size.
You can query the size of an image with the operator get_image_pointer1. Please consult the
HALCON Reference Manuals for more details.

Note that the operator dev_set_part (and its HALCON library equivalent set_part) is more
commonly used for displaying (and thereby zooming) parts of images. By calling it with the full
size of an image as shown above, you assure that the image exactly fits the window.

• Changing display parameters
If you change the way how results are displayed (color, line width, etc.) in HDevelop interac-

8.8.7 Graphics Windows 271

tively via the menu Visualization, these changes will not be incorporated in the exported pro-
gram. We recommend to insert the corresponding Develop operators (e.g., dev_set_color or
dev_set_line_width) in the HDevelop program explicitly. This will result in the appropriate
call (set_color, set_line_width, etc.) in the exported code.

C
od

e
E

xp
or

t

272 Code Export

Tips & Tricks 273

Chapter 9

Tips & Tricks

This chapter contains helpful information for working with HDevelop.

9.1 Keycodes

In order to speed up the entering of values in the input fields of HDevelop (e.g., operator parameters),
several keycodes are defined, which have special functions. These keyboard mappings are shown in
table 9.1.

9.2 Online Help

Online documentation is available in PDF and partly in HTML format.

HDevelop provides an integrated online help window. You can conveniently browse the HTML-based
documentation in this window view the HTML files in your web browser. In HDevelop you may call the
online help window via the menu Help . Help or by pressing <F1>. The functionality is described in
section 5.8 on page 140.

Besides HTML, the documentation is available in PDF format as well. If you click on a PDF document
in the online help window, the registered application for viewing PDF files starts up automatically.

9.3 Warning and Error Windows

Warning and error windows are popups that make the user aware of user errors. Usually, they interrupt
the faulty actions with a description of the error. For this purpose information about the kind of the error
is determined during the execution. Figure 9.1 shows an example of an error window.

Ti
ps

274 Tips & Tricks

Text editing
<Home> Move cursor to the beginning of the line.
<End> Move cursor to the end of the line.
<Left> Move cursor left one character.
<Right> Move cursor right one character.
<Ctrl> <Left> Move cursor left one word.
<Ctrl> <Right> Move cursor right one word.
<Delete> Delete single character to the right of the cursor position.
<Backspace> Delete single character to the left of the cursor position.
<Ctrl> <Backspace> Delete word to the left of the cursor.
<Ctrl> <Delete> Delete word to the right of the cursor.
<Shift> <Left> Select character to the left of the cursor (or extend the selection

by one character).
<Shift> <Right> Select character to the right of the cursor (or extend the selection

by one character).
<Ctrl> <Shift> <Left> Select word to the left of the cursor (or extend the selection by

one word).
<Ctrl> <Shift> <Right> Select word to the right of the cursor (or extend the selection by

one word).
<Ctrl> a Select all.
<Ctrl> d UNIX: Analogous to Delete
<Ctrl> e UNIX: Move cursor to last character in line.
<Ctrl> k UNIX: Delete all characters from current position to end of line.
<Ctrl> u UNIX: Delete entire input line.

GUI Navigation
<Ctrl> <Tab> Focus next window and bring it to the front.
<Shift> <Tab> Focus the previous window and bring it to the front.
<Tab> Select the following GUI element.
<Shift> <Tab> Select the previous GUI element.
<Space> Activate the focused button (highlighted with a dashed border)
<Up> Scroll up one line.
<Down> Scroll down one line.
<Pg Up> Scroll up one page.
<Pg Down> Scroll down one page.
<Home> Scroll to the beginning.
<End> Scroll to the end.

Table 9.1: Keycodes for special editing functions.

9.4 Emergency Backup

In case HDevelop ever crashes during a program execution, an emergency backup is started which saves
the recent program status to your hard disk from where you can retrieve it after restarting HDevelop to
continue your application.

9.4 Emergency Backup 275

Figure 9.1: Example for an error window.

The exact location of the data depends on the operating system you are using. For Linux/UNIX you
can retrieve your data from /tmp/hdevelop_login , and for Windows, the corresponding path is C:\
Documents and Settings\login \Local Settings\Temp\hdevelop. In both cases substitute lo-
gin with your login name.

Ti
ps

276 Tips & Tricks

Glossary 277

Appendix A

Glossary

Boolean is the type name for the truth values true and false as well as for the related boolean expres-
sions.

Body A body is part of a conditional instruction (if) or a loop (while or for) and consists of a sequence
of operator calls. If you consider the for-loop, for instance, all operator calls, that are located
between for and endfor form the body.

Button A button is part of a graphical user interface. With the mouse the user can press a button to
cause an action to be performed.

Control data Control data can be either numbers (↑integer and ↑real), character strings (↑string)
and truth values (boolean). This data can be used as atomic values (i.e., single values) or as
↑tuples (i.e., arrays of values).

Empty region An empty ↑region contains no points at all, i.e., its area is zero.

Graphics window A graphics window is used in ↑HDevelop for displaying, e.g., ↑images, ↑regions,
and ↑XLD.

HDevelop is an interactive program for the creation of HALCON applications.

Iconic data are image data, i.e., image arrays and data, which are described by coordinates and are
derived from image arrays, e.g., ↑regions, ↑images and ↑XLD.

Image An image consists of one or more (multi-channel image) image arrays and a ↑region as the
definition domain. All image arrays have the same dimension, but they can be of different pixel
types. The size of the ↑region is smaller or equal than the size of the image arrays. The ↑region
determines all image points that should be processed.

Iconic object Generic implementation of ↑iconic data in HALCON.

integer is the type name for integer numbers.

Operator data base The operator data base contains information about the HALCON operators. It is
loaded at runtime from the binary files in %HALCONROOT%\help.

G
lo

ss
ar

y

278 Glossary

Program window In HDevelop the program window contains the program. It is used to edit (copy,
delete, and paste lines) and to run or debug the program.

Operator window In the operator window of HDevelop the parameters of the selected operators can be
entered or modified.

Real is the type name for floating point numbers. They are implemented using the C-type double (8
bytes).

Region A region is a set of image points without gray values. A region can be imagined as a binary
image (mask). Regions are implemented using runlength encoding. The region size is not limited
to the image size (see also set_system(’clip_region’,’true’/’false’) in the HALCON
reference manual).

String is the type name for character strings. A string starts and ends with a single quote; in between
any character can be used except single quote. The empty string consists of two consecutive single
quotes. The maximum length of a character string is limited to 1024 characters.

Tuple A tuple is an ordered multivalue set. In case of ↑control data a tuple can consist of a large number
of items with different data types. The term tuple is also used in conjunction with ↑iconic objects,
if it is to be emphasized that several ↑iconic objects will be used.

Type ↑iconic variables can be assigned with data items of type ↑image, ↑region, and ↑XLD. The types
of ↑control data items can be one of ↑integer, ↑real, ↑boolean, or ↑string.

Variable window In HDevelop the variable window manages the ↑control and ↑iconic data.

XLD is the short term for eXtended Line Description. It is used as a superclass for contours, polygons,
and lines.

Command Line Switches 279

Appendix B

Command Line Switches

HDevelop accepts the following command line switches:

hdevelop (called as hdevelop) [options]
HDevelop options:
<program>.dev - open the program for editing
-run <program>.dev - load the program and start execution
<image_file> - load an image file with read_image
-help - show this help info in a message box
-version - show version information in a message box
--help - show this help information on the console
--version - show version information on the console
-convert <program>.dev <program>.{cpp,c,cs,vb,bas,cs,vb,txt,dev}

[-COM]
[-external_proc_path:<external procedure path>]
[-external_procs_only_interfaces]
[-reset_free_text]
[-no_use_hdevelop_template]

- convert an HDevelop program into a source
file of the specified type

-reset_preferences - reset all persistent settings from
previous sessions

-preferences <file> - start HDevelop with the preferences
from a file

Qt options:
-style[=] <style> - sets the application GUI style. Possible

values are: Windows Motif CDE Plastique Cleanlooks
X11 options:
-display <display> - sets the X display (default is $DISPLAY).
-geometry <geometry>- sets the client geometry of the first

window that is shown.
-{fn|font} - defines the application font. The font

C
om

m
an

d
Li

ne

280 Command Line Switches

should be specified using an X logical
font description.

-{bg|background} <color>
- sets the default background color and an
application palette (light and dark shades
are calculated).

-{fg|foreground} <color>
- sets the default foreground color.

-{btn|button} <color>
- sets the default button color.

-name <name> - sets the application name.
-title <title> - sets the application title.
-visual TrueColor - forces the application to use a TrueColor

visual on an 8-bit display.
-ncols <count> - limits the number of colors allocated in

the color cube on an 8-bit display, if the
application is using the
QApplication::ManyColor color
specification. If count is 216 then a
6x6x6 color cube is used (i.e., 6 levels of
red, 6 of green, and 6 of blue); for other
values, a cube approximately proportional
to a 2x3x1 cube is used.

-cmap - causes the application to install a
private color map on an 8-bit display.

Index 281

Index

* (asterisk)
external procedure, 49
in window title, 33, 43

.NET, 253, 258

.avi, 26

.seq, 26
:Password, 115
#, 267
#$, 267
#$$, 267
#ˆ, 267
#ˆˆ, 267
$, 223
IC, 17
dev_set_check, 240
PC, 17
Source

image, 23
_COPY_1, 48
Live, 26
Detect, 27
Reset All, 27
Snap, 26
File, 26

Abort Procedure Execution, 78
About, 103
Acquisition

menu (Image Acquisition Assistant), 163
Snap, 159

Acquisition menu
Live, 159

Acquisition Mode, 163
Activate, 57
Adapt program, 115
Add to User Tab, 131
Add Variable, 131
add_channels, 146, 153

Advanced, 118
Advanced Autocompletion, 64
advanced autocompletion, 109
advanced model parameters, 196
advanced search parameters, 204
All, 130
Alternatives, 98
Always Find, 201
Angle Extent, 195
Angle Step, 196
Apply Immediately, 83
area_center, 40
assign, 92, 93, 217, 218, 220
assistant

calibration, 157
Close Dialog, 158
Delete Generated Code Lines, 158
Exit Assistant, 158
image acquisition, 23, 157
Insert Code, 158
Load Assistant Settings, 158
matching, 157
Release Generated Code Lines, 158
Save Current Assistant Settings,

158
Show Code Preview, 158

assistant settings, load, 182, 190
assistant settings, save, 182, 190
Assistants

menu, 99
assure success, 202
Attention, 118
Auto

Disconnect, 163
Auto, 130
Auto Indent, 112
autocompletion, 109
AVI, 26

In
de

x

282 Index

Basics, 117
beginner, 162
Bit Depth, 160
boolean, 277
boolean

operations, 229
break, 92, 236–238
break point, 17, 74

clear, 77
clear all, 77
set, 77

Browse Examples..., 19
Browse Examples..., 47
button, 277

C, 9, 265
compile and link (UNIX), 266
compile and link (Windows), 266
export of HDevelop programs, 9, 265

C++, 9
compile and link (UNIX), 250
compile and link (Windows), 250
export of HDevelop programs, 249

C#, 9
export of HDevelop programs, 253, 255

Calibrate, 183
calibration, 171
Calibration Assistant, 157
calibration plate, 167
calibration plate extraction parameters, 176
calibration task, 166
Call Stack..., 77
camera parameters, 167
Camera Type, 160
Cascade Windows, 100
catch, 71, 92, 239
catch, 239
categories

example programs, 47
Category, 162
channel

gray value, 89, 143
channel number, 144
channel selection

gray histogram, 148
Chapters, 117
check box Always Find, 201

check box Pregenerate Shape Model, 198
check box Shape models may cross the

image border, 205
Cleanup, 53, 131
Clear All Breakpoints, 77
Clear Breakpoint, 77
Clear Graphics Window, 79
Clear Variable, 131
click, 11
clipboard, 56, 57
Close Assistant, 182, 190
Close Dialog, 158
Close Graphics Window, 80
Code Generation, 183, 208

Image Acquisition Assistant, 162
Code generation, 249
code generation

file, 24
image acquisition interface, 28

code generation, preview, 183, 209
code lines, delete, 183, 209
code lines, insert, 183, 209
code lines, release, 183, 209
code options, 208
Code Preview, 162
code variables, 209
Color, 81, 149
color

graphics window, 81
Color Space, 160
Colored, 81
Colors, 64
column, 44
Column Scale Step, 197
COM, 255, 260, 263
comment, 57, 58, 92, 94
comment, 58, 94

#, 267
#$, 267
#$$, 267
#ˆ, 267
#ˆˆ, 267

comparison
operations, 228

Complexity, 118
concat_obj, 133, 220
Connect, 160

Index 283

Connection, 149
Image Acquisition Assistant, 159

connection, 35, 81, 149
Connection Handle, 163
continuation

line, 108
continue, 92, 236–238
Contrast, 193
Control, 92
control data, 277
Control Flow, 162
control flow

break, 238
continue, 238
elseif, 235
exit, 239
for ... endfor, 236
if ... else ... endif, 234
if ... endif, 234
operators, 233
repeat ... until, 236
return, 239
stop, 239
throw, 239
try ... catch ... endtry, 239
while ... endwhile, 236

coordinates
status bar, 44

Copy, 57
variable values, 134

copy, 107
Copy History to Clipboard, 45
copy_obj, 220
count_obj, 81, 220
Create Model, 190
create model, 186
Create New Procedure, 90
Create ROI, 190
Cut, 56

Deactivate, 58
Delete, 57
delete, 107
Delete All Test Images, 200
Delete All Unused Local, 91
Delete Current, 91
Delete Generated Code Lines, 158, 183,

209

Delete Test Image, 200
Delphi (Borland), 9
Detailed Description, 118
Detect, 159, 161
Detect All, 201
determine pose bounds, 207
Determine Recognition Rate, 207
dev_ operators, 94
dev_clear_obj, 95
dev_clear_window, 79, 94
dev_close_inspect_ctrl, 95
dev_close_window, 80, 94, 270
dev_display, 80, 95, 137, 270
dev_display, 270
dev_error_var, 96, 213
dev_error_var, 252
dev_get_exception_data, 241
dev_inspect_ctrl, 95, 134
dev_map_par, 95
dev_map_prog, 96, 99
dev_map_var, 95, 96, 99
dev_open_window, 79, 94, 97, 99, 270
dev_open_window, 270
dev_set_check, 73, 96, 213, 240, 281
dev_set_check, 252
dev_set_color, 81, 94, 96, 271
dev_set_colored, 81, 94
dev_set_draw, 81, 95, 96
dev_set_line_width, 81, 95, 271
dev_set_lut, 82, 95
dev_set_paint, 82, 87, 95
dev_set_part, 88, 95, 137, 270
dev_set_part, 270
dev_set_preferences, 73
dev_set_shape, 82, 95
dev_set_window, 79, 94, 270
dev_set_window_extents, 80, 94
dev_unmap_par, 95
dev_unmap_prog, 96
dev_unmap_var, 95, 96
dev_update_pc, 73, 96
dev_update_time, 73, 96
dev_update_var, 73, 96
dev_update_window, 73, 95, 96
Develop, 94
Device, 160
Dialog-based Editor, 64

In
de

x

284 Index

dialog-based editor, 106
Directory, 115
Disabled, 161
Disconnect, 160
disp_circle, 137
disp_image, 137
disp_line, 137
disp_region, 137
Display, 80
Display Grid, 138
Display Image, 161
Display Image Pyramid, 191
Display Model, 191
display parameters, 176
Display Selected Test Image, 201
drag-and-drop, 12, 21
Draw, 81, 149
dump_window, 79, 89
Duplicate..., 90
dyn_threshold, 98

Edit
menu, 56

Edit
program line, 106

Edit Interface, 90
Edit menu

Activate, 57
Copy, 57
Cut, 56
Deactivate, 58
Delete, 57
Find Again, 61
Find/Replace..., 58
Paste, 57
Preferences..., 62
Redo, 56
Undo, 56

Edit Procedure, 92
editor

dialog-based, 106
full text, 108

Editor Mode, 64
else, 234, 235
else, 234
elseif, 92, 235
Emergency backup, 274

Enable the Context Menu in the
Graphics Window, 73

encoding, 52
native, 52, 70
UTF-8, 52, 70

endfor, 41, 75, 236, 237
endfor, 236
endif, 75, 109, 234, 235, 238
endif, 234
endtry, 71, 92, 239
endtry, 239
endwhile, 75, 109, 236
endwhile, 236
error handling, 239
Error message, 273
escape

strings, 212
Example, 118
example programs, 47
exception

handling, 240
throw directly, 71

Exception handling, 252, 255, 257, 260, 262,
265

Execute
menu, 74

Execute menu
Abort Procedure Execution, 78
Call Stack..., 77
Clear All Breakpoints, 77
Clear Breakpoint, 77
Reset Procedure Execution, 78
Reset Program Execution, 78, 215
Run, 74
Run to Insert Cursor, 75
Set Breakpoint, 77
Step Forward, 76
Step Into, 76
Step Out, 76
Step Over, 75
Stop, 76

exit, 55, 92, 94, 239
Exit Assistant, 158, 182, 190
expert, 162
exponential

functions, 230
Export, 51, 62

Index 285

UTF-8 encoding, 52
External Procedure Settings..., 92
external procedure, modified, 49

false, 277
Feature Histogram, 89
Feature Inspection, 89
Field, 160
File, 182, 189

menu, 46
file history, 46
File menu

Browse Examples..., 47
Cleanup, 53
Export, 51
Insert All..., 48
Insert Mainbody..., 49
Insert Procedures..., 48
Insert Program, 48
New Program, 46
Open Program..., 46
Print, 54
Properties..., 54
Quit, 55
Read Image, 52
Recent Programs, 48
Save, 49
Save All, 50
Save Procedure As..., 50
Save Program As..., 49

file_exists, 96
Find Again, 61
Find Model, 201
Find/Replace..., 58
Font, 64
for, 41, 42, 75, 92, 106, 108, 236–238
for

loop, 236
for, 268, 277
frames per second

Image Acquisition Assistant, 161
Full Text Editor, 64
full text editor, 108

gauss_image, 98
gen_empty_obj, 133, 220
gen_lowpass, 98
gen_tuple_const, 221

General Documentation, 117
Generic, 160
get_error_text, 240
get_framegrabber_param, 71, 126
get_image_pointer1, 270
get_mposition, 96
get_system, 269
Give Error, 73
graphics

window, 136
graphics window, 17, 269, 277

clear, 79
close, 80
colors, 81
image size, 80
line width, 81
open, 79
regions, 81, 82
select iconic variable, 80
window size, 80

Gray Histogram, 89
gray value

histogram, 89, 145
inspection, 89, 143
status bar, 44

Greediness, 204
GUI, 3
guru, 162

H_MSG_FAIL, 252
H_MSG_FALSE, 252
H_MSG_TRUE, 252
H_MSG_VOID, 252
HALCON

example programs, 47
modules, 54

HALCON News (WWW), 102
HALCON Reference, 102
HALCON XL, 250, 266
HALCONIMAGES, 52, 159
HALCONROOT, 52, 159
HDevelop

procedures, 10
external, 11
hierarchy, 11
local, 11
main, 10, 250, 254, 256, 259, 261, 263,

266

In
de

x

286 Index

program
export to C, 9, 265
export to C++, 249
export to C#, 253, 255
export to Visual Basic, 263
export to Visual Basic .NET, 258, 260

HDevelop
dev_ operators, 94
example programs, 47
language, 211
runtime error, 74
warning, 156

HDevelop Language, 102
HDevelop Reference, 102
HDevelop.ini, 62
Help, 102, 112

About, 103
HALCON News (WWW), 102
HALCON Reference, 102
HDevelop Language, 102
HDevelop Reference, 102
Help, 102
menu, 102
Search Documentation, 102

history
of files, 46

IC, 105
iconic data, 277
iconic object, 277
if, 75, 92, 109, 234, 238
if, 234
if, 277
ifelse, 92, 234
ifelse, 234
image, 277
image acquisition

assistant, 23
Image Acquisition Assistant, 157, 158

Code Generation, 162
Connection, 159
frames per second, 161
Parameters, 161
Source, 159

Image Acquisition Interface, 159
image coordinates

status bar, 44

Image File(s), 159
Image Files, 163
Image Object, 163
image properties

status bar, 44
image pyramid, display, 191
Image Size, 80
image source, 171
Import, 62
Indent Size, 64
Insert

Code, 163
insert, 92, 93, 217, 218, 220, 221
insert, 251
Insert All As Local, 91
Insert All..., 48
Insert Code, 158, 183, 209
insert cursor, 17
Insert Mainbody..., 49
Insert Procedures..., 48
Insert Program, 48
Insert Used As Local, 91
Inspect, 206
Interface, 115
Interface Library, 161

junctions_skeleton, 98

Keep dialog open, 48, 52
keyboard, 12
keyboard

menu access, 46
Keycodes, 273
Keywords..., 98

Language, 65, 113
Last Pyramid Level, 205
LC_COLLATE, 65
Library, 117
line continuation, 108
Line Width, 81, 149
Live, 161
Load Assistant Settings, 158, 182, 190
Load Model, 189
Load Test Images, 200
local procedure, 49
look-up table, 82
loop

Index 287

body, 277
Loop Counter, 163
LUT, 36
Lut, 82

main window, 43
window title, 43

Make All External, 91
Manage Passwords, 68
Matching Assistant, 157
Max Column Scale, 195
Max Row Scale, 195
Maximum Number of Matches, 204
Maximum Overlap, 204
MDI, 101
MDI, 45
mean_image, 98
median_image, 98
menu

Acquisition (Image Acquisition Assis-
tant), 163

Assistants, 99
Edit, 56
Execute, 74
File, 46
Help, 102
Operators, 92
Procedures, 90
Suggestions, 98
Visualization, 79
Window, 99

menu bar, 46
messages

status bar, 44
Metric, 197
Min Column Scale, 195
Min Row Scale, 195
Minimum Component Size, 194
Minimum Contrast, 198
Minimum Score, 203
Miscellaneous, 273
model creation, 186, 190
model image, display, 191
model image, open, 189
model parameters, advanced, 196
model parameters, standard, 192
model use parameters, advanced, 204

model use parameters, standard, 203
modified

external procedure, 49
program, 43

mouse
click, 11

Move Down, 116
Move Up, 116
multiple-document interface, 45

native encoding, 52, 70
New Program, 46
New Zoom Window, 89
Normal, 161
number of visible objects, 202

Open, 48
Open Graphics Window, 99
Open Graphics Window..., 79
Open in new HDevelop, 48
Open Model Image, 189
Open Operator Window, 99
Open Program Listing, 99
Open Program..., 46
open test images, 200
Open Variable Window, 99
open_framegrabber, 26, 71, 126, 159
open_window, 96, 97, 270
operating systems

UNIX, 250, 266
Windows, 250, 266

operation
precedence, 233

operator
data base, 277
window, 125

operator window, 17
operator window, 278
Operators

Control, 92
Develop, 94
menu, 92
submenus, 96

Optimization, 251
Optimization, 198
optimize parameters, 187
Optimize Recognition Speed, 206
Organize Windows, 100

In
de

x

288 Index

orientation_region, 40
Output Destination, 148

Paint, 82
parameter

expressions, 215
parameter Angle Extent, 195
parameter Angle Step, 196
parameter Column Scale Step, 197
parameter Contrast, 193
Parameter Documentation, 118
parameter Greediness, 204
parameter Last Pyramid Level, 205
parameter Max Column Scale, 195
parameter Max Row Scale, 195
parameter Maximum Number of Matches,

204
parameter Maximum Overlap, 204
parameter Metric, 197
parameter Min Column Scale, 195
parameter Min Row Scale, 195
parameter Minimum Component Size, 194
parameter Minimum Contrast, 198
parameter Minimum Score, 203
parameter Optimization, 198
parameter optimization, 187
parameter Pyramid Levels, 194
parameter Row Scale Step, 197
parameter Start Angle, 195
parameter Subpixel, 204
Parameters, 115

Image Acquisition Assistant, 161
parameters, reset, 199
Paste, 57
paste, 107
PC, 105
pixel

type, 144
pixel info, 89, 143
Plot Quality, 138
Port, 160
pose bounds, determine, 207
Position Precision, 82
Predecessors, 98
preferences

export, 62
HDevelop.ini (persistence), 62

import, 62
Preferences..., 62
Pregenerate Shape Model, 198
Print, 54
print

HDevelop procedure, 54
HDevelop program, 54
procedure, 54
program, 54

Procedure Name, 115
Procedures, 97

menu, 90
procedures

documentation, 10
procedures (HDevelop), 10

export
C, 266
C++, 250
C#, 254, 256
Visual Basic, 263
Visual Basic .NET, 259, 261

external, 11
hierarchy, 11
local, 11
main, 10, 250, 254, 256, 259, 261, 263,

266
Procedures menu

Create New Procedure, 90
Delete All Unused Local, 91
Delete Current, 91
Duplicate..., 90
Edit Interface, 90
Edit Procedure, 92
External Procedure Settings...,

92
Insert All As Local, 91
Insert Used As Local, 91
Make All External, 91

program counter, 17
program window, 17, 105, 278

edit line, 106
Properties..., 54
pull-down menu, 46
Pyramid Levels, 194
pyramid levels, lock model and model image,

192
pyramid levels, model, 191

Index 289

pyramid levels, model image, 192
pyramid, display, 191

quality issues, 172
Quit, 55

Read Image, 52
read_image, 21, 32–34, 52, 53, 96, 211
Recent Programs, 46, 48
recognition rate, determine, 207
recognition speed, optimize, 206
Recursive, 159
Redo, 56
reduce_domain, 146, 153
reference to assistant elements, 181, 188
References, 118
Refresh, 161
regexp_match, 227
regexp_replace, 227
regexp_select, 228
regexp_test, 228
region, 278

colors, 81
empty, 277
line width, 81
shape, 82

regiongrowing, 98
regions

visualization, 81
regular expressions, 227
Release Generated Code Lines, 158, 183,

209
Remove, 116
Remove from User Tab, 131
repeat, 92, 236, 238
repeat, 236
replace

Find/Replace..., 58
reserved words, 233
Reset, 62, 116, 199
reset

graphics window, 83
Reset All, 161
Reset Parameters, 83
Reset Procedure Execution, 78
Reset Program Execution, 78
reset_obj_db, 97
Resolution, 160

Restrictions, 251, 255, 257, 259, 262, 265
return, 92, 121, 122, 239
ROI creation, 190
row, 44
Row Scale Step, 197
Run, 74
Run to Insert Cursor, 75
Run Until Here, 112
runtime

status bar, 44
Runtime error, 252

Save, 49
save

local procedure, 49
Save All, 50
Save Current Assistant Settings, 158,

182, 190
Save Model, 190
Save Procedure As..., 50
Save Program As..., 49
Save Window ..., 89
scale range, 195
scale step size, 197
scale_image, 149
SDI, 101
SDI, 45
Search Documentation, 102
search object, 201
search parameters, advanced, 204
search parameters, standard, 203
See also, 98
Select Directory ..., 159
Select File(s) ..., 159
Select Graphics Window, 84
select test image, 201
Select..., 160
select_gray, 153
select_obj, 219, 220
select_shape, 133, 151, 153
select_shape_xld, 151
semantics, 211
sequence file, 26
Set Breakpoint, 77
Set Parameters..., 84
set_check, 96
set_color, 94, 271

In
de

x

290 Index

set_framegrabber_param, 71, 126
set_line_width, 271
set_paint, 87, 95, 138
set_part, 270
set_system, 213
set_tposition, 42
set_system, 269
Shape, 82
shape model, load, 189
shape model, save, 190
Shape models may cross the image

border, 205
Short Description, 117
shortcuts, 12
Show Caller, 112
Show Code Preview, 158, 183, 209
Show frames per second during live

acquisition, 161
Show Procedure, 112
Show Processing Time, 45, 73
sigma_image, 98
single-document interface, 45
skeleton, 98
smooth_image, 98
Snap, 160
Sort by Name, 131, 162
Sort by Occurrence, 131
Source

Image Acquisition Assistant, 159
split, 227
standard model parameters, 192
standard search parameters, 203
Start Angle, 195
status bar, 44
Step, 138
Step Forward, 76
Step Into, 76
Step Out, 76
Step Over, 75
Stop, 76, 161
stop, 20, 74, 75, 92, 94, 239
stop

HDevelop program, 74
program, 74

strchr, 226
string, 278

concatenation, 216, 226

operations, 223
special characters, 212

strlen, 226
strrchr, 226
strrstr, 226
strstr, 226
Subpixel, 204
Successors, 98
Suggestions, 118

Alternatives, 98
Keywords..., 98
Predecessors, 98
See also, 98
Successors, 98

suppress error messages, 71
syntax, 211

terminology, 11
test image sequence, delete, 200
test image, delete, 200
test image, display, 201
test image, select, 201
Test Images, 200
test images, load, 200
test model, 186, 199
test_region_point, 96
threshold, 34, 35, 37, 149
throw, 92, 239
throw, 239
Trigger, 160
trigonometric

functions, 230
true, 277
try, 71, 92, 239
try, 239
tuple, 278

concatenation, 218, 219
tuple_abs, 231, 243
tuple_acos, 230, 243
tuple_add, 222, 242
tuple_and, 229, 242
tuple_asin, 230, 243
tuple_atan, 230, 243
tuple_atan2, 230, 243
tuple_band, 223, 242
tuple_bnot, 223, 242
tuple_bor, 223, 242

Index 291

tuple_bxor, 223, 242
tuple_ceil, 231, 243
tuple_chr, 233, 243
tuple_chrt, 233, 244
tuple_concat, 219, 242
tuple_cos, 230, 243
tuple_cosh, 230, 243
tuple_cumul, 231, 243
tuple_deg, 231, 243
tuple_deviation, 231, 243
tuple_div, 222, 242
tuple_environment, 233, 243
tuple_equal, 228, 242
tuple_exp, 230, 243
tuple_fabs, 231, 243
tuple_find, 219, 242
tuple_floor, 231, 243
tuple_fmod, 231, 243
tuple_gen_const, 242
tuple_greater, 228, 242
tuple_greater_equal, 228, 242
tuple_int, 231, 243
tuple_inverse, 233, 243
tuple_is_number, 233, 243
tuple_ldexp, 230, 243
tuple_length, 219, 242
tuple_less, 228, 242
tuple_less_equal, 228, 242
tuple_log, 230, 243
tuple_log10, 230, 243
tuple_lsh, 223, 242
tuple_max, 231, 243
tuple_max2, 231, 243
tuple_mean, 231, 243
tuple_median, 231, 243
tuple_min, 231, 243
tuple_min2, 231, 243
tuple_mod, 222, 242
tuple_mult, 222, 242
tuple_neg, 222, 242
tuple_not, 229, 243
tuple_not_equal, 228, 242
tuple_number, 233, 243
tuple_or, 229, 243
tuple_ord, 233, 243
tuple_ords, 233, 244
tuple_pow, 230, 243

tuple_rad, 231, 243
tuple_rand, 233, 244
tuple_real, 231, 243
tuple_regexp_match, 227, 242
tuple_regexp_replace, 227, 242
tuple_regexp_select, 228, 242
tuple_regexp_test, 228, 242
tuple_remove, 219, 242
tuple_round, 231, 243
tuple_rsh, 223, 242
tuple_select, 219, 242
tuple_select_range, 219, 242
tuple_select_rank, 231, 243
tuple_sgn, 231, 243
tuple_sin, 230, 243
tuple_sinh, 230, 243
tuple_sort, 233, 243
tuple_sort_index, 233, 243
tuple_split, 227, 242
tuple_sqrt, 231, 243
tuple_str_bit_select, 226, 242
tuple_strchr, 226, 242
tuple_string, 223, 242
tuple_strlen, 226, 242
tuple_strrchr, 226, 242
tuple_strrstr, 226, 242
tuple_strstr, 226, 242
tuple_sub, 222, 242
tuple_sum, 231, 243
tuple_tan, 230, 243
tuple_tanh, 230, 243
tuple_uniq, 219, 242
tuple_xor, 229, 242
Type, 115
type, 278

boolean, 277
integer, 277
real, 277, 278
string, 277, 278

Undo, 56
Unicode, 52
UNIX, 250, 266
unnamed, 43
unsaved changes, 43
until, 106, 236
until, 236

In
de

x

292 Index

Update, 146
Update Graphics Window, 73
Update Image, 161
Update Program Counter, 73
Update Variables, 73, 131
Update Window, 83
Use Model, 199
User, 130
UTF-8 encoding, 52, 70

variable
_, 214

variable window, 17
variable window, 129, 278

layout, 130
resize, 130
tabs (All, Auto, User), 130

variables, 214
view image pyramid, 191
view model image, 191
view test image, 201
Visibility, 162
visible objects, 202
Visual Basic, 9

export of HDevelop programs, 263
Visual Basic .NET, 9

export of HDevelop programs, 258, 260
Visualization

menu, 79
Visualization menu

Apply Immediately, 83
Clear Graphics Window, 79
Close Graphics Window, 80
Color, 81
Colored, 81
Display, 80
Draw, 81
Feature Histogram, 89, 151
Feature Inspection, 89, 153
Gray Histogram, 89, 145
Image Size, 80
Line Width, 81
Lut, 82
New Zoom Window, 89
Open Graphics Window..., 79
Paint, 82
Position Precision, 82

Reset Parameters, 83
Save Window ..., 89
Set Parameters..., 84
Shape, 82
Update Window, 83
Window Size, 80
Zoom Window, 89, 143

Volatile, 161

Warning, 118
warning, 156
watersheds, 98
while, 75, 92, 109, 236, 238
while

loop, 236
while, 269, 277
Window

Cascade Windows, 100
menu, 99
Open Graphics Window, 99
Open Operator Window, 99
Open Program Listing, 99
Open Variable Window, 99
Organize Windows, 100

Window Size, 80
window title, 43
Windows, 250, 266
write_string, 42, 81

X, 160
XLD, 278

colors, 81
line width, 81

Y, 160

Zoom, 143
Zoom Window, 89

	1 Introducing HDevelop
	1.1 Facts about HDevelop
	1.2 HDevelop Procedures
	1.3 HDevelop XL
	1.4 Terminology & Usage

	2 Getting Started
	2.1 Running HDevelop
	2.2 Running Example Programs

	3 Acquiring Images with HDevelop
	3.1 Reading Images From Files
	3.2 Viewing Images
	3.3 Image Acquisition Assistant
	3.3.1 Acquiring Images From Files or Directories
	3.3.2 Acquiring Images Through Image Acquisition Interfaces
	3.3.3 Modifying the Generated Code

	4 Programming HDevelop
	4.1 Start a New Program
	4.2 Enter an Operator
	4.3 Specify Parameters
	4.4 Getting Help
	4.5 Add Additional Program Lines
	4.6 Understanding the Image Display
	4.7 Inspecting Variables
	4.8 Improving the Threshold Using the Gray Histogram
	4.9 Edit Lines
	4.10 Re-Execute the Program
	4.11 Save the Program
	4.12 Selecting Regions Based on Features
	4.13 Looping Over the Results
	4.14 Summary

	5 Graphical User Interface
	5.1 Main Window
	5.2 Menu Bar
	5.2.1 Menu File
	5.2.2 Menu Edit
	5.2.3 Menu Execute
	5.2.4 Menu Visualization
	5.2.5 Menu Procedures
	5.2.6 Menu Operators
	5.2.7 Menu Suggestions
	5.2.8 Menu Assistants
	5.2.9 Menu Window
	5.2.10 Menu Help

	5.3 Tool Bar
	5.4 Program Window
	5.4.1 Editing Programs
	5.4.2 Program Counter, Insert Cursor, and Break Points
	5.4.3 Creating and Editing Procedures

	5.5 Operator Window
	5.5.1 Operator Name Field
	5.5.2 Parameter Display
	5.5.3 Control Buttons

	5.6 Variable Window
	5.6.1 Iconic Variables
	5.6.2 Control Variables

	5.7 Graphics Window
	5.8 Help Window
	5.9 Zoom Window
	5.10 Gray Histogram Window
	5.10.1 Interactive Visual Operations

	5.11 Feature Histogram Window
	5.12 Feature Inspection Window
	5.13 Dialogs
	5.13.1 File Selection Dialog
	5.13.2 Unsaved Changes

	6 HDevelop Assistants
	6.1 Image Acquisition Assistant
	6.1.1 Tab Source
	6.1.2 Tab Connection
	6.1.3 Tab Parameters
	6.1.4 Tab Code Generation
	6.1.5 Menu Bar

	6.2 Calibration Assistant
	6.2.1 Introducing the Calibration Assistant of HDevelop
	6.2.2 How to Calibrate with the Calibration Assistant
	6.2.3 Results of the Calibration
	6.2.4 Generating Code
	6.2.5 Calibration Assistant Reference

	6.3 Matching Assistant
	6.3.1 Introducing the Matching Assistant of HDevelop
	6.3.2 How to Use the Matching Assistant of HDevelop
	6.3.3 Matching Assistant Reference

	7 HDevelop Language
	7.1 Basic Types of Parameters
	7.2 Control Types and Constants
	7.3 Variables
	7.4 Operations on Iconic Objects
	7.5 Expressions for Input Control Parameters
	7.5.1 General Features of Tuple Operations
	7.5.2 Assignment
	7.5.3 Basic Tuple Operations
	7.5.4 Tuple Creation
	7.5.5 Basic Arithmetic Operations
	7.5.6 Bit Operations
	7.5.7 String Operations
	7.5.8 Comparison Operations
	7.5.9 Boolean Operations
	7.5.10 Trigonometric Functions
	7.5.11 Exponential Functions
	7.5.12 Numerical Functions
	7.5.13 Miscellaneous Functions
	7.5.14 Operation Precedence

	7.6 Reserved Words
	7.7 Control Flow Operators
	7.8 Error Handling
	7.8.1 Tracking the Return Value of Operator Calls
	7.8.2 Exception Handling

	7.9 Summary of HDevelop operations
	7.10 HDevelop Error Codes

	8 Code Export
	8.1 Code Generation for C++
	8.1.1 Basic Steps
	8.1.2 Optimization
	8.1.3 Used Classes
	8.1.4 Limitations and Troubleshooting

	8.2 Code Generation for C# (HALCON/.NET)
	8.2.1 Basic Steps
	8.2.2 Program Structure
	8.2.3 Limitations and Troubleshooting

	8.3 Code Generation for C# (HALCON/COM)
	8.3.1 Basic Steps
	8.3.2 Program Structure
	8.3.3 Limitations and Troubleshooting

	8.4 Code Generation for Visual Basic .NET (HALCON/.NET)
	8.4.1 Basic Steps
	8.4.2 Program Structure
	8.4.3 Limitations and Troubleshooting

	8.5 Code Generation for Visual Basic .NET (HALCON/COM)
	8.5.1 Basic Steps
	8.5.2 Program Structure
	8.5.3 Limitations and Troubleshooting

	8.6 Code Generation for Visual Basic 6 (HALCON/COM)
	8.6.1 Basic Steps
	8.6.2 Program Structure
	8.6.3 Limitations and Troubleshooting

	8.7 Code Generation for C
	8.7.1 Basic Steps

	8.8 General Aspects of Code Generation
	8.8.1 User-Defined Code Blocks
	8.8.2 Assignment
	8.8.3 Variable Names
	8.8.4 'for' Loops
	8.8.5 Protected External Procedures
	8.8.6 System Parameters
	8.8.7 Graphics Windows

	9 Tips & Tricks
	9.1 Keycodes
	9.2 Online Help
	9.3 Warning and Error Windows
	9.4 Emergency Backup

	A Glossary
	B Command Line Switches
	Index

