LRmix Studio 2.0 user manual

Hinda Haned, Jeroen de Jong July 15th 2015

1. What is LRmix Studio?

LRmix Studio is a free of charge, open-source (GPLv 3 license), expert system dedicated to the interpretation of forensic DNA profiles, with a particular focus on complex DNA mixtures. LRmix Studio enables measuring the probative value of any (autosomal STR-based) forensic DNA profile.

LRmix Studio is programmed after the likelihood ratio model described in Haned et al (FSIG 2012) and Gill & Haned (FSIG 2013). This model explicitly accommodates for uncertainty in the DNA profiles from the allelic drop-out and drop-in phenomena. The program estimates these quantities from the available data, and uses those estimates to generate likelihood ratios. LRmix Studio was designed and developed by Hinda Haned and Jeroen de Jong, and was partly supported by a grant from the Netherlands Genomics Initiative/ Netherlands Organization for Scientific Research (NWO) within the framework of the Forensic Genomics Consortium Netherlands. Questions regarding the software should be addressed to help@lrmixstudio.org.

2. Features

The current version of LRmix Studio has the following capabilities:

- LRmix Studio can be used to compute likelihood ratios for DNA profiles characterized with autosomal STR kits,
- LRmix Studio was thoroughly tested and validated for propositions involving at most four unknown contributors, and up to a total of five contributors,
- The hypothesized contributors under the prosecution and the defense hypotheses are assumed to be unrelated to each other, however, they can be related to an unknown contributor under the defense hypothesis,
- LRmix Studio can be used to compare any number of replicates obtained from a specific DNA sample, to any number of reference profiles. However the software has been thoroughly tested and validated for at most three reference profiles, and up to five replicates,
- LRmix Studio implements the model described in Haned et al (FSIG 2012). Optimal use of the software requires reading the relevant literature and the provided tutorial and training materials. Uncommon and/or untested scenarios may lead to unreliable results.

The current version of LRmix Studio cannot:

- LRmix Studio cannot be used to analyze sample profiles where the reference profiles have missing data,
- LRmix Studio cannot be used to deconvolute mixtures as it does not incorporate peak height information explicitly.

3. Tutorial

LRmix Studio is compatible with any platform having Java version ≥ 8 . The current version of the software, and future updates, are only distributed on lrmixstudio.org.

3.1 Import sample profiles

The first step in using the software consists in uploading the sample profiles. LRmix Studio can read files in LRmix and Genemapper® IDX formats (with or without peak heights). Any marker can be accommodated by the software, provided the same name is used in all files, although the software is not case-sensitive, it is sensitive to spaces inside maker names: if for example Penta D is used in the sample file, and PentaD is used in the reference file, these will be considered as different markers, however pentad, PenTaD, and PENTAD are considered to be the same marker.

mple Files Reference Fi	es Profile Sum	nary Analysis Sensiby	vity Analysis Non-contributor Test Reports About
	Active	Sample	Source File
Case Number		R	Restore session from Log Restart Add replicate Load from file
Locus			

Figure 1. LRmix Studio start-up window.

Buttons

- Load from file chooses the folder from which the user wants to upload the crimesample files,
- **Case Number** is filled automatically from the name of the folder used to store the case files, but it can be changed to any other name by the user,
- **Restart** the software and upload a new case,
- **Restore session from Log** whenever the software is used, a log file is produced and placed in the log folder, created in the case folder. The log files are text files that contain all settings and results of an analysis. They can be uploaded to restore previous sessions so that the analysis can be redone.
- Add replicate enables adding a sample profile manually.

Once the sample is uploaded, a window displaying the alleles in the samples is obtained (Figure 2). Note that once the sample profile is uploaded the next *Reference* tab of the software that was previously grayed, becomes accessible to the user.

le Settings Help						
ample Files Referen	ce Files Profile Sum	nary, Analysis,	Sensitivity Analysis Non-contribu	utor Test Report	About	
	Active	Sample	Source File			
and the second		rep1	sample.txt			
0.50		rep2	sample.txt			
		rep3	sample.txt			
		rep4	sample.txt			
	pie -		Restore session from Log	Restart		IIIe
10CUS	repi		repz	reps	rep4	
01051240	12 13		12.15	17.15		
URA/A	14.16		14.16	14.15	14 15	
WWA	14 16		14 16	14 16	12 13	
VWA D16S539 D2S1338	14 16 9 10 20 23		14 16 9 10 20 23	14 16 9 10 20 23	12 13 14 16 10 20 23	
VWA D16S539 D2S1338 AMEI	14 16 9 10 20 23 X Y		14 16 9 10 20 23 X Y	14 16 9 10 20 23 X Y	12 13 14 16 10 20 23 X Y	
VWA D16S539 D2S1338 AMEL D8S1179	14 16 9 10 20 23 X Y 12 13		14 16 9 10 20 23 X Y 12 13	14 16 9 10 20 23 X Y 12 13	12 13 14 16 10 20 23 X Y 12 13	
VWA D165539 D251338 AMEL D851179 D21511	14 16 9 10 20 23 X Y 12 13 28 31		14 16 9 10 20 23 X Y 12 13 28 31	14 16 9 10 20 23 X Y 12 13 28	12 13 14 16 10 20 23 X Y 12 13	
VWA D16S539 D2S1338 AMEL D8S1179 D21S11 D18S51	14 16 9 10 20 23 X Y 12 13 28 31 12 15		14 16 9 10 20 23 X Y 12 13 28 31 12	14 16 9 10 20 23 X Y 12 13 28 12 15	12 13 14 16 10 20 23 X Y 12 13 12 15	
VWA D165539 D251338 AMEL D851179 D21511 D18551 D18551 D2251045	14 16 9 10 20 23 X Y 12 13 28 31 12 15 11 16		14 16 9 10 20 23 X Y 12 13 28 31 12 16	14 16 9 10 20 23 X Y 12 13 28 12 15 11 16	12 13 14 16 10 20 23 X Y 12 13 12 15 11 16	
VWA D165539 D251338 AMEL D851179 D21511 D18551 D2251045 D195433	14 16 9 10 20 23 X Y 12 13 28 31 12 15 11 16 14 15		14 16 9 10 20 23 X Y 12 13 28 31 12 16 14 15	14 16 9 10 20 23 X Y 12 13 28 12 15 11 16 14 15	12 13 14 16 10 20 23 X Y 12 13 12 15 11 16 14 15	
VWA D165539 D251338 AMEL D851179 D21511 D18551 D2251045 D195433 TH01	14 16 9 10 20 23 X Y 12 13 28 31 12 15 11 16 14 15 7 9,3		14 16 9 10 20 23 X Y 12 13 28 31 12 16 14 15 7 9.3	14 15 9 10 20 23 X Y 12 13 28 12 15 11 16 14 15 7 9.3	12 13 14 16 10 20 23 X Y 12 13 12 15 11 16 14 15 7 9.3	
VWA D16S539 D2S1338 AMEL D8S1179 D21S11 D18S51 D22S1045 D19S433 TH01 FGA	14 16 9 10 20 23 X Y 12 13 28 31 12 15 11 16 14 15 7 9.3 24 26		14 16 9 10 20 23 X Y 12 13 28 31 12 16 14 15 7 9.3 24 26	14 16 9 10 20 23 X Y 12 13 28 12 15 11 16 14 15 7 9.3 24 26	12 13 14 16 10 20 23 X Y 12 13 12 15 11 16 14 15 7 9.3 24 26	
VWA D165539 D251338 AMEL D851179 D21511 D18551 D2251045 D195433 TH01 FGA D25441	14 16 9 10 20 23 X Y 12 13 28 31 12 15 11 16 14 15 7 9,3 24 26 14 15		14 16 9 10 20 23 X Y 12 13 28 31 12 16 14 15 7 9.3 24 26 14 15	14 15 9 10 20 23 X Y 12 13 28 12 15 11 16 14 15 7 9.3 24 26 14 15	12 13 14 16 10 20 23 X Y 12 13 12 15 11 16 14 15 7 9.3 24 26 14 15	
VWA D16S539 D2S1338 AMEL D8S1179 D21S11 D18S51 D22S1045 D19S433 THO1 FGA D2S441 D3S1358	14 16 9 10 20 23 X Y 12 13 28 31 12 15 11 16 14 15 7 9,3 24 26 14 15 15 16		14 16 9 10 20 23 X Y 12 13 28 31 12 16 14 15 7 9.3 24 26 14 15 15 16	14 15 9 10 20 23 X Y 12 13 28 12 15 11 16 14 15 7 9.3 24 26 14 15 15 16	12 13 14 16 10 20 23 X Y 12 13 12 15 11 16 14 15 7 9.3 24 26 14 15 15 16	
VWA D16S539 D2S1338 AMEL D8S1179 D21S11 D18S51 D22S1045 D19S433 THO1 FGA D2S441 D3S1358 D191656	14 16 9 10 20 23 X Y 12 13 28 31 12 15 11 16 14 15 7 9.3 24 26 14 15 15 16 13 16		14 16 9 10 20 23 X Y 12 13 28 31 12 16 14 15 7 9.3 24 26 14 15 15 16 13 16	14 15 9 10 20 23 X Y 12 13 28 12 15 11 16 14 15 7 9.3 24 26 14 15 15 16 13 16	12 13 14 16 10 20 23 X Y 12 13 12 15 11 16 14 15 7 9.3 24 26 14 15 15 16 13 16	

Figure 2. Upload profiles and select replicates. Once the profiles are uploaded they are displayed by the software. Note that if some replicates are not to be used in the analysis they can be un-selected at this stage.

3.2 Import or add reference profiles

Once the sample profiles are imported, the user can import the profiles of the individuals of interest (reference profiles) (Figure 3).

S LRmixStu	idio - Example							
Help	Deference Files		and Analysis	Concella Analysis	A reason of the second second second	Description	100	
Sample Files	Reference riles	Prome sum	ary Analysis	Separativity Analysis	Non-contributor (rest	Reports A	bout	
	30 	Active	Sample		Source File			
Locus	191/ 31 1770	<				A	dd profile	Load from file,

Figure 3. Upload or add reference profiles.

Buttons

- **Load from file** choose the folder from which you want to upload the reference-sample files, the files have to be in the LRmix format, multiple files can be uploaded at once
- Add profile in case a reference profile has to be added manually

Active Sa	ample	Source File		
	·			
	S Profile Editor			Trom file
us	Name Hinda	11		
	Locus	Allele 1	Allele 2	
	Locus D 10S 1248	Allele 1	Allele 2	
	Locus D10S1248 VWA	Allele 1 9	Allele 2	
	Locus D 10S 1248 VWA D 16S 539	Allele 1 9	Allele 2 10	
	Locus D 10S 1248 VWA D 16S539 D2S 1338	Allele 1 9	Allele 2 10	
	Locus D 105 1248 VWA D 165539 D25 1338 D85 1179	Allele 1 9	Allele 2 10	
	Locus D 105 1248 VWA D 165539 D25 1338 D85 1179 D215 11	Allele 1 9	Allele 2 10	
	Locus D 10S 1248 WWA D 16S 539 D 2S 1338 D 8S 1179 D 21S 11 D 18S 51	Allele 1 9	Allele 2	
	Locus D 10S 1248 WWA D 16S 539 D 2S 1338 D 8S 1179 D 21S 11 D 18S 51 D 22S 1045	Allele 1 9	Allele 2 10	E
	Locus D1051248 WWA D165539 D251338 D851179 D21511 D18551 D2251045 D195433	Allele 1 9	Allele 2 10	E
	Locus D1051248 WWA D165539 D251338 D851179 D21511 D18551 D2251045 D195433 TH01	Allele 1 9	Allele 2 10	E
	Locus D1051248 VWA D165539 D251338 D851179 D21511 D18551 D2251045 D195433 TH01 FGA	Allele 1 9	Allele 2 10	E
	Locus D1051248 VWA D165539 D251338 D851179 D21511 D18551 D2251045 D195433 TH01 FGA D25441	Allele 1 9	Allele 2 10	E
	Locus D105 1248 VWA D165539 D25 1338 D851179 D21511 D18551 D225 1045 D195433 TH01 FGA D25441 D35 1358	Allele 1 9	Allele 2 10	E
	Locus D1051248 WWA D165539 D251338 D851179 D21511 D18551 D2251045 D195433 TH01 FGA D25441 D351358 D151656	Allele 1 9	Allele 2 10	E
	Locus D 10S 1248 WWA D 16S539 D 2S 1338 D 8S 1179 D 21S 11 D 18S51 D 22S 1045 D 19S433 TH01 FGA D 2S441 D 3S 1358 D 151656 D 12S391	Allele 1 9	Allele 2 10	E
	Locus D 10S 1248 WWA D 16S 539 D 2S 1338 D 8S 1179 D 21S 11 D 18S 51 D 22S 1045 D 19S 433 TH01 FGA D 2S 441 D 3S 1358 D 1S 1656 D 12S 391 D 758 20	Allele 1 9	Allele 2 10	

Figure 4. Reference profiles can be added manually and saved to a folder.

mple Files Reference F	iles Profile Sum	mary Analysis Sensit	vity Analysis Non-contributor Test Reports	About
	Active	mary Analysis Sensit	vity Analysis Non-contributor Test Reports	About
3	Active			
15	Active	40703605975		
		Sample	Source File	
		DNA007	suspect.csv	
	3.5			
1	10-			
12 may				
19/ 1/	14			
12 20 1	112			
1/41	- U.			
31	~			
	-			
				Add profile Load from file
loais			DNA007	
1061349			12/15	
/1031240			12 / 15	
1165530			9 / 10	
100000			20 / 23	
7231336 MEI			20725	
1961170			12/12	
00511/9			12/13	
21511			28/31	
)18551			12/15	
)2251045			11/16	
)195433			14/15	
H01			7/9.3	
GA			24 / 26	
)25441			14/15	
)3S1358			15 / 16	
)1S1656			13 / 16	
)12S391			18 / 18	

Figure 5. Reference profiles display in LRmix Studio.

Important note on contributors and non-contributors

Note that when the reference profiles are uploaded, only profiles relevant to the LR analysis should be uploaded, if some of the reference profiles are uploaded but later not used in the analysis tab, they will be considered as non-contributors. Non-contributor profiles can influence the likelihood ratios calculations if the Fst (θ) correction is not nil (Curran et al FSI, 2005).

3.3 Profile summary

The profile summary is an aid to the user that help visualize the alleles present in the sample profiles and those present in the reference profiles. Several filters can be used to highlight different information:

- alleles that appear in the replicates but not in the reference profiles: this filter can help highlight the alleles that might be spurious or might belong to unknown contributors,
- alleles that appear in the replicates and also in a given reference profile: this filter helps detect the allele drop-out,
- alleles that match between the reference profiles: this highlights allele sharing between the different contributors,

The different filters can be printed using the *print* button.

р				
nple Fil	es Reference Files Pro	file Summary Analysis Sensitivity	Analysis, Non-contributor Test, Re	eports, About
_		leles in the replicate that are not	present in the reference profiles	
	Street of a	lleles in the reference profiles th	at are not present in the replicate	V Text Colour
		latching alleles in the replicate and	DNA007	
~~	Caller In			Background Colour
1				Bold
A				Ttalic
	2 (1/1-ma			
		ran an einerthe		
	н	ighlighted 6 alleles		Print
	· · · · · · · · · · · · · · · · · · ·			
elect	Name	Replicate	DNA007	Distinct Alleles
V	D1S1656	13 16	13 16	2
V	D125391	18	18 18	1
	rep2			
V	D1051248	12 15	12 15	2
V	VWA	14 16	14 16	2
V	D16S539	9 10	9 10	2
V	D2S1338	20 23	20 23	2
V	AMEL	XY	XY	2
V	D8S1179	12 13	12 13	2
V	D21S11	28 31	28 31	2
V	D18S51	12	12 15	1
V	D22S1045	16	<u>11</u> 16	1
V	D19S433	14 15	14 15	2
V	TH01	79.3	79.3	2
V	FGA	24 26	24 26	2
V	D2S441	14 15	14 15	2
V	D3S1358	15 16	15 16	2
V	D1S1656	13 16	13 16	2
V	D125391	18	18 18	1
	rep3			
	CONTRACTOR AND A CONTRACTOR	10.15	12.15	3
	D10S1248	12 15	12 15	<u> </u>

Figure 6. Profile summary.

3.4 Analysis

In the *Analysis* tab, the user can define the hypotheses of the prosecution and the defense. Under each hypothesis, the user has to define:

- the names of the contributors: the names are assigned based on the information present either within the reference files uploaded in the Reference profiles tab, or according to the name given by the user if the profiles were added manually using the editor,
- the number of unknown contributors (limit is four unknowns),
- the drop-out probabilities: for each donor, and for the unknowns,
- the Fst or theta-correction value,
- the drop-in probability (maximum is 0.50),
- the file of allele frequencies to be used,
- the rare alleles frequency to be used in case rare alleles (not in the provided file) are detected.

Analysis step 1: default screen

LRmixStudio - Ex	ample				
lelp					
Sample Files Referen	nce Files Profile Sumr	nary Analysis Sensitivity Analy	sis Non-contributor Te	est Reports About	
Prosecution Hypo	thesis		Defense Hypoth	esis	
Contributor	ID	Dropout Probability	Contributor	ID	Dropout Probability
	DNA007	0,1		DNA007	0,1
Unknown Contribute Dropout Probability Parameters	ors for unknowns	0 ×	Unknown Contribu Dropout Probabilit One of the un Parent/Child	utors y for unknowns Iknowns is a relative	0 - 0 - 0,1
Allele Frequencies Rare <mark>alle</mark> le frequenc	y 0.001				
Drop-in probability	0,05 🔹 The	eta correction 0,01 🚔			Max Threads 8
Results					
Locus		LR		Stop	Run
				Overall Likelihood Ratio	D
				e	
					7

Figure 7. Analysis window with the default settings.

elp							
ample Files Refer	ence Files Profile Summary	Analysis	Sensitivity Analysis	Non-contributor Test	Reports A	bout	
Prosecution Hyp	oothesis			Defense Hypothesi:	5		
Contributor	ID	Dropout Pr	obability	Contributor	ID	Dropout Pr	obability
	DNA007		0,1 🜩		DNA007		0,1 🚔
Unknown Contribu	tors		0,1	Unknown Contributor Dropout Probability fo One of the unkno Parent/Child	s or unknowns owns is a rela	tive	1 ×
Parameters	C:\Users\apc_bi_hihan	/Desktop\Exa	ample/NGM_frequence	cies.csv			
Allele Frequencies	1.5						
Allele Frequencies Rare allele frequer	ncy 0.001						
Allele Frequencies Rare allele frequer Drop-in probability	ncy 0.001	correction	0,01			Мах	Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results	ncy 0.001	correction	0,01			Мах	Threads 8
Allele Frequencies Rare allele frequen Drop-in probability Results Locus	ncy 0.001	correction	0,01			Max Stop	Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results	ncy 0.001 0,05 🐳 Theta (correction	0,01	01	verall Likelihoo	Max Stop	Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus	ncy 0.001	correction	0,01	0	verall Likelihoo	Max Stop	Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results	ncy 0.001	correction	0,01	0	verall Likelihoo	Max Stop	Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results	ncy 0.001	correction	0,01	01	verall Likelihoo	Max Stop	Threads 8

Analysis step 2: the user defines the hypotheses and other relevant parameters

Figure 8 (a). Analysis window where the user defined the hypotheses and the parameters. In this example, the user is evaluating the following hypotheses: Hp: Suspect (drop-out=0.10) is the donor v. Hd: an unknown person (drop-out 0.10), unrelated to the suspect, is the donor. Fst is 0.01 and the drop-in probability is 0.05. The allele frequencies are that of the NGM kit in the Dutch population. If there is a rare allele in the crime-sample profile (not in the frequency file), the user chose here to assign a frequency 0.001 to it.

If one of the unknowns under the defense hypothesis is a relative of one of the profiled individuals, then the grayed box can be checked, and a relationship between one unknown under Hd and a given profiled person under Hd be selected. The formulas used for accounting for relatives follow the work of Buckleton & Triggs (see References section).

		Analysis	Constitution Analysis	New weak-thickey Took	Donorin Abaut	1	
ampie Hies Referenc	e Files Profile Summary	Andrysis	Sensitivity Analysis	Non-contributor Test	ADOUTS ADOUT		
rosecution Hypot	nesis			Defense Hypothesis	i.		
Contributor	ID	Dropout P	robability	Contributor	ID	Dropout Probability	
	DNA007		0,1 🌩		DNA007		0,1 🌲
Unknown Contributor Dropout Probability fo Parameters Allele Frequencies Rare allele frequency	s or unknowns C:\Users\apc_bi_hihan\ 0.001	Desktop\Ex	0 - 0 0,1 -	Unknown Contributor: Dropout Probability fo One of the unkno Parent/Child Parent/Child Sibling Half-sibling ie Grandparent/Grandch Unde/Nephew Cousin	s vr unknowns wwns is a relative	▼ of DNA007	1 ☆ 0,1 ☆ ▼
Drop-in probability Results	0,05 📩 Theta c	orrection	0,01			Max Threads	8
Locus	LF				Stop	Run	
-				Ov	erall Likelihood Ra	tio	

Figure 8 (b). If one of the unknowns is related to one of the profiled known contributors, the user can choose one of several relationships: parent/child, sibling, cousin, and three other equivalent relationships: half-siblings, grandparent/grandchild, and uncle/nephew.

	xample				
lelp					
ample Files Refer	ence Files Profile Sum	mary Analysis Sensitivity Analys	sis Non-contributor Tes	st Reports About	
Prosecution Hyp	oothesis		Defense Hypothes	sis	
Contributor	ID	Dropout Probability	Contributor	ID	Dropout Probability
V	DNA007	0,1*		DNA007	0,1
			Unknown Contribute Dropout Probability	ors for unknowns	1 ×
Unknown Contribu	itors	0	One of the unk	nowns is a relative	
Dropout Probabilit	y for unknowns	0,1	Parent/Child		* of DNA007 *
Allele Frequencies Rare allele frequer	C:\Users\apc_bi_h	ihan \Desktop \Example \NGM_frequ	encies.csv		May Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results	C:\Users\apc_bi_h ncy 0.001 0.05 + Th	ihan \Desktop \Example \NGM_frequ heta correction 0,01 +	encies.csv		Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results	C:\Users\apc_bi_h ncy 0.001	ihan\Desktop\Example\NGM_frequ neta correction 0,01 +	encies.csv	Stop	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results	C:\Users\apc_bi_h ncy 0.001 0,05 + Th	ihan \Desktop \Example \NGM_frequ neta correction 0,01 +	iencies.csv	Stop	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D 10S 1248 VWA	C:\Users\apc_bi_h	ihan \Desktop \Example \NGM_frequ eta correction 0,01 + LR 55.5290 22.3325	encies.csv	Stop Overall Likelihood Rate	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D 10S 1248 VWA D 16S 539	C:\Users\apc_bi_h ncy 0.001 0,05 + Th	ihan\Desktop\Example\\\GM_frequ neta correction 0,01 ÷ LR 55.5290 22.3325 49.9783	encies.csv	Stop Overall Likelihood Rate 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D 10S 1248 VWA D 16S 539 D 2S 1338	C:\Users\apc_bi_h	ihan\Desktop\Example\\\GM_frequ eta correction 0,01 + LR 55.5290 22.3325 49.9783 31.3001	enciés.csv	Stop Overall Likelihood Rat 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D 10S 1248 VWA D 16S 539 D 2S 1338 D 8S 1179 D 23 61179	C:\Users\apc_bi_h	ihan \Desktop \Example \\\GM_frequ eta correction 0,01 ÷ LR 55.5290 22.3325 49.9783 31.3001 9.3984 20.302	encies.csv	Stop Overall Likelihood Rat 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequen Drop-in probability Results Locus D10S1248 VWA D16S539 D2S1338 D8S1179 D21S11 Duese1	C:\Users\apc_bi_h	ihan \Desktop \Example \WGM_frequ eta correction 0,01 ÷ LR 55.5290 22.3325 49.9783 31.3001 9.3984 28.7922 20.6432	encies.csv	Stop Overall Likelihood Rati 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequen Drop-in probability Results Locus D10S1248 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51 D3251045	C:\Users\apc_bi_h	ihan \Desktop \Example \WGM_freque neta correction 0,01 - LR 55.5290 22.3325 49.9783 31.3001 9.3984 28.7922 20.5437 0.1671	encies.csv	Overall Likelihood Rati 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D10S1248 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51 D22S1045 D106422	C:\Users\apc_bi_h ncy 0.001 0,05 + Th	ihan \Desktop \Example \\\GM_frequ neta correction 0,01 ↓ LR 55,5290 22,3325 49,9783 31,3001 9,3984 28,7922 20,5437 9,1671 7,7320	encies.csv	Overall Likelihood Rate 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D10S1248 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51 D22S1045 D19S433 Two1	C:\Users\apc_bi_h	ihan \Desktop \Example \WGM_freque ineta correction 0,01 ↓ LR 55,5290 22,3325 49,9783 31,3001 9,3984 28,7922 20,5437 9,1671 7,2339 7,791	encies.csv	Stop Overall Likelihood Rat 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D10S1248 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51 D22S1045 D19S433 TH01 ECA	C:\Users\apc_bi_h	ihan \Desktop \Example \WGM_freque ineta correction 0,01 ↓ LR 55,5290 22,3325 49,9783 31,3001 9,3984 28,7922 20,5437 9,1671 7,2339 7,7191 74,9278	encies.csv	Stop Overall Likelihood Rat 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D10S1248 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51 D22S1045 D19S433 TH01 FGA D35441	C:\Users\apc_bi_h	ihan \Desktop \Example \WGM_freque neta correction 0,01 ÷ LR 55.5290 22.3325 49.9783 31.3001 9.3984 28.7922 20.5437 9.1671 7.2339 7.7191 74.9278 29.510	encies.csv	© Stop Overall Likelihood Rat 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D10S1248 VWA D16S539 D2S138 D8S1179 D21S11 D18S51 D22S1045 D19S433 TH01 FGA D2S138	C:\Users\apc_bi_h	ihan \Desktop \Example \VGM_freque eta correction 0,01 ÷ LR 55.5290 22.3325 49.9783 31.3001 9.3984 28.7922 20.5437 9.1671 7.2339 7.7191 74.9278 28.9510 8.1324	encies.csv	© Stop Overall Likelihood Rat 1.5339E20	Max Threads 8
Allele Frequencies Rare allele frequer Drop-in probability Results Locus D10S1248 VWA D16S539 D2S1338 D8S1179 D21S11 D18S51 D22S1045 D19S433 TH01 FGA D2S441 D3S1358 D151556	C:\Users\apc_bi_h	ihan \Desktop \Example \VGM_freque teta correction 0,01 + LR 55.5290 22.3325 49.9783 31.3001 9.3984 28.7922 20.5437 9.1671 7.2339 7.7191 74.9278 28.9510 8.1324 60.4114	enciés.csv	Stop Overall Likelihood Rat 1.5339E20	Max Threads 8

Analysis step 3: run the LR calculation

Figure 9. Result of a likelihood ratio analysis, no relatives are assumed.

If at this point the user wishes to save the results, he can go to the *Reports* tab, and save the analysis carried out so far. The report functionality is further described below.

3.5 Sensitivity analysis

The sensitivity analysis (SA) plots the log10 likelihood ratios, along with the separate likelihoods of the prosecution and the defense hypotheses.

The propositions evaluated in the sensitivity analysis, are those defined by the user in the Analysis tab. The drop-out parameters for the known and unknown contributors are defined in the previous step too.

Vary drop-out

The user can first choose which of the known and unknown contributors will have a drop-out probability that is varied in the SA. In the example below, both *major*, *victim* and *Defense Unknown contributors* are checked. This means that all contributors will have the same drop-out probabilities in the SA. If the drop-out of the major should not be varied in the analysis, as it is the case in this example, the box should be unchecked.

Sensitivity Analysis Settings

The default variation ranges are zero to 0.99, and the user can choose at most 100 values. The SA can also be performed for a given locus, while others would be ignored (All loci button). This can help understanding the relative contributions of different loci. the drop-in and the Theta-correction values are set at the values chosen in the *Analysis* step, however the user can change them during the SA. The *Run* button runs the SA.

Figure 10. Sensitivity analysis tab.

Figure 11. Result of a sensitivity analysis for the Example case. Note that right-clicking on the plot frame allows to zoom in and out.

The output of the SA is displayed in Figure 11 above. If a new analysis is carried out, with a different parameter, for example, a different drop-in rate, then the curves are displayed on the same graph. The right panel allows selecting the relevant curves for more clarity (delete range button).

The results of the sensitivity analysis are stored in a log-file, and they can also be printed into the report.

Drop-out estimation Settings

This tab allows the user to estimate the drop-out probability following the method described in H. Haned et al (2012). This is a qualitative estimator of the drop-out probability of the whole profile, based on the average numbers of alleles observed in the profile. The user can choose the number of drop-out values to explore between 0 and 0.99, as well as the level of drop-in. If there are fixed individuals that have no drop-out, then the check box in the top frame has to be unchecked accordingly. The output is an interval of the plausible range of drop-out, plotted on the SA, but also displayed as a highlighted area in the plot.

Figure 12. Result of a sensitivity analysis and drop-out estimation for the Example case.

In case the tested scenario assumes a total number of contributors that is not supported by the qualitative estimator of the drop-out, then the following error is obtained: "drop-out estimation resulted in no matching attempts under prosecution". This might happen if the average number of alleles across the replicates, say 50, is not supported by the hypothesis of a single-source sample.

3.6 Non-contributor tests

Non-contributor tests are an optional aide, meant at assisting the understanding of the casespecific likelihood ratio (Gill & Haned, 2013). The tests consist in calculating the LR for the propositions chosen by the user, where the profile of the person of interest is replaced by a random profile generated from sampling alleles with respect to their frequencies outlined in the file of allele frequencies (provided in the *Analysis* tab). Given the parameters and hypotheses chosen in the *Analysis* tab, the non-contributor tests consist in calculating the LR obtained when replacing the profile of the person of interest, by the profile of a simulated random man.

This is carried out *n* times, where *n* is the number of *iterations* defined by the user. The output of the test is a distribution of *n* (log10) likelihood ratios, which are represented in a barplot as follows:

- the case-specific log10 LR, obtained with the person of interest, is displayed in red,

- the minimum, the maximum, the 1%, the 50% and the 99% percentiles of the obtained distributions are displayed in grey.

Figure 13 below gives an example of the non-contributor tests carried out for case 10.

Important notes

- 1. For the non-contributor tests to yield a result, the drop-out and drop-in probabilities (defined in the *Analysis* tab) must be different from zero, see details in Gill & Haned (2013),
- 2. The randomly generated profiles are created using random sampling of the alleles and their frequencies, as given in the population frequencies file. These profiles are generated at random, and no relatedness is assumed, even if the Hd hypothesis involves relatives.

Figure 13. Result of the non-contributor tests for the Example case, where the suspect is replaced by the randomly generated profiles. The details of the non-contributor tests are printed to a log file stored in the folder of the case being analyzed.

3.7 Automatic report generation

The *Reports* tab describes all the analyses carried out by the user, within a given session. The user can select the analysis to be exported in a report, in a PDF format. Multiple analyses can be exported to the same report. Note that, in addition to the report, log files are automatically generated and stored in a *log* folder, within the case folder that contains the case files. The log files contain all the actions and results obtained by the user within a given session.

Figure 14. Select the analysis to be exported to a the PDF report.

Once the **Export** button is pressed, a comment window pops-up (Figure 15), where the user can add comments to the report. Comments are optional.

Figure 15. Report generation and the comment section.

4. How to report bugs

A bug is defined as an error, or a failure of the software that causes it to produce an incorrect or unexpected result. If such error is encountered, the following procedure has to be followed:

- prepare the log files (that are generated in your case folder, see section 3) and send them by email to help@lrmixstudio.org
- it is important that the error is described thoroughly in your email, so that the problem can be fixed quickly. Simply describing a problem will not be enough to get the help you need.

5. Join the LRmix Studio user community

Visit <u>lrmixstudio.org/user-group</u>, to ask questions, discuss cases or make suggestions to the development team.

References

P. Gill and H. Haned. A new methodological framework to interpret complex DNA profiles using likelihood ratios. Forensic Sci. Int. Genet., 7(2):251-263, 2013.

P. Gill, et al. Interpretation of complex DNA profiles using empirical models and a method to measure their robustness. Forensic Sci. Int. Genet., 2: 91-103, 2008.Z

H. Haned et al. Exploratory data analysis for the interpretation of low template DNA mixtures. Forensic Sci. Int. Genet., 6(0): 762-774, 2012.

J. M. Curran et al. Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. Forensic Sci. Int, 2005, 148, 47-53.

J. Buckleton et al. Forensic DNA evidence interpretation, Chapter 4: 'Relatedness', CRC PRESS, 2005.