
The GNU Privacy Handbook

The GNU Privacy Handbook
c©1999 The Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation License”.

Please direct questions, bug reports, or suggestions concerning this manual to the maintainer,
Mike Ashley (<jashley@acm.org>). When referring to the manual please specify which version
of the manual you have by using this version string: v1 1.

Contributors to this manual include Matthew Copeland, Joergen Grahn, and David A. Wheeler.
J Horacio MG has translated the manual to Spanish.

Typeset by Roman Pavlik (<rp@tns.cz>) with the LATEX2ε Documentation System.

Contents

1 Getting Started 5
1.1 Generating a new keypair . 5

1.1.1 Generating a revocation certificate . 7
1.2 Exchanging keys . 7

1.2.1 Exporting a public key . 7
1.2.2 Importing a public key . 8

1.3 Encrypting and decrypting documents . 9
1.4 Making and verifying signatures . 10

1.4.1 Clearsigned documents . 10
1.4.2 Detached signatures . 11

2 Concepts 13
2.1 Symmetric ciphers . 13
2.2 Public-key ciphers . 14
2.3 Hybrid ciphers . 14
2.4 Digital signatures . 15

3 Key Management 17
3.1 Managing your own keypair . 17

3.1.1 Key integrity . 18
3.1.2 Adding and deleting key components . 19
3.1.3 Revoking key components . 19
3.1.4 Updating a key’s expiration time . 21

3.2 Validating other keys on your public keyring . 21
3.2.1 Trust in a key’s owner . 21
3.2.2 Using trust to validate keys . 23

3.3 Distributing keys . 24

4 Daily use of GnuPG 25
4.1 Defining your security needs . 25

4.1.1 Choosing a key size . 26
4.1.2 Protecting your private key . 26
4.1.3 Selecting expiration dates and using subkeys 27
4.1.4 Managing your web of trust . 27

4.2 Building your web of trust . 28
4.3 Using GnuPG legally . 29

5 Topics 31
5.1 Writing user interfaces . 31

3

4 CONTENTS

A GNU Free Documentation License 33
A.1 PREAMBLE . 33
A.2 APPLICABILITY AND DEFINITIONS . 33
A.3 VERBATIM COPYING . 34
A.4 COPYING IN QUANTITY . 34
A.5 MODIFICATIONS . 35
A.6 COMBINING DOCUMENTS . 36
A.7 COLLECTIONS OF DOCUMENTS . 36
A.8 AGGREGATION WITH INDEPENDENT WORKS 37
A.9 TRANSLATION . 37
A.10 TERMINATION . 37
A.11 FUTURE REVISIONS OF THIS LICENSE . 37
A.12 How to use this License for your documents . 37

Chapter 1

Getting Started

GnuPG is a tool for secure communication. This chapter is a quick-start guide that covers the core
functionality of GnuPG. This includes keypair creation, exchanging and verifying keys, encrypting
and decrypting documents, and authenticating documents with digital signatures. It does not
explain in detail the concepts behind public-key cryptography, encryption, and digital signatures.
This is covered in Chapter 2. It also does not explain how to use GnuPG wisely. This is covered
in Chapters 3 and 4.

GnuPG uses public-key cryptography so that users may communicate securely. In a public-key
system, each user has a pair of keys consisting of a private key and a public key . A user’s private
key is kept secret; it need never be revealed. The public key may be given to anyone with whom
the user wants to communicate. GnuPG uses a somewhat more sophisticated scheme in which
a user has a primary keypair and then zero or more additional subordinate keypairs. The primary
and subordinate keypairs are bundled to facilitate key management and the bundle can often be
considered simply as one keypair.

1.1 Generating a new keypair

The command-line option --gen-key is used to create a new primary keypair.

alice% gpg --gen-key
gpg (GnuPG) 0.9.4; Copyright (C) 1999 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

Please select what kind of key you want:
(1) DSA and ElGamal (default)
(2) DSA (sign only)
(4) ElGamal (sign and encrypt)

Your selection?

GnuPG is able to create several different types of keypairs, but a primary key must be capable
of making signatures. There are therefore only three options. Option 1 actually creates two
keypairs. A DSA keypair is the primary keypair usable only for making signatures. An ElGamal
subordinate keypair is also created for encryption. Option 2 is similar but creates only a DSA
keypair. Option 41 creates a single ElGamal keypair usable for both making signatures and
performing encryption. In all cases it is possible to later add additional subkeys for encryption
and signing. For most users the default option is fine.

1Option 3 is to generate an ElGamal keypair that is not usable for making signatures.

5

6 CHAPTER 1. GETTING STARTED

You must also choose a key size. The size of a DSA key must be between 512 and 1024 bits,
and an ElGamal key may be of any size. GnuPG, however, requires that keys be no smaller than
768 bits. Therefore, if Option 1 was chosen and you choose a keysize larger than 1024 bits, the
ElGamal key will have the requested size, but the DSA key will be 1024 bits.

About to generate a new ELG-E keypair.
minimum keysize is 768 bits
default keysize is 1024 bits

highest suggested keysize is 2048 bits
What keysize do you want? (1024)

The longer the key the more secure it is against brute-force attacks, but for almost all purposes
the default keysize is adequate since it would be cheaper to circumvent the encryption than try to
break it. Also, encryption and decryption will be slower as the key size is increased, and a larger
keysize may affect signature length. Once selected, the keysize can never be changed.

Finally, you must choose an expiration date. If Option 1 was chosen, the expiration date will
be used for both the ElGamal and DSA keypairs.

Please specify how long the key should be valid.
0 = key does not expire

<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0)

For most users a key that does not expire is adequate. The expiration time should be chosen
with care, however, since although it is possible to change the expiration date after the key is
created, it may be difficult to communicate a change to users who have your public key.

You must provide a user ID in addition to the key parameters. The user ID is used to associate
the key being created with a real person.

You need a User-ID to identify your key; the software constructs the user id
from Real Name, Comment and Email Address in this form:

"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name:

Only one user ID is created when a key is created, but it is possible to create additional user
IDs if you want to use the key in two or more contexts, e.g., as an employee at work and a political
activist on the side. A user ID should be created carefully since it cannot be edited after it is
created.

GnuPG needs a passphrase to protect the primary and subordinate private keys that you keep
in your possession.

You need a Passphrase to protect your private key.

Enter passphrase:

There is no limit on the length of a passphrase, and it should be carefully chosen. From
the perspective of security, the passphrase to unlock the private key is one of the weakest points
in GnuPG (and other public-key encryption systems as well) since it is the only protection you
have if another individual gets your private key. Ideally, the passphrase should not use words
from a dictionary and should mix the case of alphabetic characters as well as use non-alphabetic
characters. A good passphrase is crucial to the secure use of GnuPG.

1.2. EXCHANGING KEYS 7

1.1.1 Generating a revocation certificate

After your keypair is created you should immediately generate a revocation certificate for the
primary public key using the option --gen-revoke. If you forget your passphrase or if your
private key is compromised or lost, this revocation certificate may be published to notify others
that the public key should no longer be used. A revoked public key can still be used to verify
signatures made by you in the past, but it cannot be used to encrypt future messages to you. It
also does not affect your ability to decrypt messages sent to you in the past if you still do have
access to the private key.

alice% gpg --output revoke.asc --gen-revoke mykey
[...]

The argument mykey must be a key specifier, either the key ID of your primary keypair or
any part of a user ID that identifies your keypair. The generated certificate will be left in the
file revoke.asc. If the --output option is omitted, the result will be placed on standard output.
Since the certificate is short, you may wish to print a hardcopy of the certificate to store somewhere
safe such as your safe deposit box. The certificate should not be stored where others can access
it since anybody can publish the revocation certificate and render the corresponding public key
useless.

1.2 Exchanging keys

To communicate with others you must exchange public keys. To list the keys on your public
keyring use the command-line option --list-keys.

alice% gpg --list-keys
/users/alice/.gnupg/pubring.gpg

pub 1024D/BB7576AC 1999-06-04 Alice (Judge) <alice@cyb.org>
sub 1024g/78E9A8FA 1999-06-04

1.2.1 Exporting a public key

To send your public key to a correspondent you must first export it. The command-line option
--export is used to do this. It takes an additional argument identifying the public key to export.
As with the --gen-revoke option, either the key ID or any part of the user ID may be used to
identify the key to export.

alice% gpg --output alice.gpg --export alice@cyb.org

The key is exported in a binary format, but this can be inconvenient when the key is to be
sent though email or published on a web page. GnuPG therefore supports a command-line option
--armor2 that causes output to be generated in an ASCII-armored format similar to uuencoded
documents. In general, any output from GnuPG e.g., keys, encrypted documents, and signatures,
can be ASCII-armored by adding the --armor option.

alice% gpg --armor --export alice@cyb.org
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v0.9.7 (GNU/Linux)
Comment: For info see http://www.gnupg.org

[...]
-----END PGP PUBLIC KEY BLOCK-----

2Many command-line options that are frequently used can also be set in a configuration file.

8 CHAPTER 1. GETTING STARTED

1.2.2 Importing a public key

A public key may be added to your public keyring with the --import option.

alice% gpg --import blake.gpg
gpg: key 9E98BC16: public key imported
gpg: Total number processed: 1
gpg: imported: 1
alice% gpg --list-keys
/users/alice/.gnupg/pubring.gpg

pub 1024D/BB7576AC 1999-06-04 Alice (Judge) <alice@cyb.org>
sub 1024g/78E9A8FA 1999-06-04

pub 1024D/9E98BC16 1999-06-04 Blake (Executioner) <blake@cyb.org>
sub 1024g/5C8CBD41 1999-06-04

Once a key is imported it should be validated. GnuPG uses a powerful and flexible trust model
that does not require you to personally validate each key you import. Some keys may need to
be personally validated, however. A key is validated by verifying the key’s fingerprint and then
signing the key to certify it as a valid key. A key’s fingerprint can be quickly viewed with the
--fingerprint command-line option, but in order to certify the key you must edit it.

alice% gpg --edit-key blake@cyb.org

pub 1024D/9E98BC16 created: 1999-06-04 expires: never trust: -/q
sub 1024g/5C8CBD41 created: 1999-06-04 expires: never
(1) Blake (Executioner) <blake@cyb.org>

Command> fpr
pub 1024D/9E98BC16 1999-06-04 Blake (Executioner) <blake@cyb.org>

Fingerprint: 268F 448F CCD7 AF34 183E 52D8 9BDE 1A08 9E98 BC16

A key’s fingerprint is verified with the key’s owner. This may be done in person or over the
phone or through any other means as long as you can guarantee that you are communicating with
the key’s true owner. If the fingerprint you get is the same as the fingerprint the key’s owner gets,
then you can be sure that you have a correct copy of the key.

After checking the fingerprint, you may sign the key to validate it. Since key verification is
a weak point in public-key cryptography, you should be extremely careful and always check a key’s
fingerprint with the owner before signing the key.

Command> sign

pub 1024D/9E98BC16 created: 1999-06-04 expires: never trust: -/q
Fingerprint: 268F 448F CCD7 AF34 183E 52D8 9BDE 1A08 9E98 BC16

Blake (Executioner) <blake@cyb.org>

Are you really sure that you want to sign this key
with your key: "Alice (Judge) <alice@cyb.org>"

Really sign?

Once signed you can check the key to list the signatures on it and see the signature that you
have added. Every user ID on the key will have one or more self-signatures as well as a signature
for each user that has validated the key.

1.3. ENCRYPTING AND DECRYPTING DOCUMENTS 9

Command> check
uid Blake (Executioner) <blake@cyb.org>
sig! 9E98BC16 1999-06-04 [self-signature]
sig! BB7576AC 1999-06-04 Alice (Judge) <alice@cyb.org>

1.3 Encrypting and decrypting documents

A public and private key each have a specific role when encrypting and decrypting documents.
A public key may be thought of as an open safe. When a correspondent encrypts a document
using a public key, that document is put in the safe, the safe shut, and the combination lock spun
several times. The corresponding private key is the combination that can reopen the safe and
retrieve the document. In other words, only the person who holds the private key can recover
a document encrypted using the associated public key.

The procedure for encrypting and decrypting documents is straightforward with this mental
model. If you want to encrypt a message to Alice, you encrypt it using Alice’s public key, and she
decrypts it with her private key. If Alice wants to send you a message, she encrypts it using your
public key, and you decrypt it with your private key.

To encrypt a document the option --encrypt is used. You must have the public keys of
the intended recipients. The software expects the name of the document to encrypt as input; if
omitted, it reads standard input. The encrypted result is placed on standard output or as specified
using the option --output. The document is compressed for additional security in addition to
encrypting it.

alice% gpg --output doc.gpg --encrypt --recipient blake@cyb.org doc

The --recipient option is used once for each recipient and takes an extra argument specifying
the public key to which the document should be encrypted. The encrypted document can only be
decrypted by someone with a private key that complements one of the recipients’ public keys. In
particular, you cannot decrypt a document encrypted by you unless you included your own public
key in the recipient list.

To decrypt a message the option --decrypt is used. You need the private key to which the
message was encrypted. Similar to the encryption process, the document to decrypt is input, and
the decrypted result is output.

blake% gpg --output doc --decrypt doc.gpg

You need a passphrase to unlock the secret key for
user: "Blake (Executioner) <blake@cyb.org>"
1024-bit ELG-E key, ID 5C8CBD41, created 1999-06-04 (main key ID 9E98BC16)

Enter passphrase:

Documents may also be encrypted without using public-key cryptography. Instead, you use
a symmetric cipher to encrypt the document. The key used to drive the symmetric cipher is
derived from a passphrase supplied when the document is encrypted, and for good security, it
should not be the same passphrase that you use to protect your private key. Symmetric encryption
is useful for securing documents when the passphrase does not need to be communicated to others.
A document can be encrypted with a symmetric cipher by using the --symmetric option.

alice% gpg --output doc.gpg --symmetric doc
Enter passphrase:

10 CHAPTER 1. GETTING STARTED

1.4 Making and verifying signatures

A digital signature certifies and timestamps a document. If the document is subsequently modified
in any way, a verification of the signature will fail. A digital signature can serve the same purpose
as a hand-written signature with the additional benefit of being tamper-resistant. The GnuPG
source distribution, for example, is signed so that users can verify that the source code has not
been modified since it was packaged.

Creating and verifying signatures uses the public/private keypair in an operation different
from encryption and decryption. A signature is created using the private key of the signer. The
signature is verified using the corresponding public key. For example, Alice would use her own
private key to digitally sign her latest submission to the Journal of Inorganic Chemistry. The
associate editor handling her submission would use Alice’s public key to check the signature to
verify that the submission indeed came from Alice and that it had not been modified since Alice
sent it. A consequence of using digital signatures is that it is difficult to deny that you made
a digital signature since that would imply your private key had been compromised.

The command-line option --sign is used to make a digital signature. The document to sign
is input, and the signed document is output.

alice% gpg --output doc.sig --sign doc

You need a passphrase to unlock the private key for
user: "Alice (Judge) <alice@cyb.org>"
1024-bit DSA key, ID BB7576AC, created 1999-06-04

Enter passphrase:

The document is compressed before being signed, and the output is in binary format.
Given a signed document, you can either check the signature or check the signature and recover

the original document. To check the signature use the --verify option. To verify the signature
and extract the document use the --decrypt option. The signed document to verify and recover
is input and the recovered document is output.

blake% gpg --output doc --decrypt doc.sig
gpg: Signature made Fri Jun 4 12:02:38 1999 CDT using DSA key ID BB7576AC
gpg: Good signature from "Alice (Judge) <alice@cyb.org>"

1.4.1 Clearsigned documents

A common use of digital signatures is to sign usenet postings or email messages. In such situations
it is undesirable to compress the document while signing it. The option --clearsign causes
the document to be wrapped in an ASCII-armored signature but otherwise does not modify
the document.

alice% gpg --clearsign doc

You need a passphrase to unlock the secret key for
user: "Alice (Judge) <alice@cyb.org>"
1024-bit DSA key, ID BB7576AC, created 1999-06-04

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

[...]
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v0.9.7 (GNU/Linux)

1.4. MAKING AND VERIFYING SIGNATURES 11

Comment: For info see http://www.gnupg.org

iEYEARECAAYFAjdYCQoACgkQJ9S6ULt1dqz6IwCfQ7wP6i/i8HhbcOSKF4ELyQB1
oCoAoOuqpRqEzr4kOkQqHRLE/b8/Rw2k
=y6kj
-----END PGP SIGNATURE-----

1.4.2 Detached signatures

A signed document has limited usefulness. Other users must recover the original document from
the signed version, and even with clearsigned documents, the signed document must be edited to
recover the original. Therefore, there is a third method for signing a document that creates a de-
tached signature, which is a separate file. A detached signature is created using the --detach-sig
option.

alice% gpg --output doc.sig --detach-sig doc

You need a passphrase to unlock the secret key for
user: "Alice (Judge) <alice@cyb.org>"
1024-bit DSA key, ID BB7576AC, created 1999-06-04

Enter passphrase:

Both the document and detached signature are needed to verify the signature. The --verify
option can be to check the signature.

blake% gpg --verify doc.sig doc
gpg: Signature made Fri Jun 4 12:38:46 1999 CDT using DSA key ID BB7576AC
gpg: Good signature from "Alice (Judge) <alice@cyb.org>"

12 CHAPTER 1. GETTING STARTED

Chapter 2

Concepts

GnuPG makes uses of several cryptographic concepts including symmetric ciphers, public-key
ciphers, and one-way hashing. You can make basic use GnuPG without fully understanding these
concepts, but in order to use it wisely some understanding of them is necessary.

This chapter introduces the basic cryptographic concepts used in GnuPG. Other books cover
these topics in much more detail. A good book with which to pursue further study is Bruce
Schneier’s1 “Applied Cryptography”.2

2.1 Symmetric ciphers

A symmetric cipher is a cipher that uses the same key for both encryption and decryption. Two
parties communicating using a symmetric cipher must agree on the key beforehand. Once they
agree, the sender encrypts a message using the key, sends it to the receiver, and the receiver
decrypts the message using the key. As an example, the German Enigma is a symmetric cipher,
and daily keys were distributed as code books. Each day, a sending or receiving radio operator
would consult his copy of the code book to find the day’s key. Radio traffic for that day was
then encrypted and decrypted using the day’s key. Modern examples of symmetric ciphers include
3DES, Blowfish, and IDEA.

A good cipher puts all the security in the key and none in the algorithm. In other words, it
should be no help to an attacker if he knows which cipher is being used. Only if he obtains the
key would knowledge of the algorithm be needed. The ciphers used in GnuPG have this property.

Since all the security is in the key, then it is important that it be very difficult to guess the
key. In other words, the set of possible keys, i.e., the key space, needs to be large. While at Los
Alamos, Richard Feynman was famous for his ability to crack safes. To encourage the mystique
he even carried around a set of tools including an old stethoscope. In reality, he used a variety
of tricks to reduce the number of combinations he had to try to a small number and then simply
guessed until he found the right combination. In other words, he reduced the size of the key space.

Britain used machines to guess keys during World War 2. The German Enigma had a very
large key space, but the British built specialized computing engines, the Bombes, to mechanically
try keys until the day’s key was found. This meant that sometimes they found the day’s key within
hours of the new key’s use, but it also meant that on some days they never did find the right key.
The Bombes were not general-purpose computers but were precursors to modern-day computers.

Today, computers can guess keys very quickly, and this is why key size is important in modern
cryptosystems. The cipher DES uses a 56-bit key, which means that there are 256 possible keys.
256 is 72,057,594,037,927,936 keys. This is a lot of keys, but a general-purpose computer can check
the entire key space in a matter of days. A specialized computer can check it in hours. On the
other hand, more recently designed ciphers such as 3DES, Blowfish, and IDEA all use 128-bit

1http://www.counterpane.com/schneier.html
2http://www.counterpane.com/applied.html

13

14 CHAPTER 2. CONCEPTS

keys, which means there are 2128 possible keys. This is many, many more keys, and even if all the
computers on the planet cooperated, it could still take more time than the age of the universe to
find the key.

2.2 Public-key ciphers

The primary problem with symmetric ciphers is not their security but with key exchange. Once
the sender and receiver have exchanged keys, that key can be used to securely communicate, but
what secure communication channel was used to communicate the key itself? In particular, it
would probably be much easier for an attacker to work to intercept the key than it is to try all
the keys in the key space. Another problem is the number of keys needed. If there are n people
who need to communicate, then n(n-1)/2 keys are needed for each pair of people to communicate
privately. This may be OK for a small number of people but quickly becomes unwieldy for large
groups of people.

Public-key ciphers were invented to avoid the key-exchange problem entirely. A public-key
cipher uses a pair of keys for sending messages. The two keys belong to the person receiving the
message. One key is a public key and may be given to anybody. The other key is a private key and
is kept secret by the owner. A sender encrypts a message using the public key and once encrypted,
only the private key may be used to decrypt it.

This protocol solves the key-exchange problem inherent with symmetric ciphers. There is no
need for the sender and receiver to agree upon a key. All that is required is that some time before
secret communication the sender gets a copy of the receiver’s public key. Furthermore, the one
public key can be used by anybody wishing to communicate with the receiver. So only n keypairs
are needed for n people to communicate secretly with one another.

Public-key ciphers are based on one-way trapdoor functions. A one-way function is a function
that is easy to compute, but the inverse is hard to compute. For example, it is easy to multiply
two prime numbers together to get a composite, but it is difficult to factor a composite into its
prime components. A one-way trapdoor function is similar, but it has a trapdoor. That is, if some
piece of information is known, it becomes easy to compute the inverse. For example, if you have
a number made of two prime factors, then knowing one of the factors makes it easy to compute
the second. Given a public-key cipher based on prime factorization, the public key contains
a composite number made from two large prime factors, and the encryption algorithm uses that
composite to encrypt the message. The algorithm to decrypt the message requires knowing the
prime factors, so decryption is easy if you have the private key containing one of the factors but
extremely difficult if you do not have it.

As with good symmetric ciphers, with a good public-key cipher all of the security rests with
the key. Therefore, key size is a measure of the system’s security, but one cannot compare the size
of a symmetric cipher key and a public-key cipher key as a measure of their relative security. In
a brute-force attack on a symmetric cipher with a key size of 80 bits, the attacker must enumerate
up to 280 keys to find the right key. In a brute-force attack on a public-key cipher with a key size
of 512 bits, the attacker must factor a composite number encoded in 512 bits (up to 155 decimal
digits). The workload for the attacker is fundamentally different depending on the cipher he is
attacking. While 128 bits is sufficient for symmetric ciphers, given today’s factoring technology
public keys with 1024 bits are recommended for most purposes.

2.3 Hybrid ciphers

Public-key ciphers are no panacea. Many symmetric ciphers are stronger from a security stand-
point, and public-key encryption and decryption are more expensive than the corresponding oper-
ations in symmetric systems. Public-key ciphers are nevertheless an effective tool for distributing
symmetric cipher keys, and that is how they are used in hybrid cipher systems.

A hybrid cipher uses both a symmetric cipher and a public-key cipher. It works by using

2.4. DIGITAL SIGNATURES 15

a public-key cipher to share a key for the symmetric cipher. The actual message being sent is
then encrypted using the key and sent to the recipient. Since symmetric key sharing is secure,
the symmetric key used is different for each message sent. Hence it is sometimes called a session
key.

Both PGP and GnuPG use hybrid ciphers. The session key, encrypted using the public-
key cipher, and the message being sent, encrypted with the symmetric cipher, are automatically
combined in one package. The recipient uses his private-key to decrypt the session key and
the session key is then used to decrypt the message.

A hybrid cipher is no stronger than the public-key cipher or symmetric cipher it uses, whichever
is weaker. In PGP and GnuPG, the public-key cipher is probably the weaker of the pair. Fortu-
nately, however, if an attacker could decrypt a session key it would only be useful for reading the
one message encrypted with that session key. The attacker would have to start over and decrypt
another session key in order to read any other message.

2.4 Digital signatures

A hash function is a many-to-one function that maps its input to a value in a finite set. Typically
this set is a range of natural numbers. A simple hash function is f(x) = 0 for all integers x.
A more interesting hash function is f(x) = x mod 37, which maps x to the remainder of dividing
x by 37.

A document’s digital signature is the result of applying a hash function to the document. To
be useful, however, the hash function needs to satisfy two important properties. First, it should
be hard to find two documents that hash to the same value. Second, given a hash value it should
be hard to recover the document that produced that value.

Some public-key ciphers3 could be used to sign documents. The signer encrypts the document
with his private key. Anybody wishing to check the signature and see the document simply uses
the signer’s public key to decrypt the document. This algorithm does satisfy the two properties
needed from a good hash function, but in practice, this algorithm is too slow to be useful.

An alternative is to use hash functions designed to satisfy these two important properties.
SHA and MD5 are examples of such algorithms. Using such an algorithm, a document is signed
by hashing it, and the hash value is the signature. Another person can check the signature by also
hashing their copy of the document and comparing the hash value they get with the hash value
of the original document. If they match, it is almost certain that the documents are identical.

Of course, the problem now is using a hash function for digital signatures without permitting
an attacker to interfere with signature checking. If the document and signature are sent unen-
crypted, an attacker could modify the document and generate a corresponding signature without
the recipient’s knowledge. If only the document is encrypted, an attacker could tamper with the
signature and cause a signature check to fail. A third option is to use a hybrid public-key encryp-
tion to encrypt both the signature and document. The signer uses his private key, and anybody
can use his public key to check the signature and document. This sounds good but is actually
nonsense. If this algorithm truly secured the document it would also secure it from tampering
and there would be no need for the signature. The more serious problem, however, is that this
does not protect either the signature or document from tampering. With this algorithm, only the
session key for the symmetric cipher is encrypted using the signer’s private key. Anybody can use
the public key to recover the session key. Therefore, it is straightforward for an attacker to recover
the session key and use it to encrypt substitute documents and signatures to send to others in the
sender’s name.

An algorithm that does work is to use a public key algorithm to encrypt only the signature.
In particular, the hash value is encrypted using the signer’s private key, and anybody can check
the signature using the public key. The signed document can be sent using any other encryption
algorithm including none if it is a public document. If the document is modified the signature

3The cipher must have the property that the actual public key or private key could be used by the encryption
algorithm as the public key. RSA is an example of such an algorithm while ElGamal is not an example.

16 CHAPTER 2. CONCEPTS

check will fail, but this is precisely what the signature check is supposed to catch. The Digital
Signature Standard (DSA) is a public key signature algorithm that works as just described. DSA
is the primary signing algorithm used in GnuPG.

Chapter 3

Key Management

Key tampering is a major security weakness with public-key cryptography. An eavesdropper may
tamper with a user’s keyrings or forge a user’s public key and post it for others to download
and use. For example, suppose Chloe wants to monitor the messages that Alice sends to Blake.
She could mount what is called a man in the middle attack. In this attack, Chloe creates a new
public/private keypair. She replaces Alice’s copy of Blake’s public key with the new public key.
She then intercepts the messages that Alice sends to Blake. For each intercept, she decrypts it
using the new private key, reencrypts it using Blake’s true public key, and forwards the reencrypted
message to Blake. All messages sent from Alice to Blake can now be read by Chloe.

Good key management is crucial in order to ensure not just the integrity of your keyrings but
the integrity of other users’ keyrings as well. The core of key management in GnuPG is the notion
of signing keys. Key signing has two main purposes: it permits you to detect tampering on your
keyring, and it allows you to certify that a key truly belongs to the person named by a user ID on
the key. Key signatures are also used in a scheme known as the web of trust to extend certification
to keys not directly signed by you but signed by others you trust. Responsible users who practice
good key management can defeat key tampering as a practical attack on secure communication
with GnuPG.

3.1 Managing your own keypair

A keypair has a public key and a private key. A public key consists of the public portion of the
master signing key, the public portions of the subordinate signing and encryption subkeys, and
a set of user IDs used to associate the public key with a real person. Each piece has data about
itself. For a key, this data includes its ID, when it was created, when it will expire, etc. For
a user ID, this data includes the name of the real person it identifies, an optional comment, and
an email address. The structure of the private key is similar, except that it contains only the
private portions of the keys, and there is no user ID information.

The command-line option --edit-key may be used to view a keypair. For example,

chloe% gpg --edit-key chloe@cyb.org
Secret key is available.

pub 1024D/26B6AAE1 created: 1999-06-15 expires: never trust: -/u
sub 2048g/0CF8CB7A created: 1999-06-15 expires: never
sub 1792G/08224617 created: 1999-06-15 expires: 2002-06-14
sub 960D/B1F423E7 created: 1999-06-15 expires: 2002-06-14
(1) Chloe (Jester) <chloe@cyb.org>
(2) Chloe (Plebian) <chloe@tel.net>
Command>

17

18 CHAPTER 3. KEY MANAGEMENT

The public key is displayed along with an indication of whether or not the private key is
available. Information about each component of the public key is then listed. The first column
indicates the type of the key. The keyword pub identifies the public master signing key, and the
keyword sub identifies a public subordinate key. The second column indicates the key’s bit length,
type, and ID. The type is D for a DSA key, g for an encryption-only ElGamal key, and G for an
ElGamal key that may be used for both encryption and signing. The creation date and expiration
date are given in columns three and four. The user IDs are listed following the keys.

More information about the key can be obtained with interactive commands. The command
toggle switches between the public and private components of a keypair if indeed both components
are available.

Command> toggle

sec 1024D/26B6AAE1 created: 1999-06-15 expires: never
sbb 2048g/0CF8CB7A created: 1999-06-15 expires: never
sbb 1792G/08224617 created: 1999-06-15 expires: 2002-06-14
sbb 960D/B1F423E7 created: 1999-06-15 expires: 2002-06-14
(1) Chloe (Jester) <chloe@cyb.org>
(2) Chloe (Plebian) <chloe@tel.net>

The information provided is similar to the listing for the public-key component. The key-
word sec identifies the private master signing key, and the keyword sbb identifies the private
subordinates keys. The user IDs from the public key are also listed for convenience.

3.1.1 Key integrity

When you distribute your public key, you are distributing the public components of your master
and subordinate keys as well as the user IDs. Distributing this material alone, however, is a security
risk since it is possible for an attacker to tamper with the key. The public key can be modified by
adding or substituting keys, or by adding or changing user IDs. By tampering with a user ID, the
attacker could change the user ID’s email address to have email redirected to himself. By changing
one of the encryption keys, the attacker would also be able to decrypt the messages redirected to
him.

Using digital signatures is a solution to this problem. When data is signed by a private key,
the corresponding public key is bound to the signed data. In other words, only the corresponding
public key can be used to verify the signature and ensure that the data has not been modified.
A public key can be protected from tampering by using its corresponding private master key to
sign the public key components and user IDs, thus binding the components to the public master
key. Signing public key components with the corresponding private master signing key is called
self-signing , and a public key that has self-signed user IDs bound to it is called a certificate.

As an example, Chloe has two user IDs and three subkeys. The signatures on the user IDs can
be checked with the command check from the key edit menu.

chloe% gpg --edit-key chloe
Secret key is available.

pub 1024D/26B6AAE1 created: 1999-06-15 expires: never trust: -/u
sub 2048g/0CF8CB7A created: 1999-06-15 expires: never
sub 1792G/08224617 created: 1999-06-15 expires: 2002-06-14
sub 960D/B1F423E7 created: 1999-06-15 expires: 2002-06-14
(1) Chloe (Jester) <chloe@cyb.org>
(2) Chloe (Plebian) <chloe@tel.net>

Command> check
uid Chloe (Jester) <chloe@cyb.org>

3.1. MANAGING YOUR OWN KEYPAIR 19

sig! 26B6AAE1 1999-06-15 [self-signature]
uid Chloe (Plebian) <chloe@tel.net>
sig! 26B6AAE1 1999-06-15 [self-signature]

As expected, the signing key for each signature is the master signing key with ID 0x26B6AAE1.
The self-signatures on the subkeys are present in the public key, but they are not shown by the
GnuPG interface.

3.1.2 Adding and deleting key components

Both new subkeys and new user IDs may be added to your keypair after it has been created.
A user ID is added using the command adduid. You are prompted for a real name, email address,
and comment just as when you create an initial keypair. A subkey is added using the command
addkey. The interface is similar to the interface used when creating an initial keypair. The subkey
may be a DSA signing key, and encrypt-only ElGamal key, or a sign-and-encrypt ElGamal key.
When a subkey or user ID is generated it is self-signed using your master signing key, which is
why you must supply your passphrase when the key is generated.

Additional user IDs are useful when you need multiple identities. For example, you may have
an identity for your job and an identity for your work as a political activist. Coworkers will know
you by your work user ID. Coactivists will know you by your activist user ID. Since those groups
of people may not overlap, though, each group may not trust the other user ID. Both user IDs are
therefore necessary.

Additional subkeys are also useful. The user IDs associated with your public master key are
validated by the people with whom you communicate, and changing the master key therefore
requires recertification. This may be difficult and time consuming if you communicate with many
people. On the other hand, it is good to periodically change encryption subkeys. If a key is broken,
all the data encrypted with that key will be vulnerable. By changing keys, however, only the data
encrypted with the one broken key will be revealed.

Subkeys and user IDs may also be deleted. To delete a subkey or user ID you must first select
it using the key or uid commands respectively. These commands are toggles. For example, the
command key 2 selects the second subkey, and invoking key 2 again deselects it.

If no extra argument is given, all subkeys or user IDs are deselected. Once the user IDs to be
deleted are selected, the command deluid actually deletes the user IDs from your key. Similarly,
the command delkey deletes all selected subkeys from both your public and private keys.

For local keyring management, deleting key components is a good way to trim other people’s
public keys of unnecessary material. Deleting user IDs and subkeys on your own key, however,
is not always wise since it complicates key distribution. By default, when a user imports your
updated public key it will be merged with the old copy of your public key on his ring if it exists.
The components from both keys are combined in the merge, and this effectively restores any
components you deleted. To properly update the key, the user must first delete the old version of
your key and then import the new version. This puts an extra burden on the people with whom you
communicate. Furthermore, if you send your key to a keyserver, the merge will happen regardless,
and anybody who downloads your key from a keyserver will never see your key with components
deleted. Consequently, for updating your own key it is better to revoke key components instead
of deleting them.

3.1.3 Revoking key components

To revoke a subkey it must be selected. Once selected it may be revoked with the revkey command.
The key is revoked by adding a revocation self-signature to the key. Unlike the command-line
option --gen-revoke, the effect of revoking a subkey is immediate.

Command> revkey
Do you really want to revoke this key? y

20 CHAPTER 3. KEY MANAGEMENT

You need a passphrase to unlock the secret key for
user: "Chloe (Jester) <chloe@cyb.org>"
1024-bit DSA key, ID B87DBA93, created 1999-06-28

pub 1024D/B87DBA93 created: 1999-06-28 expires: never trust: -/u
sub 2048g/B7934539 created: 1999-06-28 expires: never
sub 1792G/4E3160AD created: 1999-06-29 expires: 2000-06-28
rev! subkey has been revoked: 1999-06-29
sub 960D/E1F56448 created: 1999-06-29 expires: 2000-06-28
(1) Chloe (Jester) <chloe@cyb.org>
(2) Chloe (Plebian) <chloe@tel.net>

A user ID is revoked differently. Normally, a user ID collects signatures that attest that the
user ID describes the person who actually owns the associated key. In theory, a user ID describes
a person forever, since that person will never change. In practice, though, elements of the user ID
such as the email address and comment may change over time, thus invalidating the user ID.

The OpenPGP specification does not support user ID revocation, but a user ID can effec-
tively be revoked by revoking the self-signature on the user ID. For the security reasons described
previously, correspondents will not trust a user ID with no valid self-signature.

A signature is revoked by using the command revsig. Since you may have signed any number
of user IDs, the user interface prompts you to decide for each signature whether or not to revoke
it.

Command> revsig
You have signed these user IDs:

Chloe (Jester) <chloe@cyb.org>
signed by B87DBA93 at 1999-06-28

Chloe (Plebian) <chloe@tel.net>
signed by B87DBA93 at 1999-06-28

user ID: "Chloe (Jester) <chloe@cyb.org>"
signed with your key B87DBA93 at 1999-06-28
Create a revocation certificate for this signature? (y/N) n
user ID: "Chloe (Plebian) <chloe@tel.net>"
signed with your key B87DBA93 at 1999-06-28
Create a revocation certificate for this signature? (y/N) y
You are about to revoke these signatures:

Chloe (Plebian) <chloe@tel.net>
signed by B87DBA93 at 1999-06-28

Really create the revocation certificates? (y/N) y

You need a passphrase to unlock the secret key for
user: "Chloe (Jester) <chloe@cyb.org>"
1024-bit DSA key, ID B87DBA93, created 1999-06-28

pub 1024D/B87DBA93 created: 1999-06-28 expires: never trust: -/u
sub 2048g/B7934539 created: 1999-06-28 expires: never
sub 1792G/4E3160AD created: 1999-06-29 expires: 2000-06-28
rev! subkey has been revoked: 1999-06-29
sub 960D/E1F56448 created: 1999-06-29 expires: 2000-06-28
(1) Chloe (Jester) <chloe@cyb.org>
(2) Chloe (Plebian) <chloe@tel.net>

3.2. VALIDATING OTHER KEYS ON YOUR PUBLIC KEYRING 21

A revoked user ID is indicated by the revocation signature on the ID when the signatures on
the key’s user IDs are listed.

Command> check
uid Chloe (Jester) <chloe@cyb.org>
sig! B87DBA93 1999-06-28 [self-signature]
uid Chloe (Plebian) <chloe@tel.net>
rev! B87DBA93 1999-06-29 [revocation]
sig! B87DBA93 1999-06-28 [self-signature]

Revoking both subkeys and self-signatures on user IDs adds revocation self-signatures to the
key. Since signatures are being added and no material is deleted, a revocation will always be
visible to others when your updated public key is distributed and merged with older copies of it.
Revocation therefore guarantees that everybody has a consistent copy of your public key.

3.1.4 Updating a key’s expiration time

The expiration time of a key may be updated with the command expire from the key edit menu.
If no key is selected the expiration time of the primary key is updated. Otherwise the expiration
time of the selected subordinate key is updated.

A key’s expiration time is associated with the key’s self-signature. The expiration time is
updated by deleting the old self-signature and adding a new self-signature. Since correspondents
will not have deleted the old self-signature, they will see an additional self-signature on the key
when they update their copy of your key. The latest self-signature takes precedence, however, so
all correspondents will unambiguously know the expiration times of your keys.

3.2 Validating other keys on your public keyring

In Chapter 1 a procedure was given to validate your correspondents’ public keys: a correspondent’s
key is validated by personally checking his key’s fingerprint and then signing his public key with
your private key. By personally checking the fingerprint you can be sure that the key really does
belong to him, and since you have signed they key, you can be sure to detect any tampering with
it in the future. Unfortunately, this procedure is awkward when either you must validate a large
number of keys or communicate with people whom you do not know personally.

GnuPG addresses this problem with a mechanism popularly known as the web of trust . In the
web of trust model, responsibility for validating public keys is delegated to people you trust. For
example, suppose

• Alice has signed Blake’s key, and

• Blake has signed Chloe’s key and Dharma’s key.

If Alice trusts Blake to properly validate keys that he signs, then Alice can infer that Chloe’s
and Dharma’s keys are valid without having to personally check them. She simply uses her
validated copy of Blake’s public key to check that Blake’s signatures on Chloe’s and Dharma’s
are good. In general, assuming that Alice fully trusts everybody to properly validate keys they
sign, then any key signed by a valid key is also considered valid. The root is Alice’s key, which is
axiomatically assumed to be valid.

3.2.1 Trust in a key’s owner

In practice trust is subjective. For example, Blake’s key is valid to Alice since she signed it, but
she may not trust Blake to properly validate keys that he signs. In that case, she would not take
Chloe’s and Dharma’s key as valid based on Blake’s signatures alone. The web of trust model
accounts for this by associating with each public key on your keyring an indication of how much
you trust the key’s owner. There are four trust levels.

22 CHAPTER 3. KEY MANAGEMENT

unknown Nothing is known about the owner’s judgment in key signing. Keys on your public
keyring that you do not own initially have this trust level.

none The owner is known to improperly sign other keys.

marginal The owner understands the implications of key signing and properly validates keys
before signing them.

full The owner has an excellent understanding of key signing, and his signature on a key would
be as good as your own.

A key’s trust level is something that you alone assign to the key, and it is considered private
information. It is not packaged with the key when it is exported; it is even stored separately from
your keyrings in a separate database.

The GnuPG key editor may be used to adjust your trust in a key’s owner. The command
is trust. In this example Alice edits her trust in Blake and then updates the trust database to
recompute which keys are valid based on her new trust in Blake.

alice% gpg --edit-key blake

pub 1024D/8B927C8A created: 1999-07-02 expires: never trust: q/f
sub 1024g/C19EA233 created: 1999-07-02 expires: never
(1) Blake (Executioner) <blake@cyb.org>

Command> trust
pub 1024D/8B927C8A created: 1999-07-02 expires: never trust: q/f
sub 1024g/C19EA233 created: 1999-07-02 expires: never
(1) Blake (Executioner) <blake@cyb.org>

Please decide how far you trust this user to correctly
verify other users’ keys (by looking at passports,
checking fingerprints from different sources...)?

1 = Don’t know
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
s = please show me more information
m = back to the main menu

Your decision? 3

pub 1024D/8B927C8A created: 1999-07-02 expires: never trust: m/f
sub 1024g/C19EA233 created: 1999-07-02 expires: never
(1) Blake (Executioner) <blake@cyb.org>

Command> quit
[...]

Trust in the key’s owner and the key’s validity are indicated to the right when the key is
displayed. Trust in the owner is displayed first and the key’s validity is second1

1GnuPG overloads the word “trust” by using it to mean trust in an owner and trust in a key. This can
be confusing. Sometimes trust in an owner is referred to as owner-trust to distinguish it from trust in a key.
Throughout this manual, however, “trust” is used to mean trust in a key’s owner, and “validity” is used to mean
trust that a key belongs to the human associated with the key ID.

3.2. VALIDATING OTHER KEYS ON YOUR PUBLIC KEYRING 23

The four trust/validity levels are abbreviated: unknown (q), none (n), marginal (m), and full
(f). In this case, Blake’s key is fully valid since Alice signed it herself. She initially has an unknown
trust in Blake to properly sign other keys but decides to trust him marginally.

3.2.2 Using trust to validate keys

The web of trust allows a more elaborate algorithm to be used to validate a key. Formerly, a key
was considered valid only if you signed it personally. A more flexible algorithm can now be used:
A key K is considered valid if it meets two conditions:

1. it is signed by enough valid keys, meaning

• you have signed it personally,

• it has been signed by one fully trusted key, or

• it has been signed by three marginally trusted keys; and

2. the path of signed keys leading from K back to your own key is five steps or shorter.

The path length, number of marginally trusted keys required, and number of fully trusted keys
required may be adjusted. The numbers given above are the default values used by GnuPG.

Figure 3.1 shows a web of trust rooted at Alice. The graph illustrates who has signed who’s
keys. The table shows which keys Alice considers valid based on her trust in the other members
of the web. This example assumes that two marginally-trusted keys or one fully-trusted key is
needed to validate another key. The maximum path length is three.

Alice Elena GeoffChloe

Blake

Dharma

Francis

trust validity

marginal full marginal full

Dharma Blake, Chloe, Dharma, Francis

Blake, Dharma Francis Blake, Chloe, Dharma

Chloe, Dharma Chloe, Francis Blake, Dharma

Blake, Chloe, Dharma Elena Blake, Chloe, Dharma, Francis

Blake, Chloe, Elena Blake, Chloe, Elena, Francis

Figure 3.1: A hypothetical web of trust

When computing valid keys in the example, Blake and Dharma’s are always considered fully
valid since they were signed directly by Alice. The validity of the other keys depends on trust.
In the first case, Dharma is trusted fully, which implies that Chloe’s and Francis’s keys will be
considered valid. In the second example, Blake and Dharma are trusted marginally. Since two
marginally trusted keys are needed to fully validate a key, Chloe’s key will be considered fully
valid, but Francis’s key will be considered only marginally valid. In the case where Chloe and
Dharma are marginally trusted, Chloe’s key will be marginally valid since Dharma’s key is fully
valid. Francis’s key, however, will also be considered marginally valid since only a fully valid key
can be used to validate other keys, and Dharma’s key is the only fully valid key that has been used
to sign Francis’s key. When marginal trust in Blake is added, Chloe’s key becomes fully valid and

24 CHAPTER 3. KEY MANAGEMENT

can then be used to fully validate Francis’s key and marginally validate Elena’s key. Lastly, when
Blake, Chloe, and Elena are fully trusted, this is still insufficient to validate Geoff’s key since the
maximum certification path is three, but the path length from Geoff back to Alice is four.

The web of trust model is a flexible approach to the problem of safe public key exchange. It
permits you to tune GnuPG to reflect how you use it. At one extreme you may insist on multiple,
short paths from your key to another key K in order to trust it. On the other hand, you may
be satisfied with longer paths and perhaps as little as one path from your key to the other key
K. Requiring multiple, short paths is a strong guarantee that K belongs to whom your think it
does. The price, of course, is that it is more difficult to validate keys since you must personally
sign more keys than if you accepted fewer and longer paths.

3.3 Distributing keys

Ideally, you distribute your key by personally giving it to your correspondents. In practice, how-
ever, keys are often distributed by email or some other electronic communication medium. Distri-
bution by email is good practice when you have only a few correspondents, and even if you have
many correspondents, you can use an alternative means such as posting your public key on your
World Wide Web homepage. This is unacceptable, however, if people who need your public key
do not know where to find it on the Web.

To solve this problem public key servers are used to collect and distribute public keys. A public
key received by the server is either added to the server’s database or merged with the existing key
if already present. When a key request comes to the server, the server consults its database and
returns the requested public key if found.

A keyserver is also valuable when many people are frequently signing other people’s keys.
Without a keyserver, when Blake sign’s Alice’s key then Blake would send Alice a copy of her
public key signed by him so that Alice could add the updated key to her ring as well as distribute
it to all of her correspondents. Going through this effort fulfills Alice’s and Blake’s responsibility
to the community at large in building tight webs of trust and thus improving the security of PGP.
It is nevertheless a nuisance if key signing is frequent.

Using a keyserver makes the process somewhat easier. When Blake signs Alice’s key he sends
the signed key to the key server. The key server adds Blake’s signature to its copy of Alice’s key.
Individuals interested in updating their copy of Alice’s key then consult the keyserver on their
own initiative to retrieve the updated key. Alice need never be involved with distribution and can
retrieve signatures on her key simply by querying a keyserver.

One or more keys may be sent to a keyserver using the command-line option --send-keys.
The option takes one or more key specifiers and sends the specified keys to the key server. The key
server to which to send the keys is specified with the command-line option --keyserver. Similarly,
the option --recv-keys is used to retrieve keys from a keyserver, but the option --recv-keys
requires a key ID be used to specify the key. In the following example Alice updates her public key
with new signatures from the keyserver certserver.pgp.com and then sends her copy of Blake’s
public key to the same keyserver to contribute any new signatures she may have added.

alice% gpg --keyserver certserver.pgp.com --recv-key 0xBB7576AC
gpg: requesting key BB7576AC from certserver.pgp.com ...
gpg: key BB7576AC: 1 new signature

gpg: Total number processed: 1
gpg: new signatures: 1
alice% gpg --keyserver certserver.pgp.com --send-key blake@cyb.org
gpg: success sending to ’certserver.pgp.com’ (status=200)

There are several popular keyservers in use around the world. The major keyservers synchronize
themselves, so it is fine to pick a keyserver close to you on the Internet and then use it regularly
for sending and receiving keys.

Chapter 4

Daily use of GnuPG

GnuPG is a complex tool with technical, social, and legal issues surrounding it. Technically,
it has been designed to be used in situations having drastically different security needs. This
complicates key management. Socially, using GnuPG is not strictly a personal decision. To use
GnuPG effectively both parties communicating must use it. Finally, as of 1999, laws regarding
digital encryption, and in particular whether or not using GnuPG is legal, vary from country to
country and is currently being debated by many national governments.

This chapter addresses these issues. It gives practical advice on how to use GnuPG to meet
your security needs. It also suggests ways to promote the use of GnuPG for secure communication
between yourself and your colleagues when your colleagues are not currently using GnuPG. Finally,
the legal status of GnuPG is outlined given the current status of encryption laws in the world.

4.1 Defining your security needs

GnuPG is a tool you use to protect your privacy. Your privacy is protected if you can correspond
with others without eavesdroppers reading those messages.

How you should use GnuPG depends on the determination and resourcefulness of those who
might want to read your encrypted messages. An eavesdropper may be an unscrupulous system
administrator casually scanning your mail, it might be an industrial spy trying to collect your
company’s secrets, or it might be a law enforcement agency trying to prosecute you. Using
GnuPG to protect against casual eavesdropping is going to be different than using GnuPG to
protect against a determined adversary. Your goal, ultimately, is to make it more expensive
to recover the unencrypted data than that data is worth.

Customizing your use of GnuPG revolves around four issues:

• choosing the key size of your public/private keypair,

• protecting your private key,

• selecting expiration dates and using subkeys, and

• managing your web of trust.

A well-chosen key size protects you against brute-force attacks on encrypted messages. Protect-
ing your private key prevents an attacker from simply using your private key to decrypt encrypted
messages and sign messages in your name. Correctly managing your web of trust prevents at-
tackers from masquerading as people with whom you communicate. Ultimately, addressing these
issues with respect to your own security needs is how you balance the extra work required to use
GnuPG with the privacy it gives you.

25

26 CHAPTER 4. DAILY USE OF GNUPG

4.1.1 Choosing a key size

Selecting a key size depends on the key. In OpenPGP, a public/private keypair usually has multiple
keys. At the least it has a master signing key, and it probably has one or more additional subkeys
for encryption. Using default key generation parameters with GnuPG, the master key will be
a DSA key, and the subkeys will be ElGamal keys.

DSA allows a key size up to 1024 bits. This is not especially good given today’s factoring
technology, but that is what the standard specifies. Without question, you should use 1024 bit
DSA keys.

ElGamal keys, on the other hand, may be of any size. Since GnuPG is a hybrid public-key
system, the public key is used to encrypt a 128-bit session key, and the private key is used to
decrypt it. Key size nevertheless affects encryption and decryption speed since the cost of these
algorithms is exponential in the size of the key. Larger keys also take more time to generate and
take more space to store. Ultimately, there are diminishing returns on the extra security a large
key provides you. After all, if the key is large enough to resist a brute-force attack, an eavesdropper
will merely switch to some other method for obtaining your plaintext data. Examples of other
methods include robbing your home or office and mugging you. 1024 bits is thus the recommended
key size. If you genuinely need a larger key size then you probably already know this and should
be consulting an expert in data security.

4.1.2 Protecting your private key

Protecting your private key is the most important job you have to use GnuPG correctly. If
someone obtains your private key, then all data encrypted to the private key can be decrypted
and signatures can be made in your name. If you lose your private key, then you will no longer
be able to decrypt documents encrypted to you in the future or in the past, and you will not be
able to make signatures. Losing sole possession of your private key is catastrophic.

Regardless of how you use GnuPG you should store the public key’s revocation certificate and
a backup of your private key on write-protected media in a safe place. For example, you could
burn them on a CD-ROM and store them in your safe deposit box at the bank in a sealed envelope.
Alternatively, you could store them on a floppy and hide it in your house. Whatever you do, they
should be put on media that is safe to store for as long as you expect to keep the key, and you
should store them more carefully than the copy of your private key you use daily.

To help safeguard your key, GnuPG does not store your raw private key on disk. Instead it
encrypts it using a symmetric encryption algorithm. That is why you need a passphrase to access
the key. Thus there are two barriers an attacker must cross to access your private key: (1) he
must actually acquire the key, and (2) he must get past the encryption.

Safely storing your private key is important, but there is a cost. Ideally, you would keep the
private key on a removable, write-protected disk such as a floppy disk, and you would use it on
a single-user machine not connected to a network. This may be inconvenient or impossible for you
to do. For example, you may not own your own machine and must use a computer at work or
school, or it may mean you have to physically disconnect your computer from your cable modem
every time you want to use GnuPG.

This does not mean you cannot or should not use GnuPG. It means only that you have decided
that the data you are protecting is important enough to encrypt but not so important as to take
extra steps to make the first barrier stronger. It is your choice.

A good passphrase is absolutely critical when using GnuPG. Any attacker who gains access to
your private key must bypass the encryption on the private key. Instead of brute-force guessing
the key, an attacker will almost certainly instead try to guess the passphrase.

The motivation for trying passphrases is that most people choose a passphrase that is easier
to guess than a random 128-bit key. If the passphrase is a word, it is much cheaper to try all the
words in the dictionaries of the world’s languages. Even if the word is permuted, e.g., k3wldood,
it is still easier to try dictionary words with a catalog of permutations. The same problem applies
to quotations. In general, passphrases based on natural-language utterances are poor passphrases

4.1. DEFINING YOUR SECURITY NEEDS 27

since there is little randomness and lots of redundancy in natural language. You should avoid
natural language passphrases if you can.

A good passphrase is one that you can remember but is hard for someone to guess. It should
include characters from the whole range of printable characters on your keyboard. This includes
uppercase alphabetics characters, numbers, and special characters such as } and |. Be creative
and spend a little time considering your passphrase; a good choice is important to ensure your
privacy.

4.1.3 Selecting expiration dates and using subkeys

By default, a DSA master signing key and an ElGamal encryption subkey are generated when you
create a new keypair. This is convenient, because the roles of the two keys are different, and you
may therefore want the keys to have different lifetimes. The master signing key is used to make
digital signatures, and it also collects the signatures of others who have confirmed your identity.
The encryption key is used only for decrypting encrypted documents sent to you. Typically,
a digital signature has a long lifetime, e.g., forever, and you also do not want to lose the signatures
on your key that you worked hard to collect. On the other hand, the encryption subkey may be
changed periodically for extra security, since if an encryption key is broken, the attacker can read
all documents encrypted to that key both in the future and from the past.

It is almost always the case that you will not want the master key to expire. There are two
reasons why you may choose an expiration date. First, you may intend for the key to have a limited
lifetime. For example, it is being used for an event such as a political campaign and will no longer
be useful after the campaign is over. Another reason is that if you lose control of the key and do
not have a revocation certificate with which to revoke the key, having an expiration date on the
master key ensures that the key will eventually fall into disuse.

Changing encryption subkeys is straightforward but can be inconvenient. If you generate a new
keypair with an expiration date on the subkey, that subkey will eventually expire. Shortly before
the expiration you will add a new subkey and publish your updated public key. Once the subkey
expires, those who wish to correspond with you must find your updated key since they will no
longer be able to encrypt to the expired key. This may be inconvenient depending on how you
distribute the key. Fortunately, however, no extra signatures are necessary since the new subkey
will have been signed with your master signing key, which presumably has already been validated
by your correspondents.

The inconvenience may or may not be worth the extra security. Just as you can, an attacker
can still read all documents encrypted to an expired subkey. Changing subkeys only protects
future documents. In order to read documents encrypted to the new subkey, the attacker would
need to mount a new attack using whatever techniques he used against you the first time.

Finally, it only makes sense to have one valid encryption subkey on a keyring. There is
no additional security gained by having two or more active subkeys. There may of course be
any number of expired keys on a keyring so that documents encrypted in the past may still be
decrypted, but only one subkey needs to be active at any given time.

4.1.4 Managing your web of trust

As with protecting your private key, managing your web of trust is another aspect of using GnuPG
that requires balancing security against ease of use. If you are using GnuPG to protect against
casual eavesdropping and forgeries then you can afford to be relatively trusting of other people’s
signatures. On the other hand, if you are concerned that there may be a determined attacker
interested in invading your privacy, then you should be much less trusting of other signatures and
spend more time personally verifying signatures.

Regardless of your own security needs, though, you should always be careful when signing other
keys. It is selfish to sign a key with just enough confidence in the key’s validity to satisfy your
own security needs. Others, with more stringent security needs, may want to depend on your
signature. If they cannot depend on you then that weakens the web of trust and makes it more

28 CHAPTER 4. DAILY USE OF GNUPG

difficult for all GnuPG users to communicate. Use the same care in signing keys that you would
like others to use when you depend on their signatures.

In practice, managing your web of trust reduces to assigning trust to others and tuning the
options --marginals-needed and --completes-needed. Any key you personally sign will be
considered valid, but except for small groups, it will not be practical to personally sign the key of
every person with whom you communicate. You will therefore have to assign trust to others.

It is probably wise to be accurate when assigning trust and then use the options to tune how
careful GnuPG is with key validation. As a concrete example, you may fully trust a few close
friends that you know are careful with key signing and then marginally trust all others on your
keyring. From there, you may set --completes-needed to 1 and --marginals-needed to 2. If
you are more concerned with security you might choose values of 1 and 3 or 2 and 3 respectively.
If you are less concerned with privacy attacks and just want some reasonable confidence about
validity, set the values to 1 and 1. In general, higher numbers for these options imply that more
people would be needed to conspire against you in order to have a key validated that does not
actually belong to the person whom you think it does.

4.2 Building your web of trust

Wanting to use GnuPG yourself is not enough. In order to use to communicate securely with others
you must have a web of trust. At first glance, however, building a web of trust is a daunting task.
The people with whom you communicate need to use GnuPG,1 and there needs to be enough key
signing so that keys can be considered valid. These are not technical problems; they are social
problems. Nevertheless, you must overcome these problems if you want to use GnuPG.

When getting started using GnuPG it is important to realize that you need not securely
communicate with every one of your correspondents. Start with a small circle of people, perhaps
just yourself and one or two others who also want to exercise their right to privacy. Generate your
keys and sign each other’s public keys. This is your initial web of trust. By doing this you will
appreciate the value of a small, robust web of trust and will be more cautious as you grow your
web in the future.

In addition to those in your initial web of trust, you may want to communicate securely with
others who are also using GnuPG. Doing so, however, can be awkward for two reasons: (1) you
do not always know when someone uses or is willing to use GnuPG, and (2) if you do know of
someone who uses it, you may still have trouble validating their key. The first reason occurs
because people do not always advertise that they use GnuPG. The way to change this behavior is
to set the example and advertise that you use GnuPG. There are at least three ways to do this:
you can sign messages you mail to others or post to message boards, you can put your public key
on your web page, or, if you put your key on a keyserver, you can put your key ID in your email
signature. If you advertise your key then you make it that much more acceptable for others to
advertise their keys. Furthermore, you make it easier for others to start communicating with you
securely since you have taken the initiative and made it clear that you use GnuPG.

Key validation is more difficult. If you do not personally know the person whose key you want
to sign, then it is not possible to sign the key yourself. You must rely on the signatures of others
and hope to find a chain of signatures leading from the key in question back to your own. To
have any chance of finding a chain, you must take the initiative and get your key signed by others
outside of your initial web of trust. An effective way to accomplish this is to participate in key
signing parties. If you are going to a conference look ahead of time for a key signing party, and if
you do not see one being held, offer to hold one.2 You can also be more passive and carry your
fingerprint with you for impromptu key exchanges. In such a situation the person to whom you
gave the fingerprint would verify it and sign your public key once he returned home.

1In this section, GnuPG refers to the GnuPG implementation of OpenPGP as well as other implementations
such as NAI’s PGP product.

2http://www.herrons.com/kb2nsx/keysign.html

4.3. USING GNUPG LEGALLY 29

Keep in mind, though, that this is optional. You have no obligation to either publicly advertise
your key or sign other people’s keys. The power of GnuPG is that it is flexible enough to adapt
to your security needs whatever they may be. The social reality, however, is that you will need
to take the initiative if you want to grow your web of trust and use GnuPG for as much of your
communication as possible.

4.3 Using GnuPG legally

The legal status of encryption software varies from country to country, and law regarding encryp-
tion software is rapidly evolving. Bert-Japp Koops3 has an excellent Crypto Law Survey4 to which
you should refer for the legal status of encryption software in your country.

3http://cwis.kub.nl/~frw/people/koops/bertjaap.htm
4http://cwis.kub.nl/~frw/people/koops/lawsurvy.htm

30 CHAPTER 4. DAILY USE OF GNUPG

Chapter 5

Topics

This chapter covers miscellaneous topics that do not fit elsewhere in the user manual. As topics
are added, they may be collected and factored into chapters that stand on their own. If you would
like to see a particular topic covered, please suggest it. Even better, volunteer to write a first draft
covering your suggested topic!

5.1 Writing user interfaces

Alma Whitten1 and Doug Tygar2 have done a study3 on NAI’s PGP 5.0 user interface and came
to the conclusion that novice users find PGP confusing and frustrating. In their human factors
study, only four out of twelve test subjects managed to correctly send encrypted email to their
team members, and three out of twelve emailed the secret without encryption. Furthermore, half
of the test subjects had a technical background.

These results are not surprising. PGP 5.0 has a nice user interface that is excellent if you
already understand how public-key encryption works and are familiar with the web-of-trust key
management model specified by OpenPGP. Unfortunately, novice users understand neither public-
key encryption nor key management, and the user interface does little to help.

You should certainly read Whitten and Tygar’s report if you are writing a user interface.
It gives specific comments from each of the test subjects, and those details are enlightening. For
example, it would appear that many of subjects believed that a message being sent to other people
should be encrypted to the test subject’s own public key. Consider it for a minute, and you will
see that it is an easy mistake to make. In general, novice users have difficulty understanding the
different roles of the public key and private key when using GnuPG. As a user interface designer,
you should try to make it clear at all times when one of the two keys is being used. You could also
use wizards or other common GUI techniques for guiding the user through common tasks, such as
key generation, where extra steps, such as generating a key revocation certification and making
a backup, are all but essential for using GnuPG correctly. Other comments from the paper include
the following.

• Security is usually a secondary goal; people want to send email, browse, and so on. Do not
assume users will be motivated to read manuals or go looking for security controls.

• The security of a networked computer is only as strong as its weakest component. Users need
to be guided to attend to all aspects of their security, not left to proceed through random
exploration as they might with a word processor or a spreadsheet.

• Consistently use the same terms for the same actions. Do not alternate between synonyms
like “encrypt” and “encipher”.

1http://www.cs.cmu.edu/~alma
2http://www.cs.berkeley.edu/~tygar
3http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-155.html

31

32 CHAPTER 5. TOPICS

• For inexperienced users, simplify the display. Too much information hides the important
information. An initial display configuration could concentrate on giving the user the correct
model of the relationship between public and private keys and a clear understanding of the
functions for acquiring and distributing keys.

Designing an effective user interface for key management is even more difficult. The OpenPGP
web-of-trust model is unfortunately quite obtuse. For example, the specification imposes three
arbitrary trust levels onto the user: none, marginal, and complete. All degrees of trust felt by
the user must be fit into one of those three cubbyholes. The key validation algorithm is also
difficult for non-computer scientists to understand, particularly the notions of “marginals needed”
and “completes needed”. Since the web-of-trust model is well-specified and cannot be changed,
you will have to do your best and design a user interface that helps to clarify it for the user.
A definite improvement, for example, would be to generate a diagram of how a key was validated
when requested by the user. Relevant comments from the paper include the following:

• Users are likely to be uncertain on how and when to grant accesses.

• Place a high priority on making sure users understand their security well enough to prevent
them from making potentially high-cost mistakes. Such mistakes include accidentally delet-
ing the private key, accidentally publicizing a key, accidentally revoking a key, forgetting the
pass phrase, and failing to back up the key rings.

Appendix A

GNU Free Documentation License

Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

A.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or reference.

A.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the Docu-
ment’s overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (For example, if the Document is in part a textbook of mathematics, a Sec-
ondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this

33

34 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

License.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or

Back-Cover Texts, in the notice that says that the Document is released under this License.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format

whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section A.4.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

A.4 COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you

A.5. MODIFICATIONS 35

use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

A.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions A.3 and A.4 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

6. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

11. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

36 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

13. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

14. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

A.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section A.5 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled “Ac-
knowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements”.

A.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

A.8. AGGREGATION WITH INDEPENDENT WORKS 37

A.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an “aggregate”, and this License does not apply to
the other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section A.4 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

A.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section A.5. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original English version
of this License, the original English version will prevail.

A.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

A.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

A.12 How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled “GNU Free Documentation License”.

38 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Index

addkey, 19
adduid, 19
armor, 7

certificate, 18
check, 18
ciphers

hybrid, 14
public key, 14
symmetric, 13

clearsign, 10
completes-needed, 28

decrypt, 9, 10
delkey, 19
deluid, 19
detach-signature, 11

edit-key, 17
encrypt, 9
expire, 21
export, 7

fingerprint, 8

gen-key, 5
gen-revoke, 7

import, 8

key, 19
key space, 13
keyserver, 24

list-key, 7

man in the middle, 17
marginals-needed, 28

optionsfile, 7
output, 7, 9

private key, 5, 14
public key, 5, 14

recipient, 9
recv-keys, 24

revkey, 19
revocation, 26
revsig, 20

self-signing, 18
send-keys, 24
sign, 10
symmetric, 9

toggle, 18
trust, 22

uid, 19

verify, 10, 11

web of trust, 17, 21

39

