Freescale Semiconductor, Inc.

MCUEZASMO08/D

February 1998

MCUez
ASSEMBLER
USER’'S MANUAL

a Copyright 1998 MOTOROLA and HIWARE AG; All Rights Reserved

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this document,
Motorola assumes no liability to any party for any loss or damage caused by errors or omissions or
by statements of any kind in this document, its updates, supplements, or special editions, whether
such errors are omissions or statements resulting from negligence, accident, or any other cause.
Motorola further assumes no liability arising out of the application or use of any information,
product, or system described herein; nor any liability for incidental or consequential damages
arising from the use of this document. Motorola disclaims all warranties regarding the

information contained herein, whether expressed, implied, or statirtohyding implied

warranties of merchantability or fitness for a particular purposttorola makes no

representation that the interconnection of products in the manner described herein will not
infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

Information contained in this document applies to
REVision (0) MCUez.

The computer program contains material copyrighted by Motorola Inc., first published 1997,yand ma
be used only under a license such as the License For Computer Programs (Article 14) contained in
Motorola's Terms and Conditions of Sale, Rev. 1/79.

Trademarks

This document includes these trademarks:

MCUez is a trademark of Motorola Inc.
EXORciser is a trademark of Motorola Inc.

The MCUez development, emulation, and debugging application is based on HI-WAVE; a
software technology developed by the HIWARE. HI-WAVE is a registered trademark of
HIWARE AG.

AIX, IBM, and PowerPC are trademarks of International Business Machines Corporation.
SPARC is a trademark of SPARC international, Inc.

Sun and SunOS are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of Novell, Inc., in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

X Window System is a trademark of Massachusetts Institute of Technology.

Motorola and the Motorola logo are registered trademarks of Motorola Inc.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA CONTENTS
CONTENTS
CHAPTER 1 GENERAL INFORMATION
1.1 INTRODUCTIONo e s e e e s e s s s e 1-1
1.2 STRUCTURE OF THIS MANUALo s s s s 1-1
1.3 GETTING STARTED s e s s e s s i 1-2.
1.3.1 Write An Assembly Source File. 2....1
1.3.2 Assemble A Source File. 1-3..
1.3.3 Link An Application e 1-6
CHAPTER 2 GRAPHICAL USER INTERFACE
2.1 INTRODUCTION . . . o e s s s s s s s 2-1
2.2 STARTING THE MOTOROLA ASSEMBLER. e e e 2-1
2.3 ASSEMBLER GRAPHICAL INTERFACE. e e e 2-2
2.3.1 WIindow Titleo e 2-2
2.3.2 CoNtent ArCa o o 2-3
2.3.3 Assembler Toolbar 2-4.
2.3.4 Status Bar. e 2-4
2.3.5 Assembler Menu Bar 2-5. .
2.3.5.1 File MENU. . .. ot o e e e e 2-5
2.3.5.1.1 Editor Settings Dialog 2-6
2.3.5.1.2 Important Remarks. 2-10
2.3.5.1.3 Configuration Dialog oo 2-10
2.3.5.2 Assembler MEeNU s 2-12
2.3.5.3 VIEW MEBNU. . . . ot e e e 2-12
2.3.6 Advanced Options Settings Dialog BOX 2-12
2.3.7 Specifying The Input File e 2-13.
2.3.7.1 Editable Combo BOX e 2-13
2.3.7.2 FilelAssemble 2-13
2.3.7.3 Drag And Dropt e ——— 2-14
2.3.8 Error Feedback. 2-14
2.3.8.1 Error Feedback Using Information From The Assembler Window 2-14
2.3.8.2 Error Feedback From A User-Defined Editor.ot 2-14
2.3.8.2.1 Editors That Can Start With A Line Number On The Command Line 2-14

2.3.8.2.2 Editors That Cannot Start With A Line Number On The Command Line. ... 2-15

MCUEZASMO08/D For More Information On This Product, ii
Go to: www.freescale.com

Freescale Semiconductor, Inc.

CONTENTS @ MOTOROLA
CHAPTER 3 ENVIRONMENT

3.1 INTRODUCTION . . .o e e e e s 3-1

3.2 PATH S . . o e 3-2

3.3 LINE CONTINUATION s, 3-2

3.4 ENVIRONMENT VARIABLES DESCRIPTIONS i 3-3
3.4.1 ASMOPTIONS . . .o s, 34
3.4.2 GENPATH 34
3.4.3 ABSPATH 3-5
3.4.4 OBIPATH. . . o 3-5
3.4.5 TEXTPATH . ..o e 35
3.4.6 SRECORD 3-6
3.4.7 ERRORFILEo s s s s 3-7
3.4.8 INCLUDETIME: Creation Time In ObjectFile 3-9
3.4.9 USERNAME: User Name In ObjectFile 3-9

CHAPTER 4 FILES

4.1 INTRODUCTION . . ottt e e s s s s s 4-1

4.2 INPUT FILES e s s s s s s 4-1
421 Source Files 4-1
4.2.2 Include File e 4-1

4.3 OUTPUT FILES o s 4-1
4.3.1 ObjectFiles 4-2
4.3.2 Absolute Files 4-2
4.3.3 Motorola S FIles. oo e 4-2
4.3.4 Listing Files 4-2
4.3.5 Debug Listing Files 4-3
4.3.6 ErrorListingFile e 43

CHAPTER 5 ASSEMBLER OPTIONS

5.1 INTRODUCTION . . .o o e e e s s e e, 5-1

5.2 ASMOPTIONS e, 5-1

5.3 ASSEMBLER OPTION DESCRIPTIONS 5-3
.3 L —Ch. . e 5-4
.32 BNV . o 5-4
B.3.3 -F2/-FA2 . . . e, 5-5
.3 A H . 5-6
LG Y0 785 T I 5-7
B.3.6 LG ..o 5-9
. 3.7 Ld . o 5-10
.38 e . 5-11
B.3.0 L. et e 5-12

v For More Information On This Product, MCUEZASMO08/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

5.3.10 -MS/-MD . . .o 5-13
5.3 L AN e 5-14
5.3 02 SV e 5-15
5.3 08 W . L e 5-16
5.3 04 N 2. e e 5-17
5.3.15 -WMSONeEo e 5-18
5.3.16 -WMSGNI . . .ot 5-19
5.3.17 -WMSONW . .. 5-20
5.3.18 -WmsgFbv/ -WmsgFbm
5.3.19 -WmsgFiv/-WmsgFim 22 ..

6.1 INTRODUCTIONo e e e e e e e e e e 6-1
6.2 SECTION ATTRIBUTE e 6-1. .
6.2.1 Data SeCHONS i e 6-1

6.2.2 Constant Data SECtiONS i e, 6-1..
6.2.3 Code SECHONS.ttt e i 6-2
6.3 SECTION TYPE e e e 6-2
6.3.1 Absolute SECHiONS. 6-2
6.3.2 Relocatable Sections i 6:4 .

6.3.3 Relocatable Versus Absolute Section. i e
6.3.3.1 Early Development 6-6
6.3.3.2 Enhanced Portability e e 6-7
6.3.3.3 Tracking OVerlapsot e e e e . 6-7
6.3.3.4 ReUsability e 6-7

CHAPTER 7 ASSEMBLER SYNTAX

7.1 INTRODUCTION. ..ot e e e e e e e 7-1
7.1.1 Comment LiNe 7-1
7.1.2 SOUrCE LiNe . .. 7-1
7.1.3 Label Field e, 7-1
7.1.4 Operation Field 7-2

T.01.4.0 INSITUCHIONo ——— 7-2
T.01.4.2 DireCliVe . ..t 7-2
7.1.4.3 MacCro NaAmMe e e e e e e e e e e e e e e 7-2
7.1.5 Operand Field. e 7-3
7.01.5.0 INherent ... 7-3
7.1.5.2 Immediate 7-4
7.0.5.3 DIreCt. . o 7-5
7.1.5.4 EXtended e 7-6
7.1.5.5 Indexed, NO OffSet. ot e e e . 7-6
7.1.5.6 Indexed, 8-Bit Off Set.ot 7-7
MCUEZASMO08/D For More Information On This Product, v

Go to: www.freescale.com

Freescale Semiconductor, Inc.

CONTENTS @ MOTOROLA
7.1.5.7 Indexed, 16-Bit Offset o 7-8
7.1.5.8 Relative e ——— 7-8
7.1.5.9 Stack Pointer, 8-Bit Offset. i e (-9
7.1.5.10 Stack Pointer, 16-Bit Offset. i 7-9
7.1.5.11 Memory To Memory Immediate To Direct e 7-10
7.1.5.12 Memory To Memory Direct ToDirect 10...7-
7.1.5.13 Memory To Memory Indexed To Direct WithsPIncrement 7-11
7.1.5.14 Memory To Memory Direct To Indexed WithsPIncrement 7-12
7.1.5.15 Indexed With Post Increment. i e 7-13
7.1.5.16 Indexed, 8-bit offset With Post Increment. 7-14. ..
7.1.5.17 Comment Field e e e 7-14

7.2 SYMBOLS. . .. 7-15
7.2.1 UserDefined Symbols. 7-15. .
7.2.2 External Symbols. e 7-15
7.2.3 Undefined Symbols e 7-16.
7.2.4 Reserved Symbols 7:16 .

7.3 CONSTANT S . o e e 7-16
7.3.1 Integer Constantst e 1716
7.3.2 String CoNStantS e 7-17
7.3.3 Floating-Point Constants e 7-17. .

7.4 OPERATORS . . e 7-17
7.4.1 Addition And Subtraction Operators (Binary). 7-17
7.4.2 Multiplication, Division And Modulo Operators (Binary) 7-17
7.4.3 Sign Operators (Unary)t e e 7-18. .
7.4.4 Shift Operators (Binary).ot 7-18
7.4.5 Bitwise Operators (Binary) e 7-18 ..
7.4.6 Bitwise Operators (Unary).t e e 7-19. ..
7.4.7 Logical Operators (Unary).t e e e 7-19. ..
7.4.8 Relational Operators (Binary) e e 7-20. ..
7.4.9 HIGH Operator e e e e 7-20
7.4.10 LOW Operator . . . vttt e et e e e e e e e 1-21.
7.4.11 Memory PAGE Operator (Unary)i i e e e 7-21
7.4.12 Force Operator (Unary) e e e e 1-22. .

7.5 EXPRESSION . ..o 7-24
7.5.1 Absolute EXPresSion i 7-24.
7.5.2 Simple Relocatable EXpression 25... 7-

7.6 TRANSLATION LIMITS . .. e 7-27

vi For More Information On This Product, MCUEZASMO08/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA CONTENTS

CHAPTER 8 ASSEMBLER DIRECTIVES

8.1 INTRODUCTION . . . e e eee e 8-1
8.2 DIRECTIVE OVERVIEW e 8-1. ..
8.2.1 Section Definition Dir€CtiVES. 8:1..
8.2.2 Constant Definition DIreCtiVes. e 8-1..
8.2.3 Data Allocation DIreCtiVES.ttt 8:2.
8.2.4 Symbol Linkage DireCtives 8-2 ..
8.2.5 Assembly Control DIreCtives. o e 8-2 ...
8.2.6 Listing File Control Directives e 8-3..
8.2.7 Macro Control DireCtiVes.o e 8-3.
8.2.8 Conditional Assembly DIreCtives 4 ... 8-
8.3 ABSENTRY - APPLICATION ENTRY POINT e 8-5
8.4 ALIGN - ALIGN LOCATION COUNTER e 8-6
8.5 BASE - SET NUMBER BASE e 7...8-
8.6 CLIST - LIST CONDITIONAL ASSEMBLY e e 8-8
8.7 DC - DEFINE CONSTANT . .ottt e :10.. 8
8.8 DCB - DEFINE CONSTANT BLOCK oo e 8-12
8.9 DS -DEFINE SPACE 8-13
8.10 ELSE - CONDITIONAL ASSEMBLY e 8-14
8.11 END - END ASSEMBLY . . . e 8-15. .
8.12 ENDIF - END CONDITIONAL ASSEMBLYo e 8-16
8.13 ENDM - END MACRO DEFINITION. e e 8-17
8.14 EQU - EQUATE SYMBOL VALUE e e 8-18
8.15 EVEN - FORCE WORD ALIGNMENT e e e 8-19
8.16 FAIL - GENERATE ERROR MESSAGE 8-20
8.17 IF - CONDITIONAL ASSEMBLY 8-23
8.18 IFCC - CONDITIONAL ASSEMBLYo e e 8-24
8.19 INCLUDE - INCLUDE TEXT FROM ANOTHERFILE 8-26
8.20 LIST - ENABLE LISTINGo e 8-27. .
8.21 LLEN - SET LINELENGTH e 28.. 8-
8.22 LONGEVEN - FORCING LONG-WORD ALIGNMENT 8-29
8.23 MACRO - BEGIN MACRO DEFINITION e 8-30
8.24 MEXIT - TERMINATE MACRO EXPANSION e 8-31
8.25 MLIST - LIST MACRO EXPANSIONS e 8-33
8.26 NOLIST - DISABLE LISTINGo e 8-36
8.27 NOPAGE - DISABLE PAGINGo e 8-37
8.28 ORG - SET LOCATION COUNTER. e 8-38
MCUEZASMO08/D For More Information On This Product, vii

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA

CONTENTS

8.29 PAGE - INSERT PAGE BREAK e e e 8-39

8.30 PLEN - SET PAGE LENGTH. e Q.. 84

8.31 SECTION - DECLARE RELOCATABLE SECTION. 8-41

8.32 SET - SET SYMBOL VALUE e e e e 8-43

8.33 SPC-INSERT BLANK LINES e e 8-44

8.34 TABS - SET TAB LENGTH e 45. . 8-

8.35 TITLE - PROVIDE LISTING TITLE e 8-46

8.36 XDEF - EXTERNAL SYMBOL DEFINITION e 8-47

8.37 XREF - EXTERNAL SYMBOL REFERENCE. i 8-48

CHAPTER 9 MACROS

9.1 INTRODUCTION e e e e e 9-1

9.2 MACRO OVERVIEW e e e e 9-1..

9.3 DEFINING AMACRO e e e e i e 9-1.

9.4 CALLING MACROS e e e e 9-2.

9.5 MACRO PARAMETERS e e 9:2...

9.6 LABELS INSIDE MACROS e e e e e -3...9

9.7 MACRO EXPANSION e e e 9:-4..

9.8 NESTED MACROS e e e e, 9-4

CHAPTER 10 ASSEMBLER LISTING FILE

10.1 INTRODUCTIONt e e e e e e e e e e e e as 10-1

10.2 PAGE HEADER e e, 10-1

10.3 SOURCE LISTINGo e e e e v 10-1
10.3.1 ADS. LiStiNg . .ottt 10-2
10.3.2 Rel LiStiNg. . . .o oo e 10-3
10.3.3 LOC LIStiNg oottt e 10-4
10.3.4 ODbj. Code Listing.ottt e 10-5
10.3.5 Source LINe Listing oottt 10-6

CHAPTER 11 MCUASM COMPATIBILITY

11.1 INTRODUCTION e e e e e e e e e 11-1

11.2 COMMENT LINE. e e e e e e e e e 11-1

11.3 CONSTANTS ... e e e e 11-1

11.4 OPERATORS ... e 11-2

11.5 DIRECTIVES e e e e e e 11-2

viii For More Information On This Product, MCUEZASMO08/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA CONTENTS

CHAPTER 12 OPERATING PROCEDURES

12.1 INTRODUCTION . . oot e e e e e e e 12-1
12.2 WORKING WITH ABSOLUTE SECTIONS. e e 12-1
12.2.1 Defining Absolute Sections In The Assembly Source File 12-1
12.2.2 Linking An Application Containing Absolute Sections 12-2
12.3 WORKING WITH RELOCATABLE SECTIONS. e e 12-3
12.3.1 Defining Relocatable Sections In The Assembly Source File. 12-3
12.3.2 Linking An Application Containing Relocatable Sections 12-4
12.4 INITIALIZING THE VECTOR TABLE. e 12-5
12.4.1 Initializing Vector Table In The Linker PRM File. 12-5
12.4.2 Initializing Vector Table In Assembly Source File Using A Relocatable Section. 12-7
12.4.3 Initializing Vector Table In Assembly Source File Using An Absolute Section. 12-10
12.5 SPLITTING AN APPLICATION INTO DIFFERENT MODULES 12-12
12.6 USING DIRECT ADDRESSING MODE TO ACCESS SYMBOLS 12-14
12.6.1 Using Direct Addressing Mode To Access External Symbols. 12-14
12.6.2 Using Direct Addressing Mode To Access Exported Symbols. 12-14
12.6.3 Defining Symbols In The DirectPage. 12-14
12.6.4 Using A FOrce Operatoro ottt e 2-15.. 1
12.6.5 Using SHORT SECHONSo e e :15.. 12
12.7 DIRECTLY GENERATING AN .ABSFILE e 12-16
12.7.1 Assembler Source File. 12-16. .
12.7.2 Assembling And Generating The Application. 12-17

CHAPTER 13 ASSEMBLER MESSAGES

13.1 INTRODUCTION . . o oottt e e e e 13-1
13,00 WarNiNg . .o ettt e e e e e s 13-1
13 0.2 EITOr . o e e 13-1
13.1.3 Fatalo 13-1

13.2 MESSAGE CODES. 13-1.
13.2.1 A1000:Conditional Directive NotClosed i, 13-2
13.2.2 A1001: Conditional Else Not Allowed Here 13-3
13.2.3 A1051: Zero Division In EXPression. 13-4
13.2.4 A1052: Right Parenthesis Expected. e 13-5
13.2.5 A1053: Left Parenthesis Expected. 13-6
13.2.6 A1101: lllegal Label: LabellsReserved i 13-7
13.2.7 A1103: lllegal Redefinition Of Label 13-8
13.2.8 A1104: Undeclared User Defined Symbol <SymbolName>. 13-9
13.2.9 A2301: Label ISMISSINGttt 13-9 ..
13.2.10 A2302: Macro Name IS MISSING o oo e 13-10
13.2.11 A2303: Endmislllegal 3-11 . 1
13.2.12 A2304: Macro Definition Within Definition. 13-12

MCUEZASMO08/D For More Information On This Product, ix

Go to: www.freescale.com

Freescale Semiconductor, Inc.

CONTENTS @ MOTOROLA
13.2.13 A2305: lllegal Redefinition Of Instruction Or Directive Name 13-13
13.2.14 A2306: Macro Not Closed AtEnd Of Source. 13-14
13.2.15 A2307: Macro Redefinition. e 13-15
13.2.16 A2308: File Name Expected 13-16
13.2.17 A2309: File Not Found -16.. 13
13.2.18 A2310: lllegal Size Char 3-17.. 1
13.2.19 A2311: Symbol Name Expected 13-18
13.2.20 A2312: String Expected. 180013
13.2.21 A2313: Nesting Of Include Files Exceeds 50 13-19
13.2.22 A2314: Expression Must Be Absolute. 13-19
13.2.23 A2316: Section Name Required e 13-20
13.2.24 A2317: lllegal Redefinition Of Section Name. 13-21
13.2.25 A2318: Section Not Declared 13-22
13.2.26 A2320:Value Too Small 23.. 13-
13.2.27 A2321:Value TOO Big 3-24 . 1
13.2.28 A2323: LabellsiIgnored -25.. 13
13.2.29 A2324: lllegal Base (2,8,10,16).o oottt 13-26
13.2.30 A2325: Comma Or Line End Expected. 13-27
13.2.31 A2326: LabellsRedefined 8..13-2
13.2.32 A2327: ON Or OFF EXpectedt e e 13-28
13.2.33 A2328: Value Is Truncated.t e 29.. 13-
13.2.34 A2329: FAIL FOUNd.o 3-29. 1
13.2.35 A2330: String IsNot Allowed. 13-30
13.2.36 A2332: FAIL FOUNd.o 3-30. 1
13.2.37 A2333: Forward Reference Not Allowed 13-31
13.2.38 A2334: Only Labels Defined In The Current Assembly Unit Can Be
Referenced In An EQU EXPression.o 2..13-3
13.2.39 A2335: Exported Absolute EQU Label Is Not Supported. 13-33
13.2.40 A2336:Value TOO Big 3-34.1
13.2.41 A2338: <MeSsage String>ottt e 13-34
13.2.42 A2341: Relocatable Section Not Allowed: an Absolute file
is currently directly generated 13-35.
13.2.43 A13001: lllegal Addressing Mode. 13-35
13.2.44 A13005: Comma EXpected 13-36
13.2.45 A13007: Relative Branch With lllegal Target 13-36
13.2.46 A13008: lllegal EXPressionottt 37.. 13-
13.2.47 A13101: lllegal Operand Format e 13-38
13.2.48 A13102: Operand Not Allowed e 13-39
13.2.49 A13106: lllegal Size Specification For HCO8-Instruction. 13-39
13.2.50 A13108: lllegal Character At The End Of Line. 13-40
13.2.51 A13109: Positive Value Expected 13-41
13.2.52 A13110: Mask EXpected 2..13-4
13.2.53 A13111: Value Out Of Range e 13-43
13.2.54 A13201: Lexical Error In First Or Second Field 13-44

X For More Information On This Product, MCUEZASMO08/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA CONTENTS
13.2.55 A13203: Not An HCO8 Instruction Or Directive., 13-44
13.2.56 A13401: Value Out Of Range -128..127 13-45
13.2.57 A13403: Complex Relocatable Expression Not Supported. 13-46
13.2.58 A13405: Code Size Per Section Is Limited To32kb 13-47
13.2.59 A13601: Error IN EXPression.ot 13-48
13.2.60 A13602: Error At End Of EXPresSion e e 13-48

MCUEZASMO08/D For More Information On This Product, Xi

Go to: www.freescale.com

Freescale Semiconductor, Inc.
CONTENTS @ MOTOROLA

Xii For More Information On This Product, MCUEZASMO08/D
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA CONTENTS
FIGURES

Figure 1-1. Assembler WINAOW e e e 1-3.

Figure 1-2. Advanced Options Settings Dialog BOX i 1-3

Figure 1-3. Selecting An Object File Format 1-4. ...

Figure 1-4. Assembling AFile 1-4

Figure 1-5. Linker WINdOW ettt 1-6

Figure 1-6. Link Process IN ACHIONttt e e e e e s s 1-7.

Figure 2-1. Tip Of The Day WINdOW. e e 2:1..

Figure 2-2. Assembler WINAOW e e 2-2.

Figure 2-3. Assembler Toolbar e 2-4

Figure 2-4. Assembler Status Bar 2:4.

Figure 2-5. Starting The Global Editor e 2-6. .

Figure 2-6. Starting The Local EdItOr e e e 2-7.

Figure 2-7. Starting The Editor With The Command Line 2-8

Figure 2-8. Starting The Editor With DDE e 2:9...

Figure 2-9. Configuration Dialog 2:10

Figure 2-10. Advanced Options Settings Dialog BoX i 2-12

Figure 4-1. Assembler Input And OutputFiles. 3....4-

Figure 12-1. Starting The MCUez Assembler. i 12-17

Figure 12-2. Displaying The Advanced Options Setting Dialog. 12-18

Figure 12-3. Selecting The Object File Format. 12-18

Figure 12-4. The Assembler Generating An .ABS File Directly. 12-19

MCUEZASMO08/D For More Information On This Product, Xi

Go to: www.freescale.com

Freescale Semiconductor, Inc.
CONTENTS @ MOTOROLA

Xii For More Information On This Product, MCUEZASMO08/D
Go to: www.freescale.com

Freescale Semiconductor, Inc.

TABLES
Table 2-1. MenuU Bar 2-5
Table 2-2. Advanced OpPLiONSt e 2-13
Table 5-1. Assembler Option GroUPSo oo e 5:2. ..
Table 5-2. Assembler SCOPe GroUPSt 5-2 ..
Table 5-3. Assembler Option Details. e 5-3..
Table 7-1. Addressing Mode Notations. i e 7-3. ..
Table 7-2. Operator Precedence. it e e e e e et 7-23.
Table 7-3. Expression - Operator Relationship (unary).
Table 7-4. Expression - Operator Relationship (binary operation)
Table 8-1. Section DireCtives.o e e 8-1
Table 8-2. Constant DIreCtIVES. o 8-1
Table 8-3. Data Allocation Directives o e 8-2.
Table 8-4. Symbol Linkage DIireCtives e e 8-2 ..
Table 8-5. Assembly Control DireCtivest e 8-2 ..
Table 8-6. Assembler List File Directives e, 8-3 ..
Table 8-7. MacCro DireClIVESo e e 8-3
Table 8-8. Conditional Assembly Directives. 8-4. ...
Table 8-9. Conditional TypesS.o 8-24
Table 11-1. OpEerators.ottt e 11-2
Table 11-2. DIreCHVESottt e e 11-2
MCUEZASMO08/D For More Information On This Product, Xiii

Go to: www.freescale.com

Freescale Semiconductor, Inc.
CONTENTS @ MOTOROLA

Xiv For More Information On This Product, MCUEZASMO08/D
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA GENERAL INFORMATION

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION
Features of the ezASM Macro Assembler include:

» Graphical User Interface

* Online Help

» Support for absolute and relocatable assembler code
» 32-bit Application

» Compatible with MCUasm Release 5.3

» Conforms to Motorola Assembly Language Input Standard and ELF/DWARF 2.0 object
code format

1.2 STRUCTURE OF THIS MANUAL

* Graphical User Interface: description of the Macro Assembler GUI

* Environment: description of the Macro Assembler Environment Variables

» Files: description of file types associated with the MCUez Assembler

» Assembler Options detailed description of the full set of Assembler options

e Sections explanation of the function and behavior of sections of code or data

* Assembler Syntax description of the Macro Assembler Input File Syntax

» Assembler Directives list of all directives supported by the assembler

* Macros: description of the function and use of Assembler macros

» Assembler Listing File explanation of the files created during the assembly process
e MCUASM Compatibility : list of supported MCUASM operations and syntax

» Operating Procedures description of MCUez Assembler operating procedures

* Assembler Messagesiescription and examples produced by the Macro Assembler
* Index

MCUEZASMO08/D For More Information On This Product, 11
Go to: www.freescale.com

Freescale Semiconductor, Inc.

GENERAL INFORMATION @ MOTOROLA

1.3

13.1

GETTING STARTED
This section describes how to use the MCUez tool chain. It provides instructions to:

* Write an assembly source file
* Assemble the assembly source file
» Link the application to generate an executable file

Write An Assembly Source File

Once the project has been configured, you can start writing your application. For example,
your source code may be stored in a file nab@si.asm and may look as follows:

XDEF entry ; Make the symbol entry visible for external module.
; This is necessary to allow the linker to find the
; symbol and use it as the entry point for the

; application.

initStk: EQU $AFE ; Initial value for SP
cstSec: SECTION ; Define a constant relocatable section
varl: DC.B5 ; Assign 5 to the symbol varl
dataSec: SECTION : Define a data relocatable section
data: DS.B1 ; Define one byte variable in RAM
codeSec: SECTION : Define a code relocatable section
entry:

LDHX #initStk ; Load stack pointer

TXS

LDA varl
main:

INCA

STA data

BRA main

When writing assembly source code, pay special attention to the following points:

» All symbols referenced outside the current source file (in another source file or in the
linker configuration file) must be externally visible. For this reason, we have inserted the
assembly directive DEF entry

* In order to make debugging from the application easier, we strongly recommend you to
define separate sections for code, constant data (define®@jthand variables (defined
with DS). This enables the symbols located in the variable or constant data sections to be
displayed in the data window component of the Debugger.

* The stack pointer must be initialized when using BSR or JSR instructions in your
application.

MCUEZASMO08/D
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA GENERAL INFORMATION

1.3.2 Assemble A Source File
The following procedure describes how to assemble your source file.

1. Start the macro assembler usingeZdSMbutton in the MCUez shell. The figure below
is an example. Your dialog will reflect the release number of your package. Enter the name
of the file to be assembled in the editable combo box as shown below.

AHC12 Aszsembler C:A\MCUEZADEMOYWMMDS12A\project.im
File Azzembler “iew Help

Dllﬂ'lnl ?lk’?l Itest.asm j il
Ready 10:51:54 2

Figure 1-1. Assembler Window

2. To generate an Elf/Dwarf 2 object file, the Assembler must be correctly set. Select menu
entryAssembler/Advanced . The Advanced Options Settings dialog is displayed:

Advanced Options Settings

t| Huost I Code Generationl Messagesl

[10bject File Farmat

w] Generate a listing file

[0o ok print macro call in izt file

[0o ok prink macro definition in izt file
[100 hat prink macro expansion in list file
100 nat print included files in list file

k. I Cancel | Help |

Figure 1-2. Advanced Options Settings Dialog Box

MCUEZASMO08/D For More Information On This Product, 1-3
Go to: www.freescale.com

Freescale Semiconductor, Inc.

GENERAL INFORMATION

@ MOTOROLA

3. IntheOQutput folder, select the check box in front of the la@dject File

Format . More information is displayed at the bottom of the dialog. Select the radio

buttonELF/DWARF 2.0 Object File Format and clickOK The

Assembler is now ready to generate an EIf /Dwarf 2 object file.

Advanced Options Settings E3 |

Dutput |H|:nst I Code Generationl Messagesl

Object File Format

[w|Generate a listing file

100 nat print macro call in list file

100 nat print macro definition in st file
100 nat print macro expansion in list file
100 nat print included files in list file

Object File Format

" ELF/DWARF 2.0 Absolute File
& ELF/D'w/aRF 20 Object File Farmat

ak I Cancel | Help

Figure 1-3. Selecting An Object File Format

4. The file is assembled as soon as you click o\&semble button:

AHCD8 Assembler D:\MCUEZADEMOAWMMDS DBANproject.ini

File Aszembler Yiew Help

Dlﬁlnl ?l*?l best, 2z j @ il

Top: D:WMCUEZL\WDEMO\WMMDSO084A, test, asn

writing debug listing to D:\MCUEZ\DEMO'WWMMDS0S4Y test.DEG Assemble Button

Output file: "D:\MCUEZ\DEMO,WMMD3034Y test. o™

Code Jize: 14

writing listing to test.L3T

Ready 0%:08:23
Figure 1-4. Assembling A File

1-4
For More Information On This Product,

Go to: www.freescale.com

MCUEZASMO08/D

Freescale Semiconductor, Inc.
@ MOTOROLA GENERAL INFORMATION

The Macro Assembler indicates successful assembling session by printing the number of
generated bytes of code. The mesdagele Size: 14 indicates thatest.asm was
assembled without errors. The Macro Assembler generates a binary object file and a debug
listing file for each source file. The binary object file has the same name as the input module
with extension.0 . The debug listing file has the same name as the input module, with
extensiondbg .

When the assembly optiorl. is specified on the command line, the macro assembler
generates a list file containing the source instruction and the corresponding hexadecimal code.
The list file generated by the Macro Assembler looks as follows:

Abs. Rel. Loc Obj.code Source line
XDEF entry : Make the
: This is
; symbol and
; application.
0000 OAFE initStk: EQU $AFE : Initial value

cstSec: SECTION : Define a

© 00 ~NO OB WN P
© 00 ~NO OB WN P

000000 05 varl: DC.B5 ; Assign 5 to
10 10 dataSec: SECTION : Define a data
11 11 000000 data: DS.B1 ; Define one
12 12
13 13 codeSec: SECTION ; Define a code
14 14 entry:
15 15 000000 45 0AFE LDHX #initStk ; Load stack
16 16 000003 94 TXS
17 17
18 18 000004 C6 xxxx LDA varl
19 19 main:
20 20 000007 4C INCA

N
[
N
[

000008 C7 xxxx STA data
00000B 20FA BRA main

N
N
N
N

MCUEZASMO08/D For More Information On This Product, 1-5
Go to: www.freescale.com

Freescale Semiconductor, Inc.
GENERAL INFORMATION @ MOTOROLA

1.3.3 Link An Application

The linker organizes the code and data sections according to the linker parameter file. Follow
this procedure to link an application:

1. Start your editor and create linker parameter file. You can copy tibfigprm to
test.prm

2. Inthe filetest.prm , change the name of the executable and object filsto .
Modify start and end addresses for ROM and RAM memory areate§oprm

LINK test.abs /* Name of the executable file generated.*/
NAMES test.o END /* Name of the object files in the application */
SEGMENTS
MY_ROM = READ_ONLY 0x800 TO Ox8FF; /* READ_ONLY memory area. */
MY_RAM = READ_WRITE 0x0B0 TO O0xOFF; /* READ_WRITE memory area. */
MY_STK = READ_WRITE 0xA00 TO OxAFF; /* READ_WRITE memory area. */
END
PLACEMENT
.data INTO MY_RAM,; /* Variables should be allocated in MY_RAM
*/
text INTO MY_ROM; /* Code should be allocated in MY_ROM */
.stack INTO MY_STK; /* Stack will be allocated in MY_STK. */
END
INIT entry /* entry is the entry point to the application. */
VECTOR ADDRESS 0xFFFE entry /* initialization for Reset vector.*/

NOTE
Commands in the linker parameter file are described in the Linker manual.

3. Click theezLink button in the MCUez shell.

4. The Linker is started:

ELF Linker D:\MCUEZ\DEMOD\WHMMDS08A\project.ini
File Linker “iew Help
D= 2[x2| Em 7@ 5 |=|
Link Button
Ready 104016 2
Figure 1-5. Linker Window
1-6 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA GENERAL INFORMATION

5. Type the name of the file to be linked in the editable combo box.
6. To start linkingpress the Enter key or the Link button.

After you start the Linker, the window displays the link process:

ELF Linker D:AMCUEZADEMD\WMMDS08A\project.ini

File Linker “iew Help
D] 2[¥2] [restom -] &| ,|=|

Top: test.prm

Feading Parameters

Linking D:\MCUEZ\DEMO\UIMMDS0SA) Ceat.pro
Fead Binary Input Files

Reading file 'D:\MCUEZ\DEMO\WMMD3OSLY test.o!
Marking Referenced Objects

WARPNING L1107: _startuplata not found
WARNING L111l6: Function main not found
Moving Objects Accross 3ections

Feserving Memcory for Startup Data
Allaocating Objects

Preparing 3tartup Data

Generating Code

Generating SFecord File
Generating code

Generating Symbol tahle
Generating relocation tables

Generating DWARF data wersion 2.0
Generating MAP file

Ready 104108 2

Figure 1-6. Link Process In Action

MCUEZASMO08/D For More Information On This Product, 1-7
Go to: www.freescale.com

Freescale Semiconductor, Inc.
GENERAL INFORMATION @ MOTOROLA

1-8 MCUEZASMO08/D
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA GRAPHICAL USER INTERFACE

CHAPTER 2
GRAPHICAL USER INTERFACE

2.1 INTRODUCTION
Run the assembler from the MCUez shell by clickingghASMicon in the toolbar.

2.2 STARTING THE MOTOROLA ASSEMBLER

When the assembler is started, a standard Tip of the Day window containing a helpful hint
about using the assembler is displayed.

= Tip of the Day

@ Did vou know...

You can also azsemble a file by simply dragging it from
the file manager or explorer to the assembler window.

| Cloze I

Figure 2-1. Tip Of The Day Window

[X Show Tips on StartUp

Click Next Tip to see the next piece of information about the assembler. Clage
to close the Tip of the Day dialog.

If you do not want to automatically open the standard Tip of the Day window when the
assembler is started, unche&skhow Tips on StartUp

To re-enable the automatic display of this dialog at assembler start up, thelyd ip
of the Day... . The Tip of the Day dialog will be opened and you can cl&e@w

Tips on StartUp

MCUEZASMO08/D For More Information On This Product, 2-1
Go to: www.freescale.com

Freescale Semiconductor, Inc.
GRAPHICAL USER INTERFACE @ MOTOROLA

2.3 ASSEMBLER GRAPHICAL INTERFACE

When no file name has been specified while starting the assembler, the following window is

displayed:

MCUez Assembler for the HC12 Default Configuration [_ [T <<—Window Title
File Aszembler Wiew Help +¢— Menu Bar

D[] 2[M] o ElE]| £ 1e—Tooibar
Default options: -F: -L
-+&— Content Area

1 | I
Ready D3:42:56 <4— Status Bar

Figure 2-2. Assembler Window

This window is only visible on the screen when you do not specify a file name while starting
the Assembler.

The Assembler window provides a window title, a menu bar, a toolbar, a content area, and a
status bar.

2.3.1 Window Title

The window title displays the Assembler name and the project name. If no project is currently
loaded, Default Configuration is displayed.*Aafter the configuration name indicates that
some values have been changed. Thrdicates changes in options, editor configuration, or
appearance (window position, size, font,...).

2-2 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA GRAPHICAL USER INTERFACE

2.3.2

MCUEZASMO08/D

Content Area

The Content Area is used as a text container where logging information about the assembly
session is displayed. This logging information contains:

* Name of the file being assembled

» Complete name (including full path) of the files processed (main assembly file and all
included files)

» List of errors, warnings, and information messages generated
» Size of the code generated during the assembly session

When a file name is dropped into the Assembly window content area, the corresponding file is
either loaded as configuration or assembled. It is loaded as configuration if the file has the
extension.ini . If not, the file is assembled with the current option settings (see the
Specifying The Input File section in this chapter).

All text in the Assembler window content area can have context information. The context
information consists of two items:

» File name including a position inside of a file
* Message number

File context information is available for all output lines where a file name is displayed. If a file
context is available for a line, double-clicking on this line opens the appropriate file in the
editor specified in your MCUez configuration. Double-clicking the right mouse button alos
opens a context menu. The menu contains an “Open ..” entry if a file context is available. If a
file can not be opened although a context menu entry is present, see the section Editor Settings
Dialog.

The message number is available for any message output. There are three ways to open the
corresponding entry in the help file:

» Select one line of the message and press F1
* Press Shift-F1 and then click on the message text

 Click with the right mouse button at the message text and $d@dg on...

If you press F1 or Shift-F1 on a line that does not have a message number, the main Help file
opens. Thddelp on... item does not appear in the the right mouse button menu if there
IS no message number associated with the message text.

Once an assembly session has completed, an error feedback can be performed automatically
by double clicking on the message in the content area. To allow error feedback, the desired
editor must be configured (see the Error Feedback section in this chapter).

For More Information On This Product, 2-3

Go to: www.freescale.com

Freescale Semiconductor, Inc.
GRAPHICAL USER INTERFACE @ MOTOROLA

2.3.3 Assembler Toolbar
The following figure shows the Assembler toolbar

7 | W2 Ifil:u:u.asm

Command Line Assemble
Context Help Stop Assembling
Help Advanced Options

Save Configuration

Load Configuration

New Configuration

Figure 2-3. Assembler Toolbar

The three buttons on the left are linked with the corresponding entries lefehmenu. The
NewConfigurationE| , theLoad ConfigurationEl and theSave Configuratio‘El enable
you to reset, load and save configuration files for the MCUez Assembler.

TheHelp buttonﬂ and theContext Hel|doutton|ﬁl enable you to open the Help file or the
Context Help.

When pressin]_ﬁl , the mouse cursor changes it’s form displaying a question mark beside the
arrow. A help file is called for the next item which is clicked. Specific help on menus, toolbar
buttons, or on the window areas are available.

The editable combo box contains the list of the last commands executed. Once a command
line has been selected or entered in the combo box, clickssembldutton 2| to execute

the command. Th&top Assemblin@utton enables you to abort the current assembly
session.

The Advanced Optionbuttonﬁl enables you to open thdvanced Optiondialog.

2.34 Status Bar
The following figure shows the Assembler Status Bar:

|Headf 11?41 A
Message Area Current Time

Figure 2-4. Assembler Status Bar

2-4 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA GRAPHICAL USER INTERFACE

When the mouse arrow is pointing to a button in the Toolbar or a menu entry, the Message
Area will display information about the button or menu entry function.

2.3.5

Assembler Menu Bar

The following entries are available in the Menu Bar:

2.3.5.1

Table 2-1. Menu Bar

Menu entry Description
File Assembler Configuration File management.
Assembler Assembler option settings.
View Assembler window settings.
Help Standard Windows Help menu.
File Menu

An assembler Configuration File typically contains the following information:

The Assembler option settings specified in the Assembler dialog boxes.

The list of the last command line executed and the current command line.

The window position, size and font.

The editor, which is specifically associated with the Assembler.

The Tips of the Day settings, including if enabled at start-up and which is the current entry

Assembler configuration information is stored in the specified configuration file. As many
Configuration Files as required for a project can be defined. Switching between different
Configuration Files is performed by choosirgle/Load Configuration and
File/Save Configuration in the Assembler Menu Bar or clicking the
corresponding toolbar buttons.

MCUEZASMO08/D

When choosindrile/Assemble a standard Open File box is opendigplaying the

list of all the.ASM files in the project directory. The input file can be selected using the
features from the standard Open File box. The selected file is assembled as soon as the
Open File box is closed by clickifgK

When choosind-ile/New/Default Configuration the assembler option
settings are reset to the default values. The assembler options that are activated per default
are specified in the Command Line Options chapter.

For More Information On This Product, 2-5

Go to: www.freescale.com

Freescale Semiconductor, Inc.
GRAPHICAL USER INTERFACE @ MOTOROLA

+ When choosing-ile/Load Configuration a standard Open File box is
opened, displaying the list of all thiNI files in the project directory. The configuration
file can be selected using the features from the standard Open File box. The configuration
data stored in the selected file is loaded and will be used by a further assembly session.

« When choosingrile/Save Configuration the current settings are stored in
the configuration file specified on the title bar.
« When choosind-ile/Save Configuration As... a standard Save As

box is openeddisplaying the list of all thelNI files in the project directory. The name

or location of the configuration file can be specified using the features from the standard
Save As box. The current settings are saved in the specified configuratias $it®n as

the Save As box is closed clickifK

+ When choosingFile/Configuration... the Configuration dialog box is
opened. This dialog enables you to specify a specific editor, which should be used for
error feedback and which information must be saved in the configuration file.

2.3.5.1.1 Editor Settings Dialog

The Editor Setting dialog has a main selection entry. Depending on the main type of editor
selected, the content below changes.

There are the following main entries:
« Global Editor (Configured by the Shell)
Configuation [

Editor Settings I S ave Configuration I

i+ iGlobal Editar [Configured by the Shellf

" Local Editar [Configured by the Shell]
" Editar started withh Command Line
" Editar started with DDE

E ditar M ame IWinE dit
E ditar E zecutable I C: A HAPPS WA inE dit328asAinE dit.e

E ditor Argurnents I;t_;f

uze Zf for the filename and %I for the line number

| Ok I Cancel I w1 I Help I

Figure 2-5. Starting The Global Editor

2-6 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA GRAPHICAL USER INTERFACE

This entry is only enabled (black) when an editor is configured in the “[Editor]” section from
the global initialization fildMCUTOOLS.INI.

« Local Editor (Configured by the Shell)

N |

Editar Settings | Save Configuration I

¢ Global Editor [Configured by the Shell)
& | ocal Editor [Configured by the Shell}
= Editar started with Command Line

" Editor started with DDE

Editar Mame "afinE dit

E ditar E xecutable C: WA I NAPFS MWINRE dit328WinE dit.e

E ditor Arguments f

uze Zf far the filename and %1 for the line number

] Cancel o)) i Help

Figure 2-6. Starting The Local Editor

This entry is only enabled (black) when editor is configured in the local configuration file,
usuallyproject.ini in the project directory.

The Global and Local Editor configurations can be read with the Assembler, but not edited.
These entries can be configured with the MCUez Shell.

MCUEZASMO08/D 2-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

GRAPHICAL USER INTERFACE @ MOTOROLA

2-8

« Editor started with Command Line

Configuration |
Editor Settings | Save Ennfiguratinnl

" Global Editor [Configured by the Shell]
= Local Editor [Configured by the Shell)
& Editor started with Comrmand Line

" Editor started with DDE

Command Line

CrpafinappsawinedtIZ2vaing dit exe XF A% |

uze =f far the filename and %l far the line number

] Cancel T m e] Help

Figure 2-7. Starting The Editor With The Command Line

When this editor type is selected, a separate editor is associated with the Assembler for error
feedback. The editor configured in the Shell is not used for error feedback.

Enter the command that should be used to start the editor. Modifier can be specified in the
command line.See the note below for modifiers for file name and line number.

The format from the editor command depends on the syntax which should be used to start the
editor.

Example:
For Winedit 32 bit version use (with an adapted path to the winedit.exe file)

C:\WinEdit32\WinEdit.exe %f /#:%l

For Write.exe use (with an adapted path to the write.exe file, note that write does not support
line number).

C:\Winnt\System32\Write.exe %f

For Motpad.exe use (with an adapted path to the Motpad.exe file, note that Motpad supports
line number).

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA GRAPHICAL USER INTERFACE

C:\TOOLS\MOTPAD\MOTPAD.exe %f::%]

« Editor started with DDE

Configwation K|

Editor Settings | 5 ave Configuration I

™ Global Editor [Configured by the Shell)
i~ Local Editor [Configured by the Shell)
" Editor started with Command Line

(+ {E ditor started with DDE}

Service Hame madey
Topic Mame zyzhen
Client Carmmand [open3F]]

use Zf far the filename and % for the line number

] Cancel) 1 Help

Figure 2-8. Starting The Editor With DDE

Enter the service, topic, and client name to be used for a DDE connection to the editor. All
entries can have modifiers for file name and line number as explained below.

Example:
For Microsoft Developer Studio use the following setting :

Service Name : "msdev"”
Topic Name : "system"
ClientCommand : "[open(%f)]"

* Modifiers

When either entry ‘Editor Started with the Command line’ or ‘Editor started with DDE’ is
selected, the configurations may contain some modifiers to tell the editor which file to open
and at which line:

* The %f modifier refers to the name of the file (including path) where the error has been
detected

* The %I modifier refers to the line number where the message has been detected

MCUEZASMO08/D 2-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
GRAPHICAL USER INTERFACE @ MOTOROLA

The format from the editor command depends on the syntax used to start the editor. Please
check your editor manual to define the command line which should be used to start the editor.
2.3.5.1.2 Important Remarks

Caution should be taken using %l: this modifier can only be used with an editor which can be
started with a line number as a parameter. Editors such as WinEdit version 3.1 or lower, and
Notepad do not allow this kind of parameter. This kind of editor can be started using the file

name as a parameter. Choosing the menu &aryl 0 will jump to the line where the error

has been detected.

In that case the Command Line looks like\WINAPPS\WINEDIT\Winedit.EXE %f
Check your editor manual to define the Command Line used to start the editor.

NOTE

If you are using a word processing editor (Microsoft Word, Wordpad,...),
make sure you save your input file as ASCII text file, otherwise the
Assembler will have trouble to process them.

2.3.5.1.3 Configuration Dialog

The following figure shows the Configuration dialog:

Configuration Ed |

Editar Settings Save Configuration |

[tems to Save
.................. Save
W Dptions
[V Editor Configuratiorn Save fs

¥ Appearance [Pozition, Size, Font]

¥ Sawve on Exit

Al marked itemz are saved. Already contained, not
changed items remain walid

k. I Cancel | Ll | Help |

Figure 2-9. Configuration Dialog

2-10 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA GRAPHICAL USER INTERFACE

Save operation options are contained on the Save Configuration page of the Configuration
dialog. In the Save Configuration dialog, you can control the configuration items to be saved:

MCUEZASMO08/D

Options : when this mark is set, the current option settings are stored in the
configuration files. By disabling this option, the last saved settings remain valid

Editor Configuration : when this mark is set, the current editor setting are
stored in a configuration file. By disabling this options, the last saved content remains
valid.

Appearance (Position, Size, Font) : When this mark is set, the
window position (loaded at start-up), command line content, and command line history
settings are saved in the configuration file. By disabling this option, the previous settings
remains valid.

NOTE

By disabling selective options only some parts of a configuration file can
be written. For example when the best Assembler options are found, the
save option mark can be removed. Then future save commands will not
modify the options any more.

Save on Exit . If this option is set, the Assembler will write the configuration on
exit. No question will appear to confirm this operation. If this option is not set, the
Assembler will not write the configuration at exit, even if options or another part of the
configuration has changed. No confirmation will appear in any case when closing the
Assembler

NOTE

Most settings are stored in the configuration file, but the list of recently
used configurations and the settings in the Save Configuration dialog are
stored in the assembler sectiofdCUTOOLS.INI.

For More Information On This Product, 2-11

Go to: www.freescale.com

Freescale Semiconductor, Inc.
GRAPHICAL USER INTERFACE @ MOTOROLA

2.3.5.2 Assembler Menu

This menu allows you to customize and set Assembler options:

+ Assembler/Advanced defines the options to be activated when assembling an
input file.

« Assembler/Stop Assembly immediately stops the current assembly session.
2.3.5.3 View Menu

This menu enables you to customize the Assembler window. You can hide or display the
Status Bar and Toolbar, define the window font, and clear the window. Choose:

« View/Toolbar to hide or display the Assembler Window Toolbar
+ View/Statusbar to hide or display the Assembler Window Status Bar

« View/Log... to customize the output in the Assembler Window Content Area

« View/Log.../Change Font to open a standard Font Selection box that
changes the font in the Assembler Window Content Area

« View/Log.../Clear Log to clear the Assembler Window Content Area

2.3.6 Advanced Options Settings Dialog Box
This dialog box enables you to set/reset assembler options, as shown in the figure below:

Advanced Optionz Settings E3

[]0bject File Format

[w|Generate a listing file

|00 nat prink macro call in list file

[Do not prink macro definition in list file
100 not prink macro expanzion in list file
100 not print included files in list file

0k I Cancel | Help |

Figure 2-10. Advanced Options Settings Dialog Box

2-12 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA GRAPHICAL USER INTERFACE

The available options are arranged in different groups:

Table 2-2. Advanced Options

Option Group Description
Output Lists options related to the output files (type of files to be generated).
Input Lists options related to the input file.
Host Lists options related to the host.
Code Generation Lists options related to code generation (memory models,...).
Messages Lists options that control error message generation.

To set an assembly option, click the box to the left of the option. When you select an option
that requires additional parameters, an edit box or subwindow opens and prompts you for the
additional information.

The Assembler options specified in project files (using the MCUez shell) are automatically
displayed in the Advanced Options Settings dialog.

2.3.7 Specifying The Input File

The input file to be assembled can be specified in several ways. During the assembly session,
the options will be set according to the configuration provided by the user in the Advanced
Options Settings dialog box. Before assembling a file make sure you have associated a Project
Directory with your assembler.

You can specify the input file through the Editable Combo box, the Assemble item in the File
menu, or by using the “drag and drop” feature.

2371 Editable Combo Box
Use the Editable Combo Box in the Assembler Toolbar to:

* Assemble a new file - enter a new file name and Assembler options in the command line

* Assemble a previously assembled filelick the pull-down arrow to the right of the
Editable Combo Box and choose from the list of previously assembled files that appears

To assemble the file you have indicated, select the Assemble button.

2.3.7.2 File/Assemble

ChooseFile/Assemble to open a standard Open File box. Browse and select the
desired file. When you click th@pen button, the previous dialog is closed and the selected
file is assembled.

MCUEZASMO08/D 2-13

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

GRAPHICAL USER INTERFACE @ MOTOROLA

2.3.7.3

2.3.8

Drag And Drop

Use the “drag and drop” feature to “drag” a file from an external source and “drop” it into the
Assembler Window. A file dropped in the Assembler Window is immediately assembled
unless the file has anifi ” extension. Files with an.ini ” extension are considered
configuration files and are immediately loaded, not assembled. To assemble a source file with
an “ini " extension, use the Editable Combo Box, or the Assemble item from the File
Menu.

Error Feedback
After a source file has been assembled, you can view the detected errors and warnings in
several ways. The error message format is:
‘>> <FileName>, line <line number>, col <column number>, pos <absolute position in file>
<Portion of code generating the problem>
<message class> <message number>: <Message string>'

Example:

>> in “C:\DEMO\fiboerr.asm”, line 76, col 20, pos 1932
BRA label

N

ERROR A1104: Undeclared user defined symbol: label

2.3.8.1 Error Feedback Using Information From The Assembler Window

Once a file has been assembled, the Assembler Window Content Area displays a list of all the
errors or warnings detected. Any editor can be used to open the source file and correct errors.

2.3.8.2 Error Feedback From A User-Defined Editor

The editor for Error Feedback must be configured through the MCUez Shell or the
Configuration dialog box. The Error Feedback process differs from editor to editor, depending
on the editor’s ability to start from a line number in the Command Line.

2.3.8.2.1 Editors That Can Start With A Line Number On The Command Line

2-14

Editors like Motpad, WinEdit (v.95 or higher) or Codewright can be started with a line
number in the command line. When these editors have been correctly configured, they can be
activated automatically by double clicking on an error message. The configured editor will be
started, the file where the error occurs is automatically opened and the cursor is placed on the
line where the error was detected.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA GRAPHICAL USER INTERFACE

2.3.8.2.2 Editors That Cannot Start With A Line Number On The Command Line

Editors such as WinEdit (v.31 or lower), Notepad, and Wordpad cannot be started with a line
number in the command line. When these editors have been correctly configured, they can be
activated automatically by double-clicking an error message. The configured editor will be
started, the file where the error occurs is automatically opened. To scroll to the position where
the error was detected:

Activate the Assembler
Click the line that generated the message error (the line is highlighted on the screen)

Press Citrl-C to copy the line

SelectSearch/Find to open the Find dialog box

1.

2

3

4. Activate the editor
5

6. Press Ctrl-V to paste the line in the Edit box
7

Click Forward to jump to the error’s position

MCUEZASMO08/D 2-15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
GRAPHICAL USER INTERFACE @ MOTOROLA

2-16 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ENVIRONMENT

CHAPTER 3
ENVIRONMENT

3.1 INTRODUCTION

This part of the manual describes the environment variables used by the Assembler. Some of
the environment variables are also used by other tools (e.g. Linker).

Various parameters of the Assembler may be set in an environment using environment
variables. The syntax is always the same:

KeyName=ParamDef

Example:

GENPATH=CAINSTALL\LIB;D:\PROJECTS\TEST

NOTE

No blanks are allowed before and after the tharacter in the definition
of an environment variable.

These parameters may be defined in several ways:
* Using system environment variables supported by your operating system.

+ Putting the definitions in a file calddEFAULT.ENV/(.hidefaults for UNIX)
in the default directory.

» Putting the definitions in a file set by the system environment variable ENVIRONMENT.
NOTE
The default directory can be set via environment variable DEFAULTDIR.

When looking for an environment variable, all programs first search the system environment,

then the DEFAULT.ENV (.hidefaults for UNIX) file and finally the global
environment file given by ENVIRONMENT. If no definition can be found, a default value is
assumed.

NOTE

The environment may also be changed usinglthi®v Assembler option.

MCUEZASMO08/D 3-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ENVIRONMENT @ MOTOROLA

3.2 PATHS

Most environment variables contain path lists telling where to look for files. A path list is a list
of directory names separated by semicolons following the syntax below:

PathList = DirSpec { “, " DirSpec}.
DirSpec =[“*”] DirectoryName.

Example:

GENPATH=CAINSTALL\LIB;D:\PROJECTS\TESTS

If a directory name is preceded by an asteridkK’)(“the programs recursively search the
complete directory tree for a file, not just the given directory itself. The directories are
searched in the order they appear in the path list.

Example:

LIBPATH=*C\INSTALL\LIB

We strongly recommend working with MCUez shell and setting the environment by means of
a DEFAULT.ENV file in your project directory (Thisproject dir. ” can be set in

the MCUez shell configure dialog box. This way, you can have different projects in different
directories, each with its own environment.

Some environment variables have a synonym that may be used compatibly with older releases
of the assembler.

3.3 LINE CONTINUATION

You can define an environment variable over different lines using the line continuation
character, :

ASMOPTIONS=\
-W2\ is the same as: ASMOPTIONS=-W2 -WmsgNe=10
-WmsgNe=10

Line Continuation may be dangerous when used with paths. The code:

GENPATH=.\
TEXTFILE=.\txt will result in: GENPATH=.TEXTFILE=.\txt

To avoid such problems, use a semicolgri, ‘at the end of a path if there is \a™at the end
of the code line such as:

GENPATH=.\;
TEXTFILE=.\txt

3-2 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ENVIRONMENT

3.4 ENVIRONMENT VARIABLES DESCRIPTIONS

The remainder of this section is devoted to describing each of the environment variables
available for the Assembler. The environment variables are listed in alphabetical order and are
divided into the sections described in the chart below.

Topic Description

Synonym For some environment variables a synonym also exists. Those
synonyms may be used for older releases of the Assembler and will
be removed in the future. A synonym has lower precedence than the
environment variable.

Syntax Specifies the syntax of the environment variable in a EBNF format.

Arguments Describes and lists optional and required arguments for the variable.

Default Shows the default setting for the variable.

Description Provides a detailed description of the environement variable and how
to use it.

Example Gives an example of usage, and effects of the variable where

possible. The examples show an entry in the default.env

See Also Names related sections.

MCUEZASMO08/D 3-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ENVIRONMENT @ MOTOROLA

3.4.1

3.4.2

3-4

ASMOPTIONS
Synonym: None
Syntax: ‘ASMOPTIONS= {<option>}
Arguments: <option>: Assembler command line option

Description: If this environment variable is set, the Assembler appends its contents to its
command line each time a file is assembled. It can be used to globally specify
certain options that should always be set, so you don’t have to specify them each
time a file is assembled.

Options enumerated here must be valid assembler options and are separated by
space characters.

Example: ASMOPTIONS=-W?2 -L
See Also: Assembler Options chapter in this manual.

GENPATH
Synonym: HIPATH
Syntax: ‘GENPATH={< path>}
Arguments: <path>: Paths separated by semicolons, without spaces.
Description: The macro assembler will look for the source or included files first in the project
directory, then in the directories listed in the environment variable GENPATH.
NOTE

If a directory specification in this environment variable starts with an
asterisk {(*”), the entire directory tree is searched recursively, i.e. all
subdirectories and their subdirectories are searched. Within one level in the
tree, search order of the subdirectories is indeterminate (not valid for
Win32).

Example: GENPATH=\sources\include;...\..\headers;
See Also: None

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ENVIRONMENT

3.4.3

3.4.4

3.4.5

MCUEZASMO08/D

ABSPATH
Synonym: None
Syntax: ‘ABSPATH= {< path>}
Arguments: <path>: Paths separated by semicolons, without spaces.

Description: This environment variable is only relevant when absolute files are directly
generated by the macro assembler instead of object files. When this environment
variable is defined, the Assembler will store the absolute files it produces in the
first directory specified. If ABSPATH is not set, the generated absolute files will
be stored in the directory where the source file was found.

Example: ABSPATH=\sources\bin;..\.\headers;
See Also: None

OBJPATH
Synonym: None
Syntax: ‘OBJPATH= {< path>}
Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the assembler will store the object
files it produces in the first directory specified. If OBJPATH is not set, the
generated object files will be stored in the directory where the source file was
found.

Example: OBJPATH=\sources\bin;..\..\headers;
See Also: None

TEXTPATH
Synonym: None
Syntax: ‘TEXTPATH= {< path}
Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the assembler will store the listing
files it produces in the first directory specified. If TEXTPATH is not set, the
generated listing files will be stored in the directory where the source file was
found.

Example: TEXTPATH=\sources\txt;..\..\headers;
See Also: None

For More Information On This Product, 3-5

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ENVIRONMENT @ MOTOROLA

3.4.6

3-6

SRECORD
Synonym: None
Syntax: ‘SRECORD= RecordType

Arguments: <Record Type>: Force the type for the Motorola S record which must be
generated. This parameter may take the value “S1”, “S2”, or “S3".

Description: This environment variable is only relevant when absolute files are directly
generated by the macro assembler instead of object files. When this environment
variable is defined, the Assembler will generate a Motorola S file containing
records from the specified type (S1 records when S1 is specified, S2 records when
S2 is specified and S3 records when S3 is specified).

When the SRECORD variable is not set, the type of S record generated will
depend on the size of the target address space that is loaded. If the address space
can be coded on 2 bytes, an S1 record is generated. If the address space is coded
on 3 bytes, an S2 record is generated. Otherwise, an S3 record is generated.

NOTE

If the environment variable SRECORD is set, it is the user responsibility to
specify the appropriate S record type. If you specify S1 while your code is
loaded above OxXFFFF, the Motorola S file generated will not be correct,
because the addresses will all be truncated to 2 byte values.

Example: SRECORD=S2
See Also: None

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ENVIRONMENT

3.4.7

ERRORFILE

Synonym:

Syntax:

None
‘ERRORFILE= < filename>

Arguments: <filename>: File name with possible format specifiers.
Description: The environment variable ERRORFILE specifies the name for the error file (used

Example:

MCUEZASMO08/D

by the Compiler or assembler).

Possible format specifiers are:

'%n'": Substitute with the file name, without the path.

'%p': Substitute with the path of the source file.

'%f": Substitute with the path and name (the same as '%p%n’).
In case of an illegal error file name, a notification box is shown.
ERRORFILE=MyErrors.err

Lists all errors into the fileMyErrors.err " in the current directory.
ERRORFILE=\tmp\errors

Lists all errors into the file “errors” in the directory \tmp.
ERRORFILE=%f.err

Lists all errors into a file with the same name as the source file (with extension
.err) into the same directory as the source file. For example, if you assemble a
file \sources\test.asm , an error list filesources\test.err

will be generated.

ERRORFILE=\dir1\%n.err

Generates an error list filile \dir1\test.err . for a source file
test.asm

ERRORFILE=%p\errors.txt

Generates an error list fildirl\dir2\errors.txt , for a source file

\dir1\dir2\test.asm

If the environment variable ERRORFILE is not set, the errors are written to the
default error file. The default error file name is dependent upon how the
assembler is configured and started. If a file name is provided in the assembler
command line, errors are written to the EDOUT file (to the name-specified file)
in the project directory. If no file name is provided, errors are written to the
ERR.TXT file in the project directory.

For More Information On This Product, 3-7

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ENVIRONMENT @ MOTOROLA
Example: Another example shows the usage of this variable to support correct error
feedback with the WinEdit Editor which looks for an error file called
EDOUT:

Installation directory: ENINSTALL\PROG
Project sources: DAMEPHISTO
Common Sources for projects: E\CLIB

Entry in default.env (D:\MEPHISTO\DEFAULT.ENV):
ERRORFILE=EAINSTALL\PROG\EDOUT

Entry in WINEDIT.INI (in Windows directory):
OUTPUT=EANINSTALL\PROG\EDOUT
See Also: None

3-8 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ENVIRONMENT

3.4.8

3.4.9

MCUEZASMO08/D

INCLUDETIME: Creation Time In Object File
Synonym: None
Syntax: INCLUDETIME= (“ON | “OFF)
Arguments: ‘ON: Include time information into object file.
“OFFP: Do not include time information into object file.
Default: “ON

Description: Normally each object file created contains a time stamp indicating the creation
time and data as strings. So whenever a new file is created by one of the tools, the
new file gets a new time stamp entry.

This behavior may be undesired if for SQA reasons a binary file compare has to
be performed. Even if the informations in two object files are the same, the files
do not match exactly because the time stamps are not the same. To avoid such
problems this variable may be sef@-F In this case the time stamp strings in

the object file for date and time are “none” in the object file.

The time stamp may be retrieved from the object files using a decoder.
Example: INCLUDETIME=OFF
See also: Environment variable COPYRIGHT

Environment variable USERNAME

USERNAME: User Name In Object File
Synonym: None
Syntax: ‘USERNAME=user>
Arguments: <user>: Name of user.
Default: None

Description: Each object file contains an entry identifying the user who created the object file.
This information may be retrieved from the object files using a decoder.

Example: USERNAME=HIWARE AG, CH-4058 Basel
See Also: Environment variable COPYRIGHT
Environment variable INCLUDETIME

For More Information On This Product, 3-9

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ENVIRONMENT @ MOTOROLA

3-10 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA FILES

CHAPTER 4
FILES

4.1 INTRODUCTION

This chapter describes all file types associated with the MCUez application.

4.2 INPUT FILES

The Assembler accepts two forms of input files:

e Source Files
* Include Files

42.1 Source Files

The macro assembler takes any file as input and does not require the file name to have a
special extension. Source files will be searched first in the project directory and then in the
GENPATH directory.

422 Include File

The search for include files is governed by the environment variable GENPATH. Include files
are searched first in the project directory, then in the directories given in the environment
variable GENPATH. The project directory is set via MCUez shell or the environment variable
DEFAULTDIR.

4.3 OUTPUT FILES

The Assembler produces six different types of output files:

* Object Files

* Absolute Files

* Motorola S Files

» Listing Files

» Debug Listing Files
» Error Listing Files

MCUEZASMO08/D 4-1

For More Information On This Product,
Go to: www.freescale.com

FILES

Freescale Semiconductor, Inc.
@ MOTOROLA

43.1

4.3.2

4.3.3

4.3.4

4-2

Object Files

After a successful assembling session, the Macro Assembler generates an object file
containing the target code as well as some debugging information. This file is written to the
directory given in the environment variable OBJPATH. If that variable contains more than one
path, the object file is written in the first directory given. If this variable is not set, the object
file is written in the directory the source file was found. Object files always get the extension
.0 .

Absolute Files

When an application is encoded in a single module and all the sections are absolute sections,
the user can decide to generate an absolute file instead of an object file. This file is written to
the directory given in the environment variable ABSPATH. If that variable contains more than
one path, the absolute file is written in the first directory given. If this variable is not set, the
absolute file is written in the directory the source file was found. Absolute files always get the
extensionabs .

Motorola S Files

When an application is encoded in a single module and all the sections are absolute sections,
the user can decide to generate an absolute file instead of an object file. In that case, a
Motorola S record file is generated at the same time. This file can be burnt into an EPROM. It
contains information stored in all READ_ONLY sections in the application. The extension for
the generated Motorola S record file depends on the setting from the variable SRECORD.

« If SRECORD = S1, the Motorola S record file gets the extensibn.
» If SRECORD = S2, the Motorola S record file gets the extensign.
« If SRECORD = S3, the Motorola S record file gets the extensign.

* If SRECORD is not set, the Motorola S record file gets the extersion

This file is written to the directory given in the environment variable ABSPATH. If that
variable contains more than one path, the motorola S file is written in the first directory given.
If this variable is not set, the file is written in the directory the source file was found.

Listing Files

After a successful assembling session, the Macro Assembler generates a listing file containing
each assembly instruction with its associated hexadecimal code. This file is generated as soon
as the optionL is activated, even when the macro assembler generates an absolute file. This
file is written to the directory given in the environment variable TEXTPATH. If that variable
contains more than one path, the listing file is written in the first directory given. If this
variable is not set, the listing file is written in the directory the source file was found. Listing
files always get the extensiafst . The Assembler Listing File chapter in this manual
describes the format of this file.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA FILES

4.3.5

4.3.6

Debug Listing Files

After a successful assembling session, the Macro Assembler generates a debug listing file,
which will be used to debug the application. This file is always generated, even when the
macro assembler generates an absolute file. The debug listing file is a duplicate of the source,
where all the macros are expanded and the include files merged. This file is written to the
directory given in the environment variable OBJPATH. If that variable contains more than one
path, the debug listing file is written in the first directory given. If this variable is not set, the
file is written in the directory the source file was found. Debug listing files always get the
extensiondbg .

Error Listing File

If the Macro Assembler detects any errors, it does not create an object file but an error listing
file. Name and location of this file depends on the settings from the environment variable
ERROREFILE (also see Environment, Environment Variable ERRORFILE).

If the Macro assembler’s window is open, it displays the full path of all include files read.
After successful assembling, the number of code bytes generated and the number of global
objects written to the object file is displayed. If an error has been detected while assembling
the source file, an error listing file is generated.

MCUEZASMO08/D

1.current dir e 1.current dir
asm | 2.GENPATH ' 2.GENPATH
Assembler
ERRORFILE
1-OBJPAT!'| 1. TEXTPATH
-0 2.Source file path 2.Source file path

ERR.TXT
.abs Y or

EDOUT
.dbg st

Figure 4-1. Assembler Input And Output Files

For More Information On This Product, 4-3

Go to: www.freescale.com

FILES

Freescale Semiconductor, Inc.
@ MOTOROLA

4-4

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER OPTIONS

5.1

5.2

CHAPTER 5
ASSEMBLER OPTIONS

INTRODUCTION

The Assembler offers a number of options that you can use to control the Assembler
operation. Options are composed of a minus/dash, followed by one or more letters or
digits. Anything not starting with a minus/dash is assumed to be the name of a source file to be
assembled. Assembler options may be specified on the command line or in the
ASMOPTIONS environment variable. Typically, each Assembler option is specified only
once per assembling session.

NOTE
Arguments for an option must not exceed 128 characters.

Command line options are not case sensitived.i*” is the same as-li ”. To facilitate
specifying several options belonging to the same group, elgc™ and “~LI ”, the
Assembler allows coalescing options in the same groupleci“ ” or “—LiC " instead of
“—Lc—-Li .

NOTE

It is not possible to coalesce options in different groups, elgc W1~
cannot be abbreviated by the term&C1” or “~LCWL1.

ASMOPTIONS

If this environment variable is set, the Assembler appends its contents to its command line
each time a file is assembled. It can be used to globally specify certain options that should
always be set, so you don’t have to specify them each time a file is assembled. Assembler
options are grouped as follows:

MCUEZASMO08/D 5-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER OPTIONS @ MOTOROLA

Table 5-1. Assembler Option Groups

Group Description

HOST Lists options related to the host.

OUTPUT Lists options related to output file generation (which type of file to be
generated).

INPUT Lists options related to the input file

CODE Lists options related to code generation (memory models, float
format,...).

INPUT Lists options related to input file processing (which type of file is
processed).

MESSAGE Lists options controlling generation of error messages.

The group corresponds to the property sheets of the graphical option settings.
Scope of each option:

Table 5-2. Assembler Scope Groups

Scope Description

Application The option has to be set for all files (Assembly Units) of an
application. A typical example is an option to set the memory model.
Mixing object files will have unpredictable results.

Assembly Unit This option can be set differently for each assembling unit of an
application. Mixing objects in an application is possible.

None The option scope is not related to a specific code part. A typical
example is options for the message management.

The available options are arranged into different groups, and a sheet is available for each of
these groups. The content of the list box depends on the selected sheets.

5-2 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER OPTIONS

5.3 ASSEMBLER OPTION DESCRIPTIONS

The remainder of this section describes each of the assembler options available for the
assembler. The options are listed in alphabetical order and described by the following

sections.
Table 5-3. Assembler Option Details
Topic Description
Group HOST, OUTPUT, CODE, INPUT, MESSAGE, or VARIOUS (options
in the some of the groups cannot be selected through the Advanced
Options Settings Dialog).
Scope Application, Assembly Unit, or None.
Syntax Specifies the syntax of the option in a EBNF format.
Arguments Describes and lists optional and required arguments for the option.
Default Shows the default setting for the option.
Description Provides a detailed description of the option and how to use it.
Example Gives an example of usage, and effects of the option where possible.
Assembler settings, source code and/or Linker PRM files are
displayed where applicable. The examples show an entry in the
default.env for PC or in the .hidefaults for UNIX.
See Also Related options.
MCUEZASMO08/D 5-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER OPTIONS @ MOTOROLA
53.1 -Ci

-Cl: Set Case Sensivity On Label Names OFF

Group: INPUT

Scope: Assembly Unit

Syntax: "-CI".

5.3.2

5-4

Arguments: None
Default: None

Description: This switches case sensitivity on label names OFF. When this option is activated,
the assembler do not care about case sensitivity for label name.

This options can only be specified when the assembler generates directly absolute
file (Option -FA2 must be activated).

Example: When case sensitivity on label names is switched off, the assembler will not
generate any error message for following code:

ORG $200
entry: NOP
BRA Entry

The instruction ‘BRA Entry’ will branch on the laberitry . Per default, the
assembler is case sensitive on label names. For the assembler tHenae!
and ‘entry '’ are two distinct labels.

See also: P&E to MCUeZ Assembler Converter manual.

-Env

Set Environment Variable

Group: HOST
Scope: Assembly Unit
Syntax: “Env ” <EnvironmentVariable>=" <VariableSetting>

Arguments: <EnvironmentVariable>: Environment variable to be set.
<VariableSetting>: Variable setting.

Default: None

Description: Sets an environment variable.

Example: ASMOPTIONS=-EnvOBJPATH=\sources\obj
This is the same as:
OBJPATH=\sources\obj
in thedefault.env

See Also: Environment

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER OPTIONS

5.3.3

MCUEZASMO08/D

-F2/-FA2
Object File Format

Group: OUTPUT
Scope: Application
Syntax: “F2"“-FA2 ™).
Arguments: “F2 ": ELF/DWARF 2.0 object file format
“-FA2 ": ELF/DWARF 2.0 absolute file format (default setting)
Default: -FA2
Description: Defines the format for the output file generated by the Assembler.
With the option-F2 set, the Assembler produces an ELF/DWARF object file.

With the option-FAZ2 set, the Assembler produces an ELF/DWARF absolute
file.
Example: ASMOPTIONS=-FA2

See Also: None

For More Information On This Product, -5

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER OPTIONS @ MOTOROLA
534 -H

Short Help

Group: VARIOUS

Scope: None

Syntax: “H”

Arguments: None

Default: None

Description: TheH option causes the Assembler to display a short list of available options.
Example: -H may produce the following list:

HOST:
-Env Set environment variable (-Env<envVar>=<value>)
OUTPUT:
-F Object File Format
-FA2: ELF/DWARF 2.0 Absolute File
-F2: ELF/DWARF 2.0 Object File Format
-L Generate a listing file
-Lc Do not print macro call in list file
-Ld Do not print macro definition in list file
-Le Do not print macro expansion in list file
-Li Do not print included files in list file
CODE:
-M Memory Model
-Ms: Small Memory Model (default)
MESSAGE:
-N Show notification box in case of errors
-W1 Don't print INFORMATION messages
-W2 Don't print INFORMATION or WARNING messages
-WmsgFb Set message file format for batch mode
-WmsgFbv: verbose format
-WmsgFbm: Microsoft format (default)
-WmsgFi Set message format for interacitve mode
-WmsgFiv: Verbose format (default)
-WmsgFim: Microsoft format
-WmsgNe Maximum number of errors (-WmsgNe<number>), default 50
-WmsgNi Maximum number of informations (-WmsgNi<number>fadilt 50
-WmsgNw Maximum number of warnings (-WmsgNw<number>), default 50
-WmsgSd Set message to disable (-WmsgSd<number>)
-WmsgSe Set message to error (-WmsgSe<number>)
-WmsgSi Set message to information (-WmsgSi<number>)
-WmsgSw Set message to warning (-WmsgSw<number>)
VARIOUS:
-H Prints this list of options
-V Prints the assembler version

See Also: None

5-6 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA

ASSEMBLER OPTIONS

5.35 -L
-L: Generates a Listing File
Group: OUTPUT
Scope: Assembly unit
Syntax: "L

Arguments: none

Default:

none

Description: Switches on generation of the listing file. This listing file will have the same name
as the source file, but with the extension “.LST”". The listing file contains macro
definition, invocation and expansion lines as well as expanded include files.

Example: ASMOPTIONS=-L

In the following example of assembly code, the macro cpChar accept two param-
eters. The macro copies the value of the first parameter to the second one.

When option -L is specified, the following portion of code

XDEF Start
MyData: SECTION
charl: DSB 1
char2: DSB 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2
NOP

Generates following output in the assembly listing file:

Motorola HCO08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997
Abs. Rel. Loc Obj.code Source line

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DS.B 1
4 4 000001 char2: DSB 1
5 5 INCLUDE "macro.inc"
6 1li cpChar: MACRO

7 2i LDA\1

8 3i STA\2

9 4 ENDM

10 5i

11 6i

12 6 CodeSec: SECTION
13 7 Start:

MCUEZASMO08/D 5-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER OPTIONS @ MOTOROLA

14 8 cpChar charl, char2
15 2m 000000 C6 xxxx + LDA charl
16 3m 000003 C7 xxxx + STA char2
17 9 000006 9D NOP

18 10 000007 9D NOP

Content of included files, as well as macro definition, invocation and expansion
are stored in the listing file. Refer to Chapter 10, “Assembler Listing File,” for
detailed information.

See also: Li, Lc, Ld, Le

5-8 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER OPTIONS
5.3.6 -Lc

-Lc: No Macro Call in Listing File

Group: OUTPUT

Scope: Assembly unit

Syntax: "-Lc"

Arguments: none
Default: none

Description: Switches on generation of the listing file, but macro invocations are not present in
the listing file. The listing file contains macro definition and expansion lines as
well as expanded include files.

Example: ASMOPTIONS=-Lc

In the following example of assembly code, the macro cpChar accept two
parameters. The macro copies the value of the first parameter to the second one.

When option -Lc is specified, following portion of code
cpChar: MACRO

LDA\1
STA\2
ENDM
codeSec: SECTION
Start:
cpChar charl, char2
NOP
NOP
generates following output in the assembly listing file:
55 cpChar:MACRO
6 6 LDA\1
7 7 STA\2
8 8 ENDM
9 9 CodeSec:SECTION
10 10 Start:

12 6m 000000 C6 xxxx + LDA charl
13 7m 000003 C7 xxxx + STAchar2
14 12 000006 9D NOP
15 13 000007 9D NOP

Content of included files, macro definition and expansion are stored in the list file.
The source line containing the invocation of the macro is not present in the listing
file. Refer to Chapter 10, “Assembler Listing File,” for detailed information.

See also: L

MCUEZASMO08/D 5-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER OPTIONS @ MOTOROLA
5.3.7 -Ld

-Ld: No Macro Definition in Listing File

Group: OUTPUT

Scope: Assembly unit

Syntax: "-Ld"

Arguments: none
Default: none

Description: Switches on generation of the listing file, but macro definitions are not present in
the listing file. The listing file contains macro invocation and expansion lines as
well as expanded include files.

Example: ASMOPTIONS=-Ld

In the following example of assembly code, the macro cpChar accept two
parameters. The macro copies the value of the first parameter to the second one.
When option -Ld is specified, the following portion of code

cpChar: MACRO
LDA\1
STA\2
ENDM
codeSec: SECTION
Start:
cpChar charl, char2
NOP
NOP
main: BRA main

generates following output in the assembly listing file:

5 5 cpChar: MACRO
9 9 codeSec: SECTION
10 10 Start:
11 11 cpChar charl, char2

12 6m 000000 C6 xxxx + LDA charl
13 7m 000003 C7 xxxx + STA char2
14 12 000006 9D NOP
15 13 000007 9D NOP

Content of included files, as well as macro invocation and expansion are stored in
the listing file. The source code from the macro definition is not present in the
listing file. Refer to Chapter 10, “Assembler Listing File,” for detailed
information.

See also: L

=10 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER OPTIONS
53.8 -Le

-Le: No Macro Expansion in Listing File

Group: OUTPUT

Scope: Assembly unit

Syntax: "-Le"

Arguments: none
Default: none

Description: Switches on generation of the listing file, but macro expansions are not present in
the listing file. The listing file contains macro definition and invocation lines as
well as expanded include files.

Example: ASMOPTIONS=-Le

In the following example of assembly code, the macro cpChar accept two
parameters. The macro copies the value of the first parameter to the second one.
When option -Le is specified, the following portion of code

cpChar: MACRO

LDA\1
STA\2
ENDM
codeSec: SECTION
Start:
cpChar charl, char2
NOP
NOP
generates following output in the assembly listing file:
5 5 cpChar: MACRO
6 6 LDA\1
77 STA\2
8 8 ENDM
9 9 CodeSec: SECTION
10 10 Start:
11 11 cpChar charl, char2

14 12 000006 9D NOP
15 13 000007 9D NOP

Content of included files, as well as macro definition and invocation are stored in
the listing file. The macro expansion lines are not present in the listing file. Refer
to Chapter 10, “Assembler Listing File,” for detailed information.

See also: L

MCUEZASMO08/D 5-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER OPTIONS @ MOTOROLA
539 -Li

-Li: No included File in Listing File

Group: OUTPUT

Scope: Assembly unit

Syntax: "-Li"

Arguments: none
Default: none

Description: Switches on generation of the listing file, but include files are not expanded in the
listing file. The listing file contains macro definition, invocation and expansion
lines.

Example: ASMOPTIONS=-Li
When option -Li is specified, the following portion of code

INCLUDE "macro.inc"
codeSec: SECTION
Start:
cpChar charl, char2
NOP

generates following output in the assembly listing file:

5 5 INCLUDE "macro.inc"
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2

13 2m 000000 C6 xxxx + LDA charl
14 3m 000003 C7 xxxx + STA char2
15 9 000006 9D NOP
16 10 000007 9D NOP

Macro definition, invocation and expansion is stored in the listing file.
Seealso: L

5-12 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER OPTIONS

5.3.10 -Ms/-Mb
Memory Model

Group: CODE
Scope: Application
Syntax: “Ms”/*“-Mb”

Arguments: “Ms”: small memory model.
“-Mb”: banked memory model.

Default: -Ms

Description: The Assembler for the MC68HCO08 supports two different memory models.
Default is the small memory model, which corresponds to the normal setup, i.e. a
64kB code-address space. If you use some code memory expansion scheme, you
may use banked memory model.

Example: ASMOPTIONS=-Ms
See Also: None

MCUEZASMO08/D 5-13

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER OPTIONS @ MOTOROLA

5.3.11

5-14

-N
Display Notify Box

Group: MESSAGE
Scope: Function
Syntax: “N”

Arguments: None
Default: None

Description: Makes the Assembler display an alert box if there was an error during assembling.
This is useful when running a makefile, since the Assembler waits for the user to
acknowledge the message, thus suspending makefile proces$ihgt4rids for

“Notify”)

Example: ASMOPTIONS=-N
If an error occurs during assembling, a dialog box indicating that an error
occurred is opened as shown below:

AHCO8 Assembler

& Errar occured while azzembling 'testern. azm'l

See Also: None

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER OPTIONS

5312 -V
Display Assembler Version

Group: VARIOUS
Scope: None
Syntax: LV
Arguments: None
Default: None

Description: Prints the Assembler version and the current directory. This option is useful to
determine the current directory of the Assembler.

Example: -V produces the following list:
Directory: C:\MCUEZ\DEMO\WMMDSO08A
CCPP User Interface Module, V-1.0.4, Date Jul 10 1997
Assembler Target, V-1.0.11, Date Jul 11 1997

See Also: None

MCUEZASMO08/D 5-15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER OPTIONS @ MOTOROLA

5313 -W1
Block Information Messages

Group: MESSAGE

Scope: Assembly Unit

Syntax: “W1"

Arguments: None

Default: None

Description: Blocks INFORMATION messages. WARNING and ERROR messages are still
active.

Example: ASMOPTIONS=-W1
See Also: None

5-16 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER OPTIONS
5314 -W2

Block Information and Warning Messages

Group: MESSAGE

Scope: Assembly Unit

Syntax: “W2"

Arguments: None

Default: None

Description: Blocks INFORMATION and WARNING messages. Only ERROR messages are

active.

Example: ASMOPTIONS=-W2
See Also: None

MCUEZASMO08/D 5-17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER OPTIONS @ MOTOROLA

5.3.15

5-18

-WmsgNe
Number of Error Messages

Group: MESSAGE

Scope: Assembly Unit

Syntax: “WmsgNe <number>

Arguments: <number>: Maximum number of error messages.

Default: 50

Description: Sets the number of errors that can be encountered before the Assembler stops
processing.

Example: ASMOPTIONS=-WmsgNe2

The Assembler stops assembling after two error messages.
See Also: -WmsgNi

-WmsgNw

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER OPTIONS

5.3.16 -WmsgNi
Number of Information Messages

Group: MESSAGE

Scope: Assembly Unit

Syntax: “WmsgNi”<number>

Arguments: <number>: Maximum number of information messages.
Default: 50

Description: Sets the maximum number of information messages to be logged.
Example: ASMOPTIONS=-WmsgNil0

Only ten information messages can be logged.
See Also: -WmsgNe

-WmsgNw

MCUEZASMO08/D 5-19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER OPTIONS @ MOTOROLA

5.3.17

5-20

-WmsgNw
Number of Warning Messages

Group: ASSEMBLY
Scope: Assembly Unit
Syntax: “WmsgNw <number>
Arguments: <number>: Maximum number of warning messages.
Default: 50
Description: Sets the maximum number of warning messages to be logged.
Example: ASMOPTIONS=-WmsgNw15
Only 15 warning messages can be logged.
See Also: -WmsgNe
-WmsgNi

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER OPTIONS

5.3.18 -WmsgFbv/ -WmsgFbm
Set message file format for batch mode

Group:
Scope:
Syntax:

MESSAGE
Assembly Unit
“WmsgFbv'/ “-WmsgFbm”]

Arguments: “WmsgFbv’: Verbose format.

Default:

“-WmsgFbm: Microsoft format.
-WmsgFbm

Description: The Assembler can be started with additional arguments (e.g. files to be

See Also:

MCUEZASMO08/D

assembled together with Assembler options). If the Assembler has been started
with arguments (e.g. from the Make Tool or with the ‘%f’ argument from
WinEdit), the Assembler assembles the files in a batch mode, that is no Assembler
window is visible and the Assembler terminates after job completion.

If the assembler is in batch mode the assembler messages are written to a file
instead to the screen. This file only contains the assembler messages. By default,
the Assembler uses a Microsoft message format to write the Assembler messages
(errors, warnings, information messages) if the assembler is in batch mode.

With this option, the default format may be changed from the Microsoft format to
a more verbose error format with line, column, and source information.

Example:

varl: equ 5
var2: equ 5
if (varl=var2)
nop
endif
endif

By default, the Assembler generates following error output in the Assembler
window if it is running in batch mode:

XATW2.ASM(12):ERROR: conditional else not allowed here
Setting the format to verbose, more information is stored in the file:

ASMOPTIONS=-WmsgFbv
>> in "X:\TW2.ASM", line 12, col 0, pos 215
endif
endif
N

ERROR A1001: Conditional else not allowed here
-WmsgFi

For More Information On This Product, 5-21

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER OPTIONS @ MOTOROLA

5.3.19 -WmsgFiv/-WmsgFim
-WmsgFi: Set message file format for Interactive mode

Group: MESSAGE
Scope: Assembly Unit
Syntax: “WmsgFiv "/ “-WmsgFim”

Arguments: “WmsgFiv ”: Verbose format
“-WmsgFim”: Microsoft format
Default: -WmsgFiv

Description: If the Assembler is started without additional arguments (e.g. files to be
assembled together with Assembler options), the Assembler is in the interactive
mode (that is, a window is visible). By default, the Assembler uses the verbose
errofileformatonriteheAssemblanessagésrrorsyarningsnformatiomessages).
With this option, the default format may be changed from the verbose format
(with source, line and column information) to the Microsoft format (only line
information).

Example:

varl: equ 5
var2: equ 5
if (varl=var2)
nop
endif
endif

By default, the Assembler following error output in the Assembler window if itis
running in interactive mode

>> in "X\TWE.ASM", line 12, col 0, pos 215
endif
endif

N

ERROR A1001: Conditional else not allowed here

Setting the format to Microsoft, less information is displayed:

ASMOPTIONS=-WmsgFim
XATWE.ASM(12): ERROR: conditional else not allowed here

See Also: -WmsgFb

5-22 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA SECTIONS

6.1

CHAPTER 6
SECTIONS

INTRODUCTION

Sections are portions of code or data which cannot be split into smaller elements. Each section
has a name, type, and attributes. Each assembly source file contains at least one section.

The number of sections in an assembly source file is limited only by the amount of available
system memory available during assembly. If several sections with the same name are
detected inside a single source file, the code is concatenated into one large section.

Sections that have the same name but come from different modules are combined into a single
section when linked.

6.2 SECTION ATTRIBUTE
According to content, an attribute is associated with each section. A section may be a:
» Data section
» Constant data section
* Code section
6.2.1 Data Sections
A section containing variables (variable defined using the DS directive) is considered to be a
data section. Data sections are always allocated in the target processor RAM area.
Empty sections, which do not contain any code or data declaration are also considered to be
data sections.
6.2.2 Constant Data Sections
A section containing only constant data definitions (variables defined using the DC or DCB
directives) is considered to be a constant section. Constant sections should be allocated in the
target processor ROM area, otherwise they cannot be initialized at application loading time.
We strongly recommend that you define separate sections for the definition of variables and
constant variables. This will avoid any problems in the initialization of constant variables.
MCUEZASMO08/D 6-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

SECTIONS @ MOTOROLA

6.2.3

6.3

6.3.1

6-2

Code Sections

A section containing at least an instruction is considered to be a code section. Code sections
are always allocated in the target processor ROM area.

Code sections should not contain any variable definition (variable defined using the DS
directive). You will not have write access on variables defined in a code section. Additionally,
these variables cannot be displayed in the debugger as data.

SECTION TYPE

First a programmer should decide whether he wants to use relocatable or absolute code in his
application. The Assembler allows you to mix absolute and relocatable sections in a single
application and also in a single source file. The main difference between absolute and
relocatable sections is the way symbol addresses are determined.

Absolute Sections

Start address from an absolute section is well known at assembly time. An absolute section is
defined through the directive ORG. The operand specified in the ORG directive determines
the start address of the absolute section.

XDEF entry

ORG $040 ; Absolute constant data section.
cstl: DC.B $26
cst2: DC.B $BC

ORG $080 ; Absolute data section.
var. DSB 1

ORG $C00 ; Absolute code section.
entry:

LDA cstl ; Load value in cstl

ADD cst2 ; Add value in cst2

STA var ; Store in var

BRA entry

In the previous example, two bytes of storage are allocated starting at address $040. Symbol
“cstl " will be allocated at address $040 ar@st2 ” will be allocated at address $041. All
subsequent instructions or data allocation directives will be located in the absolute section
until another section is specified using the ORG or SECTION directive.

When using absolute sections, it is the user responsibility to ensure that there is no overlap
between the different absolute sections defined in the application. In the previous example, the
programmer should ensure that the size of the section starting at address $040 is not bigger
than $40 bytes, otherwise the section starting at $040 and section starting at $080 will overlap.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA SECTIONS

When object files are generated, applications containing only absolute sections must be
linked. In that case, there should not be any overlap between the address ranges from the
absolute sections defined in the assembly file and the address ranges defined in the linker
parameter file.

The PRM file used to link the example above, is defined as follows:

LINK test.abs /* Name of the executable file generated. */

NAMES

test.o /* Name of the object files in the application. */
END
SEGMENTS

/* READ_ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */

MY_ROM = READ_ONLY 0x1000 TO Ox1FFF;

/* READ_WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */

MY_RAM = READ_WRITE 0x2000 TO Ox2FFF;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY_RAM. */

.data INTO MY_RAM,;

/*Relocatable code and constant sections are allocated in MY_ROM. */

text INTO MY_ROM,;

END
INIT entry /* Application entry point. */
VECTOR ADDRESS OxFFFE entry /* initialization of the reset vector.
*/
MCUEZASMO08/D 6-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

SECTIONS @ MOTOROLA

6.3.2

6-4

The linker PRM file contains at least:

* The name of the absolute file (command LINK)
* The name of the object file which should be linked (command NAMES)

» The specification of a memory area where the sections containing variables must be
allocated and at least the predefined sectiodata ”, must be placed (command
SEGMENTS and PLACEMENT)

» The specification of a memory area where the sections containing code or constants must
be allocated and at least the predefined sectid@xt ”, must be placed (command
SEGMENTS and PLACEMENT)

» The specification of the application entry point (command INIT)
* The definition of the reset vector (command VECTOR ADDRESS)
For applications containing only absolute sections, nothing will be allocated.

Relocatable Sections

Start address from a relocatable section is evaluated at linking time, according to the
information stored in the linker parameter file. A relocatable section is defined through the
directive SECTION.

XDEF entry
constSec: SECTION ; Relocatable constant data section.
cstl: DC.B $A6
cst2: DC.B $BC

dataSec: SECTION ; Relocatable data section.
var: DSB1

codeSec: SECTION ; Relocatable code section.
entry:

LDA cstl ; Load value in cstl

ADD cst2 ; Add value in cst2

STA var ; Store in var

BRA entry

In the previous example, two bytes of storage are allocated in secimstSec .
Symbol ‘cstl " will be allocated at offset 0 andcst2 ” at offset 1 from the begining of

the section. All subsequent instructions or data allocation directives will be located in the
relocatable sectionconstSec ” until another section is specified using the ORG or
SECTION directive.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA SECTIONS

When using relocatable sections, the user does not need to care about overlapping sections.
The linker will assign a start address to each section according to the input from the linker
parameter file.

The customer can decide to define only one memory area for the code and constant sections
and another one for the variable sections or to split sections over several memory areas. When
all constant and code sections as well as data sections can be allocated consecutively, the PRM
file used to assemble the example above, can be defined as follows:

LINK test.abs /*Name of the executable file generated. */

NAMES

test.o /*Name of the object files in the application. */
END
SEGMENTS

/* READ_ONLY memory area. */
MY_ROM = READ_ONLY 0x0B00 TO O0xOBFF;
/* READ_WRITE memory area. */
MY_RAM = READ_WRITE 0x0080 TO 0x008F;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */
.data INTO MY_RAM;
/*Relocatable code and constant sections are allocated in

MY_ROM. */
text INTO MY_ROM,;
END
INIT entry [* Application entry point. */
VECTOR ADDRESS OxXFFFE entry /* initialization of the reset
vector. */

According to the PRM file above:

« The sectiondataSec ” will be allocated starting at 0x080
» The sectionconstSec ” will be allocated starting at 0xOBOO
« The sectioncodeSec ” will be allocated next to the sectioaonstSec

MCUEZASMO08/D 6-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
SECTIONS @ MOTOROLA

When the constant, code, and data sections cannot be allocated consecutively, the PRM file
used to link the example above, can be defined as follows:

LINK test.abs /* Name of the executable file generated. */

NAMES

test.o /* Name of the object files in the application. */
END
SEGMENTS

ROM_AREA_1= READ_ONLY 0xB00 TO 0xB7F; *READ_ONLY memory area. */
ROM_AREA_2= READ_ONLY 0xC00 TO OxC7F; /*READ_ONLY memory area. */
RAM_AREA_1= READ_WRITE 0x800 TO 0x87F; *READ_WRITE memory area.*/
RAM_AREA_2= READ_WRITE 0x900 TO 0x97F; *READ_WRITE memory area.*/
END
PLACEMENT
/*Relocatable variable sections are allocated in MY_RAM. */
dataSec INTO RAM_AREA 2;
.data INTO RAM_AREA 1;
/*Relocatable code and constant sections are allocated in MY_ROM. */
constSec INTO ROM_AREA_2;
codeSec, .text INTO ROM_AREA _1;
END
INIT entry [* Application entry point. */
VECTOR ADDRESS 0xFFFE entry /*initialization of the reset vector. */

According to the PRM file above:
« The sectiondataSec ” will be allocated starting at 0x0900

e The sectionconstsec " will be allocated starting at 0Ox0C00
« The sectioncodeSec ” will be allocated starting at 0XOB0OO

6.3.3 Relocatable Versus Absolute Section

Generally we recommend developing an application using relocatable sections. Relocatable
sections offer several advantages.

6.3.3.1 Early Development

The application can be developed before the application memory map is known. Often the
definitive application memoy map can only be determined once the size required for code and
data can be evaluated. The size required for code or data can only be quantified once the major
part of the application is implemented. When absolute sections are used, defining the
definitive memory map is an iterative process of mapping and remapping the code. The
assembly files must be edited, assembled and linked several times. When relocatable sections
are used, this can be achieved by editing the PRM file and linking the application.

6-6 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA SECTIONS

6.3.3.2 Enhanced Portability

As the memory map is not the same for all derivates (MCU), using relocatable sections allow
you to easily port the code for another MCU. When porting relocatable code to another target
you only need to link the application again, with the appropriate memory map.

6.3.3.3 Tracking Overlaps

When using absolute sections, the programmer must ensure there is no overlap between
sections. When using relocatable sections, the programmer does not need to be concerned
about sections overlapping. The labels’ offsets are all evaluated relative to the beginning of
the section. Absolute addresses are then determined and assigned by the linker.

6.3.3.4 Reusability

When using relocatable sections, code implemented to handle a specific 1/0 device (serial
communication device), can be reused in another application without any modification.

MCUEZASMO8/D For More Information On This Product, 6-7

Go to: www.freescale.com

Freescale Semiconductor, Inc.
SECTIONS @ MOTOROLA

6-8 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER SYNTAX

7.1

7.1.1

7.1.2

7.1.3

MCUEZASMO08/D

CHAPTER 7
ASSEMBLER SYNTAX

INTRODUCTION

An assembler source program is a sequence of source statements. Each source statement is
coded on one line of text and can be a:

 Commentline

» Source line

Comment Line

A comment can occupy an entire line to explain the purpose and usage of a block of
statements or to describe an algorithm. A comment line contains a semicolon followed by
text. Comments are included in the assembly listing, but are not significant to the assembler.

An empty line is also considered to be a comment line.

Example:
: This is a comment line

Source Line
Each source statement includes one or more of the following four fields:

* Alabel

* An operation field

* One or several operands
* A comment

Characters on the source line may be upper or lower case. Directives and instructions are case
insensitive. Symbols are case-sensitaxcept when the Cian option specifying case-
insensitivity for label names, is activated.

Label Field

The label field is the first field in a source line. A label is a symbol followed by a colon.
Labels can include letters, underscores, periods, and numbers. The first character must not be
a number.

For More Information On This Product, 71

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER SYNTAX @ MOTOROLA

7.1.4

Labels are required on assembler directives that define the value of a symbol (SET or EQU).
For these directives, labels are assigned the value corresponding to the expression in the
operand field.

Labels specified in front of another directive, instruction or comment are assigned the value of
the location counter in the current section.

NOTE

When the macro assembler expands a macro it generates internal symbols
starting with an “ ”. Therefore, to avoid potential conflicts, user defined
symbols should not begin with an underscore.

NOTE

For the macro assembler,B at the end of a label means “byte” ant\a
at the end of a label means “word”. Therefore, to avoid potential conflicts,
user defined symbols should not end wih or .W.

Operation Field

The operation field follows the label field and is separated from it by a white space. The
operation field must not begin in the first column. An entry in the operation field is one of the
following:

e An instruction mnemonic
* A directive name
e A macro name

7.1.4.1 Instruction

Executable instructions for the M68HCO08 processor are defineBw08 Reference Manuyal
document number CPUOSRM/AD.

7.1.4.2 Directive

Assembler directives are described in the Assembler Directives chapter in this manual.

7.1.4.3 Macro Name

7-2

A user-defined macro can be invoked in the assembler source program. This results in the
expansion of the code defined in the macro. Defining and using macros are described in the
Macros chapter in this manual.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA

ASSEMBLER SYNTAX

7.1.5 Operand Field

The operand fields, when present, follows the operation field and is separated from it by a
white space. When two or more operand subfields appear within a statement, a comma must
separate them. The following addressing mode notations are allowed in the operand field:

Table 7-1. Addressing Mode Notations

Addressing Mode

Notation

Inherent No operands

Direct <8-bit address>
Extended <16-bit address>
Relative <PC relative offset>
Immediate #<expression>

Indexed, no offset

X

Indexed, 8-bit offset

<8-bit offset>,X

Indexed, 16-bit offset

<16-bit offset>,X

Stack pointer, 8-bit offset

<8-bit offset>,SP

Stack pointer, 16-bit offset

<16-bit offset>,SP

Memory to memory immediate to direct

#<expression>,<8-bit address>

Memory to memory direct to direct

<8-bit address>,<8-bit address>

Memory to memory indexed to direct with
post-increment

X+,<8-bit address>

7.15.1 Inherent

Instructions using this addressing mode don’t have any instruction fetch associated. Some of

them are acting on data in the CPU registers.

Example:

CLRA
DAA

MCUEZASMO08/D 7-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER SYNTAX @ MOTOROLA

7.1.5.2 Immediate

The opcode contains the value to use with the instruction rather than the address of this value.
The ‘#” character is used to indicate an immediate adressing mode operand.

Example:

XDEF Entry
initStack: EQU $0400

MyData: SECTION
data: DSB1

MyCode: SECTION
Entry:
LDHX #initStack ; init Stack Pointer
TXS : with value $400-1 = $03FF

main: LDA #$50
BRA main

Hex value$0400 is loaded in registdriXand the decimal value $50 is loaded in regibter
The immediate addressing mode can also be used to refer to the address of a symbol.
Example

ORG $80
varl: DC.B $45, $67
ORG $800
main:
LDX #varl
BRA main

In this example, the address of the variable ‘varl’ ($80) is loaded in reyist@ne very
common programming error is to omit the # character. This cause the assembler to
misinterpret the expression as an addres rather than an explicit data.

Example

LDA $60

means load accumulator A with the value stored at address $60.

7-4 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER SYNTAX

7.1.5.3 Direct

The direct addressing mode is used to address operands in the direct page of the memory
(location $0000 to $O0FF). Access on this memory range (also called zero page) are
faster and require less code than the extended addressing mode (see below). In order to speed
up his application a programmer can decide to place the most commonly accessed data in this
area of memory. For most of the direct instructions, only two bytes are required: the first byte

is the opcode and the second byte is the operand address located in page zero.

Example:

XDEF Entry
initStack: EQU $0400
MyData: SECTION SHORT
data: DSB1
MyCode: SECTION

Entry:

LDHX #initStack ; init Stack Pointer

TXS : with value $400-1 = $03FF
main: LDA #$55

STA data

BRA main

In this example, the valuB55 is stored in the variable data, which is located on the direct
page. The sectioMyData must be allocated in the direct page in the linker parameter file.

MCUEZASMO8/D For More Information On This Product, -5

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER SYNTAX @ MOTOROLA

7.1.5.4 Extended

The extended addressing mode is used to access memory location located above the direct
page in a 64-Kilobyte memory map. For the extended instructions, three bytes are required:
the first byte is the opcode and the second and the third bytes are the most and least significant
bytes of the operand address.

Example:

XDEF Entry
initStack: EQU $0400
ORG $B00
data: DSB1
MyCode: SECTION

Entry:

LDHX #initStack ; init Stack Pointer

TXS ; with value $400-1 = $03FF
main: LDA #$55

STA data

BRA main

In this example, the valu$55 is stored in the variable data. This variable is located at
addressbOB0O in the memory map. The opcode of the instruc®hA data is three
bytes long.

7.1.55 Indexed, No Offset

7-6

This addressing mode is used to access data with variable addresses through the index register
HX of the HCO08 controller. The index registércontains the least significant byte of the
operand while index registdrd contains the most significant byte. Indexed, no offset
instructions are one byte long.

Example:

Entry:

LDHX #$0FFE
STA X

JMP X

The value stored in accumulator A is stored at the memory address pointed to by the index
register X ($0FFE). ThdMPinstruction causes the program to jump to the address pointed
to by theHXregister.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER SYNTAX

7.1.5.6 Indexed, 8-Bit Offset

This addressing mode is useful when selecting the kth element in an n-element table. The size
of the table is limited to 256 bytes. Indexed, 8-bit offset instructions are two bytes long. The
first byte contains the index register offset byte.

Example:

XDEF Entry
initStack: EQU $0400
MyData: SECTION SHORT
data: DS.B8
MyCode: SECTION

Entry:

LDHX #initStack ; init Stack Pointer

TXS ; with value $400-1 = $03FF
main:

LDHX #data

STA 5 ,X

JMP $FF,X

The value stored in accumulator A is stored at the memory address pointed to by the index
register X + 5. ThdMPinstruction causes the program to jump to the address pointed to by
theHXregister +$FF.

MCUEZASMO8/D For More Information On This Product, -1

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER SYNTAX @ MOTOROLA

7.1.5.7 Indexed, 16-Bit Offset

This addressing mode is useful when selecting the kth element in an n-element table. The size
of the table is limited t&FFFF bytes. Indexed,16-bit offset instructions are three bytes long.
The first byte contains the opcode and the second and the third the high and low index register
offset bytes.

Example:

XDEF Entry
initStack: EQU $0400
MyData: SECTION
data: DS.B 8
MyCode: SECTION

Entry:
LDHX #initStack ; init Stack Pointer
TXS : with value $400-1 = $03FF
main:
LDHX #data
STA $500 ,X
JMP $1000,X

The value stored in accumulator A is stored at the memory address pointed to by the index

register X + 500 . ThdMPinstruction causes the program to jump to the address pointed to
by theHXregister +$1000 .

7.1.5.8 Relative

This addressing mode is used by all branch instructions to determine the destination address.
The signed byte following the opcode is added to the contents of the program counter.

As the offset is coded on a signed byte, the branching range is -127 to +128. The destination
address of the branch instruction must be in this range.

Example:

main:
NOP
NOP
BRA main

7-8 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

&

Freescale Semiconductor, Inc.
MOTOROLA ASSEMBLER SYNTAX

7.1.5.9

7.15.1

MCUEZASMO08/D

Stack Pointer, 8-Bit Offset

Stack Pointer, 8-bit offset instructions behave the same way than Indexed 8-bit offset
instructions, except that the offset is added to the Stack P&@ktén place of the Index
registerHX

This addressing mode allow easy access of the data on the stack. If the interrupts are disabled,
the Stack pointer can also be used as a second Index register.

In this example stack pointer, 8-bit offset mode is used to store the $#4@Men memory
location$54F.

Example:

entry:
LDHX #$0500 ; init HX with $500
TXS : Stack Pointer = HX-1 = $4FF
LDA #$40

STA $50, SP ; Location $54F = $40

0 Stack Pointer, 16-Bit Offset

Stack Pointer, 16-bit offset instructions behave the same way than Indexed, 16-bit offset
instructions, except that the offset is added to the Stack P&@iktén place of the Index
registerHX This addressing mode allow easy access of the data on the stack. If the interrupts
are disabled, the Stack pointer can also be used as a second Index register.

In this example, stack pointer, 16-bit offset mode is used to store the value in memory location
$5FF in accumulatoA.

Example:
entry:
LDHX #$0100 ; init HX with $100
TXS : Stack Pointer = HX-1 = $0OFF

LDA $0500, SP ; Content of memory location $05FF is loaded in A

For More Information On This Product, 79

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER SYNTAX @ MOTOROLA

7.1.5.11 Memory To Memory Immediate To Direct

This addressing mode is generally used to initialyze variables and registers in page zero. The
registerA is not affected.

Example:

MyData: EQU $50
entry:
MOV #%$20, MyData

The instuctionMOV #$20,MyData stores the valu®20 in memory locatiorfs50
“MyData".

7.1.5.12 Memory To Memory Direct To Direct

7-10

This addressing mode is generally used to transfer variables and registers in page zero. The
registerA is not affected.

Example:

MyDatal: EQU $50
MyData2: EQU $51
entry:
MOV #%$10, MyDatal
MOV MyDatal, MyData2

The instuctionMOV #$10,MyDatal stores the valu$10 in memory locatiorf550
“MyDatal " using the memory to memory Immediate to Direct addressing moddVIThé
MyDatal,MyData2 instruction moves the content MyDatal into MyData?2
using memory to memory Direct to Direct addressing mode. The contdvitybfata2
(memory locatior$51) is then$10.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER SYNTAX

7.1.5.13 Memory To Memory Indexed To Direct With Post Increment

This addressing mode is generally used to transfer tables addressed by the index register to a
register in page zero.

The operand addressed by index registXiis stored in the direct page location addressed by
the byte following the opcode. The index regidtéX is automatically incremented. The
registerA is not affected.

Example:

XDEF Entry

ConstSCT: SECTION
Const: DC.B 1,11,21,31,192,12,0

DataSCT: SECTION SHORT
MyReg: DS.B1

CodeSCT: SECTION

Entry: LDHX #$00FF
TXS

main:

LDHX #Const
LOOP: MOV X+, MyReg

BEQ main

BRA LOOP

In this example, the tabléonst contains 7 bytes defined in a constant sectid®dn. The
last value of this table is zero. The regidtBXis initialised with the address @fonst . All
the values of this table are stored one after another in page zero memory IbtypReg
using the instuctioMOV X+,MyReg. When the value 0 is encountered, the regldiis
reset with the address of the first element of the ##@lenst .

MCUEZASMO08/D 7-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER SYNTAX @ MOTOROLA

7.1.5.14 Memory To Memory Direct To Indexed With Post Increment

7-12

This addressing mode is generally used to fill tables addressed by the index register from
registers in page zero. The operand in the direct page location addressed by the byte following
the opcode is stored in the memory location pointed to by the index rddXt&ihe index
registerH Xis automatically incremented. The regisheis not affected.

Example:

XDEF entry
MyData: SECTION SHORT
MyRegl: DS.B 1
MyReg2: DS.B 1
MyCode: SECTION
entry:

LDA #302

STA MyRegl

INCA

STA MyReg2

LDHX #$1000

MOV MyReg1,X+

MOV MyReg2,X+
main: BRA main

The page zero memory locatiddyRegl and MyReg2 are first respectively initialized
with $02 and$03. The contents of those data are then written in memory lochfiG®0
and$1001 . TheHXregister points to memory locati®i002 .

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER SYNTAX

7.1.5.15 Indexed With Post Increment

The operand is addressed thenkthéregister is incremented. This addressing mode is useful
for searches in tables. It is only used with instrucGdBEQ

Using this addressing mode, it is possible to scan the memory to find a location containing a
specific value.

Example:

XDEF Entry
ORG $F000
data;. DC.B1,11,21,31,$C0,12
CodeSCT: SECTION
Entry: LDHX #3$00FF

TXS

main:
LDA #$CO
LDHX #data

LOOP: CBEQ X+,IS_EQUAL :

BRA LOOP
IS_EQUAL: ...

The value located at memory location pointed té¢is compared to the value in regisfer
If the two values match, program branch$¥o EQUAL. HXpoints to memory location next
to the one containing the searched value.

In this example, the valUBCO is searched starting at memory locat®R000 . This value
is found at memory locatiohF004 , the program branch 46 EQUAL and the register
HXcontains$F005 .

MCUEZASMO08/D 7-13

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER SYNTAX @ MOTOROLA

7.1.5.16 Indexed, 8-bit Offset With Post Increment

The address of the operand is the 8-bit offset added to the value in rebfstre operand is
addressed then thdXregister is incremented. This addressing mode is useful for searches in
tables. It is only used with instructiédBEQ

Using this addressing mode, it is possible to scan the memory to find a location containing a
specific value starting at a specified location to which is added an offset.

Example:

XDEF Entry
ORG $F000
data: DCB.B $40,$00
DC.B 1,11,21,31,%$C0,12 ; $CO is located at $F000+$40+4
CodeSCT: SECTION
Entry: LDHX #$00FF

TXS

main:
LDA #$CO
LDHX #data

LOOP: CBEQ $30,X+,IS_EQUAL ;

BRA LOOP
IS_EQUAL: ...

The value located at memory location pointed td¢ + $30 is compared to the value in
registerA. If the two values match, program brancH$ EQUAL HXpoints to memory
location next to the one containing the searched value.

In this example, the value$CO is searched starting at memory location
$F000+$30=$F030 . This value is found at memory locati®iF044 , the program
branch tdS EQUAL. The registeH X contains the memory location of the searched value
minus the offset, incremented by o§#:044-$30+1=$F015

7.1.5.17 Comment Field

7-14

The last field in a source statement is an optional comment field. A semicplois the first
character in the comment field.

Example:
NOP ; Comment following an instruction

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER SYNTAX

7.2

7.2.1

71.2.2

MCUEZASMO08/D

SYMBOLS
The following sections describe symbols used by the assembler.

User Defined Symbols

Symbols identify memory locations in program or data sections in an assembly module. A
symbol has two attributes:

* The section, in which the memory location is defined
* The offset from the beginning of that section

Symbols can be defined with an absolute or relocatable value, depending on the section in
which the labeled memory location is found. If the memory location is located within a
relocatable section (defined with the SECTION directive), the label has a relocatable value
relative to the section start address.

Symbols can be defined relocatable in the label field of an instruction or data definition source
line.

Sec: SECTION

labell: DC.B 2 ; labell is assigned offset O within Sec.
label2: DC.B 5 ; label2 is assigned offset 2 within Sec
label3: DC.B 1 ; label3 is assigned offset 7 within Sec

It is also possible to define a label with either an absolute or a previously defined relocatable
value, using a SET or EQU directives.

Symbols with absolute values must be defined with constant expressions.

Sec: SECTION

labell: DC.B 2 ;labell is assigned offset O within Sec.
label2: EQU 5 ;label2 is assigned value 5.

label3: EQU labell ; label3 is assigned address of labell.

External Symbols

A symbol can be made external using the XDEF directive. In another source file an XREF or
XREFB directive may reference it. Since its address is unknown in the referencing file, it is
considered to be relocatable.

XREF extLabel ; symbol defined in an other module.
; extLabel is imported in the current module
XDEF label ; symbol is made external for other modules
; label is exported from the current module
constSec: SECTION
label: DC.W 1, extLabel

For More Information On This Product, 7-15

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER SYNTAX @ MOTOROLA

7.2.3 Undefined Symbols

If a label is neither defined in the source file nor declared external using XREF or XREFB, the
assembler considers it to be undefined and generates an error.

codeSec: SECTION
entry:

NOP

BNE entry

NOP

JMP end

JMP label <-Undeclared user defined symbol : label
end:RTS

END

7.2.4 Reserved Symbols

Reserved symbols cannot be used for user defined symbols. Register names are reserved
identifiers. The reserved identifiers for the HCO8 microcontroller are:

A, B,CCR, H, X, SP

Additionally, the keywordLOWANndHIGH are also reserved identifiers. They refer to the low
and high byte of any specified memory location.

7.3 CONSTANTS
The assembler supports integer and ASCII string constants.

7.3.1 Integer Constants
The assembler supports four representations of integer constants:

» A decimal constant is defined by a sequence of decimal digits (0-9)
Example:5,512,1024

« A hexadecimal constant is defined by a dollar charadt&r,fbllowed by a sequence of
hexadecimal digits (0-9, a-f, A-F)
Example:$5, $200 , $400

« An octal constant is defined by the “at” characté@)', followed by a sequence of octal
digits (0-7)
Example:@5@100Q @2000

« A binary constant is defined by a percent charac¥, followed by a sequence of binary
digits (0-1).
Example:%101, %1000000000, %10000000000

7-16 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
MOTOROLA ASSEMBLER SYNTAX

7.3.2

7.3.3

7.4

74.1

7.4.2

MCUEZASMO08/D

The default base for integer constants is initially decimal, but it can be changed using the
BASE directive. When the default base is not decimal, decimal values cannot be represented,
because they do not have a prefix character.

String Constants

A string constanis a series of printable characters enclosed in sihgler double quotes,.
Double quotes are only allowed within strings delimited by single quotes. Single quotes are
only allowed within strings delimited by double quotes.

Examp|e |ABCDI , IIABCDII1 |AI , IIIBII , IIAIBII , |AI|BI
Floating-Point Constants
The macro assembler does not support floating-point constants.

OPERATORS
This section describes the operators that the Assembler recognizes.
Addition And Subtraction Operators (Binary)
Syntax:
Addition: <operand> + <operand>

Subtraction: <operand> — <operand>
Description:

The + operator adds two operands, whereas-ttoperator subtracts them. The operands can
be any expression evaluating to an absolute or relocatable expression. Note that addition
between two relocatable operands is not allowed.

Example:

$A3216 + $42 ; Addition of two absolute operands (= $A3258).
label - $10 ; Subtraction with value of ‘label’

Multiplication, Division And Modulo Operators (Binary)
Syntax:

Multiplication: <operand> * <operand>

Division: <operand> / <operand>

Modulo: <operand> % <operand>
Description:

The* operator multiplies two operands, theoperator performs an integer division of the
two operands and returns the quotient of the operationYGbeerator performs an integer
division of the two operands and returns the remainder of the operation.

For More Information On This Product, 717

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER SYNTAX @ MOTOROLA

The operands can be any expression evaluating to an absolute expression. The second operand
in a division or modulo operation cannot be zero.

Example:

23*4 ; multiplication (= 92)
23 /4 ; division (=5)
23% 4 ;remainder(=3)

7.4.3 Sign Operators (Unary)
Syntax:

Plus: +<operand>
Minus: -<operand>
Description:

The + operator does not change the operand, whereas tiperator changes the operand to
its two complement. These operators are only valid for absolute expression operands.

Example:
+$32 ; (=$32)
-$32 ; (=$CE =-$32)

7.4.4 Shift Operators (Binary)
Syntax:

Shift left: <operand> << <count>
Shift right: <operand> >> <count>
Description:

The<< operator shifts left operand left by the number of bytes specified in the cour>The
operator shifts left operand right by the number of bytes specified in the count. The operands
can be any expression evaluating to an absolute expression.

Example:
$25 << 2 ; shift left (= $94)
$A5 >> 3 ; shift right(= $14)

7.4.5 Bitwise Operators (Binary)

Syntax:
Bitwise AND: <operand> & <operand>
Bitwise OR: <operand> | <operand>
Bitwise XOR: <operand> " <operand>

7-18 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER SYNTAX

Description:

The & operator performs an AND between the two operands at the bit level.
The| operator performs an OR between the two operands at the bit level.
The” operator performs a XOR between the two operands at the bit level.
The operands can be any expression evaluating to an absolute expression.

Example:
$E&3 ;=%$2 (%1110 & %0011 = %0010)
$E|3 ;=$F (%1110 | %0011 = %1111)
$E~3 ; =$D (%1110~ %0011 = %1101)
7.4.6 Bitwise Operators (Unary)
Syntax:
One’s complement: ~<operand>
Description:
The~ operator evaluates the one’s complement of the operand.
The operand can be any expression evaluating to an absolute expression.
Example:
~$C ; = $FFFFFFF3 (~%00000000 00000000 00000000 00001100
=06111111111111111111111111 11110011)
7.4.7 Logical Operators (Unary)
Syntax:
Logical NOT: !<operand>
Description:
The! operator returns 1 (true) if the operand is 0, otherwise it returns 0 (false).
The operand can be any expression evaluating to an absolute expression.
Example:
1(8<5) ;=%$1(TRUE)
MCUEZASMO08/D 7-19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER SYNTAX @ MOTOROLA

7.4.8 Relational Operators (Binary)
Syntax:

Equal: <operand> = <operand>

<operand> == <operand>
Not equal: <operand> = <operand>

<operand> <> <operand>

Less than: <operand> < <operand>
Less than or equal: <operand> <= <operand>
Greater than: <operand> > <operand>
Greater than or equal:<operand> >= <operand>

Description:

These operators compare the two operands and return 1 if the condition is “true” or O if the
condition is “false”.

The operands can be any expression evaluating to an absolute expression.
Example:

3>=4 ;=0 (FALSE)
label =4 ;=1 (TRUE) if label is 4, 0 (FALSE) otherwise.
9< $B ;=1 (TRUE)

7.4.9 HIGH Operator
Syntax:
High Byte: HIGH(<operand>)
Description:
This operator returns the high byte of the address of a memory location.
Example:
Assumedatal is a word located at addre®$050 in the memory.

LDA #HIGH(datal)

This instruction will load the immediate value of the high byte of the addredatafl
($10) in registerA.

LDA HIGH(datal)

This instruction will load the direct value at memory location of the higher byte of the address
of datal (i.e. the value in memory locatiéi0) in registerA.

7-20 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER SYNTAX

7.4.10 LOW Operator
Syntax:

LOW Byte: LOW(<operand>)

Description:
This operator returns the low byte of the address of a memory location.
Example:
Assumedatal is a word located at addre®$050 in the memory.
LDA #LOW(datal)

This instruction will load the immediate value of the lower byte of the addredatafl
($50) in registerA.

LDA LOW(datal)

This instruction will load the direct value at memory location of the lower byte of the address
of datal (i.e. the value in memory locatié®50) in registerA.

7.4.11 Memory PAGE Operator (Unary)
Syntax:

Get allocation page: PAGE(<operand>)

Description:

The PAGEoperator returns the page number where the operand is allocated. For a value
coded on 4 bytes, theAGEoperator returns the content of bit 19 to 16 of the value. The
operand can be any expression evaluating to an absolute or relocatable expression.

When the page operator is used with an absolute expression, the assembler evaluates the page
directly and the value is directly written to the output file.

Example:

PAGE($D) ;=0
PAGE($15A352) ; =$5
PAGE(label) ; = Page number label is allocated.

MCUEZASMO8/D For More Information On This Product, 721
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER SYNTAX @ MOTOROLA

7.4.12

7-22

Force Operator (Unary)
Syntax:

8-bit address: <<operand>
<operand>.B

16-bit address: ><operand>
<operand>.W

Description:

The < or .B operators force the operand to be an 8-bit operand, whereas aheW
operators force the operand to be a 16-bit operamgherator may be useful to force the 8-bit
immediate, indexed or direct addressing mode for an instrustioperator may be useful to
force the 16-bit immediate, indexed or extended addressing mode for an instruction. The
operand can be any expression evaluating to an absolute or relocatable expression.

Example:
<label : label is an 8-bit address.
label.B ; label is an 8-bit address.
>label : label is a 16-bit address.
label.W : label is a 16-bit address.

Operator precedence follows the rules for ANSI-C operators.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA

ASSEMBLER SYNTAX

Table 7-2. Operator Precedence

Operator Description Associativity
0 Parenthesis Right to Left
< Force direct address, index orimmediate Right to Left
value to 8 bits
> Force direct address, index orimmediate
value to 16 bits
B Force direct addressing mode for
' absolute address.
W Force extended addressing mode for
) absolute address
Access 4-bit page number (bits 16-19 of
PAGE 20-bit value).
~ One’s complement Left to Right
+ Unary Plus
- Unary minus
* Integer multiplication Left to Right
/ Integer division
% Integer modulo
+ Integer addition Left to Right
- Integer subtraction
<< Shift Left Left to Right
>> Shift Right
< Less than Left to Right
<= Less or equal to
> Greater than
>= Greater or equal to
=, == Equal to Left to Right
I=, <> Not Equal to
& Bitwise AND Left to Right
N Bitwise Exclusive OR Left to Right
Bitwise OR Left to Right
MCUEZASMO08/D

For More Information On This Product,

Go to: www.freescale.com

7-23

Freescale Semiconductor, Inc.
ASSEMBLER SYNTAX @ MOTOROLA

7.5 EXPRESSION

An expression is composed of one or more symbols or constants, which are combined with
unary or binary operators. Valid symbols in expressions are:

» User defined symbols
* External symbols

» The special symbol * represents the value of the location counter at the beginning of the
instruction or directive, even when several arguments are specified. In the following
example, the asterisk represents the location counter at the beginning of the DC directive:

DCW 1,2,*2

Once a valid expression has been fully evaluated by the assembiler, it is reduced as one of the
following types of expressions.

» Absolute expression: the expression has been reduced to an absolute value, which is
independent of the start address of any relocatable section

» Simple relocatable expression: the expression evaluates to an absolute offset from the start
of a single relocatable section

 Complex relocatable expression: the expression neither evaluates to an absolute
expression nor to a simple relocatable expression (the Assembler does not support
complex expressions)

All valid user-defined symbols representing memory locations are simple relocatable
expressions. This includes labels specified in XREF directives, which are assumed to be
relocatable symbols.

7.5.1 Absolute Expression

Expressions involving constants, known absolute labels, or expressions are absolute
expressions. An expression containing an operation between an absolute expression and a
constant value is also an absolute expression.

Example of absolute expression:

Base: SET $100
Label: EQU Base * $5 + 3

Expressions involving the difference between two relocatable symbols defined in the same
file and in the same section evaluate to an absolute expression. The expledsda--
labell ” can be translated as:

(<offset label2> + <start section address >) —
(<offset labell> + <start section address >)

7-24 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER SYNTAX

This can be simplified as:

<offset label2> + <start section address > —
<offset labell> - <start section address>
= <offset label2> - <offset labell>

In the following example the expression “tabEnd-tabBegin” evaluates to an absolute
expression, and is assigned the value of the difference between the offset of tabEnd and
tabBegin in the section DataSec.

DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1

CodeSec: SECTION
entry:
LDD #tabEnd-tabBegin <- Absolute expression

7.5.2 Simple Relocatable Expression
A simple relocatable expression results from operation like:
» <relocatable expression> + <absolute expression>
» <relocatable expression> - <absolute expression>
e < absolute expression> + < relocatable expression>
Example:

XREF XtrnLabel
DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1

CodeSec: SECTION

entry:
LDA tabBegin+2 <- Simple relocatable expression
BRA *-3 <- Simple relocatable expression
LDA XtrnLabel+6 <- Simple relocatable expression

MCUEZASMO08/D 7-25

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER SYNTAX

@ MOTOROLA

Table 7-3. Expression - Operator Relationship (unary)

The following table describes the type of an expression according to the operator in an unary
operation:

Operator Operand Expression
-~ absolute absolute
-5~ relocatable complex
+ absolute absolute
+ relocatable relocatable

The following table describes the type of an expression according to left and right operators in
a binary operation:

Table 7-4. Expression - Operator Relationship (binary operation)

7-26

Operator Left Operand Right Operand Expression
- absolute absolute absolute
- relocatable absolute relocatable
- absolute relocatable complex
- relocatable relocatable absolute
+ absolute absolute absolute
+ relocatable absolute relocatable
+ absolute relocatable relocatable
+ relocatable relocatable complex
* [, %, <<, absolute absolute absolute
>> |, &,
* [, %, <<, relocatable absolute complex
>> |, &,
* /1, %, <<, absolute relocatable complex
>> |, &, N
* [, %, <<, relocatable relocatable complex
>> |, &, N

For More Information On This Product,
Go to: www.freescale.com

MCUEZASMO08/D

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER SYNTAX

7.6 TRANSLATION LIMITS
Following limitations apply to the macro assembler:

» Floating-point constants are not supported.

» Complex relocatable expressions are not supported.

» Lists of operands or symbols must be separated with a comma.
* Include may be nested up to 50.

* The maximum line length is 1023.

MCUEZASMO8/D For More Information On This Product, 721
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER SYNTAX @ MOTOROLA

7-28 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

CHAPTER 8
ASSEMBLER DIRECTIVES

8.1 INTRODUCTION

This chapter introduces the classes of assembler directives. Functional descriptions and
useage examples of each directive are also provided.

8.2 DIRECTIVE OVERVIEW

There are different classes of assembler directives. The following tables give you an overview
of the different directives and their class.

8.2.1 Section Definition Directives
These directives are used to define new sections.

Table 8-1. Section Directives

Directive Description
ORG Define an absolute section
SECTION Define a relocatable section

8.2.2 Constant Definition Directives
These directives are used to define assembly constants.

Table 8-2. Constant Directives

Directive Description
EQU Assign a name to an expression (cannot be redefined)
SET Assign a name to an expression (can be redefined)

MCUEZASMO08/D 8-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.2.3 Data Allocation Directives
These directives are used to allocate variables.

Table 8-3. Data Allocation Directives

Directive Description
DC Define a constant variable
DCB Define a constant block
DS Define storage for a variable

8.2.4 Symbol Linkage Directives
These directives are used to export or import global symbols.

Table 8-4. Symbol Linkage Directives

Directive Description
ABSENTRY Specify the application entry point when an absolute file is
generated
XDEF Make a symbol public (Visible from outside)
XREF Import reference to an external symbol.
XREFB Import reference to an external symbol located on the direct
page.

8.2.5 Assembly Control Directives

These directives are general purpose directives used to control the assembly process.

Table 8-5. Assembly Control Directives

Directive Description
ALIGN Define Alignment Constraint
BASE Specify default base for constant definition
END End of assembly unit
EVEN Define 2 Byte alignment constraint
FAIL Generate user defined error or warning messages
INCLUDE Include text from another file.
LONGEVEN Define 4 Byte alignment constraint

8-2 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA

ASSEMBLER DIRECTIVES

8.2.6 Listing File Control Directives

These directives control the generation of the assembler listing file.

Table 8-6. Assembler List File Directives

Directive Description

CLIST Specify if all instructions in a conditional assembly block must
be inserted in the listing file or not.

LIST Specify that all subsequent instructions must be inserted in
the listing file.

LLEN Define line length in assembly listing file.

MLIST Specify if the macro expansions must be inserted in the listing
file.

NOLIST Specify that all subsequent instructions must not be inserted
in the listing file.

NOPAGE Disable paging in the assembly listing file.

PAGE Insert page break.

PLEN Define page length in the assembler listing file.

SPC Insert an empty line in the assembly listing file.

TABS Define number of characters to insert in the assembler listing
file for a TAB character.

TITLE Define the user defined title for the assembler listing file.

8.2.7 Macro Control Directives

These directives are used for the definition and expansion of macros.

Table 8-7. Macro Directives

Directive Description
ENDM End of user defined macro.
MACRO Start of user defined macro.
MEXIT Exit from macro expansion.

MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

8-3

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.2.8 Conditional Assembly Directives
These directives are used for conditional assembling.

Table 8-8. Conditional Assembly Directives

Directive Description
ELSE Alternate of conditional block
ENDIF End of conditional block
IF Start of conditional block. A boolean expression follows this
directive.
IFC Test if two string expressions are equal.
IFDEF Test if a symbol is defined.
IFEQ Test if an expression is null.
IFGE Test if an expression is greater than or equal to 0.
IFGT Test if an expression is greater than 0.
IFLE Test if an expression is less than or equal to 0.
IFLT Test if an expression is less than 0.
IFNC Test if two string expressions are different.
IFNDEF Test if a symbol is undefined.
IFNE Test if an expression is not null.

8-4 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER DIRECTIVES

8.3

MCUEZASMO08/D

ABSENTRY - APPLICATION ENTRY POINT

Syntax:
ABSENTRY <label>

Description:

This directive allow to specify the application Entry Point in a directly generated absolute file
(the option -FA2 ELF/DWARF 2.0 Absolute File must be enabled).

Using this directive, the entry point of the assembly application is written in the header of the
generated absolute file. When this file is loaded in the debugger, the line where the entry point
label is defined is highlighted in the source window.

Example:

If the example below is assembled using the -FA2 option, an Elf/Dwarf 2.0 Absolute file is
generated.

ABSENTRY entry

ORG $fffe
Reset: DC.W entry

ORG $70
entry: NOP
NOP
main: LDHX #$AFE
NOP
BRA main

According to the ABSENTRY directive, the Entry Point will be set to the address of entry in
the elf header of the absolute file.

For More Information On This Product, 8-5

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.4 ALIGN - ALIGN LOCATION COUNTER

8-6

Syntax:

ALIGN <n>

Description:

This directive forces the next instruction to a boundary that is a multiple of <n>, relative to the
start of the section. The value of <n> must be a positive number between 1 and 32767. The
ALIGN directive can force alignment to any size. The filling bytes inserted for alignment
purpose are initialized with \0'.

ALIGN can be used in code or data sections.
Example:
The following example aligns tHdEXlabel to a location, which is a multiple of 16:

000000 4849 4748 DC.B "HIGH"

000004 0000 0000 ALIGN 16

000008 0000 0000

00000C 0000 0000

000010 007F HEX: DC.W 127 ; HEX is allocated on an address
; which is a multiple of 16.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.5 BASE - SET NUMBER BASE
Syntax:
BASE <n>

Description:

This directive sets the default number base for constants to <n>. Valid values of <n> are 2, 8,
10,and 16. If no default base is specified using BASE, the default number base is decimal.

Example:

4 4 base 10 ; default base is decimal
5 5 00000064 dc.b 100

6 6 base 16 ;defaultbaseis hex.

7 7 0000010A dc.b O0a

8 8 base 2 ;default baseis binary

9 9 00000204 dc.b 100

10 10 00000304 dc.b %100

11 11 base @12 ; default base is decimal
12 12 000004 64 dc.b 100

13 13 base $a ; default base is decimal
14 14 00000564 dc.b 100

16 16 base 8 ; default base is octal
17 17 000006 40 dc.b 100

NOTE

Hexadecimal constants terminated bylX tust be prefixed by the$”
character, otherwise they are interpreted as decimal constants.

MCUEZASMO08/D 8-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.6 CLIST - LIST CONDITIONAL ASSEMBLY

8-8

Syntax:

CLIST [ON | OFF]
Description:

The CLIST directive controls the listing of subsequent conditional assembly blocks. It
precedes the first directive of the conditional assembly block to which it applies, and remains
effective until the nexCLIST directive is read.

When theON keyword is specified in £LIST directive, the listing file includes all
directives and instructions in the conditional assembly block, even those which do not
generate code (which are skipped).

When theOFFkeyword is specified, directives and instructions that generate code are listed.
A soon as the option —L is activated, the assembler defadk kBT ON .
Example listing file withCLIST OFF :

CLIST OFF
Try: EQU O
IFEQ Try
LDA #103
ELSE
LDA #0
ENDIF

The corresponding listing file is:

Motorola HC08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997
Abs. Rel. Loc Obj.code Source line

2 2 0000 0000 Try: EQU O

3 3 0000 0000 IFEQ Try

4 4 000000 A667 LDA #103
5 5 ELSE

7 7 ENDIF

8 8

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA

ASSEMBLER DIRECTIVES

Listing file with CLIST ON :

CLIST ON
Try: EQU O
IFEQ Try
LDA #103
ELSE
LDA #0
ENDIF

The corresponding listing file is:

Motorola HC08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997
Abs. Rel. Loc Obj.code Source line
2 2 0000 0000 Try: EQU O
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LDA #103
5 5 ELSE
6 6 LDA #0
77 ENDIF
8 8

MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

8-9

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.7

8-10

DC - DEFINE CONSTANT
Syntax:

[<label>:] DC [<size>] <expression> [, <expression>]...

where
<size> = B (default), W or L.

Description:

The DC directive defines constants in memory. It can have one or more <expression>
operands, which are separated by commas. The <expression> can contain an actual value
(binary, octal, decimal, hexadecimal or ASCII). Alternately, the <expression> can be a symbol
or expression that can be evaluated by the assembler as an absolute or simple relocatable
expression. One memory block is allocated and initialized for each expression.

The following rules apply to size specifications for DC directives:
« DC.B: One byte is allocated for numeric expressions, one byte is allocated per ASCII

character for strings

« DC.W Two bytes are allocated for numeric expressions, ASCII strings are right aligned
on a two-byte boundary

« DC.L: Four bytes are allocated for numeric expressions, ASCII strings are right aligned
on a four byte boundary

Example forDC.B:

000000 4142 4344 Label: DC.B "ABCDE"

000004 45
000005 OAOA 010A DC.B %1010, @12, 1, $A
000009 xx DC.B PAGE(Label)

Example foDC.W

000000 0041 4243 Label: DC.W "ABCDE"
000004 4445

000006 O00A 000A DC.W %1010, @12, 1, $A
00000A 0001 0O00A
00000E xxxx DC.W Label

Example forDC.L:

000000 0000 0041 Label: DC.L "ABCDE"

000004 4243 4445

000008 0000 000A DC.L %1010, @12, 1, $A
00000C 0000 000A

000010 0000 0001

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

000014 0000 000A
000018 XXXX XXXX DC.L Label

If the value in an operand expression exceeds the size of the operand, the value is truncated
and a warning message is generated.

MCUEZASMO08/D 8-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.8

8-12

DCB - DEFINE CONSTANT BLOCK
Syntax:

[<label>:] DCB [<size>] <count>, <value>

where
<size> = B (Default), W or L.

Description:

The DCBdirective causes the assembler to allocate a memory block initialized with the
specified «alue>. The length of the block issize> * <count.

<count> may not contain undefined, forward, or external references and may range from 1 to
4096. The value of each storage unit allocated is the sign-extended expreskien which
may contain forward references. Theoent> cannot be relocatable.

The following rules apply to size specifications E¥CBdirectives:
« DCB.B: One byte is allocated for numeric expressions
- DCB.WTwo bytes are allocated for numeric expressions

« DCB.L: Four bytes are allocated for numeric expressions

Example:
000000 FFFF FF Label: DCB.B 3, $FF
000003 FFFE FFFE DCB.W 3, $FFFE
000007 FFFE
000009 0000 FFFE DCB.L 3, $FFFE

00000D 0000 FFFE
000011 0000 FFFE

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER DIRECTIVES

8.9

MCUEZASMO08/D

DS - DEFINE SPACE
Syntax :

[<label>:] DS [.<size>] <count>

where
<size> = B (Default), W or L.

Description:

The DS directive is used to reserve memory for variables. The content of the memory
reserved is not initialized. The length of the block is <size> * <count>.

<count> may not contain undefined, forward, or external references. It may range from 1 to
4096.

Example:

Counter: DS.B 2 ; 2 contiguous bytes in memory
DS.B 2; 2 contiguous bytes in memory
; can only be accessed trough the label Counter
DS.L 5; 5 contiguous long words in memory

The labelCounter , references the lowest address of the defined storage area.

For More Information On This Product, 8-13

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.10 ELSE - CONDITIONAL ASSEMBLY
Syntax:

IF <condition>

[<assembly language statements>]
[ELSE]

[<assembly language statements>]
ENDIF

Description:

If <condition> is true, the statements betwdEn and the correspondingLSE directive
generate code.

If <condition> is false, the statements betwdehSE and the correspondingNDIF
directive generate code. Nesting of conditional blocks is allowed. The maximum level of
nesting is limited by the available memory at assembly time.

Example:
The following is an example of the use of conditional assembly directives:

Try: EQU 1
IF Try!=0
LDA #103
ELSE
LDA #0
ENDIF

The value ofTry determines the instruction which generates code. As showrl, [t
#103 instruction generates code. Changing the operand &dbedirective to zero, causes
theLDA #0 instruction to generate code instead. The following shows the listing provided
by the assembler for these lines of code:

Motorola HC08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997
Abs. Rel. Loc Obj.code Source line
1 1 0000 0001 Try: EQU 1
2 2 0000 0001 IF Try!=0
3 3 000000 A667 LDA #103
4 4 ELSE
6 6 ENDIF

8-14 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.11 END - END ASSEMBLY
Syntax:

END

Description:

The ENDudirective indicates the end of the source code. Subsequent source statements in this
file are ignored. Thé&NDdirective in included files skips only subsequent source statements
in this include file. The assembly continues in the including file in a regular way.

Example:
When assembling the code:

Label: NOP
NOP
NOP
END

NOP ; No code generated
NOP ; No code generated

The generated listing file is:

Motorola HC08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997
Abs. Rel. Loc Obj.code Source line

1 1 000000 9D Label: NOP
2 2 000001 9D NOP
3 3 000002 9D NOP
MCUEZASMO08/D 8-15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.12 ENDIF - END CONDITIONAL ASSEMBLY
Syntax:

ENDIF

Description:

The ENDIF directive indicates the end of a conditional block. Nesting of conditional blocks
is allowed. The maximum level of nesting is limited by the available memory.

See example of directivié- .

8-16 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA

ASSEMBLER DIRECTIVES

8.13 ENDM - END MACRO DEFINITION

Syntax:

ENDM

Description:

The ENDMiirective terminates both the macro definition and the macro expansion.

Example:

12 6m 000000 C6 xxxx +
13 7m 000003 C7 xxxx +
14 12 000006 9D
15 13 000007 9D

MCUEZASMO08/D

cpChar: MACRO
LDA\1
STA\2
ENDM
CodeSec: SECTION
Start:
cpChar charl, char2
LDA charl
STA char2
NOP
NOP

For More Information On This Product,
Go to: www.freescale.com

8-17

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.14 EQU - EQUATE SYMBOL VALUE
Syntax:

<label>: EQU <expression>

Description:

The EQUdirective assigns the value of the <expression> in the operand field to <label>. The

<label> and <expression> fields are both required, and the <label> cannot be defined
anywhere else in the program. The <expression> cannot include a symbol, which is undefined
or not defined yet.

The EQUdirective does not allow forward references.
Example:

0000 0014 MaxElement: EQU 20
0000 0050 MaxSize: EQU MaxElement * 4

000000 Time: DS.W 3
0000 0000 Hour: EQU Time ; first word addr
0000 0002 Minute: EQU Time+2; second word addr
0000 0004 Second: EQU Time+4; third word addr

8-18 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.15 EVEN - FORCE WORD ALIGNMENT
Syntax:

EVEN

Description:

This directive forces the next instruction to the next even address relative to the start of the
section.EVENis an abbreviation foALIGN 2 . Some processors require word and long
word operations to begin at even address boundaries. In such cases, the ude\dE e
directive ensures correct alignment, omission of the directive can result in an error message.

Example:
6 6 000000 ds.w 2
; location count has an even value, no padding byte inserted.
7 7 even
8 8 000004 ds.b 1
; location count has an odd value, one padding byte inserted.
9 9 000005 00 even
10 10 000006 ds.b 3
; location count has an odd value, one padding byte inserted.
11 11 000009 00 even
12 12 0000 OO0A aaa: equ 10
MCUEZASMO08/D 8-19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.16 FAIL - GENERATE ERROR MESSAGE
Syntax:

FAIL <arg> | <string>
Description:

Handling from the=AIL directive depends on the operand specifiedalf>is in the range
[500 — $FFFFFFFF], the assembler generates a warning message, including the line number
and argument of the directive.

Example:

cpChar: MACRO
IFC "\1", ™"
FAIL 200
MEXIT
ELSE
LDA\1
ENDIF

IFC "\2", "™
FAIL 600
ELSE
STA\2
ENDIF
ENDM
codSec: SECTION
Start:
cpChar charl

Generates the following error message:

>>in "C:\MCUEZ\DEMO\ELF08A\test.asm", line 13, col 19, pos 226
IFC "\2", "
FAIL 600
AN
WARNING A2332: FAIL found
Macro Call : FAIL 600

If <arg>is in the range [0 — 499], the assembler generates an error message, including the line
number and argument of the directive. The assembler does not generate any object file.

cpChar: MACRO
IFC "\1", ™"
FAIL 200
MEXIT
ELSE
LDA\1
ENDIF

8-20 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

IFC "\2", "
FAIL 600
ELSE
STA\2
ENDIF
ENDM
codSec: SECTION
Start:
cpChar ,char2

Generates the following error message:

>> in "C\MCUEZ\DEMO\ELFO08A\test.asm", line 6, col 19, pos 96

IFC "\1", ™"
FAIL 200

AN

ERROR A2329: FAIL found
Macro Call : FAIL 200

If a string is supplied as the operand, the assembler generates an error message, including the
line number and the <string>. The assembler does not generate any object file.

Example:

cpChar: MACRO
IFC "\1", "
FAIL "A character must be specified as first
parameter"
MEXIT
ELSE
LDA\1
ENDIF
IFC "\2", "
FAIL 600
ELSE
STA\2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar , char2

Generates following error message:

>> in "C:\\MCUEZ\DEMO\ELF08A C\test.asm", line 7, col 17, pos 110

MCUEZASMO08/D 8-21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

IFC Il\lll, nmn
FAIL "A character must be specified as first parameter”
N
ERROR A2338: A character must be specified as first parameter
Macro Call : FAIL "A character must be specified as first
parameter"

The FAIL directive is intended for use with conditional assembly to detect a user defined
error or warning condition.

8-22 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA ASSEMBLER DIRECTIVES

8.17

MCUEZASMO08/D

IF - CONDITIONAL ASSEMBLY
Syntax:

IF <condition>

[<assembly language statements>]
[ELSE]

[<assembly language statements>]
ENDIF

Description:

If <condition> is true, the statements immediately followinglthedirective generate code.
Assembly continues until the correspondiabSE or ENDIF directive is reached. Then all
statements until the correspondibdNDIF directive are ignored. Nesting of conditional
blocks is allowed. The maximum level of nesting is limited by available memory at assembly
time.

The expected syntax for <condition> is:

<condition> := <expression> <relation> <expression>
<re|ation> := Il=ll | II!=II | n >=ll | Il>ll II<=II | Il<ll II<>II

The <expression> must be absolute (It must be known at assembly time).
Example:

The following is an example of the use of conditional assembly directives:
Try: EQU O
IF Try!=0
LDA #103
ELSE
LDA #0
ENDIF

The value off RY determines the instruction which generates code. As showhPAe#0
instruction generates some code. Changing the operandlo€hk&lirective to one causes the
LDA #103 instruction to generate code instead. The following shows the listing provided
by the Assembler for these lines of code:

0000 0000 Try: EQU O
0000 0000 IF Try!=0
ELSE
000000 A600 LDA #0
ENDIF

o OB~ DN PP
o oA~ DN P

For More Information On This Product, 8-23

Go to: www.freescale.com

ASSEMBLER DIRECTIVES

Freescale Semiconductor, Inc.
@ MOTOROLA

8.18

8-24

IFCC - CONDITIONAL ASSEMBLY
Syntax:

IFcc <condition>

[<assembly language statements>]
[ELSE]

[<assembly language statements>]
ENDIF

Description:

These directives can be replaced by kke directive. If IFCC <condition> is true, the
statements immediately following the Ifcc directive are assembled. Assembly continues until
the correspondingLSE or ENDIF directive is reached, after which, assembly moves to the
statements following th&NDIF directive. Nesting of conditional blocks is allowed. The
maximum level of nesting is limited by the available memory at assembly time.

The following table lists the available conditional types:

Table 8-9. Conditional Types

Ifcc Condition Meaning
ifeq <expression> if <expression> ==
ifne <expression> if <expression> =0
iflt <expression> if <expression>< 0
ifle <expression> if <expression> <=0
ifgt <expression> if <expression> > 0
ifge <expression> if <expression>>=0
ifc <stringl>, <string2> if <stringl> == <string2>
ifnc <stringl>, <string2> if <stringl> != <string2>
ifdef <label> if <label> was defined
ifndef <label> if <label> was not defined

For More Information On This Product,

Go to: www.freescale.com

MCUEZASMO08/D

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

Example:
The following is an example of the use of conditional assembly directives :

Try: EQU O
IFNE Try
LDA #103
ELSE
LDA #0
ENDIF

The value ofTRY determines the instruction to be assembled in the program. As shown, the
LDA #0 instruction generates some code. Changing the directife£€) causes the DA

#103 instruction to generate code instead. The following shows the listing provided by the
Assembler for these lines of code:

0000 0000 Try: EQU O
0000 0000 IFNE Try
ELSE
000000 A600 LDA #0
ENDIF

o OB~ DN P
o OB~ DN P

MCUEZASMO8/D For More Information On This Product, 8-25

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.19

8-26

INCLUDE - INCLUDE TEXT FROM ANOTHER FILE
Syntax:

INCLUDE <file specification>

Description:

This directive causes the included file to be inserted in the source input stream. The <file
specification> is not case sensitive and must be enclosed in quotation marks.

The assembler attempts to open <file specification> relative to the current working directory.
If the file is not found, then it is searched for in each path specified in the environment
variableGENPATH

Example:

INCLUDE "..\LIBRARY\macros.inc"

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.20 LIST - ENABLE LISTING
Syntax:

LIST
Description:

Specifies that the following instructions must be inserted in the listing and debugTiiles.
listing file is generated if optiorL is specified.
The source text following thelST directive is listed untiNOLIST or ENDis reached.

This directive is not written to the listing and debug file. When neither the LIST nor the
NOLIST directives are specified in a source file, all instruction are written to the list file.

Example:
aaa: nop
list

bbb: nop
nop

nolist
ccc: nop
nop

list
ddd: nop
nop
Generates following listing file:

Motorola HC08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997
Abs. Rel. Loc Obj.code Source line

1 1 0000009D aaa: nop
2 2

4 4 000001 9D bbb: nop
5 5 000002 9D nop

6 6

12 12

13 13 000005 9D ddd: nop
14 14 000006 9D nop

15 15

The gap in the location counter is due to instructions insid&B&IST-LIST block.
See AlsoNOLIST

MCUEZASMO08/D 8-27

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.21 LLEN - SET LINE LENGTH
Syntax:

LLEN <n>
Description:

Sets the number of characters, <n>, from the source line that are included on the listing line.
The values allowed for <n> are in the range [0 — 132]. If a value smaller than 0 is specified,
the line length is set to 0. If a value bigger than 132 is specified, the line length is set to 132.

Lines of the source file that exceed the specified number of characters are truncated in the

listing file.
Example:
dc.b 5
llen $20
dc.w $4567, $2345
llen $17
dc.w $4567, $2345
even
nop

Generates following listing file:

Motorola HC08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997
Abs. Rel. Loc Obj.code Source line

1 1 000000 05 dc.b 5

3 3

4 4 000001 4567 2345 dc.w $4567, $2345
5 5

7 7 000005 4567 2345 dc.w $4567

8 8 000009 00 even

9 9 O00000A 9D nop

10 10

TheLLEN $17 directive causes the secotld.w $4567, $2345 to be truncated in
the Assembler listing file. The generated code is correct.

8-28 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.22 LONGEVEN - FORCING LONG-WORD ALIGNMENT
Syntax:

LONGEVEN

Description:

This directive forces the next instruction to the next long-word address relative to the start of
the sectionLONGEVENM an abbreviation foALIGN 4 .

Example:

2 2 00000001 dcb.b 1,1
; location counter is not a multiple of 4, 3 filling bytes
; are required.

3 3 000001 0000 00 longeven

4 4 000004 0002 0002 dcb.w 2,2
; location counter is already a multiple of 4, no filling
; bytes are required.

5 5 longeven
6 6 000008 0202 dcb.b 2,2
7 7 ; following is for text section
8 8 s27 SECTION 27
9 9 000000 A7 nop
; location counter is not a multiple of 4, 3 filling bytes
; are required.
10 10 000001 0000 00 longeven
11 11 000004 A7 nop
MCUEZASMO08/D 8-29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.23 MACRO - BEGIN MACRO DEFINITION

8-30

Syntax:

<label>: MACRO
Description:

The <label> of thdMACR@irective is the name by which the macro is called. This name
must not be a processor machine instruction or assembler directive name. For more
information on macros, refer to the Macro chapter in this manual.

Example:

Motorola HC08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997
Abs. Rel. Loc Obj. code Source line

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DSB 1

4 4 000001 char2: DSB 1

5 5 cpChar: MACRO

6 6 LDA\1

7 7 STA\2

8 8 ENDM

9 9 CodeSec: SECTION

10 10 Start:

11 11 cpChar charl, char2
12 6m 000000 C6 xxxx + LDA charl
13 7m 000003 C7 xxxx + STA char2
14 12 000006 9D NOP

15 13 000007 9D NOP

16 14 000008 9D NOP

17 15

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.24 MEXIT - TERMINATE MACRO EXPANSION
Syntax:

MEXIT
Description:

MEXIT is usually used together with conditional assembly within a macro. In that case, the
macro expansion might terminate prior to termination of the macro definitionME$IT
directive causes macro expansion to skip any remaining source lines ahead=0[1d
directive.

Example:

Following portion of code:

XDEF entry
save: MACRO ; Start macro definition
LDHX #storage
LDA \1
STA 0,x ; save first argument
LDA \2
STA 2,x ; save second argument
IFC \3', " ;is there a 3rd argument?
MEXIT ; no, exit from macro.
ENDC
LDA \3 ; save third argument
STA 4,X
ENDM ; End of macro definition
codSec: SECTION

entry:
save charl, char2

Generates following listing file:

16 16 save charl, char2
17 2m 000000 45 xx00 + LDHX #storage
18 3m 000003 C6 xxxx + LDA charl
19 4m 000006 E700 + STA 0,x

; save first argument
20 5m 000008 C6 xxxx + LDA char2
21 6m 00000B E702 + STA 2.,x

; save second
argument
22 Tm 0000 0001 + IFC ", "
MCUEZASMO08/D 8-31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

;i1s there a 3rd

argument?
24 8m + MEXIT
; ho, exit from

macro.
25 9m + ENDC
26 10m + LDA

; save third argument
27 11m + STA 4,X

8-32 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.25 MLIST - LIST MACRO EXPANSIONS
Syntax:

MLIST [ON | OFF]

Description:

When theONkeyword is entered with dLIST directive, the assembler includes the macro
expansions in the listing and in the debug file. WherfQhd-keyword is entered, the macro
expansions are omitted from the listing and debug files. This directive is not written to the
listing and debug file, and the default valu€©ibl

Example:
The following listing shows a macro definition and expansion MtllST ON:

XDEF entry
MLIST ON
swap: MACRO
LDA \1
LDX \2
STA \2
STX \1
ENDM
codSec: SECTION
entry:
LDA #3$FO
LDX #3$0F
main:
STA first
STX second
swap first, second
NOP
BRA main
datSec: SECTION
first: DS.B 1
second: DS.B 1

MCUEZASMO08/D 8-33

For More Information On This Product,
Go to: www.freescale.com

ASSEMBLER DIRECTIVES

Freescale Semiconductor, Inc.

@ MOTOROLA

8-34

The Assembler listing file is:

© 00N Ol Wk

NNDNDNMNNMNMNNMNNMNNRPEPRPRPEPRPEPRPPRPRPRERPREPPE
~No o~ WONPEFPE OO0 NOO O WNPEFE O

© 00N Ol W

e e N
W N Rk O

14
15
16
17
4m
5m
6m
m
18
19
20
21
22
23

XDEF entry
swap: MACRO
LDA \1
LDX \2
STA \2
STX \1
ENDM

codSec: SECTION

entry:
000000 ABFO LDA #$FO
000002 AEOF LDX #$OF
main:
000004 C7 xxxx STA first
000007 CF xxxx STX second
swap first, second
0O0000A C6 xxxx + LDA first
00000D CE xxxx + LDX second
000010 C7 xxxx + STA second
000013 CF xxxx + STX first
000016 9D NOP
000017 20EB BRA main
datSec: SECTION
000000 first: DS.B 1
000001 second: DS.B 1

For More Information On This Product,
Go to: www.freescale.com

MCUEZASMO08/D

Freescale Semiconductor, Inc.

@ MOTOROLA

ASSEMBLER DIRECTIVES

For the same code, witLIST OFF, the listing file is:

© 00 ~NO 01l WP

NNNNNNRRRRRRRRE
~NOoOURWNNOONWNIERO

MCUEZASMO08/D

© 00 ~NO 01l WP

NNNNRPRRRRERRRRRRR
WNPFPOWOWO®OWMNOOUDNWNIERO

XDEF entry
swap: MACRO
LDA \1
LDX \2
STA \2
STX \1
ENDM

codSec: SECTION
entry:

000000 A6FO LDA #$FO
000002 AEOF LDX #$OF
000004 C7 xxxx STA first
000007 CF xxxx STX second
main:

swap first, second
000016 9D NOP
000017 20F1 BRA main

datSec: SECTION
first: DS.B 1
second: DS.B 1

000000
000001

For More Information On This Product,
Go to: www.freescale.com

8-35

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.26 NOLIST - DISABLE LISTING
Syntax:

NOLIST

Description:

Suppresses printing of the following instructions in the assembly listing and debug files until a
LIST directive is reached.

Example:
Following portion of code:

aaa: nop
list
bbb: nop
nop
nolist
ccc: nop
nop
list
ddd: nop
nop
generates following listing file:

1 1 000000 9D aaa: nop
3 3 0000019D bbb: nop
4 4 000002 9D nop
9 9 000005 9D ddd: nop
10 10 000006 9D nop
11 11

The gap in the location counter is due to instructions defined ind\@1lalST block.

8-36 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.27 NOPAGE - DISABLE PAGING
Syntax:

NOPAGE
Description:

Disables paginating in the listing file. Program lines are listed continuously, without headings
or top or bottom margins.

MCUEZASMO08/D 8-37

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.28 ORG - SET LOCATION COUNTER

8-38

Syntax:

ORG <expression>

Description:

The ORGdirective sets the location counter to the value specified by <expression>.
Subsequent statements are assigned memory locations starting with the new location counter
value. The <expression> must be absolute and may not contain any forward, undefined, or
external references. TE@Rirective generates an internal section, which is absolute.

Example:
org $2000

bl: nop
b2: rts

Labelb1l is located at address $2000 and ld¥2lat address $2001.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.29 PAGE - INSERT PAGE BREAK
Syntax:

PAGE

Description:
Insert a page break in the assembly listing.
Example:

Following portion of code:

codeSec: SECTION
nop
nop
page
nop
nop

Generates following listing file:

Motorola HC08-Assembler
(c) COPYRIGHT MOTOROLA 1991-1997

1 1 codeSec: SECTION
2 2 000000 9D NOP
3 3 0000019D NOP

Motorola HC08-Assembler

(c) COPYRIGHT MOTOROLA 1991-1997
5 5 000002 9D NOP

6 6 000003 9D NOP

7 7

MCUEZASMO08/D 8-39

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA

ASSEMBLER DIRECTIVES

8.30 PLEN - SET PAGE LENGTH
Syntax:
PLEN <n>

Description:

Sets the listings page length to <n> lines. <n> may range from 10 to 10000. If the number of
lines already listed on the current page is greater than or equal to <n>, listing will continue on
the next page with the new page length setting. The default page length is 65 lines.

8-40 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.31 SECTION - DECLARE RELOCATABLE SECTION
Syntax:

<name>: SECTION [SHORT][<number>]

Description:

This directive declares a relocatable section and initializes the location counter for the
following code. The firsGECTIONdirective for a section sets the location counter to zero.
SubsequenSECTION directives for that section restore the location counter to the value
that follows the address of the last code in the section.

<name> is the name assigned to the section. WIBCTION directives, where the same
name is specified, refers to the same section.

<numbep is optional and is only specified for compatibility with MASMssembler.

A section is a code section as soon as it contains at least an assembly instruction. It is
considered to be a constant section if it contains B{lyor DCBdirectives. A section is
considered to be a data section as soon as it contains at[@Sslirective or if it is empty.

Example:

The following example demonstrates the definition of a seé&@®, which is split into two
blocks, with sectiobbb between them. The location counter associated with Ebes 1,
because & OPinstruction was already defined in this section at lxiel

aaa. section4
000000 9D XX: nop
bbb: section 5
000000 9D yy: nop

O©CoOo~NO U WN
O©CoOo~NOUhrWN

000001 9D nop

000002 9D nop
aaa. section4

000001 9D zz: nop

The optional qualifielSHORTspecifies that the section is a short section. Objects defined
there can be accessed using the direct addressing mode.

The following example demonstrates the definition and usageSdfl@R Tsection. On line
number 12, the symbol data is accessed using the direct addressing mode.

1 dataSec: SECTION SHORT
000000 data: DS.B1

0000 OAFE initSP: EQU $AFE

codeSec: SECTION

O~NOOT A WN P
oOo~NO O WN

entry:

MCUEZASMO08/D 8-41

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA
9 9 000000 45 0OAFE LDHX #initSP
10 10 000003 94 XS
11 11 000004 A600 LDA #0
12 12 000006 B7xx STA data
13 13
8-42 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.32 SET - SET SYMBOL VALUE
Syntax:

<label>; SET <expression>
Description:

Similar to theEQUdirective, the SET directive assigns the value of the <expression> in the
operand field to the symbol in the <label> field. The <expression> cannot include a symbol
that is undefined or not yet defined. The <label> is an assembly time cofsdftahtoes not
generate any machine code.

The value is temporary; a subsequent SET directive can redefine it.

Example:
2 2 0000 0002 count: SET 2
3 3 000000 02 loop: DC.B count
4 4 0000 0002 IFNE count
5 5 0000 0001 count: SET count - 1
6 6 ENDIF
7 7 00000101 DC.B count
8 8 0000 0001 IFNE count
9 9 0000 0000 count: SET count - 1
10 10 ENDIF
11 11 000002 00 DC.B count
12 12 0000 0000 IFNE count

The value associated with the label count is decremented aftelDéadh instruction.

MCUEZASMO08/D 8-43

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER DIRECTIVES @ MOTOROLA

8.33 SPC - INSERT BLANK LINES
Syntax:

SPC <count>

Description:

Inserts blank lines in the assembly listing. <count> may range from 0 to 65. This has the same
effect as writing that number of blank lines in the assembly source.

8-44 For More Information On This Product, MCUEZASMO8/D
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.34 TABS - SET TAB LENGTH
Syntax:

TABS <n>
Description:

Sets tab length to <n> spaces. The default tab length is eight. <n> may range from 0 to 128.

MCUEZASMO08/D 8-45

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.35 TITLE - PROVIDE LISTING TITLE

8-46

Syntax:
TITLE “title"
Description:

Prints the <title> on the head of each page of the listing file. This directive must be the first
source code line. A title consists of a string of characters enclosed in duptes (

The title specified will be written on the top of each page in the assembly listing file.

For compatibility purpose witMASMa title can also be specified without quotes.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER DIRECTIVES

8.36 XDEF - EXTERNAL SYMBOL DEFINITION
Syntax:

XDEF [.<size>] <label>[,<label>]...
where

<size> = B, W(default) or L.
Description:

This directive specifies labels defined in the current module that are to be passed to the linker
as labels that can be referenced by other modules linked to the current module.

The number of symbols in 2&ADEFdirective is limited by the memory available.

Example:

XDEF Global ;Global can be referenced in other module
XDEF AnyCase ;Note that the linker and assembler are
; case sensitive to names.

GLOBAL: DS.B 4

AnyCase NOP

MCUEZASMO8/D For More Information On This Product, 8-47

Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER DIRECTIVES @ MOTOROLA

8.37 XREF - EXTERNAL SYMBOL REFERENCE

8-48

Syntax:

XREF [.<size>] <symbol>[,<symbol>]...

where

<size> = B, W(Default) or L.

Description:

This directive specifies symbols referenced in the current module but defined in another
module. The list of symbols and corresponding 16-bit values is passed to the linker.

The number of symbols enumerated iXREF directive is only limited by the memory
available at assembly time.

Example:

XREF OtherGlobal; Reference "OtherGlobal" defined in another
; module (See XDEF directive example.)

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA MACROS

9.1

9.2

9.3

MCUEZASMO08/D

CHAPTER 9
MACROS

INTRODUCTION

This chapter describes the functionality and use of macros for the MCUez Assembler.

MACRO OVERVIEW

A macro is a template for a code sequence. After a macro is defined, later references to the
macro name are replaced by its code sequence. A macro must be defined before it is called.
When a macro is defined, it is given a name. The macro is called with this name.

The assembler expands the macro definition each time the macro is called. The macro call
causes source statements to be generated, which may include macro arguments. A macro
definition may contain any code or directive except nested macro definitions. Calling
previously defined macros is also allowed. Source statements generated by a macro call are
inserted in the source file at the position where the macro is invoked.

To call a macro, write the macro name in the operation field of a source statement. Place the
arguments in the operand field. The macro may contain conditional assembly directives that
cause the assembler to produce inline coding variations of the macro definition.

Macro calls produce inline code to perform a predefined function. Each time the macro is
called, code is inserted in the normal flow of the program so that the generated instructions are
executed in line with the rest of the program.

DEFINING A MACRO

The definition of a macro consists of four parts:

« Header statement, MACRQ@irective with a label that names the macro

» Body of the macro, sequential list of statements, possibly including argument placeholders
« ENDMiirective, terminating the macro definition

« MEXIT directive that stops macro expansion

The body of a macro is a sequence of assembler source statements. Macro parameters are
defined by parameter designators in the source statements. Valid macro definition statements
include processor assembly language instructions, assembler directives, and calls to
previously-defined macros. However, macro definitions may not be nested.

For More Information On This Product, 9-1

Go to: www.freescale.com

Freescale Semiconductor, Inc.

MACROS @ MOTOROLA

9.4

9.5

9-2

CALLING MACROS
The form of a macro call is :

[<label>:] <name>[.<sizearg>] [<kargument> [,<argument>]...]

A macro may call another macro prior to its definition, but all macros must be defined before
their first call. The name of the called macro must be in the source statement’s operation field.
Arguments appear in the source statement’s operand field, separated by commas.

The macro call produces inline code at the location of the call, according to the macro
definition and the arguments specified in the macro call. The source statements of the
expanded macro are then assembled subject to the same conditions and restrictions affecting
any source statement. Nested macro calls are also expanded at this time.

MACRO PARAMETERS

Up to 36 different parameters can be used in the source statements that constitute the body of
a macro. The parameters are replaced by the corresponding arguments in a later macro calls.

A parameter designator consists of a backslash charfgtdolfowed by a digit (0 - 9) or an
uppercase letter (A - Z). Parameter designdlorcorresponds to a size argument that follows
the macro name, separated by a period (

Example:

Consider the following macro definition:

MyMacro: MACRO
DC.\O \1,\2
ENDM
When this macro is used in a program, e.g.:

MyMacro.B $10, $56

the assembler expands it to:
DC.B $10, $56

Arguments in the operand field of the macro call refer to parameter desigfhatiwrough
\9 and\A through\Z , in that order. The argument list (operand field) of a macro call
cannot be extended onto additional lines.

Arguments from the macro call are literally substituted for parameter designators in the macro
body. The string corresponding to an argument is substituted where that parameter designator
occurs as the macro is expanded. Each statement generated is assembled inline.

It is possible to specify a null argument in a macro call by a comma with no character between

the comma and the preceding macro name or comma that follows an argument. When a null
argument itself is passed as an argument in a nested macro call, a null value is passed. All
arguments have a default value of null at the time of a macro call.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA MACROS

9.6 LABELS INSIDE MACROS

To avoid multiple definitions for the same label from multiple calls to a macro with labels in
its source statements, you can direct the assembler to generate unique labels on each call.

Assembler-generated labels include a string, _nnnnn, where nnnnn is a 5 digit value. Request
an assembler-generated label by specifi@ in a label field in a macro body. Each
successive label definition with @ generates a successive value of _nnnnn, creating a
unique label each call. W@ may preceded or follow additional characters for clarity.

Example:

clear: MACRO
LDX \1
LDA #16
\@LOOP: CLR 0,X
INCX
DECA
BNE \@LOOP
ENDM
clear tempory
clear data

The two macro calls of clear are expanded in the following manner:

clear tempory
LDX tempory
LDA #16
_00001LOOP:CLR 0,X
INCX
DECA
BNE _00001LOOP
clear data
LDX data
LDA #16
_00002LOOP:CLR 0,X
INCX
DECA
BNE _00002LOOP

MCUEZASMO08/D 9-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

MACROS @ MOTOROLA

9.7

9.8

9-4

MACRO EXPANSION

When the assembler reads a statement in a source program calling a previously defined macro,
it processes the call as described in the following paragraphs.

The symbol table is searched for the macro name. If it is not in the symbol table, an undefined
symbol error message is issued.

The rest of the line is scanned for arguments. Any argument in the macro call is saved as a
literal or null value in one of the 35 possible parameter fields. When the number of arguments
in the call is less than the number of parameters used in the macro the argument, which have
not been defined at invocation time are initialize with ““ (empty string).

Starting with the line following th&ACR@irective, each line of the macro body is saved
and is associated with the named macro. Each line is retrieved in turn, with parameter
designators replaced by argument strings or assembler-generated label strings.

Once the macro is expanded, the source lines are evaluated and object code is produced.

NESTED MACROS

Macro expansion is performed at invocation time, which is also the case for nested macros. If
the macro definition contains a nested macro call, the nested macro expansion takes place
inline. Recursive macro call are also supported.

A macro call is limited to the length of one line, i.e. 1024 characters.

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER LISTING FILE

CHAPTER 10
ASSEMBLER LISTING FILE

10.1 INTRODUCTION

The assembly listing file is the output file of the assembler, which contains information about
the generated code. The listing file is generated as soon as the-éptisractivated. When
an error is detected during assembly, no listing file is generated.

The amount of information available depends on following assembly options:
-Li, -Lc, -Ld, -Le

The information in the listing file also depends on the following assembly directives:
LIST, NOLIST, CLIST, MLIST

The format of the listing file is influenced by the directives:
PLEN, LLEN, TABS, SPC, PAGE, NOPAGE, TITLE

The name of the generated listing file is <base nalat>

10.2 PAGE HEADER

The page header consists of 3 lines:

« The first line contains an optional user string defined in the dire¢iive.E
* The second line contains the vendor and target processor names (MOTOROLA/HCO08)
* The third line contains a copyright notice

10.3 SOURCE LISTING
The source listing is divided into 5 columns:
* Abs.
* Rel.
e Loc
* Obj. code
» Source line

MCUEZASMO08/D 10-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER LISTING FILE @ MOTOROLA

10.3.1 Abs. Listing

This column contains the absolute line number for each instruction. The absolute line number
is the line number in thBBGfile, which contains all included files and where all macro calls
have been expanded.

Example:

Abs. Rel. Loc Obj. code Source line

1 1 jmmmm e
2 2 : File: test.o
3 3 Jmm e
4 4
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
7 2i LDD\1
8 3i STD \2
9 4 ENDM
10 5i
11 6 codeSec: SECTION
12 7 Start:
13 8 cpChar chl, ch2
14 2m 000000 FC xxxx + LDD chl
15 3m 000003 7C xxxx + STD ch2
16 9 000006 A7 NOP
17 10 000007 A7 NOP

10-2 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER LISTING FILE

10.3.2 Rel. Listing

This column contains the relative line number for each instruction. The relative line number is
the line number in the source file. For included files, the relative line number is the line
number in the included file. For macro call expansion, the relative line number is the line
number of the instruction in the macro definition.

An “i ” suffix is appended to the relative line number, when the line comes from an included
file. An “M suffix is appended to the relative line number, when the line is generated by a
macro call.

Example:

Abs. Rel. Loc Obj.code Source line

1 1 R EE T
2 2 : File: test.o

3 3 jmm e
4 4

5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO

7 2i LDD\1

8 3i STD\2

9 4 ENDM

10 5i

11 6 codeSec: SECTION

12 7 Start:

13 8 cpChar chl, ch2

14 2m 000000 FC xxxx + LDD chil
15 3m 000003 7C xxxx + STD ch2
16 9 000006 A7 NOP

17 10 000007 A7 NOP

In the previous example, the line number displayed in the colfeh.” ” represents the line
number of the corresponding instruction in the source flé.™on absolute line number 6
denotes that the instructioepChar: MACRO " is located in an included file.2nT on
absolute line number 14 denotes that the instructiddD chl " is generated by a macro
expansion.

MCUASMO08/D 10-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER LISTING FILE @ MOTOROLA

10.3.3 Loc Listing

This column contains the address of the instruction. For absolute sections, the address is
preceded by the letter ‘a’ and contains the absolute address of the instruction. For relocatable
sections, this address is the offset of the instruction from the beginning of the relocatable
section. This offset is a hexadecimal number coded on 8 digits.

A value is written in this column in front of each instruction generating code or allocating

storage. This column is empty in front of each instruction which does not generate code (for
example SECTION XDEEF ..)).

Example:

Abs. Rel. Loc Obj. code Source line
1 1 jmmmmmmmm e
2 2 ; File: test.o
3 3 o
4 4
5 5 INCLUDE "macro.inc"
6 1li cpChar: MACRO
7 2 LDD \1
8 3i STD\2
9 4i ENDM
10 b5i
11 6 codeSec: SECTION
12 7 Start:
13 8 cpChar chl, ch2
14 2m 000000 FC xxxx + LDD chl
15 3m 000003 7C xxxx + STD ch2
16 9 000006 A7 NOP
17 10 000007 A7 NOP

In the previous example, the hexadecimal number displayed in the colua@‘is the
offset of each instruction in the sectiobodeSec ”. There is no location counter specified
in front of the instructionINCLUDE "macro.inc" ” because this instruction does not
generate code. The instructiohDD chl ” is located at offset 0 from the section
“codeSec ” start address. The instructiol8TD ch2 " is located at offset 3 from the
section ‘codeSec ” start address.

10-4 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER LISTING FILE

10.3.4 Obj. Code Listing

This column contains the hexadecimal code of each instruction in hexadecimal format. This
code is not identical to the code stored in the object file. The létteis“displayed at the
position where the address of an external or relocatable label is expected. Code at position
when ‘X" are written will be determined at link time.

Example:

Abs. Rel. Loc Obj. code Source Line
1 1 jmmmmmm oo
2 2 ; File: test.o
3 3 =
4 4
5 5 INCLUDE "macro.inc"
6 1li cpChar: MACRO
7 2 LDD \1
8 3i STD\2
9 4i ENDM
10 b5i
11 6 codeSec: SECTION
12 7 Start:
13 8 cpChar chl, ch2
14 2m 000000 FC xxxx + LDDchl
15 3m 000003 7C XXXX + STDch2
16 9 000006 A7 NOP
17 10 000007 A7 NOP

MCUASMO08/D 10-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER LISTING FILE @ MOTOROLA

10.3.5 Source Line Listing

10-6

This column contains the source statement. This is a copy of the source line from the source
module. For lines resulting from a macro expansion, the source line is the expanded line,
where parameter substitution has been done.

Example:

Abs. Rel. Loc Obj. code Source line
1 1 jmmmm e
2 2 ; File: test.o
3 3 jrmmmmmmmm—————————————————
4 4
5 5 INCLUDE "macro.inc"
6 1li cpChar: MACRO
7 2i LDD \1
8 3i STD \2
9 4 ENDM
10 5i
11 6 codeSec: SECTION
12 7 Start:
13 8 cpChar chl, ch2
14 2m 000000 FC xxxx + LDD chl
15 3m 000003 7C xxxx + STD ch2
16 9 000006 A7 NOP
17 10 000007 A7 NOP

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA MCUASM COMPATIBILITY

CHAPTER 11
MCUASM COMPATIBILITY

11.1 INTRODUCTION

The macro assembler has been extended to ensure compatibility with the MCUASM
assembler 053.

11.2 COMMENT LINE

A line starting with a* " character is considered to be a comment line by the assembler.

11.3 CONSTANTS
For compatibility with MCUASM, these integer constant notations are supported:

+ Decimal constants are a sequence of decimal digits (0-9) followed ayr “ D’

* Hexadecimal constants are a sequence of hexadecimal digits (0-9, a-f, A-F) followed by
“h” or “H’

« Octal constants are a sequence of octal digits (0-7) followedhy O, “q”, or “

« Abinary constants are a sequence of binary digits (0-1) followet) bgrB”

Example:

512d ; decimal representation
512D ; decimal representation
200h ; hexadecimal representation
200H ; hexadecimal representation
10000 ; octal representation

10000 ; octal representation

1000q ; octal representation

1000Q ; octal representation

1000000000b ; binary representation
1000000000B ; binary representation

MCUEZASMO8/D For More Information On This Product, 111

Go to: www.freescale.com

Freescale Semiconductor, Inc.
MCUASM COMPATIBILITY @ MOTOROLA

11.4 OPERATORS
For compatibility with the MCUASM assembler, the following operator notation is supported:

Table 11-1. Operators

Operator Notation
Shift left I<
Shift right 1>
Bitwise AND I
Bitwise OR I+
Bitwise XOR Ix, IX

11.5 DIRECTIVES
The following table lists directives supported by MCUez for compatibility with MCUASM:

Table 11-2. Directives

Operator Notation
RMB DS
ELSEC ELSE
ENDC ENDIF
NOL NOLIST
TTL TITLE
GLOBAL XDEF
PUBLIC XDEF
EXTERNAL XREF
XREFB XREF.B

11-2 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

CHAPTER 12
OPERATING PROCEDURES

12.1 INTRODUCTION

This chapter provides operating procedures for the the MCUez Assembler.

12.2 WORKING WITH ABSOLUTE SECTIONS

An absolute section is a section in which the start address is known at assembly time (see
modulesfiboorg.asm andfiboorg.prm in the demo directory).

12.2.1 Defining Absolute Sections In The Assembly Source File

Absolute sections are defined with the direc@BRGThe Assembler makes pseudo-section
ORG <index>. The integer <index> is incremented when an absolute section is encountered.

Example:

Defining an absolute section containing data:

ORG $A00 ; Absolute constant data section.
cstl: DC.B $A6
cst2: DC.B $BC

ORG $800 ; Absolute data section.
var. DSB 1

The labelcstl will be at address $A00, am$t2 will be at address $A01.

Defining an absolute section containing code:

ORG $CO00 ; Absolute code section.
entry:

LDA cstl ; Load value in cstl

ADD cst2 ; Add value in cst2

STA var ; Storein var

BRA entry

The instructiorLDAwill be at addres$C00 and instructiodADDat addres$CO03.

To avoid problems during linking or execution, an assembly file should:

MCUEZASMO08/D 12-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
OPERATING PROCEDURES @ MOTOROLA

» Initialize the stack pointer: the instructi®SP can be used to initialize the
stack pointer t&00FF. To set the Stack Pointer anywhere else in the code,
store first the initial value for the Stack Pointer in registXrusing LDHX
#initSP . You can then swap the contenttdXin SP using the instruction
TXS. TheSP will then contain the valuginitSP-1

« Publish the application entry point usiXddEF
* Ensure the addresses specified in the source file are valid addresses for the MCU in use

12.2.2 Linking An Application Containing Absolute Sections
Even applications with only absolute sections must be linked. A linker parameter file must:

* Name the absolute file
* Name the object file to be linked
» Specify the memory area where sections containing variables must be allocated

» Specify the memory area where code or constant sections must be allocated (nothing is
allocated for applications that contain only absolute sections)

» Specify the application entry point
» Define the reset vector
The minimal linker parameter file will look as follows:

LINK test.abs /* Name of the executable file generated. */

NAMES
test.o /* Name of the object files in the application. */

END

SEGMENTS

/* READ_ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */

MY_ROM = READ_ONLY 0x1000 TO Ox1FFF;

/* READ_WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */

MY_RAM =READ_WRITE 0x2000 TO Ox2FFF;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY_RAM. */

.data INTO MY_RAM;

/* Relocatable code and constant sections allocated in MY_ROM. */
text INTO MY_ROM;

END

INIT entry /* Application entry point. */

12-2 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

&

Freescale Semiconductor, Inc.
MOTOROLA OPERATING PROCEDURES

12.3

12.3.1

VECTOR ADDRESS OxFFFE entry /* initialization of reset vector. */

There should be no overlap between the absolute section defined in the assembly source file
and the memory area defined in the PRM file.

The demo directory moduféboorg.asm shows absolute sections in an application.

WORKING WITH RELOCATABLE SECTIONS

A relocatable section is a section whereby the start address is determined at linking time (see
modulesfibo.asm andfibo.prm in the demo directory).

Defining Relocatable Sections In The Assembly Source File
A relocatable section is defined using the direcBeCTION

Example:
Defining a relocatable section containing data:

constSec: SECTION ; Relocatable constant data section.
cstl: DC.B $A6
cst2: DC.B $BC

dataSec: SECTION ; Relocatable data section.
var. DSB 1

In the previous portion of code, the label cstl will be located at offset O from the section
constSec start address, and label cst2 will be located at offset 1 from the section constSec start

address.
Defining a relocatable section containing code:

codeSec: SECTION ; Relocatable code section.
entry:

LDA cstl ; Load value in cstl

ADD cst2 ; Add value in cst2

STA var ; Store in var

BRA entry

In the previous portion of code, the instructibDA will be located at offset 0 from the
section codeSec start address, and instructioADD at offset 3 from the section
codeSec start address. In order to avoid problems during linking or executing an
application, an assembly file must:

MCUEZASMO8/D For More Information On This Product, 12-3

Go to: www.freescale.com

Freescale Semiconductor, Inc.
OPERATING PROCEDURES @ MOTOROLA

» Initialize the stack pointer: the instructi®SP can be used to initialize the
stack pointer t&00FF. To set the Stack Pointer anywhere else in the code,
store first the initial value for the Stack Pointer in registXrusing LDHX
#initSP . You can then swap the contenttdXin SP using the instruction
TXS. TheSP will then contain the valuginitSP-1

« Publish the application entry point usiXddEF

12.3.2 Linking An Application Containing Relocatable Sections
Applications containing relocatable sections must be linked. The linker parameter file must
contain at least:
* The name of the absolute file
* The name of the object file which should be linked

» The specification of a memory area where the sections containing variables must be
allocated

* The specification of a memory area where the sections containing code or constants must
be allocated

* The specification of the application entry point
* The definition of the reset vector
The minimal linker parameter file will look as follows:

LINK test.abs /* Name of the executable file generated. */

NAMES

test.o /* Name of the object files in the application. */
END
SEGMENTS

/* READ_ONLY memory area. */
MY_ROM = READ_ONLY 0x0B00 TO OxOBFF;
/* READ_WRITE memory area. */
MY_RAM = READ_WRITE 0x0800 TO 0x08FF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */
.data INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM.
*/
text INTO MY_ROM;
END
INIT entry * Application entry point. */
VECTOR ADDRESS O0xFFFE entry /* initialization of reset vector. */

12-4 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

NOTE

The programmer should ensure that the memory ranges specified in the
SEGMENT block are valid addresses for the MCU being used.

The module fibo.asm located in the demo directory is a small example of using the relocatable
sections in an application.

12.4 INITIALIZING THE VECTOR TABLE

The vector table is initialized in the assembly source file or in the linker parameter file. We
recommend initializing it in the PRM file.

The HCO08 allows 128 entry in the vector table starting at memory IBEHOO to memory
location$FFFF.

The Reset vector is located i$FFFE, the SWI interrupt vector is located SFFFC.
From $FFFA down to $FFO0 are located interruptRQ[0] ($FFFA), IRQ[1]
(SFFFA)....,IRQ[125] ($FFO00).

In the following examples, theeset vector, theSWl interrupt and théRQ[1] interrupt
are initialized. ThéRQJ[O0] interrupt is not used.

12.4.1 Initializing Vector Table In The Linker PRM File

Initializing the vector table from the PRM file allows you to initialize single entries in the
table. The user can decide to initialize all the entries in the vector table or not.

The labels or functions, which should be inserted in the vector table, must be implemented in
the assembly source file. All these labels must be published otherwise they cannot be
addressed in the linker PRM file.

Example:

XDEF IRQ1Func, SWIFunc, ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION

; Implementation of the interrupt functions.
IRQ1Func:
LDA #0
BRA int
SWIFunc:
LDA #4
BRA int
ResetFunc:
LDA #8

MCUEZASMO08/D 12-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA
BRA entry
int;
PSHH

LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab
Ofset: TSTA
BEQ Ofset3
Ofset2:
AIX #3$1
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #$0EOQO ; Init Stack Pointer to $E00-$1=3$DFF
TXS
CLRX
CLRH

CLlI ; Enables interrupts

loop: BRA loop

NOTE

The functions*IRQFuUNC ", “XIRQFunc”, “SWIFunc”, “OpCodeFunc”,
“ResetFunc” are published. This is required because they are referenced in
the linkerPRMfile. The HCO8 processor automatically pushesRke X,

A, and CCRregisters on the stack on occurrence of an interrupt. The
interrupt function do not need to save and restore those registers. To
maintain compatibility with the M6805 Family, thid register is not
stacked, it is the user’s responsibility to save and restore it prior to
returning. All Interrupt functions must be terminated with an RTI
instruction.

The vector table is initialized using the linker commdiCTOR ADDRESS
Example:

LINK test.abs

NAMES
test.o

END

12-6 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

SEGMENTS
MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
MY _RAM = READ_WRITE 0x0B00O TO 0x0CFF;
MY_STACK = READ_WRITE 0x0D00 TO 0xODFF;
END
PLACEMENT
.data INTO MY_RAM,;
text INTO MY_ROM;
.stack INTO MY_STACK;
END
INIT ResetFunc
VECTOR ADDRESS 0OxFFF8 IRQ1Func
VECTOR ADDRESS 0xFFFC SWIFunc
VECTOR ADDRESS 0xFFFE ResetFunc

NOTE

The statementINIT ResetFunc ” defines the application entry
point. Usually, this entry point is initialized with the same address as the
reset vector. The statemenVECTOR ADDRESS OxFFFA
IRQFuNc " specifies that the address of functidiRQFunc ” should

be written at addre3xFFFA.

12.4.2 Initializing Vector Table In Assembly Source File Using A Relocatable Section

Initializing the vector table in the assembly source file requires that all the entries in the table
are initialized. Interrupts, which are not used, must be associated with a standard handler.

The labels or functions, which should be inserted in the vector table must be implemented in
the assembler source file or an external reference must be available for them. The vector table
can be defined in an assembly source file in an additional section containing constant
variables.

Example:

XDEF ResetFunc

DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:

LDA #0

BRA int
SWIFunc:

LDA #4

BRA int

MCUEZASMO08/D 12-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA
ResetFunc:
LDA #8
BRA entry
DummyFunc:
RTI
int:
PSHH

LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab
Ofset: TSTA
BEQ Ofset3
Ofset2:
AIX #3$1
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #$0EOQO ; Init Stack Pointer to $E00-$1=$DFF
TXS
CLRX
CLRH

CLlI ; Enables interrupts
loop: BRA loop

VectorTable: SECTION

: Definition of the vector table.
IRQ1Int: DC.W IRQ1Func
IRQOInt: DC.W DummyFunc
SWiInt: DC.W SWIFunc
Resetint: DC.W ResetFunc

12-8 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

NOTE

The statementINIT ResetFunc ” defines the application entry
point. Usually, this entry point is initialized with the same address as the
reset vector. The statemenVECTOR ADDRESS OxFFFA
IRQFuUNc " specifies that the address of functiofRQFunc " should

be written at addre€3XFFFA.

The section should now be placed at the expected address. This is performed in the linker
parameter file.

Example:

LINK test.abs

NAMES
test.o

END

SEGMENTS
MY_ROM = READ_ONLY 0x0800 TO Ox08FF;
MY_RAM = READ_WRITE 0x0B00 TO 0xOCFF;
MY_STACK = READ_WRITE 0x0D00 TO OxODFF;

/* Define the memory range for the vector table */
Vector = READ_ONLY OxFFF8 TO OxFFFF;

END

PLACEMENT
.data INTO MY_RAM;
text INTO MY_ROM;
.stack INTO MY_STACK;

/* Place the section 'VectorTable' at the appropriated address. */
VectorTable INTO Vector;

END

INIT ResetFunc

ENTRIES

*

END

MCUEZASMO8/D For More Information On This Product, 12-9

Go to: www.freescale.com

Freescale Semiconductor, Inc.
OPERATING PROCEDURES @ MOTOROLA

NOTE

The statementVector = READ ONLY OxFFF8 TO
OXFFFF" defines the memory range for the vector table. The statement
“VectorTable INTO Vector ” specifies that the vector table
should be loaded in the read only memory area Vector. This means, the
constant fRQ1Int " will be allocated at addre€dXFFF8, the constant
“IRQOINt ” will be allocated at addres®XFFFA, the constant
“SWIInt ” will be allocated at addres®XFFFC, and the constant
“Resetint " will be allocated at addres®XFFFE. The statement
“ENTRIES * END " switches smart linkindDFF If this statement is
missing in thePRMfile, the vector table will not be linked with the
application, because it is never referenced. The smart linker only links the
referenced objects in the absolute file.

12.4.3 Initializing Vector Table In Assembly Source File Using An Absolute Section

Initializing the vector table in the assembly source file requires that all the entries in the table
are initialized. Interrupts, which are not used, must be associated with a standard handler.

The labels or functions, which should be inserted in the vector table must be implemented in

the assembly source file or an external reference must be available for them. The vector table
can be defined in an assembly source file in an additional section containing constant

variables.

Example:

XDEF ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:
LDA #0
BRA int
SWIFunc:
LDA #4
BRA int
ResetFunc:
LDA #8
BRA entry
DummyFunc:
RTI
int:
PSHH
LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab
Ofset: TSTA
BEQ Ofset3

12-10 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

Ofset2:
AIX #$1
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #$0EO0O ; Init Stack Pointer to $E00-$1=$DFF
TXS
CLRX
CLRH
CLlI ; Enables interrupts

loop: BRA loop

ORG $FFF8
; Definition of the vector table in an absolute section
; starting at address $FFF8.
IRQ1Int: DC.W IRQ1Func
IRQOInt: DC.W DummyFunc
SWiInt: DC.W SWIFunc
Resetint: DC.W ResetFunc

NOTE

“Vector = READ_ONLY OxFFF8 TO OxFFFF ” defines the
memory range for the vector tableVéctorTable INTO

Vector ” specifies the vector table should be loaded in the read only
memory area Vector. This means the constdRQlInt ” will be
allocated at address OxFFF8, the const#RQOInt ” will be allocated

at address OxFFFA, the consta@®WIInt " will be allocated at address
OxFFFC, and the constanResetint " will be allocated at address
OXFFFE.The statemenENTRIES * END ” switches smart linking
OFF. If this statement is missing in the PRM file, the vector table will not
be linked with the application, because it is never referenced. The smart
linker only links the referenced objects in the absolute file.

The section should now be placed at the expected address using the linker parameter file.
Example:

LINK test.abs

NAMES
test.o

END

SEGMENTS
MY_ROM = READ_ONLY 0x0800 TO Ox08FF;
MY_RAM = READ_WRITE 0x0B0O TO 0xOCFF;

MCUEZASMO08/D 12-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
OPERATING PROCEDURES @ MOTOROLA

MY_STACK = READ_WRITE 0x0D00 TO 0xODFF;
END
PLACEMENT
.data INTO MY_RAM,;
text INTO MY_ROM;
.Stack INTO MY_STACK;
END
INIT ResetFunc
ENTRIES

*

END
NOTE

The statementENTRY * END” switches smart linking OFF. If this
statement is missing in the PRM file, the vector table will not be linked
with the application, because it is never referenced. The smart linker only
links the referenced objects in the absolute file.

12.5 SPLITTING AN APPLICATION INTO DIFFERENT MODULES

A complex application or application involving several programmers can be split into several
simple modules. In order to avoid any problem when merging the different modules, for each
assembly source file, one include file must be created containing the definition of the Symbols
exported from this module. For the symbols referring to code label, a small description of the
interface is required.

Example of Assembly Filelestl.asm):

XDEF AddSource
XDEF Source

initStack:EQU $AFF

DataSec: SECTION
Source: DSW1
CodeSec: SECTION
AddSource:
ADD Source
STA Source
RTS

Corresponding Include Fildestl.inc):

XREF AddSource
; The function AddSource adds the value stored in the variable
; Source to the content of register A.
; The result of the computation
; is stored in the variable Source.

12-12 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

; Input Parameter : register A contains the value, which should be
; added to the variable Source.
; Output Parameter: register A contains the result of the addition.

XREF Source
: The variable Source is a word variable.

Each assembly module using one of the symbols defined in another assembly file should
include the corresponding include file.

Example of Assembly Filelest2.asm):

XDEF entry
INCLUDE “Testl.inc”

initStack: EQU $AFE

CodeSec: SECTION
entry: LDHX #initStack
TXS
LDA #$7
JSR AddSource
BRA entry

The application PRM file should list both object files building the application. When a section
is present in the different object files, the object file sections are concatenated in a single
absolute file section. The different object file sections are concatenated in the order the object
files are specified in the PRM file.

Example of PRM FileTest2.prm):

LINK test2.abs /* Name of the executable file generated. */

NAMES

testl.o test2.0 /*Name of object files building application.*/
END

SEGMENTS

MY_ROM = READ_ONLY 0x0B00 TO 0xOBFF; /* READ_ONLY memory area
*/

MY_RAM = READ_WRITE 0x0800 TO 0x08FF; /* READ_WRITE memory area
*/
END

PLACEMENT

DataSec,.data INTO MY_RAM,; /* variables are allocated in MY_RAM
*/

CodeSec,.text INTO MY_ROM,; /* code and constants */

/* are allocated in MY_ROM */

END

INIT entry /* Definition of the application entry point. */

MCUEZASMO08/D 12-13

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
OPERATING PROCEDURES @ MOTOROLA

VECTOR ADDRESS OxFFFE entry/* Definition of the reset vector. */
NOTE

The statementNAMES testl.o test2.0 END ” lists the object

files building the application. A space character separates the object file
names.The sectionCodeSec” is defined in both object files. In
“testl.o ", the section CodeSec” contains the symbol
“AddSource ". In “test2.0 7, the section CodeSec” contains

the symbol €ntry ”. According to the order in which the object file are
listed in the NAMES block, the functionAddSource ” will be
allocated first and symboEntry ” will be allocated next to it.

12.6 USING DIRECT ADDRESSING MODE TO ACCESS SYMBOLS

There are different ways to inform the assembler it should use direct addressing mode on a
symbol.

12.6.1 Using Direct Addressing Mode To Access External Symbols

External symbols, which should be accessed using the direct addressing mode, must be
declared using the directive XREF.B in place of XREF.

Example:

XREF.B ExternalDirLabel
XREF ExternalExtLabel

LDA ExternalDirLabel ; Direct addressing mode is used.

LDA ExternalExtLabel ; Extended addressing mode is used.

12.6.2 Using Direct Addressing Mode To Access Exported Symbols

Symbols, which are exported using the directive XDEF.B, will be accessed using the direct
addressing mode. Symbols, which are exported using the directive XDEF, are accessed using
the extended addressing mode.

Example:

XDEF.B DirLabel
XDEF ExtLabel

LDA DirLabel ; Direct addressing mode is used.
LDA ExtLabel ; Extended addressing mode is used.

12.6.3 Defining Symbols In The Direct Page
Symbols defined in the predefined section BSCT, are accessed with direct addressing mode.

12-14 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

Example:

BSCT
DirLabel: DS.B 3
dataSec: SECTION
ExtLabel: DS.B 5

codeSec: SECTION
LDA DirLabel ; Direct addressing mode is used.
LDA ExtLabel ; Extended addressing mode is used.

12.6.4 Using A Force Operator

A force operator can be specified in an assembly instruction to force direct or extended
addressing mode.

The supported force operators are:

* <or .Bto force direct addressing mode
* > or.W to force extended addressing mode

Example:

dataSec: SECTION
label: DS.B 5

codeSec: SECTION

LDA <label ; Direct addressing mode is used.
LDA label.B; Direct addressing mode is used.

LDA >label ; Extended addressing mode is used.
LDA label.W ; Extended addressing mode is used.

12.6.5 Using SHORT Sections

Symbols, which are defined in a section defined with the qualifier SHORT are always
accessed using the direct addressing mode.

Example:

shortSec: SECTION SHORT
DirLabel: DS.B 3

MCUEZASMO8/D For More Information On This Product, 1215
Go to: www.freescale.com

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

12.7

dataSec: SECTION
ExtLabel: DS.B 5

codeSec: SECTION
LDA DirLabel ; Direct addressing mode is used.

LDA ExtLabel ; Extended addressing mode is used.

DIRECTLY GENERATING AN .ABS FILE

The MCUeZ Assembler generates &BSfile directly from your assembly source file. A
Motorola S file is generated at the same time and can be directly burnt into an EPROM.

12.7.1 Assembler Source File

12-16

When an ABS file is generated using the Assembler (as no linker is involved), the
application must be implemented in a single assembly unit and contain only absolute sections.
This is shown in the code example following the note below.

Example:

ABSENTRY entry ; Specifies the application Entry point
iniStk: EQU $AFE ; Initial value for SP

ORG $FFFE ; Reset vector definition
Reset: DC.W entry

ORG $40 ; Define an absolute constant section
varl: DC.B5 ; Assign 5 to the symbol varl

ORG $80 ; Define an absolute data section
data: DS.B1 ; Define one byte variable in RAM address 40

ORG $B0O ; Define an absolute code section
entry:

LDHX #iniStk ; Load stack pointer

TXS

LDA varl
main:

INCA

STA data

BRA main

When writing your assembly source file for direct absolute file generation pay special
attention to the following points:

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

» The directiveABSENTRYis used to write the entry point address in the generated
absolute file. To set the entry point of the application on the &bkl in the absolute
file, the following code is needed:ABSENTRY entry

* The reset vector must be initialized in the assembly source file, specifying the application
entry point. An absolute section is created at the reset vector address. This section contains
the application entry point address. To set the entry point of the application at address
$FFFE on the labeentry , the following code is needed:

ORG $FFFE ; Reset vector definition
Reset:DC.W entry

* It is strongly recommended to use separate sections for code, data and constants. All
sections used in the Assembler application must be absolute. They must be defined using

the OR@lirective. The address for constant or code sections has to be locateR @ he
memory area, while the data sections have to be located\iarea (according to the
hardware which is used). It is the programmer responsibility to ensure that no sections
overlaps occur.

12.7.2 Assembling And Generating The Application
Once the source file is available, you can assemble it.

1. Start the Macro Assembler clicking the HCO08 Assembler ezASM icon in the MCUez shell
tool bar. The MCUez Assembler is started, shown in the following figure. Enter the name
of the file to be assembled in the editable combo box, in our exatygitest.asm

AHCODE Assembler D:AMCUEZADEMO\WMMDS08A\project.ini
Fil= Agzembler Wiew Help
D|=(Q] 2 (x| e =]
Ready 161256 2

Figure 12-1. Starting The MCUez Assembler

MCUEZASMO08/D 12-17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA

OPERATING PROCEDURES

2. Select the menu entAssembler | Advancedhe Advanced Options Settings dialog is
displayed, shown in the following figure.

Advanced Options Settings (%]

| Huast | Code Generationl Messagesl

[10bject File Format

[w|Generate a listing file

[0o not print macra call in list file

0@ not print macra definition in list file
[0 not print rmacro expansion in lizt file
[0o not print included files in lizt file

0K I Cancel | Help |

Figure 12-2. Displaying The Advanced Options Setting Dialog

3. In the Output folder, select the check box in front of the I&@bgct File FormatMore
information is displayed at the bottom of the dialog, shown below:

Advanced Dptions Settings

Output |Hc-$t | Code Generation' Messagesl

Object File Format

[wlGenerate a listing file

100 not print macro call in list file

[100 not print macro definition in list file
[100 not print macro expansian in st file
(100 not print included files in list file

Object File Format

& ELF/DWARF 2.0 Absolute File:
" ELF/DWAARF 2.0 Object File Format

ak I Cancel | Help |

Figure 12-3. Selecting The Object File Format

1218 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES

4. Select the radio button ELF/DWARF 2.0 Absolute File and click OK. The Assembler is
now ready to generate an absolute file.The file is assembled as soon as you click on the
Assembléutton. The assembly process is shown in the following illustration:

AHCO08 Assembler D:\MCUEZ\ADEMO\WMMDS50BA\project.ini
File Assembler “iew Help

Dlﬁlnl ?l*?l Iabstest.asm j @llﬁl

Top: D:\MCUEZ\DEMO,WHMDS0S84Y abstest, asn

writing debug listing to D:\HCUEZA\DEMOYWMMDS0G4Yabstest.DEG
Output file: "D:\MCUEZ\DEMOYWMMDS054% abstest.abs”

Output file: "D:VMCUEZ\DEMOYWMMDS084% abstest, 3X7

Code Size: 1o

writing listing to abstest.LAT

Ready 161302

Figure 12-4. The Assembler Generating An .ABS File Directly

The absolute that is generated is to be used with the HCO8 target board or emulator uses the
generatedabs file. You can download this file directly to the HCO8 target. The target must

be reset using menu entffMDS0508 / Reset before running the application. The

.SX file that is generated is a standard Motorola S record file. This file can be directly burnt

into an EPROM.

MCUEZASMO8/D For More Information On This Product, 1219

Go to: www.freescale.com

Freescale Semiconductor, Inc.
OPERATING PROCEDURES @ MOTOROLA

12-20 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

CHAPTER 13
ASSEMBLER MESSAGES

13.1 INTRODUCTION

The Assembler can generate three types of messages:

» Warning
e Error
 Fatal

13.1.1 Warning

A message will be printed and assembling will continue. Warning messages are used to indicate
possible programming errors to the user.

13.1.2 Error

A message will be printed and assembling will be stopped. Error messages are used to indicate
illegal language usage.

13.1.3 Fatal

A message will be printed and assembling will be aborted. A fatal message indicates a severe
error which will stop the assembling.

13.2 MESSAGE CODES

If the Assembler prints out a message, the message contains a message code (‘A" for
Assembler) and a four to five digit number. This number may be used to search for the
indicated message in the manual. All messages generated by the Assembler are documented in
increasing order for easy and fast retrieval.

Each message also has a description and if available a short example with a possible solution
or tips to fix a problem. For each message the type of message is also noted, e.g. [ERROR]
indicates that the message is an error message.

MCUEZASMO08/D 13-1

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER MESSAGES @ MOTOROLA

13.2.1 A1000: Conditional Directive Not Closed

Type:
[ERROR]

Description:

One of the conditional blocks is not closed. A conditional block can be opened using one of
the following directives:

IF,IFEQ, IFNE, IFLT ,IFLE | IFGT, IFGE, IFC, IFNC, IFDEF, IFNDEF.

Example:

IFEQ (defineConst)
constl: DCB1
const2: DC.B 2

Tips:
Close the conditional block with &NDIF or ENDdirective.
Example:

IFEQ (defineConst)
constl: DCB1
const2: DC.B 2

ENDIF

Be careful:
A conditional block, which starts inside of a macro, must be closed within the same macro.
Example:

Following portion of code generates an error, because the conditional BleEK)" is
opened within the macrdVlyMacro” and is closed outside from the macro.

MyMacro: MACRO
IFEQ (SaveRegs)
NOP
NOP
ENDM
NOP
ENDIF

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.2 A1001: Conditional Else Not Allowed Here
Type:
[ERROR]
Description:
A secondELSE directive is detected in a conditional block.
Example:

IFEQ (defineConst)
“iELSE
“iELSE
“iENDIF
Tips:
Remove the superfluoksLSE directive.

Example:

IFEQ (defineConst)
ELSE

ENDIF

MCUEZASMO08/D 13-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.3 A1051: Zero Division In Expression
Type:
[ERROR]

Description:
A zero division is detected in an expression.
Example:

label: EQU O;

label2: EQU $5000

LDX #(label2/label)
Tips:
Modify the expression or specify it in a conditional assembly block.
Example:

label: EQU O;
label2: EQU $5000

IFNE (label)

LDX #(label2/label)
ELSE

LDX #label2
ENDIF

13-4 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.4 A1052: Right Parenthesis Expected
Type:
[ERROR]
Description:

A right parenthesis is missing in an assembly expression or in a expression containing an
HIGH or LOWbperator.

Example:

MyData: SECTION
variable: DS.B 1

label: EQU (2*4+6
label2: EQU PAGE (variable
label5: EQU HIGH (variable

Tips:
Insert the right parenthesis at the correct position.
Example:

MyData: SECTION

variable: DS.B 1

label: EQU (2*4)+6
label2: EQU PAGE(variable)
label5: EQU HIGH (variable)

MCUEZASMO08/D 13-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.5 A1053: Left Parenthesis Expected
Type:
[ERROR]
Description:

A left parenthesis is missing in an expression containing a reference to the page (bank) where
an object is allocated.

Example:

MyData: SECTION

variable: DS.B 1

label3: EQU PAGE variable)
label5: EQU HIGH variable)

Tips:
Insert the left parenthesis at the correct position.
Example:

MyData: SECTION
variable: DS.B 1

label3: EQU PAGE (variable)
label5: EQU HIGH (variable)

13-6 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.6 A1101: lllegal Label: Label Is Reserved
Type:
[ERROR]
Description:
A reserved identifier is used as label. Reserved identifiers are:

* Mnemonics associated with target processor registers
A, CCRSP andX

* Mnemonics associated with special target processor operator.
HIGH andLOW

Example:

A: NOP
NOP
RTS

Tips:
Modify the name of the label to a identifier which is not reserved.
Example:

ASub: NOP
NOP
RTS

MCUEZASMO08/D 13-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.7 A1103: lllegal Redefinition Of Label
Type:
[ERROR]

Description

The label specified in front of a comment or an assembly instruction or directive, is detected
twice in a source file.

Example:

XDEF Entry

DataSecl: SECTION
DataLabl: DS.W 2
DataLab2: DS.L 2

CodeSecl: SECTION
MySub: LDX #DatalLabl
CPX #3$500
BNE CodLab2
NOP
NOP
NOP
CodLab2: RTS

Entry: LDHX #$4000
TXS

main: BSR MySub
BRA main

13-8 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.8 A1104: Undeclared User Defined Symbol <SymbolName>
Type:
[ERROR]
Description:
The label symbolName > is referenced in the assembly file, but it is never defined.

Example:

Entry:
LDA #56
STA Variable
RTS

Tips:
The label symbolName > must be defined in the assembly file or made an external label.

Example:
XREF Variable

Entry:
LDA #56
STA Variable
RTS

13.2.9 A2301: Label Is Missing
Type:
[ERROR]
Description:
A label is missing from an assembly directive that requires a IQteC{TION EQUSET).
Example:
SECTION 4
EQU $67
SET $77
Tips:
Insert a label in front of the directive.
Example:
codeSec: SECTION 4

myConst: EQU $67

mySetV: SET $77

MCUEZASMO08/D 13-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.10 A2302: Macro Name Is Missing
Type:
[ERROR]

Description:
A label name is missing on the front oMEACR@irective.
Example:

MACRO
LDA\1
ADD \2
STA\1

ENDM

Tips:
Insert a label in front of thM ACR@irective.

Example:

AddM: MACRO
LDA\1
ADD \2
STA\l

ENDM

13-10 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA

ASSEMBLER MESSAGES

13.2.11 A2303: Endm Is lllegal
Type:
[ERROR]

Description:

An ENDMiirective is detected outside of a macro.

Example:

AddM: MACRO

LDA\1
ADD \2
STA\1

ENDM

NOP

AddM datal, data2

ENDM

Tips:

Remove the superfluolsND Miirective.
Example:

AddM: MACRO
LDA\1
ADD \2
STA\1
ENDM
NOP
AddM datal, data2

MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

13-11

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.12 A2304: Macro Definition Within Definition
Type:
[ERROR]

Description:

A macro definition is detected inside of another macro definition. The macro assembler does
not support this.

Example:

AddM: MACRO
AddX: MACRO
LDX \1

INX

STX\1
ENDM

LDA\1

ADD \2

STA\l
ENDM

Tips:

Define the second macro outside from the first one.
Example:

AddX: MACRO
LDX\1
INX
STX\1
ENDM
AddM: MACRO
LDA\1
ADD \2
STA\l
ENDM

13-12 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.13 A2305: lllegal Redefinition Of Instruction Or Directive Name
Type:
[ERROR]

Description:

An assembly directive or an instruction name has been used as macro name. This is not
allowed to avoid any ambiguity when the symbol name is encountered afterward. The macro
assembler cannot detect if the symbol refers to the macro or the instruction.

Example:

ADDD: MACRO
LDA\1
ADD \2
STA\l
ENDM
Tips:

Change the name of the macro to an unused identifier.
Example:

ADDM: MACRO
LDA\1
ADD \2
STA\l

ENDM

MCUEZASMO08/D 13-13

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.14 A2306: Macro Not Closed At End Of Source
Type:
[ERROR]

Description:

An ENDMirective is missing at the end of a macro. The end of the input file is detected
before the end of the macro.

Example:

AddM: MACRO
LDA\1
ADD \2
STA\1
NOP
AddM datal, data2
Tips:

Insert the missinfENDMiirective at the end of the macro.
Example:

AddM: MACRO
LDA\1
ADD \2
STA\1
ENDM
NOP
AddM datal, data2

13-14 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

(::> MOTOROLA

ASSEMBLER MESSAGES

13.2.15 A2307: Macro Redefinition

Type:
[ERROR]

Description:

The input file contains the definition of two macros that have the same name.

Example:

AddM: MACRO
LDX\1
INX
STX\1
ENDM

AddM: MACRO
LDA\1
ADD \2
STA\l1
ENDM
Tips:

Change the name of one of the macros to generate unique identifiers.

Example:

AddX: MACRO
LDX\1
INX
STX\1
ENDM
AddM: MACRO
LDA\1
ADD \2
STA\l
ENDM

MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

13-15

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.16 A2308: File Name Expected

Type:

[ERROR]
Description:
A file name is expected in dNCLUDE directive.
Example:

xxx: EQU $56

I.i\.ICLUDE XXX

Tips:
Specify a file name after the include directive.
Example:

xxx: EQU $56

INCLUDE “xxx.inc”

13.2.17 A2309: File Not Found
Type:
[ERROR]

Description:
The macro assembler cannot locate a file with the name specified M@HeUDEdirective.
Tips:

If the file exists, check if the directory is specified in GENPATHnvironment variable.
First check if your project directory is correct. A fildefault.env " should be located
there, where the MCUez environment variables are stored. The macro assembler looks for the
included files in the project directory, then in the directory enumerated iGENPATH
environment variable. If the file does not exist, create it or remove the include directive.

13-16 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.18 A2310: lllegal Size Char
Type:
[ERROR]

Description:

An invalid size specification character is detected iDGB DC DS FCC FCB FDB
RMBXDEF or XREFdirective.

For XDEFandXREFdirectives, valid size specification characters are:

- .B for symbols located in a section where direct addressing mode can be used

« .W for symbols located in a section where extended addressing mode must be used
ForDCBDC DS FCC FCB FDB andRMHBdirectives, valid size specification characters
are:

- .B for Byte variables

« .W for Word variables

« .L for Long variables

Example:

DataSec: SECTION
labell: DS.Q 2

ConstSec: SECTION
label2: DC.1 3, 4, 6
Tips:

Change the size specification character to a valid one.
Example:

DataSec: SECTION

labell: DS.L 2

ConstSec: SECTION
label2: DC.W 3, 4, 6

MCUEZASMO08/D 13-17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.19 A2311: Symbol Name Expected
Type:
[ERROR]
Description:
A symbol name is missing afteXDEF XREF IFDEF, or IFNDEF directive.

Example:

XDEF $5645
XREF ; This is a comment
CodeSec: SECTION

IFDEF $5634
Tips:
Insert a symbol name at the requested position.
Example:

XDEF exportedSymbol
XREF importedSymbol; This is a comment
CodeSec: SECTION

IFDEF changeBank

13.2.20 A2312: String Expected
Type:
[ERROR]
Description:
A character string is expected at the end bfGC IFC , or IFNC directive.
Example:

expr: EQU $5555
expr2: EQU 5555

DataSec: SECTION
label: FCC expr

Codééec: SECTION

“I.FC expr, expr2
Tips:

Insert a character string at the requested position.
Example:

expr: EQU $5555

expr2: EQU 5555

DataSec: SECTION

label: FCC “This is a string”

13-18 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.21 A2313: Nesting Of Include Files Exceeds 50
Type:
[ERROR]

Description:

The maximum number of nested include files has been exceeded. The assembler supports up
to 50 nested include files.

Tips:
Reduce the number of nested include file to 50.

13.2.22 A2314: Expression Must Be Absolute
Type:
[ERROR]
Description:

An absolute expression is expected at the specified position.

Assembler directives expecting an absolute vaieFSET ORGALIGN, SET, BASE
DS LLEN, PLEN SPCTABS IF, IFEQ, IFNE, IFLE |, IFLT |, IFGE, IFGT

The first operand in a DCB directive must be absolute:

Example:

DataSec: SECTION
labell: DS.W 1
label2: DS.W 2
label3: EQU 8

ébdeSec: SECTION
"~ BASE labell

ALIGN label2
Tips:
Specify an absolute expression at the specified position.
Example:

DataSec: SECTION
labell: DS.W 1
label2: DS.W 2
label3: EQU 8

ébdeSec: SECTION
BASE label3

ALIGN 4

MCUEZASMO8/D For More Information On This Product, 1319

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA

ASSEMBLER MESSAGES

13.2.23 A2316: Section Name Required
Type:
[ERROR]
Description:

A SWITCHdirective is not followed by a symbol name. Absolute expressions or strings are
not allowed in &SWITCHdirective.

The symbol specified in @WITCHdirective must refer to a previously defined section.

Example:

dataSec: SECTION
labell: DS.B 1

codeSec: SECTION

SWITCH $A344
Tips:
Specify the name of a previously define section inSk¥IT CHinstruction.

Example:

dataSec: SECTION
labell: DS.B 1

codeSec: SECTION

SWITCH dataSec

13-20 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.24 A2317: lllegal Redefinition Of Section Name
Type:
[ERROR]

Description:

The name associated with a section is previously used as a label in a code or data section or is
specified in aXDEFdirective.

The macro assembler does not allow to export a section name, or to use the same name for a
section and a label.

Example:

dataSec: SECTION
secLabel: DS.B 1
labell: DS.B2
label2: DS.B1

secLabel: SECTION
LDA #1

Tips:
Change name of the section to a unique identifier.
Example:

dataSec: SECTION
data: DS.B1
labell: DS.B2
label2: DS.B1

codeSec: SECTION
LDA #1

MCUEZASMO08/D 13-21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.25 A2318: Section Not Declared
Type:
[ERROR]
Description:
The label specified in @ WITCHdirective is not associated with a section.
Example:

dataSec: SECTION
labell: DS.B 1

codeSec: SECTION
SWITCH daatSec

Tips:m
Specify the name of a previously defined section irfSk¥IT CHinstruction.
Example:

dataSec: SECTION

labell: DS.B 1

.c.c.)deSec: SECTION

SWITCH dataSec

13-22 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.26 A2320: Value Too Small
Type:
[ERROR]

Description:
The absolute expression specified in a directive is too small.

This message can be generated in following cases:

» The expression specified in &LIGN, DCB or DSdirective is smaller than 1.

« The expression specified irRl.ENdirective is smaller than 10. A header is generated on
the top of each page from the listing file. This header contains at least 6 lines. So a page
length smaller than 10 lines does not make many sense.

« The expression specified in aALEN, SPC or TABS directive is smaller than 0
(negative).
Example:

PLEN 5
LLEN -4
dataSec: SECTION
ALIGN 0O

labell: DS.W 0

Tips:
Modify the absolute expression to a value in the range specified above.
Example:

PLEN 50
LLEN 40
dataSec: SECTION
ALIGN 8

labell: DSW 1

MCUEZASMO08/D 13-23

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.27 A2321: Value Too Big
Type:
[ERROR]
Description:
The absolute expression specified in a directive is too big.

This message can be generated in the following cases:

« The expression specified in &LIGN directive is bigger than 32767.
« The expression specified il2S or DCBdirective is bigger than 4096.
« The expression specified ifRLENdirective is bigger than 10000.

« The expression specified inld_EN directive is bigger than 132.

« The expression specified inSP Cdirective is bigger than 65.

« The expression specified infaABSdirective is bigger than 128.

Example:

PLEN 50000

LLEN 200
dataSec: SECTION

ALIGN 40000

labell: DS.W 5000

Tips:
Modify the absolute expression to a value in the range specified above.
Example:

PLEN 50
LLEN 40
dataSec: SECTION
ALIGN 8

labell: DSW 1

13-24 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.28 A2323: Label Is Ignored
[WARNING]

Description:

A label is specified in front of a directive that does not accept a label. The macro assembler
ignores such labels.

These labels cannot not be referenced anywhere else in the application. Labels will be ignored
in front of following directives:

ELSE ENDIF, END ENDMINCLUDE CLIST, ALIST, FAIL , LIST , MEXIT,
NOLIST, NOL OFFSET ORG NOPAGEPAGE LLEN, PLEN SPC TABS
TITLE , TTL.

Example:

CodeSec: SECTION
LDA #%$5444
label: PLEN 50

label2: LIST

Tips:

Remove the label which is not required. If you need a label at that position in a section, define
the label on a separate line.

Example:

CodeSec: SECTION
LDA #$5444
label:
PLEN 50

label2:
LIST

MCUEZASMO08/D 13-25

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.29 A2324: lllegal Base (2,8,10,16)
Type:
[ERROR]
Description:
An invalid base number followsBASEdirective. The valid base numbers are 2, 8, 10 or 16.

The expression specified iBASEdirective must be an absolute expression and must match
one of the values enumerated above.

Example:

BASE 67

dataSec: SECTION
label: DS.B 8

BASE label
Tips:
Specify one of the valid value in tiBASEdirective.
Example:

BASE 16

dataSec: SECTION
label: EQU 8

BASE label

13-26 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.30 A2325: Comma Or Line End Expected
Type:
[ERROR]

Description:

An incorrect syntax has been detected DG FCB FDB XDEF PUBLIC, GLOBAL.

XREF or EXTERNALdirective. This error message is generated when the values
enumerated in one of the directives listed above are not terminated by an end of line character,
or when they are not separated by & €haracter.

Example:

XDEF aal aa2 aa3 aa4
XREF bb1l, bb2, bb3, bb4 This is a comment

dataSec: SECTION

dataLabl: DC.B2|4|6]|8

dataLab2: FCB 45, 66,88 label3:DC.B 4
Tips:

Use the | ” character as separator between the different items in the list or insert an end of
line at the end of the enumeration.

Example:

XDEF aal, aa2, aa3, aa4
XREF bb1l, bb2, bb3, bb4 ;Thisis a comment

dataSec: SECTION
dataLabl: DC.B 2, 4, 6, 8
datalLab2: FCB 45, 66, 88
label3: DC.B 4

MCUEZASMO08/D 13-27

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER MESSAGES @ MOTOROLA

13.2.31 A2326: Label Is Redefined

Type:
[ERROR]

Description:
A label redefinition has been detected. This message is issued when:
« The label specified in front of @G DS DCB FCCdirective is already defined.
« One of the label names enumerated XRE Fdirective is already defined.
« The label specified in front of daQUdirective is already defined.
« The label specified for @ETis already defined and not associated with andgter.
* A label with the same name as an external referenced symbol is defined in the source file.
Example:
DataSec: SECTION
labell: DS.W 4

BSCT
labell: DS.W 1
Tips:
Modify your source code to use unique identifiers.
Example:
DataSec: SECTION
data_labell: DS.W 4

BSCT
bsct_labell: DSW 1

13.2.32 A2327: ON Or OFF Expected

13-28

Type:
[ERROR]

Description:
The MLIST or CLIST directive expect a unique operand with the v&ldor OFF
Example:

CodeSec: SECTION
“.CLIST
Tips:
Specify eithe®ONor OFFafter theMLIST or CLIST directive.

Example:
CodeSec: SECTION

“.CLIST ON

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.33 A2328: Value Is Truncated
[WARNING]

Description:

The size of one of the constants listed [D@directive is bigger than the size specified in the
DCldirective.

Example:

DataSec: SECTION

cstl: DC.B $56, $784, $FF

cst2: DC.w $56, $784, $FF5634
Tips:

Reduce the value from the constant to a value fitting in the size specified in the DC directive.
Example:

DataSec: SECTION
cstl: DC.B $56, $7, $84, $FF
cst2: DC.W $56, $784, $FF, $5634

13.2.34 A2329: FAIL Found

Type:
[ERROR]

Description:

The FAIL directive followed by a number smaller than 500 has been detected in the source
file. This is the normal behavior for theéAIL directive. The=AIL directive is intended for
use with conditional assembly, to detect a user defined error or warning condition.

Example:

cpChar: MACRO
IFC "\1", ™"
FAIL 200
MEXIT
ELSE
LDA\1
ENDIF

IFC "\2", "
FAIL 600
ELSE
STA\2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar , char2

MCUEZASMO08/D 13-29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ASSEMBLER MESSAGES @ MOTOROLA

13.2.35 A2330: String Is Not Allowed

Type:
[ERROR]
Description:

A string has been specified as the initial value iD@Bdirective. The initial value for a
constant block can be any byte, word or long absolute expression as well as a simple
relocatable expression.

Example:

CstSec: SECTION

label: DCB.B 10, “aaaaa”
Tips:
Specify the ASCII code associated with the characters in the string as initial value.
Example:

CstSec: SECTION
label: DCB.B 5, $61

13.2.36 A2332: FAIL Found

13-30

[WARNING]

Description:

The FAIL directive followed by a number bigger than 500 has been detected in the source
file. This is the normal behavior for theéAIL directive. The=AIL directive is intended for
use with conditional assembly, to detect a user defined error or warning condition.

Example:

cpChar: MACRO
IFC "\1", ™"
FAIL 200
MEXIT
ELSE
LDA\1
ENDIF

IFC "\2", "
FAIL 600
ELSE
STA\2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar charl

For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.37 A2333: Forward Reference Not Allowed
Type:
[ERROR]
Description:
A forward reference has been detected ifcédUinstruction. This is not allowed.
Example:

CstSec: SECTION
label: DCB.B 10, $61
equLab: EQU label2

label2: DC.W $6754

Tips:m
Move theEQUafter the definition of the label it refers to.
Example:

CstSec: SECTION

label: DCB.B 10, $61

i;belz: DC.W $6754

equLab: EQU label2 + 1

MCUEZASMO08/D 13-31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.38 A2334: Only Labels Defined In The Current Assembly Unit Can Be Referenced In An
Equ Expression

Type:
[ERROR]
Description:

One of the symbols specified in d0QUexpression is an external symbol, which was
previously specified in XREFdirective. This is not allowed due to a limitation in the ELF
file format.

Example:

XREF label
CstSec: SECTION
lab: DC.B 6

equLabel: EQU label+6

Tips:

EQUlabel containing a reference to an object must be defined in the same assembly module
as the object they refer to. Then th€)Ulabel can be exported to other modules in the
application.

Example:
XDEF label, equlabel
CstSec: SECTION

lab: DC.B 6
label: DC.W 6

equLabel: EQU label+6

13-32 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.39 A2335: Exported Absolute EQU Label Is Not Supported
Type:
[ERROR]
Description:

A label specified in front of afleQUdirective and initialized with an absolute value was
previously specified in XDEFdirective. This is not allowed due to a limitation in the ELF
file format.

Example:

XDEF equLabel
CstSec: SECTION
lab: DC.B 6

equlLabel: EQU $77AA

Tips:

EQUilabels initialized with absolute expression can be defined in a special file which can be
included in each assembly file where the labels are referenced.

Example:

File const.inc

equlLabel: EQU $77AA

File Test.asm

INCLUDE “const.inc”
CstSec: SECTION
lab: DC.B 6

MCUEZASMO08/D 13-33

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.40 A2336: Value Too Big
[WARNING]
Description:

The absolute expression set as initialization value for a block defined D&ikjs too big.
This message is sent when the initial value set[HGB.B directive cannot be coded on a
byte. In this case, the value used to initialize the constant block is truncated to a byte value.

Example:
constSec: SECTION

labell: DCB.B 2, 312
In the previous example, the constant block is initialized with the value $38 (= 312 & $FF)

Tips:
To avoid this warning, modify the initialization value to a byte value.

Example:
constSec: SECTION

labell: DCB.B 2, 56

13.2.41 A2338: <Message String>

Type:
[ERROR]
Description:

The FAIL directive followed by a string has been detected in the source file. This is the
normal behavior for thd=AlL directive. TheFAIL directive is intended for use with
conditional assembly, to detect a user defined error or warning condition.

Example:

cpChar: MACRO
IFC "\1", "
FAIL "A char must be specified as first param.”
MEXIT
ELSE
LDA\1
ENDIF

IFC 2", "™
FAIL 600
ELSE
STA\2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar , char2

13-34 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.42 A2341: Relocatable Section Not Allowed: an Absolute file is currently directly
generated

Type:
[ERROR]
Description:

A relocatable section has been detected while the assembler tries to generate an absolute file.
This is not allowed.

Example:

DataSec: SECTION
datal: DS.W 1
ORG $800
entry:
LDX #datal
Tips:
When you are generating an absolute file, your application should be encoded in a single
assembly unit, and should not contain any relocatable symbol.

So in order to avoid this message, define all your section as absolute section and remove all
XREF directives from your source file.

Example:

ORG $B00
datal: DSW1

ORG $800
entry:

LDX #datal

13.2.43 A13001: lllegal Addressing Mode
Type:
[ERROR]
Description:

An illegal addressing mode has been detected in an instruction. This message is generated
when an incorrect encoding is used for an addressing mode.

Example:
LDA [D X]
LDA D, X
AND Ox$FA
Tips:
Use a valid notation for the addressing mode encoding.
Example:
MCUEZASMO08/D 13-35

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

LDA [D, X]
AND #$FA

13.2.44 A13005: Comma Expected

Type:
[ERROR]
Description:

A comma character is missing between two instructions or directive operands. This error
occurs in a memory block definition usibyCBor comparing strings usidgC or IFNC.

Example:

MemBlock: DCB.B 8 $00
or.

test: MACRO
IFC\1 "c"
nop
nop
ENDIF
ENDM
Tips:
The comma (‘,") character is used as separator between instruction operands.

MemBlock: DCB.B 8,$00
or.

test: MACRO
IFC\1,"c"
nop
nop
ENDIF
ENDM

13.2.45 A13007: Relative Branch With lllegal Target

Type:
[ERROR]

Description:

The offset specified in a PC relative addressing mode is a complex relocatable expression, a
symbol defined in another section or an external defined symbol.

Example:

XDEF Entry
XREF MySubRoutine
DataSec: SECTION
Data: DSB 1
CodelSec: SECTION
Entry1:
NOP

13-36 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

LDA #3$60
STA Data
CodeSec: SECTION
Entry:
LDA Data
CMP #3$60
NOP
BNE Entryl
NOP
BSR MySubRoutine
NOP
main: BRA main

Tips:
If you need a branch on a symbol defined externally or in another sectiaHViider JSR.
If the branch label and instruction are in the same module, define them in the same section.

XDEF Entry
XREF MySubRoutine
DataSec: SECTION
Data: DSB 1
CodeSec: SECTION
Entry1:
NOP
LDA #3$60
STA Data

Entry:
LDA Data
CMP #3$60
NOP
BNE Entryl
NOP
JSR MySubRoutine
NOP
main: BRA main

13.2.46 A13008: lllegal Expression
Type:
[ERROR]
Description:

An illegal expression is specified in a PC relative addressing mode. The illegal expression
may be generated in following cases:

Example:

CodeSec: SECTION
Entry:
BRA #$200

MCUEZASMO08/D 13-37

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

Tips:

Change the expression to a valid expression.

13.2.47 A13101: lllegal Operand Format
Type:
[ERROR]
Description:

An operand used in the instruction is using an invalid addressing mode.

Example:
As an example, the following code generatesARS8101 error message.

Entry:
ADC X+
Tips:

To solve this problem, use an allowed addressing mode for the instruction.

Entry:
ADC X
ADC X
ADC #$5

13-38 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.48 A13102: Operand Not Allowed

Type:
[ERROR]

Description:

This error message is issued for instruct®@LRor BRSETwhen the operand is not a
DIRECT or anEXTENDED

Example:

Entry:
BRCLR 7, X
BRCLR 7, SP
BSET 7, X
Tips:

To solve this problem, use an allowed addressing mode for the instruction.

13.2.49 A13106: lllegal Size Specification For HCO8-Instruction

Type:
[ERROR]
Description:

A size operator follows an HCO8 instruction. Size operators are coded as semicolon character
followed by single character.

Example:

MyData: SECTION
data: DS.B1
MyCode: SECTION
entry:
ADC.B data
ADC.L data
ADC.W data
ADC.b data
ADC.| data
ADC.w data
Tips:
Remove the size specification following the HCO8 instruction.
Example:

MyData: SECTION
data: DS.B1
MyCode: SECTION
entry:

ADC data

MCUEZASMO08/D 13-39

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.50 A13108: lllegal Character At The End Of Line
Type:
[ERROR]

Description:

An invalid character or sequence of character is detected at the end of an instruction. This
message can be generated when:

* A comment, which does not start with the start of comment chara¢tgr (§ specified
after the instruction.

» Afurther operand is specified in the instruction.
Example:

MyData: SECTION
data: DS.B1

MyCode: SECTION
entry:
LDA data, #$7
CLRA A
CLR 0,X This is a comment
Tips:

Remove the invalid character or sequence of characters from the line.

* Insert the start of comment character at the beginning of the comment.
* Remove the superfluous operand.

Example:

MyData: SECTION
data: DS.B1

MyCode: SECTION
entry:
LDA data
CLRA
CLR 0,X ;This is a comment

13-40 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.51 A13109: Positive Value Expected
Type:
[ERROR]

Description:

When using the instructioBSET, BCLR BRSET and BRCLR this error message is
issued if the specified value for the bit number is negative.

Example:

MyData: SECTION
data: DS.B1
NEG EQU -2
MyCode: SECTION
entry:
BCLR -7, data
BRCLR -4, data, entry
BSET -3, data
BRSET NEG, data, entry
Tip
Use a positive value for the bit number:

MyData: SECTION
data: DS.B1
POS EQU2
MyCode: SECTION
entry:
BCLR 7, data
BRCLR 4, data, entry
BSET 3, data
BRSET POS, data, entry

MCUEZASMO08/D 13-41

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.52 A13110: Mask Expected
Type:
[ERROR]

Description:

When using the instructiddSET, BCLR BRSET or BRCLRthis error message is issued
if the specified value for the bit number is not an Direct or an Extended.

Example:
MyData: SECTION
data: DS.B1

MyCode: SECTION
entry:
BCLR #$7, data

BRCLR #$4, data, entry
BRSET #$3, data, entry
BSET #$2, data
Tip
Use a correct value for the bit number: 0, 1, 2, 3,4, 5,6, 7

MyData: SECTION
data: DS.B1

MyCode: SECTION
entry:
BCLR 7, data

BRCLR 4, data, entry
BSET 3, data
BRSET 2, data, entry

13-42 For More Information On This Product, MCUEZASMO8/D

Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA

ASSEMBLER MESSAGES

13.2.53 A13111: Value Out Of Range
[WARNING]

Description:

When using the instructiddSET BCLR BRSET or BRCLRthis error message is issued
if the specified value for the bit number is greater than 7.

Example:
MyData: SECTION
data: DS.B1

MyCode: SECTION
entry:
BCLR 20, data

BRCLR 70, data, entry

BSET 9, data

BRSET 200, data, entry
Tip
Use a correct value for the bit number: 0, 1, 2, 3,4, 5,6, 7
Example:

MyData: SECTION
data: DS.B1

MyCode: SECTION
entry:
BCLR 7, data

BRCLR 4, data, entry
BSET 3, data
BRSET 2, data, entry

MCUEZASMO8/D For More Information On This Product, 1343

Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.54 A13201: Lexical Error In First Or Second Field
Type:
[ERROR]
Description:
An incorrect assembly line is detected. This message may be generated when:

* An assembly instruction or directive start on column 1.

+An invalid identifier has been detected in the assembly line label or instruction part.
Characters allowed as first character in an identifier are:
A.Z,a..z, ,.
Characters allowed after the first character in a label, instruction or directive
name are:
A.Z a..z,0.9, ,.
Example:

CodeSec: SECTION
LDA #$20
@iabel:
Alabel:
Tips:
Why a message has been generated determines which of the following actions can be taken:

* Insert at least one space in front of the directive or instruction
» Change the label, directive or instruction name to a valid identifier

Example:
CodeSec: SECTION

LDA #$20
_label:
_4label:

13.2.55 A13203: Not An HCO8 Instruction Or Directive
Type:
[ERROR]
Description:

The identifier detected in an assembly line instruction part is not an assembly directive, an
HCO08 instruction, or a user defined macro.

Example:
CodeSec: SECTION

13-44 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

LDAA #3$5510
Tips:
Change the identifier to an assembly directive, HCO8 instruction, or user defined macro.

13.2.56 A13401: Value Out Of Range -128..127
Type:
[ERROR]

Description:

The offset between the current PC and the label specified as PC relative address is not in the
range of a signed byte. An 8 bit signed PC relative offset is expected in:

« Branch instructionsBCC BCS BEQ BGE BGT BHCCBHCSBHI, BHS BIH,
BIL , BLE, BLO BLS, BLT, BMI, BMSBNE BPL, BRABRNBSR

« Third operand in following instructionBRCLRBRSET

Example for branch instruction:

DataSec: SECTION
varl: DSB1
var2: DS.B?2
CodeSec: SECTION
entry: LDA varl
BNE label
dummyBI: DCB.B 200, $9D
label STA var2
Tips:

If BRA or BSR is used, replace them with JMP or JSR. Otherwise, the conditional branch
instructions should first branch on a jump instruction linked to the desired label.

Example:

DataSec: SECTION
varl: DSB1
var2: DS.B?2
CodeSec: SECTION
entry:
LDA varl
BNE label
BRA dummyBI
label: JMP label2
dummyBI: DCB.B 200, $9D
label2: STA var2

MCUEZASMO08/D 13-45

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.57 A13403: Complex Relocatable Expression Not Supported
Type:
[ERROR]

Description:

A complex relocatable expression has been detected. A complex relocatable expression is
detected when the expression contains:

* An operation between labels located in two different sections.
* A multiplication, division or modulo operation between two labels.
» The addition of two labels located in the same section.

Example:

DataSecl: SECTION

DatalLbll: DS.B 10

DataSec2: SECTION

DatalLbl2: DS.B 15

offset: EQU DatalLbl2 — DatalLbll
Tips:

The Macro Assembler does not support complex relocatable expressions. The corresponding
expression must be evaluated at execution time (this solution is only working for labels
located on page zero).

Example:

DataSecl: SECTION
DatalLbl1l: DS.B 10
DataSec2: SECTION
DatalLbl2: DS.B 15
offset:. DS.B1

MyCode: SECTION

EvalOffset:
LDA #Datalbl2
SUB #Datalbll
STA offset

13-46 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
@ MOTOROLA ASSEMBLER MESSAGES

13.2.58 A13405: Code Size Per Section Is Limited To 32kb
Type:
[ERROR]
Description:

One of the code or data section defined in the application is bigger than 32K. This is a
limitation in the assembly version.

Example:

cstSec: SECTION
noptable: DCB.L 4000, $9D
DCB.L 4000, $9D
DCB.L 4000, $9D
DCB.L 500, $9D
Tips:

Split the section into smaller ones, which are not bigger than 32K. The order of allocation of
the sections can be specified in the linRdR Mfile. There you only have to specify that both
sections must be allocated consecutively.

Example of assembly file:

XDEF entry
cstSec: SECTION
noptbl: DCB.L 4000, $9D
DCB.L 4000, $9D
cstSecl: SECTION
noptbll: DCB.L 4000, $9D
DCB.L 500, $9D
entry: BRA entry

Example of PRM file:

LINK
test.abs

NAMES test.o END

SECTIONS
MY_RAM = READ_WRITE 0x0051 TO 0x00BF;
MY_ROM = READ_ONLY 0x8301 TO 0x8DFD;
ROM_2 = READ_ONLY 0xC000 TO OxC1FD;

PLACEMENT
DEFAULT_ROM INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM,;
cstSec, cstSecl INTO ROM_2;

END

INIT entry

VECTOR ADDRESS OxFFFE entry

MCUEZASMO08/D 13-47

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
ASSEMBLER MESSAGES @ MOTOROLA

13.2.59 A13601: Error In Expression
Type:
[ERROR]
Description:
An error has been detected by the Assembler while reading the expression.
Example:

MyCode: SECTION
entry: BRA #3$200

13.2.60 A13602: Error At End Of Expression
Type:
[ERROR]
Description:
An error has been detected by the Assembler at the end of the read expression.
Example:

label: EQU 2*4)+6

13-48 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA

INDEX

Symbols

-5-4
*7-24
.abs 4-2
.04-2, 4-3
.Ss14-2

.S2 4-2
.83 4-2

.SX 4-2

A

ABSENTRY 8-2
Absolute Expression 7-24
Absolute Section 6-2, 6-6
ABSPATH 4-2
Addressing Mod 7-3
Addressing Mode
Direct 7-3
Extended 7-3
Immediate 7-3
Indexed, 16-bit offset 7-3
Indexed, 8-bit offset 7-3
Indexed, no offset 7-3
Inherent 7-3
Memory to memory direct to direct 7-3
Memory to memory immediate to direct 7-3
Memory to memory indexed to direct with
post-increment 7-3
Relative 7-3
Stack pointer, 16-bit offset 7-3
Stack pointer, 8-bit offset 7-3
ALIGN 8-2, 8-6, 8-19, 8-29
ASMOPTIONS 5-1
Assembler 2-12
Input File 4-1
Output Files 4-1
Assembler Menu 2-12

B

BASE 7-17, 8-2, 8-7
C

CLIST 8-3, 8-8

MCUEZASMO08/D

CODE 5-13
Code Generation 2-13
Code Section 6-2
Comment 7-14
comment line 7-1
Complex Relocatable Expression 7-24
Constant
Binary 7-16, 11-1
Decimal 7-16, 11-1
Floating point 7-17
Hexadecimal 7-16, 11-1
Integer 7-16
Octal 7-16, 11-1
String 7-17
Constant Section 6-1
COPYRIGHT 3-9

D

Data Section 6-1
DC 8-2, 8-10
DCB 8-2, 8-12
Debug File 4-3, 8-27
DEFAULT.ENV 3-1
DEFAULTDIR 4-1
Directive 7-2
ABSENTRY 8-2
ALIGN 8-2, 8-6, 8-19, 8-29
BASE 7-17, 8-2, 8-7
CLIST 8-3, 8-8
DC 8-2, 8-10
DCB 8-2, 8-12
DS 8-2, 8-13
ELSE 8-4, 8-14
ELSEC 11-2
END 8-2, 8-15
ENDC 11-2
ENDIF 8-4, 8-16
ENDM 8-3, 8-17, 8-31
EQU 7-15, 8-1, 8-18
EVEN 8-2, 8-19
EXTERNAL 11-2
FAIL 8-2, 8-20
GLOBAL 11-2
IF 8-4, 8-23

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

INDEX

@ MOTOROLA

IFC 8-4, 8-24
IFDEF 8-4, 8-24
IFEQ 8-4, 8-24
IFGE 8-4, 8-24
IFGT 8-4, 8-24
IFLE 8-4, 8-24
IFLT 8-4, 8-24
IFNC 8-4, 8-24
IFNDEF 8-4, 8-24
IFNE 8-4, 8-24
INCLUDE 8-2, 8-26
LIST 8-3, 8-27
LLEN 8-3, 8-28
LONGEVEN 8-2, 8-29
MACRO 8-3, 8-30
MEXIT 8-3, 8-31
MLIST 8-3, 8-33
NOL 11-2
NOLIST 8-3, 8-36
NOPAGE 8-3, 8-37
ORG 6-2, 8-1, 8-38
PAGE 8-3
PLEN 8-3, 8-40
PUBLIC 11-2
RMB 11-2
SECTION 6-4, 8-1, 8-41
SET 7-15, 8-1, 8-43
SPC 8-3, 8-44
TABS 8-3, 8-45
TITLE 8-3, 8-46
TTL 11-2
XDEF 7-15, 8-2, 8-47
XREF 7-15, 7-16, 8-2, 8-48
XREFB 7-15, 7-16, 8-2, 11-2

Drag and Drop 2-14

DS 8-2, 8-13

E

ELSE 8-4, 8-14
ELSEC 11-2

END 8-2, 8-15

ENDC 11-2

ENDIF 8-4, 8-16
ENDM 8-3, 8-17, 8-31
-Env 3-1

-2

Environment
COPYRIGHT 3-9
File 3-1
INCLUDETIME 3-9
USERNAME 3-9
Variable 3-1

Environment Variable 3-3
ABSPATH 3-5, 4-2
ASMOPTIONS 3-4
DEFAULTDIR 4-1
ENVIRONMENT 3-1
ERRORFILE 3-7, 4-3
GENPATH 3-4, 4-1, 8-26
OBJPATH 3-5, 4-2
SRECORD 3-6, 4-2
TEXTPATH 3-5

EQU 7-15, 8-1, 8-18

Error feedback 2-14

Error File 4-3

Error Listing 4-3

ERRORFILE 4-3

EVEN 8-2, 8-19

Expression 7-24
Absolute 7-24
Complex Relocatable 7-24
Simple Relocatable 7-24, 7-25

EXTERNAL 11-2

External Symbol 7-15

F

-FA2 5-5

FAIL 8-2, 8-20

File
Debug 4-3, 8-27
Environment 3-1
Error 4-3
Include 4-1
Listing 4-2, 8-3, 8-27
Motorola S 4-2
Object 4-2
PRM 6-3, 6-5, 6-6
Source 4-1

File Menu 2-5

Floating-Point Constant 7-17

MCUEZASMO08/D

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

@ MOTOROLA INDEX
G M
GENPATH 4-1, 8-26 MACRO 8-3, 8-30
GLOBAL 11-2 Macro 7-2, 9-1
Graphical Interface 2-2 -Mb 5-13
MCUTOOLS.INI 2-7

H Menu Bar 2-5
‘H5-6 MESSAGE 2-13, 5-3, 5-14, 5-16, 5-17
HIGH 7-16 Message
HOST 2-13, 5-3, 5-4 ERROR 13-1

FATAL 13-1

| WARNING 13-1
MEXIT 8-3, 8-31

IF 8-4, 8-23 MLIST 8-3, 8-33
IFC 8-4, 8-24 Motorola S File 4-2
IFDEF 8-4, 8-24
IFEQ 8-4, 8-24 N
IFGE 8-4, 8-24
IFGT 8-4, 8-24 NOL 11-2
IELE 8-4, 8-24 NOLIST 8-3, 8-36
IELT 8-4, 8-24 NOPAGE 8-3, 8-37
IFNC 8-4, 8-24 0
IFNDEF 8-4, 8-24
IFNE 8-4, 8-24 Object File 4-2
INCLUDE 8-2, 8-26 OBJPATH 4-2
Include Files 4-1 Operand 7-3
INCLUDETIME 3-9 Operator 7-17, 11-2
INPUT 5-4 Addition 7-17, 7-23, 7-26
Input File 2-13 Bitwize 7-18, 7-19, 7-23, 7-26, 11-2
Instruction 7-2 Division 7-17, 7-23, 7-26
Integer Constant 7-16 Force 7-22, 7-23
HIGH 7-16
L Logical 7-19
Label 7-1 LOW 7-16, 7-21
Lc 5.9 Modulo 7-17, 7-23, 7-26
Ld 5-10 Multiplication 7-17, 7-23, 7-26
Le 5-11 PAGE 7-16, 7-21, 7-23
Li5-12 Prece_\dence 7-22
LIST 8-3, 8-27 Re_latlonal 7-20, 7-23
Listing File 4-2, 8-3, 8-27 Shift 7-18, 7-23, 7-26, 11-2
LLEN 8-3, 8-28 Sign 7-1_8, 7-23, 7-26
LONGEVEN 8-2, 8-29 SUbtraCt|On 7-17, 7-23, 7-26
LOW 7-16 Option
CODE 5-13
HOST 5-3, 5-4
INPUT 5-4
MCUEZASMO08/D -3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

INDEX @ MOTOROLA
MESSAGE 5-3, 5-14, 5-16, 5-17 Tip of the Day 2-1
OUTPUT 5-3 TITLE 8-3, 8-46
VARIOUS 5-6, 5-15 Tool Bar 2-4

ORG 6-2, 8-1, 8-38 TTL 11-2

OUTPUT 5-3

Output 2-13 U

P Undefined Symbol 7-16

Unit 5-21, 5-22

PAGE 7-16, 8-3, 8-39 User Defined Symbol 7-15

Path List 3-2 USERNAME 3-9

PLEN 8-3, 8-40

PRM File 6-3, 6-5, 6-6 v

PUBLIC 11-2 V 5-15

R Variable

Relocatable Section 6-4, 6-6
Reserved Symbol 7-16
RMB 11-2

S

SECTION 6-4, 8-1, 8-41
Section 6-1

Absolute 6-2, 6-6

Code 6-2

Constant 6-1

Data 6-1

Relocatable 6-4, 6-6
SET 7-15, 8-1, 8-43
SHORT 8-41

Simple Relocatable Expression 7-24, 7-25

Source File 4-1

source line 7-1

SPC 8-3, 8-44

Starting 2-1

Status Bar 2-4

String Constant 7-17

Symbol 7-15
External 7-15
Reserved 7-16
Undefined 7-16
User Defined 7-15

T
TABS 8-3, 8-45

Environment 3-1
VARIOUS 5-6, 5-15
View Menu 2-12

wW

-W2 5-17

Window 2-2

WinEdit 3-8
-WmsgFbm 5-21
-WmsgFim 5-22
-WmsgNe 5-16, 5-18
-WmsgNi 5-19
-WmsgNw 5-20

X

XDEF 7-15, 8-2, 8-47
XREF 7-15, 7-16, 8-2, 8-48
XREFB 7-15, 7-16, 8-2, 11-2

-4 MCUEZASMO08/D

For More Information On This Product,
Go to: www.freescale.com

	chaptitle - general information
	heading1 - 1.1 INTRODUCTION
	heading1 - 1.2 Structure of this Manual
	heading1 - 1.3 Getting Started
	heading2 - 1.3.1 Write An Assembly Source File
	heading2 - 1.3.2 Assemble A Source File
	figuretitle - Figure 1-1. Assembler Window
	figuretitle - Figure 1-2. Advanced Options Settings Dialog Box
	figuretitle - Figure 1-3. Selecting An Object File Format
	figuretitle - Figure 1-4. Assembling A File

	heading2 - 1.3.3 Link An Application
	figuretitle - Figure 1-5. Linker Window
	figuretitle - Figure 1-6. Link Process In Action

	chaptitle - graphical�user�interface
	heading1 - 2.1 introduction
	heading1 - 2.2 Starting the motorola Assembler
	figuretitle - Figure 2-1. Tip Of The Day Window

	heading1 - 2.3 Assembler Graphical Interface
	figuretitle - Figure 2-2. Assembler Window
	heading2 - 2.3.1 Window Title
	heading2 - 2.3.2 Content Area
	heading2 - 2.3.3 Assembler Toolbar
	figuretitle - Figure 2-3. Assembler Toolbar

	heading2 - 2.3.4 Status Bar
	figuretitle - Figure 2-4. Assembler Status Bar

	heading2 - 2.3.5 Assembler Menu Bar
	tabletitle - Table 2-1. Menu Bar
	heading3 - 2.3.5.1 File Menu
	heading4 - 2.3.5.1.1 Editor Settings Dialog
	figuretitle - Figure 2-5. Starting The Global Editor
	figuretitle - Figure 2-6. Starting The Local Editor
	figuretitle - Figure 2-7. Starting The Editor With The Command Line
	figuretitle - Figure 2-8. Starting The Editor With DDE
	heading4 - 2.3.5.1.2 Important Remarks
	heading4 - 2.3.5.1.3 Configuration Dialog
	figuretitle - Figure 2-9. Configuration Dialog

	heading3 - 2.3.5.2 Assembler Menu
	heading3 - 2.3.5.3 View Menu

	heading2 - 2.3.6 Advanced Options Settings Dialog Box
	figuretitle - Figure 2-10. Advanced Options Settings Dialog Box
	tabletitle - Table 2-2. Advanced Options

	heading2 - 2.3.7 Specifying The Input File
	heading3 - 2.3.7.1 Editable Combo Box
	heading3 - 2.3.7.2 File/Assemble
	heading3 - 2.3.7.3 Drag And Drop

	heading2 - 2.3.8 Error Feedback
	heading3 - 2.3.8.1 Error Feedback Using Information From The Assembler Window
	heading3 - 2.3.8.2 Error Feedback From A User-Defined Editor
	heading4 - 2.3.8.2.1 Editors That Can Start With A Line Number On The Command Line
	heading4 - 2.3.8.2.2 Editors That Cannot Start With A Line Number On The Command Line

	chaptitle - Environment
	heading1 - 3.1 introduction
	heading1 - 3.2 Paths
	heading1 - 3.3 Line Continuation
	heading1 - 3.4 Environment VariableS DESCRIPTIONS
	heading2 - 3.4.1 ASMOPTIONS
	heading2 - 3.4.2 GENPATH
	heading2 - 3.4.3 ABSPATH
	heading2 - 3.4.4 OBJPATH
	heading2 - 3.4.5 TEXTPATH
	heading2 - 3.4.6 SRECORD
	heading2 - 3.4.7 ERRORFILE
	heading2 - 3.4.8 INCLUDETIME: Creation Time In Object File
	heading2 - 3.4.9 USERNAME: User Name In Object File

	chaptitle - files
	heading1 - 4.1 INTRODUCTION
	heading1 - 4.2 Input Files
	heading2 - 4.2.1 Source Files
	heading2 - 4.2.2 Include File

	heading1 - 4.3 Output Files
	heading2 - 4.3.1 Object Files
	heading2 - 4.3.2 Absolute Files
	heading2 - 4.3.3 Motorola S Files
	heading2 - 4.3.4 Listing Files
	heading2 - 4.3.5 Debug Listing Files
	heading2 - 4.3.6 Error Listing File
	figuretitle - Figure 4-1. Assembler Input And Output Files

	chaptitle - Assembler Options
	heading1 - 5.1 introduction
	heading1 - 5.2 ASMOPTIONS
	tabletitle - Table 5-1. Assembler Option Groups
	tabletitle - Table 5-2. Assembler Scope Groups

	heading1 - 5.3 Assembler Option DESCRIPTIONS
	tabletitle - Table 5-3. Assembler Option Details
	heading2 - 5.3.1 -Ci
	heading2 - 5.3.2 -Env
	heading2 - 5.3.3 -F2/-FA2
	heading2 - 5.3.4 -H
	heading2 - 5.3.5 -L
	heading2 - 5.3.6 -Lc
	heading2 - 5.3.7 -Ld
	heading2 - 5.3.8 -Le
	heading2 - 5.3.9 -Li
	heading2 - 5.3.10 -Ms/-Mb
	heading2 - 5.3.11 -N
	heading2 - 5.3.12 -V
	heading2 - 5.3.13 -W1
	heading2 - 5.3.14 -W2
	heading2 - 5.3.15 -WmsgNe
	heading2 - 5.3.16 -WmsgNi
	heading2 - 5.3.17 -WmsgNw
	heading2 - 5.3.18 -WmsgFbv/ -WmsgFbm
	heading2 - 5.3.19 -WmsgFiv/-WmsgFim

	chaptitle - Sections
	heading1 - 6.1 INTRODUCTION
	heading1 - 6.2 Section Attribute
	heading2 - 6.2.1 Data Sections
	heading2 - 6.2.2 Constant Data Sections
	heading2 - 6.2.3 Code Sections

	heading1 - 6.3 Section Type
	heading2 - 6.3.1 Absolute Sections
	heading2 - 6.3.2 Relocatable Sections
	heading2 - 6.3.3 Relocatable Versus Absolute Section
	heading3 - 6.3.3.1 Early Development
	heading3 - 6.3.3.2 Enhanced Portability
	heading3 - 6.3.3.3 Tracking Overlaps
	heading3 - 6.3.3.4 Reusability

	chaptitle - Assembler Syntax
	heading1 - 7.1 introduction
	heading2 - 7.1.1 Comment Line
	heading2 - 7.1.2 Source Line
	heading2 - 7.1.3 Label Field
	heading2 - 7.1.4 Operation Field
	heading3 - 7.1.4.1 Instruction
	heading3 - 7.1.4.2 Directive
	heading3 - 7.1.4.3 Macro Name

	heading2 - 7.1.5 Operand Field
	tabletitle - Table 7-1. Addressing Mode Notations
	heading3 - 7.1.5.1 Inherent
	heading3 - 7.1.5.2 Immediate
	heading3 - 7.1.5.3 Direct
	heading3 - 7.1.5.4 Extended
	heading3 - 7.1.5.5 Indexed, No Offset
	heading3 - 7.1.5.6 Indexed, 8-Bit Offset
	heading3 - 7.1.5.7 Indexed, 16-Bit Offset
	heading3 - 7.1.5.8 Relative
	heading3 - 7.1.5.9 Stack Pointer, 8-Bit Offset
	heading3 - 7.1.5.10 Stack Pointer, 16-Bit Offset
	heading3 - 7.1.5.11 Memory To Memory Immediate To Direct
	heading3 - 7.1.5.12 Memory To Memory Direct To Direct
	heading3 - 7.1.5.13 Memory To Memory Indexed To Direct With Post Increment
	heading3 - 7.1.5.14 Memory To Memory Direct To Indexed With Post Increment
	heading3 - 7.1.5.15 Indexed With Post Increment
	heading3 - 7.1.5.16 Indexed, 8-bit offset With Post Increment
	heading3 - 7.1.5.17 Comment Field

	heading1 - 7.2 Symbols
	heading2 - 7.2.1 User Defined Symbols
	heading2 - 7.2.2 External Symbols
	heading2 - 7.2.3 Undefined Symbols
	heading2 - 7.2.4 Reserved Symbols

	heading1 - 7.3 Constants
	heading2 - 7.3.1 Integer Constants
	heading2 - 7.3.2 String Constants
	heading2 - 7.3.3 Floating-Point Constants

	heading1 - 7.4 Operators
	heading2 - 7.4.1 Addition And Subtraction Operators (Binary)
	heading2 - 7.4.2 Multiplication, Division And Modulo Operators (Binary)
	heading2 - 7.4.3 Sign Operators (Unary)
	heading2 - 7.4.4 Shift Operators (Binary)
	heading2 - 7.4.5 Bitwise Operators (Binary)
	heading2 - 7.4.6 Bitwise Operators (Unary)
	heading2 - 7.4.7 Logical Operators (Unary)
	heading2 - 7.4.8 Relational Operators (Binary)
	heading2 - 7.4.9 HIGH Operator
	heading2 - 7.4.10 LOW Operator
	heading2 - 7.4.11 Memory PAGE Operator (Unary)
	heading2 - 7.4.12 Force Operator (Unary)
	tabletitle - Table 7-2. Operator Precedence

	heading1 - 7.5 Expression
	heading2 - 7.5.1 Absolute Expression
	heading2 - 7.5.2 Simple Relocatable Expression
	tabletitle - Table 7-3. Expression - Operator Relationship (unary)
	tabletitle - Table 7-4. Expression - Operator Relationship (binary operation)

	heading1 - 7.6 Translation Limits

	chaptitle - Assembler Directives
	heading1 - 8.1 INTRODUCTION
	heading1 - 8.2 Directive Overview
	heading2 - 8.2.1 Section Definition Directives
	tabletitle - Table 8-1. Section Directives

	heading2 - 8.2.2 Constant Definition Directives
	tabletitle - Table 8-2. Constant Directives

	heading2 - 8.2.3 Data Allocation Directives
	tabletitle - Table 8-3. Data Allocation Directives

	heading2 - 8.2.4 Symbol Linkage Directives
	tabletitle - Table 8-4. Symbol Linkage Directives

	heading2 - 8.2.5 Assembly Control Directives
	tabletitle - Table 8-5. Assembly Control Directives

	heading2 - 8.2.6 Listing File Control Directives
	tabletitle - Table 8-6. Assembler List File Directives

	heading2 - 8.2.7 Macro Control Directives
	tabletitle - Table 8-7. Macro Directives

	heading2 - 8.2.8 Conditional Assembly Directives
	tabletitle - Table 8-8. Conditional Assembly Directives

	heading1 - 8.3 ABSENTRY - Application Entry Point
	heading1 - 8.4 ALIGN - Align Location Counter
	heading1 - 8.5 BASE - Set Number Base
	heading1 - 8.6 CLIST - List Conditional Assembly
	heading1 - 8.7 DC - Define Constant
	heading1 - 8.8 DCB - Define Constant Block
	heading1 - 8.9 DS - Define Space
	heading1 - 8.10 ELSE - Conditional Assembly
	heading1 - 8.11 END - End Assembly
	heading1 - 8.12 ENDIF - End Conditional Assembly
	heading1 - 8.13 ENDM - End Macro Definition
	heading1 - 8.14 EQU - Equate Symbol Value
	heading1 - 8.15 EVEN - Force Word Alignment
	heading1 - 8.16 FAIL - Generate Error Message
	heading1 - 8.17 IF - Conditional Assembly
	heading1 - 8.18 IFcc - Conditional Assembly
	tabletitle - Table 8-9. Conditional Types

	heading1 - 8.19 INCLUDE - Include Text from Another File
	heading1 - 8.20 LIST - Enable Listing
	heading1 - 8.21 LLEN - Set Line Length
	heading1 - 8.22 LONGEVEN - Forcing Long-word Alignment
	heading1 - 8.23 MACRO - Begin Macro Definition
	heading1 - 8.24 MEXIT - Terminate Macro Expansion
	heading1 - 8.25 MLIST - List Macro Expansions
	heading1 - 8.26 NOLIST - Disable Listing
	heading1 - 8.27 NOPAGE - Disable Paging
	heading1 - 8.28 ORG - Set Location Counter
	heading1 - 8.29 PAGE - Insert Page Break
	heading1 - 8.30 PLEN - Set Page Length
	heading1 - 8.31 SECTION - Declare Relocatable Section
	heading1 - 8.32 SET - Set Symbol Value
	heading1 - 8.33 SPC - Insert Blank Lines
	heading1 - 8.34 TABS - Set Tab Length
	heading1 - 8.35 TITLE - Provide Listing Title
	heading1 - 8.36 XDEF - External Symbol Definition
	heading1 - 8.37 XREF - External Symbol Reference

	chaptitle - Macros
	heading1 - 9.1 INTRODUCTION
	heading1 - 9.2 Macro Overview
	heading1 - 9.3 Defining a Macro
	heading1 - 9.4 Calling Macros
	heading1 - 9.5 Macro Parameters
	heading1 - 9.6 Labels Inside Macros
	heading1 - 9.7 Macro Expansion
	heading1 - 9.8 Nested Macros

	chaptitle - Assembler Listing File
	heading1 - 10.1 introduction
	heading1 - 10.2 Page Header
	heading1 - 10.3 Source Listing
	heading2 - 10.3.1 Abs. Listing
	heading2 - 10.3.2 Rel. Listing
	heading2 - 10.3.3 Loc Listing
	heading2 - 10.3.4 Obj. Code Listing
	heading2 - 10.3.5 Source Line Listing

	chaptitle - MCUASM Compatibility
	heading1 - 11.1 introduction
	heading1 - 11.2 Comment Line
	heading1 - 11.3 Constants
	heading1 - 11.4 Operators
	tabletitle - Table 11-1. Operators

	heading1 - 11.5 Directives
	tabletitle - Table 11-2. Directives

	chaptitle - operating procedures
	heading1 - 12.1 INTRODUCTION
	heading1 - 12.2 Working with Absolute Sections
	heading2 - 12.2.1 Defining Absolute Sections In The Assembly Source File
	heading2 - 12.2.2 Linking An Application Containing Absolute Sections

	heading1 - 12.3 Working with Relocatable Sections
	heading2 - 12.3.1 Defining Relocatable Sections In The Assembly Source File
	heading2 - 12.3.2 Linking An Application Containing Relocatable Sections

	heading1 - 12.4 Initializing the Vector Table
	heading2 - 12.4.1 Initializing Vector Table In The Linker PRM File
	heading2 - 12.4.2 Initializing Vector Table In Assembly Source File Using A Relocatable Section
	heading2 - 12.4.3 Initializing Vector Table In Assembly Source File Using An Absolute Section

	heading1 - 12.5 Splitting an Application into different Modules
	heading1 - 12.6 Using Direct Addressing mode to access Symbols
	heading2 - 12.6.1 Using Direct Addressing Mode To Access External Symbols
	heading2 - 12.6.2 Using Direct Addressing Mode To Access Exported Symbols
	heading2 - 12.6.3 Defining Symbols In The Direct Page
	heading2 - 12.6.4 Using A Force Operator
	heading2 - 12.6.5 Using SHORT Sections

	heading1 - 12.7 DIRECTLY GENERATING an .ABS File
	heading2 - 12.7.1 Assembler Source File
	heading2 - 12.7.2 Assembling And Generating The Application
	figuretitle - Figure 12-1. Starting The MCUez Assembler
	figuretitle - Figure 12-2. Displaying The Advanced Options Setting Dialog
	figuretitle - Figure 12-3. Selecting The Object File Format
	figuretitle - Figure 12-4. The Assembler Generating An .ABS File Directly

	chaptitle - Assembler Messages
	heading1 - 13.1 introduction
	heading2 - 13.1.1 Warning
	heading2 - 13.1.2 Error
	heading2 - 13.1.3 Fatal

	heading1 - 13.2 Message Codes
	heading2 - 13.2.1 A1000: Conditional Directive Not Closed
	heading2 - 13.2.2 A1001: Conditional Else Not Allowed Here
	heading2 - 13.2.3 A1051: Zero Division In Expression
	heading2 - 13.2.4 A1052: Right Parenthesis Expected
	heading2 - 13.2.5 A1053: Left Parenthesis Expected
	heading2 - 13.2.6 A1101: Illegal Label: Label Is Reserved
	heading2 - 13.2.7 A1103: Illegal Redefinition Of Label
	heading2 - 13.2.8 A1104: Undeclared User Defined Symbol <SymbolName>
	heading2 - 13.2.9 A2301: Label Is Missing
	heading2 - 13.2.10 A2302: Macro Name Is Missing
	heading2 - 13.2.11 A2303: Endm Is Illegal
	heading2 - 13.2.12 A2304: Macro Definition Within Definition
	heading2 - 13.2.13 A2305: Illegal Redefinition Of Instruction Or Directive Name
	heading2 - 13.2.14 A2306: Macro Not Closed At End Of Source
	heading2 - 13.2.15 A2307: Macro Redefinition
	heading2 - 13.2.16 A2308: File Name Expected
	heading2 - 13.2.17 A2309: File Not Found
	heading2 - 13.2.18 A2310: Illegal Size Char
	heading2 - 13.2.19 A2311: Symbol Name Expected
	heading2 - 13.2.20 A2312: String Expected
	heading2 - 13.2.21 A2313: Nesting Of Include Files Exceeds 50
	heading2 - 13.2.22 A2314: Expression Must Be Absolute
	heading2 - 13.2.23 A2316: Section Name Required
	heading2 - 13.2.24 A2317: Illegal Redefinition Of Section Name
	heading2 - 13.2.25 A2318: Section Not Declared
	heading2 - 13.2.26 A2320: Value Too Small
	heading2 - 13.2.27 A2321: Value Too Big
	heading2 - 13.2.28 A2323: Label Is Ignored
	heading2 - 13.2.29 A2324: Illegal Base (2,8,10,16)
	heading2 - 13.2.30 A2325: Comma Or Line End Expected
	heading2 - 13.2.31 A2326: Label Is Redefined
	heading2 - 13.2.32 A2327: ON Or OFF Expected
	heading2 - 13.2.33 A2328: Value Is Truncated
	heading2 - 13.2.34 A2329: FAIL Found
	heading2 - 13.2.35 A2330: String Is Not Allowed
	heading2 - 13.2.36 A2332: FAIL Found
	heading2 - 13.2.37 A2333: Forward Reference Not Allowed
	heading2 - 13.2.38 A2334: Only Labels Defined In The Current Assembly Unit Can Be Referenced In A...
	heading2 - 13.2.39 A2335: Exported Absolute EQU Label Is Not Supported
	heading2 - 13.2.40 A2336: Value Too Big
	heading2 - 13.2.41 A2338: <Message String>
	heading2 - 13.2.42 A2341: Relocatable Section Not Allowed: an Absolute file is currently directly...
	heading2 - 13.2.43 A13001: Illegal Addressing Mode
	heading2 - 13.2.44 A13005: Comma Expected
	heading2 - 13.2.45 A13007: Relative Branch With Illegal Target
	heading2 - 13.2.46 A13008: Illegal Expression
	heading2 - 13.2.47 A13101: Illegal Operand Format
	heading2 - 13.2.48 A13102: Operand Not Allowed
	heading2 - 13.2.49 A13106: Illegal Size Specification For HC08-Instruction
	heading2 - 13.2.50 A13108: Illegal Character At The End Of Line
	heading2 - 13.2.51 A13109: Positive Value Expected
	heading2 - 13.2.52 A13110: Mask Expected
	heading2 - 13.2.53 A13111: Value Out Of Range
	heading2 - 13.2.54 A13201: Lexical Error In First Or Second Field
	heading2 - 13.2.55 A13203: Not An HC08 Instruction Or Directive
	heading2 - 13.2.56 A13401: Value Out Of Range -128..127
	heading2 - 13.2.57 A13403: Complex Relocatable Expression Not Supported
	heading2 - 13.2.58 A13405: Code Size Per Section Is Limited To 32kb
	heading2 - 13.2.59 A13601: Error In Expression
	heading2 - 13.2.60 A13602: Error At End Of Expression

