

Copyright © 1987-2002 by Rigel Corporation.

RROS

(ROM-RESIDENT OPERATING SYSTEM)

User's Manual

RIGEL CORPORATION
P.O. Box 90040, Gainesville, Florida
(352) 373-4629, FAX (352) 373-1786

www.rigelcorp.com, tech@rigelcorp.com

Copyright © 1987-2002 by Rigel Corporation.

Copyright © 1987-2002 by Rigel Corporation.
Legal Notice:
All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in
any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of Rigel Corporation.

The abbreviation PC used throughout this guide refers to the IBM Personal Computer or its compatibles. IBM PC
is a trademark of International Business Machines, Inc. MS Windows is a trademark of Microsoft, Inc.

Information in this document is provided solely to enable use of Rigel products. Rigel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Rigel products except as
provide in Rigel’s Customer Agreement for such products.

Rigel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained herein.

Rigel retains the right to make changes to these specifications at any time without notice. Contact Rigel
Corporation or your Distributor to obtain the latest specifications before placing your order.

Copyright © 1987-2002 by Rigel Corporation.

Rigel Corporation’s Software License Agreement
This Software License Agreement ("Agreement") covers all software products copyrighted to Rigel Corporation,

including but not limited to: Reads51, rLib51, RbHost, RitaBrowser, FLASH, rChpSim, Reads166, and
rFLI.

This Agreement is between an individual user or a single entity and Rigel Corporation. It applies to all Rigel
Corporation software products. These Products ("Products") includes computer software and associated
electronic media or documentation "online" or otherwise.

Our software, help files, examples, and related text files may be used without fee by students, faculty and staff
of academic institutions and by individuals for non-commercial use. For distribution rights and all other users,
including corporate use, please contact:
Rigel Corporation, PO Box 90040, Gainesville, FL 32607
or e-mail tech@rigelcorp.com
Terms and Conditions of the Agreement
1. These Products are protected by copyright laws, intellectual property laws, and international treaties.

Rigel Corporation owns the title, copyright, and all other intellectual property rights in these Products.
We grant you a personal, non-transferable, and non-exclusive license to use the Products. These
Products are not transferred to you, given away to you or sold to you.

 Non-commercial use: These Products are licensed to you free of charge.

 Commercial use: You must contact Rigel Corporation to find out if a licensing fee applies before using
these Products.

2. You may install and use an unlimited number of copies of these Products.

3. You may store copies of these Products on a storage device or a network for your own use.

4. You may not reproduce and distribute these Products to other parties by electronic means or over
computer or communication networks. You may not transfer these Products to a third party. You may not
rent, lease, or lend these Products.

5. You may not modify, disassemble, reverse engineer, or translate these Products.

6. These Products are provided by Rigel Corporation "as is" with all faults.

7. In no event shall Rigel Corporation be liable for any damages whatsoever (including, without limitation,
damages for loss of business profits, business interruption, loss of business information, or other
pecuniary loss) arising out of the use of or inability to use the Product, even if Rigel Corporation has been
advised of the possibility of such damages. Because some states do not allow the exclusion or limitations
of consequential or incidental damages, the above limitations may not apply to you.

8. Rigel Corporation makes no claims as to the applicability or suitability of these Products to your particular
use, application, or implementation.

9. Rigel Corporation reserves all rights not expressly granted to you in this Agreement.

10 If you do not abide by or violate the terms and conditions of this Agreement, without prejudice to any other
rights, Rigel Corporation may cancel this Agreement. If Rigel Corporation cancels this Agreement; you
must remove and destroy all copies of these Products.

11. If you acquired this Product in the United States of America, this Agreement is governed by the laws of
the Great State of Florida. If this Product was acquired outside the United States of America all pertinent
international treaties apply.

Copyright © 1987-2002 by Rigel Corporation.

HARDWARE WARRANTY
Limited Warranty. Rigel Corporation warrants, for a period of sixty (60) days from your receipt, that READS software, RROS,
hardware assembled boards and hardware unassembled components shall be free of substantial errors or defects in material
and workmanship which will materially interfere with the proper operation of the items purchased. If you believe such an error
or defect exists, please call Rigel Corporation at (352) 373-4629 to see whether such error or defect may be corrected, prior to
returning items to Rigel Corporation. Rigel Corporation will repair or replace, at its sole discretion, any defective items, at no
cost to you, and the foregoing shall constitute your sole and exclusive remedy in the event of any defects in material or
workmanship. Although Rigel Corporation warranty covers 60 days, Rigel shall not be responsible for malfunctions due to
customer errors, this includes but is not limited to, errors in connecting the board to power or external circuitry. This warranty
does not apply to products which have been subject to misuse (including static discharge), neglect, accident or modification, or
which have been soldered or altered during assembly and are not capable of being tested.
DO NOT USE PRODUCTS SOLD BY RIGEL CORPORATION AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS!
Products sold by Rigel Corporation are not authorized for use as critical components in life support devices or systems. A
critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
THE LIMITED WARRANTIES SET FORTH HEREIN ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE.
YOU ASSUME ALL RISKS AND LIABILITY FROM OPERATION OF ITEMS PURCHASED AND RIGEL CORPORATION
SHALL IN NO EVENT BE LIABLE FOR DAMAGES CAUSED BY USE OR PERFORMANCE, FOR LOSS PROFITS,
PERSONAL INJURY OR FOR ANY OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. RIGEL CORPORATION'S
LIABILITY SHALL NOT EXCEED THE COST OF REPAIR OR REPLACEMENT OF DEFECTIVE ITEMS.
IF THE FOREGOING LIMITATIONS ON LIABILITY ARE UNACCEPTABLE TO YOU, YOU SHOULD RETURN ALL ITEMS
PURCHASED TO RIGEL CORPORATION PRIOR TO USE.
Return Policy. This policy applies only when product purchased directly from Rigel Corporation. If you are not satisfied with
the items purchased, prior to usage, you may return them to Rigel Corporation within thirty (30) days of your receipt of same
and receive a full refund from Rigel Corporation. This does not apply to books. Books are non-returnable.
Please call (352) 373-4629 to receive an RMA (Returned Merchandise Authorization) number prior to returning product. You
will be responsible for shipping costs. All returns must be made within 30 days of date of invoice and be accompanied by the
original invoice number and a brief explanation of the reason for the return.
Return merchandise in original packaging.
All returned products are subject to a $15 restocking charge. "Custom Items" are not returnable.
Repair Policy. If you encounter problems with your board or software after the 60 day warranty period, please call Rigel
Corporation at (352) 373-4629 or email tech@rigelcorp.com for advice and instruction.
Rigel Corporation will test and attempt to repair any board. You will be responsible for shipping costs and repair fees. If you
send a detailed report of the problems you encountered while operating the board, Rigel Corporation will inspect and test your
board to determine what the problem is free of charge. Rigel Corporation will then contact you with an estimated repair bill.
You will have the choice of having the board fixed, returned to you as is, or purchasing a new board at a reduced price. Rigel
Corporation charges repair fees based on an hourly rate of $50.00. Any parts that need to be replaced will be charged as
separate items. Although Rigel Corporation will test and repair any board, it shall not be responsible for malfunctions due to
customer errors, this includes but is not limited to, errors in connecting the board to power or external circuitry.
Board Kit. If you are purchasing a board kit, you are assumed to have the skill and knowledge necessary to properly
assemble same. Please inspect all components and review accompanying instructions. If instructions are unclear, please
return the kit unassembled for a full refund or, if you prefer, Rigel Corporation will send you an assembled and tested board
and bill you the price difference. You shall be responsible for shipping costs. The foregoing shall apply only where the kit is
unassembled. In the event the kit is partially assembled, a refund will not be available, however, Rigel Corporation can, upon
request, complete assembly for a fee based on an hourly rate of $50.00. Although Rigel Corporation will replace any defective
parts, it shall not be responsible for malfunctions due to errors in assembly. If you encounter problems with assembly, please
call Rigel Corporation at (352) 373-4629 for advice and instruction. In the event a problem cannot be resolved by telephone,
Rigel Corporation will perform repair work, upon request, at the foregoing rate of $50.00 per hour.
Governing Law. This agreement and all rights of the respective parties shall be governed by the laws of the State of Florida.

Copyright © 1987-2002 by Rigel Corporation.

Table of Content
1 THE ROM-RESIDENT OPERATING SYSTEM..1

2 THE INITIALIZATION ROUTINE..1

3 THE COMMAND PROCESSOR...1

4 GENERAL PURPOSE ROUTINES (SYSTEM CALLS)...3

5 SYSTEM VARIABLES ...7

6 THE INTERRUPT VECTOR TABLE ..8

7 DEBUG FUNCTIONS...9

8 HOW BREAKPOINTS ARE HANDLED...9

9 HOW TRACING IS HANDLED...10

10 DEBUGGING WITH AN ASCII TERMINAL...11

APPENDIX A SYSTEM CALL SOURCE CODE ...12

Copyright © 1987-2002 by Rigel Corporation.

1 THE ROM-RESIDENT OPERATING SYSTEM
RROS manages the prototyping board and cooperates with Reads. RROS has a command processor which
can be accessed by an ASCII terminal or by the PC running a terminal emulator. The Reads is an intelligent
interface with the board, which has hot keys that invoke several RROS commands to accomplish higher level
tasks. Many of the RROS routines are available as user-accessible system calls.
The ROM-resident firmware consists of 6 major components:

1. An initialization routine
2. A command processor
3. User-accessible system calls
4. System variables
5. Interrupt Vectors
6. Debug utilities

Each of these components is explained below.

2 The Initialization Routine
This is a short routine that is invoked at power up or when the reset button on the board is pressed. The
following actions are taken:

 disable interrupts
 set stack pointer to 4Fh (stack will start at 50h)
 initialize hardware:

select register bank 0
set the interrupt vector table at FF00h
initialize system software flags
initialize the serial port to run at 9600 Baud with parameters 8 bits, no parity, and 1 stop bit

3 The Command Processor
The system will branch to the command processor if no auto-exec routine is present. The monitor commands
are grouped under 12 single-letter commands. One or more of these commands are issued by Reads while
interacting with the board. These commands may also be given by an ASCII terminal. The monitor
commands are grouped according to their function and listed below.

Function Monitor Commands
Read/Modify Data, X, C, D, R
Read/Modify Special Function Registers P
Load/Execute Program L, G
Debug B, K
Miscellaneous H

The list of monitor commands is displayed with the H command while the monitor program is in effect. The H
command displays the following table.

B xxxx sets Break point at address xxxx
C xxxx-xxxx displays Code memory
D xx-xx displays internal Data ram

Copyright © 1987-2002 by Rigel Corporation. 2

D xx=nn modifies internal Data ram
D xx-xx=nn fills a block of internal Data ram
G xxxx Go - starts executing at address xxxx
H Help - displays monitor commands
K Kills (removes) break point
L down Loads Intel hex file into memory
P x displays data on Port x
P x=nn modifies data on Port x to nn
R displays the contents of the Registers
S displays Special function register addresses
S xx-xx displays Special function registers
S xx=nn modifies Special function registers
S xx-xx=nn fills Special function registers
X xxxx-xxxx displays eXternal memory
X xxxx=nn modifies eXternal memory
X xxxx-xxxx=nn fills eXternal memory

A single-letter command may be followed by up to 3 parameters. The parameters must be entered as
hexadecimal numbers. Each ‘x’ above represents a hexadecimal digit (characters 0..9, A..F). Intermediate
spaces are ignored. Alphabetic characters are converted to upper case. The length of the command string
must be 16 characters or less. The command syntax is:

Letter [address][-address][=data]<CR>.

For example, the monitor command

X 92C1

will display the contents of external memory location 92C1h. The command

X 92C1 - 92CF

will display the contents of consecutive memory locations from 92C1h to 92CFh. Similarly, the command

X 92C1-92CF=3F

will modify the contents of the memory locations from 92C1h to 92CFh, inclusively, to 3Fh. The contents of
these memory locations may be verified to be 3Fh by the command

 X92C1-92CF

The C command is identical to the X command except that code memory is displayed, not external data
memory. Also, in the MCS-51 architecture, writing to code memory is not allowed. If code and external data
memory banks are overlapping, then code memory can effectively be modified by the X command.
Overlapping external data and code memory banks is the default architecture of the development boards.
The C command is only useful if the code and external memory banks are jumper selected to be non-
overlapping.

The D command is similar to the X command. It displays or modifies internal RAM memory. The 8031
contains 128 internal RAM locations and the 8032, 256 internal RAM locations. Notice that, in this case, the
memory addresses are limited to 2 hexadecimal digits.

The P command allows viewing or modifying the current state of the processor ports. Viewing the state of a
port is equivalent to reading the port as an input port. Modifying the port contents outputs a byte to the port.
The 8031 and 8032 have 4 ports. Notice that ports 0 and 2 are used by the processor for memory address
and data busses. In addition, 4 bits of Port 3 are used by the system. Bits of Port 3, P3.0 and P3.1 are used

Copyright © 1987-2002 by Rigel Corporation. 3

by the serial port as the receive data and transmit data lines. P3.6 and P3.7 are used in accessing memory
as the write and read control lines. Modifying bits P3.0 and P3.1 may affect the current data being transferred
between the host and the board. Application programs should not write to ports 0 or 2, or bits P3.6 or P3.7 of
Port 3.

The G and L commands are used to down load a program into RAM and run this program. The L command
puts the board into a receive mode. The program should then be sent to the board in the Intel Hex format.
Once downloading is complete, the program may be run by the G command. The parameter that follows the
G command is the starting point of the program. Notice that several programs may be loaded into RAM, each
one run by a G command followed by its starting address. The details of the down load-and-run process are
hidden from the user when Reads is used.

The R command displays the contents of the 4 register banks and the accumulator (a), the b register (b), the
program status word (psw), the data pointer (dptr), the stack pointer (sp), and the program counter (pc).

The commands B and K are used in debugging. Their use is described in the following sections. Again, the
details of their use are hidden from the user when Reads is used.

The H command displays the help screen, summarizing the available monitor commands.

4 General Purpose Routines (System Calls)
The ROM-resident firmware contains many general purpose subroutines that can be called by user-written
programs. Some of these subroutines are used by the system in carrying out the monitor functions. The
system calls are classified by their function below.

Function Subroutine Names
Serial Communication chkbrk

 beep
 cret
 crlf
 getbyt
 getchr
 getchrx
 inkey
 print
 prthex
 prsphx
 prtstr
 sndchr

System break
 delay
 init
 mdelay
 os_return
 sdelay
 setintvec

Miscellaneous ascbin
 binasc
 display
 percent

Copyright © 1987-2002 by Rigel Corporation. 4

Access to these routines is provided through a jump table located in low ROM memory. The application
program can call these routines by name if the following header of equate pseudo-ops is included in the
application program.

; ---
; system calls registers used
; ---
ascbin equ 0100h ; a, r2, error flag
autoexec equ 0103h
beep equ 0106h ; none
binasc equ 0109h ; a
break equ 010Ch ; a, (reads accumulator)
chkbrk equ 010Fh ; a, (reads serial port)
cret equ 0112h ; a
crlf equ 0115h ; a
delay equ 0118h ; a
display equ 011Bh ; a
getbyt equ 011Eh ; a, b
getchr equ 0121h ; a
getchrx equ 0124h ; a
init equ 0127h
inkey equ 012Ah ; a
mdelay equ 012Dh ; a
os_return equ 0130h
percent equ 0133h ; a
print equ 0136h ; a, dptr
prsphx equ 0139h ; a, r2
prtstr equ 013Ch ; a
prthex equ 013Fh ; a, r2
sdelay equ 0142h ; a
setintvec equ 0145h ; a, dptr
sndchr equ 0148h ; a

Then, the application program simply calls, say, subroutine getchr as follows.

 .
 .
 lcall getchr
 .
 .

The registers used by these routines appear in the header as comments. If the application program uses
these registers, the registers should be pushed before the system call. The source code of these general
purpose routines is available from our web site www.rigelcorp.com.

A short description of user-accessible system calls is given below. The source code for the system calls is in
the file syscalls.src, and in the appendix at the end of this document.

ascbin - assumes that the contents of the accumulator is a hexadecimal digit, that is in the interval '0'..'9',
'A'..'F', or 'a'..'f'. Provided that the accumulator holds a valid hexadecimal character, it is converted to binary
and returned as the lower nibble of the accumulator. The high nibble is cleared to 0000b. If the accumulator
does not hold a valid hexadecimal character, the system error flag (errorf) is set.

autoexec - checks the RROS system variable if a routine is to be executed after power up. The presence of
a start up routine is indicated by the routines start address (other than 0000h or FFFFh) placed after location

Copyright © 1987-2002 by Rigel Corporation. 5

480h. If an autoexec routine exists the message "hit any key to abort" is sent out the serial port. If no char-
acters are received from the serial port, a long jump performed to the start up routine. If no such routine is
present or if a character is received through the serial port within 2 seconds of the abort message, control is
turned over to the RROS command processor. The program status word (PSW) may be affected.

binasc - converts the low nibble of the accumulator to a hexadecimal character in the range '0'..'9' or 'A'..'F'.
The high nibble is ignored. The program status word (PSW) may be affected.

beep - sends a bell character, ASCII 7, to the host through the serial port. No registers are affected.

break - compares the contents of the accumulator to the break character, ASCII 3 (Ctrl-C). If the accumulator
holds the break character, control is passed back to the RROS command processor. The program status
word (PSW) may be affected.

chkbrk - reads a character from the serial port and compares it to the break character, ASCII 3. If equal,
control is passed back to the monitor command processor. The program status word (PSW) may be affected.

cret - outputs a carriage return, ASCII 0Dh, through the serial port. The accumulator (a) is affected.

crlf - outputs a carriage return, ASCII 0Dh, followed by a line feed character, ASCII 0Ah through the serial
port. The accumulator (a) is affected.

delay - executes a dummy loop to suspend the execution nn milliseconds where nn is the contents of the
accumulator.

display - converts the low nibble of the accumulator to the corresponding seven-segment-display pattern.
Upon return, the accumulator holds the 7 bits, acc.0 corresponding to segment a, and acc.6, segment g. The
bits are cleared if the corresponding segment is to be lit. Thus, the pattern will drive the common anode
seven-segment-displays on the RMB-S.

getbyt - waits to receive 2 characters (2 bytes) from the serial port. If the characters are valid hexadecimal
digits (0..9, A..F), then the ASCII-represented byte is converted to binary and placed in the accumulator (a).
The accumulator (a) and the b register (b) are affected.

getchr - getchrx wait for a character to be received through the serial port. The character is then returned in
the accumulator (a). Routine getchr clears the most significant bit of the character (byte), whereas getchrx
returns all 8 bits.

init - invokes the initialization routine which initializes the interrupt vector table, sets the stack to 4fh, clears
software flags, and sets the serial communications to 9600 Baud, 8 data bits, 1 stop bit and no parity bits. It
affects the accumulator, r0, and dptr.

inkey - peeks at the serial port to see if a character has been received. If so, the character is returned in the
accumulator (a). If not, a null (0) is returned in the accumulator (a). The accumulator (a) is affected.

mdelay and sdelay - execute dummy loops for timing purposes. The period from when mdelay is called to
its return is exactly 1 millisecond. Routine sdelay takes exactly one second from its call to its return. These
delay routines are exact only when a 12Mhz system clock is used, and when there are no interrupt routines in
the background.

os_return - turns control over to the monitor. Since the monitor resets the stack (to 4fh), either a call or a
jump instruction may be used to branch to the monitor.

percent - converts the binary fraction in the accumulator to the binary coded decimal (BCD) fraction in the
interval [0..99]. For example, the binary value 80h is converted to 50 BCD. The BCD value is returned in the
accumulator. This routine uses a look up table for speedy execution rather than computing the BCD value.

Copyright © 1987-2002 by Rigel Corporation. 6

print and prtstr - send a string of characters out through the serial port. Print and prtstr use the accumulator
(a) and the data pointer (dptr). The string to be sent can be of arbitrary length, provided that it terminates with
the null character (0). Prtstr sends a null-terminated string pointed to by dptr. Prtstr is useful if a string in a
table of strings (such as error messages) is to be printed.

The routine print assumes that the string immediately follows the call to print. It is appropriate when the
message is embedded in code. An example is given below.

 .
 .
 lcall print
 db "Hello Everybody", 0Dh, 0Ah, 0
 .
 .

The define byte (db) pseudo-op allocates 18 bytes the code memory immediately following the long call
instruction. The first 15 bytes are filled with the ASCII codes of the letters of 'Hello Everybody'. The following
3 bytes contain the ASCII codes for carriage return (0Dh), line feed (0Ah), and the null character (0) which
indicates the end of the string. The carriage return and line feed will start a new line after the string 'Hello
Everybody' has been displayed.

prthex and prsphx - convert the binary value of the accumulator into 2 hexadecimal digits. Prsphx and
prthex then send these two ASCII digits, high digit first, out through the serial port. Before termination, prsphx
sends a space (ASCII 20h) out through the serial port. These routine use the accumulator (a) and register R2
during the binary to hexadecimal conversion.

setintvec - modifies the interrupt vector table so that interrupt source, from 0 to 11, indicated by the value of
the accumulator (a), is directed to the interrupt service routine whose starting address is held in the data
pointer (dptr). See Section 5.6 for a detailed description of the interrupt vector table. Except for the two
registers (a) and (dptr), and the program status word (psw), setintvec does not affect any registers. The 14
interrupt sources of the 80537 are listed below. The other microcontrollers have a subset of these interrupt
sources.

source
number description
__
 0 int0 external interrupt 0
 1 tint0 timer 0 overflow interrupt
 2 int1 external interrupt 1
 3 tint1 timer 1 overflow interrupt
 4 sint serial port interrupt
 5 exint timer 2 overflow interrupt
 6 adcint analog-to-digital converter
 7 int2 external interrupt 2
 8 int3 external interrupt 3
 9 int4 external interrupt 4
10 int5 external interrupt 5
11 int6 external interrupt 6
12 s1int auxiliary serial port interrupt
13 ctfint compare timer overflow interrupt

Notice that the source numbers follow the default priorities of the interrupts (see the microcontroller
manufacturer's data book for more information).

Copyright © 1987-2002 by Rigel Corporation. 7

As an example, let t0isr be the interrupt service routine for the timer 0 overflow interrupt in an application
program. The interrupt is directed to t0isr by the following instructions.

 mov a, #1 ; select interrupt source 1

 mov dptr, #t0isr ; address of the service routine

 lcall setintvec
 .
 .
 .
 .
t0isr: ; the interrupt service routine starts here
 .
 .
 . ; various application-specific

 . ; instructions
 .

 reti ; the interrupt service routine ends here

sndchr - sends the contents of the accumulator out through the serial port. This routine waits until the serial
transmit operation has been completed. The accumulator (a) is affected.

5 System Variables
The ROM-resident firmware uses several internal registers for the system. All of the monitor commands use
register bank 0. The stack is initialized to 4Fh, so that the first byte pushed is placed in internal location 50h.
Stack does not grow beyond 16 bytes (50h..5Fh) when the monitor functions or the host mode debugging
functions are used. The bottom of stack may be set anywhere in internal ram by a user program.
The bit addressable internal RAM location 20h is used by the system to hold various software flags. Notice
that the individual bits of internal RAM 20h have addresses 0 to 7, 0 being the least significant bit of 20h. The
use of each software flag is shown below.

bit flag name use
0 dash set if a dash was detected in the command line
1 equal set if an equal sign was detected in the command line
2 break set if a break point is in effect
3 error set when an error is encountered
4 interrupt saves the status of EA (EAL) during debug
5 host set when host mode debugging is selected
6 trace used internally by the trace routine during debugging
7 reserved for future use

Internal RAM locations 30h to 3Fh are used by the command line processor to save the command line. The
parameters extracted from the command line are stored in binary in internal RAM locations 42h to 47h.
Internal RAM locations 48h to 4Ch are used by the debug routine. Specifically, location 48h and 49h hold the
break point address low and high bytes during debugging. The debug routine returns command to the
application program a long jump to the address stored in [49h,49h].
Internal memory use is now summarized.

address use
20h software flags

Copyright © 1987-2002 by Rigel Corporation. 8

30h..3Fh command line buffer
42h..47h buffer for command parameters
48h..4Ch buffer for break parameters
50h.. stack (RROS does not place more than 16 bytes on stack)

Some important system information is placed at low addresses of ROM. The jump table associated with user
accessible system calls is located starting at 100h. ROM locations 400h to 47Fh are reserved for system
constants. For example, the ROM version and date is coded as two words (2 bytes each) at locations 400h
and 402h respectively. Below is the list of system constants available to the user.

address use
400h ROM program version; e.g., 0103h refers to version 1.3
402h ROM program date; e.g., 1091h refers to October 1991
404h Contains the end of ROM-based program. Application
 programs may be placed in EPROM above this address.

If the board is to emulate an (autonomous) embedded controller, rather than branching to the monitor
program at reset, control is given to an application program. In this case, the starting address of the
application program is placed at locations 480h and 481h, 481h containing the high byte of the start address.
If this address is FFFFh, the initialization routine branches to the monitor. If this address is 0000h, the next
word at locations 402h and 403h is checked. Similarly, if this word contains an address other than FFFFh or
0000h, a long jump is made to that address. This convention allows an auto-exec routine to be installed by
placing its starting address at [401h,400h] or removed by placing 0000 at [401h,400h]. Once zeros are burnt
into the EPROM, a new autoexec routine may be installed by placing its starting address at [403h,402h]. This
allows for up to 64 such installations, since ROM locations 480h to 4FFh are set aside for autoexec routine
addresses.

6 The Interrupt Vector Table
The 8032, 80535, and 80537 have 6, 12, and 14 interrupt sources, respectively. Each interrupt source, when
acknowledged, causes a long jump to a fixed location in code memory. The address of this location is re-
ferred to as an interrupt vector. The interrupt sources and the corresponding vectors are listed below. The
interrupt vectors point to low ROM addresses. The RMB-S redirects these interrupts by placing long jump in-
structions at the interrupt vector addresses in low ROM.

Source Vector Redirected to 8052 80535 80537
IE0 0003h FF00h x x x
TF0 000Bh FF04h x x x
IE1 0013h FF08h x x x
TF1 001Bh FF0Ch x x x
RI(0)+TI(0) 0023h FF10h x x x
TF2+EXF2 002Bh FF14h x x x
IADC 0043h FF18h x x
IEX2 004Bh FF1Ch x x
IEX3 0053h FF20h x x
IEX4 005Bh FF24h x x
IEX5 0063h FF28h x x
IEX6 006Bh FF2Ch x x
RI1/TI1 0083h FF30h x
CTF 009B FF34h x

The system ROM at location 0003h, for example, contains the instruction ljmp FF00h. Similarly, the other
interrupt vectors are redirected by long jump instructions.

Copyright © 1987-2002 by Rigel Corporation. 9

RROS refers to the memory block FF00h to FF18h as the interrupt vector table. Notice that with the default
configuration, the interrupt vector table is in RAM. The initialization routine (init) which is automatically
invoked upon reset refreshes the interrupt vector table. This routine is available as a system call. Init also
places long jump instructions at the interrupt vector table. For example, at location FF00h, corresponding to
external interrupt 0 (IE0), init places the instruction ljmp 500h, where 500h is the address of the
initialization routine invoked at reset. All interrupt vector table entries are similarly initialized with ljmp 500h
instructions by the routine init. With the interrupt vector table so initialized, any acknowledged interrupt jumps
to start, effectively performing a reset.

Since the interrupt vector table is in RAM, its entries can be modified. Say the interrupt service routine isrIE0
is written and placed in memory. In order to direct IE0 to its service routine, the instruction ljmp isrIE0 is
placed in the interrupt vector table, starting at location FF00h. Although the interrupt service routine address
may be placed in the vector table by move instructions, it is more convenient to use the system call setintvec.
Setintvec is invoked after placing the interrupt service routine address in dptr and the interrupt source, from 0
to 11, in the accumulator.

7 Debug Functions
Debugging a program which has been loaded in RAM may be accomplished by the monitor functions B and
K. However, the powerful debugging environment of READ is, in most cases, the preferred way to debug
assembly programs. Debugging a program through the use of monitor commands is initiated by selecting a
break point in the program. The command B followed by the address of the break point sets the break point.
The break point should be placed at the first byte of an instruction. The break point may only be placed at a
RAM location. The K command removes or “kills” the break point.

RROS provides minimal debugging utilities through a submenu when an ASCII terminal is being used.
Debugging utilities constitute a major portion of RROS. There are two basic modes of debugging: setting
break points and tracing, sometimes referred to as single stepping. Each of these modes have advantages
and disadvantages. Debugging is geared more toward software development. In terms of hardware de-
bugging, although the debugger offers much help, it cannot track real-time operation issues, such as external
hardware interrupts. Such situations call for an in-circuit emulator.

8 How Breakpoints are Handled
A breakpoint is set by replacing three bytes, the byte at the break point and the following two bytes, by a long
jump instruction to the break point handler routine in the system ROM. The break point address is stored in
internal RAM locations labeled pbuffr and pbuffr+1. The three bytes removed from code are stored in
pbuffr+2, pbuffr+3, and pbuffr+4.

Actually, there are two break point handlers, one to be used in conjunction with the IDS, and the other, with
an ASCII terminal. Host mode debugging, that is, using the break point handler that works with the IDS, is
more powerful than the ASCII terminal mode. Both modes let the user view the internal data RAM. The host
mode also allows viewing external memory and modifying internal or external memory. The break point han-
dler in either debugging mode invokes submenus.

The following must be observed when setting a break point.

1. The break point must coincide with the first byte of an instruction in RAM.

Copyright © 1987-2002 by Rigel Corporation. 10

2. The program should not make a jump to the byte BP+1 or BP+2 where BP is the break point
address.

Point 1 does not pose any restrictions. It is advisable to first obtain a list file from the assembler and then pick
appropriate break points.

Although very infrequently, point 2 may require some additional care in placing break points just before labels.
Consider the following example.

address instruction mnemonic
--
8100 16 dec r0
 begin:
8101 7405 mov a, #5
. .
. .
. .
8110 80EF sjmp begin

if a break point is set at 8100, the three bytes at 8100, 8101, and 8102 will be modified to hold a long jump to
the break point handler routine, say at address xxxx. That is the byte 16h at 8100 will be modified to 02, and
the word 7405 will hold xxxx. Once the break point is placed, when the program execution comes to 8100,
the program will branch to the break point handler. However, when the short jump instruction at 8110 is
processed, the address xxxx will be fetched and interpreted as an instruction. The recommended way to
avoid this is to place nop (no operation) instructions after the dec r0 instruction.

address instruction mnemonic
--
8100 16 dec r0
8101 00 nop
8102 00 nop
 begin:
8103 7405 mov a, #5
. .
. .
. .
8112 80EF sjmp begin

Despite this inconvenience, implementing breakpoints by placing long jump instructions in code has the major
advantage that it is not intrusive to the operation of the processor. That is, until the breakpoint is
encountered, its presence has no effect on the rest of the program.

9 How Tracing is Handled
Tracing (Single Stepping) is one of the options once a breakpoint is encountered. It is implemented by
activating external interrupt 0 (IE0). First the interrupt is chosen to be level activated by clearing TCON.0.
Then bit 2 of Port 3 (P3.2), which receives the external signal for external interrupt 0, is cleared. All interrupt
priorities are set to the lowest priority by clearing interrupt priority registers IP0 and IP1. By default, IE0 has
the highest priority. An interrupt service routine for IE0 is linked by placing its address into the interrupt vector
table. Next the break point is removed by restoring the 3 bytes occupied by the call to the break point
handler, and the execution resumes from the break point address. Since IE0 is already active, the program
jumps to its interrupt service routine after executing one instruction. The interrupt service routine pops the
return address, which points to the next instruction, and places a new break point at the next instruction. It

Copyright © 1987-2002 by Rigel Corporation. 11

then deactivates IE0, restores the interrupt service routine and returns. Of course, now the instruction upon
return is a long jump to the break point handler. Effectively, the processor has executed one instruction and
has returned to the break point handler.

The following must be observed when using the trace option.

1. IE0 and P3.2 must not be used by the program.
2. The interrupt service routine inspects the return address and inserts a break point only if the

return address is in RAM (8000h-FFFFh). Thus, tracing will not single step through ROM.

Since at each trace instruction the system returns to the break point handler, the user interface is identical to
using break points.

10 Debugging with an ASCII Terminal
A break point is set from the monitor prompt (*) using the Bxxxx command and the program run by the Gxxxx
command, using an ASCII terminal or the R-Host terminal emulator. When the break point is encountered,
the registers followed by a submenu are displayed (sent to the terminal) by the ROM Resident Operating
System (RROS). The submenu items are selected by single letter commands. The following submenu items
are available.

I displays the contents of the 256 internal RAM locations

R displays the 4 register banks, along with the accumulator, the b register, the stack pointer, the data

pointer, and the program counter.

F displays the Special Function Registers. Notice that of the 128 special function registers displayed,

not all are used by the processor.

S shows the stack pointer

C removes the break point and continues the program

N removes the break point and sets a new break point at the address which should follow the N

command. For example, N8200 sets the new break point at address 8200h.

T branches to the trace utility. Trace places a break point at the next instruction. Thus, by repeatedly

issuing the T command, one may single step through the program. At each step, the programmer
may examine the state of the processor. Only instructions in RAM can be traced. Thus, T skips over
any ROM resident subroutine or user accessible system call which it encounters.

M aborts the program and returns control to the monitor command processor.

Copyright © 1987-2002 by Rigel Corporation. 12

Appendix A System Call Source Code

; System Calls
;
; Copyright Rigel Corporation, 1990
;
;
; ==
; subroutine ascbin
; this routine takes the ascii character passed to it in the
; acc and converts it to a 4 bit binary number which is returned
; in the acc.
; ==
ascbin: add a, #0d0h ; if chr < 30 then error
 jnc notnum
 clr c ; check if chr is 0-9
 add a, #0f6h ; adjust it
 jc hextry ; jmp if chr not 0-9
 add a, #0ah ; if it is then adjust it
 ret

hextry: clr acc.5 ; convert to upper
 clr c ; check if chr is a-f
 add a, #0f9h ; adjust it
 jnc notnum ; if not a-f then error
 clr c ; see if char is 46 or less.
 add a, #0fah ; adjust acc
 jc notnum ; if carry then not hex
 anl a, #0fh ; clear unused bits
 ret

notnum: setb errorf ; if not a valid digit
 ret

; ==
; subroutine autoexec start up program
; scans low rom memory to see if an embedded program
; is to run at power up.
; --
autoexec:
 mov psw, #0 ; select register bank 0
 mov dptr, #ax_tab
ax_0:
 movx a, @dptr ; read low address
 mov r0, a
 inc dptr
 movx a, @dptr ; read high address
 mov r1, a
 anl a, r0
 cpl a
 jz ax_dn

Copyright © 1987-2002 by Rigel Corporation. 13

 mov a, r1
 orl a, r0
 jz ax_1
; ---- start up program specified -------------------
; ---- allow user to abort --------------------------

 push 0 ; lsb to print next
 push 1 ; msb to print next
 lcall crlf
 lcall print
 db "about to execute program at ",0
 pop acc ; recall msb
 lcall prthex
 pop acc ; recall lsb
 lcall prthex
 lcall crlf
 lcall print
 db "hit any key to abort", 0
 clr ri
 lcall sdelay ; 2-second grace period
 jb ri, ax_dn
 lcall sdelay
 jb ri, ax_dn ; if key hit the abort...

 lcall crlf ; ...else start up prog
 pop acc ; flush return address ...
 pop acc ; ... off from stack
 push 0 ; lsb of start up program
 push 1 ; msb of start up program
 ret ; effectively jumps to prog

ax_dn: ret
ax_1: inc dptr
 ljmp ax_0

; ==
; subroutine beep
; input : none
; output : ^g (bell = 7) sent to serial port
; destroys : a
; --
beep: push acc
 mov a, #7h
 lcall sndchr
 pop acc
 ret

Copyright © 1987-2002 by Rigel Corporation. 14

; ==
; subroutine binasc
; binasc takes the contents of the accumulator and converts it
; into two ascii hex numbers. the result is returned in the
; accumulator and r2.
; ==
;
binasc: mov r2, a ; save in r2
 anl a, #0fh ; convert least sig digit.
 add a, #0f6h ; adjust it
 jnc noadj1 ; if a-f then readjust
 add a, #07h
noadj1: add a, #3ah ; make ascii

 xch a, r2 ; put result in reg 2
 swap a ; convert most sig digit
 anl a, #0fh ; look at least sig half of acc
 add a, #0f6h ; adjust it
 jnc noadj2 ; if a-f then re-adjust
 add a, #07h
noadj2: add a, #3ah ; make ascii
 ret

; ==
; subroutine chkbrk
; this routine checks for the break key. if it is found control
; is passed back to the main monitor loop.
; ==
;
chkbrk: jnb ri, nobrk ; if no chr then return
 mov a, sbuf ; get chr from serial port
 clr ri ; reset rx status bit
break: cjne a, #03h,nobrk ; if cnt c then
 lcall print ; print 'break'
 db 0dh, 0ah," <break> ", 000h
 ljmp return ; return to monitor
nobrk: ret ; else normal return

Copyright © 1987-2002 by Rigel Corporation. 15

; ==
; subroutine crlf
; crlf sends a carriage return line feed out the serial port
; ==
;
crlf: mov a, #0ah ; print lf
 lcall sndchr
cret: mov a, #0dh ; print cr
 lcall sndchr
 ret

; ==
; subroutine delay - millisecond delay
; accumulator holds microseconds to delay
; - 2 microseconds are reserved for the call
; to this routine.
; input : milliseconds to delay in accumulator
; output : none
; destroys : nothing - uses a
; --
; 100h-a6h=5ah=(90)decimal
; 90 * 11 = 990
; plus 10 gives 1 millisecond microsecond
;
; microseconds (cycles)
; -----------------------
delay:
 dec a ; 1

d_olp:
 push acc ; 2 \
 mov a, #0a6h ; 1 |
 ; |
d_ilp: inc a ; 1 \ |
 nop ; 1 | |
 nop ; 1 | |
 nop ; 1 | |
 nop ; 1 | |
 nop ; 1 |- 11 | (acc-1)
 nop ; 1 | cycles |- msec
 nop ; 1 | |
 nop ; 1 | |
 jnz d_ilp ; 2 / |
 ; |
 nop ; 1 |
 nop ; 1 |
 nop ; 1 |
 pop acc ; 2 |
 ; |
 djnz acc,d_olp ; 2 /

; need to wait 998 microseconds more

Copyright © 1987-2002 by Rigel Corporation. 16

 mov a, #0a6h ; 1

d_lp2: inc a ; 1 \
 nop ; 1 |
 nop ; 1 |
 nop ; 1 |
 nop ; 1 |
 nop ; 1 |- 11
 nop ; 1 | cycles
 nop ; 1 |
 nop ; 1 |
 jnz d_lp2 ; 2 /
 nop ; 1
 nop ; 1
 nop ; 1
 nop ; 1
 nop ; 1

 ret ; 2

; ==
; subroutine display - display string
; input : nibble in accumulator
; output : 7-segment pattern in accumulator
; (acc.0 is segment a, acc.6 is segment g)
; destroys : a
; --
display:
 inc a
 movc a, @a+pc
 ret
 db 0c0h ; 0
 db 0f9h ; 1
 db 0a4h ; 2
 db 0b0h ; 3
 db 99h ; 4
 db 92h ; 5
 db 82h ; 6
 db 0f8h ; 7
 db 80h ; 8
 db 90h ; 9
 db 88h ; a
 db 83h ; b
 db 0c6h ; c
 db 0a1h ; d
 db 86h ; e
 db 8eh ; f

Copyright © 1987-2002 by Rigel Corporation. 17

; ==
; subroutine getbyt
; this routine reads in an 2 digit ascii hex number from the
; serial port. the result is returned in the acc.
; ==
;
getbyt: lcall getchr ; get msb ascii chr
 lcall ascbin ; conv it to binary
 swap a ; move to most sig half of acc
 mov b, a ; save in b
 lcall getchr ; get lsb ascii chr
 lcall ascbin ; conv it to binary
 orl a, b ; combine two halves
 ret

; ==
; subroutine getchr
; this routine reads in a chr from the serial port and saves it
; in the accumulator.
; ==
;
getchr: jnb ri, getchr ; wait till character received
 mov a, sbuf ; get character
 anl a, #7fh ; mask off 8th bit
 clr ri ; clear serial status bit
 ret

; ==
; subroutine getchrx
; this routine reads in a chr from the serial port and
; saves it in the acc. it differs from getchr by not
; clearing the most significant bit.
; ==
;
getchrx: jnb ri, getchrx ; wait till character received
 mov a, sbuf ; get character
 clr ri ; clear serial status bit
 ret

Copyright © 1987-2002 by Rigel Corporation. 18

; ==
; subroutine inkey
; input : peeks at serial port - no wait
; output : if chr present
; then accumulator returns chr
; else accumulator is 00 (null)
; destroys : a
; --
inkey: mov a, #00h
 jnb ri, doneik
 mov a, sbuf
 anl a, #7fh
 clr ri
doneik: ret

; ==
; subroutine init
; this routine intializes the hardware on the 8051
; ==
;
init:
 mov psw, #0h ; select rb0
 mov dptr, #int0 ; point to interrupt vector table
 mov p2, #ofsthi ; offset high byte
 mov r0, #80h ; offset into stored rom vector table

transfer: movx a, @r0 ; transfer...
 movx @dptr, a ; ...rom interrupt vector...
 inc r0 ; ...table to...
 inc dptr ; ...ram (af = 80 + 2f)
 cjne r0, #0afh, transfer

 clr dashf ; initialize software flag
 clr equalf ; initialize software flag
 clr breakf ; initialize software flag
 clr hostf ; initialize software flag
; - - - - - - set up serial port - - - - - -
; with a 11.059 Mhz crystal, use timer 1 as the Baud rate generator
; for 9600 Baud

 mov tmod, #20h ; set timer 1 for auto reload - mode 2
 mov tcon, #41h ; run timer 1 and set edge trig ints
 mov th1, #0fdh ; set timer 1 for 9600 baud with xtal=12mhz
 mov scon, #50h ; set serial control reg for 8 bit data
 ; and mode 1
 ret

Copyright © 1987-2002 by Rigel Corporation. 19

; ==
; subroutine mdelay - millisecond delay
; delays for 998 microseconds - 2 microseconds are
; reserved for the call to this routine.
; input : none
; output : none
; destroys : nothing - uses a
; --
; 100h-a6h=5ah=(90)decimal
; 90 * 11 = 990
; plus 8 gives 998 microseconds
;
; microseconds (cycles)
; -----------------------
mdelay: push acc ; 2
 mov a, #0a6h ; 1

md_olp: inc a ; 1 \
 nop ; 1 |
 nop ; 1 |
 nop ; 1 |
 nop ; 1 |
 nop ; 1 |- 11 cycles
 nop ; 1 |
 nop ; 1 |
 nop ; 1 |
 jnz md_olp ; 2 /

 nop ; 1
 pop acc ; 2
 ret ; 2

Copyright © 1987-2002 by Rigel Corporation. 20

; ==
; subroutine percent - converts [0-ff] to [0-99] bcd
; input : byte in accumulator
; output : [0-99] bcd in accumulator
;
; destroys : a, r0, dptr, carry flag
; --
percent:
 cjne a, #0ffh, anotff
 mov a, #99h
 ret

anotff: inc a
 movc a, @a+pc
 ret
; table of bcd corresponding to the byte
 db 00h, 00h, 01h, 01h, 02h, 02h, 02h, 03h ; 0 - 7
 db 03h, 04h, 04h, 04h, 05h, 05h, 05h, 06h ; 8 - f
 db 06h, 07h, 07h, 07h, 08h, 08h, 09h, 09h ; 10 - 17
 db 09h, 10h, 10h, 11h, 11h, 11h, 12h, 12h ; 18 - 1f
 db 12h, 13h, 13h, 14h, 14h, 14h, 15h, 15h ; 20 - 27
 db 16h, 16h, 16h, 17h, 17h, 18h, 18h, 18h ; 28 - 2f
 db 19h, 19h, 20h, 20h, 20h, 21h, 21h, 21h ; 30 - 37
 db 22h, 22h, 23h, 23h, 23h, 24h, 24h, 25h ; 38 - 3f

 db 25h, 25h, 26h, 26h, 27h, 27h, 27h, 28h ; 40 - 47
 db 28h, 29h, 29h, 29h, 30h, 30h, 30h, 31h ; 48 - 4f
 db 31h, 32h, 32h, 32h, 33h, 33h, 34h, 34h ; 50 - 57
 db 34h, 35h, 35h, 36h, 36h, 36h, 37h, 37h ; 58 - 5f
 db 37h, 38h, 38h, 39h, 39h, 39h, 40h, 40h ; 60 - 67
 db 41h, 41h, 41h, 42h, 42h, 43h, 43h, 43h ; 68 - 6f
 db 44h, 44h, 45h, 45h, 45h, 46h, 46h, 46h ; 70 - 77
 db 47h, 47h, 48h, 48h, 48h, 49h, 49h, 50h ; 78 - 7f

 db 50h, 50h, 51h, 51h, 52h, 52h, 52h, 53h ; 80 - 87
 db 53h, 54h, 54h, 54h, 55h, 55h, 55h, 56h ; 88 - 8f
 db 56h, 57h, 57h, 57h, 58h, 58h, 59h, 59h ; 90 - 97
 db 59h, 60h, 60h, 61h, 61h, 61h, 62h, 62h ; 98 - 9f
 db 62h, 63h, 63h, 64h, 64h, 64h, 65h, 65h ; a0 - a7
 db 66h, 66h, 66h, 67h, 67h, 68h, 68h, 68h ; a8 - af
 db 69h, 69h, 70h, 70h, 70h, 71h, 71h, 71h ; b0 - b7
 db 72h, 72h, 73h, 73h, 73h, 74h, 74h, 75h ; b8 - bf

 db 75h, 75h, 76h, 76h, 77h, 77h, 77h, 78h ; c0 - c7
 db 78h, 79h, 79h, 79h, 80h, 80h, 80h, 81h ; c8 - cf
 db 81h, 82h, 82h, 82h, 83h, 83h, 84h, 84h ; d0 - d7
 db 84h, 85h, 85h, 86h, 86h, 86h, 87h, 87h ; d8 - df
 db 87h, 88h, 88h, 89h, 89h, 89h, 90h, 90h ; e0 - e7
 db 91h, 91h, 91h, 92h, 92h, 93h, 93h, 93h ; e8 - ef
 db 94h, 94h, 95h, 95h, 95h, 96h, 96h, 96h ; f0 - f7
 db 97h, 97h, 98h, 98h, 98h, 99h, 99h, 99h ; f8 - ff

Copyright © 1987-2002 by Rigel Corporation. 21

; ==
; subroutine print
; print takes the string immediately following the call and
; sends it out the serial port. the string must be terminated
; with a null. this routine will ret to the instruction
; immediately following the string.
; ==
;
print: pop dph ; put return address in dptr
 pop dpl
 lcall prtstr ; print string and update dptr
 mov a, #1h ; point to instruction after string
 jmp @a+dptr ; return

; ==
; subroutine prtstr
; this routine takes the string pointed to by the data pointer
; and sends it out the serial port. the string must be
; terminated with a null.
; ==
;
prtstr: clr a ; set offset = 0
 movc a, @a+dptr ; get chr from code memory
 cjne a, #0h, mchrok ; if chr = ff then return
 ret
mchrok: lcall sndchr ; send character
 inc dptr ; point at next character
 ljmp prtstr ; loop till end of string

; ==
; subroutine prthex
; this routine takes the contents of the acc and prints it out
; as a 2 digit ascii hex number.
; ==
;
prthex: lcall binasc ; convert acc to ascii
 lcall sndchr ; print first ascii hex digit
 mov a, r2 ; get second ascii hex digit
 lcall sndchr ; print it
 ret

Copyright © 1987-2002 by Rigel Corporation. 22

; ==
; subroutine prsphx
; this routine first prints a space then takes the contents of
; the acc and prints it out as a 2 digit ascii hex number.
; ==
;
prsphx: mov r2, a ; save acc in r2
 mov a, #20h ; print space
 lcall sndchr
 mov a, r2 ; recall acc
 lcall prthex ; print it
 ret

; ==
; subroutine sdelay - second delay
; delays for 999998 microseconds - 2 microseconds
; are reserved for the call to this routine.
; input : none
; output : none
; destroys : nothing - uses a
; --
; 100h-91h=6fh=(111)decimal
; 9008 * 111 = 999888
; plus 102 from second loop
; plus 8 gives 999998 microseconds
;
; microseconds (cycles)
; -----------------------
sdelay: push acc ; 2
 mov a, #91h ; 1

sd_olp: inc a ; \
 lcall mdelay ; |
 lcall mdelay ; |
 lcall mdelay ; |
 lcall mdelay ; |
 lcall mdelay ; |
 lcall mdelay ; |
 lcall mdelay ; |- loop takes 9008 microseconds
 lcall mdelay ; |
 lcall mdelay ; |
 nop ; |
 nop ; |
 nop ; |
 nop ; |
 nop ; |
 jnz sd_olp ; /

 mov a, #33h ; 1
sd_ilp: djnz acc, sd_ilp ; -loop takes 2*33h=66h=(102)dec

 pop acc ; 2
 ret ; 2

Copyright © 1987-2002 by Rigel Corporation. 23

; ==
; subroutine setintvec - set interrupt vector
; input : a contains interrupt source [0..11]
; dptr contains isr address
; output : none
; destroys : a, dptr
; --
setintvec:
 push dpl ; push isr address
 push dph
 anl a, #0fh ; just to be sure
 rl a ; multiply by 4
 rl a
 mov dph, #0ffh ; ram vector table
 mov dpl, a ; dptr points to vector table
 mov a, #2 ; ljmp instruction
 movx @dptr, a
 inc dptr
 pop acc ; pop isr address high byte
 movx @dptr, a
 inc dptr
 pop acc ; pop isr address low byte
 movx @dptr, a ; new int vector placed
 ret

; ==
; subroutine sndchr
; this routine takes the chr in the acc and sends it out the
; serial port.
; ==
;
sndchr: clr scon.1 ; clear the tx buffer full flag.
 mov sbuf,a ; put chr in sbuf
txloop: jnb scon.1, txloop ; wait till chr is sent
 ret
; ==

Copyright © 1987-2002 by Rigel Corporation. 24

; ==
; The following are not part of the system ROM
; To use, include them in your source code
; ==

; subroutine kbdclrw -
; clear keyboard and wait for keypressed
; input : none
; output : none
; destroys : nothing - uses a
; --
kbdclrw:
 push acc
kcw_0:
 jnb ri, kcw_1
 clr ri
 sjmp kcw_0
kcw_1:
 lcall getchr
 pop acc
 ret

; ==
; subroutine kbdwait - waits for keypressed
; input : none
; output : none
; destroys : nothing - uses a
; --
kbdwait:
 push acc
 lcall getchr
 pop acc
 ret

Copyright © 1987-2002 by Rigel Corporation. 25

; ==
; subroutine getword
; this subrouinte reads in a string in ascii from the serial
; port. the line must be terminated with a <cr>. the line is
; stored in the line buffer. the maximum line length is 16
; bytes including the <cr>. the word is returned in the first
; parameter buffer at location pbuffr.
; ==
;
getword:
 push psw
 mov psw, #0
 push 3
 push 4
 push 5
 push 6

 clr errorf
 clr ri ; flush serial port
 mov r0, #lbuffr ; init line buffer ram to 0's
gwinit:
 mov @r0, #0ffh
 inc r0
 cjne r0, #lbuffr+11h, gwinit

 mov r4, #0h ; init line buffer count (pointer)
gw0: mov a, r4 ; if line length > 15 then error
 jnb acc.4, gwok0
 ljmp gwerr_ret

gwok0: lcall getchr ; read in chr
 mov r1, a ; save in r1
 cjne r1, #7fh, gwnodel ; if del then del
 sjmp gwdel
gwnodel:
 cjne r1, #08h, gwnorub ; if back space then del
gwdel: mov a, r4 ; do not back up over prompt
 jz gw0
 mov a, #08h ; backspace
 lcall sndchr
 mov a, #20h ; send a space
 lcall sndchr
 mov a, #08h ; backspace
 lcall sndchr
 dec r4 ; dec line buffer pointer.
 sjmp gw0
gwnorub:
 mov a, r1 ; recall char
 clr c
 add a, #0c0h
 jnc gw_num ; if alphabetic then
 mov a, r1 ; then make upper case
 clr acc.5
 mov r1, a
gw_num:
 mov a, r4 ; save chr in line buffer.
 add a, #lbuffr ; compute address

Copyright © 1987-2002 by Rigel Corporation. 26

 mov r0, a
 mov a, r1 ; get chr
 mov @r0,a
 lcall sndchr ; echo character

 inc r4 ; point to next location in buffer
 cjne r1, #0dh, gw0 ; if not cr then return
 mov a, #0ah ; if chr=cr then line feed and do normal ret
 lcall sndchr
 mov a, r4 ; if cr only then error
 cjne a, #1h, gwok
 ljmp gwerr_ret
gwok:
 mov r0, #lbuffr-1 ; point before first chr in line buffer

; - - - - - - read in parameter - - - - - - - - - - -
gw1:
 inc r0 ; point to next location in line buffer
 mov a, @r0 ; get chr from line buffer
 cjne a, #0dh, gw2 ; if cr then end
 ljmp gwerr_ret ; return on error

gw2: cjne a, #20h, gw3 ; if chr=space then loop
 sjmp gw1
gw3:
 mov r1, #pbuffr ; parameter 0
 lcall getparx ; get parameter from line buffer
 jnb errorf, gwret

gwerr_ret:
 setb errorf
 lcall subbadpar

gwret: pop 6
 pop 5
 pop 4
 pop 3
 pop psw
 ret

