ED4

79
/Ojé

Comparing
the
NDS and VERA environments
for
scan chain recognition & removal

M. van Balen
Concerns : End Report
Period of work : April 1993 - Dec 1993
Supervisor : prof. ir. M.T .M. Segers
Advisors : ir. F.G.M. Bouwman

:ir. J.M.C. Jonkheid
: ir. P.W.M. Merkus

© Philips Electronics N.V. 1993
All rights are reserved. Reproduction in whole or in part is
prohibited without the written consent of the copyright owner.

M. van Balen

Comparing
the
NDS and VERA environments
for
scan chain recognition & removal

ABSTRACT

To cope with testing problems for large and complex logic circuits it is widely acknowledged
that one has to partition the circuit into independently testable blocks and apply structural
Design-For-Testability techniques. A generally adopted Design-For-Testability technique
is scan design. In this case all, or a selected part of, the flip flops in the design are replaced
by a scannable variant. These scannable variants form a shift-register, by which the design
can be set in any desired state.

In this report algorithuns are derived for finding and removing such scan-chains. We use
the implementation of these algoritluns as a vehicle for comparing the NDS and VERA
environments, discussing (dis)advantages of both worlds.

Keywords : NDS, VERA, OutScan, scan design, design-for-testability

© Philips Electronics N.V. 1993 i

Preface

This work was performed in partial fulfillment of the requirements to become Master of
Electrical Engineering at the Eindhoven University of Technology. It was performed at
the Philips Research Laboratories in Eindhoven during the period april — december 1993.

A cknowledgements

First of all, I would like to thank my mentors Paul Merkus, Johan Jonkheid, and Frank
Bouwman of the Philips ED&T group for their enthusiastic support. I also want to thank
Krijn Kuiper, Steven Qostdijk, Hans Bouwmeester, and the other members of the group
for their valuable help regarding my work and this report. Furthermore I thank my fellow
students, Ruud van der Meer and Frank van de Voort, for the many fruitful discussions
concerning our projects, and their pleasant company during my work at Philips.

Finally I want to thank prof.ir. M.T.M. Segers for being my supervising professor, and
for giving me the opportunity to carry out this project in his group.

Philips Research Laboratories,

Eindhoven, December 7, 1993

Martijn van Balen

© Philips Electronics N.V. 1993 iii

Contents

1 Introduction

2 The design and test of integrated circuits

2.1 IC design e e e e e e e e e e e e e e
2.2 ICtesting o i e e e e
2.2.1 Structure testing e

3 Scan test

3.1 Designfor testability L
3.2 Introduction toscantest,
3.3 Advantages and disadvantagesof scantest

4 Hierarchical, logic circuits

4.1 Cells . . . o L e e e e e e e
411 Leafcells e
4.1.2 Nomleafcells i

4.2 Ports. e e e e

4.3 Nets o e e e e e e e e e e e e
4.3.1 Instances e e e

4.4 Asynchronous and synchronous sequential circuit
4.4.1 Asynchronous circuits oot e
4.4.2 Synchronous circuits L. oo

4.5 Clock ports of asynchronous cell

4.6 Functionalityofcells i
4.6.1 Functionality of leafcells
4.6.2 Functionality of non-leafecells

4.6.3 Circuit models

© Philips Electronics N.V. 1993

..............................

10
12

15
15
16
16
16
16
17
18
18
19
19
20
21
21
21

5 A structural model of hierarchical circuits 23

5.1 Ports,and thesetof ports 23
5.2 Imstancesofasetofecells. 24
5.3 Port references ofasetofcells 24
54 Netsofasetofcells, 24
5.5 Cells,andsetsofcells 0., 25
5.6 Descendence it e e e e e e e e e 26
5.7 Descendent graph e e 27
5.8 Terminology e e e e e 31
59 Anexampleofadesign o 31

6 A functional model of synchronous cells 35
6.1 Valuesandtime. 35
6.2 Internalstateofacell, 36
6.3 Functionalityofacell, 36
6.3.1 Functionality of an output portofacell 36

6.3.2 Combinatorial and sequential output ports 36

6.4 Determining the functionality of non-leaf cells 37

7 A structural model of scan chains 39
7.1 Scan chain definition and reality 42

8 FindScan: the algorithm 43
8.1 Restrictionsonclockports. 43
8.2 Restrictionsonenableports e 44
8.3 Example of a FindScan session 45

9 RemoveScan: the algorithm 49
9.1 RemoveScan for leafscan chains, 49
9.1.1 Examplesofleafcells 49

9.1.2 Automatic match-rule generation for combinatorial cells 51

10 The NDS environment 55
10.1 NDS classes o i v i i e 55
10.2 LDS classes i e e e e e e e 56

vi © Philips Electronics N.V. 1993

11 SDS
11.1 SDS classes e e e
11.1.1 The SDS object hierarchy
11.1.2 Relation between SDS and NDS classes
11.1.3 The RoutingPlanclass
11.14 The Macroclass
11.1.5 The ClockDomainclass
11.1.6 The ClockPinclass
11.1.7 The Chain class i
11.2 The RoutingPlan Language

12 VERA
12.1 Introduction oL e e e
12.2 Rules, matches, and actions oo L.
1221 The “test” rule L e e
12.2.2 The “path” rule
12.3 ND: the Network Description language
12.4 TD: the Type Description language

13 NDS: implementation of the algorithms
13.1 FindScan L e e
13.1.1 Fileformats L e
13.1.2 Informationflow L oo
13.1.3 Generating of the leaf scan chains file with GenRpl
1314 Tracer v o v i e e e e e e e e e e e e e e
13.2 RemoveScan L e e
13.2.1 Fileformats e e e e
13.2.2 Informationflow L o o oo
13.2.3 Generating the match-rulefile

14 VERA: implementation of the algorithms
141 FindScan L e e e e e
14.1.1 Fileformats e
14.1.2 Informationflow o oo

14.1.3 Generation aleaf scan chainsfile

© Philips Electronics N.V. 1993

57
57
58
58
59
59
60
60
60
61

63
63
64
65
65
66
67

69
69
69
69
69
73
73
73
73
73

77
(i
77
77
7

vii

14.1.4 RPI2ZTD . . o o e e e e e 78

14.1.5 Match-rules used to recognise scan chains 79

14.1.6 Determining the scan chains of adesign 82

15 Comparing NDS and VERA 85
15.1 Design manipulation L L Lo 85
15.2 Implementationeffort oo, 86
15.3 Run-time and memory requirements 00 ... 86
154 Reliability e e 87
15.5 Flexibility e e e 87
16 Possible improvements 89
16.1 Extension of the scan chain definition, 89
16.2 Structure versus exXpressions v .t 4ttt e e e e e e 89
16.2.1 Implementing RemoveScan using expressions 90

16.2.2 Automatic generation of the Match-rulefile 90

17 Conclusions 91
A Mathematical notation 95
A.1 Abbreviations L e 95
A2 Setsand tuples e e 95
A3 Predefinedsets e 95
A4 Operators e e e e e e e e e 96

B The Routing Plan Language 99
Bl Syntax o e e e e e e e e 99
B.2 Semantics e 101
B.3 Semanticrules 101
B.3.1 Rules regarding uniqueness 102

B.3.2 Rules regarding order of definition 102

B.3.3 Rules regarding length of chains 102

B.3.4 Rules related tothedesign, 102

B.3.5 Other rules

viii © Philips Electronics N.V. 1993

List of Figures

2.1 The IC design and test trajectory 4
3.1 The canonical model of acircuit 11
3.2 The canonical model of a scannable circuit 11
4.1 Thecellasablackbox 15
4.2 Example of a design without instances 17
4.3 Example of a design with instances 17
4.4 Structure of an asynchronous sequential circuit 18
4.5 Canonical structure of a synchronous sequential circuit 19
5.1 The terminology used by different languages 31
5.2 Example of a circuit: COUNT 33
5.3 Descendent graph of circuit “COUNT” 34
81 Adescendencegraph e 44
8.2 The FindScan algorithm, 46
8.3 A cell containing scan chains 00 e 47
9.1 Replacement of aninverter o L. 50
9.2 Replacementof abuffero o o 0oL 50
9.3 ReplacementofaDflipflop 50
9.4 Replacement of amultiplexer o0 o 51
9.5 Replacement of a scanmable Dflipflop 51
9.6 The RemoveScan algorithm 53
11.1 Ownership of SDS objects i o 58
11.2 Relations between SDS and NDS classes 59

© Plilips Electronics N.V. 1993 ix

12.1
12.2
12.3
124

131
13.2

14.1
14.2
14.3

15.1

Syntax of the VERA testrule 65

Syntax of the VERA pathrule. 66
ND: the VERA netlist format 67
TD: the VERA type description format 67
Information flow during a FindScan session 70
Information flow during a RemoveScan session 74
Information flow during a FindScan session 78
The VERA batch file generated by Rpl2TD 79
A type containing two separate chains 81
Run-time results in seconds of FindScan on a HP9000/735 platform 86

© Philips Electronics N.V. 1993

Chapter 1

Introduction

Testing of Integrated Circuits (ICs) has become a major issue in research and development
of Very Large Scale Integration (VLSI). ICs have been growing continuously in number of
transistors and complexity. This has caused an increase in the probability of both design
errors and manufacturing faults. Manufacturing faults result in defects on the IC, while
design errors result in an undesired functionality of the chip. To prevent design errors,
the design must be checked at several stages of the design. It is not possible to prevent
manufacturing faults, in fact, the yield is typically between 40 and 80 percent. Because the
market asks for reliable, zero defect ICs, every single IC produced must pass several tests.
One of these tests is the structure test. The idea of structure test is that all structures,
created on the silicon surface, must be tested for correctness. The problem of structure
testing of ICs is complicated by the enormous amount of possible faults, and the limited
accessibility of parts of the ICs via the IC pins.

The requirements for a structure test are strict. The test should be fast because it is per-
formed on every individual IC, and it must still have a high fault coverage since customers
do not accept faulty ICs. Furthermore, it is important that we are able to generate this
test in a short time in order to prevent lengthy design times. It is generally believed that
these requirements can only be met if already during the design phase the IC testability
is taken into account. This is referred to as design for testability (DFT).

There are many DFT techniques. In general, they operate by improving the controllability
and observability of the circuit. This means that test patterns can be transported more
easily to isolated parts of the IC and the responses can be more easily captured. Generating
test patterns becomes less complex and the fault coverage increases. The DFT technique
that we are concerned with in this report is scan test.

Scan test is a DFT method that improves the testability of a design drastically by creating
an extra ‘test’ operation mode for the design. In normal mode, the design operates just as
it is supposed to, according to its specification. In test mode, the memory elements will
all be connected into one or more scan paths. To do this, all memory elements must be
replaced by versions that are equipped with such a test mode (we will call such a version
the scannable variant). A scan path is a shift register that is only active during test mode.
Through this scan path test patterns can be applied to the rest of the circuit, that now
only contains combinatorial logic. After applying a test pattern during normal mode, the

© Philips Electronics N.V. 1993 1

responses can be captured at the primary outputs and the inputs of the memory elements.
The captured responses in the memory elements can then be shifted out during test mode
and gathered by the tester. In this way, test pattern generation has only to be done for the
combinatorial part of the circuit, thus easing the process of structure testing very much.

This report deals with the specification and implementation of FindScan and RemoveScan.
FindScan identifies scan chains in a design, while RemoveScan is able to remove this
extra scan functionality from a design. The algorithms have been implemented using two
different environments, NDS and VERA.

This report comprises the following activities: First a global introduction to the testing
of ICs is given, followed by a discussing of scan test. Then imnodels are given to be able
to describe circuits and scan chains in a formal manner. This is followed by a descrip-
tion of the two algorithms and their implementations. Finally the two environments are
compared, discussing their (dis)advantages for scan chain recognition and removal.

2 © Philips Electronics N.V. 1993

Chapter 2

The design and test of integrated
circuits

Before an IC can be delivered to a customer, its correctness must be determined. This
implies that each individual IC must operate conform to its specifications. Since the design
of ICs is done in a number of phases, it must be checked that for each phase no errors are
introduced (an error meaning a difference between implementation and specification). In
this chapter we will first discuss the IC design process in more detail. Secondly, we will
take a look at the IC testing process, which is closely related to the design process.

2.1 IC design

In an IC design trajectory we distinguish several phases [Woudsma90]. They range from
requirement specification via function specification and structure specification to finally
the layout. The layout is used in the manufacturing process to make the IC. These phases
are depicted on the left hand side of figure 2.1.

Below, we describe the design phases that are mentioned in figure 2.1.

Requirement specification: First an informal description of an IC will be drawn up,
using a natural language, specifying the desired requirements. This specification
describes both what the IC should do, formulated in behavioural terms (the func-
tion behaviour), and under which conditions (e.g., environmental and parametric
constraints).

Function specification: The requirement specification is transformed into a function
specification. Here one specifies what the architecture of an IC would be and which
functions it should perform. Also, the necessary top level modules and their inter-
actions are determined. This specification is formal. One could, for instance, think
of a VHDL description of a design being the function specification.

Structure specification: The function specification is then transformed into a structure
specification. In this phase the modules and interconnections resulting from the
function specification are worked out in more detail to the level of basic building

© Philips Electronics N.V. 1993 3

design trajectory test trajectory
. Sie E

Production

Figure 2.1: The IC design and test trajectory

© Philips Electronics N.V. 1993

blocks from the library. This models the electrical connectivity. An example of this
specification is an EDIF netlist description of a design.

Layout: The structure specification is then transformed into a layout. This specifies the
placement of the different building blocks, and maps these block and their intercon-
nections to polygons, describing the topology of the chip area. An example of this
specification is GDS IL.

Product: The layout is used to actually manufacture the IC in a foundry.

The trajectory of creating an IC is very complex and highly error prone. Therefore, one
has to take precautions to guarantee that each delivered IC conforms to its specification.
To accomplish this, verification is used during the design trajectory, and testing is used
during the test trajectory (after production of the IC).

To clarify the distinction between verification and testing, we will discuss them below:

Verification: Comparing the results of two successive phases with each other is called
verification. It is denoted by the upwards pointing arrows in the design trajectory in
figure 2.1. In this figure two verification steps are denoted by dotted arrows. These
verification steps can be done, but, they must be performed by hand.

During the design trajectory, a higher-level description was transformed in a lower-
level description. To verify whether this step was performed correct, the opposite
action is taken. That is, given the lower-level description, a higher-level description
is extracted.

This extracted higher-level description is then compared with the higher-level de-
scription used during the design trajectory. Inconsistencies indicate errors.

For instance, a composition of transistors can be transformed into a composition of
logic AND and OR gates by means of verification. This can then be compared to
the gate level description that was already present this level in the design stage.

The advantages of verification is that it can be done prior to the manufacturing of
the chip, and more importantly it doesn’t need any stimuli, hence it is exhaustive.

Testing: When the layout of a design is created, the chip can be produced. During the
production process, a substantial part of the ICs will become defect. Therefore,
each individual IC must be checked to see if it operates according to its specifica-
tion. During testing, certain stimuli are presented to the input pins of the IC and
responses at the outputs are collected and checked against the expected behaviour.
An advantage of testing is that it can be done for all design stages, which can be
seen in the right hand side of figure 1, where the test trajectory is depicted. Disad-
vantages are that testing can only be done after the IC is manufactured, and that
it cannot be done exhaustively (for large ICs). This is because an exhaustive test
means that we should test all possible states of an IC, and for every state we have
to test all possible input combinations. For an IC with N flip flops and P inputs
this means that we have to test 2V1+P different states. If there are only 50 flip flops
and 10 inputs, testing this very small chip at 100 Mhz would already take about 350
years....

© Philips Electronics N.V. 1993

[V

2.2 IC testing

Since IC production yields are typically between 40% and 80%, tests should be applied to
every IC produced, in order to meet quality requirements. Therefore, the IC design phases
are followed by extensive testing. This testing can also be divided into several phases. In
general we can state that every phase in the design trajectory has an equivalent phase in
the test trajectory [Beenker 90, Claasen 89], see also figure 2.1.

Each test phase has a different goal, but they all have in conunon that they increase the
confidence one has about the IC being manufactured according to the original specification.
The following test phases are depicted on the right hand sight of figure 2.1:

Layout testing: Layout testing is not done very extensively. This originates from the
fact that matching a layout with the specification is practically not possible at this
moment. What can be (and is) done is checking if all layout masks were correctly
aligned when producing the chip. This checking can be easily done right after pro-
duction by checking if certain markers, that were present on each mask, are well
aligned on the chip.

Structure testing: Structure tests look for defects that result in an incorrect behaviour
and are caused by the IC production process. It should be applied on every IC
produced, because each single IC may contain structural faults. This is the main
reason that for structure testing limitation of the test time is very important.

In the trade-off between test time and the possibility of an incorrect IC passing the
test, normally a (high) number of test patterns are applied. These test patterns
are generated by a test pattern generator according to certain fault models. Fault
models are used to define the meaning of “fault”. Many real faults can be modeled by
faults defined by such a fault model, but generally they will never cover all possible
faults.

Examples of fault models are the stuck-at, and the bridging-fault fault model.

Structure test (only) requires knowledge of the structure. This implies that test
patterns can be generated automatically, based upon a chosen fault model.

Function testing: Test patterns for function testing are usually produced by the de-
signer of the IC. They include tests at the critical ends of the function specification,
and will normally only be applied to a few samples of the ICs produced, because
structure testing should already have proven that the IC structure corresponds with
the structure specification. Hence, this kind is only needed to assure that the ICs
produced are in conformity with the function requirement.

Sometimes structure testing is not enough to prove the correctness of the struc-
ture. In those cases, function testing is performed on every sample, to increase the
confidence one has in the testing trajectory.

Function test requires the knowledge of the function of the design. This implies that
the designer most produce the test patterns.

Application mode testing: In this test the IC is installed in an application environ-
ment, or software is used to model such an environment. This test examines the

6 © Philips Electronics N.V. 1993

correctness of the IC design in its application and such proves that the IC is suitable
for such an application.

Also, a characterisation test can now be performed. This test aims at varying the
performance of the circuit under varying envirommental and electrical conditions
(for example temperature, voltage and humidity). During this phase the actual
electrical specification of the circuit can be determined. Characterisation is also
called “performance testing”.

Application mode testing requires knowledge of the application. Oune has to know
the specific application to build it, or to be able to simulate it.

The area of interest to us in this thesis is structure testing. Therefore, we look at this
kind of testing more closely in the following section.

2.2.1 Structure testing

The large density of modern circuits results in an enormous amount of possible fault cases.
The main problem in structure testing is the question how to detect such faults, given the
limited accessibility via the IC pins.

A naive, but straightforward, strategy for structure testing is exhaustive testing. Here all
possible test patterns are applied and the responses are collected. These responses can
then be compared to the expected responses. The major drawback of this method is that
for larger circuits the test would take so much time that it is not suitable for practical
purposes. Especially for structure testing this is unacceptable, because the structure test
must be applied to every IC produced.

In the case of circuits containing memory elements, i.e., sequential circuits, the problem
is even worse. For these circuits the output not only depend on the input but also on
the current state of the circuit. In order to test a sequential circuit exhaustively, one has
to traverse all internal states of the circuit and for each state all test patterns should be
applied.

The intractability of the exhaustive test strategy has led to a search for other, practically
more useful, strategies. The next chapter will give an introduction to scan test, one of the
strategies that can be used to ease structure testing.

© Philips Electronics N.V. 1993 7

Chapter 3

Scan test

The previous chapter showed that it was virtually impossible to perform exhaustive struc-
ture tests on large sequential designs. This was due to the fact that a lot of test patterns
are needed to traverse all internal states of a circuit. Furthermore, the problem remained
of how to access structures on the chip via the input pins. These facts result in increasing
test complexity, which can be converted into costs associated with the testing process,
such as the cost of test pattern generation, the cost of test equipment, and the cost re-
lated to the testing process itself, namely the time required to detect and/or isolate a
fault. Because these costs can be high (and may even exceed design costs), it is important
that they be kept within reasonable bounds. One way to accomplish this is by the process
of design for testability (DFT).

3.1 Design for testability

Testability has been defined in the following way [Bennets 84]:

An electronic circuit is testable if test-patterns can be generated, evaluated,
and applied in such a way as to satisfy predefined levels of performance (e.g.
detection, location, application) within a pry-defined cost budget and time
scale.

Design for testability (DFT) can then be described as the design effort that is specifically
employed to ensure that a device is testable.

There are two important attributes related to testability, namely controllability and ob-
servability. Controllability is the ability to establish a specific signal value at each node in
a circuit by setting values on the circuit’s inputs. Observability is the ability to determine
the signal value at any node in a circuit by controlling the circuit’s inputs and observing
its outputs.

Structure testing mainly involves applying test patterns to the circuit that we are testing,
and then observing the responses. If no specific DFT technique is used, the entire circuit
can only be controlled through its input pins. It may be clear that for a large design
(thousands of gates, or more) the controllability will soon become very poor, since the

© Philips Electronics N.V. 1993 9

number of input pins is restricted (no more than several tens or hundreds) and structures
on the IC may be fairly isolated (not directly accessible from the input pins). Also, the
observability will become very poor because of the same reasons and the restricted number
of output pins. The poor controllability and observability makes the process of creating
test patterns very difficult. This may become so hard that it is not possible anymore to get
a high fault coverage within reasonable time and costs. At this point the decision must be
made to accept a lower fault coverage or apply DFT techniques to increase controllability

and observability. Since a lower fault coverage often is not acceptable, the choice then
falls on DFT.

There are a number of DFT techniques. Most of them deal with either the re-synthesis
of an existing design or the addition of extra hardware to the design. This means that
they affect such factors as chip area, I/O pins, and circuit delay. Hence, a critical balance
exists between the amount of DFT to use and the gain achieved. Test engineers and
design engineers usually disagree about the amount of DFT hardware to include in a
design. In this report, we will focus only on the DFT technique that is of iimportance to
us, namely scan test. The remainder of this chapter contains an introduction to scan test,
and discusses the arguments for and against it.

3.2 Introduction to scan test

One of the most popular structured DFT techniques is referred to as scan design [Fuji-
wara 85]. The classical Huffiman model of a (synchronous) sequential circuit is shown in
figure 3.1. In this canonical model the memory elements (registers) are separated from the
rest of the circuit, so that the remaining part of the circuit is combinatorial. The combi-
natorial logic has a number of primary inputs (PI) and a number of secondary inputs (SI,
the outputs of the registers). The output of the combinatorial logic consists of primary
outputs (PO) and secondary outputs (inputs to the registers). Since the total circuit is
sequential, testing it may be complicated if the circuit is large.

In figure 3.2 the scan version of the circuit is shown. The registers are now replaced by
scan registers. A scan register is a register that can operate in two modes. In the normal
mode, it acts as a normal register, just as the ones that were used in figure 3.1. In test
mode, the scan register will clock its data in from the ‘scan-in’ input instead of its normal
data input. After the clock pulse, this data will be present on the ‘scan-out’ output. The
‘test’ input determines the mode in which the scan register will operate. Hemnce, a scan
register has three special pins associated with it besides the original pins of a register,
namely the ‘scan-in’, the ‘scan-out’ and the ‘test’ pin.

The scan registers can now be transformed into one or more scan paths, by connecting the
‘scan-out’ pin of one scan register with the ‘scan-in’ pin of the next scan register. This
means that the registers now form a shift register when put in test mode. In figure 3 this
is illustrated.

Testing has now become much more easier. Since all memory elements can be easily
controlled and observed via the scan path (in test mode) the inputs and outputs of scan
registers can be treated as primary inputs and outputs of the combinatorial logic.

This means that we are able to shift test patterns in the scan path and apply them to

10 © Philips Electronics N.V. 1993

Combinatorial —— Oupus
circuit

Registers

Figure 3.1: The canonical model of a circuit

Inputs Combinatorial = Oupus
5 circuit
Registers .
Scanln +— ScanQut
""""""""""""""" Clock Test

Figure 3.2: The canonical model of a scannable circuit

© Philips Electronics N.V. 1993

11

the combinatorial logic. The outputs of the combinatorial logic can be captured at the
primary outputs of the circuit and at the inputs of the scan registers. Instead of performing
a sequential test on the entire circuit, it now suffices to perform a combinatorial test on
the combinatorial logic, together with a test to check that the shift register is operating
correctly. These two tests are much easier and faster to generate than the sequential test.
Also, the fault coverage will normally be better.

Testing a scan design in this way will be referred to as scan test in this report.

3.3 Advantages and disadvantages of scan test

One might think that scan test is the preferred solution for testing a (complex) sequential
circnit when reading the previous section. This is however not always true. There are a
number of costs to be observed when using scan test. [Bennets 93] gives an overview of the
arguments for and against scan test. Below, we give a summary of some solid arguments
used by [Bennets 93].

Advantages of scan test:

o Test pattern generation for the combinatorial parts of the circuit can be done
fully automated. Furthermore, the pattern generation software will always find
a test for a fault if there is one. Popular test pattern generation algorithms for
combinatorial circuits include Podem [Goel 81] and Fan [Fujiwara 83].

e The fault-simmulation costs are lower because the fault simulator is needed only
for the combinatorial parts of the circuit. The fault coverage should be 100

e The design debug capabilities by using scan paths to explore the behaviour of
the intended circnit are better.

e The design environment stays manageable because of the existence of design
tools and rule checkers. Also, there is a strong belief that scan enforces well-
behaved clock schemes. Such schemes can reduce timing problems in the final
design. The final benefit of a controlled design environment is lower risk of a
major design change (= quicker time to market).

e The ability to locate the cause of a defect has increased because of the parti-
tioning through the scan path.

Disadvantages of scan test:

e Scan test introduces extra silicon and pins. Pins cost money, especially if the
need for scan causes an increase in package size. In case pins are the most
expensive, it’s possible to use existing pins, in exchange for some extra controller
area on the chip.

e Scan memory elements are usually enhanced versions of regular memory ele-
ments. The enhancement is normally done by adding a multiplexer function to
the front end of the memory element. This extra functionality can be seen to
increase propagation delays hence the potential impact on performance. There
are ways to avoid this problem, but the preferred way is that the design library
1s enhanced to contain dedicated scan cells.

12 © Philips Electronics N.V. 1993

For a more complete discussion of these topics, the reader is referred to [Bennets 93].

It may be clear that the designer has to weigh these arguments against each other to decide
whether or not he should use scan test for his design. In general, it can be stated that
when extra silicon, pins and delays are not critical factors, there are no serious reasons why
the designer should not choose for scan test. When one or more are critical, the designer
should see if the problem can be worked around in some way, because the advantages of
using scan test are clear. Partial scan, as discussed in [Voort 93], is a way of reducing the
costs that come with scan test, and may therefore be very interesting to the designer.

© Philips Electronics N.V. 1993 13

Chapter 4

Hierarchical, logic circuits

In this chapter we will discuss the term circuit. A circuit, also referred to as system, or
design, is a collection of cells. The behaviour of the cells is such, that the circuit performs
a required task.

4.1 Cells

A cell can be seen as a black boz, processing the information carried by its inputs to
produce its output (see figure 4.1). These input and output conmections are called the
ports of the cell. The way in which the inputs are processed to produce the outputs is
called the behaviour of the cell.

—_— >
Inputs ——— Cell —————= Qutputs
_— > f—————

Figure 4.1: The cell as a black box

Depending on the level of abstraction, port values may be voltages, logic values, data
words, etc. These values are also time dependent. In this paper we will use the logic
abstraction level, i.e., ports are considered to carry (time dependent) logic values.

When timing relations are ignored, and only value transformation is considered, we speak
of the logic function of a cell. The logic function is represented by the functional model of
that cell. Time does play a role in such a model, but it will be abstracted.

Besides describing a cell by its function model, we can also specify the function of a cell
by using a structural model. Use this model, a cell is a box, containing a collection of
interconnected smaller boxes, called elements, or children. These elements in their turn
may also be modeled by interconnection of lower-level cells. This results in a hierarchical

© Philips Electronics N.V. 1993 15

circuit, in which cells are continuously described in terms of lower-level cells, until cells
are reached which are described by a function model.

When a cell C' contains an element which refers to another cell Co, we say that cell C
contains an instance of Cy. The internal interconnection of C will specify how its elements
are interconnected, and how the ports of C are connected to these elements. Since these
elements actually refer to other (lower-level) cells, they do not own ports, but the cells to
which they refer do. So interconnecting will be described using the ports of C, and the
port references of its (lower-level) elements.

4.1.1 Leaf cells

A leaf cell is a cell which is not described in term of lower-level cells, but contains func-
tionality “by definition”. These built-in properties/attributes are logic functions, which
are described using a function model.

4.1.2 Non-leaf cells

A non-leaf cellis a cell that does contains children, i.e., it is described using a structural
model.

4.2 Ports

Ports of a (leaf or non-leaf) cell represent the interface to and from the external world.
They are electrical connectors which can be connected to other ports, or to some external
world source/destination. Using the direction of information flow, we distinguish four
types of ports:

input ports: Information flow is always directed from a higher-level cell to lower level
cell(s).

output ports: Information flow is always directed from a lower-level cell to higher level

cell(s).

inoutput ports: Information flow can be directed from a higher-level cell to lower level
cell(s), or vice versa.

undirected ports: Information flow direction is not specified, and must be derived by
examination of the structural specification.

4.3 Nets

Nets are used to model the interconnections. All ports and port references of such a net
are electrically connected, i.e., they form a “galvanic unity”. At an arbitrary point in
time, these ports and port references carry the same value, the value of the net.

16 © Philips Electronics N.V. 1993

4.3.1 Instances

One could wonder why a non-leaf cell contains elements which refer to other cells, instead of
just containing those other cells. The advantage of the first approach, i.e., using instances
of cells, can be clarified by looking at the following example:

Suppose a designer has to design a four-input AND, having two-input NANDs and inverters
leaf-cells as building blocks. This can be done with three two-input NANDs and three
inverters. The designer however will think in termx of building the four-input AND with
three two-input ANDs, which in their turn can be build up using a two-input NAND with
an inverter. This approach is depicted in figure 4.2.

Figure 4.2: Example of a design without instances

With instances, the designer can first build an two-input AND, using a two-input NAND
and an inverter. Then he can use three different instances of this AND, to construct the
desired four-input AND. This approach is depicted in figure 4.3.

Figure 4.3: Example of a design with instances

It looks like the only thing that has changed is that the three NAND /inverter combinations
have got a box drawn around them. But the major difference is the fact that the three
boxes have the same name: AND2. After AND2 is constructed, we can use it to construct
a higher-level cell (in this case AND4), using the leaf-cells and the AND2 cell.

If cells would contain other cells directly, every cell could be “instantiated” only once.
In case of figure 4.2, every NAND used would be a separate leaf-cell, with no explicit or
implicit relation to the other NANDs. They would each have their own function specifi-
cation. :

Another advantage of using instances in the formal structural model is the fact that
the practical environments which are used, i.e., NDS and VERA, also use the instance
concept. Transforming algorithins, which are written using the formal models, into an
implementation is therefore rather straightforward.

© Philips Electronics N.V. 1993 17

4.4 Asynchronous and synchronous sequential circuit

Sequential circuits contain memory. This implies that the value of an output port at a
certain time, may not only be determined by the input port values at that time, but
also by the state of the memory elements. The values stored in these memory elements
determine the internal state of the cell. Since cells are finite, they will also have a finite
number of possible internal states.

Based upon the way in which the memory is realised, we distinguish asynchronous, and
synchronous circuits.

4.4.1 Asynchronous circuits

An asynchronous circuit contains feedback between combinatorial inputs and outputs,
shown in figure 4.4. Because of this, a change of value of an input port at an arbitrary
point of time, may result in a change of the internal state of the circuit. It is even possible
that by such an input value change the internal state of such a circuit will never be stable,
until the input values have changed again.

Since the designing of an asynchronous circuit involves less restrictions than designing a
synchronous circuit, realising a function using asynchronous circuits will almost certainly
result in a smaller (never a larger) layout. The major drawback of an such a circuit
however, is the fact that its behaviour heavily depends on the delay between input and
output changes of cells. This not only makes analysis of these circuits much harder, but
also complicates the testing process.

This report focusses on scan chains, which can be seen as subcircuits found in synchronous
circuits. From now on, we will only discuss synchronous circuit in this report.

mpus —= Combinatorial = oupus
' circuit |

Figure 4.4: Structure of an asynchronous sequential circuit

18 © Philips Electronics N.V. 1993

4.4.2 Synchronous circuits

In case of a synchronous circuit special memory elements are used. Such a ;memory element
is clocked by a synchronous clock. This clock generates so called clock pulses, which divide
time into time slots, starting at ¢ = #;,1,,%3, ... Events at time ¢4, ¢y, ¢3. .. are initiated by
clock pulses on the clock lines.

Each time a clock pulse is received, the input values are sampled, and the next internal
state and the output values are determined. Both are a function of the sampled inputs
and the current state.

Because the memory elements can now be separated from the combinatorial logic, we can
consider an arbitrary sequential circuit to have a canonical structure of the form showed
in figure 4.5.

In this picture, the clock lines of the memory elements are directly conmnected to input
ports. It is however possible that the clock lines of the children of a cell, are driven by
input ports, through combinatorial logic. This logic cannot be part of the “normal logic”
of the cell, since this would violate the restrictions drawn upon synchronous circuits,
resulting in an asynchronous circuit.

mpus ———> Combinatorial [Outpuss
' circuit
Memory

Clock inputs

Figure 4.5: Canonical structure of a synchronous sequential circuit

4.5 Clock ports of a synchronous cell
We can distinguish several kinds of sequential devices, all clocked in a different ways:

Pulse-triggered: Input values are sampled during the ’1’ (or '0’) period of the clock
port. Output values change during this same period.

© Philips Electronics N.V. 1993 19

Edge-triggered: Input values are sampled just before the rising (or falling) edge of the
clock port. Qutput values change just after this edge.

Master-Slave: Input values are sampled just before the rising (or falling) edge of the
clock port. Output values change just after the next, falling (or rising), edge. Some
master-slave flip flops have separate clock-ports: one for the master part, and one
for the slave-part.

Pulse triggered flip flops cannot be used in scan chains, since during one active clock period,
data can be propagated through more than one flipflop. With such a configuration, its
impossible to put each scan flipflop into a desired state.

The other two flip flops can be used in scan chains. After sampling its input values at
a clock-edge, the master-slave flipflop changes its output value(s) at the next, opposite
type, edge. Since this is before the next input-sample edge, it can be modeled by an
edge-triggered flipflop. In case of master-slave flip flops with separate master, and slave
clock-lines, we must use the master clock-line, since it determines the input sample time.

Definition 4.1: [clock pulse] A clock pulse is a change of value on a clock port. We
distinguish two kinds of clock ports, denoted by their polarisation:

Positively polarised: A clock pulse is a 0 to 1 transition. Events occur on the rising
edge of this clock port.

Negatively polarised: A clock pulse is a 1 to 0 transition. Events occur on the falling
edge of this clock port.

g

In this modeling of clock ports we have associated a positive (negative) polarity with a
rising (falling) edge. This association is arbitrary chosen, we could just as well haven
chosen to swap the meaning of positive and negative.

When a cell is clocked by more than one clock port, we will assume that their clock pulses
will always occur at the same moments in time. We then can think of such a set of clock
port as being “the clock” of that cell. Note that this is a different interpretation of multiple
clock lines than the master-slave flipflop with separate master and slave clock-lines.

4.6 Functionality of cells

The functionality of a cell is in fact the collection of the functionality of all its output
ports. The functionality of such a port can be described by a boolean function, describing
the value on such a port at a certain point in time, depending on the input port values
and the current internal state of the cell.

We can distinguish two kinds of output ports:

Combinatorial: The output port value does not depend on the internal state of the cell.

Sequential: The output port value does depend on the internal state of the cell.

20 © Philips Electronics N.V. 1993

4.6.1 Functionality of leaf cells

Leaf cells contain functionality “by definition”, i.e., for every output port, the function is
specified by a boolean function.

4.6.2 Functionality of non-leaf cells

Non-leaf cells contain instances of lower-level cells. Suppose the functionality of these
lower-level cells is known. Because the references to the ports of these lower-level cells are
connected to nets of the parent, the functionality of the lower-level cells specifies a relation
between values on the nets of the parent cell.

Combining all relations between net-values specified by the children, using the connection
between ports of the parent and those nets, result in the functional description of the
parent cell. This functional description uses the union of all internal states of the children.
This union can been seen as the internal state of the parent cell.

We have assumed that the functionality of the children cells was known. This is not
a restriction. Since the lowest-level non-leaf cells only use instances of leaf cells, the
functionality of the parent can be determined. After this, the cells which use instances of
leaf cells, and instances of the just processed lowest-level non-leaf cells, can be processed.
This can be continued until all cells are processed.

4.6.3 Circuit models

In the next chapter we will discuss a structural model for circuits. A circuit will be modeled
by a set of cells, in which a cell may use instances of other cells. Leaf cells are cells which
have no children, and no nets. Nomn-leaf cells contain children, which are interconnected
by a set of nets. This model will be used to formally define the concept of “scan chains”.

© Philips Electronics N.V. 1993 21

Chapter 5

A structural model of hierarchical
circuits

In order to be able to recognise scan chains in a given circuit, we’ll have to define precisely
what is meant by “scan chain”. Since a scan chain is a part of a circuit, we first have to
define what we mean by “circuit”.

In this chapter we will define a model, with which we can formally describe the structure of
a circuit. Using the Edif terminology, a structural model for multiple instance, hierarchical
circuits is given. This enables the reader who is familiar with Edif terms, to use an intuitive
interpretation of these terms.

5.1 Ports, and the set of ports

Definition 5.1: [set of ports] The set of ports (denoted by PO RT) is defined as the set
which contains all ports. A port is a basic entity which will be used as a base for further
definitions.

O

Definition 5.2: [set of directions] The set of directions (denoted by DIR) is defined
by

DIR = {input, output, inout, undirected}

]

Definition 5.3: [direction of a port] The direction of a port (denoted by dir) is a
relation on PORT, defined by

dir : PORT — DIR

O

Definition 5.4: [input ports] The set of input ports (denoted by IPORT) is defined by

IPORT = {p € PORT|dir(p) € {input, inout}}

© Philips Electronies N.V. 1993 23

O
Definition 5.5: [output ports] The set of output ports (denoted by O PORT) is defined
by

OPORT = {p € PORT|dir(p) € {output,inout}}

5.2 Instances of a set of cells

The definition of a set of instances is relative to a set of cells. The definition of a set of
cells will be given later on, since it depends on several definitions which depend on the
definition of set of cells.

Definition 5.6: [set of instances] Let CELL be a set of cells. The set of instances
(denoted by INST) is a relation on CELL. INSTcgrr is the set which contains all
instances of CELL. An instance is a basic entity which will be used as a base for further
definitions.

]

Definition 5.7: [instance] I is an instance of a set of cells CELL,iff I € INSTcELL-
d

5.3 Port references of a set of cells

Definition 5.8: [set of port references] Let CELL be a set of cells. The set of port
references (denoted by PORTREFcpyy) is a relation on IN STogp L is defined by

PORTREFCELL = INSTCE'LL X PORT,

with tuple element names (I, P).
O

Definition 5.9: [port of a port reference| Let CELL be a set of cells. The port of a
port reference (denoted by port) is a relation on PORT REFcEy, defined by

port: PORTREFcgr, — PORT

5.4 Nets of a set of cells

Definition 5.10: [set of nets] Let CELL be a set of cells. The set of nets (denoted
by NET¢cELL) is a relation on C E L Ldefined by

NET =P(PORT x PORTREF),

24 © Philips Electronics N.V. 1993

with tuple element names (P, PR), where:
Vn € NET: |n.P|+ |n.PR| € IN*

a

Definition 5.11: [net] nis a netiff n € NET
O

A net n is a tuple, containing a finite set of ports, and a finite set of port references. At
least one of these sets is non-empty.

5.5 Cells, and sets of cells

In this section we will define the declaration cell of an instance, a set of cells, and the
descendent relation(s) on a set of cells. Since these definitions are mutually dependent, we
have to use forward references, i.e., references to objects which haven’t been defined yet.

Definition 5.12: [declaration cell of an instance] Let CELL be a set of cells. The
declaration cell of an instance (denoted cell) is a relation on IN STcgy; defined by

cell: INSTcgr, — CELL,

with CELL the set of cells, which will be defined next.
]

Definition 5.13: [set of cells] A set of cells CELL is defined by
CELL = P(PORT) X P(INSTCELL) X P(NETCELL),

with tuple element names (P, I, N), where

All ports of a cell of C ELL must be a member of exactly one net of that cell.
VC € CELL: (N\pe C.P: (3'n€ C.N: p € n.P))

All port references of a cell of C ELL must be a member of exaétly one net of that
cell.

VC € CELL: (Vi€ C.I: (Vp € cell(i).P: (3'n € C.N: (i,p) € n.PR)))

All ports used in a net of a cell of C ELL must be ports of that cell.

VC € CELL: (Vpe (C.N).P: pe C.P)

Each port reference used in a cell of CELL contains a port an an instance. This
port must be a port of the declaration cell of this instance.

VC € CELL: (¥(s,p) € (C.N).PR: p € celi(i).P)

© Philips Electronics N.V. 1993 25

All port references used in a net of a cell of C ELL must refer to instances of that
cell.

VC € CELL: (V(i,p) € (C.N).PR: i€ C.I)

Ports may only be part of one cell.

VC,C'e CELL: C#C'=C.PNC'.P=§

Instances may only be part of one cell.

VC,C'e CELL: C#C'=CINC'I=0

A cell may not (indirectly) use an instance of itself. This is defined using the de-
scendence relation, which will be definition next.

VC € CELL: CEC

0

Definition 5.14: [cell] C is a cell iff there exists a set of cells CELL such that C €
CELL.

0

5.6 Descendence

k
Definition 5.15: [kth descendent, k > 0] k™R descendent (denoted by C) is a relation
on CELL defined by

ImES

: CELL x CELL — 1B,

where for C,C"” € CELL:

0
C"CC c" = C, and,
k+1

k
C"L C = 3C'€CELL: (JieC'.I: C"=cell(i)) AC'C C

1 n
Let C,C' € CELL. If C' C C holds we say an instance of C’ is used in cell C. ¥ C'C C
holds for some n > 1 then there exist n — 1 other cells

01,02,. ..,Cn_1€CELL

such that

1 1 1
ClgCIEC2E"'gCn—IEC

26 © Philips Electronics N.V. 1993

O

Definition 5.16: [descendent] The descendent relation (denoted by ﬁ) is a relation on
CELL defined by

C: CELLx CELL — B,

where for C,C" € CELL:
x k
C'CC =3&kelN: C'CC

The descendent relation is thus the reflexive and transitive closure of the kth descendant
relation.

O

+
Definition 5.17: [true descendent] The true descendent relation (denoted by C) is a
relation on C ELL defined by

C: CELLx CELL — B,

where for C,C" € CELL:

/+ | + . /k
C'CC = 3keNlN*t: C'CC

The true descendent relation is thus the transitive closure of the k2 descendant relation.

O

5.7 Descendent graph

Definition 5.18: [descent graph] The descent graph of a set of cells CELL (denoted
by GcepL) is defined by

GegrL, = P(CELL)x P(CELL x CELL),

with tuple element names (V,E) (vertices, and edges), where

1
V =CELL A YC,C' € CELL: (C,C')€eE = C'CC

O

Theorem 5.1 Let CELL be a set of cells. The descendence graph Geogrr 1s e directed
acyclic graph (DAG).

Proof: Suppose Geogrr contains a cycle, t.e. there is an € IN, such that

C,C,Cy...,C, € GerLL'V,

© Philips Electronics N.V. 1993 27

and
{(C,€1),(C1,C2), ..., (Cn-1,Cn),(Cn,C)} C GegLL-E
Hence
ctc
But C i C for each C € CELL, so we can conclude that Gogry s acyclic.

Definition 5.19: [port set of a cell] Let CELL be a set of cells. The port set of a cell
(denoted by P) is a relation on CELL defined by

P: CELL — P(PORT)
where:
VC e CELL: P(C)=C.P

a

This relation can be used to retrieve the set of ports of a cell.

Definition 5.20: [input port set of a cell] Let CELL be a set of cells. The input port
set of a cell (denoted by IP) is a relation on CELL defined by

IP: CELL — P(PORT)
where:
VC e CELL: IP(C)= P(C)NIPORT

O

This relation can be used to retrieve the set of input ports of a cell.

Definition 5.21: [output port set of a cell] Let CELL be a set of cells. The output
port set of a cell (denoted by OP) is a relation on CELL defined by

OP: CELL — P(PORT)
where:
VC e CELL: OP(C)= P(C)NnIPORT

O

This relation can be used to retrieve the set of output ports of a cell.

28 © Philips Electronics N.V. 1993

Definition 5.22: [port reference set of a cell] Let CELL be a set of cells. The port
reference set of a cell (denoted by PR) is a relation on CELL defined by

PR: CELL — P(PORTREF)
where:
VC € CELL: PR(C) = {(3,p) € PORTREF|i € C.I Ape€ P(cell(i))}

O
This relation can be used to retrieve the set of port references of a cell.

Definition 5.23: [input port reference set of a cell] Let CELL be a set of cells. The
input port reference set of a cell (denoted by IPR) is a relation on CELL defined by

IPR: CELL — P(PORTREF)
where:
VC € CELL: IPR(C)= PR(C)n{(i,p) € PORTREF\p € IPORT}

O
This relation can be used to retrieve the set of input port references of a cell.

Definition 5.24: [output port reference set of a cell] Let CELL be a set of cells.
The output port reference set of a cell (denoted by O PR) is a relation on C ELL defined
by

OPR: CELL — P(PORTREF)
where:

VC € CELL: OPR(C) = PR(C)n{(s,p) € PORTREF|p € OPORT)

O

This relation can be used to retrieve the set of output port references of a cell.

Definition 5.25: [leaf cell] Let CELL be a set of cells. Leaf cell (denoted by leaf) is a
relation on CELL defined by

leaf : CELL — B,
where:
VC € CELL: leaf(C) = CI=0
A cell for which this relation holds, is called a leaf cell. If this relation doesn’t hold for a

cell its called a non-leaf cell.

© Philips Electronics N.V. 1993 29

O

Definition 5.26: [connection] Let CELL be a set of cells, and C € CELL. Connection
(denoted by v¢) is a relation on P(C) defined by

vo: P(C) x P(C) — B,
where for p,p’ € P(C):
vc(p,p) = IneC.N: penAp en

0

Definition 5.27: [net of a port] Let CELL be a set of cells, and C € CELL. Net of a
port (denoted by netc) is a relation on P(C) defined by

netc : P(C)— NET,
where for p € P(C):

netc(p) = {p' € P(C)lve(p,?)}
]

Definition 5.28: [usage of a port] Let C be a cell, n € C.N. The usage of a port
p € n.P (denoted by used(p)) is a relation on P(C), defined by

used¢ : P(C)— B
where for p € n.P:
used(p) = (Ip' € n.P: dir(p) # dir(p’)) vV (Ipr € n.PR : dir(p) = dir(pr.P))

So if p is an input port, usedc(p) holds iff there exists a port which reads from the net (i.e.
an output port, or an input port reference). If p is an output port, usedc(p) holds iff there
exists a port which writes to the net (i.e. an input port, or an output port reference).

O

Definition 5.29: [usage of a port reference] Let CELL be a set of cells, CinCELL,
and n € C.N. The usage of a port reference pr € n.PR (denoted by used(pr)) is a relation
on PORTREFcELL, defined by

usedc : PORTREFcgr — B
where for pr € n.PR:
used(pr) = (Ip€n.P: dir(p) = dir(pr.P)) V (Ipr’ € n.PR: dir(pr) # dir(pr'))

So if pr is an input port reference, usedc(pr) holds iff there exists a port which writes to
the net (i.e. an input port, or an output port reference). If pr is an output port reference,
usedg(pr) holds iff there exists a port which reads from the net (i.e. an output port, or
an input port reference).

a

30 © Philips Electronics N.V. 1993

5.8 Terminology

In the model presented here, we use terms like cell, port, etc. Unfortunately there ex-
ist many different datastructures and languages which are used to describe designs. To
describe a certain comstruction, they use different terms for the same objects.

In this report we will use our model, the Edif, NDL, and VERA TD/ND languages, as
well as the NDS/LDS datastructures. In figure 5.1 an overview is given of the terminology
used by all these languages.

[Formalmodel | Edif | VERATD | NDL NDS/LDS

|

Set of cells Design (the file) (the file) Design

Cell Cell Type Macro Declaration Block
Instance Instance Element implicit Instantiation Block
Port Port Terminal implicit Declaration Port
Port reference PortRef implicit implicit Instantiation Port
Net Net Node implicit Net

Figure 5.1: The terminology used by different languages

5.9 An example of a design

In figure 5.2 an example of a circuit is given. It can be describes using the ”set of cells”
model. Let CELL denote this set of cells.

CELL consists of seven cells:
CELL = {INV,NAND,MUX,DFF, BUF,SFF,COUNT}

INSTcELL consists of eight instances. Each instance refers to a cell, denoted by the cell
relation:

cell(instly = SFF cell(inst5) = MUX
cell(tnst2) = DFF cell(inst6) = SFF
cell(inst3) = BUF cell(inst7) = INV
cell(instd) = NAND cell(inst8) BUF

There are four leaf cells, INV, NAND, MUX and DFF:

INV = ({4,Q}, 0, 0)

NAND = ({4,B,Q}, 0, 0)
MUX = ({4,B,5,Q}, 9, 0)
DFF = ({D,ClLQ}, 0, 0)

© Philips Electronics N.V. 1993 31

The structure of the three non-leaf cells is given by:

BUF = ({4,Q},
{inst7,inst8},
{
({4}, {(inst7, A)}),
(0, {(4nst7,Q), (1nst8, 4)}),
({@}, {(inst8,Q)})

) }

SFF - ({D,DT,SE,Cl,Q)},
{inst5,inst6},
{
({D}, {(snst5, B)}),
({DT}, {(inst5, A)}),
({SE}, {(znst5,5)}),
(0, {(3nst5, Q), (inst6, D)}),
({C1}, {(inst6,C1}),
({@}, {(inst6,Q})

) }

COUNT = ({DT,SE,ClQ0,Q1},
{instl,inst2,inst3, instd},
{

nl,n2,n3,n4,n5,n6,n7

b

)

with

nl = (0, {(3nstl, D),(inst4,Q)})

n2 = ({DT}, {(instl,DT)})

n3 = ({SE}, {(instl,SE)})

nd = ({Q0}, {(wnstl,Q), (inst2, D), (instd, A)})
nb = ({Q1}, {(inst2,Q),(inst4, B)})

n6 = ({Cl}, {(instl,Cl),(inst3, A)})

n? = (0, {(inst2,Cl), (inst3,Q)})

In figure 5.3 the descendent graph of the circuit of figure 5.2 is given. The three descen-
dence relations map to the following graph relations:

k

C'C C means: a directed path of length k exists from C to C’
*

C'C C means: C = C’,or a directed path exists from C to C’
+

C'C C means: a directed path exists from C to C’

From this graph it’s easy to verify that, among other, the following descendent relations

32 © Philips Electronics N.V. 1993

inst3 COUNT
BUF
n6 Q Al 17
instl inst2
nlly SFF ~ DFF
Q nd D Q ns le
DT DT
SE
SE £3__|)
inst4
NAND
L 1
B
al
insiS insi6 | SFF insi7 ins’8 _ BUF
~
DT¢— MUX DEF INV INV
— D Ql-4Q AP A Q W A Q9Q
D ¢—
SE
Cl
S OFF
INV Ad NAND A MUX
A $Q $o o o e
B B

Figure 5.2: Example of a circuit: COUNT

© Philips Electronics N.V. 1993

hold:

34

INV
DFF
DFF
DFF

M-+ Tee 1= (M=

BUF
SFF
COUNT
COUNT

Figure 5.3: Descendent graph of circuit “COUNT”

© Philips Electronics N.V. 1993

Chapter 6

A functional model of
synchronous cells

6.1 Values and time

We will associated a port, a net, or a port reference with a value:

Definition 6.1: [set of values] The set of values (denoted by V AL) is defined by
VAL = {0,1}

O
Definition 6.2: [value] v is a value iff v € VAL.
O

We only use the values ’0’, and ’1’. This prohibits the modeling of buses, where ports must
be able not to interfere with the bus to which they are conmected, i.e., write the value 'Z’
(high-impedant). Also wired-or, and wired-and constructions cannot be described.

Since we do not intent to describes buses, or wired-or/and constructions, we don’t need
the value 'Z’. Also the values ’X’ (don’t care) and "U’ (unknown) are not used, since we
don’t need them for scan chain recognition.

Definition 6.3: [value on a port] Let p € PORT. The value carried by port p at some
point in time t (denoted by 1(p,t)) is defined by

v: PORT xIN - VAL

O

Definition 6.4: [value on a net] Let CELL be a set of cells, and n € NETcgrr. The
value carried by net n at some point in time ¢ (denoted by v(n,t)) is defined by

v: NETcgr, X IN — VAL

© Philips Electronics N.V. 1993 35

Time is modeled by an integer, i.e., time is divided into time slots. This suffices for
synchronous logic circuits.

When describing combinatorial logic, an output port value only depends on the input port
values, so we can omit time ¢, and denote the value on a port by »(op).

6.2 Internal state of a cell

Since there will be a finite set of memory elements, a cell C will have a finite set of states
in which it can be. We can therefore associate each state with a unique natural number.

Definition 6.5: [(internal) state of a cell] Let CELL be a set of cells, and C € CELL.
The (internal) state of C (denoted state) is a relation on C' and the time ¢t defined by

state: CELL x IN —» IN

|
Let CELL be a set of cells, C € CELL, and denote

IP(C) = {’ipl,ipz, . 'aip|IP(C)|}

then:

state(C,t+ 1) = fo(state(C,t), v(tp1,t), ¥(ip2, 1), - - -, v(ip|1P(C))5 1))

6.3 Functionality of a cell

6.3.1 Functionality of an output port of a cell

In general, the value of an output port, in time slot t + 1, is a function of the input port
values in time slot ¢, and the internal state in time slot ¢.

Let CELL be a set of cells, C € CELL, and again denote
IP(C) = {ipl,ip% vy lp”P(C)I}
then:

v(op,t + 1) = fop(state(C,t),v(ip1, 1), v(ip2,t), - - -, v(iP|1p(C))>)

6.3.2 Combinatorial and sequential output ports

Definition 6.6: [combinatorial] Let CELL be aset of cells, C € CELL. Combinatorial
(denoted by comb) is a relation on O P(C) defined by

comb: OP(C)— B

36 © Philips Electronics N.V. 1993

where for op € OP(C):
comb(op) = Vst,st' € STATE(C): fop(st,...) = fop(st'y...)

|

This means that the output port value of a combinatorial output port does not depend on
the internal state of its cell, only on its input port values. This implies that the response
to input value changes is not time-dependent.

Definition 6.7: [sequential]l Let CELL be aset of cells, C € CELL. sequential(denoted
by seq) is a relation on O P(C) defined by

seq: OP(C)— B
where for op € OP(C):

seq(op) = —comb(op)

O

This means that the output port value of a sequential output port does depend on the
internal state of its cell, not only on its input port values. This implies that the response
to input port value changes is time-dependent.

6.4 Determining the functionality of non-leaf cells

This was already (informally) described in a previous chapter. We must transform the
functions of lower-level cells into functions operating on nets of the parent, using the
parents internal state. Then we solve this set of equations and rewrite them using the
neto relation.

© Philips Electronics N.V. 1993 37

Chapter 7

A structural model of scan chains

In this chapter we will give a definition of scan chains. All definitions are related to a set
of cells. To prevent the use of several “Let CELL be a set of cells”, we will assume from
now on that a set of cells is chosen, and will denote this set of cells by CELL.

Definition 7.1: [set of enable ports] The set of enable ports (denoted by ENABLE)
is defined by

ENABLE = IPORT x B,

with tuple element names (P, VAL).

O

Definition 7.2: [enable port] e is an enable port iff e ¢ ENABLE.
]

Definition 7.3: [set of clock ports] The set of clock ports (denoted by CLOCK) is
defined by

CLOCK =IPORT x BB

with tuple element names (P, PO L).

O

Definition 7.4: [clock port] cis an clock port iff e € CLOCK.
a

Definition 7.5: [set of chain elements] The set of chain elements (denoted by CHAINEL)
is defined as the set which contains all chain elements. A chain element is a basic entity
which will be used as a base for further definitions.

O

Definition 7.6: [clock port] el is a chain element iff el € CHAINEL.
]

© Philips Electronics N.V. 1993 39

Definition 7.7: [position of a chain element] The position of a chain element (denoted

by pos) is a relation on CHAIN EL defined by
pos: CHAINEL - IN,

O

Definition 7.8: [instance of a chain element] The instance of a chain element (de-

noted by inst) is a relation on CH AIN EL defined by
chain: CHAINEL —» INSTcELL,

O

Definition 7.9: [chain of a chain element] The chain of a chain element (denoted

by chain) is a relation on CH AIN E L defined by
chain: CHAINEL — CHAIN,

where for el € CHAINEL:
chain(el) € CHAIN o(inst(el))

In this definition we’ve used CH AIN¢g (with C € CELL). CH AIN¢ will be defined later
on. The restriction states that a chain element must refer to a chain, which is part of the
cell to which the instance of that chain element refers.

O

Definition 7.10: [set of scan chains) Let C € CELL. The set of scan chains of C
(denoted by CH AIN¢) is defined by

CHAINg = IP(C)xOP(C)x B xP(ENABLE)x P(CLOCK)
xP(CHAINEL) x IN,

with tuple element names (I,0,INV, E,C,EL,n).
For all CH € C HAIN¢ the following holds:

« (CH.E).P C IP(C)\{CH.I}

e (CH.C).P CIP(C)\{CH.I}

(CH.E).PN(CH.C).P=0

Ve,e! € CH.E: e.P =¢'.P = eVAL =¢.VAL

Ve, e CH.C: ¢.P=¢".P = c¢.POL=¢.POL

VO<i< |CH.EL|: (3'el € CH.EL: pos(el) = 1)

40 © Philips Electronics N.V. 1993

o Let el € CH.EL. We define:

SI(ely = (inst(el),chain(el).I)
SO(el) = (inst(el),chain(el).0)
el; = the element el € CH.EL, for which pos(el) = 1

In case CH.EL # {, the following holds:

- ye(I, S1(elp))
- 7¢(0, 50(elich.EL1-1))
V0 < i < |CH.EL}— 1: vc(SO(eli_1), SI(el:))
CH.INV =@0<i<|CH.EL|: chain(el).INV
CHn=3%0<i<|CH.EL|: chain(el;).n
Forallen € CLOCKNET(CH):
(Vel € CH.C : v(netc(cl.P)) = val(cl.POL)) = v(cn.N) = val(en.POL)
(Vel e CH.C : v(netg(cl.P)) = val(cl.POL)) = v(cn.N) = val(cn.POL)
For all en € ENABLENET(CH):

(Ven € CH.E : v(netc(en.P))=en.VAL) = v(en.N)=en.VAL

|

In this definition we have used the set of clocknets and the set of enable nets of chain CH,

CLOCKNET(CH)and ENABLENET(CH). These sets will be defined later.
O

Definition 7.11: [scan chain] ch is a scan chain iff there is a C € CELL, for which
ch € CHAIN(C).

0

Definition 7.12: [set of clocknets of a chain]Let C € CELL,and CH € CHAIN(C).
The set of clocknets of CH (denoted by CLOCK N ET(CH))is a relation on CH AIN(C)
defined by:

CLOCKNET: CHAIN(C)— P(C.N x B)
with tuple element names (N, POL), where:
CLOCKNET(C)= {(n,p)€ C.N x B|del € CH.EL : f.(el,(n,p))}
with
fe(el,en) = 3c € chain(el).C : (inst(el),c.P) € (¢cn.N).PRAc.POL = cn.POL

O

Definition 7.13: [set of enablenets of a chain] Let C € CELL,andCH € CHAIN(C).
The set of enablenetsof C H (denoted by ENABLEN ET(C H))is arelationon CHAIN(C)
defined by:

ENABLENET: CHAIN(C)— P(C.N x VAL)

© Philips Electronics N.V. 1993 41

with tuple element names (N, VAL), where:
ENABLENET(C)= {(n,v) € C.N x B|3el € CH.EL: f.(el,(n,v))}
with
fe(el,en) = 3e € chain(el).E: (inst(el),e.P) € (en.N).PRAe VAL = en. VAL

=]

A scan chain ch of cell C consists of the following:

o ch.I: the scan input port
e ch.0: the scan output port

o ch.INV: aboolean, false indicates a non-inverting chain, true indicates an inverting
chain.

o ch.E: the set of enable ports, with their enable value
o ch.C: the set of clock ports, with their relative polarity

e ch.EL: the set of chain elements, which concatenated form the chain ch. In case
this set is empty,

o ch.n: the length of this chain, specifying the number of clock cycles needed to shift
data from the scan input to the scan output.

Definition 7.14: [leaf scan chain] Let C € CELL. Leaf scan chain (denoted by
leafchaing) is a relation on CH AIN(C) defined by

leafchaing : CHAIN(C)— BB
where:

VCH € CHAIN(C): leafchainc(CH)=CH.EL =1

7.1 Scan chain definition and reality

The theory is suitable to described scan chains which contain only inverters and/or buffers
in their enable- or clock lines.

42 © Philips Electronics N.V. 1993

Chapter 8

FindScan: the algorithm

In this chapter we will give a description of FindScan, an algorithm capable of locating
scan chain in a cell. In this chapter we will asswne that CELL is a set of cells.

Scan chains of leaf cells are specified by definition, they can be considered already “cal-
culated”. When the chains of an arbitrary cell C € CELL should be calculated, we first
have to calculate the chains of its children. This can be visualised by inspection of the
decendence graph of a set of cells.

In figure 8.1 a decendence graph of a set of cells is given. From this picture we conclude
that cells A,B,C,D,E,F are leaf cells (they do not instantiate other cells). Therefore the
scan chains of cell G, H or J can be calculated. In order to calculate the chains of cell
K, we have to process cells G and H first. Since these restrictions only state the order in
which pairs of cells should be processed, there remain several valid processing sequences.

If the cells are processed in such an order, that it complies with the above restriction, we
can assume the following, without loss of generality: when processing cell C € CELL, the
chains of its children are know.

8.1 Restrictions on clock ports

Let C € CELL be a cell, and CH € CHAIN(C) be a non-leaf chain. This implies the
following: for all en € CLOCKN ET(CH):

(Vee CH.C: v(netg(c.P)) =val(c.POL)) = v(en.N)=wal(cn.POL)
(Ve e CH.C: v(netg(c.P)) =wval(c.POL)) = v(cn.N)=val(cn.POL)

Several (sub)circuits can be though of which satisfy these relations. The most obvious one
is to use inverters and buffers to establish the restriction. To determine the clock ports of
a chain, given its elements, our algorithm traverses chains of inverters and buffers.

© Philips Electronics N.V. 1993 43

Figure 8.1: A descendence graph

8.2 Restrictions on enable ports

Let C € CELL be a cell, and CH € CHAIN(C) be a non-leaf chain. This implies the
following: for all en € ENABLENET(CH):

(Ve e CH.E: v(netc(e.P)) =eVAL)= v(en.N) = en.VAL)

In this case also, several (sub)circuits can be though of which satisfy this relation. Again
we have restricted the algorithm to recognition of inverter /buffer chains.
Definition 8.1: [subchain] Let C be a cell. The set of subchains of C (denoted
by SUBCHAIN(C)) is defined by
SUBCHAIN(C)=C.NxC.NxIBXxP(ENABLFE)x P(CLOCK)x P(CHAINEL)x IN

with tuple element names (I,0,INV,E,C,EL,n).
All restrictions drawn upon a scan chain apply to a subchain.

a

However, is this case I = O is possible, this in the so-called null-chain:
(n,n, false,0,0,0,0), ne C.N

The null-chain merely consists of one single net. Its stands for the obvious statement:
“when net n carries a value at time ¢, net n carries that value at time t”.

Definition 8.2: [set of scanchains of a subchain] Let C be a cell, and SC €
SUBCHAIN(C). The set of scanchains of a subchain (denoted by scanchainc) is defined

44 © Philips Electronics N.V. 1993

scanchaing : SUBCHAIN(C)— P(CHAIN(C))

where:
scanchaing(SC)Y={CH € CHAIN(C)| CH.I € (SC.I).PANCH.O € (SC.0).P A
CH.E=SC.ENCH.C =5C.CA
CHEL=SC.ELANCH.n=SC.n}
O

Thus the set scanchainc(C H) is not empty iff net SC.I contains an input port of C, and
net SC.0 contains an output port of C. It will contain more than one chain if net SC.0
contains more than one output port.

In figure 8.2 the FindScan algorithin is given. Knowing the scan chains of the children of
a cell C, the chains of C itself will be determined.

8.3 Example of a FindScan session

In figure 8.3 an example cell is given.

Cell C contains six instances: two inverters (INV), two multiplexers (MUX), one D flipflop
(DFF), and one scan flipflop (SFF). All of these children contain scan chains:

¢ [CHAIN(C) |
INV {(A,Q,true,0,0,0,0)}
MUX {(4,Q, false,{(5,0)},0,0,0), (B,Q, false,{(5,1)},0,0,0)}
DFF {(D,Q, false,0,{Cl,true},0,1)}
SFF {(DT,Q, false,{(SE,1)},{Cl,true},0,1)}

When FindScan is executed on cell C, it starts at the net of an output port, in this case
net n12, which is connected to port Q. FindScan starts with the following null-chain:

(n12,n12, false,,0,0,0)

1. Net n12 is driven by (inst4, Q), where inst4 is a SFF. Cell SFF has one chain which
ends at Q:

(DT, Q, false,{(SE,1)},{Cl,true},0,1)

Since (inst4, Cl) is driven by port Cl, and port en2 drives (inst4, SE) through an
inverter, the subchain now becomes:

(10,712, false,{(en2,0)},{Cl, true}, {ell},1)

© Philips Electronics N.V. 1993 45

Concatenate(S, 3)
{
let $' — 0
forall s € §
{
let EL — {el € CHAINEL| 3el' € s.EL: chain(el) = chain(el’)A
pos(el) = pos(el’) + 1}
let EL « {el € CHAINEL | chain(el) = chain(3.EL), inst(el) = inst(5.EL)A
pos(el) = |EL| + 1}
8" — §'U(s.1,5.0,s.INV@®5INV,s.EUS.E,s.CU3G.C,ELUEL,s.n+ §.n)
}

return S’

}

Subchains(N;, n,)
{
if n, € N;
return {(n,, n,, false,0,0,0,0)}
else
{
let pr € n,.PR, such that pr € OPR(C)
let $ 0
forall s € {ch € CHAIN (cell(pr.I))| ch.O = pr.P}
{
let S’ — Subchains(N;,netc((pr.I,s.I)))
if IsCompatible(S’, s)
S « S U Concatenate(S’, s)
}
}

return 5

}

FindScan(C)
{
let S <0
let N; = {netc(ip) | ip € IP(C)}
forall op € OP(C)
forall s € Subchains(N;, netc(op))
S = S U scanchaing(s)
return §

Figure 8.2: The FindScan algorithm

46 © Philips Electronics N.V. 1993

Cl

no
inst] vinst?
1 MUX DFF
Aol
2 = D Q inst3 inst4
B & inst inst
| n7 MUX D ~SFF
1 12
nd y nl0 Q- Q
l——DT
insts SE
C kn_? n9 nll
inst6
®- @
enl en2

Figure 8.3: A cell containing scan chains

2. Net 710 is driven by (inst3,Q), where inst3 is a MUX. Cell MUX has two chains
ending at Q:

(A, Q, false, {(S,0)},0,0,0), and (B, Q, false, {(5,1)},0,0,0)
(¢nst3, S) is driven by en2. Extension of our subchain with the first chain results in:
(n7,n12, false,{(en2,0)}, {Cl,true}, {ell,el2},1)

Extension with the second chain of inst3 is not possible. This would result in
something like

(n8,n12, false, {(en2,0),(en2,1)},{Cl,true}, {ell,el2},1)

Which contains a set of enable ports, which cannot be satisfied all at the same time.

3. Extension by the chain through inst2 results in
(n5,n12, false,{(en2,0)},{Cl, true},{ell,el2,el3},1)

4. Finally, extension of this subchain by the chains through instl, results in two sub-
chain:

(n1,7n12, false, {(enl,0), (en2,0)},{Cl, true}, {ell,, el2,el3,eld},1)
(n2,7n12, false, {(enl1,1),(en2,0)},{Cl, true},{ellp, el2,el3, eld},1)

© Philips Electronics N.V. 1993 47

These last subchains both start at a net which is driven by an input port of C, and they
both end at a net which is connected to an output port of C. This implies they correspond
to scan chains of C:

CH1 (A,Q, false, {(en1,0), (en2,0)},{Cl, true}, {ell,, el2,el3, eld},1)
CH2 = (B,Q, false,{(enl,1),(en2,0)},{Cl,true},{elly, el2,el3,eld},1)

with
chain(elly) = MUXgy inst(elly) = instl
chain(elly) = MUXqge inst(ell,) = instl
chain(el2) = DFFy, inst(el2) = inst2
chain(eld) = MUXcy inst(elld) = inst3d
chain(eld) = SFF., inst(eld) = instd

All possible concatenations of chain elements ending at net n12 have been checked, so it
can be concluded that:

CHAIN(C)={CH1,CH?2)}

48 © Philips Electronics N.V. 1993

Chapter 9

RemoveScan: the algorithm

RemoveScan operates on the same set of cells as FindScan. Its task is to remove the scan
chains from the set of cells. By removing we mean removal of functionality which was only
present for the scan chains, not the normal functionality. We will not alter cells already in
the set of cells. When chains have to be removed from a cell C € CELL, we will generate
a cell C’, performing the same task as C, but without the scan functionality.

A scan-chain should only be removed when it is used in a higher-level scan chain. So
actually scan chain elements are removed (by replacing the associated instances), which
implies the parent chain will be removed. When a cell C’ uses an instance of cell C, with
C containing n chains, only those chains which are used in a chain of C’ must be removed
(by replacing that instance),

For each leaf cell, we must define another cell which replaces it when a set of its chains
has to be removed. For non-leaf cells this replacement can then be constructed.

9.1 RemoveScan for leaf scan chains

Let C € CELL be aleaf cell. Suppose C HAIN(C) contains n scan chains. The intercon-
nection of each instance of C' determines which of these chains is used as a chain element
in a higher lever chain. There are thus 2" possible replacement cells for C'.

An example is an n-input multiplexer. Such a multiplexer contains n scan chains by
definition, selected by n, = [log, n] selection inputs.

9.1.1 Examples of leaf cells
Inverter (INV), Buffer (BUF), and D-flipflop (DFF)

These cells all contain one chain. Because these chains in fact overlap with the normal
functionality of the cell, replacement is not necessary. The fact that these cells don’t have
enable pins also implies this. One could say that these cells replace themselfs.

© Philips Electronics N.V. 1993 49

A *D(% Q A ADW Q
No chains removed Chain 1 “‘removed’’

Figure 9.1: Replacement of an inverter

No chains removed Chain 1 ‘“‘removed’’

Figure 9.2: Replacement of a buffer

~DFF ~'DFF
—{D Q— —D QF—
No chains removed Chain 1 “‘removed”’

Figure 9.3: Replacement of a D flipflop

50 © Philips Electronics N.V. 1993

Two-input multiplexer

Now consider the case of a two-input multiplexer. Removing one chain results in a cell in
which the other data input is directly connected to the output, with the selection input
removed. Removing both chain will result in an empty cell.

X
—
l
No chains removed Chain 1 removed
Chain 2 removed Chain 1,2 removed

Figure 9.4: Replacement of a multiplexer

Scannable flipflop (SFF)

The scannable flipflop is a concatenation of a two-input multiplexer, and a D-flipflop.
Only one of the two inputs of the multiplexer is allowed in a scan chain. Therefore there
are two possibilities, either the chain is removed, resulting in a D-flipflop, or it isu’t. In
figure 9.5 these two possibilities are depicted.

l d

o VSFF YDFF
QL —D Q—
DT
SE
No chains removed Chain 1 removed

Figure 9.5: Replacement of a scannable D flipflop

9.1.2 Automatic match-rule generation for combinatorial cells

Let C be a cell, owning a combinatorial output port op, depending on input ports 2py, ips, . . .7py,.
This dependence can be denoted by a boolean function:

fop(ipla ip2, ey ipn)

© Philips Electronics N.V. 1993 51

The input ports include possible scan-input ports, as well as enable ports.

FindScan reports which scan chains of an instance of C are part of a higher-level scan chain.
Removing these chains means simplifying the circuit, given the fact that the enable-values
of scan-enable ports will never occur. Thus for the set of certain vectors of the form

(ipl’ ip27 e -7ipn)a

which all enable one of the chains, the output value is a don’t care. This can be used to
simplify the expression.

Lets look for example at a two-input multiplexer, named M U X, with inputs A, B, selection
port S, and output (). The function fg is:

fQ:AE—}—BS

Using a truth-table, the function looks like:

A B S[Q
0 X 0] 0
1 X 0] 1
X 0 10
X 1 1|1

Suppose only the chain from A to @ is used in a higher-level chain. The truth-table for
the scan-free variant then becomes:

A B S|@Q
0 X 0| X
1 X 0| X
X 0 10
X 1 1|1
This table can be reduced to
A B §S|Q
X X 0| X
X 0 10
X 1 1)1

Which can be realised by the function
fo=3B

The multiplexer is thus replaced by a cell, containing one wire which connects B and Q.
Input ports A and S are not used. We name it MU X',

Let C be a cell containing I, an instance of MUX. Let C’ be the same cell, but with I
replaced by an instance of MUX'. Because MU X' does not use port A and §, they can
be deleted from their nets in C’. This may lead to nets with only one port or one port
reference. The algorithm of figure 9.6 simplifies a cell C, by using this information about
nets.

52 © Philips Electronics N.V. 1993

IsUsed(C,I) = exists p € OP(cell(I)) such that usedc((I,p))

Removelnstance(C, I)

{
CI—CI\{I}
forall n € C.N
{
n.PR — n.PR\ {(I,p)|p € PORT}
if n = (0,0)
C.N — C.N\ {n}
}
}
SimplifyCell(C)
{
while exists I € C.I such that -IsUsed(I)
{
forall I € C.I such that -IsUsed(I)
Removelnstance(C, I)
}
return S
}

Figure 9.6: The RemoveScan algorithm

© Philips Electronics N.V. 1993

Chapter 10

The NDS environment

NDS stands for “Network Data Structure”. It comprises storage of network data, and
several functions to operate on the data. Data structures and functions are written using
C++. The NDS user manual [Philips ED&T 93] states:

NDS, the Network Data Structure, provides the program developer with a
general means for the storage of network data and a set of functions that
operate on that data. To facilitate the use of NDS, include and library files
are provided, besides this document.

In principle, NDS is netlist language independent. Moreover, it is very apt to
use NDS to write netlist format conversion software. However, an NDL reader
and writer are provided within NDS for convenience. They are small and fast
pieces of software handling a very compact and readable language. An Edif
reader is provided separately.

NDS is written in C++, it is assumed that the application developer is familiar
with the concepts of C++...

10.1 NDS classes

Being based upon C++, NDS uses the class concept. A class is a description of structure
and behaviour of a something. An object is an instantiation of a class: a thing with the
structure and behaviour as described in the class.

There are six classes which are the backbone of NDS. Four of them are the basic building
blocks that convey network structure information. Two additional classes allow to add
other information about the network.

The basic classes are:

Design: This is a class that groups blocks together. It is the NDS equivalent of our formal
“set of cells”.

Block: This class is used to model our formal cells, as well as our formal instances of
cells. Therefore there are two kinds of block: declaration blocks (our cells) and

© Philips Electronics N.V. 1993 55

instantiation block (our instances).

Pin: The Pin class represents our formal ports, as well as our formal port references.
Therefore there are two kinds of pins: declaration pins (our ports) and instantiation
pins (our port references).

Net: This class represents connection of ports, being declaration ports of a cell, and/or
instantion pins of that cells’ children. It represents our formal net.

The additional classes are:

Property: Alinost all NDS objects can have one or more properties attached to them.
These properties may contain extra information, which could not be specified using
the structural description, for example the fan-out of an output port.

Pin2Pin: This object refers to two pins, one being the FromPin, the other the ToPin.
Attaching properties to such an object can be used to specify inter-pin relation, e.g.,
delay.

10.2 LDS classes

LDS stands for “Library Data Structure”. Just like NDS it is written in C++, and consists
of classes with functions to operate on a library and its elements. In fact, the LDS classes
are derived from the NDS classes, using the C++ inheritance feature.

There are four classes within LDS, all of which are derived from NDS classes:

Library: A collections of cells. It is derived from an NDS design.

Cell: A design block having ports attached to it. An LDS cell represents our formal leaf
cell.

Port: A port of a cell having characteristics. Although an LDS port is named differently
from an NDS pin, they both represent our formal port.

Port2Port: The combination of two ports, in a directed way.

LDS provides the user with many functions calls, which can be used to retrieve functional,
and behavioural information about an LDS object.

56 © Philips Electronics N.V. 1993

Chapter 11

SDS

SDS stands for “Scan Data Structure”. It was developed to be able to represent scan
chains, and to be able to manipulate these scan chains. SDS is a set of C++4 classes,
and accompanying functions, all derived from the NDS§ class “Network”. This was done
in order to profit from the already implemented data structures which are implemented
inside NDS (e.g. linked list). Another advantage is that the developer using SDS can, like
when using NDS, attach properties to SDS objects.

SDS is a separate toolkit however, which can perfectly be used to write scanchain manip-
ulating tools. It has its own representation language: RPL, the Routing Plan Language.

Because scan chains are related to a design, SDS contains function calls which can handle
references of SDS objects to NDS objects, i.e., scan chain object can be related to design
object. Omnes these relation have been established, function calls exist such as “given this
NDS declaration Block, what is the list of scan chains” (returning an SDS Macro).

11.1 SDS classes

SDS consists of seven different classes:

RoutingPlan: This is a class that groups Macros together. This class is the entry point
for an SDS structure. Only via such an object can an SDS structure be accessed. It
is related to the NDS Design class.

Macro: A macro is related to an NDS block, or LDS cell. It contains all scan chains
through that block/cell. In our formal model we speak of a set of chains of a cell.

ClockDomain: A clockdomain groups chains of a cell together. Two chains are located
in the same clockdomain, if they are clocked by the same set of clock pins.

ClockPin: This class models the combination: “pin with a polarity”. It is an NDS Pin,
extended with a polarity. In our formal model this was called a clock port.

Chain: This class represents scan chains. In case of a higher-level chain, its elements are
specified. This represents our formal scan chain.

© Philips Electronics N.V. 1993 57

ChainPin: This class is almost identical to ClockPin. It consists of an NDS Pin, extended
with a value. It represents the enable port of our formal model. It is also used to
represent the scan-out port, in combination with the inversion property of the chain.

ChainElement: This class models a piece of scan chain. It is used to describe hierarchy
found in a scan chain, and refers to a lower-level Chain. It corresponds with our
formal chain element.

11.1.1 The SDS object hierarchy

In figure 11.1 the hierarchy of an SDS structure is depicted. Each arrow denoted that the
above object owns a set of the object below.

[Routin gPlanU

|
=

|

ClockDomam

/\

Chain [ClockPin]

[ChainElement\ [ChainPin]

Figure 11.1: Ownership of SDS objects

11.1.2 Relation between SDS and NDS classes

When associating scan chains with a design, all SDS objects refer to a NDS counterpart.
This relation in given in figure 11.2.

58 © Philips Electronics N.V. 1993

SDS classes NDS classes

LRoutingPlan] - >

p
L Macro j -

[Decl Block J
~
ChainElementJ - > [Inst Block]

o
]

(ClockPin] - >
LChainPinJ - [

Figure 11.2: Relations between SDS and NDS classes

11.1.3 The RoutingPlan class

A RoutingPlan object is the only object through which the structure can be accessed. It
gives access to all macros that are defined in the routing plan. A routingplan is a collection
of macros, and functions exist to add, remove, and retrieve Macro objects.

11.1.4 The Macro class

A macro is an important entity in SDS. It is used to describe all chains that run through a
block in your design. As said, each macro coincides with a declaration block in the design.

The chains of a macro are grouped together in their clock domains. All chains of one
clockdomain are clocked by the same set of clock pins.

SDS was initially intended as a function library for InScan, a scan chain insertion program.
InScan consists of two programs, PrepScan and Scanlt. The input of PrepScan is a
design, with no or only partial scan chains. This design is evaluated, and a routing plan
is generated, which describes which instances should be replaced by others, to transform
the design into a full scannable design. Scanlt then performs this replacement/extension.
InScan is discussed in [Voort 93].

Because of this, a macro "M’ is said to be DerivedFrom a declaration Block ’B’. In case
of a library cell ’C’, M’ is said be ReplacedFor this cell. In this report, SDS and RPL

© Philips Electronics N.V. 1993 59

are used to describe scan chain which are already present in a given design. There are
no “original” blocks or cells from which block are derived, or for which they have been
replaced.

11.1.5 The ClockDomain class

In our formal model, each chain contains a set of clock ports, specifying the ports which
(simultaneously) clock that scan chain. The restrictions drawn upon the construction of
non-leaf scan chain guaranty that if two chains are used as chain elements in a higher
chain, the two elements must have compatible clock ports.

In SDS, chains of a macro are grouped into clock domains. The clock pins of the chains
are specified in the clockdomain, so chains of one clockdomnain are compatible which each
other (as far as clock pins are considered). A clockdomain states: All these clock pins are
clocked simultaneously, i.e., it is assumed that they are connected properly at some higher
level in the design hierarchy.

11.1.6 The ClockPin class

A ClockPin refers to a NDS Pin object, and contains a polarity field. The polarity denoted
whether a rising (positive polarity), or a falling edge (negative polarity) on this pin is
interpreted as being a clock pulse.

11.1.7 The Chain class

A chain object, which resides in macro 'M’, refers to a scan chain which resides in the
declaration block to which M’ refers. If this block is a non-leaf block, the chain object
may be describes by a list of chain elements, which described the internal structure. In
case of a library cell, the chain will not contain chain elements.

Seen externally, a chain consists of several pins. These pins are represented by ChainPins:

ScanIn: This pin received the test data during test. Each chain has exactly one ScanIn
Pin. Its polarity must be positive.

ScanQut: This pin emits test data during test. A chain may own several ScanOut pins.
Its polarity denotes whether the chain inverts data or not.

ScanEnable: This pin must carry its specified value, to enable test mode. A chain may
own several ScanEnable pins.

NormEnable: This pin must carry its specified value, to enable normal mode. A chain
may own several NormEnable pins.

HoldEnable: This pin must carry its specified value, to enable hold mode. A chain may
own several HoldEnable pins.

60 © Philips Electronics N.V. 1993

In our formal model, we’ve only used enable ports. These ports are represented by Sca-
nEnable pins here. NormEnable and HoldEnable pins were not used in the formal model,
since they are not necessary to recognise and remove scan chains.

Besides its pins, a scan chain has two more characteristics: a length, indicating how many
clock cycles it takes for data at the input to appear at the output, and a boolean property,
indicating whether the chain inverts this data or not. The latter property is stored in the
polarity of the scan-out pin of a chain, the first property is stored separately.

11.2 The RoutingPlan Language

The routingplan language, RPL, is used to read and write scan chain hierarchy descrip-
tions. A routing plan file corresponds to a RoutingPlan object. The file contains a
description of the underlying structure, describing macros, clock domains, chains, etc.

We will use the RPL language as input and output file format in the NDS implementation.
The complete syntax of the RPL language can be found in appendix B.

© Philips Electronics N.V. 1993 61

Chapter 12

VERA

VERA stands for “VERification Assistant”. Is was developed to be able to write applica-
tions which could be used for the verification trajectory, which was discussed in chapter 2.
The VERA manuals [Lynch 93], [Kostelijk 93], [Kuppen 93], state:

VERA is a rule-based tool intended for use in the structural verification of IC
designs. The rule-based approach results in a flexible tool which can be used
for a variety of applications. It can be used to check the presence of facts,
check the absence of a given set of errors, to modify a network description and
to gain statistics on a design.

The most common usage of VERA is hierarchy-ectraction. The extraction of
a circuits hierarchy can be seen as the means with which the structure of a
circuit design can be verified. That circuit design will generally have been
made in a top-down fashion, working successively from higher to lower level
structures in the hierarchy. The verification process thus consists of ensuring
that all expected modules are present and properly connected at each level
in the circuit design hierarchy, by re-creating that hierarchy in a bottom-up
fashion. This verification will generally start therefore on the (flat) netlist
which has been extracted from the layout resulting from the overall design.

VERA is written in Common Lisp. Because of its flexibility, it was decided to investigate
the performance of VERA in applications, where for now, only the C/C++ language was
used.

12.1 Introduction

Vera operates on a network (our formal non-leaf cell). It uses the following inputs:

Element-type descriptions: These store the different characteristics of types including
their possible expansion in terms of lower-level elements. They represent our formal
cells.

Network description: This is a (flat) netlist, representing the circuit.

© Philips Electronics N.V. 1993 63

Knowledge-base: This contains definitions of rules: what they do with (or to) the cur-
rent network.

Control file: This contains the succession of commands which are to be carried out
during the session. In other words, this is the program.

Just like programs using NDS will be written in C++ (like NDS), programs using VERA
will be written in Lisp (like VERA). The control file needed by VERA contains VERA-
commands. However, the control file may contains normal Lisp commands, since VERA-
commands are just extensions to the Lisp language.

Some of the possible control commands are:

(1load file): This Lisp comunand will load and execute the given file. It is used for instance
in case of batch-control.

(load-kb file): This commands load the knowledge-base file into VERA. The knowledge-
base contains all rules and actions defined. Rules and actions will be discussed in
section 12.2.

(load-nd file): This is the command required to load a network-description into VERA.

(load-td file): This command must be executed before the network-description is loaded,
i.e., before a (load-nd file)-call. It causes the type-descriptions to be loaded.

(load-wp file): This command is intended to allow the user the option of loading in
certain additional (or changing existing) properties of nodes or elements.

The above mentioned commands all load information into VERA. The most important
command however is the

(activate rule)

command. Its causes the given rule, or match, named rule, to be “activated”. Rules and
matches will be discussed in the next section.

12.2 Rules, matches, and actions

Rules, matches, and actions are loaded into VERA with the (load-kb file)-command. A
rule in general consists of a match and an action part. If the match-part of a rule can be
satisfied, the actions of the action-part will be undertaken.

A rule is called a match if it consists of a match-part only. An action is a rule without a
match-part. VERA has built-in actions and matches. Some examples of these, so-called
primitives, are:

Recognize: A primitive match for finding a given structure in the circuit under verifica-
tion.

64 © Philips Electronics N.V. 1993

Abstract: A primitive action for removing a structure found, and replacing it with a
single higher-level element.

Test: A primitive match which can be used to check whether certain information found
conforms to a given criterion.

Message: A primitive action which will print a user-defined message to a given file for
every match accepted.

Two rules are used in the implementation of VERA FindScan: the primitive rule “test”,
and the “path” rule. Both will be discussed in the next sections. These, and all other
rules are described in detail in the Vera reference manual [Kostelijk 93].

12.2.1 The “test” rule

The syntax of the test rule is given in figure 12.1. This match-call tests the given function,
given its arguments. The match is accepted when the function-result is not nil, i.e., when
true is returned. The test-rule allows the user to write Lisp functions, and use them as a
match-rule.

(test (match-parameter-part)
(function
argument*

)

Figure 12.1: Syntax of the VERA test rule

12.2.2 The “path” rule

The syntax of the path rule is given in figure 12.2. The given expressions have the following
meaning;

start, finish: Indicate the beginning and end of the path.
nn-ne-en-ee: Indicates whether the start (finish) is a node or an element.

terminal-type-or-terminal-class: Indicates whether the terminal-lists are about terminal-
classes or terminal-types.

node-to-element-terminal-list: This list determines which terminals of elements are allowed
in a path, when a node to elemnent boundary is crossed.

element-to-node-terminal-list: This list determines which terminals of elements are allowed
in a path, when a element to node boundary is crossed.

© Philips Electronics N.V. 1993 65

ezcluded-element-list: This list determines which elements are not allowed in a path.
excluded-node-list: This list determines which nodes are not allowed in a path.
included-element-list: This list determines which elements are mandatory in a path.
wncluded-node-list: This list determines which nodes are mandatory in a path.

mazimum-path-length: The number of objects (being either elements or nodes) in a path
will not exceed two times this values plus one.

mazimum-number-of-paths: This is the maximum number of paths which will be returned
by this primitive.

(path (match-parameter-part)
(start
finish
nn-ne-en-ee
terminal-type-or-terminal-class
node-to-element-terminal-list
element-to-node-terminal-list
ezcluded-element-list
ercluded-node-list
included-element-list
included-node-list
mazimum-path-length
mazimum-number-of-paths

Figure 12.2: Syntax of the VERA path rule

12.3 ND: the Network Description language

The network-description or ND-file contains the circuit which will be processed. The
VERA netlist format is in Lisp-list form. Its syntax is specified in figure 12.3.

Certain requirements are necessary for each element specification:

1. The first entry, type, refers to an already loaded type-description.

2. The second entry, element, specifies the (unique) name of the elements itself, which
can be a name or number.

3. The next entries, termy, ..., term,, are the terminal names of the elements. These
should correspond to the terminal specifications in the type description type.

66 © Philips Electronics N.V. 1993

(elementy
element,

element,

)

where n > 0, and

element; = (type element term, termy ...term, attriby atirib, ... attriby), z,y > 0.

Figure 12.3: ND: the VERA netlist format

4. The last entries, attriby, ..., attrib,, specify attributes of the element. The number
and order of these attributes is again determined by the corresponding type descrip-
tion. A type description may have default values for an attribute. An element may
use these default values (specify ‘!’), overrule these values (specify another value),
or specify an attribute to be unknown/irrelevant (specify ‘?’).

12.4 TD: the Type Description language

The type description or TD-file contains the information relevant to each different type of
element which might occur in the network. Just like the network description, the TD-file
is specified in Lisp-list form. Its syntax is specified in figure 12.4.

(td,
tdy

td,
)

where n > 0, and
td; = (type (entry, val) (entrys valy) - - - (entry, vaby,), m > 0.
Figure 12.4: TD: the VERA type description format

The name of an element is specified in the type field, which is followed by a list of several
properties of that element. The following two properties are mandatory:

terminal-names (terminal-name*): a list of the terminal-names of the element.

terminal-classes (terminal-class*): a list of the terminal-classes of the element. Ter-

© Philips Electronics N.V. 1993 67

minal which have identical classes, may be interchanged, without changing the func-
tionality (e.g. the input terminals of a NAND)

Optionally the following properties may be specified:

terminal-types (terminal-type*): A list of the terminal-types of the element. This prop-
erty indicates how information flows, i.e., in, out, or o.

terminal-groups (terminal-groups*): A list of the terminal-groups of the element. Whereas
terminal-classes indicate interchangeability of individual terminals, terminal-groups
indicate interchangeability of groups of terminals.

attribute-names (attribute-name*): The attribute-names determine which attributes an
element-type possesses, and the order they must have in a network description.

attribute-tolerances (attribute-name*): The attribute-tolerances determine, for nu-
meric attribute only, the tolerance allowed for matching this element with a “match-
ing” value.

default-attribute-values (attribute-value*): These attribute-values are used as de-
fault in case an element in a network specifies ‘I’ for this attribute.

global-nodes (node*): A list of global nodes, such as supply, ground and clock lines.
This is useful when “abstracting” higher level elements.

network network-description: Describes this element-type in terms of lower-level element-
types.

restrictions (restriction): Restrictions are used with the recognize rule.

68 © Philips Electronics N.V. 1993

Chapter 13

NDS: implementation of the
algorithms

13.1 FindScan

As discussed earlier, FindScan needs a design and a set of leaf scan chains as input. It
then produces a description of the chains found in the design.

13.1.1 File formats

Design: The design may be described in several formats. Among others, NDL and Edif
can be read and written. A design can also refer to blocks, which are not specified
within the design. These blocks should be found in the library.

Library: The library contains leaf blocks (cells), which may be used in a design. the
library may be specified using the NDL, EDT or Edif format.

Leaf scan chains: The leaf scan chains are specified by their external properties: pins,
length, and possible inversion. Since these leaf chains are consistent with the SDS
definition of chains, they can be specified using the RPL file-format.

Scan chains: After processing of the input data, FindScan will generate a list of the scan
chains found in the design. Of course this can (and will) be written out using the
RPL file format.

13.1.2 Information flow

The described information flow of FindScan is depicted in figure 13.1.

13.1.3 Generating of the leaf scan chains file with GenRpl

In our algorithm, hence in the NDS implementation, we have assumed that a list of leaf
scan chains is available. Since we use the RPL language to represent these scan chains,

© Philips Electronics N.V. 1993 69

Leaf
scan
chains
\/

G
—

Leaf
link
chains

~—

N\

FindScan

Figure 13.1: Information flow during a FindScan session

Scan

chains

© Philips Electronics N.V. 1993

this file could be manually generated.

However, the LDS toolkit provides us with many function calls to retrieve information
about library cells. We can use this information to automatically generate the RPL file.
If cell is a CellHandle, the following calls (among other) are available:

cell->IsBuf(): returns true iff this cell has one input port, and one outport that just
buffers the input.

cell->IsInv(): returns true iff this cell has one input port, and one outport that inverts
the input.

cell->IsPrimFF(): returns true iff this cell is a normal D-flipflop, with or without an
extra inverting output.

cell->IsSFF(): returns true iff this cell is a scannable flipflop.

A tool, GenRpl, has been developed, which uses the information from the library file to
generate an RPL file containing leaf scan chains.

For a buffer buf with input A and output X the following RPL text is generated:

Macro buf
ClockDomain no_clock NotDriven
Chain chaini

ScanIn A
Scan0ut Q
Length 0

EndChain { chainl }
EndClockDomain { no_clock }
EndMacro { buf }

For an inverter inv with input A and output Q the text is alinost identical. Only an
inversion sign ’-’ is added:

Macro inv
ClockDomain no_clock NotDriven
Chain chaini

ScanIn A
ScanQut -Q
Length 0

EndChain { chainil }
EndClockDomain { no_clock }
EndMacro { inv }

For a D-flipflop dff with input D, output Q, inverting output QB, and clocked by port CK
we have:

© Philips Electronics N.V. 1993 71

Macro dff
ClockDomain the_clock DrivenBy (CK)
Chain chaini

ScanIn D
ScanOut (@ -QB)
Length 1

EndChain { chainl }
EndClockDomain { the_clock }
EndMacro { dff }

For a scannable flipflop sff with scan data input DT, output Q, inverting output @B, enabled
by SE, and clocked by port CK we have:

Macro sff
ClockDomain the_clock DrivenBy (CK)
Chain chainil

ScanIn DT
ScanOut (Q -QB)
Length 1

EndChain { chainl }
EndClockDomain { the_clock }
EndMacro { sff }

Manual generation/extension of the RPL files

In LDS one can retrieve information about a cell. A cell is either combinatorial or se-
quential. A combinatorial cell may be further categorised, being a buffer, an inverter, a
NAND, etc. A sequential cell may be a D-flipflop, a scannable flipflop, etc.

Because these properties are specified for the entire cell, instead of for each individual
port, GenRpl will not find all possible leaf scan chains. The global cell approach fails for
instances with the following configuration: A cell with inputs A and outputs Q1 and Q2,
for which:

Ql=A4,Q2=4

This cell thus contains one buffer, and one inverter. However, the entire cell cannot be
seen a “a buffer” or “an inverter”. Hence LDS can only characterise this cell as being
combinatorial. In cases like this one, the user may manually extend the RPL file with a
macro description for such a cell.

Extending an RPL file manually does not involve must work, since the RPL language is
humanly readable. With the use of an arbitrary editor the user can add/delete macros
and chains to an RPL file. This can be done for two reasons:

1. The library contains cells which were not recognised by GenRpl. They may have

72 © Philips Electronics N.V. 1993

properties unknown to GenRpl, or be of the form sketched above.

2. The scan chains of a non-leaf block of the design are known by the user. FindScan will
interpret the existence of a macro for a non-leaf block as: “this block has already been
processed, and contains this set of chains”. This prevents FindScan of examining
the structure of that block. This can also be used to specify scan chains which are
not covered by our scan chain definition.

13.1.4 Tracer
Most of the functionality of FindScan is contained in the Tracer toolkit. It is a collation
of C++ classes and associated functions, which are capable of tracing scan chains. The

LinkTracer can be used to retrieve the driving pin of a clock or enable pin of a scan chain
element. The ScanTraceris capable of recognising entire scan chains.

These two classes are capable of retrieving scan chain of a design. Together with design
and library parsers, a routing plan reader and writer, they form the FindScan application.

13.2 RemoveScan

As discussed earlier, RemoveScan works on the same design and library as FindScan. It
also receives the detected scan chains of FindScan, and a math-rule file. After processing
this data it produces a scan-free version of the design.

13.2.1 File formats

Design: The design can again be described using the NDL or Edif.
Library: The library can again be specified using the NDL, EDT or Edif format.
Scan chains: These will be specified using RPL.

Match-rule file: The match-rule file contains replacements for blocks, i.e., it has a design
structure. Therefore it can be represented in NDL or Edif.

13.2.2 Information flow

The described information flow of FindScan is depicted in figure 13.2.

13.2.3 Generating the match-rule file

In our algorithm, hence in the NDS implementation, we have assumed that a match-rule
file is available, which describes how cells, which are part of a scan chain, should be
replaced.

© Philips Electronics N.V. 1993 73

T4

Design

|

Library

I

Scan
chains

) |

N\

Match
rules

|

RemoveScan

——— > | Design

Figure 13.2: Information flow during a RemoveScan session

© Philips Electronics N.V. 1993

Scan chains which do not have enable ports, share the normal and scan functionality.
Examples of such cells are buffers, inverters and the D-flipflop. So if these cells are parts
of a scan chain, they do not have to be replaced.

A multiplexer and a scannable flipflop do have enable ports. Removing scan functionality
means assuming the cells will never be enabled. In case of leaf scan chains with one enable
port, we can assume that this port always carries the not-enabled value.

Using NDL, the math-rule file of a two-input multiplexer, named MUX2 looks like:

MACRO
MACRO MUX2_1 I(A,B,S) 0(Q)
Inst1 BUF 1(B) 0(Q)
MEND
MACRO
MACRO MUX2_2 I(4,B,S) 0(Q)
Inst1 BUF I(4) 0(Q
MEND
MACRO
MACRO MUX2_3 I(A,B,S) 0(Q)
MEND

Buffer BUF is used to model to connection between an input and an output, since NDL is
not capable of describing nets containing more than one external port.

There are three different replacements for MUX2. MUX2_1 must be used when the chain from
A to Q is used in a scan chain, and the chain from B to Q isn’t. MUX2_2 must be used is
the opposite case, i.e., only the chain from B to Q is used in a scan chain. Finally MUX2_3
must be used is both chains are used in a scan chain.

The match-rule file of a scannable flipflop, named SFF, looks like:

MACRO
MACRO SFF_1 I(CK,D,DT,SE) 0(Q)
Instl DFF I(CK,D) 0(Q)
MEND

A scannable flipflop is thus simply replaced by a D-flipflop.

© Philips Electronics N.V. 1993 75

Chapter 14

VERA: implementation of the
algorithms

14.1 FindScan

As discussed earlier, FindScan needs a design and a set of leaf scan chains as input. It
then produces a description of the chains found in the design.

14.1.1 File formats

Design: The design may be described in several formats. Edif and of course the VERA
TD/ND format can be read. Other file formats must first be converted.

Leaf scan chains: The leaf scan chains are specified by their external properties: pins,
length, and possible inversion. Since the leaf chains are consistent with the SDS
definition of chains, they can be specified using the RPL file-format. A tool has
been developed to transform RPL-input into a Lisp-like language, suitable for the
VERA enviromment.

Scan chains: After processing the input data, FindScan will generate a list of the scan

chains found in the design. Just like the C++ version it will be written out using
the RPL file format.

14.1.2 Information flow

The described information flow of FindScan is depicted in figure 14.1.

14.1.3 Generation a leaf scan chains file
Since GenRpl (discussed in the NDS implementation chapter) automatically generates a

leaf scan chains file in the RPL format, we could use this file to import the leaf chains.
However, this would require a RPL-parser to be written in Lisp.

© Philips Electronics N.V. 1993 77

Leaf
scan
chains

Design

. Scan

Figure 14.1: Information flow during a FindScan session

Writing this parser would result in two parsers, one in C++ and one in Lisp. In that
case two parsers had to be supported. Therefore another approach has been taken. We've
developed a tool which parses a given RPL file, and produces a semantical identical file,
using another syntax. This syntax is the Lisp list format, which can easily be read into
VERA. The tool is called Rpl2TD. It reads a design, library and leaf scan chains file (in
RPL format), and writes and a TD-file, containing the design, and information about the
leaf scan chains.

14.1.4 Rpl2TD

As discussed in chapter 12, the TD-format consists of a Lisp list, containing type descrip-
tions. The Rpl2TD tool reads a design, a library, and a RPL file, stores them into NDS,
LDS, and SDS structures (using the parsers of NDS and SDS), and converts this set of
data structures into a TD-file.

The conversion is done by two programs:

RplI2TD: This program is written using the NDS, LDS and SDS toolkits. It converts
the input data into an Edif design/library file, and additionally generates a VERA
batch file. This batch file has to be executed, using VERA.

VERA batch file: This program (generated by Rpl2TD) reads the Edif design/library
file, and adds the leaf scan information to each type description. Finally the extended

78 © Philips Electronics N.V. 1993

TD-file is written out.

The generated VERA batch file is of the form shown in figure 14.2.

(load "rpl2td_init.lsp")
(load-edif "design_name.edif_out")

(add-attribute-to-td ’(type-1) ’scan-chains >(...)
(set-terminal-type ’type-1 ’terml ’sin)
(set-terminal-type ’type-1 ’term2 ’sout)

(add-attribute-to-td ’(type-n) ’scan-chains ’(...)
(set-terminal-type ’type-n ’terml ’sin)
(set-terminal-type ’type-n ’'term2 ’sout)

(save-td "design_name.td")

Figure 14.2: The VERA batch file generated by Rpl2TD

The “rpl2td_init.1sp” file contains the implementation of the “set-terminal-type”

function. Its function is to change the terminal-type of the given terminal to the given
type. Scan input and output terminals are given the type sin and sout respectively, clock
ports are given the type cin.

The final action of the batch file is to write the type-description file. It contains all
necessary information for FindScan: the design and library, and the leaf scan chains.

The only information not explicitly present in the TD-file is a list of leaf link chains. These
are however implicitly present. Link chains can been seen as a subset of scan chains: the
chains without clock or enable terminals.

14.1.5 Match-rules used to recognise scan chains

The definition of a scan chain is given in a form, very much like the VERA approach.
First a set of possible scan chain is defined. Then several restrictions are given, which
define subsets of the larger set. The combination of all restrictions results in the set of
scan chains.

The (large) set of possible scan chains, called scan chain candidates is retrieved by using
the find-scanchain-candidate rule defined below:

(define-rule FIND-SCANCHAIN-CANDIDATES (p)(start end)
O
(
(path (p) (start end ’node-node ’terminal-type ’(sin) ’(sout)
() 20 0 ’0 ’max ’max))

© Philips Electronics N.V. 1993 79

This rule returns all scan chain candidates, using the path-rule, discussed in chapter 12.
The candidates found have to be checked, whether they form a valid chain or not. First
the length of the path is checked. This length is not the length of the chain as defined in
our scan chain definition, but the VERA interpretation of the length of a path.

The length of a path

The length of a path is the sum of the number of nodes and the number of elements of
that path. Since two terminal of a type cannot be connected directly in VERA, a chain
must contains at least two nodes, and one element. Because the number of elements is
one less than the number of nodes, the length of the path must be 3,5,7,...

The following match filters out the path which have an incorrect length:

(define-match FILTER-OUT-INCORRECT-LENGTHS (p) (start end)

O
(
(test (p) (’length-of-scanchain-is-valid (instance-of p)))
)
O
)
where

length-of-scanchain-is-valid (p)

is a Lisp-function returning true iff the length of the given path is 3,5,7,...

The elements of a path

The scan chain candidates found using the path-rule are concatenations of elements, en-
tering via a terminal with type sin, and leaving via a terminal with type sout. This will
lead to invalid elements in case of elements which contain two or more scan chains. The
type shown in figure 14.3 contains two separate chains. For clarity, the clock and enable
terminal are left out.

Suppose an element of the type shown in figure 14.3 is used in another type. The terminal-
type of terminal A B is sin, that of Q1,Q2 is sout.

The path rule only uses these terminal-types. It has no knowledge about which scan input
and scan output terminal pairs are part of the same scan chain. Therefore it may come
up with the non scan chain elements “A to Q2” or “B to Q1”. The following rule will
recognise these invalid elements, and remove the corresponding “scan chains”.

80 © Philips Electronics N.V. 1993

N

Figure 14.3: A type containing two separate chains

(define-match FILTER-0UT-INCORRECT-ELEMENTS (p) ()

O
(
(test (p) (’elements-of-scanchain-are-valid (instance-of p)))
)
O
)
where

elements-of-scanchain-are-valid (p)

is a Lisp-function returning true iff all elements of the given path correspond to true scan
chain elements.

Each type contains a list of its scan chains, therefore the Lisp-function only has to check
whether the element-type contains a scan chain starting and ending at the terminals found
by the path-rule.

The clocks of a chain

Since the above rules/matches have filtered out incorrect concatenation of elements, the
chains that are left only contain elements which refer to scan chains, i.e., they contain
scan chain elements.

The scan chains with incorrect clock nodes are discarded by the following rule:

(define-match FILTER-OUT-INCORRECT-CLOCKS (p) ()

O
(
(test (p) (’clocks-of-scanchain-are-valid (instance-of p)))
)
O
)
where

© Philips Electronics N.V. 1993 81

clocks-of~scanchain-are-valid (p)

is a Lisp-function returning true iff the elements of the given path are clocked by terminals
via link chains, and are compatible among each other.

A function has been written, just like in the C++4 linktracer toolkit. Given a node, it
returns the node which drives the given node through a link chain:

driving-node-of-node (node)

This function is based on the find-linkchains rule, which is similar to the find-scanchains
rules. The difference is that the find-linkchains rule prohibits chains with clock or enables
terminals.

The enables of a chain

The scan chain with incorrect enable nodes are discarded by the following rule:

(define-match FILTER-OUT-INCORRECT-ENABLES (p) ()
O
(
(test (p) (’enables-of-scanchain-are-valid (instance-of p)))
)
O

This rule is identical to the clock checking rule. There are separate rules in case clocks
and enable should be treated differently in future versions of FindScan.

14.1.6 Determining the scan chains of a design
As explained in chapter 8, the order in which the different types can be processed is
restricted. This restriction can be derived from the descendence graph of the design. In

VERA a separate toolkit, the TD-monitor is present, which can be used to retrieve such
hierarchy information.

TD-monitor

One of the command the type-description monitor recognises is the show-hierarchy com-
mand. It is used by FindScan:

(td-monitor ’show-hierarchy ’! T)

This call returns a list of types, and their level in the hierarchical structure. We use this
information to choose a valid processing order for the types present in a design.

82 © Philips Electronics N.V. 1993

The program

FindScan itself is implemented as a Lisp function. A type-description file must have
been loaded, containing information about the leaf scan chains. FindScan first uses the
TD-monitor to determine the order in which to process the types.

Before a type is processed, its network is loaded into VERA. Then the match-rules de-
scribed earlier are used to find the scan chains present in the type. After this, the chains
that were found are added to the type-description of the type under exaimination.

© Philips Electronics N.V. 1993 83

Chapter 15

Comparing NDS and VERA

In this chapter we will discuss some difference between NDS and VERA, using FindScan
as a test application.

15.1 Design manipulation

There is a big difference in the way designs can be manipulated in the NDS or VERA
environment.

NDS, being a Network Data Structure, has many function calls which allow the user to
inspect and/or change a loaded design. For instance, given a block, one can retrieve
its children, its parent, its nets, etc. The NDS toolkit consist of almost all such basic
manipulations. Using these functions, the user can build an application performing a
specific task.

Writing FindScan using NDS required a tool which could recognise chains of scan chain
elements, the Tracer. The Tracer needs a list of possible scan chain elements. The SDS
toolkit was used as a suitable data structure. The Tracer supplies functions to retrieve
driving pins of clock and enable ports, as well as functions to search for complete scan
chains.

VERA was written for verification purposes. It contains rules, matches, and actions,
which can be activated. These rules inspect and/or change a loaded network. The user
may create new rules, using existing rules.

FindScan is not a verification application, but it does need structure recognition. We’ve
used the path-rule to recognise a group of possible scan chains. Because the path-rule
has no knowledge of which scan input belongs to what scan output, it may come up with
many invalid chain elements and therefore with many invalid chains.

To speed up the execution time, as well as reducing the memory requirements, we could
modify the path-rule. This modified path-rule should be able to find only strings of scan
chain elements, i.e., be able to match input and output terminals of a type. Modifying
the path-rule would however require more information about the internal Lisp structures
used in VERA.

© Philips Electronics N.V. 1993 85

15.2 Implementation effort

Comparing the implementation effort needed in both world is rather difficult. We first
developed the C++ implementation. This was done by creating a data structure toolkit
for scan chains, SDS, and developing a toolkit capable of tracing chains of elements, Tracer.

FindScan merely consists of a small program, using the facilities offered by NDS, SDS, and
the Tracer toolkits. The implementation effort of FindScan using NDS therefore includes
the effort of implementing SDS and Tracer. It must be noted that a parser for the routing
plan language was already available.

After the NDS version of FindScan and RemoveScan was finished, the implementation
using VERA was started. To avoid an extra parser for the RPL language, written for
VERA, a tool was developed which converted RPL. Macro information was added as an
attribute to the types (cells) to which the macros referred.

The tracer equivalent software was written using the path-rule built into VERA. Several
extra rules were written in Lisp, using the test-rule. Finally an RPL writer function was
developed, to be able to compare the results of the NDS and VERA versions.

15.3 Run-time and memory requirements

The two FindScan implementations are both executed on a number of designs. Both
returned a list of the scan chains found, using RPL. The MatchRpl tool has been used
to compare the results of the two programs. As expected, they returned the same set of
chains in every tested case.

The run-time needed by the two implementations was measurement on a HP9000/735
platform. The result are listed in figure 15.1.

Name depth largest cell NDS run-time VERA run-time
d2r 1 11291 5436 2278
estimator 4 1170 123 5953
pdemxmj 2 127 2.12 1.76
melm 2 1374 4.98 -
timer 6 616 1.67 3.68
tdma 6 185 1.91 783.63
tutor 5 8 0.23 1.02

Figure 15.1: Run-time results in seconds of FindScan on a HP9000/735 platform

The VERA implementation of FindScan almost always requires more memory, due to the
fact that it starts with a large set of scan chain candidates. The NDS version only stores
valid scan chains, as soon as a scan chain is found invalid the search is stopped, and the
traversed path is discarded.

86 © Philips Electronics N.V. 1993

15.4 Reliability

By reliability we mean the confidence one has in an implementation, given the fact that
it worked on several test cases. In other words, which parts of the software are used when
FindScan is executed on a particular design.

The advantage of the VERA implementation is the fact that the user does not have to
worry about exceptions such as NULL-pointers, illegal input etc. The user can rely on
that fact that these exceptions are handled by VERA. This implies that executing the
software on an average design will test almost all functions of it.

15.5 Flexibility

Flexibility stands for the ease with which the program can be adapted to a (slightly)
different definition of a scan chain. both version are flexible in the sense that they allow
different leaf scan chains to be added.

A modification of the algorithm would be necessary for instance if the definition of enable
ports would be extended. In the present definition only elements with one input and one
output terminal are allowed in the chain of elements which drive an enable port. If we
allow multi-input elements like ANDs and ORs, the enable ports is not driven by one port,
but by as set of ports.

The Tracer toolkit could be extended to search for such paths. Extending the VERA
implementation would, because of memory and run-time requirements, almost certainly
require the modification of the path-rule mentioned earlier. Using the regular path-rule
would result in an enormous amount of possible paths, which then have to be restricted
using additional rules.

© Philips Electronics N.V. 1993 87

Chapter 16

Possible improvements

Based upon the given definition of scan chains two algoritluns have been specified and
implemented using NDS and VERA. Both implementations used structure recognition to
identify scan chains in a design.

16.1 Extension of the scan chain definition

The definition of scan chains contained a restriction on clock and enable ports. The clock
and enable ports of scan chain elements had to be linked to ports of the higher level cell.
A port is linked by another port, if the latter one drives the first one, possibly through a
chain of buffer and/or inverters.

Sometimes the clock is not only driven through buffers or inverters. It’s possible that the
clock is generated by a special clock generator cell. An extension of the definition should
make it possible to specify an output of such a cell as being a valid clock generator.

The enable ports of a chain may also be driven by other logic than buffer or inverter. For
instance, it’s possible that a (former unused) combination of input ports of a cell is used
to enable a scan chain. This combination has to be detected by a logical subcircuit.

The same solution as for clock ports could be used, i.e., specifying an output of a specific
cell as being a valid enable generator. Another solution would be to allow other (multi-
input) combinatorial cell is the enable path.

16.2 Structure versus expressions

Another approach of scan chain recognition and removing is to use expressions instead
of structure. A toolkit, XDS, exists which can transform structure into an equivalent
expression, and vice versa. The implementation of RemoveScan using expressions will
briefly be discussed in the following section.

© Philips Electronics N.V. 1993 89

16.2.1 Implementing RemoveScan using expressions

As already mentioned, removing a scan chain means not enablingit. Using the EDS toolkit,
which is capable of manipulating expressions, an algorithm could be developed, which
would recognise unused logic due to scan chain removal. This logic could be discarded,
which is equivalent to removing the scan functionality.

16.2.2 Automatic generation of the Match-rule file

We noticed that the number of possible replacement of a block was 2™, with n being the
number of possible scan chains through that block. Theoretically it’s possibly to have 2"
different instances of the block, which all must be replaced by another block.

In practice most instances need the same replacement. Therefore the match-rule file does
not have to contains all 2" replacements. The match-rule file could be generated “on
request”, using the results of findScan to determine which replacement blocks are needed.

Another problem is finding such a replacement block. For combinatorial cells the expres-
sion approach will be suitable. After simplifying the expressions, another block (library
cell) must be found which matches the simplified version generated.

90 © Philips Electronics N.V. 1993

Chapter 17

Conclusions

In this report algorithms for finding and removing of scan chains have been discussed.
The implementation of these algorithms is used to compare two different programming
environments, NDS and VERA.

The NDS environment has been extended by a scan data structure, SDS, and a toolkit
to trace scan chains and clock/enable lines, the Tracer. With use of these tools, an
implementation of FindScan has been realised.

After the NDS version of FindScan was finished, the VERA implementation was started.
Similar data structures to the SDS structures were implemented, including appropriate

functions to operate on these structures. The Tracer toolkit was realised using primitive
rules of VERA, with use of additional rules.

As expected, both versions of FindScan return the same set of scan chains, when given
the same design. The VERA implementation however needs more run-time, as well as
more memory. This results from the fact that VERA first recognises a set of possible scan
chains, and later reduces this set to the set of real scan chains.

To speed up the VERA implementation, as well as reducing its memory requirements, the
path-rule could be extended. A flexible solution would be for the user to be able to pass a
Lisp-function, which will be used by the path-rule to determine valid paths. Writing such
a function however requires inside information on the path-rule, so this would only be of
help to experienced users.

Without this improved path-rule, we choose NDS as the better environment, because mod-
ification of the algorithm can be done, without needing change to the current environment.
If other users of VERA also would require a more flexible rule for path-searching, resulting
in an implementation of such a rule, VERA could be used as well.

The routing plan language, used to represent scan chains, could also use a small extension.
It has been noticed that many scan chains do have multiple outputs, i.e., other flipflops
besides the last one are reachable from the outside. In the current version of RPL, such
a chain has to be represented by a set of chains, all starting at the same scan input pin.
RPL could be extended to contain a list of additional output pins, all labeled with their
specific position in the chain (specified by the number of clock cycles, and the inversion

property).

© Philips Electronics N.V. 1993 91

Another option is to execute a task using both worlds. One could decide which parts of
a task would be best suited to solve with one of the environments, and split up the job.
To simplify this process, NDS has been extended to be able to output VERA-readable
netlists. VERA has been extended by functions which could inspect properties of such a
netlist. To export information from VERA to NDS, Edif could be used.

92 © Philips Electronics N.V. 1993

Bibliography

[Woudsma 90) WOUDSMA, R., F.P.M. BEENKER, J. VAN MEERBERGEN, C.
NIESSEN [1990], PIRAMID: an Architecture-Driven Silicon Compiler for Com-
plex DSP Applications, Proceedings ISCAS Conference, New Orleans, May.

[Beenker 90] BEENKER, F.P.M., M. VAN DER STAR, R.W.C. DEKKER, R.J.J. STANS
[1990], Implementing Macro Test in Silicon Compiler Design, IEEE Design & Test
of Computers, April.

[Claasen 89] CLAASEN, T.A.C.M., F.P.M. BEENKER, J. JAMIESON, R.G. BENNETS
[1989], New Directions in Electronic Test Philosophy, Strategy and Tools, Pro-
ceedings of the 15% European Test Conference , Paris

[Baker 90] BAKER, K., S. VERHELST [1990], IDDQ testing because "zero defects isn’t
enough”: a Philips perspective, Proceedings International Conference, Washing-
ton, p. 2563-254

[Bennets 85] BENNETS, R.G. [1984], Design of testable logic circuits, Addison Wesley

[Fujiwara 85] FUJIWARA, H. [1985], Logic testing and design for testability, The MIT

Press

[Bennets 93] BENNETS, R.G., F.P.M. BEENKER [1993], Partial Scan: what Problem
does it Solve ¢, Proceedings European Test Conference, Rotterdam, The Nether-
lands, April 19-22, p. 99-106

[EIA 87] EIA [1987], Electronic Design Interchange Format version 2 0 0, Electronic In-
dustries Association, Engineering Department, 2001 Eye Street, N.W. Washing-
ton, D.C. 20006

[Goel 81] GOEL, P., B.C. ROSALES [1981], PODEM-X: An Automatic Test Generation
System for VLSI Logic Structures, Proceedings 18th Design Automation Confer-
ence, p. 260-268, June

[Fujiwara 83] FUJIWARA, H., T. SHIMONO [1983], On the Acceleration of Test Gener-
ation Algorithms, IEEE Transactions on Computers, Vol. C-32, No. 12, p. 1137-
1144, December

[Philips ED&T 93] Philips Electronics N.V [1993], NDS v2.1 User Manual

[Philips ED&T 93] Philips Electronics N.V [1993], LDS v2.0 User Manual

© PLilips Electronics N.V. 1993 93

[Lynch 93] Lynch B.F., A.P. Kostelijk, P.A. Kuppen [1993], VERA user manual, Version
3.0

[Kostelijk 93] Kostelijk A.P., B.F. Lynch, P.A. Kuppen [1993], VERA reference manual,
Version 3.0

[Kuppen 93] Kuppen P.A., A.P. Kostelijk, B.F. Lynch [1993], VERA rule manual, Version
3.0

[Voort 93] Voort, T.A.F.M. van de [1993], InScan, specification and implementation of a
scan chain inserter, Philips ED&T internal report

94 © Philips Electronics N.V. 1993

Appendix A

Mathematical notation

This chapter describes the mathematical notations used in this report. Many readers will
already be familiar with most of these notations. Some new notations are defined in this
section.

A.1 Abbreviations

uff: iff stands for “if, and only if”. It is used to state that two statements are equivalent.
It is only used in text, in formulas we will use the equivalence-symbol ’=".

A.2 Sets and tuples

Set: A set S is a collection of zero or more entities. Either an entity is part of the set, or
it isn’t. For example:

S =1{1,2,517,8,9}
is a set of natural numbers.

Power set: The powerset of a set S (denoted by P(S)) is the set which contains all
subsets of S, including @ and § itself:

P(S) = {TIT C 5}
Tuple: A tuple is a finite, nonempty, ordered set. It is denoted by

(ely,ely,elz, ... ely)

A.3 Predefined sets

Set of natural numbers: IV denotes the set of natural numbers:

N ={0,1,2,3,...}

© Philips Electronics N.V. 1993 05

Set of positive natural numbers: INT denotes the set of positive natural numbers:
Nt ={1,2,3,...}
Set of booleans: IB denotes the set of booleans:

B = {false,true}

A.4 Operators

For all: V denotes the for all operator. It is used to denote the fact that a certain
expression holds for all elements of a certain set. For example:

VneINT: n>0

Exists: 3 denotes the ezists operator. It is used to denote the fact that a certain expression
holds for at least one element of a certain set. For example:

IneNt: n<3

Exists n: 3" (n € IN) denotes the exists precisely n operator. It is used to denote the
fact that a certain expression holds for precisely » elements of a certain set. It will
mainly be used to state that an expression holds for precisely one element. For
example:

ITnelNT: 4<n<6

The dot operator, used on a tuple: To refer to an element of a tuple, the dot notation
is used. For example if T is a tuple of the type

(a,b,c,d,e)
the fourth element of it will be denoted by:

T.d

This means that, if we want to use the dot notation for a tuple, we have to give
a (unique) name to all elements of that tuple. In this report we will define these
names along with the definition of the tuple itself.

The dot operator, used on a set of tuples: We will also define the dot operator when
used on a set of tuples.

Let T be a tuple type, d an element name of T, and ST C P(T') be a set of such
tuples. The dot operator used on such a set is defined as

ST.d= | td
teST

96 © Philips Electronics N.V. 1993

For example if T is a tuple of the type
(a,b)
and
ST ={(1,2),(3,4),(5,7),(7,2)}
then

ST.b={2,4,7}

© Philips Electronics N.V. 1993

97

Appendix B

The Routing Plan Language

A scan chain routing plan is a description of a (possible) routing of scan chains in a design.
The initial description of the plan is generated by PrepScan, the designer may modify
this plan or even replace it by another plan. The plan can be complete but incomplete
definitions are also possible.

Note that the routing plan language is restricted to tree-constructs. This means that the
description of the scan chain connections is given from the top level design down to library
cell level. Per hierarchical level the routing on that particular level is indicated. Hence,
it is not possible to directly specify a connection between two scan cells at different levels
of hierarchy. If such a connection is required the scanin and scanout terminals have to be
propagated through the hierarchy levels such that proper scanin and scanout terminals
exist at the various levels of hierarchy.

B.1 Syntax

routing_plan [+ macro +]

macro 1i= ‘MACRO’ {macro}name
([‘DERIVEDFROM’ {derivedmacro}name] |
[‘REPLACEDFOR’ {replacedmacro}name])
[+ clock_domain +]
(‘ENDMACRO’ | ‘END’) [“;°]

‘CLOCKDOMAIN’ [{domain}name]

([‘DRIVENBY’ {clocks}clock_list] |
[*NOTDRIVEN’])

[+ chain +]

(‘ENDCLOCKDOMAIN’ | ‘END’) [;]

clock_domain

chain 11 ‘CHAIN’ [{chainl}name]
[length]
[‘SCANIN’ {scanin}name]

© Puilips Electronics N.V. 1993 99

length

clock_list

port_list

order_list

element

name

char

anychar

int

‘ORDER’

Fom T T oo BN s B s B e B e |

order_list

‘LENGTH’ {lengthl}int

‘SCANOUT’ {scanouts}port_list]

‘SCANENABLE’ {scanenables}port_list]
‘NORMENABLE’ {normenables}port_list]
‘HOLDENABLE’ {holdenablesl}port_list]

‘ENDORDER’ | “END’) [“;° 1 1]
‘ENDCHAIN’ | “END’) [¢;° 1]

“(‘“ [-] {clock_port}name [* [,] [-]
{clock_port}name *] ‘)’

[-] {chain_port}name |
“(‘“ [-1 {chain_port}name [* [,] [-]
{chain_port}name *] ¢)°’

element [* element #*]

{instance}name ‘OFTYPE’ {decl}name
[[‘CLOCKDOMAIN’ {domain}name]
‘CHAIN’ {chain}name] [length]

€N [* a.n.ycha.r *] €

char [* char | int =]

’a?’ l ‘b)
(i; ' (j)
(q) I ¢r)
‘y7 l ‘Z’

(C) | (d,
‘k) l (l)
‘S, I ‘t’
($) l (S}

te) I (f) l (g; l (h, I
‘m> | ‘n> | ‘o’ | ‘p’ |
‘u, I ‘V’ I ‘W’ | txz I
[l (/7 I (\’

any non-quoted character

[0-9]*

o Comina’s, spaces, tabs and newlines are separators.

o ‘¥’ ‘17 and ‘\#’ till the end of a line is comment.

e [X] means that X can occur here at most once.

100

[* X *] means that X can occur here any number of times.
[X +]+ means that X should occur here at least once.
‘TOKEN’ means that TOKEN (a string) should appear here.

Although all tokens are printed in upper case, it is allowed to use any case for tokens.

© Philips Electronics N.V. 1993

e tag is a tag that is used in the next section for referencing to the routing plan syntax.
No attention should be paid to these right now.

B.2 Semantics

The semantic tags {...} have the following meaning:

o {macro} has no semantic meaning, unless it equals {derivedmacro}/{replacedmacro}
or there is no {derivedmacro}/{replacedmacro} (which means the same), in which
case it refers to the declaration name of the cell in the netlist.

o {derivedmacro} and \verbreplacedinacro+ refer to the original (“template”) macro
for hierarchy expansion.

o {domain} refers to the clock domain. It has only a semantic meaning when used in
the rule for ‘instance’, in which case it must be the name of a clock domain of
macro {decl}.

e {scanin} refers to the name of a scan-in port of the cell {macro} in the netlist.
o {clocks} refers to a list of clock port names of the cell {macro} in the netlist.

o {scanouts}, {scanenables}, {normenables} and {holdenables} refer to lists of
port names of the respective port types of the cell {macro} in the netlist.

¢ {clock_port} refers to the name of a clock port.

e {chain_port} refers to the name of a scan-in, scan-out, scan-enable, norm-enable
or holdenable port.

e {length} refers to the length of the scan chain.

¢ {chain} has only a semantic meaning when used in the rule for ‘instance’, in
which case it must be the name of a chain of clock domain {domain}.

e {instancel} refers to the instance name in the {macro}.

o {decl} refers to the declaration name of the mentioned {instance}. Hierarchy is
implicitly described by using some {macro} as {instance}.

e LENGTH, SCANIN, SCANOUT, SCANENABLE, NORMENABLE and HOLDEN-
ABLE may be defined in any order.

B.3 Semantic rules

Below, rules are given to which the routing plan must conform in order to represent a
valid routing plan, i.e., a routing plan that corresponds with the design. These rules are
an addition to the syntax, in which it is not possible to render such rules. All rules will
be checked by Scanlt after reading the routing plan.

© Philips Electronics N.V. 1993 101

B.3.1 Rules regarding uniqueness
e All macros must be unique within the routing plan.
o All clock domains must be unique within each macro.
o All chains must be unique within each clock domain.

e All clock ports must be unique within a clock port list.

B.3.2 Rules regarding order of definition
In general, it can be stated that each entity to which is referred should be defined before

this reference, so the rule ‘define before use’ applies. In particular, the following rules
should be adhered to:

e Referred instances must be (pre) declared in the routing plan.
o Referred clock domains must be (pre) declared on the macro in the routing plan.

¢ Referred chains must be (pre) declared on the macro in the routing plan.

B.3.3 Rules regarding length of chains
¢ In principle, the {length} of a scan chain as is specified in the routing plan should

be the sum of the lengths of its separate chain elements. However, incorrect lengths
are only flagged as a warning, and correct values are calculated.

B.3.4 Rules related to the design

The following rules mention the relationships between the routing plan and the design.

¢ if {macro} equals {derivedmacro} or there is no {derivedmacro} then {macro}
should be the name of a declaration cell in the design (or library).

¢ {derivedmacro} should be the name of a declaration cell in the design (or library).

e The ports that are mentioned in {clocks} must be clock ports in the design.

{instance} would normally be the instance name of a cell in the design that is contained
in cell {macro}. This is however not always necessary. E.g. one could define buffers in a
scan chain of the routing plan which do not yet exist in the design.

102 © Philips Electronics N.V. 1993

B.3.5 Other rules

¢ {derivedmacro} and {replacedmacro} refer to the original (“template”) macro for
hierarchy expansion. The ‘REPLACEDFOR’ construct should be used when {macro}
is a leaf macro (i.e. a macro of which the chains do not have chain elements)
which refers to a substitution, e.g. the line ‘MACRO dff_sff REPLACEDFOR dff’
states that the declaration of flip-flop ‘dff’ is to be replaced by ‘dff_sff’. In all
other cases, the ‘DERIVEDFROM’ construct must be chosen, unless {macro} equals
{derivedmacro}, in which case the ‘DERIVEDFROM’ construct is optional. This
construct defines a different scan chain constellation.

¢ A clock domain that has no clock ports must be indicated with the ‘NOTDRIVEN’
construct. This construct will only be used for defining a scan chain through a
combinatorial element which clearly has no clock ports. Multiple clock ports are
allowed with the ‘DRIVENBY’ comstruct. This means that all the ports that are
mentioned in the clock port list {clocks} should be connected at a higher level of
the hierarchy (compare this to “MustJoin” in Edif). Please note that this construct
does not refer to multi-phase clocking.

¢ The scan ports that are mentioned in each chain are all optional, with the exception
that each chain should have at least one scan-in and one scan-out port. There can
be only one scan-in port, but the number of other ports is not restricted.

e For each {instance} its type is given. If this type information is adequate for
determining the right chain (because this type of macro has only one chain) then
the ‘CLOCKDOMAIN’ and ‘CHAIN’ constructs are not necessary. If there is only one
clock domain but this clock domain contains more than one chain, then only the
‘CHAIN’ construct is necessary. If there is more than one clock domain, then both
‘CLOCKDOMAIN’ and ‘CHAIN’ are necessary.

© Philips Electronics N.V. 1993 103

Author :

Title :

Copy to :

M. van Balen

Comparing

the

NDS and VERA environments

for

scan chain recognition & removal

M.T.M.
P.W.M.
J.M.C.
K.
R.J.J.
R.J.G.
H.A.
S.R.

A.

J.
R.M.C.
L.AR.
F.G.M.
F.

AS.
M.N.M.

F.G.M.
AP
E.J.
C.R.

F.

Segers
Merkus
Jonkheid
Kuiper

Stans
Morren
Bouwmeester
Oostdijk

van der Veen
Bakker
Lenarts
Eerenstein
de Jong

van der Heyden
Biewenga
Muris

Bouwman
Kostelijk
Marinissen
Wouters

Hapke

© Philips Electronics N.V. 1993

WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab
WAY-3 Nat.Lab

WAY-4 Nat.Lab
WAY-4 Nat.Lab
WAY-4 Nat.Lab
WAY-4 Nat.Lab

Semiconductors Hamburg

105

	Comparing the NDS and VERA environments for scan chain recognition & removal

	Abstract

	Preface

	Acknowledgements
	Contents

	List of figures
	1. Introduction

	2. The design and test integrated circuits

	3. Scan test

	4. Hierarchical, logic circuits

	5. A structural model of hierarchical circuits

	6. A functional model of synchronous cells

	7. Astructural model of scan chains

	8. FindScan: the algorithm

	9. RemoveScan: the algoritm

	10. The NDS environment

	11. SDS

	12. VERA

	13. NDS: implementation of the algorithems

	14. VERA: implementation of the algorithems
	15. Comparing NDS and VERA

	16. Possible improvements

	17. Conclusions

	Bibliography

	Appendices

